
Local versus Global Tables in Minimax Game Search

by

Tana Waanawaroon

Submied to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachuses Institute of Technology

June 2014

©2014 Tana Waanawaroon. All rights reserved.

e author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic copies of this thesis document

in whole and in part in any medium now known or hereaer created.

Author:
Department of Electrical Engineering and Computer Science

May 27, 2014

Certified by:
Prof. Charles E. Leiserson

Professor of Computer Science and Engineering
esis Supervisor

Accepted by:
Prof. Albert R. Meyer

Chairman, Masters of Engineering esis Commiee

Local versus Global Tables in Minimax Game Search

by

Tana Waanawaroon

Submied to the Department of Electrical Engineering and Computer Science
on May 27, 2014 in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Electrical Engineering and Computer Science

Abstract
Minimax Game Search with alpha-beta pruning can utilize heuristic tables in order to prune
more branches and achieve beer performance. e tables can be implemented using dif-
ferent memory models: global tables, worker-local tables and processor-local tables. De-
pending on whether each heuristic table depends on locality in the game tree, a memory
model might be more suitable than others. is thesis describes an experiment that shows
that local tables are generally preferable to global tables for two game heuristics used in
chess-like games: killer move and best move history. e experiment is evidence that local
tables might be useful for multithreaded applications, particularly ones that involve caching
and exhibit locality.

esis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

Acknowledgments

I would like to thank Prof. Charles Leiserson for his continuous support and guidance
throughout the completion of this thesis project. Since the beginning of the project in
the SuperUROP program, he did not only provide useful feedback and advice, but he also
taught me important communication skills and provided me with thoughtful insights about
the world of academia.

I would also like to thank Tim Kaler and I-Ting Angelina Lee for their hours of much-
needed support throughout the beginning phase of the project. Without their help, I would
not be able to get up to speed with the codebase, which lies at the center of this thesis
project, this quickly.

I would like to thank Don Dailey and Prof. Charles Leiserson for the codebase used for
this project, andMIT’s 6.172 staff of the years 2012 and 2013 that polished it until it became
a nice and clean codebase for me to work on. I would also like to thank members of the
Supercomputing Technologies Group at MIT for their help and feedback.

Contents

1 Introduction 9

2 Heuristic Tables and Memory Models 11
2.1 e Case Study: Parallel Minimax Game Search 11
2.2 eree Heuristic Tables . 12
2.3 Reasoning for Local Tables . 15
2.4 Worker-Local versus Processor-Local . 16

3 Experiments 17
3.1 Implementing Local Tables . 17
3.2 Experimental Setup . 18
3.3 Measurements . 19
3.4 Results . 21

4 Conclusion 31
4.1 From the Results . 31
4.2 Future Work . 31

Chapter 1

Introduction

Game-playing programs (Game AIs) that play games like chess can be wrien for multipro-

cessor environments [2]. Most game playing programs use a version of minimax search on

the game tree with alpha-beta pruning, a particularly important technique that eliminates

calculations on unnecessary tree branches [6]. e game tree structure where subtrees of

a position node can be evaluated independently lends itself well to multithreading. Several

chess playing programs that utilize multithreading, like StarTech, ⋆Socrates, and Cilkchess,

all developed by the Supercomputing Technologies Research Group at MIT, have proven

their strength in international computer-chess championships [2].

e most important characteristic of a good game-playing program is the ability to

evaluate game trees quickly, which is contributed to by many factors. One can improve the

evaluation speed of a single node by changing low-level representations and modifying the

algorithms used for computation, or one can increase the number of nodes concurrently

evaluated using parallelization. One can also reduce the amount of work performed to

evaluate a game tree by using alpha-beta pruning.

In order to further utilize alpha-beta pruning and speed up the game playing program,

heuristics come into play. In particular, heuristics are used to achieve beer “move order-

ing,” which allows alpha-beta pruning to prune more branches, thus reducing the amount

of work needed to perform [6].

Heuristics in game playing programs need not be stateless: they might depend on the

9

order of node evaluations. When heuristics are used in a multithreaded game playing pro-

gram, while subtrees of a position node can still be evaluated independently, it might not

benefit as much from the heuristics as its single-threaded counterpart.

