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Abstract

Given the recent success of hand pose gesture recognition via wrist-worn camera
based sensors, specific hand pose interaction evaluation is needed. In order to evalu-
ate such interactions, we built EMGRIE: a quick-prototype wrist-worn vision-based
gesture recognition system that applies necessary feature extraction and training data
collection techniques to facilitate user customization of specific hand pose gestures.
We use EMGRIE to extract differences in microgesture task times, perceived effort,
and perceived command associations across users, gestures, gesture performance it-
erations, and various applications. This thesis gives a summary of past wrist-worn
gesture recognition systems and past gestural application design research, EMGRIE
system implementation details and differences, free-hand microgesture choice rational,
and sample case studies concerning Google Glass appliciation design and associated
usability experimentation. Given the results of our system and application experi-
mentation, we find that specific hand pose gesture preferences may change drastically
between users and propose hypotheses concerning hand pose usability.

Thesis Supervisor: Joseph Paradiso
Title: Associate Professor
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Chapter 1

Introduction

In this manuscript, we present a novel methodology for microgesture recognition

(small movements of the fingers and thumb), several applications designed for micro-

gesture input, and usability experimentation examining task times, perceived effort,

and fit-to-function. We give a summary describing past research in microgesture

recognition and application design, a rationale for the microgestures we chose to ex-

plore, and a summary describing hypotheses that future research should explore.

1.1 Motivations for Microgesture Study

We believe that ubiquitous gestural user interfaces requiring large movements of the

whole arm and shoulder, while powerful, do not reach full potential in gestural ap-

plication usability. These interfaces require considerable volume and can quickly tire

users (commonly referred to as "gorilla arm" [1]). In public settings, hand waving

in the space in front of the user can be social awkward and consuming of personal

space (eg. such gestural interfaces may be difficult to use while on a crowded train

or when out for a walk). Hence, we believe that gestural user interfaces will even-

tually move away from the space directly front of the user's chest to the relatively

physically small, immediate, free-hand space down by the user's side or in the user's

lap. We will see that this gesture space requires little effort, provides potential for

intuitive fit-to-function, and is efficient. In the past, most work in gestural applica-

17



tion design and sensor framework construction centers around gesture requiring large

movements, whereas only few robust systems designed for small movement recognition

gained notoriety. We believe that such systems did not possess feasible form factors,

or present useful applications, to warrant proper attention. In this manuscript, we

argue that despite limitations in form factor, usability experimentation results are

needed in the space of microgesture and associated usability, since the physical hand

wave required will soon shrink in size and footprint enough to make microgestural

applications practical.

1.2 Overview of Microgesture Study

When studying microgestures, we were faced with limitations in our choices of possible

gestures, sensing modalities, and application design.

1.2.1 Utilized Technologies

Many past microgesture recognition systems use computer vision and Time of Flight

(TOF) sensors to extract information needed to determine hand pose, and we agree

that such sensors are powerful allies in microgesture recognition. PMD Technologies

produces an off-the-shelf small TOF sensor, for which we constructed a wristband to

hold sensor.

In order to leverage the vision sensor in detecting finger to thumb taps, we uti-

lized a microphone pressed against the wrist to detect bone vibrations created by

microgestures.

Given the data provided by these sensors, we use open-source machine learning

software to help build a pipeline in which data is collected, preprocessed, and produced

in a format that a classifier can easily interpret.

18



1.2.2 Target Gestures

Since our sensor is positioned on the inside of the wrist, it cannot detect all possible

hand positions. This restricts our study to microgestures that require a line of sight

from the inside of the wrist - we will provide a summary of past research explorations

of hand pose concerning this limitation and offer our own interpretation of possible

microgesture categories.

1.2.3 Experimental Applications

After examining possible useful microgestures and constructing a robust method for

detection, we designed and tested several applications.

Text Entry

Individuals will still be texting on the next generation of computer platforms, although

with smarter context engines, texting will probably not be as limiting as it is now.

Accordingly, the first application we examined closely was methods for text input.

There are many different characters and hence many possible commands, causing

many inherent trade-offs in application design. Nonetheless, we find text entry not

requiring a keyboard or panel of buttons to be intriguing and potentially powerful.

Tidmarsh Focus Selection

More likely to be adopted than text entry modalities, we believe interaction with data

visualization and focus selection (or "alternative choices") applications will leverage

interfaces based on microgestures. In this case, we adopted the Responsive Envi-

ronments Tidmarsh project's [2] Unity [3] build to produce a case study concerning

on-site interaction and data navigation within a highly instrumented natural outdoor

setting.
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Chapter 2

Related Work

In this section, we will give brief summaries describing past research in a number of

related multi-disciplinary areas.

2.1 Wrist Worn Devices

There are a number of wrist worn devices used for gesture recognition that are worth

mentioning.

2.1.1 Digits

Microsoft Digits [16] is a wrist-worn system designed for extracting hand pose, and

is functionally equivalent to the system described in this manuscript. However, there

are extremely important differences. Digits was designed from the ground up with

the objective of building a virtual model of the hand through estimating all joint

angles found in the hand, and the in-article goes on to test the level of accuracy

behind the system. Our system was built from the ground up only to extract ges-

ture classification labels, and hence utilizes a simplified methodology to extract only

gesture classifications in order to quickly examine usability aspects of an application

and interface.

We hypothesize that our system uses less processing power to extract gesture,

21



but is inherently less powerful than extracting a full virtual model of the hand. In

Chapter 4, we will further explore the benefits and trade-offs of our methodology for

extracting gesture classifications.

2.1.2 The Image-Based Data Glove

Both the Image-Based Data Glove [26] and Sixth Sense [23] use finger tags and an

RGB camera to extract hand pose. There are many other similar systems that use

finger tags, and we feel that such research developed needed interest in the area. The

Image-Based Data Glove's camera location is equivalent to Digits (on the inside of

the wrist) and Sixth Sense's camera worn around the neck. In terms of usability,

systems requiring fingertip tags may be cumbersome for the user to attach or wear

when the user wants to use the system.

2.1.3 RFID rings

A non-vision methodology described by Bainbridge [6] uses RFID ring tags and a

wrist reader module to detect the finger distances. As the study by Bainbridge

clearly demonstrates, we find that non-vision methodologies such as [6] could be

easily leveraged with vision based systems and result in a powerful gesture recognizer.

Vision systems require line-of-sight and are not accurate when determining minute

contact differences, so sensing modalities such as RFID may improve shortcomings in

many areas.

2.1.4 AirTouch

The AirTouch system [18] utilizes synchronized tactile feedback as well as a vision-

based gesture recognizer. The system is situated on the wrist with the camera pointed

directly normal to the wrist where the other hand can input gestures. In order to

confirm gestures, the hand with the wristband performs a gesture which vibration

sensors on the wristband can detect. This solves the 'gesture-spotting' problem: the

design prevents true negatives, as in the system does not detect gestures when the

22



user 'accidentally' performs them. We discuss this problem in detail in Chapter 3.

In all, AirTouch is another good example of using alternate sensing modalities to

improve small gesture recognition.

2.1.5 Light Glove, Wrist Cam, and other gesture watches

The Light Glove [14], Wrist Cam [32], PinchWatch [20], GestureWrist and GesturePad

[27], and Gesture Watch [17] are all vision based systems. The systems mentioned

are limited in the number of gestures they can detect. Specifically, the PinchWatch,

GestureWrist, and Gesture Watch require large movements of one or both hands to

satisfy the line-of-sight requirement inherent in vision systems. The Light Glove and

Wrist Cam are designed only to detect one dimensional movements of the index,

middle, ring, and pinky fingers. Many of these systems can be modified to improve

upon these limitations, and we demonstrate such possibilities in Chapter 4 in our own

implementation.

2.2 Gesture Usability Studies

The main goal to developing a microgesture recognition system was to explore pos-

sibilities of a universal microgesture language for wrist-worn sensing modalities. In

order to explore, we experimented with usability aspects such as task times, effort

perception, and fit-to-function perception. The following studies offer guidance on

how to conduct such explorations.

2.2.1 Stern et al.

In the article by Stern [31], the authors present a case study that tests a number of

gestures against a number of possible actions those gestures represent. The user is

asked to rate the association between the gesture and action, as well as the effort

required to perform the gesture. We take a similar approach to our own experimen-

tation, but do not test all gesture to action combinations. The gestures examined in
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[31] do not align with the microgestures we are interested in.

2.2.2 Nielson et al.

The article by Nielson [25] presents a methodology for designing gestural applications.

We follow many similar steps, but decided to primarily focus on task times, effort, and

fit-to-function when exploring usability and benchmarking. We explain our intuition

in choosing microgestures for applications, and much of our thought process stems

from the process described in [25].

2.2.3 Task Times

Reporting task times can be difficult. In past studies, it has been found that all task

times are skewed in the positive direction and are not distributed normally. In the

article by Sauro [28], it is clear that the geometric mean of the task time over users

is the best way to compare averages. Through ad-hoc comparison tests in Chapter 5,

we use statistical packages to compare such task time data sets through the geometric

mean, as well as many other factors (median, variance, etc).

2.3 Sign Language Tracking

In the paper by Starner[30], the authors describe a method for detecting sign-language

based hand gestures through hidden Markov models. While this is very useful, sign-

language gestures were designed for the line-of-sight to extend away from the user.

For someone to see communication clearly, gestures must be located our in front of

the users. In our case, we are studying microgesture from the perspective of the

wrist. We can use sign-language and methods to recognize gestures as examples, but

we should apply designed gestural application solutions to the microgesture space.
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2.4 Skinput, Fingerpads

Some interesting applicable multi-modal user interfaces are FingerPad [9] and SkinPut

[13]. FingerPad uses magnetic sensing to detect minute movements between the

thumb and index finger and can track the relative position of the thumb on millimeter

scale. SkinPut detects vibrations the arm makes when struck with the opposite hand's

index finger. Both of these system are wearable devices, but do not capture a gesture

space as large as the hand pose. Nonetheless, they are very interesting user interface

modalities that can be used in conjunction with a hand pose gesture recognition

system.

