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ABSTRACT 
 

Conducting planetary exploration missions with mobile robots is expensive, with costs 

ranging from hundreds of millions to billions of dollars. Developing reliable robots to work 

remotely on rough, uncertain terrain is imperative for these missions. One potential tactic for 

improving the cost-effectiveness of these missions is to distribute the mass allowance for the 

mission over a team of smaller robots, rather than using a single robot. However, there is limited 

work on determining the size and design for a team of robots to provide the best overall 

performance when operating on hazardous terrain. 

This thesis develops a framework for designing mass-restricted, homogenous teams of 

mobile robots that will operate in a region with uncertain terrain conditions. The framework is 

built around three models: a four-wheeled robot model, a probabilistic model of terrain hazards, 

and a robot-terrain interaction model. The models are formulated into an optimization problem 

that can be used to determine the best design for a team of robots based on the team's combined 

equivalent straight-line velocity (CESLV), a novel measure of mission performance. CESLV is 

an effective measure of mission performance for both predetermined (static) mission plans and 

dynamic mission plans, where observations made by the robots can change the future mission 

tasks. A graphical user interface (GUI) is also presented which allows a designer to explore the 

design tradespace for the team of robots while considering important factors that are not captured 

by the models. 

In a case study of a Mars exploration mission, a team of robots provides superior 

performance to a single robot. A sensitivity analysis shows that the optimal size of the robot 

team is robust to inaccuracy in the terrain conditions. Additionally, the tradespace UI captures a 

trend in robot team design that would have otherwise gone unnoticed. 

 

Thesis Supervisor: Richard M. Wiesman 

Title: Professor of the Practice of Mechanical Engineering 
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Chapter 1

Introduction

1.1 Motivation

Recent trends indicate that both the rate and complexity of missions to other terrestrial bodies,

such as the moon or Mars, will increase in the next decade. NASA is currently involved in seven

active Mars missions and is planning at least two additional missions that will launch by 2020.

Across major space agencies there are approximately six missions planned within the next decade

that incorporate a lander and a mobile robot (�rover�) [4]. There are also more daring missions,

such as Mars One's missions, which aim to establish a long-term human settlement on Mars.

The costs of robotic planetary exploration missions have increased by several orders of magnitude

in the past two decades. Figure 1.1 shows a cost comparison between the three NASA missions that

landed rovers on Mars. NASA is planning a Mars mission with a Curiosity-like rover in 2020 that

is targeted to cost $1.5 billion [5]. The 2016 and 2018 ExoMars missions, which are headed by the

European Space Agency (ESA) and include two landers and a rover, have an estimated cost of $1.6

billion [6].

One avenue for reducing the cost without sacri�cing the productivity of future missions is to

utilize teams of robots. Teams of robots retain the overall capabilities of the single robot that would

otherwise be used. The bene�t is that the individual robots within the team could either be much

simpler than the alternative single robot or be more cost-e�ciently sized for the terrain conditions.

In addition to cost, shifting from a single robot to a team of robots o�ers other potential

advantages. Robot teams can provide improved reliability through redundancy and can provide

�exible mission execution. The team can be transported via multiple smaller, staggered launches.

A fraction of the team can perform work prior to other arrivals, or in the case of any failures.

Additionally, robots could coordinate to perform tasks that are impractical for a single robot, such

as surveying a construction site.
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Figure 1.1: Cost history of NASA rover missions to Mars [1, 2, 3]

1.2 Problem Statement

This thesis examines the tradeo� between robot size and mobility performance to determine the

optimal degree of fractionation for a mass-limited, homogeneous team of mobile robots operating

in uncertain terrain. The design framework involves developing a mobile robot model, including

models for the interaction of the robot with di�erent terrain hazards. Statistical models represent

the uncertainty of the terrain in the region where the robot would be operating. A novel metric

of mobility and mission performance, referred to as the combined equivalent straight-line velocity

(CESLV), helps describe how fast a given team could visit a given set of destinations. With these

models, an optimization routine can be used to evaluate the most cost-e�ective design for a robot

or a team of robots, and how a designer or a mission planner could adopt these methods to evaluate

the tradespace of robot team designs for a given mission.

1.3 Scope

This thesis contributes a design framework to help determine how to allocate a given allowance

of mass among a team of robots to achieve optimal or near-optimal mobility performance for a

mission. Designing mobile robots for planetary exploration (as well as for other purposes) is a

di�cult problem due to complex, interdependent systems and constraints. Mobility of planetary

13



robots is an especially challenging aspect of design [7]. The overall performance of a mobile robot

depends on its locomotion system, its sensing and navigation systems, its communication system,

and its control system. It is inevitable that some components of the robot will be over-designed

with respect to others, and thus e�ort (in the form of mass or cost) is wasted.

Furthermore, the success of a planetary exploration mission also depends upon the e�ectiveness

of the mission plan. Some missions will have a static mission plan, in which the tasks are set to be

performed in a known order. In other cases, subsequent portions of the mission plan may change

depending upon results from earlier portions of the mission. For these dynamic mission plans, the

remaining tasks in the mission could change due to a key observation or discovery.

In order to focus on the design tradeo�s between robot mass and mobility, the models in this

thesis are only as complex as they need to be in order to �ll their part within the framework. Many

of the models could be made more accurate based on the current state of the art, but at the cost

of increased complexity. Additionally, a designer could supplement the models to account for other

factors or tradeo�s in mobile robot design. The designer needs to determine what level of complexity

is appropriate for a given situation. This thesis makes several assumptions to limit the complexity

of the problem.

First, the mission plan can be split into two parts: travel and functional tasks. Travel con-

sists of the robot driving from one location of interest to another. Functional tasks consist of the

operations that the robot performs at locations of interest that directly contribute to the mission

goals. For example, the tasks could include capturing pictures, taking measurements with scienti�c

instruments, or collecting soil samples for analysis. This framework focuses on the ability of the

robot to travel between locations of interest, and assumes that the ability of the robot to perform

any functional tasks is separate and unrelated to mobility. The only exception to this assumption

is that the mass of any equipment for performing function tasks acts as a payload on the robot.

Second, this framework makes reasonable assumptions regarding the capabilities of the robot's

control software and navigation system. It assumes that the robot's navigation capabilities are

similar to that of NASA's Mars rovers. Speci�cally, the robot is able to detect if terrain obstacles

are safe to traverse, and thus avoid immobilization, failure, or damage due to terrain conditions.

Additionally, the travel speed of the robot is limited by the speed at which it can process upcoming

terrain conditions.

Third, this framework assumes that there are no component failures in the robots. This as-

sumption is based on the reliability of NASA's Mars rovers.

Fourth, the cost of the team of robots is measured by their total mass. Attempting to develop

cost models for planetary robot components would be di�cult, and any models would likely be

inaccurate, due to the specialized hardware that is required for extraplanetary operations. Instead,

this framework uses the mass of robots to represent their cost. Especially for planetary exploration,

mass is an e�ective indicator of mission cost. Transportation costs, including the costs of the

launch, the spacecraft, and the lander, tend to dominate the overall mission cost. Additionally, this

framework can build o� of existing work on mass modeling of di�erent planetary rover components

14



[8, 9, 10, 11, 12].

1.4 Background and Literature Review

During the past three decades, research on mobile robots has been popular across a variety of �elds.

Most of this work is relevant to planetary exploration robots, with a signi�cant portion focusing

directly on planetary rovers. Areas of research include hardware technology, control, locomotion

systems, terramechanics, navigation, mission planning, and mission simulation, among others. This

section presents previous work that has had a profound impact on the work in this thesis, including

trending research on teams of mobile robots (Section 1.4.1), the interaction between wheels and

terrain (Section 1.4.2), and mobile robot design (Section 1.4.3).

1.4.1 Teams of Mobile Robots

Using a team of mobile robots for extraplanetary missions has been considered since the 1970s [13].

Researchers have considered the merits of small teams, consisting of fewer than �ve robots, and

large teams, consisting of several dozen robots. Research on small teams has examined multi-robot

cooperation on single tasks, such as assembling structures or for improved mobility on hazardous

terrain [14, 15, 16]. Research on large teams, or �swarms,� has examined navigation, area coverage,

formations, and target tracking [17, 18, 19, 20].

The concept of robot teams captures much attention from the research community not only for

the unique capabilities of teams, but also for their potential cost-savings and potentially superior

performance. The use of cooperative multi-robot systems represents a paradigm shift from the use

of single agents, for simplicity, to teams of multiple agents, which in many cases may bene�t from

the inherent structure of the mission scenario. Despite individual agents possibly becoming simpler,

robotic systems will maintain and improve upon their net capabilities through improvements to

autonomy and cooperation. The simpli�cation of individual robots o�ers potential for lower-cost,

rapid production of robots using o�-the-shelf components [21].

In addition to their potential cost-savings, teams are likely to be more reliable and more robust

than a single robot with comparable overall capabilities. Robot teams could still perform all their

functions, possibly at a decreased rate, even with the failure of a portion of their agents. Teams may

also be better able to cope with partial failures of individual agents. For example, the partially-

functional robots could be assigned to a task that does not require full functionality. In an ideal

scenario, damaged or malfunctioning robots could be repaired by their team members.

Stancli� et al. performed the most notable work on evaluating the bene�ts of these concepts

and determining how to best use them [22]. They examine methods to optimally design teams of

planetary exploration robots based on the reliability of the robots' components. They consider a

cost model based on the reliability of robot components, and compare the tradeo� between team

size and individual reliability of each robot. Stancli� et al. also include the possibility that robots

can be repaired by their teammates after they break. Their design methods rely on Monte-Carlo
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simulations to evaluate mission performance of di�erent robot team designs. A few others have

done similar work examining the tradeo�s between team size and individual reliability [23, 24, 25].

1.4.2 Terramechanics for Mobile Robots

The design of mobile robots depends heavily on the interactions between the terrain and the running

gear of the robot. Bekker presents what is now the fundamental theory of vehicle-soil interaction,

often referred to as �Bekker theory� [26, 27]. Parts of this theory build o� of Terzaghi's work on

soil mechanics [28, 29]. Bekker includes vehicle-soil interaction analyses for wheels and tracks, as

well as discussions on other types of locomotion. Wong has since then updated and supplemented

Bekker's work [30]. The work of Bekker and Wong is essential for determining the tractive and

resistive forces generated by mobile robots on o�-road terrain.

Despite this theory being developed for the larger part of the past century, it remains the subject

of experimental research. Ding et al. and Sutoh et al. have recently performed experimental work

to further investigate the e�ect of wheel design, including grouser design, on traction and resistance

in loose soils [31, 32]. Skonieczny et al. and Liu et al. investigate the e�ect of grousers in soil, which

to this point has received limited theoretical research [33, 34].

In addition to the vehicle-soil mechanics, the e�ects of various terrain obstacles must be consid-

ered. Any terrain feature that may impede the forward movement of a vehicle, beyond the resistance

generated by the running gear moving through the soil, can be considered an obstacle. Four gener-

alized obstacles are typically considered in mobility analyses: a slope, a step, a bump (also referred

to as a �wall�), and a ditch (or �trench�). Apostolopoulos's work analyzes slope, step, and bump

climbing for a wheeled vehicle [35]. More recently, Berkemeier et al. analyze step climbing for a

wheeled vehicle [36]. Rajabi and BSC analyze step climbing for a tracked vehicle [37, 38].

1.4.3 Mobile Robot Design Methods

To a large degree, the models in this thesis are successful due to the quality of earlier research.

Several e�orts have been made to design the locomotion con�guration of mobile robots for a speci�c

or optimal mobility. These studies, listed and described below, employ Bekker theory along with

other methods to determine mobility characteristics. The designs are evaluated with respect to a

number of mobility metrics.

Apostolopoulos's work represents one of the initial e�orts to design a mobile robot based on an

analysis of terramechanics and signi�cantly in�uences this research [35]. He considers three mobility

performance measures: tra�cability, maneuverability, and terrainability. Tra�cability is the ability

to traverse ground (soil, pavement, gravel, etc.) without losing traction. Maneuverability is the

ability to navigate around obstacles in an environment. Terrainability is the ability to cross terrain

obstacles. To investigate tra�cability and terrainability, Apostolopoulos analytically determines

drawbar pull from wheel-soil interactions, while considering resistances produced by obstacles in-

cluding slopes, steps, and bumps. Maneuverability is determined from the skid steering resistance

of the robot. He evaluates the design of robots based on metrics from these three categories.
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Zhang et al. develop a method to evaluate the mobility performance of a mobile robot with the

Rocker-Bogie suspension [39]. They also determine drawbar pull, stability on slopes, and obstacle

crossing ability, but they uniquely include the e�ect of grousers in the sinkage of the wheels. The

robot's obstacle-crossing ability is determined through empirical relations developed from experi-

ments and simulations.

Patel, Michaud, and Thueer develop methods to evaluate and design robots based on certain

mobility metrics. Patel et al. developed RMPET (the rover mobility performance evaluation tool),

which analytically determines traction and resistances to calculate drawbar pull [40]. The tool

also calculates the mean free path for the robot based on terrain statistics. Wilcox et al. �rst

propose using the mean free path, the average distance the robot can travel without encountering

an untraversable obstacle, as a measure of how well a robot would perform on speci�c terrain [41].

Michaud et al. develop the rover chassis evaluation tools (RCET), which encompasses the

methods of Patel et al. used in RMPET [42]. This tool also determines robot stability, gradeability,

and obstacle-climbing ability. Note that obstacle-climbing ability is compared in terms of the friction

coe�cient needed to climb the obstacle, rather than by specifying the maximum obstacle that can

be traversed.

Thueer and Seigwart evaluate the mobility of robots using supplemental parameters to those used

by Apostolopoulos [43]. For a robot, they determine the minimum wheel-soil friction coe�cient to

avoid slipping, the peak torque required by the motors to traverse an obstacle, and the accumulated

slip over a simulated driving distance. They also propose a new metric called the �velocity constraint

violation,� which represents the risk of violating the kinematic constraints of the robot based on

ideal wheel velocities, which would result in slippage.

Lamamy develops a robot model that attempts to relate the cost of a robot to its performance

in an exploration mission [8]. This is intended to allow for the generation of a tradespace and

the selection of a robot that provides certain mission results. The robot modeling includes major

subsystems of the robot (such as thermal, power, and communications subsystems), and has been

especially useful in developing this thesis. The mobility portion of the model determines the maxi-

mum speed of the robot on �at ground and the maximum obstacle (rock) size that can be climbed.

However, the mobility analysis is limited, relying heavily on empirical relationships.

