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Abstract

In this thesis, we investigated the Adiabatic, Theta, and Multigrid Amplitude Func-
tion (MAF) methods for solving the Method of Characteristics (MOC) formulation
of the time-dependent neutron transport equation. The transient transport versions
of the 2D LRA and C5G7 benchmarks were used to assess the performance and accu-
racy of these methods. We began by deriving the CMFD-accelerated MOC algorithm
in 2D steady state form and examining the effects of various MOC and CMFD pa-
rameters on eigenvalue convergence. The C5G7 problem showed similar acceleration
performance for 2, 4, and 7 CMFD energy group structures. CMFD meshes at or
near the pin-cell level resulted in the greatest speedups of 15-45x in run time and
30-240 x in number of MOC iterations for both problems. A relaxation factor on the
nonlinear diffusion coefficient was required to maintain stability for both problems
with optimum values between 0.4-0.7.

A sensitivity study was conducted on the C5G7 and LRA transient problems to
understand the effects of time step and spatial mesh sizes on the solution accuracy
and run time performance. The shape function time step size had a large effect on
the solution accuracy for the MAF and Theta methods in solving the LRA problem.
All methods showed moderate sensitivity to the amplitude function step size, where
increasing step size shifted the peak power to earlier times. The coarse mesh size
did not have a significant effect on solution accuracy, but meshes on the pin-cell level
were clearly preferred to reduce run time. The overall run time performance be-
tween the three methods was mixed. The MAF and Theta methods displayed ~84%
speedup over the Adiabatic method for the LRA problem, but all methods had sim-
ilar run times for the C5G7 problem. This inconsistency is likely due to the more
drastic flux shape change during the LRA transient and the ability of the MAF and
Theta methods to more accurately treat the flux shape temporal derivative. These
results demonstrate that the Adiabatic, Theta, and MAF methods are computation-
ally efficient methods for solving the time-dependent neutron transport equation and
warrant further investigation. There are clear advantages to each method and the
optimal method will likely depend on the transient characteristics of the problem
being studied.
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Chapter 1

Introduction

Radiation emitted from nuclear reactions in the sun provide the energy for photo-

synthetic organisms to store chemical energy in organic molecules that eventually

become oil, natural gas, coal, biomass, and food. Nuclear reactions within our planet

produce geothermal energy that can be captured by drilling down into the Earth's

crust. Solar radiation heats our atmosphere producing pressure gradients that drive

the wind. The heating of our atmosphere also fuels the hydrologic cycle that re-

plenishes our dams with stored potential energy. All of the energy that our society

uses began as nuclear potential energy that was converted into kinetic, potential, and

electromagnetic energy through nuclear reactions in our sun and our planet. Our

successful endeavor to harness this fundamental energy source in the last 7 decades

has led to significant technilogical progress and hope that nuclear energy can be an

option to combat climate change. One of man's greatest engineering achievements in

the 20th century was the harnessing of nuclear energy to produce electricity.

The study and practice of harnessing nuclear reactions for useful purposes is

deemed nuclear engineering, but in practice there is significant overlap with nearly all

scientific and engineering disciplines due to the complex material, biological, chem-

ical, and mechanical challenges that arise from interactions with ionizing radiation

and harnessing large amounts of energy. Nuclear reactor physics, a subset of nuclear

engineering that deals with understanding how to control the nuclear fission chain

reaction, is one area where nuclear engineers receive much more training than any
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other discipline. The neutron transport equation is the fundamental particle bal-

ance equation that nuclear engineers use to understand the neutron behavior inside a

medium. The equation describes the motion of non-interacting particles (e.g neutrons

or photons) under steady-state or transient conditions. Solving the neutron trans-

port equation for systems of industrial interest requires immense computing power

that has led many researchers to reduce the transport equation to the more manage-

able diffusion equation. The diffusion equation applies Fick's Law, a simple heuristic

that postulates that particles will diffuse from areas of high concentration to areas

of low concentration with a magnitude proportional to the spatial flux. The dif-

fusion equation is particularly well suited for solving homogenized full-core reactor

physics problems, but breaks down on heterogeneous problems where neutron flux

and material property gradients can be steep or discontinuous.