Another important characteristic of a good game playing program, especially for mul-

tithreaded ones, is determinism. It is by no means necessary for a multithreaded game

playing program to output the same move across multiple evaluations of the same game

tree, because theremight bemultiplemoves that are equally good. A deterministic program,

however, allows programmers to catch anomalies easier when the program is modified. It is

also easier to ascertain a deterministic program’s correctness. Experiments would become

reproducible and there would be less variance.

Although heuristics help decrease computation time, they provide a source of nonde-

terminism. ey can make the program more dependent on the order of execution across

threads. Consequently, the program is more difficult to debug, and the heuristics’ nonde-

terminism creates another hurdle to making the multithreaded program deterministic.

is thesis project focuses on using different memory models to implement heuristic

tables for a minimax game search application. e purpose is to study how local and global

heuristic tables impact the overall performance of a parallel game-playing program in terms

of the amount of work and the speedup gained in a multiprocessor environment. Perfor-

mance is mainly affected by the tables’ ability to store useful information and generate the

all-important “beta cutoff,” which is the most important factor in reducing the amount of

work needed to perform.

Chapter 2 of this thesis paper describes the game-playing program and the heuristics

used in this study in more detail. It also explains the need for “local” heuristic table and

the two different types of “local” tables. Chapter 3 details the experiments and the mea-

surements used to compare the memory models as well as the results of the experiments.

Chapter 4 concludes with the findings from the experiments.

10

Chapter 2

Heuristic Tables and Memory Models

is thesis project focuses on the impact of “global” versus “local” heuristic tables on par-

allel minimax game search programs. e following sections describe the case study, a

parallel minimax game search program, and explain how heuristics are crucial in their per-

formance. en, different memory models for the heuristic tables, as well as the reasoning

for using them, are discussed.

2.1 e Case Study: Parallel Minimax Game Search

A parallel minimax game search program serves as the case study of this thesis project. It

parallelizes well, and heuristics are analogous to caching. us, this case study might be

able to provide some insight on using different memory models for caching and storing

information in other applications as well.

e program used for all the experiments in this project is a minimax game search

program, parallelized with Cilk, that plays Leiserchess on an 8-by-8 board. Leiserchess is a

chess-like board game similar to Khet, in which there are pieces that act like mirrors. Laser

will bounce off mirrors and may destroy pieces it hits. It shares many characteristics with

chess in terms of gameplay. ose who are interested in the game can read the full set of

rules at http://leiserchess.csail.mit.edu.

e base programwas furnished by DonDailey and Charles Leiserson andwasmodified

11

into a nice, clean piece of code by MIT’s 6.172 staff of the years 2012 and 2013. As part of a

final project, with help from Leo Liu, Ruwen Liu, Patricia Suriana and other 6.172 students

of Fall 2013, the program is modified and optimized into a ready-to-use state.

e program implements the negamax [6] game search, a variant of minimax that is

simpler to implement. It uses parallelized scout search [7] with the young siblings wait

heuristic [4], where the first branch of a position node is searched serially.

While this thesis project focuses primarily on heuristics used in parallelized minimax

game search with alpha-beta pruning, it serves as a case study for parallel applications that

utilize some form of heuristics, especially those that involve caching. Several heuristics

that benefit from local tables in this case study use information from recently computed

information. erefore, other similar applications might benefit from this study.

2.2 eree Heuristic Tables

In alpha-beta pruning, some goodmovesmight generate a beta cutoff, indicating that several

other moves cannot change a position node’s computed score, and therefore need not be

searched. If the children of a position node are ordered in such a way that moves generating

beta cutoffs are searched first—themove ordering is ideal—the amount of searching work is

reduced [6]. e importance is particularly clear in the serial execution of the game playing

program, because a move, which might be pruned, will not be executed until the previous

moves in the move ordering is completely searched.

e codebase utilizes three heuristic tables: the transposition table, the killer move table,

and the best move history table. e first table reduces the amount of required computation

by eliminating evaluations of repeated positions, while the other two tables store data that

help improve the move ordering [4]. While they are all present in the codebase, the laer

two are the focus of this thesis paper.