Alibay extends Lamamy's work to design teams of planetary robots [11]. Her modeling incor-

porates some of Lamamy's work and adds a terramechanical analysis to determine parameters such

as drawbar pull and sinkage. Additionally, she analyzes missions based on their required functional

tasks. She then determines the possible ways that robots in a team could be equipped with the

di�erent hardware required for the tasks. The teams are evaluated in terms of metrics that aim to

capture 1) their e�ectiveness to complete tasks based on the functional breakdown of the team, 2)

the speed at which they can complete tasks, 3) the individual robot complexity, and 4) the com-

plexity of the team. She also contributes to the development of a computational environment to

simulate the performance of a team.
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1.5 Thesis Organization

This thesis is divided into 5 chapters. Chapter 1 states the purpose and scope of this research

and presents relevant background information. Chapter 2 develops the models that are used to

generate an optimization problem. These models include a terrain model based on the statistical

representation of di�erent terrain features, a mobile robot model that provides an estimate of

total robot mass, and a model for robot-terrain interactions on di�erent types of terrain obstacles.

Chapter 3 develops an optimization from the models, and describes a novel metric for measuring

the performance of robot teams. It also presents methods to solve the optimization problem and

to explore the design space of robot teams. Chapter 4 presents a case study of designing a team of

robots for exploration on Mars. Finally, Chapter 5 presents a summary of the work in this thesis,

along with conclusions and recommendations for future work.
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Chapter 2

Modeling

This chapter develops several models that focus on the design of a mobile robot for operation in

rough terrain. First, I present a model of a robot with a four-wheeled locomotion system and a

model of terrain obstacles. This chapter next develops a model that determines a robot's capability

to traverse the obstacles de�ned within the terrain model. Finally, I develop an appropriate system-

level model of the robot that accounts for the e�ects of rough-terrain travel. Chapter 3 collects these

models and develops an optimization problem to determine the most cost-e�ective robot design.

2.1 Robot Locomotion System

The robot locomotion system interacts with the terrain to generate motion for the robot. Numerous

locomotion systems exist, most of which interact with the terrain through wheels, tracks, or legs.

The Rocker-Bogie system has gained popularity through its use in NASA's Mars rovers.

I use a model of a simple four-wheeled robot as a generalized locomotion system. In practice, a

designer could develop a model to account for the complexities of any locomotion system. Figure

2.1 shows the basic geometry of the robot. The robot's box-shaped body contains the subsystems

of the robot as well as any additional payload. This model assumes that the robot's four cylindrical

wheels are independently suspended and driven.

Figure 2.1: The simpli�ed robot model used in analyzing terrain interaction mechanics
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Figure 2.2 shows a pro�le view of the robot and indicates the dimensions relevant to locomotion.

The height of the robot's body is based on the payload (such as tools or instruments) that the robot

will carry, and is constant in this model. The robot's center of gravity (CoG) is centered vertically

within the robot's body, but can be o�set forwards or backwards. The clearance height of the

robot's body is equal to the diameter of the wheels. Table 2.1 lists the variable robot dimensions

in this model.

B
 

dw

C

ϵ

bw

Figure 2.2: Front and side view of the robot marked with variable dimensions for the model

Table 2.1: Dimensions relevant to the locomotion system of the robot
Input Symbol Description

Wheelbase B Distance between the front and rear axles

Track C
Distance between the inside of two wheels on
the same axle

Wheel Diameter dw
The diameter of a wheel, not including the
grousers

Wheel Width bw
The width of the wheel in contact with the
ground

Center of Gravity (CoG) Bias ε

The CoG bias is the forward distance from
the geometric center of the body to the CoG.
If the CoG is behind the geometric center,
the CoG bias is negative.

2.2 Terrain Representation

The terrain upon which the robot operates is one of the most important considerations in the design

of planetary robots. In order to accurately predict the performance of a mobile robot, the terrain

must be characterized and modeled e�ectively. This section describes a model that characterizes the

terrain obstacles into three categories, and statistically accounts for the uncertainty in the terrain.

2.2.1 Terrain Obstacle Characterization

�Terrain obstacle� refers to any landform or object on the ground that could impede the movement

of a vehicle or robot across the terrain. The goal of characterizing terrain features into categories

is to be able to accurately represent a region of land as a set of statistical models describing each

obstacle category.
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Figure 2.3 presents a simpli�ed robot crossing two di�erent terrain obstacles. The �gure shows

a robot climbing each obstacle at its threshold point: the point at which the robot experiences the

maximum motion impedance from the obstacle. Because the forces experienced by the robot at the

threshold point are the same for each obstacle, they could be categorized into the same group even

if the two features seem di�erent.

Figure 2.3: Demonstration of two terrain hazards with equivalent e�ects on robot mobility

There are several methods of categorizing terrain features. For example, the visual navigation

system of the Mars Exploration Rovers discretizes terrain into cells and quanti�es them in terms

of three components: step, tilt, and roughness [44]. The step component accounts for di�erences in

cell elevation compared to the average elevation of cells around it. The tilt component accounts for

sloping terrain detected along a group of cells. The roughness component accounts for how much

the elevation of individual cells in a group vary from a planar surface �t to the group. Note that

this classi�cation is used in a real-time navigation system, not for predicting robot performance

during the design process.

It is important to note that the categorization of terrain features cannot perfectly represent every

possible terrain condition encountered by a robot. I develop this model to provide reasonable ob-

stacle representations, while requiring relatively straightforward calculations for robot performance.

The terrain model presented here considers three categories of obstacles to be representative of

the majority of obstacles encountered. To simplify the problem, the model assumes two-dimensional

interactions between robots and hazards. To categorize and quantify obstacles, this model �rst

distinguishes three classes of terrain features based on size: features that are much smaller than

the robot, features with sizes on the order of the robot size, features that are much larger than the

robot.

Features that are much smaller than the robot, such as pebbles, will generate very little to no

motion resistance and are excluded from the model.

Features that are much larger than the robot, such as craters or ridges, are also excluded

from the model, since there will often be little uncertainty associated with them. Although larger

features have the potential to have greater impacts on robot performance, their size allows them

to be detected through satellite imaging or lidar. Because of this, they need not be accounted

for in a model of the uncertainty in the terrain. Additionally, during the mission a robot would

encounter signi�cantly fewer of these obstacles than it would encounter smaller sized obstacles.

These realizations make large features easier to account for through speci�c mission planning than

through an uncertainty model.

Features with sizes on the order of the size of the robot are more common than larger obstacles
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and have signi�cant impacts on robot performance. This model focuses on representing these

obstacles, and �rst distinguishes them into grade-based obstacles and geometric obstacles.

Grade-based obstacles apply normal forces on the wheels that are perpendicular to the direction

of travel for the robot. A simple case of this is sloped ground, like a ramp, demonstrated in Figure

2.4. In this model, grade-based hazards consist solely of sloped terrain, and will be referred to as

�slopes.� Slopes are considered to be continuously encountered, with horizontal ground considered

to be a slope with zero angle.

Figure 2.4: The three obstacle categories (from left to right) in the terrain model: slopes, bumps,
and ditches

Geometric obstacles apply normal forces to the wheel that are not necessarily parallel to each

other, and may be in or against the direction of travel. A simple example of this is a rock, which

applies a force opposing the direction of travel. Though geometric hazards could take any shape,

this model includes only box-shaped obstacles, called �bumps,� and in�nitely-deep holes, called

�ditches� (see Figure 2.4). These general cases provide conservative estimates of the largest possible

traversable obstacle.

Geometric obstacles of other shapes can be represented by a either bump or ditch with an

equivalent size. Consider a two-dimensional interaction with any positive (above ground level)

geometric hazard. The equivalent bump or ditch obstacle provides the same threshold impedance

as the original hazard. In Figure 2.5, the threshold forces applied to the robot are the same for each

obstacle.

Figure 2.5: A round obstacle (left) represented by an equivalent bump obstacle (right)

The distinction in the model between positive obstacles (bumps) and negative obstacles (ditches)

is to account for the di�erent threshold impedances produced from the front wheels versus the back

wheels of the robot climbing the obstacle. For bump obstacles, the normal reaction force on the

non-climbing wheel is perpendicular to the direction of travel. For ditch obstacles, that force has a

component in the direction of travel. Appendix B examines the mechanics of obstacle climbing and

provides a more detailed explanation for this.
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2.2.2 Slope Obstacle Representation

Slope obstacles are described by a single parameter: the angle of the slope, which is equal to the

pitch angle imposed on the robot. While it's possible for the robot to be situated on wavy substrate,

this model only considers slope obstacles on the order of the size of the robot (see Section 2.2.1).

Slopes that change in shorter distances than the size of the robot do not necessarily pitch the robot

at the angle of the slope (see Figure 2.6).

Figure 2.6: Steep slope changes on a scale smaller than the size of the vehicle may not signi�cantly
a�ect robot pitch

Additionally, the terrain model considers the robot to be constantly engaged with a slope obsta-

cle, which includes a completely horizontal slope obstacle. This is bene�cial for two reasons. First,

the slope distribution can be easily determined from elevation data. In cases where the terrain

is mostly �at, the slope distribution would be weighted very close to zero. Second, performance

calculations are simpli�ed, because slope obstacles are encountered at a known number of obsta-

cles per distance traveled (see Section 3.2 for a description of the calculation). Equation 2.1 gives

the approximate number of slope obstacles encountered by a robot with wheelbase B traveling a

distance D.

Nslopes ≈
D

B
(2.1)

Consider a robot placed into a terrain region at a random location and a random heading. The

probability distribution function (PDF) for slopes describes the likelihood that the robot would be

within a given range of slopes. A positive slope indicates the robot heading points uphill, and a

negative slope indicates the robot heading points downhill.

2.2.3 Geometric Obstacle Representation

The terrain model describes both bumps and ditches by a single parameter, the �obstacle magni-

tude.� For bumps, this parameter describes the height of the bump obstacle. For ditches, this

parameter describes the length of the hole (the depth is assumed in�nite). In both cases this is a

conservative simpli�cation, as I will explain below. Bumps and ditches are modeled using the same

probabilistic representation, although the parameters in each distribution may di�er.

A two-dimensional bump obstacle could be de�ned by two dimensions: a height and a length

(Figure 2.7). However, the bump magnitude in the model only describes the height of the bump.

23



The length is assumed to be short enough so that the robot's front and rear wheels are never

simultaneously climbing the obstacle. This assumption may often be untrue, but it is a conservative

simpli�cation. While a robot is climbing a bump obstacle, the maximum motion impedance is

generated when the robot's front wheels are on the ground and its rear wheels are climbing the

obstacle [45].

length

height

length

depth

Figure 2.7: Bump and ditch obstacle with possible dimensions shown

A two-dimensional ditch obstacle (a negative hat obstacle), could also be de�ned by two dimen-

sions, a depth and a length, as shown in Figure 2.7. The ditch magnitude in this model describes the

length of the ditch, and the depth is assumed to be in�nite. As with the bump, this is a conservative

simpli�cation because an in�nite ditch results in the largest impedance forces. This is because an

in�nite ditch will allow the robot's wheel to drop down until it is in contact with both edges of the

ditch. The �oor of a �nite ditch could catch the wheel before it makes contact with both edges.

Additionally, an in�nite ditch will immobilize a robot if its wheels cannot make contact with the

other size of the ditch.

In the terrain model, geometric obstacle encounters are represented by a Poisson process. Their

size is exponentially distributed. This is based on a statistical representation of rock sizes and

abundances, referred to as a size-frequency distribution, for the Viking Lander 1 and Viking Lander

2 sites on Mars [46]. This representation considers rocks to be approximately spherical. Equation

2.2 shows the relationship developed by Golombek and Rapp, where N is the number of rocks

per area with diameter h or greater. L is the total number of rock centers (for any size rocks)

per area, and s is the parameter on the exponential rock size distribution. Equation 2.3 is the

density function of the size-frequency distribution, related to N as shown in Equation 2.4. Figure

2.8 shows a comparison of the size-frequency density functions for geometric obstacles with di�erent

parameters.

N (h) = Le−sh (2.2)

n (h) = Lse−sh (2.3)

N (h) =

∞̂

h

n (h) dh (2.4)

The size-frequency distribution can be used to determine the number of obstacles (and their

sizes) that a robot would encounter while driving along a known path length. The model assumes
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Figure 2.8: Size-frequency density functions with di�erent parameters

that geometric-obstacles are roughly spherical in shape with their diameter equal to their magnitude.

The frequency of obstacle encounters for a robot driving along a path is a Poisson process with rate

parameter λ. λ (y0, y1) is the average number of obstacles with diameter greater than y0 and less

than y1 encountered by the robot per distance of travel.

λ can be determined by considering the path of the robot and the size-frequency distribution

of rocks [41, 40]. Figure 2.9 shows the area swept out for a robot with track C while traveling a

distance, D. The robot will encounter obstacles with size D if their centers are within the dotted

lines. Note that the distance between the dotted lines is di�erent for every obstacle size.

y/2

y/2

C+2bw

D

Figure 2.9: Path width for obstacle encounters

Equation 2.5 gives λ (y0, y1) by integrating over the range of obstacle sizes and their related path

widths.
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λ(y0, y1) =

y1ˆ

y0

(C + 2bw + y)n (y) dy

=
L

s

[
e−sy0 (sy0 + s (C + 2bw) + 1)− e−sy1 (sy1 + s (C + 2bw) + 1)

]
(2.5)

A similar method can be used to determine the average size of the obstacles that are encountered

using the PDF of obstacle sizes in Equation 2.6

f (y) = se−sy (2.6)

2.3 Robot-Terrain Interactions

This section develops models for the interactions between the robot and the three categories of

terrain obstacles in the terrain model. I �rst develop a model of the forces generated between the

wheel and the soil based on terramechanics. The robot-obstacle interaction models analyze the

forces generated while the robot is traversing an obstacle. Together, these models can determine

whether the robot can generate enough traction to drive over a given obstacle.

The models in this section make two notable approximations. First, quasi-static approximations

are used for robot-obstacle interactions. At low speed this is a reasonable approximation. If desired

or if necessary, a designer could implement a dynamic analysis to achieve improved accuracy. Second,

robot-obstacle interactions are approximated with a two-dimensional analysis. Again, a designer

could use a three-dimensional analysis. A two-dimensional model provides a conservative estimate,

since in reality many terrain obstacles will only a�ect one wheel at a time.

2.3.1 Wheel-Soil Interaction

The wheel-soil interaction model examines the physical interactions between the wheel and the soil

in order to quantify various forces that are produced. This model determines the maximum forward

force, referred to as the drawbar pull, that the robot can generate. The total drawbar pull is the sum

of the individual drawbar pull contribution from each wheel. This involves determining components

of both motion resistance and forward thrust generated between the wheel and the ground. The

magnitude of the components depend on di�erent properties of the soil as well as the dimensions of

the wheels and the loading on the wheels.

