Search for neutral Higgs bosons decaying to tau pairs in pp collisions at $\sqrt{s} = 7$ TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1016/j.physletb.2012.05.028

Publisher
Elsevier

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/92074

Terms of Use
Creative Commons Attribution

Detailed Terms
http://creativecommons.org/licenses/by/3.0/
Search for neutral Higgs bosons decaying to tau pairs in pp collisions at $\sqrt{s} = 7$ TeV

CERN Collaboration

CERN, Switzerland

Abstract

A search for neutral Higgs bosons decaying to tau pairs at a center-of-mass energy of 7 TeV is performed using a dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ recorded by the CMS experiment at the LHC. The search is sensitive to both the standard model Higgs boson and to the neutral Higgs bosons predicted by the minimal supersymmetric extension of the standard model (MSSM). No excess of events is observed in the tau-pair invariant-mass spectrum. For a standard model Higgs boson in the mass range of 110–145 GeV upper limits at 95% confidence level (CL) on the production cross section are set. For the masses of the H and A bosons, the masses of the h and A bosons are almost degenerate, while the mass of the H is around 130 GeV. Conversely, if $m_A \gtrsim 130$ GeV, the masses of the H and A are almost degenerate, while the mass of the h remains near 130 GeV. This will thus always lead to one neutral Higgs boson at 130 GeV and two neutral Higgs bosons with almost degenerate mass of m_λ. The Tevatron collider experiments exclude the SM Higgs boson in the mass range 162–166 GeV [19], and the ATLAS experiment in the mass ranges 112.9–115.5, 131–238, and 251–466 GeV [20]. Precision electroweak data constrain the mass of the SM Higgs boson to be less than 158 GeV [21].

Keywords: CMS, Physics, Higgs

1. Introduction

An important goal of the LHC physics program is to ascertain the mechanism of electroweak symmetry breaking, through which the W and Z bosons attain mass, while the photon remains massless. In the standard model (SM) [1–3], this is achieved via the Higgs mechanism [4–9], which also predicts the existence of a scalar Higgs boson. However, this particle is not yet observed by experiments. Moreover, the mass of the Higgs boson is quadratically divergent at high energies [10]. Supersymmetry [11] is a well-known extension to the SM which allows the cancellation of this divergence. The minimal supersymmetric standard model (MSSM) contains two Higgs doublets, giving rise to five physical states: a light neutral CP-even state (h), a heavy neutral CP-even state (H), a neutral CP-odd state (A), and a pair of charged states (H^{\pm}) [12–15]. The mass relations between these particles depend on the MSSM parameter tan β, the ratio of the Higgs fields vacuum expectation values. We focus on the m_λ^{max} [16,17] benchmark scenario in which $M_{\text{SUSY}} = 1$ TeV; $X_t = 2M_{\text{SUSY}}$; $\mu = 200$ GeV; $M_1 = 800$ GeV; $M_2 = 200$ GeV; and $A_0 = A_t$. Here, M_{SUSY} denotes the common soft-SUSY-breaking squark mass of the third generation; $X_t = A_t - \mu / \tan \beta$ is the stop mixing parameter; A_t and A_b are the stop and sbottom trilinear couplings, respectively; μ the Higgsino mass parameter; M_Z the gluino mass; and M_2 is the SU(2)-gaugino mass parameter. The value of M_1 is fixed via the unification relation $M_1 = (5/3)M_2 \sin \beta \eta_Y / \cos \beta$. In this scenario for values of $\tan \beta \lesssim 15$, if $m_A \lesssim 130$ GeV the masses of the h and A are almost degenerate, while the mass of the H is around 130 GeV. Conversely, if $m_A \gtrsim 130$ GeV, the masses of the H and A are almost degenerate, while the mass of the h remains near 130 GeV. This will thus always lead to one neutral Higgs boson at 130 GeV and two neutral Higgs bosons with almost degenerate mass of m_λ.

Direct searches for the SM Higgs boson at the Large Electron-Positron Collider (LEP) set a limit on the mass $m_{\text{H}} > 114.4$ GeV at 95% confidence level (CL) [18]. The Tevatron collider experiments exclude the SM Higgs boson in the mass range 162–166 GeV [19], and the ATLAS experiment in the mass ranges 112.9–115.5, 131–238, and 251–466 GeV [20]. Precision electroweak data constrain the mass of the SM Higgs boson to be less than 158 GeV [21].

Direct searches for neutral MSSM Higgs bosons have been reported by LEP, the Tevatron, and both LHC experiments, and set limits on the MSSM parameter space in the $\tan \beta$–m_λ plane [22–26].