2.5 Interactive Machine Learning

Interactive Machine Learning is a relatively new research space that studies how

the human reacts to a machine learning user interface system and changes his/her

input. For instance, if the user performs a gesture that is misclassified, he or she can

alter their performance until they find that the system correctly classifies the gesture.

Caramiaux touches on this in his paper Machine Learning of Musical Gestures [8]

and Merrill examines such effects extensively in FlexiGesture [22]. Learnability is a

usability aspect that is mainly mentioned in our Future Work section, but we do test

for learnability on a short scale through task times experimentation and do a pilot

study with an expert user over a series of weeks.

25



26



Chapter 3

Gesture Choice and Hand Pose

Discretization

3.1 Sensable, Functional, Desirable

In the discussion by Benford [7], the authors explore various design constraints for

building applications with multi-modal input capabilities. The authors state that

input methods must be sensable by the technology involved, functional (intuitive and

sensical) and appropriate to the given the application parameters, but also desirable

to the user. Each of these constraints is applicable to the design of microgestural

applications. The gestures involved must be sensable by the camera or other sensors

on the wrist band (microphone, gyroscope, etc). In this case, most all microgestures

must satisfy the line-of-sight requirement and/or be noticeable by the gyroscope or

microphone. For example, lateral movements of the fingers when the fingers and palm

are flat are not recognized, because the movements are not in the camera's line of

sight. Given the specific application, gestures must be intuitive and have good fit-to-

function - in Chapter 7, we will see how gestures should relate to a specified action.

Finally, microgestures should be easy (desirable to the user). Certain hand positions

are more difficult for others, thus not as desirable as an input modality. We must

keep each of these constraints in mind when exploring which possible hand poses to

use in applications.
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3.2 Hand Pose Categories

In the study by Wolf [33], non-free hand gestures were explored by discretizing the

set of all possible gestures in simple and intuitive categories. In order to follow a

similar methodology to [33] we attempt to discretize all sets of possible free-hand

pose into simple categories as well. While following the physical constraints set by

extensive studies in the Grasping Hand [15] and line-of-sight constraints imposed by

the wrist-worn sensor, we believe the space should divide into 5 categories: finger

lifts and finger extends, finger curls, thumb to finger touch, external surface finger

touch, and adjacent finger open/close gap categories. The categories stem from past

studies and clear physical dimensions in which the thumb and fingers move. In all

cases, we define a microgesture motion as originating from a base hand pose (the

shape the hand takes when one lets their arm and hand hang loose by their side) to

forming the defined hand pose, and then moving back to the base gesture. In the

base pose, we found that that the fingers naturally curve towards the normal of the

palm and the thumb comes over the palm towards the index finger to varying degrees

over individuals. Since this hand pose requires no conscious movement or energy, the

base gesture represents the easiest hand pose possible. For each category, we will

discuss the movement required to move from the base position to perform the static

or dynamic gesture. Our goal is to explore the set of design principles and constraints

for classifying microgestures and therefore aid application development. Throughout

the next sections, figures detail each microgesture category. Pictures of microgestures

were taken from similar perspectives of a wrist-worn camera.

3.2.1 Finger lift and extend

To perform a lift or extend, the user must first very slightly move the thumb to the

right side of the palm. This allows the sensor to have a clear view of fingers and gives

each finger full range of motion. The distance the thumb needs to move varies over

user-unique base positions. The thumb should remain extended and not curled. This

thumb motion applies to the other categories except for thumb to finger touch. While
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Figure 3-1: The index lift. The MP joint bends the most, where the other joints in
the finger remain loose. The pinky, ring, and middle lift are not shown for brevity.

this thumb motion may be fatiguing, it is necessary in this setting. The WristCam

study [32] and light glove [14] focus on this gesture.

When the fingers have full range of motion, the user flexes the defined finger to-

wards the normal of the palm (lift) or away from the normal of the palm (extend)

such that the finger only bends at the first joint (MP joint) (Figures 3-1 and 3-2).

All other joints in the finger remain naturally loose. We found that it is common to

move the index and middle fingers independently, allowing for discrete hand poses.

Movement of the ring and pinky fingers is not independent, yet both can move inde-

pendently of the index and middle fingers. While it is possible for gesture recognition

to detect movement differences between the ring and pinky, large deviations between

the ring and pinky vary in comfort over individual. The distance the finger bends

depends on what is comfortable for the user (about 15 - 40 degrees in either direction

from the base pose). For instance, a hand pose may involve the middle finger lifted

while all other fingers are left in their base position or a hand pose where all fingers

are completely extended such that the hand is flat.
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Figure 3-2: The index extend. The MP joint bends the most, where the other joints
in the finger remain loose. The pinky, ring, and middle extend are not shown for
brevity.

When fingers lift, they naturally come closer together such that adjacent finger

sides often touch. When this occurs, the gesture also falls under the closed gap

category. The user must take precaution to counteract this natural occurrence and

slightly increase separation between fingers. For instance, it is very difficult to lift

all fingers and maintain clear separation between them. Due to this limitation, the

difficulty level of finger lifts is larger than that of finger extensions. However, ex-

tensions often invoke a reflex: when the index finger extends the middle finger may

lift to counteract the motion of the index. This reflex can be suppressed easily, but

increases the cognitive load of the extension gesture.

The second limitation involves the complexity of finger lift/extension combina-

tions. Each of the 3 finger sections (pinky/ring pair, middle, and index) can presume

3 discrete states (lifted, base, and extended). The lifted and extended states require

conscious movement and therefore increase the difficulty of pose. While there are 27

various possible gesture poses, it is clear that only 6-8 of those poses has minimal
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cognitive load: 1 or 2 fingers extended or lifted at one time.

We believe that discretizing the position of a single finger into 3 states is most

beneficial to the user. Rather than consciously adjusting the level of movement re-

quired to match one of 4 or more possible states of finger position, the user simply

decides which direction in which to move from the base position and applies a com-

fortable burst of movement. We aim for gestural interaction to be as consistent as

possible to common user interfaces while maintaining simplicity: this discretization

implies that there are two imaginary buttons on the topside and undersides of the

finger. We leave side to side motion of the fingers to the adjacent finger closed/open

gap category. Finger lifts and extends can also be used for non-discrete modes of

interaction, such as sliders.

3.2.2 Finger curls

A finger curl involves all joints of the finger to bend (Figure 3-3). Unfortunately, this

involves relatively more intense strength applied to all parts of the finger as opposed

to the finger lift. The smaller joints increase the dexterity of the finger yet do not

yield without noticeable strain. While the fingers can curl independently of each

other, the user will notice increased discomfort after repetition and maintaining pose

for long amounts of time.

There are many different positions a curled finger can assume. However, we de-

cide to group all positions of a curled finger into one gesture to decrease performance

difficulty level. The level of difficulty involved in performing a specific finger curl will

only increase by discretizing a finger curl into 2 or more curl positions. We hypoth-

esize that the curl gestures will not prove useful given hypothesized undesirability.

However, the index curl, or common trigger motion, may prove useful for various

applications.

31



Figure 3-3: The index curl.

3.2.3 Thumb to finger touches and pinches

Thumb to finger touch gestures encompass the entire space of tapping and sliding the

thumb over a single finger or multiple fingers. In general, thumb to finger touches

are easy to perform. The base gesture naturally draws the thumb over the middle

of the palm and decreases the amount of energy required to move the thumb toward

a finger. While these gestures are easy to perform, there are only select ways to

discretize motions of the thumb touching a finger.

The thumb can tap the finger in many different areas. It is possible to discretize

each finger into three areas in which the thumb can tap: the fingertip (third phalanx),

the second phalanx, and the first phalanx. Difficulties of which phalanx to tap by

the thumb varies over individual. The fingertip tap may prove to be one of the most

natural and intuitive forms of discrete microinteraction. With this design, there are

twelve total possible discrete gestures in which the thumb can touch the finger.

The thumb may want to slide between two different areas on one finger or two

different fingers. This gesture allows for continuous interaction, effectively allowing
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Figure 3-4: The middle pinch.

Figure 3-5: The middle thumb middle phalanx touch.
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Figure 3-6: The index external touch.

the thumb to draw on or across fingers. While thumb drawing is a very powerful

mode of interaction, there are only select on-the-go cases where continuous modes of

interaction apply. The second limitation involves the difficultly to thumb draw over

areas close to the palm, limiting the range of user experience.

3.2.4 External surface finger touches

When the hand is resting or hanging naturally, an external surface is often not far

away. For instance, the side of the leg is on the palm side of a hanging hand. A

table top is often on the palm side of a resting hand. The hand and wrist must move

such that the fingers are close enough to the surface to touch. If on a tabletop, the

wrist must elevate to allow the sensor a view of the fingers and tabletop. Apart from

the wrist and hand movement limitations, the finger to external surface touch adds

another useful set of discrete gestures.

Depending on the quality level of data processing and the smoothness of the

surface, various continuous areas of the surface may be drawn on or tapped. To
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Figure 3-7: The index middle ring external touch.

draw, the finger must curl to access other areas as opposed to moving the whole

hand or wrist. The sensor position is relative the wrist, and cannot track its own

relative position to an external smooth surface to allow static hand pose drawing. In

future works, additional sensing technology may help solve this issue. Since the finger

must often hold uncomfortable positions to access other areas of the external surface,

we currently emphasize discrete finger taps as the most prominent mode of external

surface interaction.

3.2.5 Closed/Open gap gestures

We have the ability to exhibit lateral motion in our fingers at the MP joint. We

can extend this motion to create the last category: gestures that involve side to side

finger touches. Difficulties of various lateral movements the fingers perform varies

over individuals. There are 8 discrete finger side touch gestures (3 gaps, each with 2

possible states, closed or open). Depending on level of dexterity in the hand, users

may experience various levels of performance difficulties.
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Figure 3-8: The index middle together gesture

We found that the extreme version of the closed gap gesture (adjacent fingers

crossed) is extremely difficult to produce as well as detect. Given the level of difficulty,

it is clear that the fingers crossed gesture should not be used in an application.