This model is based on terramechanics and primarily utilizes Bekker theory to model the physical

interactions between the wheel and the soil [26, 47, 27, 30]. Speci�cally, it uses the relationships

for a rigid wheel in loose soil. Bekker theory builds o� of the soil mechanics work by Terzaghi,

who developed empirical relationships to determine soil parameters used in Bekker's relationships

[28, 29].
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I separate the components of the drawbar pull contribution at each wheel into two tractive

components and three resistive components, shown in Equation 2.7. An important distinction be-

tween tractive and resistive forces is that tractive forces put energy into the motion of the robot

while resistive forces put work into tearing or reshaping the substrate. The tractive components

of drawbar pull include soil thrust and grouser thrust; the resistive components include soil com-

paction, bulldozing, and rolling resistance. All �ve components are listed and described in Table

2.2. Appendix A presents further explanation of the components of drawbar pull, along with their

detailed calculations.

Fdp = Fs + Fg −Rc −Rb −Rr (2.7)

Table 2.2: Components of the drawbar pull contribution of a wheel
Component of Drawbar Pull Symbol Description

Soil Thrust Fs
Tractive force generated by cohesive forces
within the soil that resist deformation

Grouser Thrust Fg
Tractive force generated by the motion of the
of grousers (or �lugs�) through the soil

Compaction Resistance Rc

Resistive force originating from the internal
resistance of the soil to being depressed by
loading of the wheel

Bulldozing Resistance Rb

Resistive force from the wheel pushing soil
material forward and up along the side of the
wheel, rather than pulling it backward
directly underneath the wheel

Rolling Resistance Rr

A combination of resistive forces internal to
the wheel, including friction and wheel
deformation

2.3.2 Slope Obstacle Interaction

The slope interaction model considers three generalized cases of slope traverses: uphill climbs,

downhill climbs, and crosshill climbs (see Figure 2.10). During uphill and downhill climbs, the robot

only experiences rotation along the pitch axis. During crosshill climbs the robot only experiences

rotation along the roll axis. In reality the robot will be traversing slopes that cause simultaneous

rotation along both axes. Because the uphill/downhill and crosshill components are non-additive,

the robot can (based on this quasi-static analysis) experience rotations up to the maximum stable

slope angle along each direction while still remaining stable.

The slope interaction model determines whether terrain with a given slope can be traversed

by the robot based on two factors: stability and traction. Stability requires that the robot does

not pitch forward or backwards onto its back, thus becoming immobilized. Traction requires that

the robot can generate enough force at the wheel-soil interface to maintain speed on the slope.
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Uphill Downhill Crosshill

Figure 2.10: Analyses for the robot-slope interaction model considers uphill, downhill, and crosshill
travel

Appendix B.1 covers a detailed stability and traction analyses for the three categories of slopes.

In practice, driving the robot across any slopes that are close to the maximum stable slope is

dangerous. Any perturbations or e�ects of dynamics could cause the robot to rotate beyond its

stable limits. Additionally, driving on a slope where traction cannot be maintained could cause

problems with the robot's navigation. If desired, one could add a margin of safety to the maximum

stable uphill, downhill, and crosshill slopes.

2.3.3 Geometric Obstacle Interaction

The geometric interaction model determines if a bump or ditch obstacle of a given magnitude can be

successfully traversed by the robot based on three factors: stability, traction, and geometry. Figures

2.11 and 2.12 illustrate these limitations for bumps and ditches. Stability requires that the robot

does not pitch forward or backwards onto its back, thus becoming immobilized. Traction requires

that the robot can generate enough force at the wheel-soil interface to surmount the obstacle.

Geometry requires that the robot is not blocked or immobilized due to the body of the robot

colliding with the obstacle's surface. These three factors are investigated for the robot crossing the

obstacle with both its front wheels and its rear wheels. Appendix B.2 provides the full details of

this analysis for bump obstacles, and Appendix B.3 provides the analysis for ditches.

Stability Traction Geometry

Figure 2.11: Stability, traction, and geometric concerns for a robot driving over a bump

The geometric obstacle interaction models are based on two-dimensional, quasi-static analyses.

For a given obstacle size, the analysis checks whether a robot can pass the stability and geometry

tests, and determines the traction that the robot would need to generate to drive over the obstacle.
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Stability Traction Geometry

Figure 2.12: Stability, traction, and geometric concerns for a robot driving over a ditch

The wheel-soil interaction model can then be used to determine whether or not the robot is capable

of generating the required traction.

In the case of the ditch obstacle, under almost all circumstances it would be impossible to have

a robot that passes the geometry requirements but fails the stability requirements. Because of this,

the ditch analysis excludes the stability requirement.

2.4 Robot Subsystems

In the context of planetary exploration, robots receive commands, collect information, make deci-

sions, and physically interact with their environment. This section develops simpli�ed models of

robot subsystems, making reasonable assumptions with respect to their designs. The purpose of

these subsystem models is to estimate masses of the subsystems based on their requirements. Table

2.3 presents a description of the robot subsystems.

The robot, shown in Figure 2.1, consists of a box-shaped body and four wheels that extend from

the body. The wheels and body are connected via a ladder-shaped chassis. The body contains the

robot subsystems, including the electronics, instruments and tools, thermal management hardware,

and battery. The robot is primarily powered by body-mounted solar panels, with batteries as a

source of backup power. Hub motors in each wheel drive the robot.

The payload, thermal management, and electronics subsystems are not explicitly analyzed.

Instead, the model assumes that they each contribute a constant, known amount to the overall

mass of the robot. The variation in the mass of these systems across robot designs is likely to only

make a small contribution relative to the mass of the other systems.

The chassis, motors, and power subsystems are sized to meet the robot requirements based on

the terrain conditions. The chassis is sized to be strong enough to withstand the stresses induced by

the robot driving over the largest sized obstacles that it can traverse. Appendix C presents analyses

to determine chassis stresses induced by di�erent obstacles. The motors and power subsystems are

sized based on the average power that the robot consumes.
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Table 2.3: Descriptions of the subsystems in the robot model
Subsystem Description

Chassis

The chassis is modeled as a ladder frame with a rectangular cross section.
Both vertical and horizontal thicknesses are consistent across all rungs. The
strength of the chassis is determined by the maximum stress imposed by
terrain hazards.

Payload
The payload includes any tools, instruments, or scienti�c equipment that
the robot will carry.

Motors
Hub motors in each wheel drive and steer the robot. The size of the motors
is determined by the average drive power of the robot, which depends on
the terrain conditions.

Wheels
The wheels are rigid (compared to a �exible rubber tire) and have grousers
to improve performance.

Electronics

This includes sensors, computers, communication devices, and other
necessary electronics to operate the robot. Notable exclusions are
non-essential electronics included with the payload equipment and power
management electronics.

Thermal
Management

The thermal management system includes any necessary cooling or heating
devices to maintain the robot's temperature inside the operating range for
the hardware.

Power

The power supply subsystem consists of solar panels, batteries, and the
power management hardware. The solar panels are sized to meet the
average power requirements for the robot. The batteries, which provide
supplemental power during periods of low sunlight, are sized to provide full
backup power for a set period of time. The power management hardware
includes the electronics required to transport and convert power to di�erent
pieces of hardware on the robot.

2.4.1 Power Usage

This model considers that the robot consumes a constant amount of energy for its electronics plus

additional energy for traveling. The average power consumed during travel, Pdrive, is determined

from the robot capabilities and the terrain model, as shown in Equation 2.8. R is the average

resistive force from slopes, bumps, or ditches. Ṅ is the rate (number per distance) of obstacles

encountered. Ȳ is the average magnitude of bumps or ditches that are traversed. Ṅ Ȳ estimates

the percentage of the time that the robot is in contact with that type of obstacle. The robot

constantly experiences the resistive force from slopes, Rslope, which includes resistive forces from

the soil mechanics.

Pdrive = v
(
Rslope + ṄbumpȲbumpRbump + ṄditchȲditchRditch

)
(2.8)

Equation 2.9 shows that average resistive force, R, is estimated as 50 percent of the threshold

impedance, the average of the front and rear threshold impedances, from a mean-sized obstacle.

Note that this is the mean obstacle size that the robot can traverse, not the mean size of all
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obstacles.

Robstacle =
1

2

Rrear +Rfront
2

(2.9)

Equation 2.10 gives the average angle of slopes that the robot drives on, based on the probability

density function (PDF) of slopes, fθ (θ). This only includes slopes that the robot can safely drive on.

θup and θdn are the angles of the maximum uphill and downhill slopes that the robot can traverse.

The resistance of the slope is determined using the analysis in Section 2.3.2.

θ̄ =

´ θup
θdn

θfθ (θ) dθ´ θup
θdn

fθ (θ) dθ
(2.10)

Equation 2.11 gives the number of bump and ditch obstacle encounters per distance traveled

based on the obstacles' size-frequency distributions, ny (y), and the maximum traversable obsta-

cle magnitude, y?. Note that Ṅ is equal to , λ, the obstacles encountered per driving distance

determined in Equation 2.5.

Ṅ =

y?ˆ

0

(C + 2bw + y)ny (y) dy (2.11)

Equation 2.12 gives the mean magnitude of obstacles that are traversed by the robot. fy (y) is

the PDF of obstacle sizes, y (see Equation 2.6). The resistance of the average obstacle (bump or

ditch) can be determined using the analyses in Appendix B.

Ȳ =

´ y?
0 y (C + 2bw + y) fy (y) dy´ y?
0 (C + 2bw + y) fy (y) dy

(2.12)

2.4.2 Robot Mass

The total robot mass is the sum of the masses of the subsystems (Equation 2.13). The mass of the

team is the number of robots times the mass of one robot (Equation 2.14). This section describes

how the model determines the mass of each subsystem.

mrobot = mpayload +melectronics +mthermal +mchassis +mmotors +mwheels +mpower (2.13)

mteam = rmrobot (2.14)

Payload, Electronics, and Thermal Subsystems The robot model assumes that the payload,

electronics, and thermal subsystems have a known, constant mass regardless of the robot design.

For the payload system this is a valid assumption, since the equipment required for the mission
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tasks should not depend on the robot design. The electronics should also be similar across robot

designs. For simplicity the model assumes that the thermal management subsystem has a set mass.

Though the design and mass of the thermal management system would change across robot designs,

the variation will likely be small relative to the total robot mass.

Chassis The mass of the chassis, shown in Figure 2.13, can be determined from the material

properties and dimensions of the chassis. Equation 2.15 gives the mass of the chassis. ρ is the

density of the chassis material, bc and hc are the width and height of the chassis cross section.

Figure 2.13: The chassis of the robot, modeled as a ladder frame with four rungs

mchassis = ρbchc (2B + 4C) (2.15)

Motors The mass of each motor is determined from its power requirement, Pdrive, determined in

Section2.4.1. based on an exponential relationship, shown in Equation 2.16. Curve �tting based on

data from commercially available motors, shown in Figure 2.14, results in parameters of a = 9.67

and b = 0.61.

mmotors = 4a

(
Pdrive

4

)b
(2.16)

Wheels The mass of wheels depends on their dimensions. The wheel mass is determined from

an empirical model presented by Alibay et al [12]. Equation 2.17 shows a modi�ed version of the

relationship that depends on wheel diameter, dw, and wheel width, ww. Dimensions are in meters

and mass is in kilograms.

mwheels = 4× 26.5 (dw)2.81 (bw)0.4 (2.17)

Power Supply The mass of the power supply system includes the mass of the solar panels,

batteries, and power management electronics:

mpower = msolar +mbattery +mmanagement (2.18)
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Figure 2.14: Empirical motor power-to-mass relationship based on electric vehicle motors

The solar panels are sized to meet the average power used by the robot. Equation 2.19 shows

how the model determines the mass of the solar panel based on the ρsolar, the density of the solar

panel in mass per area; P , the average robot power required; s, an oversizing factor; η, the e�ciency

of the solar panels; and I, the solar irradiance (power per surface area).

msolar =
ρsolarPs

ηI
(2.19)

The battery is sized to provide full backup power to the robot for a certain period of time.

Equation 2.20 shows the mass of the battery, which depends on Tbackup, the desired period of time

to have full backup power; P , the average robot power; and cbatt, the speci�c energy of the battery

chemistry.

Mbattery =
TbackupP

cbatt
(2.20)

The model assumes that the mass of the power management electronics are linearly related to

the average power of the robot, as show in Equation 2.21. k is the linear coe�cient in units of mass

per power.

Mmanagement = kPP (2.21)
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Chapter 3

Optimization

This chapter presents the formulation of an optimization problem from the models developed in

Chapter 2. The solution to this optimization problem provides insights into the optimal degree of

fractionation for a team of robots. Section 3.1 describes the design variables and design constraints

chosen for the optimization. Section 3.2 develops a measure of performance for a team of robots,

which is the objective function for the optimization. Section 3.3 presents a computer program

to computationally solve the optimization. Additionally, the program includes a graphical user

interface that is useful for tradespace exploration and design comparisons.

3.1 Optimization Problem Formulation

The design framework uses the models developed in Chapter 2 to develop an optimization problem

that provides the optimal robot team design for given terrain conditions. In practice, it is possible

to run one optimization to determine the optimal number of robots in the team. However, in most

cases the models will lack su�cient completeness for the optimization to give a true optimum.

In those cases, the optimization problem would serve as a tool to explore the design tradespace,

allowing a designer to investigate the sensitivity of the team design to changes in terrain conditions.

The optimization can be used to determine a range of team sizes that provide an acceptable level of

performance. The decision of the number of robots to use for the mission can depend on the results

of several optimizations, as well as additional factors that may be too complex to model.

Optimization algorithms typically accept optimization problems that are written in the common

form shown in Equation 3.1. f (xi), known as the �objective function,� is the scalar quantity to

be either maximized or minimized (see Section 3.2). xi, known as the �decision variables� (DVs),

are parameters that are adjusted in order to optimize the objective function. ~c (xi) ≤ 0 is a set of

equations, known as �constraints,� that restrict the possible values of the DVs.
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min
xi

f (xi) (3.1)

such that~c (xi) ≤ 0

Table 3.1 lists the DVs for the optimization. Refer to Section 2.1 and Table 2.1 for more

information about the decision variables related to the robot model. Refer to Appendix B and

Appendix C to see how the models depend on the obstacle decision variables.

Table 3.1: Decision variables for the optimization
Name Symbol Description

Wheelbase and Track B, C The wheelbase and track, which are assumed equal, for
every robot

Wheel Diameter dw The diameter of the robot's wheels

Wheel Width bw The width of the robot's wheels

CoG Front Bias ε The distance from the geometric center of the body to
the CoG

Chassis Vertical
Thickness

hc The height of a cross-sectional slice of a beam in the
ladder frame

Chassis Horizontal
Thickness

bc The width of a cross-sectional slice of a beam in the
ladder frame

Allowable Uphill Slope θup The steepest uphill slope that the robot will traverse

Allowable Downhill Slope θdn The steepest downhill slope that the robot will traverse

Allowable Positive
Obstacle

h The largest positive obstacle that the robot will traverse

Allowable Negative
Obstacle

L The largest negative obstacle that the robot will
traverse

The decision variables may seem redundant, since the traversable obstacle magnitudes are com-

pletely dependent on the robot design DVs. In other words, the maximum slopes and obstacle

magnitudes for a robot should be determinable from the robot design and the terrain parameters.