This Letter reports a search for the SM and the neutral MSSM Higgs bosons using final states with tau pairs in proton–proton collisions at $\sqrt{s} = 7$ TeV at the LHC. We use a data sample collected in 2011 corresponding to an integrated luminosity of 4.6 fb$^{-1}$ recorded by the Compact Muon Solenoid (CMS) [27] experiment. Three independent tau-pair final states where one or both taus decay leptonically are studied: τ_1+X, $\mu\tau_2+X$, and $\ell\mu+X$, where we use the symbol ℓ to indicate a reconstructed hadronic decay of a tau.

© CERN for the benefit of the CMS Collaboration.

* E-mail address: cms-publication-committee-chair@cern.ch.

0370-2693/$$$ © 2012 CERN. Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physletb.2012.05.028
In the case of the SM Higgs boson, the gluon-fusion production mechanism has the largest cross section. However, in the mass region of interest, background from Drell–Yan production of tau pairs overwhelms the expected Higgs boson signal. This search therefore relies upon the signature of Higgs bosons produced via vector boson fusion (VBF) or in association with a high-\(p_T\) jet. In the former case, the distinct topology of two jets with a large rapidity separation greatly reduces the background. In the latter, requiring a high-\(p_T\) jet both suppresses background, and improves the measurement of the tau-pair invariant mass.

In the MSSM case, two main production processes contribute to \(pp \rightarrow \phi + X\), where \(\phi = h, H, \) or \(A\): gluon fusion through a b-quark loop and direct \(bb\) annihilation from the b-quark content of the beam protons. In the latter case, there is a significant probability that a b-quark jet is produced centrally in association with the beam protons. In 2011, an average of ten proton–proton interactions occurred per LHC bunch crossing, making the assignment of the vertex of the hard-scattering process non-trivial. For each reconstructed collision vertex, the sum of the \(p_T^2\) of all tracks associated to the vertex is computed. The vertex for which this quantity is the largest is assumed to correspond to the hard-scattering process, and is referred to as the primary vertex. A correction is applied to the isolation variable to account for effects of additional interactions. For charged particles, only those associated with the primary vertex are considered in the isolation variable. For neutral particles, a correction is applied by subtracting the energy deposited in the isolation cone by charged particles not associated with the primary vertex, multiplied by a factor of 0.5. This factor corresponds approximately to the ratio of neutral to charged hadron production in the hadronization process of pile-up interactions. An \(\eta, p_T\), and lepton-flavor dependent threshold on the isolation variable of less than roughly 10% of the candidate \(p_T\) is applied.

To correct for the contribution to the jet energy due to pile-up, a median energy density \(\rho\) is determined event by event. The pile-up contribution to the jet energy is estimated as the product of \(\rho\) and the area of the jet and subsequently subtracted from the jet transverse energy \([37]\). In the fiducial region for jets of \(|\eta| < 4.7\), jet energy corrections are also applied as a function of the jet \(E_T\) and \(\eta\) \([38]\).

In this analysis, due to the small mass of the tau and the large transverse momentum, the neutrinos produced in the decay tend to be produced nearly collinear with the visible products. Conversely, in W + jets events, one of the main backgrounds, the high mass of the W results in a neutrino approximately opposite to the lepton in the transverse plane, while a jet is misidentified as a tau. In the \(e\tau_3 + X\) and \(\mu\tau_3 + X\) channels of the SM Higgs boson search, which focuses on lower masses (less than 145 GeV), we therefore require the transverse mass

\[m_T = \sqrt{2p_T E_T^{\text{miss}}(1 - \cos(\Delta\phi))}\]

(1)

to be less than 40 GeV, where \(p_T\) is the lepton transverse momentum, and \(\Delta\phi\) is the difference in \(\phi\) of the lepton and \(E_T^{\text{miss}}\) vector.

In the MSSM search channels and in the \(e\mu + X\) SM search channel, we use a discriminator formed by considering the bisection of the directions of the visible tau decay products transverse to the beam direction, denoted as the \(\zeta\) axis \([39]\). From the projections of the visible decay product momenta and the \(E_T^{\text{miss}}\) vector onto the \(\zeta\) axis, two values are calculated:

\[P_T = P_{T1} \cdot \zeta + P_{T2} \cdot \zeta + E_T^{\text{miss}} \cdot \zeta,\]

(2)

\[P_{\zeta}^{\text{vis}} = P_{T1} \cdot \zeta + P_{T2} \cdot \zeta,\]

(3)

where the indices \(P_{T1}\) and \(P_{T2}\) indicate the transverse momentum of two reconstructed leptons. For the \(e\tau_3 + X\) and \(\mu\tau_3 + X\) final states, in the MSSM search we require \(P_T > 0.5 \cdot P_{\zeta}^{\text{vis}} > -20\) GeV and for the \(e\mu + X\) channel we require \(P_T > 0.85 \cdot P_{\zeta}^{\text{vis}} > -25\) GeV.

