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Abstract

Research on lower extremity prostheses has primarily focused on activities of daily
living, such as walking and running, but has largely overlooked less common activities.
As a result, traditional prosthetic devices are designed for a walking/running gait,
and are difficult to use for other activities. This study aims to take the first steps
to determine if a bionic prosthesis can enable alternate activity modes, not driven
by traditional activities of daily living. Specifically, we aim to modify the BiOM, a
commercial robotic ankle prosthesis, to allow a professional dancer and below-knee
amputee to dance the Rumba. The movements of an able-bodied professional dancer
were quantified and analyzed in order to develop a novel dance control system for
the BiOM. With minimal hardware modifications, a powered prosthetic device was
developed that enables the subject to dance more proficiently than with a traditional
prosthesis.

Thesis Supervisor: Hugh Herr
Title: Principal Research Scientist
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Chapter 1

Introduction

Research on lower extremity prostheses has primarily focused on activitics of daily

living, such as walking and running, but has largely overlooked less common activities

[22, 15, 16, 19, 12]. As a result, traditional prosthetic devices are designed for a walk-

ing/running gait, and are difficult to use for other activities. Prostheses that enable

preference driven activities are important because they showcase the improvement in

mobility as the field of bionics progresses, and give patients the freedom to become

proficient in these activities. This increase in independence and mobility is likely to

improve the quality of life for these individuals [14, 20].

The BiOM, a commercial robotic ankle prosthesis, has been shown to normalize

amputee preferred speed, metabolic cost of transport as well as gait kinetics and

kinematics during walking [3, 9]. However, development has focused on the walking

gait and limited attention has been shown to activities outside of those encountered

during daily living.

This study aims to take the first steps to determine if a bionic prosthesis can

enable alternate activity modes, not driven by traditional activities of daily living.

Specifically, we aim to design a control system for the BiOM to enable the subject, a

professional dancer and below-knee amputee, to dance more proficiently than with a

traditional prosthesis, and on par with an able-bodied counterpart.
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Chapter 2

Materials and Methods

The subject is a professional dancer who underwent a traumatic transtibial amputa-

tion on her left leg roughly 5 months prior to the start of the study.

2.1 Transtibial Prostheses

A transtibial prosthesis attaches to the patient's residual limb in place of a biological

limb. As shown in Fig. 2-1, the patient's residual limb is placed in a custom-fitted

socket and attached via a suspension system. A sleeve suspension is shown. The

sleeve creates an airtight seal between the socket and residual limb, securing the

residual limb in place. A pylon attaches the socket to the prosthetic ankle-foot with

a standardized pyramid connector. A passive ankle-foot prosthesis is shown.

11



Sleeve Suspension

Socket

Pylon

Prosthetic Ankle-Foot a

S

Figure 2-1: A typical transtibial prosthesis. The residual limb is placed in the socket
and the sleeve is used to secure the socket to the residual limb.

2.2 Hardware

The BiOM bionic ankle-foot prosthesis was chosen as a mechanical hardware plat-

form, shown in Fig. 2-2. This is a powered prosthetic device controlled by three

microcontrollers. It contains an ankle angle encoder and inertial measurement unit

(IMU). It has one degree of freedom, allowing 24 degrees of powered ankle plantarflex-

ion via a series elastic actuator. We had access to development tools and source code

which allowed us to modify the BiOM's control system.

The BiOM's three on-board microcontrollers are the State Controller, the Mo-

tor Controller, and the IMU Controller. The State Controller is the main control

board and contains the high-level control software. It communicates with the IMU

Controller and the Motor Controller to read from the BiOM's sensors and issue com-

mands to the motor.

12



I. Battery Holster
2. Male Pyramid connector
3. Upper Battery Holster Hinge
4. Lower Battery Holster Hinge
5. Distal Actuator Attachment
6. Actuator
7. Ankle Attachment Plate
8. Spring Module
9. Ankle Housing
10. Foot Module
I1. Heel Module
12. Hard Stop Assembly
13. Ankle Encoder (not shown,

this component is located
internal to the ankle pivot
joint on the opposite side of
the BiOM depicted in this
figure)

14. Power Button
I5. Power Dual Light Indicator

(green and red)
16. Battery
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(a) Diagram of the BiOM
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rm rs Length

(b) A mechanical model of the
BiOM (c) Photo of the BiOM

Figure 2-2: The BiOM powered prosthesis.
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2.3 Software

The State Controller contains a state machine designed for walking and running
activity modes. The user's gait is broken down into a cycle of five phases, each
corresponding to a state in the state machine. A normal stride causes the state
machine to cycle through these states. The phases, in order, are as follows: Early
Swing, Late Swing, Early Stance, Late Stance, and Late Stance Power. Early Swing
occurs just after the foot comes off the ground, and causes the ankle to move to 0
degrees plantarflexion. Late Swing occurs after a set period of time in Early Swing.
Early Stance occurs on heel strike, and dampens the ankle's plantarflexion. Late
Stance occurs once maximum dorsiflexion is detected. Late Stance Power occurs
just before toe-off, and provides additional plantarflexion torque to propel the user
forward. This control system has been shown to provide metabolic benefit [3].