The reason for using these DVs is that some of the relationships in the models are di�cult or im-

possible to solve. For example, the terramechanics model (see Section 2.3.1) used in the obstacle

models cannot be back-solved to determine the inputs for given outputs. By including the obstacle

magnitudes in the DVs, they are e�ectively solved by the optimization routine.

Table 3.2 lists the optimization constraints, along with relevant relationships from the models.

Note that the constraint expressions are limited to less than or equal to zero.
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Table 3.2: Optimization constraints

Constraint

Name

Constraint Expression

(must be ≤ 0)

Equations

of Origin
Description

Mass mteam −mbudget 2.14
Limits the team mass to be within the

mass budget, mbudget

Uphill

Stability
θup − θstableup B.1

Ensures that the allowable uphill slope,

θup, does not cause the robot to tip over

Uphill

Traction
−Fdp,up B.6

Ensures that the robot can generate

enough traction on the allowable uphill

slope, θup

Downhill

Stability
θdn − θstabledn B.2

Ensures that the allowable downhill

slope, θdn, does not cause the robot to

tip over

Crosshill

Stability

θup−θdn
2 − θstablecs B.3

Ensures that the robot is stable on a

crosshill slope approximated by the

mean of the allowable uphill and

downhill slopes

Bump Front

Traction
FT,2 − F terraT,2 B.15

Ensures that the robot can generate

enough traction to cross the maximum

allowable positive obstacle, h, with its

front wheels. FT,2 is the required

traction and F terraT,2 is the available

traction.

Bump Rear

Traction
FT,1 − F tracT,1 B.26

Ensures that the robot can generate

enough traction to cross the maximum

allowable positive obstacle, h, with its

rear wheels. FT,1 is the required

traction and F terraT,1 is the available

traction.

Bump Force −R2 B.25

Ensures that the reaction force on the

rear wheel is not negative (which is not

physically possible). It is possible for

the other bump constraints to be met

otherwise, which would falsely indicate

that the robot can traverse an obstacle.

Bump

Stability
h− hmax B.8, B.9

Ensures that the robot is stable while

crossing the maximum allowable

positive obstacle, h
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Constraint

Name

Constraint Expression

(must be ≤ 0)

Equations

of Origin
Description

Bump

Clearance
h− dw B.30

Ensures that the robot does not

high-center on the maximum allowable

positive obstacle, h. Recall the dw is

also the clearance height of the robot's

body.

Ditch Front

Traction
FT,2 − F terraT,2 B.36

Ensures that the robot can generate

enough traction to cross the maximum

allowable negative obstacle, L, with its

front wheels. FT,2 is the required

traction and F terraT,2 is the available

traction.

Ditch Rear

Traction
FT,1 − F terraT,1 B.49

Ensures that the robot can generate

enough traction to cross the maximum

allowable negative obstacle, L, with its

rear wheels. FT,1 is the required

traction and F terraT,1 is the available

traction.

Ditch

Clearance
dw − L B.54

Ensures that the robot's wheels are

large enough to prevent the robot from

falling into the maximum allowable

negative obstacle, L

Uphill Stress σup − σyield C.5, C.6,

C.10

Ensures that the robot's chassis is

strong enough to travel on the

maximum allowable uphill slope, θup

Downhill

Stress
σdn − σyield

Ensures that the robot's chassis is

strong enough to travel on the

maximum allowable downhill slope,

θdown

Crosshill

Stress
σcs − σyield C.16

Ensures that the robot's chassis is

strong enough to travel on a crosshill

slope approximated by the mean of the

allowable uphill and downhill slopes

Bump Stress σbump − σyield
C.21 to

C.26

Ensures that the robot's chassis is

strong enough to traverse the maximum

allowable positive obstacle, h
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Constraint

Name

Constraint Expression

(must be ≤ 0)

Equations

of Origin
Description

Ditch Stress σditch − σyield
C.27 to

C.32

Ensures that the robot's chassis is

strong enough to traverse the maximum

allowable negative obstacle, L

Wheel

Separation
dw −B + sw

Limits the size of the wheels so that the

front and rear wheel are not in contact.

The minimum allowed separation

between the wheels is sw.

CoG Forward

Limit
ε− B

2 Limits the longitudinal location of the

CoG to within the body of the vehicle
CoG Backward

Limit
−ε− B

2

Minimum

Wheel Width
rw − bw

dw

Requires the width of the wheel to be

at least a certain fraction of the

diameter, as speci�ed by rw

Chassis

Thickness

Ratio

hc
bc
− rt

Requires the horizontal thickness of the

chassis cross section to be at least a

certain fraction of the vertical thickness,

as speci�ed by rt

Sinkage Limit zw − rsdw A.5

Limits the amount that the wheels of

the robot can sink into the soil. rs is

the upper limit of the ratio of sinkage to

wheel diameter.

3.2 Performance Metric

A challenge to mobile robot design is determining an e�ective method to evaluate robot designs.

Researchers have developed several di�erent metrics for mobile robot performance (see Section

1.4.3). These metrics are very useful for evaluating the relative mobility characteristics of robot

designs. However, they do not provide a relatable indication of robot performance, because they do

not consider the terrain conditions. Additionally, the mobility metrics are targeted at single robots,

rather than teams.

In this section I develop a performance metric for single mobile robots referred to as the �equiv-

alent straight-line velocity� (ESLV), and a related performance metric for teams of mobile robots

referred to as the �combined equivalent straight-line velocity� (CESLV). Both metrics provide relat-

able measures of mission performance.
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3.2.1 Time Delays from Obstacles

To calculate ESLV or CESLV, the obstacles in the terrain model (Section 2.2) need to be related to

the robot performance. Speci�cally, it requires a model that relates the magnitude of each obstacle

type to the time it would take the robot to either drive over the obstacle or drive around the

obstacle. Developing a model to do this is di�cult because it is dependent on many factors, each of

which could signi�cantly a�ect the result. For the purposes of demonstration, I present simplistic

linear models that can be used to determine the time delays for the robot to overcome each obstacle

type. Note that the time delay is not the total time for the robot to traverse or maneuver around

the obstacle, but is the di�erence between that time and the time to travel along the same length

of level, unhindered terrain.

For positive and negative obstacles (bumps and ditches) that the robot is capable of traversing,

the time delay is based on the maximum obstacle size of that type that the robot can traverse:

t̂bc = t̂dc =
t?

y?
y (3.2)

t? is the time delay for traversing an obstacle of magnitude y?. y? is the maximum obstacle

magnitude that the robot can traverse. y is the magnitude of the obstacle of interest.

For positive and negative obstacles that the robot cannot traverse, the time delay is based on

the time to drive around that obstacle. The actual path length added by a robot maneuvering

around an obstacle depends on several factors speci�c to the robot. For example, if the robot can

detect the obstacle far in advance, it can drive in a smooth path around the obstacle, reducing the

extra distance it has to drive. The extra distance also depends on where the robot encounters the

obstacle along its front face. If the robot encounters the obstacle dead-center, it would have to drive

further than if it encountered it only along the outside of one wheel.

Figure 3.1 shows one approximation of the path distance for the robot to drive around an

obstacle, assuming it has a circular pro�le. As a simple approximation, the total distance to drive

around an obstacle of magnitude y is πy
2 , or half of the perimeter around the obstacle (see Figure

3.1). Compared to the actual path that the center of the robot would trace around the obstacle, this

approximation reduces the complexity of the calculations in the following section. The unhindered

distance would be y, so the additional distance is

d̂bm = d̂dm =
πy

2
− y =

(π − 2) y

2
(3.3)

With a nominal robot velocity of v, the time penalty is

t̂bm = t̂dm =
ŷ

v
=

(π − 2) y

2v
(3.4)

For uphill slopes that the robot can traverse, the time delay is approximately proportional to

the resistive force of gravity. For a slope of angle θ, the component of gravity acting against the

motion of the robot is sin θ. The time delay is also dependent upon the maximum uphill slope
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Figure 3.1: Distances to drive around untraversable bump and ditch obstacles (left) and un-
traversable slope obstacles (right)

that the robot can climb, the size of the slope obstacle, ∆, as well as a dimensionless parameter k.

Applying the small angle approximation (sin θ ≈ θ) gives

t̂usc =
k∆

vθuphill,max
θ (3.5)

As discussed in Section 2.2.2, the size of the slope obstacle is equal to the wheelbase and track

of the robot.

The time delay for traversable downhill slopes is zero (Equation 3.6). This model assumes

that the speed of a robot is limited by its navigation capabilities, so the robot cannot travel faster

downhill.

t̂dsc = 0 (3.6)

For uphill or downhill slopes that cannot be traversed, the time delay is based on the distance

to drive around the slope obstacle. This is similar to untraversable obstacles, except that the slope

obstacle is square with size ∆:

t̂usm,dsm =
∆

v
(3.7)

3.2.2 Equivalent Straight-Line Velocity (ESLV)

ESLV is a measure of the speed at which a robot can travel from one location to another, based on

statistics for the obstacles in the region of travel. ESLV, vesl, is equal to the straight-line distance, D,

between two locations divided by the mean predicted time, E [T ], for the robot to travel between the

two locations. The time to travel between the locations depends on the number and magnitude of

the obstacles encountered, so ESLV will always be slower than the nominal robot velocity (traveling

on level, �at soil).

vesl =
D

E [T ]
(3.8)

Assume that every robot design would have similar abilities in terms of performing the necessary

mission tasks while at any location of interest. (If the task-related capabilities of the robots would

change across designs, that e�ect could be included in the robot model and supplemented to the
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ESLV.) Regardless of the mission plan, the robot with the fastest ESLV will be able to travel fastest

and thus perform the mission the fastest on average. If the subsequent target locations depend on

the results of tasks from previous locations, the robot with the highest ESLV will be the quickest

to reach the next target location once it is chosen.

In additional to being an e�ective metric for comparison during robot design, ESLV provides

practical information regarding mission performance. Once ESLV is determined, a mission planner

can use ESLV to estimate the average time it would take for a robot to visit a series of waypoints,

as shown in Equation 3.9.

E [T ] =
D

vesl
(3.9)

To determine ESLV, calculate T as the base time, T̄ , plus the mean additional time (referred to

as �time delays�) spent traversing or maneuvering around obstacles, T̂ :

T = T̄ + T̂tot (3.10)

T̄ is the robot's travel time if there were no obstacles (slopes, bumps, or ditches). Shown in

Equation 3.11, it is equal to the distance traveled divided by the nominal robot velocity, v:

T̄ =
D

v
(3.11)

The mean total time delay, T̂tot, is equal to the sum of the mean time delays from each obstacle

encountered by the robot (Equation 3.12). This sum can be divided into eight sums, as shown

in Equation 3.12, based on eight obstacle classes from the terrain model presented in Section 2.2.

There are four pairs of sums for the four obstacle types (downhill and uphill slopes are considered

separately), including one sum for traversable obstacles and one sum for untraversable obstacles of

each type. This separation is necessary because the time delays are di�erent for traversable and

untraversable obstacles. Table 3.3 lists the subscript nomenclature.

T̂tot =
∑

obstacles

T̂ = T̂bc,tot + T̂bm,tot + T̂dc,tot + T̂dm,tot + T̂usc,tot + T̂usm,tot + T̂dsc,tot + T̂dsm,tot (3.12)

Table 3.3: Subscript nomenclature for the mean time delays in the ESLV calculations

Obstacle
Time delay due to:

Traversing the obstacle Maneuvering around the obstacle

Bumps bc bm

Ditches dc dm

Uphill Slopes usc usm

Downhill Slopes dsc dsm

Because each set of obstacles are independent and identically distributed, the sums are equal to
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the products of the mean number of obstacles encounters and the mean time delay per encounter:

T̂obs,tot = NobsT̂obs (3.13)

obs indicates that the quantity is for any one of the eight obstacle classes. The models from

Section 2.2 provide the necessary information to calculate the twelve quantities (eight N values and

eight T̂ values) needed to determine T̂tot.

Slopes follow a Gaussian distribution, so the average slope in each class can be determined by

integrating the marginal PDF for that class. This is the same method used to determine the robot's

driving power in Section 2.4.1. The bounds on Equation 2.10 simply need to be modi�ed to the

range of interest. Because the time penalties scale linearly with the obstacle magnitude, the mean

obstacle size can be used in the time delay relationships from Section 3.2.1.

The number of bumps or ditches encountered can be determined from the average obstacle

encounter rate. Equation 2.5 gives the average rate (obstacles per distance) of obstacle encounters

for a speci�ed range of obstacles. Multiplying the rate by the travel distance gives the mean number

of obstacles encountered.

The mean number of uphill and downhill slopes can be determined using the PDF of slope

angles with Equation 2.1. Equation 3.14 shows that the mean number of slopes is equal to the total

number of slopes times the integral of the slope PDF over the slope angles of interest.

Nslopes =
D

B

ˆ
fθ (θ) dθ (3.14)

Table 3.4 presents the mean number of obstacle encounters and the mean time penalty for all

eight classes of obstacles. σ, L, and s are parameters from the terrain model in Section 2.2. D is the

path length, and y? is the maximum traversable obstacle magnitude for either bumps or ditches.

These expressions can be used in Equations 3.12 and 3.13 to determine to total delay time.

However, the time penalty given by Equation 3.12 is for a path length of D. As the robot

encounters untraversable obstacles, the total distance it travels increases, which increases the number

of obstacles it could encounter. Appendix D describes how to account for this e�ect in ESLV via

an in�nite geometric series. The resulting relation for ESLV is Equation 3.15, with Kc and Km

given by Equations 3.16 and 3.17. Note that the �nal value of vesl is independent of D, the distance

between the start and end point.

vesl = v
1−Km

1 +Kc
(3.15)

Kc =
NuscT̂usc +NdscT̂dsc +NbcT̂bc +NdcT̂dc

T̄
(3.16)

Km =
NusmT̂usm +NdsmT̂dsm +NbmT̂bm +NdmT̂dm

T̄
(3.17)
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Table 3.4: Mean number of obstacle encounters and mean time penalties for eight obstacle classes
Obstacle
Class

Nobs T̂obs

Traversable
Uphill Slopes

D
2∆erf

(
θuphill,max√

2σ2

)
k∆

vθuphill,max
2

erf

(
θuphill,max√

2σ2

) σ√
2π

(
1− e−

θ2uphill,max

2σ2

)
Untraversable
Uphill Slopes

D
2∆

[
1− erf

(
θuphill,max√

2σ2

)]
∆
v

Traversable
Downhill
Slopes

− D
2∆erf

(
θdownhill,max√

2σ2

)
0

Untraversable
Downhill
Slopes

D
2∆

[
1 + erf

(
θdownhill,max√

2σ2

)]
∆
v

Traversable
Bumps or
Ditches

Le−sy
?