3.3 Continuous Interaction vs Static Hand Pose

In the previous sections, we often discussed continuous interactions analogous to the

discrete hand positions of each category. Given the parameters of the application, the

continuous mode of interaction may be quite useful. In the case of sliders (volume

sliders, page sliders), thumb to finger touch sliding is a clean way to mimic manipu-

lating a scroller or slider. These modes of interaction are easily available in the hand

and may prove very powerful in certain application designs. Chapter 7 gives a very

good example!
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Figure 3-9: The index middle together ring lift gesture

3.4 Combinations

To increase the power of an application through increasing the number of possible

gestures to recognize, the mentioned categories may be used in conjunction with one

another. For instance, the user can close the gap between the index and middle

fingers and lift the ring finger. We define this gesture as index middle together ring

lift, and use the formula Specifier+Category+Specifier+Category+... to describe

the entire gesture combination, where Specifier describes the fingers involved in the

gesture and Category describes the action they take in correspondence with the

categories mentioned.

3.5 Gesture Spotting

Gesture spotting is the ability of the system to pick out gestures from a continuous

stream of data or movement. Many experts are skeptical of gestural user interfaces,

as gestures are so natural and common that systems may confuse any movement as
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input and register a true negative (a gesture that was not meant to be an input). Plus,

for some gestural vocabulary, it may be much faster to transition directly between

active gestures rather than forcing a return to the base gesture. We argue that this

problem should be solved at the application level: a gesture that is not natural should

be used to tell system to start recognizing all gestures used with the application. This

way, users can specify their own preference for which gesture they find suitable as a

"start" gesture and no true negatives will hinder usability. We suggest a combination

gesture as a "start" gesture, such as index middle together ring lift, as an unusual

yet easy to perform gesture fits the requirements. The system may also be activated

by a deliberate, non-finger gesture; eg. tapping or scratching the sensor wristband.

This may save significant power, as the camera will only be activated when gesture

capture is engaged.
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Microgesture Classes

Finger Lift

Finger Extend

Finger Curl

Graphic Description

Bend the finger at the MP
joint towards the center of
the palm.

Straighten the finger at the
MP joint to point away from
the palm.

Bend all joints in the fin-
ger arbitrarily towards the
palm.

Finger Pinch Touch the thumb and fin-
ger together at specified
locations.

External Surface Touch

Closed Gap Touch

Touch the specified finger
against any surface.

Press the specified fingers
together.

Table 3.1: We describe each category here for convenience. Each category has contin-
uous microgesture analogs and can be used in combination with each other to yield
more complicated microgestures. 39
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Chapter 4

System Implementation

Since the main focus of this manuscript was the explore the usability of hand pose

microgestural interaction, the software implementation involved is very straightfor-

ward. We have deemed the system EMGRIE (Ergonomic Microgesture Recognition

and Interaction Evaluation). It primarily uses open-source software and off-the-shelf

hardware. Applications were designed first by deciding which gestures were to be rec-

ognized, then implementing only the computer vision techniques needed to extract

those features for a bag-of-words machine learning model, and finally then building

the data sets in which to use for gesture classification. Once this pipeline was ini-

tially constructed, we found that it was very simple to upgrade, remove, and add

new components in order to make changes to how gestures were ultimately classified.

While our system does not recognize all possible hand positions currently, develop-

ers can easily modify the bag-of-words model inherent in the software to include the

features needed for target gestures. We argue that in the low-power context of wear-

able electronics, additional computation for additional gesture classification should be

optional or application specific. Overall, computation should be power-optimal and

running on customized hardware. The bag-of-words model is suited for such cases.

At our 50 frames per second, the camera we currently use consumes 200-400 mA,

which is prohibitively high for frequent mobile use. Again, we present this system

as an early incarnation. Power will decrease as this technology becomes tailored for

mobile applications [29].
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Figure 4-1: The PMD camera inside the wrist mount.

Figure 4-2: The EMGRIE system attached to a user's wrist.
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Figure 4-3: Image A shows the raw amplitude image returned by the TOF camera.
B shows the thresholded image, and C shows the vertical edges returned by the Sobel
derivative filter in the horizontal direction.

4.1 Computer Vision Feature Extraction

The Time of Flight camera used was the PMD Technologies CamBoard Nano (figure

4-1). Note that, although it can be easily wrist-worn, this camera is large for this

application. The camera design, however, was made to be generic and work at longer

ranges - a range camera designed for this limited application should be able to grow

significantly smaller. The camera allows the developer to set the 'integration' time,

which specifies the amount of time the camera waits to receive infrared light from

the foreground. We found that by setting the integration time to be less than the

default allowed objects beyond the fingers to not be included in the gray scale image

and improved the performance of the computer vision pipeline by about 50 percent.

The image returned by the camera is a gray scale image in the form of an array of

32-bit float values from 0 to 1. Values closer to 1 represent areas in the image closer

to the camera and values closer to 0 represent areas further away.

To manipulate the image during processing, we use OpenCV. To alleviate noise

in the image, we first conduct an 'open' procedure (dilation then erosion) to remove

small black pixel blobs. To create a binary image (the hand silhouette) and remove

more noise, we experimented with a few threshold values (40 - 65 on the 0-255 scale).

After extracting the silhouette, we use a Sobel kernel to find edges in the horizontal

and vertical directions. Edges running the vertical direction indicate finger edges,

and edges running in the horizontal direction indicate the thumb, fist, or palm edges.

Based on the relative positions of the vertical edges, we can determine the centroids
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Figure 4-4: Finger centroids (green circles are midpoints of the finger edges, used
to approximate the centroids), and finger tip detection (indicated by smaller green
circles).

of each finger.

4.2 Finger Tracking

Through tracking the centroids of each finger, we can determine to which finger

the vertical edge belongs. If the algorithm finds 8 edges, then we know for certain

where the centroids of each finger reside. If the algorithm finds less than 8 finger

edges, then we use the previous finger centroid locations and the label assigned to

each finger to determine which finger the edge belongs. Based on these labels, we

construct the feature vector from features found at each finger blob, such as the finger

length, width, amplitude (mean distance from the camera). For detecting thumb to

finger touches, we can similarly find the distances between the fingers and the thumb

edge and include such features in the feature vector. If the set of features in the

feature vectors cannot distinguish between two target gestures, then the developer

must implement a methodology for extracting a feature from the image that allows

classification.
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4.3 Gesture Recognition Toolkit

Using the feature extraction pipeline section, we can collect data for each microgesture

and train a sigmoid SVM classification model. Using Gesture Recognition Toolkit [12],

it is very easy to collect data, save to disk, and train an SVM. Each user performs

the corresponding static pose for about 10 seconds (about 500 data points, one for

each frame at 50 frames per second) where EMGRIE learns the specific gesture the

user wants to label as index lift, etc. This gives the user freedom to customize

gestures and still appear to 'follow directions' given by the gesture and application.

In general, we found that the size and shape of hands, especially when performing

gestures, varies greatly over individuals. Hence, we only use individually trained SVM

models as opposed to a universal model. We hypothesize that one SVM classifier per

individual greatly increases the usability of gestural applications when gestures are

very particular, as such is the case here.

4.4 Microphone and Possible Sensing Modalities

In order to aid in the detection of finger to thumb taps, we employed a microphone

pressed to the user's skin. The TOF camera cannot detect the difference between

the hand pose described by the thumb hovering just above the index finger and the

thumb touching the index finger - the silhouettes produced are identical between the

two gestures and the depth data difference produced is not significant between the

two gestures. Through the microphone, we can detect the discrete moment in which

the finger makes contact with the thumb. The contact makes a subtle vibration in

the hand which is picked up by the microphone.

Through fast-Fourier transform, we noticed that the hand makes easily distin-

guishable lower frequencies (60 - 100 Hz) when the user taps fingers and the thumb

together. By summing the amplitudes of the lower frequency ranges, we were able

to use a threshold determined by another SVM to classify finger to thumb taps. We

attempted various spots in which to put the microphone, but found that the best
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position for listening to bone vibration was not the most comfortable position for the

user. The most comfortable position we found was on the inside of the wrist. How-

ever when the microphone was placed on the inside the of the wrist, the microphone

picked up interfering noise whenever the hand moved at all. Regardless of extraneous

noise, the microphone was still able to recognize when the finger touched the thumb.

We found that sometimes the microphone failed. The microphone would shift lo-

cations such that it was not able to recognize vibrations, or the specific user produced

a sound which did not trigger the classifier. This led to the user forcefully attempting

to tap the finger and thumb together. To alleviate this issue, we slightly modified the

vision system to also recognize the gesture without the need of the microphone. For

instance, if the vision system classifies a pinch gesture lasting more than a certain

large number of frames, the it can be assumed that the user is attempting to per-

form a pinch gesture. This way, each form of sensing is leveraged so there is minimal

dependent form of input.

We would like to note further solutions to microphone failure. Further product

engineering is required to ensure microphone location and pressure on the wrist.

Continued research into data produced by hand vibration may lead to beneficial

pattern recognition. Such methods may yield more proper results.

In [4], a similar method was used to detect interactions. We can extend such

methodologies by using our camera with a string of microphones across the wrist for

more robust modes of detection or adaptive gain/threshold setting. Through multi-

ple microphones, signal transference distinction may be significant between various

gestures.

4.5 Google Glass

Often during user tests, we asked users to wear a Google Glass and use an Android

application side loaded onto the Google Glass. While watching users interact with

the novelty of Google Glass was engaging, many users found the device slightly frus-

trating. Often, the user was farsighted and could not read the projection or had
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Figure 4-5: In addition to the camera attachment, we also used a microphone to aid
in the detection of thumb to finger touches.

trouble adjusting Glass in order to see the display. While the user was using Google

Glass, a background service PowerManager would decrease the brightness of the dis-

play after 30 seconds or shut the display off entirely. Since Google Glass is largely

undocumented, it was difficult to find the way to remove this background service.