12

bool tt_is_usable(ttRec_t *tt, int depth, score_t beta) {
// can’t use this record if we are searching at depth higher than the
// depth of this record.
if (tt->quality < depth) {
return false;

}
// otherwise check whether the score falls within the bounds
if ((tt->bound == LOWER) && tt->score >= beta) {
return true;

}
if ((tt->bound == UPPER) && tt->score < beta) {
return true;

}
return false;

}

Figure 2.1: the code snippet for the transposition table that determines whether the stored
score’s quality is sufficient

Transposition Table

e transposition table uses the fact that many nodes in the game tree share the same

board position to eliminate redundant computation. It stores information for the evaluated

tree nodes so that it can be retrieved when necessary.

Assume that the score of subtree T1 has been computed, and the algorithm is about

to compute the score of subtree T2. If the two subtrees’ roots represent the same board

position, the algorithm might skip the evaluation of T2 and take the score from T1 as its

own score. To decide whether the algorithm can use the previously computed score, it must

also consider the depths of T1 and T2. For game trees rooted at the same board position,

trees with greater depth should provide a more accurate score, as it represents looking

further ahead by a greater number of moves. us, each computed score has an associated

quality, the depth of the subtree of which the score is calculated. erefore, the score of T2

can be taken from the previously calculated score of T1 only if the previous score’s quality

is sufficient; that is, when T1 is taller than T2. Otherwise, while the highest scoring move

from T1 cannot be guaranteed to also be the highest scoring move for T2, heuristically that

13

particular move is still a good move, and the program puts it first in the move order.

e transposition table stores the scores of subtrees, indexed by the position represented

at the root of the subtree. For each index, only the score with the highest quality is stored.

Before calculating the score of a position, the algorithm looks up the transposition table.

It either returns the stored score, if it has acceptable quality, or uses the move as the first

move in the move ordering.

Killer Move Table

e killer move table utilizes the fact that the children of a position node represent very

similar board positions, and heuristically a good move from one of those children’s position

might also be a good move for other children and, perhaps, their cousins.

e game tree exhibits some locality: nodes that are next to each other on the same

level of the game tree represent board states that are fairly identical, especially if they are

siblings—they only differ by a few pieces’ position. For this reason, a move that generates

a beta cutoff from one board position is likely to be a good beta-cutoff candidate for nearby

positions as well. e killer move table stores several recent “killer” beta-cutoff moves for

each tree level, and evaluations at the nearby positions in the tree give priority to these

potentially good moves.

Best Move History Table

e best move history table provides a way to order the moves besides those in the two

previous tables. It keeps track of the score for moving different pieces in different ori-

entations to different squares on the board. Once a move is determined to score highest

among all possible moves from a position, the scores in the table are adjusted so that the

highest-scoring move is considered somewhat beer than before.

More precisely, aer the program finds the highest-scoring move from a board position,

14

it gives that move an additive score boost in the best move history table, while other moves

drop their scores by a multiplicative factor.

Using the Tables

When the program considers a position node, if there is a score with acceptable quality

stored in the transposition table, it would not perform any searching on the subtree. It

would instead immediately return the score stored in the table. e amount of work is

clearly reduced in this case, as the work associated with the subtree is eliminated.

Otherwise, all the tables are be used for move ordering, which hopefully gives early beta

cutoff. Among the legal moves from a position node, the one in the transposition table is

first in the order, followed by moves in the killer move table, from the most recently added

to the least recently added. e remaining moves are ordered in descending order of their

scores in the best move history table.

2.3 Reasoning for Local Tables

When the serial game search programwith heuristic tables is parallelized, the simplest thing

to do, and sometimes the right thing to do, is to make the tables global. at is, the tables

are shared by all the processors and workers. Even though a global table eliminates the

need to take care of multiple tables and keep the amount of memory used for the tables the

same as in the serial version, this strategy might introduce data races and cause undesired

behavior to the program. ere are arguments that support the use of global transposition

tables, but a beer solution might be required for the killer move table and the best move

history table.