(sy?+s(C+2bw)+1)
s D

t?

y?
sB+2−e−sy?(s2(C+2bw)y?+s(C+2bw)+s2y?2+2sy?+2)

s(s(C+2bw)+1−e−sy? (s(C+2bw)+sy?+1))

Untraversable
Bumps or
Ditches

Le−sy
?

(sy?+s(C+2bw)+1)
s D

(
π−2
2v

) e−sy?(s2(C+2bw)y?+s(C+2bw)+s2y?2+2sy?+2)
se−sy? (s(C+2bw)+sy?+1)

3.2.3 Combined Equivalent Straight-Line Velocity (CESLV)

CESLV, a measure of the rate at which a team of robots can travel, is useful for predicting the

performance of di�erent robot team designs. Equation 3.18 shows that CESLV is the sum of the

ESLVs of each robot in a team. CESLV provides measure of how fast a collection of waypoints

(with known separation distances) could be visited by a team of robots. For example, if there are

four pairs of waypoints that are 10 meters apart (40 total meters to travel), a team of four robots

with a CESLV of 20 meters per minute could visit all the waypoints in 2 minutes. Notice that this

example required making some assumptions, including that the mission would have to start with

one robot on one of the two waypoints in each pair.

vcesl =
∑
team

vesl (3.18)

In the case of complex missions, CESLV provides an e�ective measure of mission performance

without requiring the designer to determine complex mission plans for teams of di�erent sizes. In

other words, CESLV is a good measure of mission performance without requiring the mission plan

to be known a priori. This is true for both static missions, where the mission plan is known and

set prior to the mission, and dynamic missions, where the mission plan can change depending on

measurements or observations.

Consider separating the performance of a static mission into three segments. During the �rst

segment, the robot team is delivered to the planet's surface. The robots spread out from the landing

site with each starting to perform its tasks at their respective locations. The �rst segment ends

43



when all the robots have starting performing their work at full capacity. During the second segment,

the robot team continues to perform their work at full capacity. During the third segment, at least

one robot has �nished its work, and the remainder of the team continues its work until each robot

has �nished. Figure 3.2 presents a mission timeline for a team of �ve robots with each segment

highlighted.

1

2

5

4

3

R
ob

ot
s

Mission Time

First
Segment

Second Segment Third Segment

Figure 3.2: Mission timeline divided into three segments with �x� marks indicating when a task is
performed. Spaces in-between �x� marks represent traveling time.

During the second segment, the team with the highest CESLV will perform the work the fastest.

During the �rst and third segments, CESLV may not accurately represent the work rate of the team.

However, for longer, complex missions the time spent on the �rst and third segments will be very

small or negligible relative to the time spent on the second segment. Thus CESLV is representative

of the speed at which the mission will be performed, regardless of the exact mission plan.

For dynamic missions, such as exploration missions, the team with the highest CESLV will be

able to cover the most ground in a given amount of time. In general this would mean that the team

with the highest CESLV would be able to perform the next chosen set of tasks fastest.

In order for designers to use CESLV as a performance metric for robot team designs, they

need to account for several factors that CESLV does not account for. These factors originate from

the e�ects that the choice of mission plan has on the performance of the team. However, after

characterizing these factors and accounting for the time to complete tasks at each location, CESLV

can provide an accurate estimate of mission completion time. This is a reason in favor of using this

design framework as a way to explore the robot team tradespace, because designers can consider

how e�ective di�erent teams would be in light of the mission plan.

First, the designer should consider the maximum number of tasks that can be performed in

parallel at one time. There is no advantage to using larger robot teams if robots will be idle. The

mass of the extra robot could be more e�ectively allocated to improve the mobility of the rest of

the team.
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Second, the designer needs to consider the bene�ts of having robots cooperate on tasks. Some

tasks could either require multiple robots or be completed faster with multiple robots. For example,

teams that have a multiple of three robots may be advantageous in certain scenarios. The case

study in Chapter 4 provides an example where having an even number of robots is advantageous.

Last, the designer must consider other requirements or constraints in the mission that are not

included in CESLV. This includes other consequences of increasing or decreasing the number of

robots in a team. For example, it could be signi�cantly harder to maintain and track a larger team

of robots. It could be di�cult to pack a large team of robots for transportation through space. As a

�nal example, it could be better to organize robots to collaborate on all tasks, so that a catastrophic

failure in one robot does not prevent a task from being completed.

3.3 MATLAB Optimization Program

This design framework culminates to produce an optimization problem that returns the team with

the highest CESLV. To illustrate this I developed a MATLAB program to solve the optimization.

The program includes a graphical user interface, shown in Figure 3.3, to aid in tradespace explo-

ration. The program uses MATLAB's MultiStart solver with a sequential quadratic programming

(SQP) algorithm to solve the optimization.

Figure 3.3: Graphical user interface for comparing optimizations with di�erent parameters
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SQP is a powerful routine that is designed to solve constrained non-linear optimization programs.

SQP follows an iterative solving process where it approximates the optimization problem as a

quadratic optimization problem. SQP begins at a given starting point, solves the approximate

quadratic problem at that point, and repeats the procedure at the new solution point.

It is very likely that the resulting optimization problem from the models is non-convex, meaning

that there are several local optima. In that case, SQP may return a local optima instead of the

global optimum. To compensate for this, global optimization solvers, like MATLAB's MultiStart

solver, run multiple SQP optimizations at di�erent starting points. Rather than using the solver

with a set of random starting points, a designer could use heuristic knowledge to select advantageous

starting points.

Although using SQP on multiple starting points is e�ective for solving for the optimal robot

team design, it should be noted that SQP cannot directly solve for the optimal number of robots

in a team. This is because the number of robots in a team is a discrete variable: it can only have

positive integer values. There are two ways to circumvent this problem.

First, multiple global SQP optimizations can be performed for di�erent given team sizes. In

most cases, the relationship between team size and CESLV is convex, so the optimal team size can

be found through a guess and check procedure of running optimizations with di�erent size teams.

Second, a global SQP optimization can be initially run to optimize ESLV divided by mass for

one robot. The result is the most mass-e�cient robot design for the given terrain conditions. For a

given mass budget, there will generally be a non-integer number of those robots that �ll the mass

budget. Because of the convex relationship between CESLV and team size, the optimal team size

will be one of the two nearest integers to that number. Thus, only two optimizations need to be

run to determine the best robot team design.

3.3.1 Program Structure

The MATLAB program relies on several functions that contain di�erent aspects of the models

presented in Chapter 2. Functions are an e�ective way to implement any relationships that are

reused in multiple parts of the models. Table 3.5 presents the functions in the MATLAB program

along with their inputs and outputs. Listed in the inputs, �Terrain Parameters� refers to the obstacle

sizes and distributions and the set of values to describe the soil conditions. See Table 4.1 and Table

4.2 for a list of those parameters.

Many of the MATLAB functions implement one or more of the other functions. Figure 3.4

shows the dependencies between functions. Functions are listed at the top, with required functions or

required parameters highlighted in the columns below. Dark blue �ll represents a direct dependency,

in which the top function includes calls to the other functions or uses the parameters. Light blue

�ll represents an indirect dependency, in which one of the dependent functions uses the function or

parameters.

During an optimization, MATLAB's SQP routine makes many calls to the Objective function

and the Constraints function. The Objective and Constraints functions will call any necessary
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Table 3.5: Functions in the MATLAB Optimization Program
Function Name Description Inputs Outputs

Soil Interaction
Determines the tractive and
resistive forces generated at
the wheel-soil interface

terrain parameters,
wheel dimensions,
wheel loading

sinkage, net
motion resistance,
net tractive e�ort

Uphill/Downhill
Slope

Interaction

Determines the stability
margin of the robot and the
robot's drawbar pull for a

given slope

slope angle, robot
wheelbase, CoG

location

slope motion
resistance, robot
stability margin

Crosshill
Interaction

Determines the stability
margin of the robot and the
robot's drawbar pull for a

given crosshill slope

robot track, wheel
width, CoG location

robot stability
margin, drawbar

pull

Bump
Interaction

Determines the forces and the
three margins (see Figure

2.11) for a robot traversing a
bump

bump height, robot
dimensions, terrain

parameters

robot stability
margin, robot
force margins,
geometrical
margins

Ditch
Interaction

Determines the forces and the
two factors (see Figure 2.12)
for a robot traversing a ditch

ditch width, robot
dimensions, terrain

parameters

robot force
margins,

geometrical
margins

Chassis Stress
Determines the stresses in the

robot's chassis when
traversing a given obstacle

robot dimensions,
robot mass, chassis
material strength,
obstacle type and

magnitude

yield stress
margin

Drive Power

Determines the average power
the robot uses for driving,
based on the distribution of

obstacles

terrain parameters,
maximum obstacle

sizes, robot
dimensions

average required
drive power

Power System
Mass

Determines the mass of the
solar panels, batteries, and

power management electronics

average required drive
power

power system
mass

Robot Mass
Determines the total mass of

the robot

robot dimensions,
power system mass,

drive power
total robot mass

Optimization
Constraints

Checks if all the constraints
are met

robot dimensions,
sinkage, obstacle

margins, chassis stress
margins

constraint
margins

Optimization
Objective

Determines the CESLV of the
robot team

robot dimensions,
maximum obstacle
magnitudes, terrain

data

ESLV, CESLV
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Figure 3.4: Dependencies between MATLAB functions.

dependency functions. Those dependency functions will call other dependency functions, and so

on. The decision variables, along with all the constant parameters that the models use, are passed

through each dependency function.

3.3.2 Graphical User Interface

Shown in Figure 3.3, the graphical user interface (UI) for the program allows for di�erent size robot

teams to be easily compared. This is especially useful for choosing the size of a team when other

factors (not incorporated into the optimization) have a signi�cant impact on the design choice.

The GUI displays the terrain data, decision variables, constraints, and robot subsystem masses.

A history of CESLVs is shown for previously run optimizations. Previous optimization runs and

alternative designs shown on the graphs can be selected with the mouse to view their decision

variables, constraint margins, and subsystem masses. A designer could quickly compare and contrast

designs to decide which are practical based on external factors.
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Chapter 4

Case Study - Mars Exploration

This chapter presents the process of using the design framework developed in Chapters 2 and 3 to

design a team of robots for an example mission on Mars. First, the mission scenario is presented.

Second, the design framework is used within the context of the mission to determine the best design

for the robots. Finally, a sensitivity analysis is performed to analyze the impact that di�erent

mission conditions have on the optimal design.

4.1 Scenario

For this mission, a team of robots is to explore a region near the NASA Viking Lander 1 site by

traveling along eight paths originating from a single starting point, as shown in Figure 4.1. As they

travel, the robots will take two core samples at 30 sites along each path. Collecting one sample

requires 10 minutes. Robots may depart from the path to avoid obstacles, but must return to the

sites on the original path for sampling. Sites are evenly spaced 400 meters apart. The �rst site on

each path is 400 meters from the center intersection of all the paths. The mission is complete once

all the core samples have been collected.

Figure 4.1: For the case study mission, measurements are to be taken along the paths shown above

Tables 4.1 and 4.2 list the terrain data for the region where the mission will take place. The

soil data is from a combination of sources, including measurements from the Viking Lander 1 site.

Parameters that are not available are from soils with properties similar to those known for the
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Viking Lander 1 site soil.

Table 4.1: Soil parameters for the Mars case study
Parameter Symbol Value Source

Cohesion c 0.3 psi Chosen based on a several measurements
near the Viking Lander 1 site [48]Angle of internal friction φ 30◦

Cohesive modulus kc 2.3 lbf
inn+1 Values for sandy loam, which has similar

cohesion and angle of internal friction to the
Martian values [30]

Frictional modulus kφ 16.8 lbf
inn+2

Exponent of sinkage n 0.7

Slip coe�cient K 0.4 in Value for �rm sandy soil [30]

Unit weight γ 0.0208 lbf
in3

Chosen based on a several measurements
near the Viking Lander 1 site [48, 49]

The slope distribution is determined from Mars elevation data. The elevation values are mea-

sured along evenly spaced increments of one meter in each direction. The slope distribution is

generated by calculating the elevation change per resolution (one meter) in the longitudinal and

latitudinal directions for every pair of neighboring elevation measurements (see Figure 4.2). Fig-

ure 4.3 shows that a Gaussian distribution represents the distribution of slopes with reasonable

accuracy.

Table 4.2: Terrain obstacle parameters for the Mars case study
Obstacle Parameter Symbol Value Source

Slope
Mean µ 0◦ Mars elevation data near the Viking

Lander 1 site [50]Standard Deviation σ 24.98◦

Bump
Exponential
Parameter

s 12.05m−1 Rock size and frequency measurements
from the Viking Lander 1 site [46]

Density Parameter L 5.61m−2

Ditch
Exponential
Parameter

s 12.05m−1 Assumed to be the same as the bump
parameters

Density Parameter L 5.61m−2

The size-frequency distribution for rocks at the Viking Lander 1 site is used as the parameters

for bump obstacles. Assuming that the distribution of positive and negative obstacles are similar

allows the same parameters to be used for ditch obstacles.

The mass budget for this mission is 1000 lbm. Appendix E provides other values used to complete

the models for the optimization. One notable assumption is that the payload mass of the robot is

30 pounds, which includes the mass of the instruments required to collect core samples.

4.2 Results and Discussion

I formulate an optimization problem (see Chapter 3) from the models developed in Chapter 2 and

the data in Section 4.1. Figure 4.4 presents the results from the optimization. For this scenario,
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Figure 4.2: Slopes are calcu-
lated by comparing each data
point to its four neighboring
points
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multi-robot teams provide superior performance to a single robot, as measured by their CESLVs.

A team of 11 robots provides the best CESLV of 7.95 meters per second.
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Figure 4.4: Design tradespace for the case study

The tradespace generated via this design framework presents a phenomenon that may otherwise

go unnoticed to a designer. Figure 4.4 shows that there are two distinct trends for the optimal design

of individual robots, depending on the number of robots in the team. If a designer had determined

the optimal design proportions for �ve robots, for example, scaling the design for a team with more
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than 10 robots would give a suboptimal team.

The shift in trends is evident from the change in the curvature of the data points. Figure 4.5

shows that the shift in trends occurs between teams of 8 and 9 robots. The shift is characterized

by the reallocation of mass from the chassis and motors to the wheels.
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Figure 4.5: Tradespace trends in the ratio of wheel size to robot size

The reason for this shift is the mass-cost associated with the ability of the robot to overcome

bump obstacles. Figure 4.6 shows that, for the �rst trend, the ability of the robot to traverse

bump obstacles decreases at a faster rate than the abilities to traverse other types of obstacles. The

shift indicates that a large portion of the e�ort (in terms of mass) spent on the ability to traverse

bump obstacles would be more bene�cial elsewhere when incrementing from eight to nine robots.