In the last 40 years, the exponential growth in computing power has propelled a

steady increase in the the capability and accuracy of reactor physics codes. While

computers have been used to solve the neutron transport equation since the beginning

of the Manhattan Project (albeit not always electronic ones), it is only within the

last 10-20 years that significant efforts have been focused on solving the transport

equation for practical problems. Methods for solving the transport equation fall

into one of two camps: stochastic and deterministic. Stochastic neutron transport

is dominated by the Monte Carlo method, which directly simulates a population of

neutrons and uses random numbers to model the probabilistic nature of physical

events. This approach excels in treating complex geometries and in accuracy over

other methods, but often requires hours or days to compute one state point in a real

power reactor. Deterministic methods such as the method of characteristics (MOC),

the discrete ordinates method (Sn), the method of spherical harmonics (P), and

collision probability method (CPM) use numerical analysis techniques to approximate

the solution of the transport equation. They rely on discretization of the angular,

spatial, and energetic dependencies of the neutron flux and material properties in

a given domain. While deterministic methods are less accurate than Monte Carlo

methods, they often have a much lower computational cost, memory requirement,
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and are well suited for parallel implementation on many computer architectures. The

method of characteristics in particular has received significant interest in the past

few decades owing to its scalability and ability to model complex geometries without

undue homogenization. For these reasons, we have chosen to use MOC as our method

for transient analysis.

Complementing the rise in interest of using transport methods to analyze steady

state reactor physics problems, a shift from diffusion to transport methods for tran-

sient simulations has also occurred. Many methods for solving the time-dependent

neutron transport and neutron diffusion equations rely on the separation of the spatial

(shape) and temporal (amplitude) components of the neutron flux during a transient

simulation. Solving for the fine-grained neutron flux at a particular moment in time

typically comprises the majority of the run time in a transient simulation. For this

reason, we seek to develop methods that minimize the number of fine-grained spa-

tial solves. Solving for the temporal component of the neutron flux often involves

a spatial homogenization and/or energy condensation allowing for the neutron flux

to be approximated at times between spatial solves. This concept of separating the

spatial and temporal portions of a transient simulation can be employed because the

spatial component of the neutron flux is often slowly varying whereas the amplitude

component varies rapidly.

In 2012, a new spatial kinetics approach called the Multigrid Amplitude Function

(MAF) method was proposed to enable long time step transient transport analysis.

The MAF method is a generalization of other spatial kinetics methods including the

Improved Quasi-static method, the Theta method, and the Frequency Transform

method and it can be built on top of nodal diffusion, Monte Carlo, and deterministic

transport methods. The MAF method is also flexible in the treating the angular flux

derivative directly or applying the isotropic flux derivative approximation.

In this thesis, we begin by deriving the steady state MOC algorithm and discussing

its implementation in OpenMOC, an open-source 2D neutron transport code devel-

oped at MIT, in Chapter 2. In conjunction with this, we will discuss the coarse mesh

finite difference (CMFD) acceleration procedure and how it can be used to accelerate
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MOC. In Chapter 3, we will present results from our analysis of two steady state

neutron transport problems. In Chapter 4 we will derive the time dependent MOC

equations for the Adiabatic, Theta, and MAF methods and discuss their implementa-

tion in OpenMOC. In Chapter 5, two transient test problems will be presented. The

first problem is the transport version of the LRA benchmark, a 2 group assembly-

homogenized BWR diffusion transient problem with thermal feedback. Second, a

transient version of the C5G7 benchmark, a steady-state, 7 group deterministic neu-

tron transport benchmark with heterogeneous fuel and moderator materials, is pre-

sented. Sensitivity studies will be performed on these problems with respect to shape

function time step, amplitude function time step, and coarse mesh size. In Chapter

6, summary, conclusions and recommendations on future work will be discussed.
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Chapter 2

Steady State Method of

Characteristics

The method of characteristics (MOC) is a widely used technique for solving partial

differential equations, including the Boltzmann form of the neutron transport equa-

tion. Originally proposed in 1972 for solving reactor physics problems [8], it has seen

widespread adoption in the reactor physics community with codes including CASMO,

MCCG3D, APOLLO2, DRAGON, MPACT, DeCART, nTRACER, and OpenMOC.