To further enhance the sensitivity of the search for Higgs bosons both in the MSSM and in the SM, we split the sample of
Table 1
Numbers of expected and observed events in the event categories as described in the text for the $e\nu_\tau + X$ channel. Also given are the expected signal yields and efficiencies for an MSSM Higgs boson with $m_A = 120$ GeV and $\tan \beta = 10$, and for an SM Higgs boson with $m_h = 120$ GeV. Combined statistical and systematic uncertainties on each estimate are reported. For the yield estimates for the Higgs signal the production cross sections for h and A, which have almost degenerate masses, are taken into account. The quoted efficiencies do not include the branching fraction into $\tau\tau$.

<table>
<thead>
<tr>
<th>Process</th>
<th>SM</th>
<th>MSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/1-Jet</td>
<td>Boosted</td>
</tr>
<tr>
<td>$Z \to \tau\tau$</td>
<td>13438 ± 977</td>
<td>190 ± 14</td>
</tr>
<tr>
<td>Multijets</td>
<td>6365 ± 299</td>
<td>27 ± 3</td>
</tr>
<tr>
<td>W+jets</td>
<td>2983 ± 216</td>
<td>62 ± 4</td>
</tr>
<tr>
<td>$Z \to ll$</td>
<td>5170 ± 464</td>
<td>28 ± 4</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>63 ± 7</td>
<td>42 ± 6</td>
</tr>
<tr>
<td>Dibosons</td>
<td>68 ± 21</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>Total background</td>
<td>28087 ± 1142</td>
<td>354 ± 17</td>
</tr>
<tr>
<td>$H \to \tau\tau$</td>
<td>53 ± 9</td>
<td>2.7 ± 0.6</td>
</tr>
<tr>
<td>Data</td>
<td>27272</td>
<td>318</td>
</tr>
</tbody>
</table>

Table 2
Numbers of expected and observed events in the event categories as described in the text for the $\mu\nu_\tau + X$ channel. Also given are the expected signal yields and efficiencies for an MSSM Higgs boson with $m_A = 120$ GeV and $\tan \beta = 10$, and for an SM Higgs boson with $m_h = 120$ GeV. Combined statistical and systematic uncertainties on each estimate are reported. For the yield estimates for the Higgs signal the production cross sections for h and A, which have almost degenerate masses, are taken into account. The quoted efficiencies do not include the branching fraction into $\tau\tau$.

<table>
<thead>
<tr>
<th>Process</th>
<th>SM</th>
<th>MSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/1-Jet</td>
<td>Boosted</td>
</tr>
<tr>
<td>$Z \to \tau\tau$</td>
<td>28955 ± 2054</td>
<td>295 ± 22</td>
</tr>
<tr>
<td>Multijets</td>
<td>7841 ± 141</td>
<td>36 ± 2</td>
</tr>
<tr>
<td>W+jets</td>
<td>5827 ± 392</td>
<td>65 ± 4</td>
</tr>
<tr>
<td>$Z \to ll$</td>
<td>777 ± 70</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>147 ± 15</td>
<td>94 ± 12</td>
</tr>
<tr>
<td>Dibosons</td>
<td>178 ± 55</td>
<td>9 ± 4</td>
</tr>
<tr>
<td>Total background</td>
<td>43725 ± 2097</td>
<td>504 ± 26</td>
</tr>
<tr>
<td>$H \to \tau\tau$</td>
<td>96 ± 17</td>
<td>3.9 ± 0.8</td>
</tr>
<tr>
<td>Data</td>
<td>43612</td>
<td>500</td>
</tr>
</tbody>
</table>

Signal efficiency

<table>
<thead>
<tr>
<th>Process</th>
<th>SM</th>
<th>MSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gg \to \phi$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>$gg \to b\bar{b}e$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>$gg \to H$</td>
<td>9.1 · 10^{-3}</td>
<td>2.9 · 10^{-4}</td>
</tr>
<tr>
<td>$qq \to q\bar{q}H$</td>
<td>5.2 · 10^{-3}</td>
<td>1.6 · 10^{-3}</td>
</tr>
<tr>
<td>$qq \to H\ell\nu$ or VH</td>
<td>7.8 · 10^{-3}</td>
<td>2.2 · 10^{-3}</td>
</tr>
</tbody>
</table>

The observed number of events for each category, as well as the expected number of events from various background processes are shown in Tables 1–3 together with expected signal yields and efficiencies. The largest source of events selected with these requirements is $Z \to \tau\tau$ decays. We estimate the contribution from this process using an observed sample of $Z \to \ell\ell$ events, where the reconstructed muons are replaced by the reconstructed particles from simulated tau decays, a procedure called ‘embedding.’

selected events into several mutually exclusive categories based on the jet multiplicity and b-jet content.

In the MSSM case, there is a large probability for having a b-tagged jet in the central region. We use an algorithm based on the impact parameter of the tracks associated to the event vertex to identify b-tagged jets [40]. The MSSM search has two categories:

b-Tag category: We require at most one jet with $p_T > 30$ GeV and at least one b-tagged jet with $p_T > 20$ GeV.