It seems plausible to implement the transposition table as a global table. e transposi-

tion table is indexed on the exact board position (or rather the hash of the board position,

15

to be technically precise), and the value stored in the table may be useful anywhere else in

the tree for the same board position, especially if the quality of the stored score is sufficient.

e killer move table and the best move history table, however, rely more on the nodes’

position in the tree. For serial executions, the tables’ usefulness relies on the fact that the

tree is searched depth-first, and thus two position nodes that are close by in the order of

traversal would likely represent two fairly similar positions. Unlike the serial execution,

the parallel execution can have multiple workers working on different parts of the tree

representing very different board positions. If the tables are shared among the workers,

the value stored by one worker might not be very useful to another worker. at is, the

reasoning for why these tables help do not apply when the positions can be quite different.

2.4 Worker-Local versus Processor-Local

e Cilk runtime system has many components and levels of abstraction, and it might not

be immediately clear how “local” a local table should be. Cilk schedules the work across

workers, where each worker can use a processor core to process threads, smaller serial parts

of the program. In the context of minimax game search, a thread is too small of a storage

unit for heuristic tables, where the stored information should be useful tomany other nodes.

is thesis project focuses on two kinds of “local” tables: worker-local and processor-

local tables. Specifically, the worker-local heuristic table has a local copy for each worker

that is accessible only by the corresponding worker. Processor-local tables work similarly,

with a local copy for each processor core. e goal is to evaluate the use of both kinds of

local tables for game heuristic tables and compare it against global table versions.

16

Chapter 3

Experiments

In order to see whether local tables are useful in practice, experiments are set up using

heuristic tables with different seings—global versus local. e following sections provide

a description of how these experiments are set and run. en, the results of the experiments

are elaborated.

3.1 Implementing Local Tables

e version of Cilk used, 4.8, does not have full support of worker-local storage. us, for

experimental purposes, the code simulates worker-local tables and processor-local tables

by simply duplicating the storage structure for each worker or processor, respectively.

static move_t killer[MAX_PLY_IN_SEARCH][2];
move_t killer_a = killer[ply][0];
move_t killer_b = killer[ply][1];

static move_t killer[NUM_WORKERS][MAX_PLY_IN_SEARCH][2];
int thread_id = __cilkrts_get_worker_number();
move_t killer_a = killer[thread_id][ply][0];
move_t killer_b = killer[thread_id][ply][1];

Figure 3.1: accessing the killer move table, global (top) and worker local (boom)

For instance, for a game search with 12 workers using worker-local tables, there are 12

killer move tables, one for each worker. In order to determine which of the worker-local

17

tables should be used for each call to the killer move heuristic, the program explicitly asks

Cilk for the worker ID and access the table associated with that ID. Likewise, the version

with processor-local tables asks the system for the processor ID and use the corresponding

table.

3.2 Experimental Setup

e parallelized game-playing program were run on a multiprocessor machine using dif-

ferent seings for heuristic tables—global and local. Experiments were run on a 12-core

Intel®Xeon®X5650 2.67 GHz machine with 46 gigabytes of memory. Its L1, L2 and L3-

cache sizes are 32, 256 and 12288 kilobytes, respectively. Each experiment was run with

1, 2, 4, 6, 8, 10, 12 workers for comparison. Additionally, each experiment was also run

with 18 and 24workers, causing over-subscription—more workers than available cores—for

more insight on the difference, if any, between worker-local and processor-local storage.

For consistency, the experiments were run on the fixed-depth mode instead of the fixed-

time mode also available in the codebase. e program uses iterative deepening: it searches

the game tree incrementally, starting at a small depth and increasing the depth as it goes.

Iterative deepening is a concept that is useful in the fixed-time mode, because it gives the

program a “partial result,” where the program makes a move based on the deepest search it

could performwithin the given time limit. In addition, iterative deepening is also beneficial

to the fixed-depth mode. Searching the tree at a smaller depth gives the program the sense

of what the game tree looks like by storing information in the heuristic tables. At a larger

depth, the information is likely to help prune large subtrees, and this information is not

available if the tree is not searched incrementally. erefore, spending time incrementally

searching the tree can actually help improve performance in the long run [4].