Speci�cally, that mass is more bene�cial when spent on the abilities of robots to traverse ditch and

slope obstacles.

In the context of the mission, there are three important factors to consider when trying to

determine the best design for a robot team.

First, for this mission, there are eight distinct paths to travel and two core samples are required

at each site of interest. A team of eight robots could assign one robot to each path. It is also

possible that two robots could split the sampling sites along the same path. This would require

16 robots to work each path simultaneously. Because of this, a team of 8 or 16 robots has the

advantage that it does not require robots to travel from one path to another. Team sizes that have

large least common multiples with 8 (the number of paths) would require more crossover between

paths, which may increase the longest path that any robot is required to travel.

Second, when two robots are traveling along the same path, the full degree of the teams's

CESLV is not utilized. With regard to the mission, they are performing at least some amount of

redundant work by covering the same ground, even though both may be collecting core samples at

each site. Thus, even though teams with more than 8 robots have high CESLVs, a designer needs to
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understand that mission plans for those teams may not take full advantage of the team's CESLV.

In the end, it is possible that teams with higher CESLVs may take longer to perform the mission

because of this. This phenomenon is unique to highly structured missions, like this one, in which

a relatively small number of tasks have a very limited number of practical ways that they could be

performed. Fortunately for missions like this, mission plans for teams of di�erent sizes are much

easier to devise than in the case of larger missions, which do not experience this phenomenon in the

�rst place.

Third, the time required to collect each core sample could impact the relative performance

of the robot teams in the tradespace. Short core sampling times favor smaller teams while long

core sampling times favor larger teams. This can be understood by considering two extreme cases.

For extremely short sample times, the mission performance is primarily in�uenced by the time

required for robots to reach the furthest sample site. For extremely long sample times, the mission

performance is primarily in�uenced by the time to collect samples. In the latter case, larger teams

would be able to work on more samples simultaneously.

Although it is possible to estimate mission completion times by determining ideal mission plans

for each possible team design, considering the above factors, a team with 12 robots will likely be

best. The 12-robot team has the second highest CESLV of 7.923 m/s, which is 0.3% smaller than the

optimum CESLV for the team of 11 robots. Unlike the 11-robot team, the 12-robot team can easily

be divided to work on the eight paths, as evident by their relatively low least common multiple

of 24. The 11-robot team would require additional crossover between paths, as evident by their

relatively high least common multiple of 88. Other teams with sizes close to 12 also have higher

least common multiples. Table 4.3 lists the design parameters and the subsystem masses for the

twelve-robot team.

53



Table 4.3: Design parameters and subsystem masses for the eight-robot team
Parameter Value

Wheelbase/Track 27.96 in

Wheel Diameter 16.94 in

Wheel Width 1.694 in

CoG Bias 4.378 in

Chassis Horizontal Thickness 0.325 in

Chassis Vertical Thickness 0.482 in

Maximum Uphill Slope 51.81◦

Maximum Downhill Slope 39.90◦

Maximum Bump Height 5.678 in

Maximum Ditch Width 16.89 in

Subsystem Mass (lbs)

Payload 30

Electronics 10

Thermal Management 5

Chassis 3

Wheels 6

Motors 5

Power Supply 12

4.3 Robustness to Changing Mission Conditions

It is important for a designer to understand the in�uence that di�erent mission conditions have on

the optimal robot team design. Errors in mission condition data due to misrepresentative measure-

ments, changes in mission location, or other factors can signi�cantly impact the optimal robot-team

designs. This section will examine the sensitivity of the tradespace of robot team designs to changes

in the mission conditions.

This sensitivity analysis considers the e�ect of changes in mass budget, slope standard deviation,

and both bump distribution parameters on the robot team design tradespace. Figure 4.7 compares

the tradespaces for increases and decreases in each mission parameter by 10 percent and 25 percent.

Changes in the mass budget of the robot team shift the size of the optimal team. At the

extremes, a 25% decrease in the mass budget results in an optimal team of 8 robots, compared to

the original optimum of 11 robots. A 25% increase results in an optimal team of 14 robots. This

shift is due to the optimization driving the robot design to be as close as possible to the most

mass-e�cient robot design.

Despite this shift in the size of the optimal team, designs for smaller robot teams are only

slightly a�ected by changes in the mass budget. First, the CESLV of small teams (less than �ve

robots) does not change signi�cantly for changes to the mass budget. Second, the relative di�erence

between the CESLV of smaller teams (less than 10 to 15 robots, depending on the change in mass

budget) and the CESLV of the optimal team is not signi�cantly a�ected by changes to the mass

budget. The relevance of this is that post-design changes to the mass budget would not require as

much redesigning of the robot team and mission plan if a smaller team is initially selected.

Changes in the standard deviation of the slope or in the bump distribution parameters do not

signi�cantly shift the size of the optimal robot team. Instead, those changes primarily scale the

tradespace vertically. This means that the optimal robot team design is robust to errors in terrain

parameters, which is desirable to a designer.
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Chapter 5

Summary and Conclusions

This thesis presents the development of a design framework for determining the design of a team

of robots that has a limited mass budget and that will operate on uncertain terrain conditions.

Chapter 2 presents a model of the terrain, a model of the robot, and a model of the robot-terrain

interactions as part of the framework. Chapter 3 develops an optimization problem from the models

that can be solved to determine the optimal design for a team of robots. The optimization problem

is based on a new measure of mission performance for teams of robots. Chapter 4 presents a case

study on the design of a team of robots for a mission to Mars. The current chapter summarizes the

work in this thesis, lists the contributions of this thesis, and presents suggestions for future work.

5.1 Conclusions

Although the frequency of planetary exploration missions with mobile robots is increasing, the cost of

these missions remains very high. A popular idea to reduce the cost of these missions is to distribute

the mass allowance for a mission over a team of robots, instead of using a single robot. This thesis

develops a design framework that examines the tradeo�s between the size of the robot team and

the mobility of the individual robots for a robot team operating on uncertain terrain conditions.

The framework allows a designer to explore the tradespace of robot team sizes and determines the

robot team that provides the best performance based on CESLV, a novel performance metric.

The design framework is built on models of the robots, models of the terrain hazards, and models

for the interaction of the robot with the terrain, presented in Chapter 2. The robot is modeled using

a simpli�ed geometry of a four-wheeled robot. The terrain hazards are categorized into three types:

slope obstacles, positive obstacles, and negative obstacles. The magnitude and frequency of the

obstacles are modeled using statistical distributions. The model for terrain-obstacle interactions

uses Bekker Theory to predict the terrain-wheel forces. To be able to traverse a given obstacle, the

robot has to meet three requirements. First, the robot must be able to generate enough force at

the wheel-soil interface. Second, the robot must not roll or pitch over. Third, the body of the robot

must not collide with the obstacle during the traverse. A designer could modify or supplement these

models as desired to achieve greater complexity or accuracy.
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The models can be formulated into an optimization problem, and then solved to determine the

optimal robot team design. To determine the optimal designs, the optimization uses a novel measure

of mission performance for a team of mobile robots, known as the combined equivalent straight-line

velocity (CESLV). CESLV is the sum of the equivalent straight-line velocities ESLV of each robot

in the team. ESLV is a measure of the average rate that a robot can travel between two locations

based on the magnitude and frequency of obstacles in the terrain model. CESLV is an e�ective

measure of mission performance that is resistant to the impacts that mission planning can have

on the actual performance of the mission. CESLV is applicable to static missions with a full plan

known pre-launch, or dynamic missions where the plan changes depending on observations during

the mission. Additionally, CESLV is an e�ective aid for selecting the design of a robot team in the

case of a highly structured mission.

Chapter 4 presents a case study for the design of a team of robots to perform a structured

mission on Mars. Terrain data for the case study is taken primarily from measurements at the

Viking Lander 1 site on Mars. The case study shows how CESLV can aid in selecting a robot

team design in the case of a mission with speci�c requirements. A graphical user interface (GUI),

developed in MATLAB, allows a designer to explore the tradespace of possible robot teams. This

allows the designer to consider that teams with suboptimal CESLVs might be best in light of

in�uences that are not captured by the models. The design framework indicates that a team of

robots provides superior performance to a single robot for the case study mission. It also shows

that the optimal size of the team is robust to changes in the terrain conditions, but sensitive to

changes in the mass budget. The ability of the design framework to provide valuable insight in both

static and dynamic mission plans, as well as in highly structured mission plans, makes it a valuable

tool to mission designers.

5.2 Suggestions for Future Work

Designing and planning for planetary exploration missions with mobile robots is complex. The

ultimate goal of this work would be to have an objective procedure for determining both the design

of a team of robots and their mission plan for a given mission scenario. There are several areas for

additional work that could improve or add to the design framework presented in this thesis.

CESLV is a representative measure of mission performance that is independent of the e�ects of

mission planning in some cases, and resistant to the impacts of mission planning in other cases. A

method to represent a mission in such a way that a computer algorithm could quickly determine an

optimal mission would improve this design framework. For a designer, this addition would remove

some subjectivity from the design process.

This thesis considers designing homogeneous teams of robots. However, heterogeneous teams

may be advantageous for many missions. For heterogeneous teams there is a stronger dependence

between the design of the team and the mission plan. The best robot team for a mission would

need to have both an optimal design and an optimal mission plan. Future research could develop a
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way to consider the tasks that need to be completed in the mission and the functions that di�erent

robot components can perform. A design framework for heterogeneous teams would have to include

a method for determining the mission plan for a given robot team.

For mobile robots operating in remote environments, component failure or immobilization from

terrain conditions could delay the mission or prevent it from being completed. For large missions

that use dozens of robots, there is a higher probability that one or multiple robots fail. Designing

the team of robots or the mission plan while accounting for the probability of failure could a�ect

the size and design of the best team for the mission.

Finally, this thesis uses simple models to focus on demonstrating the overall framework. More

complex models could improve the accuracy of the design tradespace that is generated by the

optimization. Improved terramechanics or robot-obstacle interaction models would bene�t this

design framework. Robot subsystem models could be improved, and additional robot locomotion

systems could be modeled.
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Appendix A

Wheel-Soil Interaction Analysis

This appendix presents an analysis of wheel-soil interaction forces to determine the net tractive

e�ort that a wheel can generate, based on the components in Table 2.2.

A.1 Soil Thrust

Soil thrust is the primary tractive component that contributes to drawbar pull. Broadly speaking,

soil thrust is dependent upon the soil's ability to stick to itself. The Mohr-Coulomb failure criterion

considers the soil's �stickiness� to be a combination of two phenomena. The �rst is the ability of the

soil material to hold together without any outside forces, known as cohesion. The second is friction

that causes the soil material to hold together under the presence of an outside, normal force on the

soil.

Equation A.1 gives the available soil thrust, based on the Mohr-Coulomb criterion, for a wheel

that may be slipping in the soil [27, 30]. c, φ, and K are properties of the soil. c is the cohesion

of the soil. φ is the angle of internal shearing resistance of the soil. K is the modulus of shear

deformation, which measures the soil displacement required to produce the maximum shear stress

in the soil.

Fs = (cAw +Ww tanφ)
(

1− e−slw/K
)

(A.1)

Ww is the loading on the wheel. s is the wheel slip, de�ned by Equation A.2. v is the linear

velocity of the wheel, rw is the radius of the wheel, and ω is the angular velocity of the wheel. lw,

shown in Figure A.1, and Aw are the horizontal contact length and horizontal contact area between

the wheel and the soil, given by Equations A.3 and A.4.

s = 1− v

rwω
(A.2)

lw =
√

(dw − zw) zw (A.3)
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Figure A.1: Wheel contact length in loose soil

Aw = bwlw (A.4)

bw is the width of the wheel. zw is the sinkage, the distance that the wheel sinks into the soil,

given by Equation A.5 [30]. n is the exponent of soil deformation, kc is the cohesive modulus of soil

deformation, and kφ is the frictional modulus of soil deformation. Each of these is a parameter of

the soil. Note that kc must be in units of force divided by distance raised to the power of n + 1,

and kφ must be in units of force divided by distance raised to the power of n+ 2.

zw =

[
3W

(3− n) (kc + bwkφ)
√
dw

] 2
2n+1

(A.5)

A.2 Grouser Thrust

In loose soil grousers provide additional traction via two means [30]. First, if the grousers are close

together, then the spaces between them will �ll with soil and the diameter of the wheel will e�ectively

be increased. On the other hand, if the grousers are separated enough, they will provide additional

traction by acting as a blade that cuts the soil to apply pressure in the horizontal direction.

The robot model in Chapter 2.1 assumes that the robot's wheels have grousers that are separated

an appropriate distance to act in the latter case. I set the length of the grousers to 5 percent of the

wheel diameter to increase drawbar pull signi�cantly while remaining within practical limits. Some

experimental work found that increasing the grouser size continued to improve drawbar pull [31, 33].

Other work found that drawbar pull begins to plateau when grouser lengths reach slightly over 5

percent of the wheel diameter. Additionally, at that size the grousers can begin to have signi�cant

negative impacts on other aspects of mobility, such as increasing steering resistance [34].

The e�ects of grousers on vehicle performance are not completely understood and continue to

be studied. While some experimental work has found that grousers can increase the drawbar pull

generated by a wheel by 60 percent [31], other experimental work has found that grousers can

increase drawbar pull by a factor of 5, but that the e�ect of grousers is heavily dependent upon the

soil conditions [51]. Grouser research also focuses on determining the e�ect of grouser spacing on
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mobility performance [33, 32, 52, 53]. Additionally, grousers seem to increase drawbar pull not only

by providing additional thrust, but by reducing bulldozing and compaction resistance [33].

This model will account for the e�ects of grousers by considering them to act as plates pushing

parallel to the surface of the soil. Equation A.6 gives the tractive force generated by a grouser of

length hg [30]. Nφ is �ow value determined by Equation A.7. γs is the unit weight of the soil in

units of force per volume. Ww, the wheel loading, is used as the surcharge pressure on the soil.

Fg = bwhg

(
1

2
γsNφ +WwNφ + 2c

√
Nφ

)
(A.6)

Nφ = tan2

(
45◦ +

φ

2

)
(A.7)

A.3 Compaction Resistance

Compaction resistance results from the work that the wheel puts into compressing the soil. Figure

A.1 shows how the wheel would depress the soil as it moves forward. Equation A.8 gives the

compaction resistance of a rigid wheel in loose soil [30].

Rc =

(
3Ww√
dw

) 2n+2
2n+1

(3− n)
2n+2
2n+1 (n+ 1) (kc + bwkφ)

1
2n+1

(A.8)

n is the exponent of soil deformation, kc is the cohesive modulus of soil deformation, and kφ is

the frictional modulus of soil deformation. Notice that Rc greatly depends on the value of n, which

relates the pressure and sinkage for the soil. Soils that require larger amounts of pressure to depress

have larger n values.