4.6 Post Processing

Upon classification, we can instill post processing techniques to reduce noise in the

gesture recognition pipeline. Before recognizing a new gesture, we can count the

number of frames that is classified as the same gesture. This reinforces the probability

that the gesture being performed is the correct gesture. We can also employ a sliding

window in which the gesture that is recognized the most over a certain number of

frames (window width) is considered the output of the gesture recognition pipeline.
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Figure 4-6: A user wearing Google Glass while using EMGRIE.
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Chapter 5

User Integration and Learning

Experiment

The main goal of this research is to examine the potential for a universal gestural

language and present possible free hand gestures to construct such language through

pilot user studies. There has been longstanding desire to develop such a universal

gestural language [10] and we hope to evaluate a series of gestures here. There are

infinite possible hand poses and infinite possible gesture to action associations for

various applications, but we can use previous and related work to decipher which

hand poses should merit examination in a user study. In this chapter, we will explain

why we chose to examine the gestures we did and why we chose to examine task times

in our various experiments detailed in this and subsequent chapters.

5.1 Fitts's Law Application

Fitts's Law states that the time required to rapidly move to a target is a function

of the distance to that target and the size of that target [11]. It is difficult to test

Fitts's Law properly in gestural experiment contexts, as accurate measurements of

the distance traveled by the various components of the hand to reach a certain hand

pose and accurate measurements of the size of the space of correct hand poses are

required. Even though we cannot properly apply Fitts's Law to a gestural task time
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experiment, we can still use it as a way to hypothesize which aspects of microgesture

affect task times. Since the distance various hand components have to travel to

reach a hand pose and the size of space of correct hand poses is potentially greatly

dependent on the gesture itself, we can hypothesize that the task time to complete

a gesture is dependent on that gesture. We would like to note that since free-hand

microgesture spaces are more physically close than full-body gesture spaces [15], this

hypothesis should not be taken for granted, cannot be proven trivially, and requires

a user study and standard usability statistical analysis. Hence, we believe that it is

meritable to hold such a user study that examines the relation between gestures and

task times.

5.2 Initial Gesture Test and Experiment

Since there are many hand poses (as described in Chapter 4), it is easy to fall into the

experimental design trap of attempting to test 15+ gestures in a single user study.

While some of our initial experimental designs entailed this volume of gestures, it is

not feasible statistically and usability-wise.' Users had difficulty learning more than

7 gestures at a time, and increasing the amount of within-user factors decreases the

statistical power of the experiment. Hence, we decided to test two very different

yet basic free-hand microgesture groups: the finger lifts and the finger pinches. Our

motivation for choosing the finger lift group stems from the ability of the wrist-worn

camera to recognize this group of gesture with high accuracy [32] and our motivation

for choosing the finger pinch group stems from the hand's natural ability to perform

finger to thumb opposition [15]. Through examining these basic free hand gestures,

we should be able to extract any statistically significant differences between them (if

differences exist).

Specifically, we decided to use 3 finger lifts, the index lift (IL), middle lift (ML),

and ring/pinky lift (RL). We study 4 different fingertip pinch gestures: index pinch

(IP), middle pinch (MP), ring pinch (RP), and pinky pinch (PP). 11 participants (8

male 3 female ages 19-30) were asked to train the EMGRIE system to accommodate
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their specific interpretation of each gesture. Once each gesture was trained and users

felt mastery of gesture performance, the user completed 10 sequences of 7 random

gesture appearances. Gestures were displayed one at a time via text description com-

mands (i.e. lift index) and time to classification was recorded. Each sequence covered

each gesture and was displayed in random order to mitigate learning and fatigue ef-

fects. The user rests both hands by their side or on their lap while orchestrating a

series of such specified microgestures displayed on-screen 2 feet in front of them. Er-

rors were flagged as either system or user errors and erroneous items were rescheduled

in the sequence. To simulate an eyes-free situation, participants were asked to main-

tain their eyesight on the screen detailing the current microgesture to perform. There

was a user-determined length break between each sequence and 3 seconds between

each gesture performance. Each user test took on average 50 minutes to complete.

Our experiment design thus examines within-subject gesture factor and iteration

factor and their relation to the continuous response factor task time. The experiment

follows a randomized two-way repeated-measures design: each user performs each

gesture 10 times ordered randomly. The results of this experiment upon the two-way

repeated measure ANOVA should show any effect of short term training (the within-

subject iteration factor) or gesture differences. Since task times are skewed in the

positive direction, we removed outliers over a 95% confidence interval. In order to

handle missing data, the model used was a Mixed Factor model. After finding that

the interaction term between iteration and gesture was not significant, we converted

to a repeated measures model that does not study the interaction term and only

examine simple main effects and pairwise significance.

5.3 Results

Two-way repeated-measures ANOVA showed significant effect in the particular ges-

ture factor (p < .001). We did not find a significant effect in the iteration factor.

We continued our analysis through Tukeys pairwise multiple comparison post-hoc

study. We found significant variations between pinky pinch and index pinch, and
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between the ring lift and pinky pinch microgestures (p < .02). Figure 5-1 shows the

task time spread and median for each gesture. We note that variance is large over

each microgesture, but also see that task times can be as low as .5 seconds for each

gesture. We use similar statistical tools to examine trends between microgesture and

user error (summing over all users and iterations) assuming independent measures

(task time and user error). Figure 5-3 shows the user error rate of each microges-

ture. Upon adding the microgesture factor to a repeated measures logistic regression

model, model improvement showed microgesture having a significant effect on user

error rate (p < .0001). Based on multiple comparisons (Tukey test) over microges-

tures, we found the index lift to have significant differences between the middle and

ring pinches (p < .02).

Figure 5-2 shows the error rate of each gesture for each user. We would like to

note that users have varying degrees of dexterity and hand pose experience - user 2

was an expert user that used EMGRIE for 5 hours each week for 15 weeks. User 10

was a pianist, and user 1 was a guitarist. Despite these differences, users still showed

differences in error rates and task time and no trend was discernible.

5.4 User test conclusions

Before experimentation, it was not clear that gesture at this scale (simple free-hand

pose) will show statistical differences in performance times. Fortunately, these results

tell much about the relationship between gesture and task time. Clearly, microgesture

has significant effect on performance time and user error, especially when gestures are

physically different. One would expect that iteration of gesture performances should

have an effect on task time, but it seems that 10 iterations over a 20 minute session

is either a too little or too large sample size to show trend. Hence, we hypothesize

that learning microgesture is similar to learning to keyboard - the required detailed

control over ones hand requires large amounts of training to produce effects on task

time.

In terms of the effect microgesture has on task time, we note that the pinky pinch
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Figure 5-1: This box plot shows the task time spread for gestures over all users and
all performance iterations.

and index pinch are physically different, and the ring lift and pinky pinch are phys-

ically different. It follows that we formulate a hypothesis as to why the pinky pinch

microgesture was the fastest gesture: we believe that the pinky pinch holds a bias

over the other microgestures during learning. The other microgestures may hold a

continuous psychological representation or gradient of stimulus between themselves,

where the pinky pinch (being the arguably most unnatural gesture concerning pinches

[151) may show a disconnect. Users may view the pinky pinch to be more unusual

compared to the other microgestures and hence give the pinky pinch special atten-

tion due to the contrast bias [24] known in psychology. Further experimentation is

needed to explore this resulting hypothesis. If true, then we would be able to infer an

interesting generalization: while microgesture is more efficient than current ubiqui-

tous gestural user interfaces, slightly unnatural microgestures are more efficient than

natural more common microgestures due to natural microgestures being less distinct

(special) and warranting more cognitive processing to perform.

Based on the scatter-plot in Figure 5-3, we find smaller user error rates concern-
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Figure 5-2: Scatter-plot showing the gesture error rates for each user over each gesture
(IL - index lift, ML - middle lift, RL - ring lift, IP - index pinch, MP - middle pinch,
RP - ring pinch, PP - pinky pinch). Since task times were dependent on errors, the
number of trials was varied across users. On average, each gesture was conducted
about 12 times.
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User Error Rate
Lifts 0 PinchesA

(

,e)

Microgesture

Figure 5-3: A table showing the user error rates (%) for each microgesture summed
over each user. Clearly, the lift gesture group has lower error rates when compared
with the pinch group. Since task times were dependent on errors, the number of trials
was varied across users. On average, each gesture was conducted about 12 times.
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ing the lift microgesture group compared to the pinch microgesture group. The lift

microgesture group requires less muscle groups to perform and are generally more

simple than the pinch group. We hypothesize that while the lift microgestures are

not the most efficient microgesture group on average, they are simple for users to

understand and are easier to perform correctly. We also find an interesting trend

between fingers concerning user error: error rate increases near linearly from index

lift through ring lift. This may be an effect of ring and middle fingers not having

as much natural use as the fore finger. The pinky pinch user error rate continues

to follow our theory concerning attention and contrast bias: it does not follow the

trend of increasing error rate and we see a marked improvement from the ring pinch.

Interestingly, we do not see a similar trend in task time that we see in user accuracy.

More exploration is needed to examine the relationship between user error and task

time in the microgestural application space.

Based on these findings, we believe that since the middle and ring pinches are not

significant concerning user accuracy and efficiency, they may not be the best choice

to be included in a universal microgestural language. The index finger and the pinky

finger appear to be the most interesting potential bases of interaction. However,

we would like to emphasize, from our own empirical observation, that users showed

preferences for various microgestures. We suggest that microgestural application de-

signers take into account the simplicity of the microgesture, the contrast bias, and

the ability for the user to customize microgestures when building an application.
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Chapter 6

Google Glass Text Entry

Application

6.1 Introduction and

Google Glass Usability Constraints

Excitingly, we had the opportunity to utilize Google Glass for application tests. Upon

first inspection of Google Glass, it became apparent that modes of interaction with

the device are limited. To interact, users either utilize the track-pad on the side of

the device or limited voice recognition capabilities. Hence, the lack of interaction

modalities diminish the total capability of the device.

In this section, we attempt to show an example of increased capability of Google

Glass through use of EMGRIE. Specifically, we decided to apply EMGRIE through

gestural text entry and study user reaction to the text entry interface. For instance,

based on the micro-gesture that EMGRIE recognizes, a certain character appears on

the Google Glass display.

We do not foresee text entry to be the main use case for micro-gestural input

on Google Glass. Such wearable displays will probably exploit high-level gesture

to choose between context-emerged alternatives. As we will see from the proceeding

experimental results, text entry requires acute attention to visual feedback (characters
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on the display) and attention to minute gestural detail. The reader will see from

interface design iterations that discrete micro-gestures become physically and sensibly

similar when increasing the number of possible recognizable gestures, thus increasing

the amount of concentration required to correctly input a gesture. Based on necessary

close attention to input, we hypothesize that users will require large amounts of

training to master gestural text input.