The IMU Controller reads and processes IMU data from the accelerometer and
gyroscope. It calculates the device's orientation, velocity, and acceleration in space.
This data is provided to the State Controller in real-time.

The Motor Controller provides a high-level interface to the State Controller for
the ankle's motor. It also provides an interface for the angle encoder, giving the
State Controller real-time measurements of flexion angle and calculated applied flex-
ion moment. The Motor Controller also allows the State Controller to specify a
motor control state and control parameters, which determines the motor's output.
Relevant motor states include Impedance Control, where the Motor Controller em-
ulates a spring-damper system, and Trajectory Control, where the Motor Controller
drives the motor to a specified position. The Motor Controller also implements safety
mechanisms to ensure that programming errors in the State Controller cannot cause
a mechanical or electrical failure in the motor.
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2.4 Hardware Modifications

The BiOM and socket system were modified in order to reduce weight and make the
device more ergonomic for dance. The aesthetics of the device were also improved,
which is an important part of dance performances.

The BiOM's battery and power electronics were integrated into a carbon fiber
socket, resulting in a slimmer profile. This prevents the protruding battery holster
from interfering with certain dance steps. The battery holster supports were removed,
and the standard pyramid connector was replaced with a custom low profile socket
connector. The battery was moved closer to the leg's center of rotation, decreasing the
leg's moment of inertia. The finished, fully modified BiOM-socket system is shown
in Fig. 2-3.

Figure 2-3: The fully modified dance BiOM. The battery holster is integrated into
the socket and the pyramid connector has been replaced with a low profile socket
connector.
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2.5 Quantifying the Biomechanics of Professional

Dancers

Biomechanical data was collected from a professional able-bodied dancer performing

several common dance steps. The dance steps were chosen to be representative of
the Rumba style of dance. They are as follows: Basic, Crossovers Double Rock,
Crossovers with Underarm Turn, Open Box, and Slow Cross Swivels. Each dance
step was performed 5 times.

The movement and forces exerted on the dancer's left ankle were measured while
performing the dance steps. A Vicon motion capture system1 and four in-ground force
plates2 were used to collect body position and ground reaction force data. Using a
specialized software package, SIMM3 , the following time series were computed for the
left ankle: height, z acceleration, shank pitch, shank pitch velocity, ankle forward
velocity, ankle forward acceleration, ankle flexion angle, ankle flexion velocity, and
ankle flexion moment. It is only possible to compute the left ankle flexion moment

when the left foot is in contact with a force plate and the right foot is not in contact
with that same force plate. Periods of time where the collected data did not meet
this criteria were removed in post-processing.

These computed values were chosen correspond to the sensor input and motor
output of the BiOM. Height, z acceleration, shank pitch, shank pitch velocity, ankle
forward velocity, ankle forward acceleration, ankle flexion angle, and ankle flexion

velocity are either collected by the BiOM's onboard sensors, or can be computed

from data collected by the sensors. Ankle flexion moment corresponds to the output
of the BiOM's motor.

An arbitrary control scheme can be created and tested using these data. The
controller is given simulated sensor readings as input at each time step, and outputs
a moment value for the motor at that timestep. The controller's predicted motor

1Vicon MX system using T40S cameras (http: //www. vicon. com/)2Two AMTI force plates (http: //www. amti. biz/) and a Bertec fully instrumented treadmill
(http: //bertec. com/) with two integrated force platforms were used.3Software for Interactive Musculoskeletal Modeling (http://www.musculographics. com/)

16



outputs are then compared to the dancer's actual ankle flexion moment and scored by
calculating the root mean squared error (RMSE) and variance accounted for (VAF).
While this setup incorrectly assumes a motor response time delay of zero, it provides
a simple method of testing the viability of fundamentally different control schemes.

2.6 Developing a Data-Driven Biomimetic Con-

troller

Three different control schemes were simulated to model the able-bodied dancer's

ankle behavior during dance.

2.6.1 Machine Learning Approach

It would be desirable to use machine learning techniques to "teach" an algorithm to
control the BiOM. This would result in a completely data-driven controller, unbiased

by preconceptions about biomechanics or dance.