Non-b-Tag category: We require at most one jet with $p_T > 30$ GeV and no b-tagged jet with $p_T > 20$ GeV.

The SM search has three categories:

VBF category: We require at least two jets with $p_T > 30$ GeV, $|\Delta R_{jj}| > 4.0$, $\eta_1 \cdot \eta_2 < 0$, and a dijet invariant mass $m_{jj} > 400$ GeV, with no other jet with $p_T > 30$ GeV in the rapidity region between the two jets.

Boosted category: We require one jet with $p_T > 150$ GeV, and, in the $\mu\nu$ channel, no b-tagged jet with $p_T > 20$ GeV.

0/1-Jet category: We require no more than one jet with $p_T > 30$ GeV, and if such a jet is present, it must have $p_T < 150$ GeV.
The normalization for this process is determined from the measurement of the $Z \to ee$ and $Z \to \mu\mu$ cross section [41].

Another significant source of background is multijet events in which there is one jet misidentified as an isolated electron or muon, and a second jet misidentified as τ_b, $W +$ jets in which there is a jet misidentified as a τ_b are also a source of background. The rates for these processes are estimated using the number of observed same-charge tau pair events, and from events with large transverse mass, respectively. Other background processes include $t\bar{t}$ production and $Z \to ee/\mu\mu$ events, particularly in the $e\tau + X$ channel due to the 2–3% probability for electrons to be misidentified as τ_b [36]. The small background from $W +$ jets and multijet events for the $e\tau$ channel where jets are misidentified as isolated leptons is derived by measuring the number of events with one good lepton and a second which passes relaxed selection criteria, but fails the nominal lepton selection. This sample is extrapolated to the signal region using the efficiencies for such loose lepton candidates to pass the nominal lepton selection. These efficiencies are measured in data using multijet events. Backgrounds from $t\bar{t}$ and di-boson production are estimated from simulation using the MADGRAPH [42] event generator to simulate the shapes for $t\bar{t}$ events and PYTHIA 6.424 [43] to simulate the shapes for di-boson events. The event yields are normalized to the inclusive cross sections: $\sigma_{t\bar{t}} = 164.4 \pm 14.3 \, \text{pb}$ and $\sigma_{WW} = 55.3 \pm 8.3 \, \text{pb}$ as measured with an analysis similar to that described in [44,45] using a larger data sample.

To model the MSSM and SM Higgs boson signals the event generators PYTHIA and POWHEG [46] are used, respectively. The TAUOLA [47] package is used for tau decays in all cases. Additional next-to-next-to-leading order (NNLO) K-factors from FeHiPro [48,49] are applied to the Higgs boson p_T spectrum from Higgs boson events produced via gluon fusion.

The presence of pile-up is incorporated by simulating additional interactions and then reweighting the simulated events to match the distribution of additional interactions observed in data. The events in the embedded $Z \to \tau\tau$ sample and in other background samples obtained from data contain the correct distribution of pile-up interactions. The missing transverse energy response from simulation is corrected using a prescription, based on data developed for inclusive W and Z cross section measurements [41], where Z bosons are reconstructed in the dimuon channel, and the missing transverse energy scale and resolution calibrated as a function of the Z boson transverse momentum.

4. Tau-pair invariant mass reconstruction

To distinguish the Higgs boson signal from the background, we reconstruct the tau-pair mass using a maximum likelihood technique [26]. The algorithm estimates the original momentum components of the two taus by maximizing a likelihood with respect to free parameters corresponding to the missing neutrino momenta, subject to kinematic constraints. Other terms in the likelihood take into account the tau-decay phase space and the probability density in the tau transverse momentum, parametrized as a function of the tau-pair mass. This algorithm yields a tau-pair mass with a mean consistent with the true value, and a distribution with a nearly Gaussian shape. The standard deviation of the mass resolution is estimated to be 21% at a Higgs boson mass of 130 GeV, compared with 24% for the (non-Gaussian) distribution of the invariant mass spectrum reconstructed from the visible tau-decay products in the inclusive selection. The resolution improves to 15% in the b-Tag category within the MSSM and in the Boosted and VBF categories in the SM analysis where the Higgs boson is produced with significant transverse momentum.

5. Systematic uncertainties

Various imperfectly known or simulated effects can alter the shape and normalization of the invariant mass spectrum. The main contributions to the normalization uncertainty include the uncertainty in the total integrated luminosity (4.5%) [50], jet energy scale (2–5% depending on p_T), background normalization (Tables 1–3), Z boson production cross section (2.5%) [41], lepton identification and isolation efficiency (1.0%), and trigger efficiency (1.0%). The tau-identification efficiency uncertainty is estimated to be 6% from an independent study using a tag-and-probe technique [41]. The lepton identification and isolation efficiencies are stable as a function of the number of additional interactions in the bunch crossing in data and in Monte Carlo simulation. The b-tagging efficiency carries an uncertainty of 10%, and the b-mistag rate is accurate to 30% [51]. Uncertainties that contribute to mass spectrum shape variations include the tau (3%), muon (1%), and electron (1% in the barrel region, 2.5% in the endcap region) energy scales. The effect of the uncertainty on the E_{miss} scale, mainly due to pile-up effects, is incorporated by varying the mass spectrum shape as described in the next section.