A.4 Bulldozing Resistance

Bulldozing resistance results from the work put into pushing the soil forward or to the side of the

wheel. Equation A.9 gives the bulldozing resistance of a rigid wheel in loose soil [27], which accounts

for several modes of failure.

Rb =
bw sin (α+ φ)

2 sinα cosφ

(
2zwcKc + γz2

wKγ

)
+
πl3r (90− φ)

540
+
πcl2r
180

+ cl2r tan

(
45◦ − φ

2

)
(A.9)

α, lr, Kc, and Kγ are values related to characteristics of failure for the soil, including failure

angles and distances, given by Equations A.10 through A.13. Nc and Nγ are bearing capacity factors

developed by Terzaghi. Terzaghi presents charts that provide estimates for the bearing capacity

factors based on the angle of internal shearing resistance, φ [28, 29].
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α = arccos

(
1− 2zw

dw

)
(A.10)

lr = zw tan2

(
45◦ − φ

2

)
(A.11)

Kc = (Nc − tanφ) cos2 φ (A.12)

Kγ =

(
2Nγ

tanφ
+ 1

)
cos2 φ (A.13)

A.5 Rolling Resistance

Rolling resistance captures the e�ects of resistive forces that are internal to the robot, including

friction within the robot and wheel de�ection. This model accounts for those resistances via a

coe�cient of rolling friction, f , shown in Equation A.14.

Rr = fWw (A.14)

If a designer found it necessary to account for rolling resistance changes across designs, he could

perform an analysis to determine how the robot design parameters, such as dimensions, a�ect the

friction coe�cient. However, if the same materials are used across designs, the dimensions are

unlikely to have a large e�ect on the friction coe�cient, because contact area generally does not

a�ect the magnitude of friction generated.
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Appendix B

Robot-Obstacle Interaction Analyses

B.1 Slopes

A stability analysis, shown in Figure B.1, determines the maximum uphill and downhill slopes

that the robot can traverse without tipping over. Assuming dynamics are negligible, the maximum

stable slope causes the center of gravity of the robot to be directly above the contact point between

the wheel and the ground. Equation B.1 shows how the maximum uphill slope angle, θ, can be

determined from the dimensions of the robot. B is the robot wheelbase, zcg is the height of the

CoG, ε is the CoG bias.

B/2 - ϵ

zcg  

B/2 - ϵ

zcg  

B/
2 

+ 
ϵ

z cg
  

B/
2 

+ 
ϵ

z cg
  

�

 �

Uphill Downhill

Figure B.1: Geometry for determining slope stability during uphill and downhill traverses

θstableup = arctan
B/2 + ε

zcg
(B.1)

Equation B.2 presents the maximum stable downhill slope using the same analysis.

θstabledn = arctan
B/2− ε
zcg

(B.2)

Figure B.2 shows the stability analysis for determining the maximum stable crosshill slope.
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Based on this, Equation B.3 is the maximum stable crosshill slope that the robot can traverse.

z
cg   

1
2 (C+�� ) 

�

z
cg   1

2 (C+�� ) 

Figure B.2: Geometry for determining crosshill stability

θstablecs = arctan
C + bw

2zcg
(B.3)

The traction analysis involves determining if enough drawbar pull is generated by the wheel-

soil interactions for the robot to maintain its velocity up the slope. This is only a concern during

uphill traverses, since during downhill traverses the force of gravity will be assisting the robot. If

the robot can generate positive drawbar pull on level ground, in most cases it should be able to

generate positive drawbar pull during on any downhill slope.

Figure B.3 shows the forces present during a quasi-static uphill traverse. W is the weight of the

robot, FT is the drawbar pull generated at each wheel, and R is the normal reaction forces from the

slope. The front (subscript �1�) and rear (subscript �2�) reaction forces are presented in Equations

B.4 and B.5.

W

FT,1  

FT,2  

R2  

R1

Figure B.3: Traction analysis for a robot traversing an uphill slope

R1 =
W

B

[(
B

2
+ ε

)
cos θ − zcg sin θ

]
(B.4)

R2 =
W

B

[(
B

2
− ε
)

cos θ + zcg sin θ

]
(B.5)
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The terramechanics model presented in Section 2.3.1 determines the net tractive force produced

by each wheel based on their reaction forces. Shown in Equation B.6, if the sum of the tractive

forces is greater than the resistive force due to gravity, the robot will be able to traverse the slope.

2FT,1 + 2FT,2 > W sin θ (B.6)

B.2 Bumps (Positive Obstacles)

The stability analysis determines the largest bump that the robot can surmount without tipping

over. Shown in Figure B.4, the robot is stable until its center of gravity is directly above either of its

axles. The robot design geometry determines the angle φ, as shown in Equation B.7. The limiting

bump height, hmax, is determined by Equation B.8 based on angle φ. As long as the bump height

is less than the maximum, shown in Equation B.9, the robot will remain stable while traversing the

bump.

h
B

/2
 +

 ϵ
h

B
/2

 - 
ϵ  z   - d  /2

cg
w

φ 

φ 

Figure B.4: Robot geometry for determining the maximum bump that can be stably traversed

φ = arctan
B
2 + ε

zcg − dw
2

(B.7)

hmax
B

= sinφ =
B
2 + ε√(

zcg − dw
2

)2
+
(
B
2 + ε

)2 (B.8)

h <
B
(
B
2 + ε

)√(
zcg − dw

2

)2
+
(
B
2 + ε

)2 (B.9)

The traction analysis determines whether the robot can generate enough drawbar pull to over-

come the resistive forces generated by the bump. The traction analysis is performed for bump-

climbing with the front wheel and bump-climbing with the rear wheel. To traverse the bump, the

robot has to be able to climb it successfully with both front wheels and rear wheels.
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Figure B.5 shows the forces on the robot during a bump climb with the front wheel. There are

four unknown forces, FT,1, R1, FT,2, and R2, which require four equations to be solved. Equation

B.10 presents the force balance in the horizontal direction. Equation B.11 presents the force balance

in the vertical direction. Equation B.12 presents the moment balance about the wheel-obstacle

contact point.

Lastly, Equation B.13 presents a relationship between the reaction and traction forces at the front

wheel. At the threshold point of the bump climb, the front wheel is no longer generating traction

from the soil. Instead, it now generates thrust and resistance at the wheel-obstacle interface, based

on a Coulombic model of friction. µ is the coe�cient of friction which determines the thrust that

can be generated. f is the coe�cient of rolling resistance. The di�erence between the two gives the

net tractive e�ort that can be generated, shown in Equation B.13.

W

FT,1  

FT,2  

R2  

R1  

z   - hcg

B/2 - ϵ + xb

dcg

β
 

Figure B.5: Forces and dimensions for traction analysis of a robot climbing a bump with its front
wheels

FT,2 −R1 cosα+ FT,1 sinα = 0 (B.10)

R2 + FT,1 cosα+R1 sinα−W = 0 (B.11)

R2 (B + x)−Wdcg sinβ − FT,2h = 0 (B.12)

FT,1 = R1 (µ− f) (B.13)

Equations B.10 through B.13 yield the following solution.

R1 =
W (B + xb − dcg sinβ)

(B + xb) ((µ− f) cosα+ sinα) + h (cosα+ (f − µ) sinα)
(B.14)

FT,2 = R1 (cosα+ (f − µ) sinα) (B.15)
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R2 = W −R1 ((µ− f) cosα+ sinα) (B.16)

Based on the solution given by Equations B.13 through B.16, the robot can climb the bump if

its rear wheels can generate a larger net tractive e�ort than speci�ed by Equation B.15. This is

determined via the terramechanics model (Section 2.3.1) using the reaction force on the rear wheels,

R2.

α, β, x, and dcg are dimensions and angles that can be determined from the robot design and

obstacle magnitude. Figure B.6 shows the obstacle contact angle, α, and the obstacle contact

distance, xb. Equations B.17 and B.18 show their calculations. The quantities are the same for

both the front wheel traction analysis and rear wheel traction analysis (which will be presented

next).

xb

h h

xb

d  /2w

d  /2w

α
d  /2w

d  /2w

Figure B.6: Geometry of the contact distance and contact angle for a bump

xb =
1

2

√
d2
w − (dw − 2h)2 (B.17)

α = arcsin
dw − 2h

dw
(B.18)

Figure B.5 shows the center of gravity distance, dcg, and the center of gravity angle, β. Equations

B.19 and B.20 show the calculations for these measurements.

dcg =

√(
B

2
+ xb − ε

)2

+ (zcg − h)2 (B.19)

β = arctan
B
2 + xb − ε
zcg − h

(B.20)

The traction analysis for climbing with the rear wheels is similar to that with the front wheels.

Figure B.7 shows the forces on the robot while climbing a bump with its rear wheels. Equations

B.21 through B.24 present the system of equations for the forces.

FT,1 + FT,2 sinα−R2 cosα = 0 (B.21)
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dcg
β

Figure B.7: Forces and dimensions for traction analysis of bump climb with front wheels

R1 + FT,2 cosα−R2 sinα−W = 0 (B.22)

Wdcg sinβ − F1h−R1 (B − xb) = 0 (B.23)

FT,2 = R2 (µ− f) (B.24)

The solution to these equations is presented below.

R2 =
W (B − xb + h− dcg sinβ)

(B − xb) ((µ− f) cosα+ sinα)− h (cosα+ (f − µ) sinα)
(B.25)

FT,1 = R2 (cosα+ (f − µ sinα)) (B.26)

R1 = W −R2 ((µ− f) cosα+ sinα) (B.27)

Similar to the previous analysis, if the net tractive e�ort from the front wheel, as determined by

the terramechanics model, is greater than the required force speci�ed by Equation B.26, then the

robot will have enough traction to traverse the obstacle. Notice that the CoG distance, dcg, and

CoG angle, β, are di�erent than in the case of the front-wheel bump climb. This is evident from

comparing Figure B.5 and Figure B.7. Equations B.28 and B.29 show the calculations for these

measurements for the rear-wheel climb.

dcg =

√(
B

2
− xb + ε

)2

+ (zcg − h)2 (B.28)

β = arctan
B
2 − xb + ε

zcg − h
(B.29)

The geometric analysis determines the largest bump that the robot can surmount without having
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the obstacle collide with its body. This model conservatively assumes that the length of the bump is

shorter than the distance between the front and rear wheels. Because of this, the body of the robot

will collide with the obstacle unless the robot's clearance (equal to its wheel diameter) is greater

than the size of the bump:

dw ≥ h (B.30)

B.3 Ditches (Negative Obstacles)

Figure B.8 shows the free body diagram of the robot traversing a ditch with its front wheels. As

with the bump, the four unknown forces can be determined by force and moment balances and

by a friction relationship at the wheel-ditch interface. Equations B.31 through B.34 show these

relationships.

W

FT,1  

FT,2  

R2  

R1  

d  - L/22

B
d  /2w

θ' dwcg

θ' 

x   - L/2cg

z   - d  /2cg w

B/2 - ϵ  

φ

d  /2  - hw d

Figure B.8: Forces and geometries for traction analysis of a robot climbing a ditch obstacle with its
front wheels

FT,2 + FT,1 sinα−R1 cosα = 0 (B.31)

R2 + FT,1 cosα+R1 sinα−W = 0 (B.32)

Wxcg −R2d2 = 0 (B.33)

FT,1 = R1 (µ− f) (B.34)

Solving for the forces yields Equations B.35 through B.37.

R1 =
W
(

1− xcg
d2

)
(µ− f) cosα+ sinα

(B.35)

FT,2 = R1 (cosα− (µ− f) sinα) (B.36)
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R2 = W
xcg
d2

(B.37)

The robot is able to generate enough traction to traverse the ditch if the maximum net tractive

e�ort of the rear wheels is greater than the force speci�ed by Equation B.36. The terramechanics

model provides the maximum net tractive e�ort based o� of the wheel loading, R2, given by Equation

B.37.

d2, xcg, and α are dimensions and angles that can be determined based on the robot's design

and the magnitude of the ditch. Figure B.9 shows the geometry of the contact between the wheel

and the ditch. Equation B.38 gives the contact angle, α. Equation B.39 gives the contact height,

hd. For both equations L is the length of the ditch.

d  /2w

L/2
α  

h

d  /2w

Figure B.9: Geometry of the contact angle and contact height for a ditch

α = arccos
L

dw
(B.38)

hd =
1

2

(
dw −

√
d2
w − L2

)
(B.39)

Figure B.8 shows d2, the distance from the rear-wheel contact point to the point where the

front wheel contacts the far edge of the ditch, along with lengths dwcg and xcg and the angle the

robot pitches forward, θ′. Equation B.40 shows the calculation for d2, and Equation B.41 shows the

calculation for θ′. The other two lengths are shown in the two overlapping triangles on the right

of Figure B.8. dwcg is the distance from the center of gravity to the axle of the wheel in contact

with the ditch (Equation B.42). xcg is the horizontal distance from the CoG to the point where the

wheel contacts the ditch (Equation B.43).

d2 =
√
B2 − h2

d +
L

2
(B.40)

θ′ = arcsin
h

B
(B.41)

dwcg =

√(
zcg −

dw
2

)2

+

(
B

2
− ε
)2

(B.42)

xcg = dwcg cos
(
θ′ + φ

)
+
L

2
(B.43)
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Figure B.10 shows the free body diagram of a robot climbing a ditch obstacle with its rear wheel.

Equations B.44 through B.47 show the force and moment balances.

W

FT,1  

FT,2  

R2  

R1  

d  + L/22

B
d  /2w

θ' 

dwcg

θ' x   + L/2cg

z   - d  /2cg w

B/2 + ϵ  

φ

d  /2  - hw d

Figure B.10: Forces and geometries for traction analysis of a robot climbing a ditch obstacle with
its rear wheels

FT,1 + FT,2 sinα−R2 cosα = 0 (B.44)

R1 + FT,2 cosα+R2 sinα−W = 0 (B.45)

Wxcg −R1d1 = 0 (B.46)

FT,2 = R2 (µ− f) (B.47)

Solving for the forces yields Equation B.48 through B.50:

R2 =
W
(

1− xcg
d1

)
(µ− f) cosα+ sinα

(B.48)

FT,1 = R2 (cosα− (µ− f) sinα) (B.49)

R1 = W
xcg
d1

(B.50)

As before, the maximum tractive e�ort from the front wheels, as determined by the terrame-

chanics model, must be greater than that given by Equation B.49.

The obstacle contact angle, α, ditch contact height, hd, and robot pitch angle, θ′ are the same

as those for the front wheel ditch analysis (Equations B.38, B.39, and B.41). The other dimensions

are di�erent if the center of gravity is o�-center front to rear in the robot.