In this thesis paper, because of iterative deepening, when the program is said to perform

18

a “depth-n search,” it actually performs the search on the game tree at all integer depths 1

through n, one aer another. Unless mentioned otherwise, the search begins at the starting

position of the game Leiserchess; that is, the root node of the game tree represents the

game’s starting position.

e experiments were run for different configurations of the killer move table and the

best move history table. Each configuration is described by the type of memory model

(local or global) used by the two heuristic tables, using abbreviations shown below.

GK global killer move table GB global best move history table

WK worker-local killer move table WB worker-local best move history table

PK processor-local killer move table PB processor-local best move history table

3.3 Measurements

It is useful to consider different values measurable from an execution of the game search

program and determine whether they provide any insight regarding the difference between

local and global tables.

Perhaps the most obvious measure is the running time of the program, which is directly

related to the program’s performance in the context of timed competitions. Another mea-

sure is the number of searched nodes in the game tree. e more beta cutoffs the program

can utilize, the smaller the number of nodes visited during the search, and thus the beer

performance. In serial game search programs, it is easy to make this number determinis-

tic, because non-randomized heuristics behave in the exact same way across executions.

Parallel ones, however, might include races, and one missed beta cutoff could require the

program to do an extra search on a deep subtree. us, the number of searched nodes, even

when executing on the same input, can vary significantly.

One might also measure the speed at which the program evaluates nodes, in nodes-per-

second. If the parallel game search program has enough parallelism, however, the speed

19

is relatively constant no maer what particular type of the heuristic tables are used. is

is because the nodes (which one might treat as a thread in an execution graph) carry ap-

proximately the same amount of work. e speed, in nodes-per-second, would scale almost

linearly in the number of workers used, up to the maximum number of cores. It can there-

fore be concluded that the speed is not an interesting parameter to measure to determine

the effectiveness of local versus global heuristic tables.

For the actual program used in this experiment, as shown in Table 3.1, parallelism is

ample for a 12-core machine, resulting in an almost-linear increase of speed in the nodes-

per-second, as shown in Figure 3.2.

depth 9 depth 10
parallelism 51.40 373.66

burdened parallelism 22.44 161.04

Table 3.1: parallelism of the program as measured by Cilkview

...

..

2

.

4

.

6

.

8

.

10

.

12

.
0

.
2
.

4

.

6

.

8

.

10

.

12

.

workers

.

nps speedup

.

. ..GK/GB depth 9

. ..GK/GB depth 10

. ..ideal

Figure 3.2: the speed in nodes-per-second, speedup compared to 1-core

It is important to note that in speculatively parallel game tree search, some of the work

20

is performed “speculatively.” In other words, it might be clear in the serial execution of the

same game tree that a certain subtree need not be evaluated, but that subtree is spawned to

be evaluated in the parallel execution. e unnecessary evaluation might later be aborted

when it has become clear, perhaps when evaluations of other subtrees are finished, that the

subtree in question needs not be evaluated. While this mechanism increases parallelism

and allows all the processors to be utilized efficiently, more work than necessary might be

performed. e amount of extra work is also dependent on particulars of each execution,

especially scheduling, and therefore the running time of multiple evaluations of the same

game tree vary quite significantly.

In order to measure the usefulness of the heuristic tables, the number of searched nodes

seems to be a goodmeasure, because the heuristics are used to decrease the amount of work

needed to perform. Also, as stated earlier, the amount of work per node is nearly constant.

It also follows that the running time would be about as good as a measure, since the speed

in nodes-per-second does not vary by much.

3.4 Results

e parallel minimax game search programwas executed with 1, 2, 4, 6, 8, 10, 12, 18 and 24

Cilk workers using different configurations of heuristic tables, global versus local. Recall

that the experiments were run on a 12-core machine, and the 18-worker and 24-worker

runs were over-subscribed.

Each experiment was repeated six times, and the running time and number of searched

nodes were measured. In the plots, the value shown is the average of the six runs. e

program runs both depth-9 searches and depth-10 searches for comparison.

When the program was run with at most 12 cores, as shown in Figures 3.3 and 3.5, the

number of nodes visited increased approximately 2–6 times compared to the serial version

21

.....
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.
12

.0 .

0.5

.

1

.