<table>
<thead>
<tr>
<th>Process</th>
<th>SM</th>
<th>MSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \to \tau\tau$</td>
<td>$g/1$-Jet</td>
<td>Boosted</td>
</tr>
<tr>
<td>483 ± 145</td>
<td>2.1 ± 1</td>
<td>16.4 ± 1.5 & 474 ± 147</td>
</tr>
<tr>
<td>427 ± 41</td>
<td>70 ± 8</td>
<td>14.3 ± 3</td>
</tr>
<tr>
<td>570 ± 91</td>
<td>21 ± 4</td>
<td>2.0 ± 0.6</td>
</tr>
<tr>
<td>13267 ± 809</td>
<td>197 ± 14</td>
<td>34 ± 5</td>
</tr>
<tr>
<td>36 ± 6</td>
<td>1.0 ± 0.3</td>
<td>1.0 ± 0.2</td>
</tr>
<tr>
<td>13152</td>
<td>189</td>
<td>26</td>
</tr>
</tbody>
</table>

Table 3 Numbers of expected and observed events in the event categories as described in the text for the $E_{\text{miss}} + X$ channel. Also given are the expected signal yields and efficiencies for an MSSM Higgs boson with $m_A = 120$ GeV and $\tan \beta = 10$, and for an SM Higgs boson with $m_A = 120$ GeV. Combined statistical and systematic uncertainties on each estimate are reported. For the yield estimates for the Higgs signal the production cross sections for h and A, which have almost degenerate masses, are taken into account.

The quoted efficiencies do not include the branching fraction into $\tau \tau$.

The normalization for this process is determined from the measurement of the $Z \to ee$ and $Z \to \mu\mu$ cross section [41].

Another significant source of background is multijet events in which there is one jet misidentified as an isolated electron or muon, and a second jet misidentified as τ_b, $W +$ jets in which there is a jet misidentified as a τ_b are also a source of background. The rates for these processes are estimated using the number of observed same-charge tau pair events, and from events with large transverse mass, respectively. Other background processes include $t\bar{t}$ production and $Z \to ee/\mu\mu$ events, particularly in the $e\tau + X$ channel due to the 2–3% probability for electrons to be misidentified as τ_b [36]. The small background from $W +$ jets and multijet events for the $e\tau$ channel where jets are misidentified as isolated leptons is derived by measuring the number of events with one good lepton and a second which passes relaxed selection criteria, but fails the nominal lepton selection. This sample is extrapolated to the signal region using the efficiencies for such loose lepton candidates to pass the nominal lepton selection. These efficiencies are measured in data using multijet events. Backgrounds from $t\bar{t}$ and di-boson production are estimated from simulation using the MADGRAPH [42] event generator to simulate the shapes for $t\bar{t}$ events and PYTHIA 6.424 [43] to simulate the shapes for di-boson events. The event yields are normalized to the inclusive cross sections: $\sigma_{t\bar{t}} = 164.4 \pm 14.3 \, \text{pb}$ and $\sigma_{WW} = 55.3 \pm 8.3 \, \text{pb}$ as measured with an analysis similar to that described in [44,45] using a larger data sample.

To model the MSSM and SM Higgs boson signals the event generators PYTHIA and POWHEG [46] are used, respectively. The TAUOLA [47] package is used for tau decays in all cases. Additional next-to-next-to-leading order (NNLO) K-factors from FeHiPro [48,49] are applied to the Higgs boson p_T spectrum from Higgs boson events produced via gluon fusion.

The presence of pile-up is incorporated by simulating additional interactions and then reweighting the simulated events to match the distribution of additional interactions observed in data. The events in the embedded $Z \to \tau\tau$ sample and in other background samples obtained from data contain the correct distribution of pile-up interactions. The missing transverse energy response from simulation is corrected using a prescription, based on data, developed for inclusive W and Z cross section measurements [41], where Z bosons are reconstructed in the dimuon channel, and the missing transverse energy scale and resolution calibrated as a function of the Z boson transverse momentum.

4. Tau-pair invariant mass reconstruction

To distinguish the Higgs boson signal from the background, we reconstruct the tau-pair mass using a maximum likelihood technique [26]. The algorithm estimates the original momentum components of the two taus by maximizing a likelihood with respect to free parameters corresponding to the missing neutrino momenta, subject to kinematic constraints. Other terms in the likelihood take into account the tau-decay phase space and the probability density in the tau transverse momentum, parametrized as a function of the tau-pair mass. This algorithm yields a tau-pair mass with a mean consistent with the true value, and a distribution with a nearly Gaussian shape. The standard deviation of the mass resolution is estimated to be 21% at a Higgs boson mass of 130 GeV, compared with 24% for the (non-Gaussian) distribution of the invariant mass spectrum reconstructed from the visible tau-decay products in the inclusive selection. The resolution improves to 15% in the b-Tag category within the MSSM and in the Boosted and VBF categories in the SM analysis where the Higgs boson is produced with significant transverse momentum.