While MOC naturally extends to 3D, most implementations have been in 2D due to

the computational cost and large memory requirements for modeling the full angular

flux dependence in 3D geometries. Additionally, most of the physics effects in lattice

calculations can be modeled through 2D MOC due to the relatively uniform material

properties in the axial direction of LWR assemblies.

In this study, we limit ourselves to 2D MOC to allow us to perform many trials

and understand the effects of simulation parameters on performance and scalability

of the methods. We begin with an overview and derivation of the MOC method in

section 2.1. Next, we discuss coarse mesh finite difference (CMFD) diffusion and how

it can be used to accelerate the convergence of MOC. While most of the work in

implementing the MOC solver in OpenMOC was performed by William Boyd ([21],

[22]), we present the derivation and implementation of MOC for completeness and

as an introduction before deriving time dependent MOC in chapter 4. The time
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dependent aspects of OpenMOC have been implemented wholly by the author of this

thesis.

2.1 Derivation of the steady state MOC algorithm

in 2D

MOC is implemented by discretizing the transport equation over polar and azimuthal

angle and integrating the resultant equation over constant direction "tracks". The

derivation of the steady state MOC integration method begins with the steady state

multi-group form of the neutron transport equation:

-V'g(r, Q) + 94 (r)4j9 (r, Q) = Qg(r) (2.1)

where g is the energy group index, r is the spatial position vector, Q is the angular

direction vector, xI'(r, Q) is the angular flux, Z"(r) is the transport cross-section,

and Qg(r) is the source term. To obtain the characteristic form of Equation 2.1, we

integrate the streaming operator, Q V-I'9 (r, Q), over a constant angle track in the

direction of the angular flux, Q. The angular flux is integrated starting at position r

and traveling a distance s along a track to a new position r + sQ:

r + sQ

r

Figure 2-1. Angular flux traveling along a constant angle track with position r,
distance traveled s, and direction Q.

We first us the chain rule to separate out the components of the spatial derivative:

d dxO& dyO8 dz O
d- = -- + a+ (2.2)

ds dsOx dsay dsOz

Where dr can be expressed as:
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dr = dsQ = dxi + dyj + dzk (2.3)

The dot product of the change in angular flux direction as we move along the

track and the unit vectors in each direction is then:

dsQ - i = dx (2.4a)

dsQ j = dy (2.4b)

dsQ - k = dz (2.4c)

Substituting these into Equation 2.2, we get:

d 0 0 08--d = (Q.- i) a+ (Q J- j)- + (-k) a= Q -V (2.5)
ds ax ay Oz

Substituting Equation 2.5 into Equation 2.1 we arrive at the characteristic form

of the transport equation:

d~jg(s)+ t(26
ds + Et (s),Fg(s) = Qg(s) (2.6)

As mentioned before, we are solving the characteristic equation in 1D along a

constant angle track. This gives us the angular flux in a particular direction and

position in the medium. To obtain the scalar flux we lay down tracks in many

different directions and integrate the angular flux in the complete 47r angular space.

We represent the different tracks across the geometry by giving them a unique index k.

The geometry itself is discretized into flat source regions, or FSRs, which homogenize

material properties as well as the scalar flux and neutron source. The FSRs further

subdivide each track into connected segments with FSR indices denoted r. Figure 2-

2 gives an illustration of the track lay down (left), FSR discretization, and track

subdivision into segments (right) for a pin cell geometry.