1.5

.

2

.

2.5

.

·109

.
workers

.

nodes

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

.....
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.
12

.
1
.

2

.

3

.

4

.
workers

.

speedup

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

Figure 3.3: e number of searched nodes (top) and the running time speedup compared
to the serial version (boom) for depth-9 searches, when using up to 12workers, is shown.
e marks show the average of six runs.

22

.....
2

.
4

.
6

.
8

.
10

.
12

.0 .

0.5

.

1

.

1.5

.

2

.

2.5

.

·109

.
workers

.

nodes

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

.....
2

.
4

.
6

.
8

.
10

.
12

.
1
.

2

.

3

.

4

.
workers

.

speedup

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

Figure 3.4: e number of searched nodes (top) and the running time speedup compared to
the serial version (boom) for depth-9 searches, when using up to 12 workers, is shown.
e marks show the actual values of the six runs, stacked in columns (not shown for 1-
worker). e columns are slightly shied horizontally for clarity; they still represent exactly
2, 4, 6, 8, 10, and 12 workers.

23

.....
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.
12

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

1.2

.

·1010

.
workers

.

nodes

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

.....
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.
12

.
1
.

2

.

3

.

4

.

5

.
workers

.

speedup

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

Figure 3.5: e number of searched nodes (top) and the running time speedup compared to
the serial version (boom) for depth-10 searches, when using up to 12 workers, is shown.
e marks show the average of six runs.

24

.....
2

.
4

.
6

.
8

.
10

.
12

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

1.2

.

·1010

.
workers

.

nodes

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

.....
2

.
4

.
6

.
8

.
10

.
12

.
1
.

2

.

3

.

4

.

5

.
workers

.

speedup

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

Figure 3.6: e number of searched nodes (top) and the running time speedup compared to
the serial version (boom) for depth-10 searches, when using up to 12 workers, is shown.
e marks show the actual values of the six runs, stacked in columns (not shown for 1-
worker). e columns are slightly shied horizontally for clarity; they still represent exactly
2, 4, 6, 8, 10, and 12 workers.

25

.....
0
.

2
.

4
.

6
.

8
.

10
.

12
.

14
.

16
.

18
.

20
.

22
.

24
.0 .

0.5

.

1

.

1.5

.

2

.

2.5

.

·109

..
workers

.

nodes

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

.....
0
.

2
.

4
.

6
.

8
.

10
.

12
.

14
.

16
.

18
.

20
.

22
.

24
.

1
.

2

.

3

.

4

..
workers

.

speedup

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

Figure 3.7: e number of searched nodes (top) and the running time speedup compared
to the serial version (boom) for depth-9 searches, when using up to 24workers, is shown.
e marks show the average of six runs.

26

.....
0
.

2
.

4
.

6
.

8
.

10
.

12
.

14
.

16
.

18
.

20
.

22
.

24
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

1.2

.

·1010

..
workers

.

nodes

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

.....
0
.

2
.

4
.

6
.

8
.

10
.

12
.

14
.

16
.

18
.

20
.

22
.

24
.

1
.

2

.

3

.

4

.

5

..
workers

.

speedup

.

. ..GK/GB

. ..GK/WB

. ..GK/PB

. ..WK/GB

. ..WK/WB

. ..WK/PB

. ..PK/GB

. ..PK/WB

. ..PK/PB

Figure 3.8: e number of searched nodes (top) and the running time speedup compared to
the serial version (boom) for depth-10 searches, when using up to 24 workers, is shown.
e marks show the average of six runs.

27

on both depth-9 and depth-10 searches. Also, on 12 cores, oen below 3× speedup was

achieved. e fact that the speedup was well below the ideal linear speedup is predictable,

since the amount of speculative work performed increases with the number of workers.

Considering the impact of the local heuristic tables on the performance, the argument

for using local tables mentioned earlier is supported by the results shown in the figures.

Perhaps the most obvious observation one might make from the plots is that using a global

killer move table seems to be a bad idea. Executions with a global killer move table, re-

gardless of what the best move history table uses, search more nodes and have relatively

small speedup when compared to other killer move table configurations. e difference in

performance becomes the clearest when the number of workers is large. Also, most oen

the GK/GB configuration performs the worst.

e trend also applies for best move history tables; executions with a global best move

history table usually obtains smaller speedup and searches through more nodes. However,

the impact might not be as evident as that of the killer move table.