The control scheme can be modeled as a regression problem to be solved using
supervised machine learning techniques. The BiOM's simulated sensor readings at
each time step are used as input feature vectors, and the motor's desired output (ankle
flexion moment) at each time step are used as the target output values to train the
machine learning algorithm.

Artificial neural networks are robust supervised machine learning models. A neu-
ral net contains a network of nodes which are analogous to neurons in a biological
brain. Each node receives inputs from connected "input" nodes and computes an out-
put value according to some function to pass on to connected "output" nodes. The
model is trained by automatically tuning each node's computation function. Neural
nets have been successfully applied to complex tasks such as handwriting recognition

[5, 11] and machine vision [17, 10, 6, 18], and excel at detecting patterns from data
[4, 7, 13]. Neural nets seem well-suited to modeling dancing because of this success

with complex complex pattern-recognition tasks.
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A nonlinear autoregressive neural network was chosen as the machine learning

algorithm. Specifically, MATLAB's narxnet 4 function was used. 10 neural nets were

independently trained and their outputs averaged to reduce the overall model's vari-

ance. The data was segmented into 70% training, 15% validation, and 15% testing

sets independently for each neural nets' training process. The number of nodes in the

neural net is the size of the hidden layer. Hidden layers of sizes of 5, 20, and 50 were

trained and their performance compared.

Leave-one-out cross-validation was used to compare the trained models. Each

dance was trained with a separate instance of the model to validate the machine

learning technique. Of the 5 trials for each dance step, the model was trained on 4

of them and performance was measured on the 5th. This process was performed for

each of the trials, and the results averaged. The metrics for success were root mean

squared error (RMSE) and variance accounted for (VAF).

2.6.2 Parameterized Mechanical Model

A mechanical model of the ankle was developed to gain a deeper understanding of

the physical processes that govern ankle behavior during dance. The ankle flexion

moment was modeled as a spring-damper system, which consists of a spring and

a damping component. The spring component is governed by a stiffness term and

is modeled as a force proportional to displacement from an equilibrium position in

the direction of the equilibrium position. The damping component is governed by
a damping term and is modeled as a force proportional to speed in the opposite

direction of velocity. This is shown in equation 2.1.

Tt = -k(Ot - Oe) - b6t (2.1)

?t is the predicted flexion moment at time t, k is the stiffness coefficient, b is the

damping coefficient, 0, is the equilibrium flexion angle, Ot is the flexion angle at time

t, and Ot is the flexion angular velocity at time t.

4 http://www.mathworks. com/help/nnet/ref/narxnet .html
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The free parameters k, b, and 0e were calculated by minimizing the sum of squared

errors over all timesteps, according to equation 2.2:

min ( -mt (2.2)
k,b,Oe

t

rt is the actual ankle flexion moment at time t.

Leave-one-out cross-validation using RMSE and VAF was used to compare the

mechanical model approach to the neural net approach.

2.6.3 Numerical Analysis - Biomimetic Impedance Approach

A biomimetic impedance model was also developed. This approach is similar to the

mechanical modeling approach, but limits complexity in order to better characterize

ankle behavior. Ankle flexion moment was modeled as a spring with a fixed angular

equilibrium and stiffness. This model breaks down when the ankle flexion speed is

low, so only data with high ankle flexion speed was used. For each dance step, the line

of best fit for ankle angle vs. moment was found. The slope of this line corresponds

to the average stiffness of the ankle and the x-intercept corresponds to the angular

offset for each dance step.

2.7 Biomimetic Controller Design

The biomimetic impedance approach was implemented on the device. The BiOM

was programmed to act as a spring-damper system using this calculated stiffness

coefficient and a small damping coefficient. The BiOM was also programmed to add

power in the plantarflexion direction by increasing the stiffness of the virtual spring

proportionally to the applied moment on the ankle. This is inspired by the BiOM's

walking controller to provide metabolic benefit.

19



2.8 Software Modifications

The biomimetic controller was implemented by modifying the State Controller. The

five-state walking state machine was replaced by a two-state dance state machine (see

Fig. 2-4) with the following states: Stance and Stance Power. The initial state is

Stance. Stance commands the motor to act as a virtual spring-damper system with

fixed stiffness, damping, and offset values. Stance transitions to Stance Power when

plantarflexion speed reaches some experimentally-determined threshold, v1 . Stance

Power, inspired by the BiOM's walking state machine, increases stiffness proportion-

ally to the applied moment on the ankle. This propels the user, taking advantage

of the power provided by the BiOM. Stance Power transitions back to Stance when

plantarflexion speed drops below another experimentally-determined threshold, v 2.

vi > v2 to prevent rapid state changes when plantarflexion velocity is near the state

transition threshold.