For the time being, we wished to use text entry as a mode to general exploration

into task times and error rates to determine, over a large gesture space, which gestures

are better suited for generic tasks and which gestures are more easily distinguishable

to the sensor and the user. In the following sections we describe interface design

choices, experimental design choices, and subsequent conclusions.

6.2 Text Entry Interface Design

6.2.1 First Iteration

In the first text entry interface design, we explored how a set of 127 characters could

be referenced from only a set of 7 simple gestures. In the early stages of the EMGRIE

system, seven gestures were available: index lift, middle lift, ring lift, index pinch,

middle pinch, ring pinch, and pinky pinch (please reference chapter 3 for gesture

descriptions). One possible method is to use gesture sequences and modifier gestures

in tandem to access all possible characters. For instance, a sequence of 3 gestures

from a possible set of 3 gestures can map to 27 characters (3 * 3 * 3). The other

4 gestures can be used as modifiers that switch input modes (uppercase characters,

numbers, etc). Table 6.1 describes the gesture-to-character mapping.

We thought it would be valid to explore 3 micro-gestures that we hypothesized

to yield fast transition times. In this case, we hypothesized that the index, middle,

and ring lifts would yield fast transition times and decided to use those 3 gestures to

construct sequences.

This application design covers all ASCII characters, yet requires the user to input
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Gesture Sequence Character Mode Num Mode Shift Mode

Index Lift, Index Lift, space space space
Index Lift (2,2,2)
Index Lift, Index Lift, 's' '1 '5'
Middle Lift (2,2,3)
Index Lift, Index Lift, 'e' ';' 'E'
Ring Lift (2,2,4)
(2,3,2) 't' '2' 'T'
(2,3,3) 'o' '3' '0'
(2,3,4) 'i' '4' 'I'
(2,4,2) 'r' '5' 'R'
(2,4,3) 'a' '6' 'A'
(2,4,4) 'f' '7' 'F'
(3,2,2) c' '8' 'C'
(3,2,3) v' '9' V
(3,2,4) 'w' '0
(3,3,2) 'j'
(3,3,3) 'k' '7'Q'K
(3,3,4) 'u' '#' 'U
(3,4,2) 'y' ' 'Y'
(3,4,3) 'd' '%' 'D'
(3,4,4) 'n' A 'N'
(4,2,2) 'p' ' 'F
(4,2,3) 'q' '
(4,2,4) 'b' '(' 'B'
(4,3,2) '1' ')' 'L'
(4,3,3) 'x' '{' 'X'
(4,3,4) 'g' '' 'G'
(4,4,2) 'h' '{' 'H'
(4,4,3) m' '}' 'M'
(4,4,4) 'z' ' '
Index Pinch DEL DEL DEL
Middle Pinch Num Mode On/Off Num Mode On/Off Num Mode On/Off
Ring Pinch Shift Mode On/Off Shift Mode On/Off Character Mode On/Off
Pinky Pink Punct. Mode On/Off Punct. Mode On/Off Punct. Mode On/Off

Table 6.1: Text Entry Application I
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a minimum of 3 gestures per character. The experiment shown in chapter 5 explores

described 7 gestures through task times and such times can extend to a sequence

of 3 gestures. Subsequently, a small informal pilot experiment with an expert user

(expert user being an individual well-practiced in performing gestures quickly, about

2-4 months) can show if results can actually predict gesture sequence. In this short

experiment, the expert user conducts a series of gesture sequences. Gesture 2 stands

for Index Lift, Gesture 3 for Middle Lift, and Gesture 4 for Ring Lift. Timing and error

data are recorded. Figure 6-1 shows the average times for each gesture sequence. Each

sequence was recorded 3 times and the whole study was conducted over 20 minutes.

One would expect sequences that require 2 gestures would take twice as long as

sequences that require 1 gesture. However, this is not the case: the timing data

does not scale linearly. We offer various hypotheses as to why there is a variable

offset. Given that the experiment displays to the user 2 or 3 gestures at a time, the

user can determine which gesture to perform next while performing the first gesture.

However, the user still needs to spend time concentrating on the first gesture. This

psychological computation yields an initial time baseline (the time the user spends

thinking as to which first gesture to complete) which we would like to examine.

Averaging the time required for sequences of various lengths, we see an average time

increase in .24 seconds between sequences of 1 gesture and sequences of 2 gestures and

an average time increase of .52 seconds between sequences of 2 gestures and sequences

of 3 gestures. We hypothesize an increase in gesture sequence complication accounts

for this increase in time difference between sequence lengths.

Given these time differences, we can estimate that a single movement then takes

anywhere between .24 and .52 seconds, depending on the gesture and time interference

from the user deciding which gesture to complete. Subtracting this value from the

average time to complete one gesture, we are left with the average time the user

took to decide which gesture to perform and what that gesture performance entailed.

Unfortunately, we believe that .24 second and .52 second differences is not accurate

enough to determine if the amount of time users take to perform gestures outweighs

the amount of time users take to determine which gesture to perform next.

60



*6 ~

bg ~.u o~ ~w ~js~

- - -
----- -
* - - - -

- - --
- - m -
- - --

- - --
I - - -

- - -
- - -
- - -

U

I

t4
IspUW64.W.LL

Figure 6-1: Timing and error data for gesture

61
sequences for an expert user.

9

I
I



The variance of time over similar length gesture sequences is too large, which leads

us to the conclusion that user time-to-action plays a larger part than the actual

movement of the gesture. We would expect that after veteran use of EMGRIE,

experiments would show time-to-decision to play less of a role in determining time-

to-recognition.

6.2.2 Second Iteration

In the second design iteration, we attempted to remove the lengthy process of con-

ducting 3 micro-gestures per character input by increasing the number of recognizable

gestures. The first iteration explored 7 micro-gestures, but the second iteration ex-

plored 19 different micro-gestures including the original 7. The second iteration was

designed under the constraint that one gesture should map to one character. In or-

der to cover all characters, several modifier gestures are used. 13 gestures of the 19

are reserved for character input, while the other 6 gestures are reserved for modi-

fier gestures and cursor manipulation. Table 6.2 shows in detail a sample gesture to

character mapping allowing access to most all ASCII characters.

Given that there is a possibility of 13 gestures available, a very powerful mode of

interaction involves extending EMGRIE to the second hand (the left hand). In this

case, 'chording' between two hands is easily done. Text entry would not need a larger

gesture set: 1 gesture in tandem with 1 gesture on the other hand yields 169 (13*13)

different gesture chords. Given that this would require two cameras and significant

amounts of software construction, we leave this aspect of interaction for future work.

Since we have more gestures available, we were able to make vital improvements

to the glass interface design. In our first iteration, we did not handle screen space

well. In this design, we allocate gestures to include 'next screen' and 'previous screen'

actions. This allows the user to input large amounts text while not compromising

text size - text must be fairly large in order to be seen on the glass display. We

were also able to add actions allowing for cursor highlighting, copy, and paste. Our

gesture-to-character mapping was done similarly to rows on the keyboard: r, f, and v

map to gestures involving the index finger, and e, d, and c map to gestures involving
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the middle finger. It may not be the case that this design is the best design. For

this discussion, we are more concerned about the user reaction to gestures in a text

entry use case rather than user preference in gesture-to-character mapping. The user

preference in gesture-to-character mapping depends upon user reaction to gestures:

gestures that are more difficult should map to less used characters (such as 'z'). There

has been much research into the design of finger to button layout [19], and some design

principles apply here.

6.3 User test experiment

We wanted the subsequent experiments to explore the user reaction to the various 19

gestures and their task times. Since it is difficult to design an experiment concerning

19 gestures that can we can easily analyze for usability, we decided to view simple main

effects through comparing means and variance across gesture groups. In accordance,

first-time users had difficulty learning 19 gestures in one sitting. Hence, gestures were

split into 3 groups: the finger lift group, the finger to thumb pinch group, and the

finger to side touch group. Learning to use EMGRIE is similar to learning a new

instrument and is best done a few gestures at a time.

As the results will show, task times are skewed in the positive direction. Users also

had a large range of previous experiences in dexterity: some considered themselves

very dexterous and had many years playing the piano, where others did not consider

themselves to be dexterous at all. While this range of previous experience allowed

for a large variance in data, we hypothesize that previous experience has little effect

compared with natural dexterity talent. Nonetheless, our experiments were designed

to study the effect that gesture has on task times and not empirical data concerning

past experiences.

Table 6.3 lists the experimental gesture groups. The middle index together lift and

all together lift gestures were also included in each group and are not listed. These

gestures map to space and delete actions such that each group can be examined

separately with needed text entry capability. We decided to group gestures together
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Group 1: Lift Group Group 2: Pinch Group Group 3: Side Touch Group
Index Lift Index Pinch Index Side Touch
Middle Lift Middle Pinch Middle Side Touch
Ring Lift Ring Pinch Ring Side Touch
Pinch Lift Pinky Pinch Pinky Side Touch
Extend All Fist All Side Touch

Open Palm Thumbs Up

Table 6.3: Experimental Groups

based on the natural categories described in Chapter 3. Gestures within the same

category are similar enough such that they are easy to remember and to learn at once -

yet different enough to be distinguishable to the sensor as well as the user. In order to

cover all gestures, we distributed the rest of the gestures among the groups arbitrarily.

Before each group, a gesture training phase was completed. For each gesture, the user

formed that corresponding position with his/her hand and data was recorded for 3

- 8 seconds. The user rested their hand and wrist by their side in a comfortable

position. Before recording, the user often practiced doing each gesture several times

to test the consistency of the gesture. After each gesture recording, a classification

model was loaded and the gesture was tested for reliability. About 500-800 data

points were collected for each gesture. After all gestures could be reliably detected,

the testing phase started. The following sections describe the testing conditions of

each experiment.