Equation B.51 gives d1, the distance from the front-wheel contact point to the point where the

rear wheel contacts the near edge of the ditch. Equation B.52 gives, dwcg, the distance from the

CoG to the rear axle. Lastly, Equation B.53 gives xcg, the horizontal distance between the CoG

and the rear-wheel ditch contact point.
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d1 =
√
B2 − h2

d −
L

2
(B.51)

dwcg =

√(
zcg −

dw
2

)2

+

(
B

2
+ ε

)2

(B.52)

xcg = dwcg cos
(
θ′ + φ

)
− L

2
(B.53)

The geometric analysis for this model checks if the robot can traverse the ditch without its body

colliding with any part of the ditch. The only circumstance under which there can be a collision

is if the length of the ditch is greater than the diameter of the wheel. Equation B.54 gives the

circumstance under which the robot will avoid a collision.

dw > L (B.54)
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Appendix C

Robot Chassis Stress Analyses

The robot chassis must be strong enough to resist yielding from stresses generated by any terrain

features. This model determines the maximum stress imposed on the chassis by each type of

obstacle through a quasi-static analysis. The chassis is assumed to be a beam, with the maximum

stress determined based on the reaction forces at the wheel and the payload weight of the robot

concentrated at the location of the CoG. The model could consider the payload of the robot to be

distributed across the length of the chassis. However, if this is the case then the maximum stress

in the robot decreases as the length of the robot increases. Using a point mass is a conservative

assumption and avoids this problematic trend.

The maximum stress in the robot is the sum of the maximum bending stress and maximum

axial stress, as shown in Equation C.1.

σmax = σbend + σaxial (C.1)

Due to the weight of the robot payload, the axial stress in the front and rear portions of the

chassis will be di�erent. The axial stress used in Equation C.1 is the larger of the front axial stress,

σfront, and the rear axial stress, σrear. The bending stress, given by Equation C.2, depends on

the maximum bending moment in the chassis, Mmax. Note that the bending stress during crosshill

travel must be calculated in di�erent manner.

σbend =
6Mmax

bch2
c

(C.2)

C.1 Uphill and Downhill Stress

Figure C.1 shows how the wheel forces and payload weight transfer to the robot chassis during

uphill travel. Because this is a quasi-static analysis, at each wheel the normal force, R, and the

traction, FT , are dependent. The component of robot weight on the front (Wf ) or rear (Wr) wheels

is determined by just R or FT , as shown in Equations C.3 and C.4. The analysis in Section 2.3.2

provides the wheel forces.
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Figure C.1: Analysis of forces and moments on the robot chassis during an uphill traverse

Wf =
R1

cos θ
(C.3)

Wr =
R2

cos θ
(C.4)

Equation C.5 and Equation C.6 give the axial stress in the front and rear portions of the chassis.

σfront =
Wf sin θ

bchc
(C.5)

σrear =
Wr sin θ

bchc
(C.6)

The bending moments on the chassis are determined from the angle of the slope and the front

and rear wheel forces, as shown in Equations C.7 though C.9.

Mw =
W

2
(zcg − dw) sin θ (C.7)

Mf = R1dw tan θ (C.8)

Mr = R2dw tan θ (C.9)

The maximum bending moment, given by Equation C.10, occurs at the point on the chassis

where the payload mass is applied.

Mmax = Mf +Wf

(
B

2
− ε
)

+Mw (C.10)
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C.2 Crosshill Stress

During crosshill travel, one side of the ladder frame chassis bears more than half of the robot's

mass. The rungs on the ladder frame share a combined axial and bending stresses, similar to the

analysis in Section C.1. The model assumes there are four rungs and that they are the same size as

the longitudinal beams. Thus, the stress in the longitudinal beams will generally be larger.

Figure C.2 shows the robot traveling crosshill with both the front to back and left to right

weight distributions. Equation C.11 gives the component of weight on the right side of the chassis.

Equation C.12 gives the component of weight on the front-right wheel.

Ws

Wp

Ws

�

zcg   

 

1
2 (C+�� ) 

Figure C.2: Forces on the robot chassis during crosshill travel, including a front view (left) and side
view (right)

Ws = W

(
1

2
+

zcg
C + bw

tan θ

)
(C.11)

Wf =
Ws

B
=
W

B

(
1

2
+

zcg
C + bw

tan θ

)
(C.12)

The maximum bending moment in the chassis is given by Equation C.13.

Mmax = Wf

(
B

2
− ε
)

(C.13)

Because the robot is tilted, the forces on the chassis are diagonal across the rectangular chassis

cross section. The maximum stress can be determined from the sum of the component forces parallel

to the sides of the cross section. This method does not use Equation C.2 to determine the stress.

Instead, Equations C.14 and C.15 give the horizontal and vertical bending stress components relative

to the cross section. Equation C.16 gives the total bending stress during crosshill travel.

σh =
6Mmax cos θ

bch2
c

(C.14)

σv =
6Mmax sin θ

b2chc
(C.15)
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σmax = 6Wf

(
B

2
− ε
)(

cos θ

bch2
c

+
sin θ

b2chc

)
(C.16)

C.3 Bump Stress

To determine the maximum stress on the chassis from a bump obstacle, the stress must be deter-

mined for the robot climbing the bump with its front wheels and for the robot climbing with its

rear wheels. The larger of those stresses is the maximum stress from a bump obstacle.

Figure C.3 shows the forces on the chassis during a front-wheel climb of the obstacle. The

analysis in Section 2.3.3 determines the wheel forces. Mw is given by Equation C.7, with θ equal to

zero. Equations C.17 and C.18 give Mf and Wf , which are determined from the geometry of the

forces on the wheels.

W

FT,1  

FT,2  

R2  

R1  

W

Wr
 Wf

Mr

MW

Mf

Figure C.3: Forces on the robot's chassis while it is traversing a bump with its front wheels

Mf =
dw
2
FT,1 (C.17)

Wf =
√
R2

1 + F 2
T,1 (C.18)

Equation C.19 gives β1, the angle between the contact angle, α (given by Equation B.18), and

the force vector between the front wheel and chassis. β2 is the angle between the vertical and the

force vector between the rear wheel and the chassis.

β1 = arctan
FT,1
R1

(C.19)

β2 = arctan
FT,2
R2

(C.20)

These angles, which give the axial force components, are used in Equations C.21 and C.22 to

determine the axial stress in the front and rear portions of the chassis.

σfront =
Wf cos (α+ β1)

bh
(C.21)
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σfront =
Wr sinβ2

bh
(C.22)

Equation C.23 gives the maximum bending moment, which occurs at the payload loading point

on the chassis.

Mmax = Mf +Wf

(
B

2
− ε
)

sin (α+ β1) +Mw (C.23)

Figure C.4 shows the forces applied to the chassis while the robot climbs a bump with its rear

wheels. These forces and moments can be determined in the same manner as with the front-wheel

climb, using Equations C.17 through C.20. Similarly, Equation C.7, with θ set to zero, gives Mw.

W

FT,2  

FT,1  

R1  

R2  

W

Wr
 

Wf

Mr
MW

Mf

Figure C.4: Chassis forces while the robot is traversing a bump with its rear wheels

Equations C.24 through C.26 give the axial stresses and the maximum bending moment.

σfront =
Wf sinβ1

bh
(C.24)

σrear =
Wr cos (α+ β2)

bh
(C.25)

Mmax = Mf +Wf

(
B

2
− ε
)

cosβ1 +Mw (C.26)

C.4 Ditch Stress

The stress analysis for a ditch traverse is similar to that for a bump traverse, with di�erences arising

from the tilt of the robot. For a ditch, the instant of maximum obstacle resistance occurs when the

robot's wheel is in contact with both sides of the ditch. At this point the robot's chassis is tilted

relative to the ground. Equation B.41 gives that angle, θ′.

Figure C.5 shows the forces on the robot chassis while the front wheels traverse of a ditch. The

wheel forces are given by the analysis in Appendix B.3. The chassis forces, as well as the angles β1

and β2, can be determined via the same analysis in Section C.3, using θ = θ′.

The axial stresses and the maximum bending moment are given by Equations C.27 through

C.29.
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Figure C.5: Forces on the chassis from the robot crossing a ditch obstacle with its front wheels

σfront =
Wf cos (α+ β1 − θ′)

bh
(C.27)

σrear =
Wr sin (β2 − θ′)

bh
(C.28)

Mmax = Mf +Wf

(
B

2
− ε
)

sin
(
α+ β1 − θ′

)
+Mw (C.29)

Figure C.6 shows the forces on the robot chassis while the rear wheels traverse the ditch. Ap-

pendix B.3 gives the wheel forces and Appendix C.3 gives the chassis forces and angles. The axial

stresses and the maximum bending moment are given by Equations C.30 through C.32.
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Figure C.6: Forces on the chassis from the robot crossing a ditch obstacle with its rear wheels

σfront =
Wf sin (β1 + θ′)

bh
(C.30)

σrear =
Wr cos (α+ β2 + θ′)

bh
(C.31)

Mmax = Mf +Wf

(
B

2
− ε
)

sin
(
β1 + θ′

)
+Mw (C.32)
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Appendix D

Cascading Performance Calculation

Robot performance could be measured by either the time, T , required to travel a required distance,

d̄, or the equivalent straight-line velocity, vesl, of the robot. Upon initial consideration, Equation

D.1 and Equation D.2 seem to provide these measures, with the penalty times, T̂ , as a function

of the distance, d̄. T̄ is the time that the robot would take to travel d̄ if there were no obstacles

(slopes, bumps or ditches) present. Table 3.3 lists the subscript symbols for T̂ . Note that T and T̂

are random variables, meaning that their exact value cannot be known a priori.

T = T̄ + T̂bc + T̂bm + T̂dc + T̂dm + T̂usc + T̂usm + T̂dsc + T̂dsm (D.1)

vesl =
d̄

E [T ]
(D.2)

However, the robot will likely be forced to maneuver around some obstacles, resulting in an

actual distance traveled, d, that is larger than d̄. Thus, the penalty times should be based on d, not

d̄.

Consider this perspective: along with the time penalties, T̂1, from obstacles encountered along

distance d̄, there is a additional distance d̂1 that the robot will travel. Along d̂1 there should also be

the potential for the robot to encounter obstacles, which would add both additional time delays, T̂2

and additional distance, d̂2. Likewise, the robot can encounter additional obstacles along d̂2, and

so on. Thus, to correctly determine T , all of the additional time penalties at each layer must be

included as in Equation D.3. Each i will be referred to as a �layer.�

T = T̄ +
∞∑
i=1

T̂i (D.3)

Because T is nondeterministic, its expected value, E [T ], provides a useful single-value measure

of performance. Equation D.4 shows how to determine E [T ] by using the expected value of each

variable. Note that T̄ is deterministic.
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E [T ] = T̄ +
∞∑
i=1

E
[
T̂i

]
(D.4)

The summation in Equation D.4 can be split into sets of summations, one for penalties from

obstacle climbing, subscript c, and one for penalties from obstacle avoidance, subscript m:

E [T ] = T̄ +
∞∑
i=1

E
[
T̂c,i

]
+
∞∑
i=1

E
[
T̂m,i

]
(D.5)

Two realizations allow Equation D.5 to be simpli�ed. First, take note that additional distance

only results from obstacle avoidance, since the surface path length is not changed by obstacle

climbing. Second, the ratios of 1) the time penalties in one layer, i, to 2) the time penalties from

avoiding in the previous layer, i− 1, are equal. This is true for all numerator time penalties due to

climbing and for those due to avoiding. Additionally, as presented in Equation D.6 and Equation

D.7, this equivalency of these ratios also hold true for the �rst layer, i = 1, where the previous time

is T̄ .

Kc =
E
[
T̂c,i

]
E
[
T̂m,i−1

] =
E
[
T̂c,1

]
T̄

(D.6)

Km =
E
[
T̂m,i

]
E
[
T̂m,i−1

] =
E
[
T̂m,1

]
T̄

(D.7)

Fully substituting Kc and Km into Equation D.5 at each layer, as demonstrated in Equations

D.8 to D.10 yields Equation D.11.

E [T ] = T̄ +

∞∑
i=1

E
[
T̂c,i

]
+

∞∑
i=1

E
[
T̂m,i

]
(D.8)

E [T ] =T̄ + T̂c,1 + T̂m,1 + T̂c,2 + T̂m,2 + T̂c,3 + T̂m,3 + . . .

=T̄ + T̄Kc + T̄Km + T̂m,1Kc + T̂m,1Km + T̂m,2Kc + T̂m,2Km + . . .

=T̄ + T̄Kc + T̄Km + T̄KmKc + T̄KmKm + T̄K2
mKc + T̄K2

mKm + . . . (D.9)

E [T ] = T̄ +
[
T̄Kc + T̄KmKc + T̄K2

mKc + . . .
]

+
[
T̄Km + T̄K2

m + T̄K3
m + . . .

]
=

[
T̄Kc + T̄KmKc + T̄K2

mKc + . . .
]

+
[
T̄ + T̄Km + T̄K2

m + T̄K3
m + . . .

]
= T̄Kc

∞∑
i=0

Ki
m + T̄

∞∑
i=0

Ki
m (D.10)

84



E [T ] =
(
T̄Kc + T̄

) ∞∑
i=0

Ki
m (D.11)

The summation in Equation D.11 is a geometric series, and since Km < 1, it converges as shown

to 1/ (1−Km). Thus, the expected value of the time is:

E [T ] = T̄
1 +Kc

1−Km
(D.12)

The expected value of the equivalent straight line velocity can be written in terms of the nominal

robot velocity, v:

vesl =
d̄

E [T ]
=
d̄

T̄

1−Km

1 +Kc
= v

1−Km

1 +Kc
(D.13)
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Appendix E

Design Constants and Relationships for

the Mars Mission Case Study

Table E.1 lists the values of constants and other relationships for the Mars case study in Chapter 4.

Table E.1: Mars case study constants and relationships
Parameter Symbol Value

Mass Budget mbudget 1000 lbs

Payload Mass mpayload 30 lbs

Electronics Mass melectronics 10 lbs

Thermal System Mass mthermal 5 lbs

Gravity 12.2 ft
s2

Nominal Wheel Slip s 0.35

Grouser Height 0.05dw
Rolling Friction Coe�cient f 0.1

Obstacle Friction Coe�cient µ 0.5

Chassis Material Yield Strength σyield 50 ksi

Chassis Material Density ρ 0.1 lbm
in3

Nominal Robot Velocity v 2 (2h+ L)

Electrical Power Usage 50 watts

Battery Speci�c Energy cbatt 145 W-hr
kg

Battery backup Time Tbackup 3 hours

Solar Irradiance I 1300 W
m2

Solar Panel E�ciency η 0.28

Solar Panel Oversizing s 0.25

Solar Panel Density ρsolar 1.87 lbf
m2

Power Managment Coe�cient kP 38.4 lbf
m2

Minimum Wheel Separation sw 5 in

Robot Body Height 6 in

Wheel Ratio rw 0.1

Chassis Thickness Ratio rt 4

Maximum Sinkage rs 0.1dw
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