> V1

start -+

< V 2

Figure 2-4: The state machine for the dance controller. S is state Stance, and SP
is state Stance Power. 6 is plantarflexion speed, and v, and v 2 are angular velocity
thresholds, where vi > v2 -

20



Chapter 3

Results

3.1 Simulated Performance of Control Schemes

RMSE and VAF of predicted and actual ankle moments at each timestep were used

to compare simulated performance of the control schemes. The neural net with 20

hidden layer nodes performed best on average, accounting for 41.9 percent of the

variance and with an RMSE of 13.4. Full results shown in Table 3.1.

Dance Step

Hidden Layer RMSE 18.1 17.1 14.5 13.4 13.9 15.4
Size = 5 VAF -29.2 23.4 50.7 35.7 61.1 28.3

Neural Nets Hidden Layer RMSE 18.0 13.1 12.8 12.3 10.9 13.4
Size = 20 VAF -27.3 54.0 60.8 46.3 75.6 41.9
Hidden Layer RMSE 26.5 18.3 14.8 16.2 16.7 18.5
Size = 50 VAF -216.6 0.5 48.7 -3.5 35.4 -27.1

Parameterized Mechanical Model RMSE 15.8 18.3 18.7 15.9 11.6 16.1
VAF 4.4 12.8 18.5 12.6 73.8 24.4

Table 3.1: Simulated performance of various controllers. Dance steps A through
E are as follows: Basic, Crossovers Double Rock, Crossovers with Underarm Turn,
Open Box, and Slow Cross Swivels

21
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3.2 Numerical Analysis - Biomimetic Impedance

Approach

Plots of flexion angle vs. flexion moment data points as well as the line of best fit and
confidence bounds for each dance are shown in Figures 3-1, 3-2, 3-3, 3-4, and 3-5. All
plots have a line of best fit with a positive slope and are distributed similarly. Slow
Cross Swivels appears more linear than the rest.

Table 3.2 shows a summary of the stiffnesses and offset equilibrium points of each

dance calculated from these data. All offsets are negative, meaning that the equilib-
rium position is plantarflexed for each dance. The stiffnesses and offsets across all
dances except Slow Cross Swivels are very similar, with Slow Cross Swivels exhibiting

nearly twice the stiffness and half the offset of the others.
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Dance Step I
A B C D E Average

Stiffness (Nm/degree) 0.85 0.79 1.04 1.24 2.17 1.22
Stiffness 95% CI t 0.13 0.09 0.10 t 0.13 + 0.14 -
Offset (degrees) -29.7 -44.1 -33.7 -32.5 -17.0 -31.4

Table 3.2: Stiffness and offset for each dance step from numerical analysis. Dance
steps A through E are as follows: Basic, Crossovers Double Rock, Crossovers with
Underarm Turn, Open Box, and Slow Cross Swivels. Plantarflexion is in the negative
direction.
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Chapter 4

Discussion

4.1 Neural Net

The neural net approach to predicting the motor output did not provide adequate

accuracy to test on the physical device. The neural net with a hidden layer of 20

nodes performed best, but the model still only accounted for 41.9% of the variance,

averaged across the dances.

There are two primary reasons that this approach was unsuccessful. First, there

were relatively few trials on which to train. Each dance trial only contained up to

1400 timesteps, so the neural nets were trained on less than 5600 training inputs

during cross-validation. Due to the complex nature of the ankle movements during

the dance steps, many more trials (and therefore, more training data) are needed

if machine learning techniques are expected to succeed. Second, the feature space

of the model was not optimal. Though some minor filtering and data cleanup was

done, the feature vectors essentially consisted of raw ankle position, velocity, and

acceleration data. With further study, additional features could be engineered to

better characterize ankle behavior.

Neural nets are complex algorithms, and have low "explainability" compared to

other machine learning techniques. Trained neural nets are essentially black-box

predictors. A hypothetical neural net that could perfectly predict motor output for

the ankle would be very useful for solving the specific problem of creating a dance

29



prosthesis, but it would not provide deeper insight into the biomechanics of dancing.

If trained successfully for this task, other machine learning models, such as decision

trees or random forests, would allow introspection into the trained model and provide

insight into feature importance for output prediction.

4.2 Mechanical Model

The mechanical model approach was unsuccessful. This model performed worse than

the best neural net model for all the dances except Basic. This was expected due

to the simplistic nature of the model. It performed much better on the Swivels

dance step than it did on the other steps because this particular dance step involves

relatively little ankle movement.