It is more difficult to be conclusive about the difference between the two variants of

local tables: worker-local and processor-local. e best move history table, most of the

time, performs slightly beer when it is worker-local as opposed to processor-local. Not

much can be said about the effect of the two local table variants on the killer move table.

e effect of the local table is much stronger on the killer move heuristic. It can provide

as much as 40 percent speedup compared to the global table version. For the best move

history table, the speedup obtained from using a local table is oen below 10 percent.

In the case where more than 12 workers are used on a 12-core machine, the number

of searched nodes still increases at the same rate, as shown in Figures 3.7 and 3.8. e

speedup drops aer 12 workers, however, because the computational speed in nodes-per-

second is capped at 12 workers: no more than 12 workers at a time can actually perform

computation. Additional context switching might also contribute to the speedup decline.

28

e trends seen in the case of 12 workers or less also apply when over-subscription

occurs. e global killer move table still produces a big gap from its local counterparts in

terms of the node count and the running time. e worker-local and the processor-local

versions of the heuristic tables do not outperform each other significantly. is might be

because both worker-local and processor-local tables have different disadvantages when

running with more than 12 workers. Each worker in the worker-local table version is

responsible for a smaller part of the tree, and therefore has less information that goes into

the heuristic tables. On the other hand, context switching might render the information

stored in the tables useless in the processor-local version.

29

30

Chapter 4

Conclusion

e results show that using global versus local heuristic tables affects performance. e

following sections give a conclusion of the experimental results and outline some potential

future work that can provide more insight for global versus local heuristic tables.

4.1 From the Results

For cache-like heuristics that rely on information recently computed or utilize locality, local

versions appear to be a good choice of implementation. In the game context, the killer

move table shows a clear performance improvement with either the worker-local or the

processor-local version. Some improvement, although not as obvious, is seenwhen used for

the best move history table. e distinction between the two local variants are not entirely

clear, regardless of whether the number of workers exceed the number of processor cores.

Some future work might be required to find the environment in which the performance of

the two versions differ greatly.

4.2 Future Work

For experimental purposes, one might try to generalize the parameters used in this project.

First, it would be interesting to see how local tables can be used for heuristics with locks.

31

Although locks make the program less parallel and lock contention can cause the program

to decrease performance, it reduces the chance that the heuristic tables have data races

and contain corrupted, useless information. Using local tables reduces the amount of con-

tention. Introducing locks might not affect worker-local tables as much as processor-local

tables, and therefore this experiment might help distinguish the performances of the two

memory models.

It is also possible to experiment evaluating different game trees, particularly trees rooted

at mid-game and end-game positions, and see whether the distance to the leaves affects the

heuristics. Also, a natural extension is to work on different games, e.g., chess, and other

applications utilizing tree search. e game heuristics act somewhat like caches, which

could be useful in a different context.

32

Bibliography

[1] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations

by work stealing. Journal of the ACM, 46(5):720–748, September 1999.

[2] Don Dailey and Charles E. Leiserson. Using Cilk to write multiprocessor chess pro-

grams. e Journal of the International Computer Chess Association, 2002.

[3] Rainer Feldmann. Computer chess: Algorithms and heuristics for a deep look into the

future. In SOFSEM’97: eory and Practice of Informatics, pages 1–18. Springer, 1997.

[4] Rainer Feldmann, Burkhard Monien, and Peter Mysliwietz. Game tree search on a mas-

sively parallel system. 1994.

[5] Maeo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Reducers

and other cilk++ hyperobjects. In Proceedings of the Twenty-first Annual Symposium on

Parallelism in Algorithms and Architectures, SPAA ’09, pages 79–90, New York, NY,

USA, 2009. ACM.

[6] Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning. Artificial

Intelligence, 6(4):293–326, 1976.

[7] Judea Pearl. Asymptotic properties of minimax trees and game-searching procedures.

Artificial Intelligence, 14(2):113–138, 1980.

33