Using the indices for track index, FSR, and energy group, the characteristic equa-

tion becomes:
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Figure 2-2. Track layout for pin cell geometry (left) and segments for a particular
track where the fuel has been divided into two rings and the cell has been divided
into four sectors. Each segment is denoted by a unique color corresponding to the
FSR it lies in.

d'I'i~r,g + z-r~'V~~ Qr,g (2.7)ds

The source term Qr,g is defined in terms of both isotropic fission and scattering

from the area-averaged scalar flux, <br,g, in each FSR:

G G
Qrg r g/ r,g/ + Y r g,*g 41)g) (2-8)

ffgI-1 g1=1

where _S is the scattering cross-section for group g' to group g, E'g, is the

fission cross-section for group g', v is the average number of neutrons produced from

fission, Xr,g is the fraction of neutrons produced in group g from fission and keff is

the multiplication factor. Since we are solving the steady state problem, we do not

differentiate between prompt and delayed neutrons in the fission source spectrum.

In Equation 2.8 we have used the "step characteristic" approximation to model the

source as spatially invariant within the FSR. Higher order spatial approximation

schemes such as linear source approximation [19] have been shown to decrease both
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memory requirements and run times and be compatible with CMFD acceleration.

For the purposes of this study, the isotropic source approximation is expected to be

sufficient. Equation 2.7 can be integrated for a segment across an FSR from its entry

point at s' to exit point at s" using an integrating factor:

'Ik,g(S") = 'Jk,g(Se-rk'r9 + (1 ( - e-rk-r,) (2.9)
r,g

with the optical path length defined as rk,,, , (s"-- s'). With minor algebraic

rearrangement, the change in the angular flux along the characteristic k is given by

the following:

Aqk,g = 
1 k,g(S') - qk,g(S) = 'k,g(S') - Qr' (1 - e-7kr9) (2.10)

r,g

By defining 1k,r = s" - s', the average angular flux contribution to FSR r from

track k is the following integral:

- 1 f"
kr = I ] s,'

1
k,r,g(s) ds (2.11)

1k,r s

Upon evaluating the integral, the average flux can be reduced to the following

algebraic expression:

~k,,r,g - 1 kr ["tr[' (1-6kr) k~ 7 ( 1 Tk r )l (2.12)

Equation 2.12 represents the average angular flux along one segment. The area-

averaged scalar flux in FSR r with area Ar can be found by performing an area-

weighted sum of the segment-wise average angular flux in each region and integrating

the average angular flux over azimuthal and polar angles, m and p, using quadrature

rules for each track segment in Ar:

4r P

r,g ~~ I: Wm(k)pWkk,rIk,r,g,p (2.13)
kEAr p=1
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where m(k) represents the azimuthal angle for track k, Wm(k) and wp are the

azimuthal and polar quadrature weights, and Wk represents the track width for track

k. In OpenMOC, the Yamamoto-Tabuchi quadrature set is used for the polar weights

[3]. The azimuthal weight is defined as the fractional angular space owned by a

particular angle:

Am(k)
Wm(k) ~ 2ir (2.14)

27r

where Am(k) is the angular space represented by tracks with azimuthal angle

m(k). The final form of the scalar flux can be found by substituting the expression

for the average angular flux from Equation 2.12 into Equation 2.13, and rearranging

in terms of the change in angular flux along the characteristic from Equation 2.10:

47r E P
r,g - 2r,g - Z Wm(k)WpWk sin OpA'Ik,r,g,p (2.15)

r,g rkEA,, P=1 .

where the polar angle, Op, is measured from the z-axis.

Once a track reaches a geometry boundary, a boundary condition must be applied.

There are two natural boundary conditions, reflective and vacuum, that can easily

be applied to the MOC method. For the reflective boundary condition, the angular

flux for a particular track is given to a complementary track that is a reflection on

the geometry boundary. This requires that tracks be laid down in a cyclic fashion

such that every track has a complementary outgoing and incoming track as shown in

Figure 2-3.

Reflective boundary conditions are often used to simplify a problem when the

reactor is symmetric about either of the axes. Vacuum boundary conditions are used

on the outer boundaries of a reactor. When a track intersects a vacuum boundary,

the outgoing neutron leakage is tallied using Equation 2.16.