5. Systematic uncertainties

Various imperfectly known or simulated effects can alter the shape and normalization of the invariant mass spectrum. The main contributions to the normalization uncertainty include the uncertainty in the total integrated luminosity (4.5%) [50], jet energy scale (2–5% depending on p_T), background normalization (Tables 1–3), Z boson production cross section (2.5%) [41], lepton identification and isolation efficiency (1.0%), and trigger efficiency (1.0%). The tau-identification efficiency uncertainty is estimated to be 6% from an independent study using a tag-and-probe technique [41]. The lepton identification and isolation efficiencies are stable as a function of the number of additional interactions in the bunch crossing in data and in Monte Carlo simulation. The b-tagging efficiency carries an uncertainty of 10%, and the b-mistag rate is accurate to 30% [51]. Uncertainties that contribute to mass spectrum shape variations include the tau (3%), muon (1%), and electron (1% in the barrel region, 2.5% in the endcap region) energy scales. The effect of the uncertainty on the E_{miss} scale, mainly due to pile-up effects, is incorporated by varying the mass spectrum shape as described in the next section.
The various production cross sections and branching fractions for SM and MSSM Higgs bosons and corresponding uncertainties are taken from [52–77]. Theoretical uncertainties on the Higgs production cross sections are included in the SM and the MSSM search. For the SM signal, these uncertainties range from 12 to 30% for gluon fusion, depending on the event category, and 10% for VBF production. The uncertainty for the MSSM signal depends on \(\tan \beta \) and \(m_A \) and ranges from 20 to 25%.

6. Maximum likelihood fit

To search for the presence of a Higgs boson signal in the selected events, we perform a binned maximum likelihood fit to the tau-pair invariant-mass spectrum, \(m_{\tau \tau} \). The fit is performed jointly across the three SM and two MSSM event categories, but independently in the two cases.

Systematic uncertainties are represented by nuisance parameters in the fitting process. We assume log-normal priors for normalization parameters, and Gaussian priors for mass-spectrum shape uncertainties. The uncertainties that affect the shape of the mass spectrum, mainly those corresponding to the energy scales, are represented by nuisance parameters whose variation results in a continuous perturbation of the spectrum shape [78].

7. Results

Figs. 1 and 2 show for the SM and MSSM, respectively, the distributions of the tau-pair mass \(m_{\tau \tau} \) summed over the three search channels, for each category, compared with the background prediction. The background mass distributions show the results of the fit using the background-only hypothesis. The invariant mass spectra for both the MSSM and SM categories show no evidence for the presence of a Higgs boson signal, and we therefore set 95% CL upper bounds on the Higgs boson cross section times the branching fraction into a tau pair. For calculations of exclusion limits, we use the modified frequentist construction CL [79–81]. Theoretical uncertainties on the Higgs boson production cross sections are taken into account as systematic uncertainties in the limit calculations.

7.1. Limits on MSSM Higgs boson production

For the \(m_H^\text{max} \) benchmark scenario as described above, we set a 95% CL upper limit on \(\tan \beta \) as a function of the pseudoscalar Higgs boson mass \(m_A \) from the observed di-tau mass distributions in the b-Tag and non-b-Tag event categories (see Table 4). Signal contributions from h, H, and A production are considered. The mass values of h and H, as well as the ratio between the gluon fusion process and the associated production with b quarks, depend on the value of \(\tan \beta \). To account for this, we perform a scan of \(\tan \beta \) for each mass hypothesis, using the Higgs boson cross sections as a function of \(\tan \beta \) as reported by the LHC Cross Section Working Group [52]. For the gluon-fusion process, these cross sections have been obtained from the GGH@NNLO [56,82,83] and HIGLU [84] programs. For the \(b \bar{b} \to \phi \) process, the four-flavor calculation [85,86] and the five-flavor calculation as implemented in the BBH@NNLO [87] program have been combined using the Santander scheme [88]. Rescaling of the corresponding Yukawa couplings by the MSSM factors calculated with FeynHiggs [89–91] has been applied.

Fig. 3 also shows the region excluded by the LEP experiments [22]. The results reported in this Letter considerably extend the exclusion region of the MSSM parameter space and supersede limits reported by CMS using a smaller data sample collected in 2010 [26].
Fig. 2. Distribution of the tau-pair invariant mass, $m_{\tau\tau}$, in the SM Higgs boson search categories: 0/1-Jet (top row, linear and log vertical scale), VBF (lower left), and Boosted (lower right). The background labeled ‘electroweak’ combines the contribution from W-jets, $Z\to\ell\ell$, and diboson processes.