6.3.1 Randomized Display Experiment

In this experiment, we hope to show which gestures are faster on average compared

to other gestures. The test consisted of 5 repeated sections of conducting a random

gesture in each group one at a time. To begin a section, the system counted down

while the user maintained the base gesture. If the user left the base gesture before

the count down finished, the count down started over. After the count down finished,

the system displayed a random gesture graphic and recorded the next valid gesture

recognized and the time to recognize that gesture. After each gesture performance,
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Figure 6-2: Displayed gesture graphic indicating "Open Palm" to the user.

another countdown started automatically until all gestures in the group were com-

pleted. Gestures that were completed incorrectly were appended to the end of the

test. The randomized gesture prompt was displayed to the user through graphical

form (Figures 6-2, 6-3). The first row in the graphic details the open palm (OP), ex-

tend all (AE), fist (F), and thumbs up (TU) gestures by displaying the corresponding

letters green (Figure 6-2). The second row signifies the pinky lift, ring lift, middle

lift, and index lift gestures in order from left to right by filling in the corresponding

box (Figure 6-3). The third row details the pinches and the fourth row details the

side touches in similar likeness. To signify the all touch side gesture, the bottom

row rightmost box lights up. To examine errors, we record each user's goal gesture

/ recognized gesture pair count. For each user, different gestures are physically and

mentally closer to different gestures - error pairs should show this trend. Though the

goal / recognized matrix, we can predict each user's gesture preferences.

Results

Figure 6-4 depict the correct microgesture input time from the 'base gesture' to the

prompted gesture. On the Y axis, the finger lift gestures, finger pinch gestures, and

index touch gestures are displayed bottom to top respectively. Time is on the X axis.

Data is split into groups per user in order to visualize the response each user has for
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Figure 6-3: Displayed gesture graphic indicating "Middle Lift" to the user.

Time (s) Lifts Pinches Side Touches
Mean 1.08 1.18 1.8

Variance .095 .037 .74

Table 6.4: Variance and mean over all users (in seconds).

each gesture. On average, the pinky lift was the fastest gesture (.91 s), as were the

lifts the fastest group compared to the pinches and side touches. Figure 6.4 shows

the variance and mean of gesture groups over all users, and 6-5 plots the median and

spread in a box plot form. Figure 6-6 and 6-7 displays user 2 and 7 's goal gesture

/ incorrect recognized gesture matrix respectively (these users showed similar trends

for errors, as described below).

Experimental Conclusions

Based on the low variance and mean time of the lift and pinch gestures, it appears

the that the lifts and pinches are faster gestures over all users. We can predict that

these gestures are more familiar to users than the other gestures. It seems that user

7 provided outlier data for the side touch gestures - user 7 had difficulty interpreting

the gesture graphic (figure 6-2) for these gestures. Several users expressed that the

side touch gesture indicators were 'flipped' compared to the hand orientation (the

index touch indicator is on the right side of the graphic where the index finger is on
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Figure 6-5: A Box plot comparing gesture groups. The red line in each box indicates
the median, where the edges of the box show the quartile boundaries. Outliers are
also displayed.

the left side of the graphic). This may be an explanation as to why the finger side

touches have larger variance.

Most users made few errors over the 5 tests (each gesture was attempted until 5

successful performances per group). User 7 made the largest number of errors over

all users. There was common problem (shown in user 7 and user 2) with identifying

between the middle index lift together and middle lift gestures. When the middle

finger lifts, it often occludes the index from the perspective of the camera. Given

that the system does not take into account the width of each finger blob, the system

cannot determine if the index finger is also lifted and hence cannot often determine

the difference between gestures. To fix this problem, the user had to lift the mid-

dle finger such that it does not occlude the index finger. This problem captures the

shortcomings of a bag-of-words machine learning model but also captures an inter-

esting interactive/usability machine learning concept. The user can change the input

to accommodate the system at the expense of usability (it is not desirable for the
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Figure 6-6: User 2 random entry error matrix

user to modify gesture input away from what is natural to him/her). We can see

that when user 7 attempted the index pinch gesture, the system was mistaken for

the middle pinch gesture. Similarly, we can see that the fist gesture was mistaken by

the lift all gesture. Viewed from the perspective of the camera, corresponding hand

blobs appear similar in such away that the system cannot differentiate between the

mentioned gestures. For some users, these gestures are very similar and such errors

are expected.

6.3.2 Randomized Transition Experiment

In this experiment, we hope to show which gesture transitions are faster on average

compared to other gesture transitions. Rather than display one gesture graphic at

a time, we displayed several. The user was asked to focus on the leftmost graphic

gesture and anticipate the following gesture graphics to the right. The user conducted

the gesture that was prompted by the leftmost gesture. After completing this gesture
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Figure 6-7: User 7 random entry error matrix

correctly, the list of graphics shifted to the left. We recorded errors as they were

made yet did not give an indicator to the user that an error was recorded and did

not ask the user to re-perform the transition. We examine average error gesture rates

and average correct gesture input rate. Between each gesture, the user was asked to

return to the base gesture.

Results

Figure 6-9 plots users on Y time and average speed on X. It shows both correct rates

and error rates. For each user, there is a data point that describes a separate group

gesture as explained in Table 6.3. Figures 6-10 and 6-11 show box plots describing

the amount of time that passed between each gesture in gesture / second data points.

Figure 6-12 show the average times for each transition between gestures for user 3.

Figures 6-13 and 6-14 show the total number of transition errors for user 3 and user

5 respectively.
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Figure 6-8: The user viewed this screen while conducting experiments. The current
gesture graphic was displayed to the left of the camera video and gesture prompt-
ing was displayed underneath. The current gesture in text form was displayed at
the bottom. At the top, we showed the current sequences of vision computational
preprocessing.
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Figure 6-9: Random transition average group gesture rates and error rates. We see
that the pinch gestures were more difficult to perform in transition between other
gestures.
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Figure 6-10: A box plot describing random transition time for each group in gesture
per second.

Figure 6-11: A box plot describing random transition errors for each group in incorrect
gesture per second.
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Experimental Conclusions

Based on the results given by Figure 6-9 and 6-11, it is clear that pinch gesture group

gives a much larger average error rate than the lift group or external touch group.

This may be due to the fact that the pinch gesture requires movement of a large

number of hand components and is difficult to perform well on a consistent basis.

The finger lift group (group 1) shows the most consistency in gesture speed and low

error rates.

Figure 6-12 shows that user 3 was slower in performing transitions going from the

lift all and index middle lift gestures to the pinch gestures. Given the larger amount

of time required, it seems that user 3 would not prefer applications that use such

transitions often.

The transition error matrices show which areas the users struggled with the most.

Similar to most users, user 5 and user 4 (figures 6-13 and 6-14) had trouble performing

the middle lift gesture and the middle index lift gesture such that the system could
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differentiate between them. Some other areas which yielded high error rates were the

pinky pinch and thumbs up gestures. This issue was discussed in previous sections -

the shape the hand makes from the perspective of the camera is similar for both of

these gestures and it is difficult to extract differentiating features. We can use these

conclusions to determine which gesture designs are poor. In all it seems that gesture

personalization as well as gesture separation will be very key when designing gestural

applications.

6.3.3 Character Display Text Entry Experiment

In this experiment, we hope to compare the average correct gesture rates and average

incorrect gesture rates between the three experimental gesture groups. Error rates

were recorded similar to what was described in [21] - uncorrected errors and corrected

errors were both accounted for. The experimental texts for each group are in table

6.5. As before, rates were recorded on a gesture per second basis. In order to compare

errors, we examine the rate of incorrect gestures as well as the number of goal gesture

/ recorded gesture pairs. This experiment took about 4 minutes for each group to

conduct.

Results

Figure 6-15 shows text entry input rates for the three different groups. Figure 6-

18 shows user l's goal / recognized error trend. Table 6.6 shows the average group

correct / error gesture rates and variances across all users.

Group text string
1 re re wq rewq rewq qwer we ew qr rq
2 fd sa as df df sa sd fa fdsa asdf
3 vc xzb bzxcv bzxcv bz bz cv cv xc xb

Table 6.5: Text entry strings for each gesture group. Since character mappings were
chosen in accordance to gesture, proper sentences were not used.
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Figure 6-15: Text entry input rates for each user and gesture group. The data is
incomplete, since some users had other commitments.

Text Entry Rates (gesture/second) Group 1 Group 2 Group 3
Mean Correct Rate .85 .67 .71

Variance of Correct Rate .19 .045 .15
Mean Error Rate .34 .67 .35

Variance of Error Rate .17 .13 .086

Table 6.6: Variance and mean for correct / error gesture rates (gesture / second) over
all users for each gesture group.
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Figure 6-16: Text entry input rates (gesture/second) for each group over all users

Figure 6-17: Text entry error rates (error/second) for each group over all users
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Figure 6-18: User 1 text entry error trends

Experimental Conclusions

As we can see, group 1 had on average the smallest error rate and largest correct

gesture error rate. All gesture groups yielded slightly more sporadic input rates across

users - some users were able to grasp the sensitivity and constraints of the system and

modify interactions, while other users had more difficulty. We can see this from the

larger variance values shown in figure 6.6. Users had difficulty remembering to return

to the base gesture between pinch gestures - it was very natural to leave the thumb

over the fingers while tapping on various fingers. This caused the system to often

lose finger tracking as many fingers became occluded. Specifically, user 7 appeared to

have extreme difficulty. Nonetheless, user 7 showed that the lifts produced the least

number of errors. User 1 showed difficulty in. differentiating between the index pinch

and the middle pinch. Often users had difficulty separating their fingers during pinch

gestures and the system thus could not separate which finger was being touched. This

problem is expected: many users will not be able to adhere to the system constraints.

Comparing the results from the previous two experiments, we can see that the
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Glass Entry Rates (gesture/second) Group 1 Group 2 Group 3
Mean Correct Rate .71 .69 .62

Variance of Correct Rate .11 .03 .15
Mean Error Rate .60 .93 .41

Variance of Error Rate .15 .11 .069

Table 6.7: Glass entry variance and mean for correct / error gesture rates (ges-
ture/second) over all users

variance of speed and error rate has gone up for gesture groups 1 and 2. This is

expected, as the difficulty in completing a sequence of gestures correctly is more

difficult than examining one gesture input sequentially.