4.3 Numerical Analysis - Biomimetic Impedance

Approach

The biomimetic impedance approach was implemented instead of the neural net be-

cause it is more reliable than the neural net. If the neural net predicts an incorrect

motor output, the BiOM could plantarflex from 0 to 24 degrees at full power, poten-

tially throwing the subject off balance and causing injury. The biomimetic impedance

approach has a fixed offset and only modulates stiffness in a safe fixed range, pre-

venting such an occurrence.

The ankle offset averaged over all the dances of the able-bodied dancer was cal-

culated to be 32.0 degrees plantarflexed, which is out of the range of the BiOM's

maximum of 24 degrees of plantarflexion. The BiOM's angular offset was set to the

maximum 24 degrees of plantarflexion. The average stiffness was calculated to be

70.3 Nm/s.
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Chapter 5

Conclusion

Qualitatively, the subject's dancing ability improved when using the BiOM's dance

controller compared to her ability while using a traditional prosthesis. The subject

was unable to perform one of the dance steps, Slow Cross Swivels, while wearing a

traditional prosthesis, but was able to perform the step while using the BiOM's dance

controller. This particular move requires multiple pivots ("swivels") on the toe in

succession. The traditional prosthesis does not provide enough clearance, causing the

heel to drag, and making the pivots much more difficult. The subject had no trouble

performing this move with the BiOM's dance controller due to its plantarflexed offset.

The control system was robust enough to allow the subject to complete her first

public dance performance onstage at a live TED talk [8], shown in Fig. 5-1.
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Figure 5-1: A still from the TED talk by Hugh Herr showcasing the dance prosthesis
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Chapter 6

Future Work

6.1 Limitations/Future Work

Several limitations are apparent due to the choice of a commercial powered prosthesis.

The BiOM is heavier than both the biological limb and traditional prostheses. This

reduces the dancer's maneuverability and causes her to expend more energy than she

otherwise would.

More work needs to be done to investigate the additional stresses placed on the

device while dancing. This includes the impact of dancing on battery life, as well as

long-term effects of these mechanical stresses on the lifetime of the motors and other

hardware components of the device. While we did not encounter any stress-based

issues even during multi-hour test sessions, we also did not explicitly measure these

effects.

The BiOM's range of motion is much smaller than that of the biological ankle.

The BiOM provides 24 degrees of plantarflexion and 0 degrees of dorsiflexion, while a

biological ankle can provide 50 degrees of plantarflexion and 20 degrees of dorsiflexion

[1]. This is suitable for the standard walking and running modes of the device.

However, this limitation means that the device cannot fully recreate the movements

of an able-bodied dancer.

Additional sensing capabilities could be used to improve the control system. In

particular, the BiOM contains only intrinsic sensors. Intrinsic sensors, in the context
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of bionics, capture data about the prosthesis itself, while extrinsic sensors capture
data about the environment or user. The BiOM's sensors can determine the spatial
orientation and forces on the device, but do not capture signals directly from the
user. This means the device must infer the intent of the user without direct user
input and react accordingly. The addition of extrinsic sensors could give the user
more direct control of the prosthesis. Members of the Biomechatronics Group are
currently researching augmenting the BiOM's walking activity mode using surface
electromyography (EMG) electrodes to detect muscle contractions in the patient's
residual limb [21, 2]. This same technology could be applied to a dance controller in
order to modulate stiffness.

There are many other specialized controller designs that could augment an am-
putee's ability to perform those activities. The dance controller developed here ex-
ploits the relative simplicity of ankle movement in the Rumba. While this controller
may work for a wider range of dance styles and steps, it is unlikely that the current
controller is the most robust form of dance controller. Further, what other activities
beyond dancing could be enabled with specialized software in a powered prosthetic
platform such as the BiOM?

The current dance control system is not yet viable for widespread use. There
is currently no way to switch between the standard walking activity mode and the
custom dance controller without reprogramming using specialized software. A user-
friendly method to toggle controller modes must be devised to enable widespread use.
More generally, a method of switching between many different activity modes would
be necessary if additional specialized controllers were developed.

6.2 Impact

This study opens the door to quantifying other impactful activity modes, rather than
only activities of daily living. By understanding and quantifying these activities, we
can create prosthetic devices that enable amputees to become more proficient at these
activities.
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The success of this project implies that a powered prosthesis can enable an am-

putee to perform a variety of specialized activities with minimal hardware modifica-

tions to the prosthesis. Ideally, an amputee would be able to use a single robotic

prosthesis with a variety of control systems for each of his preferred activities.
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