Table 4
Expected range and observed 95% CL upper limits for $\tan\beta$ as a function of m_A, for the MSSM search.

<table>
<thead>
<tr>
<th>MSSM Higgs m_A [GeV]</th>
<th>Expected $\tan\beta$ limit -2σ</th>
<th>-1σ</th>
<th>Median</th>
<th>$+1\sigma$</th>
<th>$+2\sigma$</th>
<th>Obs. $\tan\beta$ limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>5.19</td>
<td>7.01</td>
<td>8.37</td>
<td>10.6</td>
<td>12.8</td>
<td>12.2</td>
</tr>
<tr>
<td>100</td>
<td>6.49</td>
<td>7.45</td>
<td>8.78</td>
<td>10.8</td>
<td>13.4</td>
<td>11.8</td>
</tr>
<tr>
<td>120</td>
<td>4.50</td>
<td>6.47</td>
<td>8.09</td>
<td>9.89</td>
<td>12.0</td>
<td>9.84</td>
</tr>
<tr>
<td>130</td>
<td>5.37</td>
<td>6.71</td>
<td>7.85</td>
<td>9.69</td>
<td>11.5</td>
<td>9.03</td>
</tr>
<tr>
<td>140</td>
<td>5.62</td>
<td>6.63</td>
<td>7.90</td>
<td>9.69</td>
<td>11.6</td>
<td>8.03</td>
</tr>
<tr>
<td>160</td>
<td>5.57</td>
<td>6.99</td>
<td>8.51</td>
<td>10.4</td>
<td>12.5</td>
<td>7.11</td>
</tr>
<tr>
<td>180</td>
<td>6.75</td>
<td>8.14</td>
<td>9.53</td>
<td>11.3</td>
<td>13.8</td>
<td>7.50</td>
</tr>
<tr>
<td>200</td>
<td>7.84</td>
<td>9.12</td>
<td>10.5</td>
<td>12.8</td>
<td>15.0</td>
<td>8.46</td>
</tr>
<tr>
<td>250</td>
<td>10.3</td>
<td>12.3</td>
<td>13.9</td>
<td>16.8</td>
<td>19.4</td>
<td>13.8</td>
</tr>
<tr>
<td>300</td>
<td>13.5</td>
<td>15.7</td>
<td>18.4</td>
<td>21.4</td>
<td>24.5</td>
<td>20.9</td>
</tr>
<tr>
<td>350</td>
<td>17.7</td>
<td>20.1</td>
<td>23.0</td>
<td>26.9</td>
<td>31.1</td>
<td>29.1</td>
</tr>
<tr>
<td>400</td>
<td>21.9</td>
<td>24.3</td>
<td>27.9</td>
<td>32.4</td>
<td>37.3</td>
<td>37.3</td>
</tr>
<tr>
<td>450</td>
<td>25.0</td>
<td>29.2</td>
<td>33.3</td>
<td>38.8</td>
<td>44.7</td>
<td>45.2</td>
</tr>
<tr>
<td>500</td>
<td>30.3</td>
<td>35.7</td>
<td>40.5</td>
<td>47.1</td>
<td>55.0</td>
<td>51.9</td>
</tr>
</tbody>
</table>

the $e\mu$ final state are used. The observed tau-pair mass spectra reveal no evidence for neutral Higgs boson production. In the SM case we determine a 95% CL upper limit in the mass range of 110–145 GeV on the Higgs boson production cross section. We exclude a Higgs boson with $m_A = 115$ GeV with a production cross section 3.2 times of that predicted by the standard model. In the MSSM
Table 5

Expected range and observed 95% CL upper limits on the cross section, divided by the expected SM Higgs cross section as a function of \(m_A \), for the SM search.

<table>
<thead>
<tr>
<th>SM Higgs</th>
<th>Expected limit</th>
<th>Obs. limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_A) [GeV]</td>
<td>(-2\sigma)</td>
<td>(-1\sigma)</td>
</tr>
<tr>
<td>110</td>
<td>1.83</td>
<td>2.36</td>
</tr>
<tr>
<td>115</td>
<td>1.61</td>
<td>2.13</td>
</tr>
<tr>
<td>120</td>
<td>1.65</td>
<td>2.17</td>
</tr>
<tr>
<td>125</td>
<td>1.75</td>
<td>2.19</td>
</tr>
<tr>
<td>130</td>
<td>1.82</td>
<td>2.37</td>
</tr>
<tr>
<td>135</td>
<td>2.25</td>
<td>2.96</td>
</tr>
<tr>
<td>140</td>
<td>2.39</td>
<td>2.99</td>
</tr>
<tr>
<td>145</td>
<td>3.06</td>
<td>3.97</td>
</tr>
</tbody>
</table>