6.3.4 Google Glass Display Text Entry Experiment

In this experiment, we hope to conduct the same experiment as the text entry ex-

periment except via character prompting on Google Glass and observe performance

changes. The display did not show the depth camera perspective. Often, a separate

service 'PowerManager' on the Google Glass operating system interfered with the

test. The service halted the update thread on the android application, causing users

to often repeat performing a gesture given there was no haptic feedback nor visual

feedback. This affected the results of the experiment such that the tests were often

longer compared to the text entry experiment and users required to input more ges-

tures. However, we can still extract differences by viewing the rates in which gestures

were recognized while obtaining visual feedback from the Glass display.

Results

Figure 6-19 shows the average incorrect / correct gesture input rates for each gesture

group for each user while viewing text entry on Google Glass. Table 6.7 shows the

average incorrect/ correct gesture input rates and variances values across users for

each gesture group. Figure 6-22 shows the goal gesture / recognized gesture error

matrix for user 1 in contrast to figure 6-18.
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Figure 6-19: Google Glass text entry input rates

Figure 6-20: Box plot
all users

describing the correct gesture rate for each gesture group over

82



Figure 6-21: Box plot describing the incorrect gesture rate for each gesture group
over all users

Figure 6-22: Glass entry user 1 text entry error trends
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Experimental Conclusions

Based on the results in table 6.7, it is clear that the average correct input rate

decreased for groups 1 and 3. The average incorrect input rate for all groups is much

higher (by about .3 seconds). Given the increase in error rate as well as the increase

in number of errors given by figure 6-22 we can determine that it was more difficult

for users to use Glass as opposed to desktop display visual feedback. The variances

appear to be similar in both experiments. Interestingly, we can see from table 6.7 and

figure 6-19 most users do slightly better in group 2 when receiving visual feedback on

glass. The decrease in correct gesture rate between experiments for group 3 is also

less than group 1. The increase -in error rates for groups 2 and 3 is also less than

group 1 between experiments. Based on these distinctions, we can make hypotheses

as to why Google Glass may be difficult to use with EMGRIE. There is less visual

feedback of what the depth camera sees while wearing Google Glass. Gesture group

2 and 3 gives the user more physical feedback when performing - the thumb touching

the finger tells the user that the hand is in the proper position and the finger touching

the side tells the user that he/she is performing the gesture correctly as well. This

increase in sensory perception may help the user perform the gesture as opposed to

very small sensory changes when users perform the first gesture group. In contrast,

some users were able to perform all gestures consistently well - more exploration is

needed to determine why these users were successful.

6.3.5 Expert User Learnability Experiment

In this experiment, we hope to model the learning rate of a user over many sessions

via the character display text entry experiment. We chose to use an expert user for

this experiment, where this user had familiarity with EMGRIE (5 hours a week for

several months). Originally, users had difficulty learning more than 7 gestures in one

session. Given the user was an 'expert', no gesture groups were needed and the full

19 gestures were tested during the experiment. Each session took about 2 minutes to

complete as was done every three days for about one month.
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Figure 6-23: Expert user correct gesture input rates over sessions (one session every
few days for one month.

Results

Figure 6-23 shows the gesture rates given by an expert user over several sessions.

The expert user had access to practice gestures for several months before starting

the experiment. However, the user did not practice gesture input under experimental

conditions until the test began.

Experimental Conclusions

As we can see from the data points, the user continues to improve throughout the

sessions as expected. We have yet to see where the limit lies in terms of correct

gesture input speed. While the maximum is currently about 1 correct gesture/second,

the limitation appears to be the amount of concentration and thinking required to

perform each gesture required. Since this can be improved with time, it is unclear as

to how fast a user's correct gesture input rate can be. Given that the user appeared to
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make more mistakes for attempting to perform faster, we hypothesized that continued

training would not improve input rate further.

6.4 Text Entry Application Design Discussion

There are vast possibilities to explore when discussing gestural text entry application

design. For instance, we primarily used error rates and task times to evaluate inter-

actions. While this gives a general conclusion as to which gestures are better suited

for various tasks there is much potential for a deeper exploration into memorability,

comfort, ease of execution, and variation between hand positions during gesture ar-

ticulation. Specifically, we described several gesture designs (gesture groups 1, 2, 3)

and gesture to character mappings (application design iteration 1 and 2) but there

are many more possible application designs. In order to properly determine which

gestures map well to characters, techniques described in various references [31] should

be used.

However, based on the results from the described experiments, we can show which

gestures may help users the best in terms of inputting text onto a Google Glass

interface (or any other device). It seems that the lift group produced the fastest

and least error prone results outside of the Google Glass interface. The pinch group

produced the least increase in error rate when used with Google Glass, while most

users had varying experiences with using EMGRIE with Glass. Based on the expert

user experiment, we can see that practicing would improve the power of EMGRIE.

We wanted to test to see the initial interactions and responses from users when

faced with inputting text for the first time using gestures. The conclusions show

that text entry gestural use case is extremely difficult and requires natural talent /
training. We would like to note that standard text entry (keyboarding, etc) ability,

while common, is very difficult and often requires extensive amounts of training. We

believe that while gestural text entry is powerful, users would most likely exploit

EMGRIE for simpler tasks in the short term.
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Chapter 7

Tidmarsh Focus Selection

Application

7.1 Unity and Data Visualization Application

Design Introduction

In this section, we explore an extremely different mode of interactive computation

with Google Glass in conjunction with Unity (a popular game engine). We were

able to utilize Unity in creating two different data visualization / focus selection

Android applications to test gestural application usability. Given the Unity Android

applications, we could side-load them onto Google Glass for user testing.

Given the fact that focus selection applications do not require as large a command

set as text entry, we believe that such Google Glass gestural applications would have

improved usability over text entry applications and hence be more useful to users.

Smaller command sets increase the minimum physical difference between various ges-

tures which decreases potential user and system recognition confusion between ges-

tures.

We also changed the experimental design when evaluating the applications. In this

case, we ask empirical questions concerning gesture to command association strength

and the effort involved to perform that gesture. Through such experimental results,
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we can determine which gesture to command correspondences were of poor/good

design and which gestures are easy/difficult to perform.

7.2 Interface Design I

For our first application design, we were tasked with designing a data visualization

application for use with Tidmarsh (tidmarsh.media.mit.edu), a 600 acre span of forest

and marshland in southern Massachusetts being outfit with hundreds of multimodal

sensors that can be browsed in a game-like augmented reality application. Hypotheti-

cal users, physically traversing the marsh, view sensor data on Google Glass detailing

data from the current area of the marsh the user is located in. In order to select the

area of the marsh the user is interested in, he/she issues the corresponding gestures

to move the sensor focus to various discrete pre-determined locations. Experts would

choose these locations based on the geographical layout of the marsh and the com-

monalities of certain areas. Similarly, the user issues gestures to select the form of

data he/she is interested in. Table 7.1 shows the gesture to action mapping. There

are two modes - data selection mode and camera selection mode. Figure 7-1 shows

the screen in camera selection mode. The box in the upper left corner details which

camera position the user is currently in by highlighting the corresponding number

green. In the current Tidmarsh application, camera positions were arbitrarily chosen

for demonstration purposes, and there are two altitude levels of camera positions.

The higher level has 6 camera positions in a grid-like fashion and the lower level has

2 camera positions beneath the grid.

Gestures were chosen based on the previous experiment's results: gestures that

were easy to perform and statistically different from each other were hypothesized

to yield the best user experience. For instance, we noticed that the pinky pinch

and fist gestures were often confused by the system and hence the pinky pinch was

replaced with the ring pinch. Since only a few actions were needed, we were able

to cover all actions without choosing gestures physically and statistically close. We

also wanted to choose gestures that related to the action they were associated with
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Gesture Camera Mode Data Selection Mode
Lift All move camera West move cursor left

Extend All move camera East move cursor right
Index Pinch move camera North move cursor up
Ring Pinch move camera South move cursor down
Index Lift move camera to higher level toggle data selection

Index Extend move camera to lower level toggle data selection
Fist toggle mode toggle mode

Table 7.1: The gesture to action mapping for the discrete Tidmarsh application

on the application level. To move the camera left, we hypothesized that an intuitive

sweeping motion to the left with all of the fingers (the lift all gesture, when the

palm normal is pointing left relative to the user) would yield strong user experience

and usability data. Similarly, we hypothesized that the index pinch, ring pinch,

and extend all gestures represented the other cardinal directions in a similar fashion.

The index extend and index lift gestures are reminiscent of pointing, by which we

hypothesized that this gesture should relate to the camera movement of forward and

back (or up/down in altitude levels). A gesture (fist) unrelated to the other gestures

was chosen to switch camera/data selection modes, and all gestures mentioned are

easily detectable by the EMGRIE system.

In terms of gesture spotting for both application design iterations, we decided to

leave the "start and stop listening for gestures" action to be specified as the user

prefers. The gesture to start recognizing gestures must be non-natural yet still easy

to perform.

7.3 Design I Experiment

To evaluate the application, we examined the task times of two tasks: task 1 involved

moving the camera from position 1 to position 6, and task 2 involved moving the

camera from position 6 to position 1. The user was free to move the camera through

any sequence of actions. After learning the gestures and application, the user then

participated in a survey where the user was asked to rate the level of association
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Figure 7-1: Tidmarsh application interface for discrete camera positions. The high-
lighted green number in the upper left indicates the current focus position. The views
the area from the birds-eye perspective.
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Association over Gestures

Lift All Extend All Pinky Pinch Index Pinch Index Ex

Gesture

Figure 7-2: The box plot for each gesture and the corresponding
users in a user survey. A 3 indicates a level of strong association,
medium level of association.

association for 6
and 2 indicates a

between the action and corresponding gesture as weak, medium, strong. The user

was then asked to rate the level of effort required to perform such gesture on the Borg

scale [1, 10] where 1 is no effort at all and 10 is maximal effort. 3 users were asked to

complete task 1 and 3 users were asked to complete task 2 as quickly as possible. In

all, 6 users took the survey giving their opinions on the association level and effort

level.

In the study by Stern [311, each gesture was tested for each association. While we

think that this method is correct, we believe that it is unnecessary.