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA – Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT – Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

K. Banzuzi, A. Korpela, T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

D. Sillou

Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

F. Fassi, D. Mercier

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

D. Lomidze

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

P. Fabbricatore, R. Musenich

INFN Sezione di Genova, Genova, Italy

A. Benaglia a,b,1, F. De Guio a,b, L. Di Matteo a,b, S. Fiorendi a,b, S. Gennai a,b,1, A. Ghezzi a,b, S. Malvezzi a, R.A. Manzoni a,b, A. Martelli a,b, A. Massironi a,b,1, D. Menasce a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, S. Sala a, T. Tabarelli de Fatis a,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

S. Buontempo a, C.A. Carrillo Montoya a,1, N. Cavallo a,25, A. De Cosa a,b, O. Dogangun a,b, F. Fabozzi a,25, A.O.M. Iorio a,1, L. Lista a, M. Merola a,b, P. Paolucci a

a INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli “Federico II”, Napoli, Italy

P. Azzi a, N. Bacchetta a,1, P. Bellan a,b, D. Bisello a,b, A. Branca a, R. Carlin a,b, P. Checchia a, T. Dorigo a, U. Dosselli a, F. Fanzago a, F. Gasparini a,b, U. Gasparini a,b, A. Gozzelino a, K. Kanischchev, S. Lacaprara a,26, I. Lazzizzera a,c, M. Margoni a,b, M. Mazzucato a, A.T. Meneguzzo a,b, M. Nespolo a,1, L. Perrozzi a, N. Pozzobon a,b, P. Ronchese a,b, F. Simonetto a,b, E. Torassa a, M. Tosi a,b,1, S. Vanini a,b, P. Zotto a,b, G. Zumerle a,b

a INFN Sezione di Padova, Padova, Italy
bUniversità di Padova, Padova, Italy
cUniversità di Trento (Trento), Padova, Italy

U. Berzano a, M. Gabusi a,b, S.P. Ratti a,b, C. Riccardi a,b, P. Torre a,b, P. Vitulo a,b

a INFN Sezione di Pavia, Pavia, Italy
bUniversità di Pavia, Pavia, Italy

cScuola Normale Superiore di Pisa, Pisa, Italy

M. Biasini a,b, G.M. Bilei a, B. Caponera a,b, L. Fanò a,b, P. Lariccia a,b, A. Lucaroni a,b,1, G. Mantovani a,b, M. Menichelli a, A. Nappi a,b, F. Romeo a,b, A. Santocchia a,b, S. Taroni a,b,1, M. Valdata a,b

a INFN Sezione di Perugia, Perugia, Italy
bUniversità di Perugia, Perugia, Italy

cScuola Normale Superiore di Pisa, Pisa, Italy

P. Azzurri a,c, G. Bagliesi a, T. Boccali a, G. Broccolo a,c, R. Castaldi a, R.T. D’Agnolo a,c, R. Dell’Orso a, F. Fiori a,b, L. Foà a,c, A. Giassi a, A. Kraan a, F. Ligabue a,c, T. Lomtadze a, L. Martini a,27, A. Messineo a,b, F. Palla a, F. Palmonari a, A. Rizzi, A.T. Serban a, P. Spagnolo a, R. Tenchini a, G. Tonelli a,b,1, A. Venturi a,1, P.G. Verdini a

a INFN Sezione di Pisa, Pisa, Italy
bUniversità di Pisa, Pisa, Italy
cScuola Normale Superiore di Pisa, Pisa, Italy

L. Barone a,b, F. Cavallari a, D. Del Re a,b,1, M. Diemoz a, C. Fanelli, M. Grassi a,1, E. Longo a,b, P. Meridiani a, F. Micheli, S. Nourbakhsh a, G. Organtini a,b, F. Pandolfi a,b, R. Paramatti a,b, S. Rahatlou a,b, M. Sigamani a, L. Soffi

a INFN Sezione di Roma, Roma, Italy
bUniversità di Roma “La Sapienza”, Roma, Italy

cUniversità del Piemonte Orientale (Novara), Torino, Italy

N. Amapane a,b, R. Arcidiacono a,c, S. Argiro a,b, M. Arneodo a,c, C. Biino a, C. Bottà a,b, N. Cartiglia a, R. Castello a,b, M. Costa a,b, N. Demaria a, A. Graziano a,b, C. Mariotti a,1, S. Maselli a, E. Migliore a,b,1, V. Monaco a,b, M. Musich a, M.M. Obertino a,c, N. Pastrone a, M. Pelliccioni a, A. Potenza a,b, A. Romero a,b, M. Ruspa a,c, R. Sacchi a,b, V. Sola a,b, A. Solano a,b, A. Staiano a, A. Vilela Pereira a

a INFN Sezione di Torino, Torino, Italy
bUniversità di Torino, Torino, Italy
cUniversità del Piemonte Orientale (Novara), Torino, Italy