7.3.1 Results

The following box plots ( Figures 7-2, 7-3, 7-4) show the results for surveyed associa-

tion level, surveyed effort level, and task times respectively. ANOVA results showed

no effect.
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Effort over Gestures
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Index Lift Fist

Figure 7-3: The box plot for each gesture and the corresponding effort level on the
Borg scale for 6 users in a survey.
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Figure 7-4: The box plot for each task and the corresponding discrete task times.
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7.3.2 Result Discussion

Based on Figure 7-2, we can see that our hypotheses that our intuitive gesture-to-

effect design yields good user experience was "on track". The association label for

each gesture to command was mostly 'strong', which we can take to be a good sign

that such gestures are good application design for those actions. However, to prove

beneficial user experience, we must study many other facets of usability.

Figure 7-3 shows that the median level of effort required for most gestures varies

between 1.5-2. On the Borg scale, is this minimal effort - which follows our hypothesis

that microgestures are very easy to perform.

Task times are always skewed in the positive direction, hence, it is often best to

use the median time to compare. The tasks studied utilized very different gestures

to complete the task. Given the similarities between the task times, we can conclude

that in the application space, microgestures have little effect on the task time for this

particular task. From our ANOVA analysis, we find that microgestures, in this space

of application, all have similar effects and yield similar results examining task time,

effort, and fit-to-function.

7.4 Interface Design II

In our second application design, we took what we found in our first iteration and

built similar gestural mappings for camera manipulation in a continuous manner.

For instance, the user uses the continuous gesture modality for index extend / index

lift gestures to move the camera forward and back. Table 7.2 shows the gesture to

action mappings. Given that there are 6 different dimensions in which the camera

can move (forward/back, left/right, up/down, tilt, roll, yaw), we decided to simplify

the application such that only 4 dimensions are utilized. Figure 7-5 shows what

the application screen may look like to the user. The gestures in Table 7.2 were

chosen based on the same criterion used in the first application design iteration. We

included the Index Middle Together Lift/Extend continuous gesture and the Pinky

Ring Middle Together lift/Extend continuous gesture to handle stafe (side to side
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Continuous Gesture
Middle Pinch Slide
Index Lift/Extend

Index Middle Together Lift/Extend
Pinky Ring Middle Together Lift/Extend

Action
move camera higher / lower
move camera forward / back

turn camera left/right
strafe camera left/right

Table 7.2: The gesture to action mapping for the continuous Tidmarsh application

Figure 7-5: Tidmarsh application interface for cont camera positions

motion).

7.5 Experiment Design II

To evaluate the application, we examined the task times of two tasks: task 1 involved

moving the camera from one way-point (seen in Figure 7-5 as a floating orb) to another

way-point in the unity game space. The second task involved a similar motion but

required different gestures to complete the task. The user was free to move the camera

through any sequence of actions. After learning the gestures and application, the user

94



Association over Gestures, Continuous
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Index Lift/Extned Middle Pinch Slide Index Middle Together Lift/Extend Pinky Ring Middle Lift/Extend

Gesture

Figure 7-6: The box plot for each gesture and the corresponding association. A 3
indicates a level of strong association, and 2 indicates a medium level of association.

then participated in a survey where the user was asked to rate the level of association

between the action and corresponding gesture as weak, medium, strong. The user

was then asked to rate the level of effort required to perform such gesture on the Borg

scale [1, 10] where 1 is no effort at all and 10 is maximal effort. 3 users were asked to

complete task 1 and 3 users were asked to complete task 2 as quickly as possible. In

all, 6 users took the survey giving their opinions on the association level and effort

level.

7.5.1 Results

The following box plots ( Figures 7-6, 7-7, 7-8) show the results for association level,

effort level, and task times respectively. ANOVA results showed no effect (as was

expected). Task times at this scale (20-40 seconds) produced by a series of gestures

have large variation.
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Effort over Gestures, Continuous
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Gesture
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Figure 7-7:
Borg scale.

The box plot for each gesture and the corresponding effort level on the
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Figure 7-8: The box plot for each task and the corresponding task times.
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7.5.2 Result Discussion

Based on the figures shown, we can see that there is little significant change between

the last experiment on discrete camera positions and the continuous camera position

application. The tasks we asked the users to do should not be compared, as the rate

of which the camera moved was held as a maximum value in this design. Hence, it

took significantly longer for the user to move between focus locations compared to the

discrete location experiment. Both camera movement tasks require about the similar

amount of time from the user. Based on the association and effort plots, the gesture

choice stated for continuous camera movement appears to yield good usability and

intuition. Similar to the previous application design, this application design yielded

microgestures that had no linear effect on fit-to-function, task time, and effort (results

were consistent for each microgesture).

7.6 Focus Selection Design Discussion

In summary, we believe that microgesture works well with simple applications of

this sort (e.g., moving a focus of attention). Focus selection applications require few

actions and need to be easily accessible by the user. Since hand configurations are

very easy to perform quickly and easily accessible (compared to other hand-involved

head mounted display user interfaces), the applications described in this chapter are

very good solutions for accessing data on the go.

It is important to note the methodology in how we designed both applications

- based on the movements of the hand, we attempted to match the gesture with

a logical camera movement. The results show that our matching was intuitive to

the user and easy for the user to perform. We believe other applications should be

designed in the same manner.
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Chapter 8

Future Work

Throughout the course of developing microgestural applications, we often found that

there were many possible directions in which to take the research for which we did

not have the resources. For instance, we mainly focused on task times, what they

tell about certain microgestures, and how they relate to each other. We would like to

extend this research to look more closely at memorability and learnability. Experi-

ments examining memorability and learnability require extended-period experiments

beyond our level of expertise and time availability. Such aspects may yield more

information on which microgestures are more quickly learned on average and hence

provide better user experience or insight towards a universal microgestural language.

Other empirical evaluations we only touched on concerned fit-to-function and ease of

execution aspects. Such aspects are important, easily evaluated, and should not be

ignored in future experimentation [25]. We would also like to continue to examine

the effect contrast bias has on microgesture. If it becomes clear that microgestures

related to everyday natural circumstances require substantially more cognitive pro-

cessing to perform compared to more unusual (but simple and easy) microgestures,

then developers could use such a principle to greatly increase user experience in the

realm of microgesture application.

Based on the constraints of a vision-based system that employs a bag-of-words

machine learning model, it is clear that a stronger system could be built that depends

less on the shape and natural gesture positioning of the user's hand. Some users had
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difficulty using the system given the dependencies of the required separation of the

fingers and horizontal positioning of the thumb. To prevent these problems, feature

extraction techniques must be improved such that processing employs non-trivial

thresholding, improved seam-carving [5], and less relational blob dependencies. To

further improve the system, we can leverage other modalities as well. The microphone

helped improve certain cases where users allowed their thumb to hover over the fingers,

but the microphone was not fail-safe. By adding more microphones to more areas of

the wrist and recording the responses from each of the microphones for each finger,

finger pinch gesture recognition should improve [4]. Unfortunately, this does not

entirely solve the problem of when the user fails to emit vibration in the hand when

performing the gesture - this problem may only be preventable through training

and/or ongoing vision based gesture recognition.

We would also like to spend more time examining other more difficult-to-perform

gestures. While text entry requires many different gestures, there are still many

more gestures that the hand can perform and deserve to be examined as possible

gesture choices in applications. For instance, many users find it difficult to perform

adjacent finger contact gestures (such as the Vulcan sign from star trek) but we

believe that to more advanced users the power of the hand may be under-utilized.

In conjunction with more difficult microgestures, we very nearly decided to build a

second EMGRIE system and study user reaction to performing two microgestures at

once (while wearing two depth cameras on each hand). This would decrease the level

of complication required to cover all actions in an application, and we emphasize that

future studies should include this power.

Finally, we want to explore more possible applications. The possibilities to test

microgesture applications are seemingly endless - specifically in the realm of Internet

of Things. Given correct gesture spotting implementations, microgestures can possi-

bly interact with everything - doors, light switches, TV remotes, anything that may

possibly be digitized. It would be very interesting to see such applications in action.
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Chapter 9

Conclusion and Discussion

It is difficult to design a microgestural application. Limitations of the human body,

the nervous system, and sensor framework yield simultaneous constraints that must

designers abide. For several years, researchers have delved into the aspects of sim-

ilar multi-disciplinary work, and it is clear that many of such limitations are well

understood. However, we believe that not enough emphasis has been placed on the

power and usability of the microgesture. Microgesture (especially where the sensor is

located on the wrist) allows the hands to be free of devices, requires minimal effort,

and through good application design, allows for intuitive and efficient interaction.

We have seen through application case studies that many factors influence the

efficiency (task time) of an application. For instance, we saw that single discrete

microgesture performance, visual feedback, and task prompting affects the user's

correct gesture input rate. It also appears that through the pilot learnability study

conducted over several weeks with an expert user, learnability may have a larger effect

on efficiency than the previously mentioned factors. Microgestures are powerful but

sensitive - learning a new microgestural user interface may compare to learning a new

instrument that requires expert dexterity and time to master. In accordance with

efficiency, we saw that well-designed applications yield good empirical data concerning

fit-to-function and effort through the Tidmarsh case study. We believe that focus

selection, data visualization, and other on-the-go applications would benefit greatly

from microgesture, given the benefits microgesture has over other forms of input.
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We believe that future mobile system designers should explore the methods pre-

sented in this manuscript and find value in studying the potentials of microgestural

applications. The previously mentioned application areas are only a few of a myriad

of possibilities. Given the rise of wearable technology and ubiquitous use of sen-

sors and applicable interfaces, users will need an ubiquitous mode of interaction that

is efficient, unencumbering, and simple. We believe that a universal microgesture

language may help develop strong usability in applications and can stem from the

microgesture applications in this manuscript. The universal microgesture language

should also take into account the possibility of contrast bias affecting microgestural

user experience. However, we believe that gestural customization is also very im-

portant to yield strong usability in microgestural applications and mitigate longer

training periods (users can choose microgestures they are best at, yielding lower error

rates and less required training eg. see chapter 5). Hence, we believe applications

should make suggestions as to which gestures should represent various actions, but

leave the choice to the user.
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