G P

L = - 7-= 27E Wm(k)WpWk sin Vpoutgoing vacuum boundary crossings (2.16)
g=1 p=1
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Figure 2-3. Track layout for pin cell geometry with one of the track cycles shown
in red.

where L is the total neutron current leaking out of the geometry. Using the tallied

leakage and FSR scalar flux, the neutron multiplication factor, keff can be computed

using Equation 2.17.

keff =

R G

r19 r,g Ar

L + bZjg Ar
r=1 g=1

(2.17)

where R is the number of FSRs in the geometry. In some problems such as the

transport version of the LRA benchmark, a critical buckling term, B , is used to treat

leakage in the axial direction. In this case, the expression for keff becomes:

R GE 1
r1g=1

kef f

19 r,g r

(2.18)

L + S (EA + B 2 Dr,)>PgAr
r=1 g=1

where Dr,9 is the diffusion coefficient in FSR r and group g.
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The goal of the MOC method is to determine the neutron flux within each FSR,

which can then be used to compute reaction rates. The MOC method is implemented

by performing an iterative two-step procedure. First, the source for each energy group

in each FSR, Q,,9, is initialized. Then the angular flux is propagated along each track

and the contribution for each track segment and each energy group is tallied in the

corresponding FSR scalar flux tally using Equation 2.15. Additionally, the leakage

for each track that intersects a vacuum boundary is tallied in the total leakage tally,

L. This procedure is called a "fixed source iteration" and is shown in Algorithm 1.

A single fixed source iteration, denoted by the index n, involves five nested loops

over azimuthal angles, tracks, segments in different FSRs, energy groups and polar

angles. The sets of all azimuthal angles, tracks, track segments, FSRs, energy groups

and polar angles are denoted by M, K, S, R, G and P, respectively. For notational

simplicity, the subset of tracks for azimuthal angle m is denoted by K(m), the subset

of segments for track k is given by S(k), and the FSR for segment s is represented as

R(s).

Algorithm 1 Fixed source iteration for OpenMOC

r,g +- 0 V r, g E {R, G} # Initialize FSR scalar fluxes to zero
while Qr,g V r not converged do

for all m E M do # Loop over azimuthal angles
for all k E K(m) do # Loop over tracks

for all s E S(k) do # Loop over segments
for all g E G do # Loop over energy groups

for all p E P do # Loop over polar angles
r +- R(s) # Get FSR for this segment

/X'Ik,r,g,p +- ,g,p - r (1 ~
41 r,g +- 'Fr,g +, Wm(k)WpWk sin Oplk,rA'I'k,r,g,p

k,g,p +- Xk~g,p - AXk,g,p
end for

end for
end for

end for
if B.C. are reflective then # Set incoming flux for outgoing track

'k',g,p(0) - ,g,p # Reflective B.C.'s
else

Tk',g,p(0) - 0 # Vacuum B.C.'s
L +- L + 2 7rwm(k)WpWk sin Op'IFk,g,p

end if
end for
Update keff and Qr,g V r # Equation 2.17 and Algorithm 2

end while
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Algorithm 2 FSR source update for OpenMOC
for all r E R do # Loop over FSRs

for all g E G do # Loop over energy groups
Qgl+l) + 4 Vr f ri'gr # Initialize new total source with fission
for all g' E G do # Loop over energy groups

g+) Q(n+l) + _LS (n)
rg 47r rig'-+g rig'

end for
end for

end for

The spatial shape and energy distribution of the flux across FSRs is iteratively

computed by fixed source iterations and source updates until some measure of conver-

gence is achieved. In the version of OpenMOC used in this thesis, convergence is based

on the relative root-mean-square-difference (RMSD) of the group-wise fission source

in FSRs between successive fixed source iterations as represented in Equation 2.19.

R G Fn+,(,_OFn) ()2

RMSD = g 9 (2.19)
R*G

2.2 Coarse Mesh Finite Difference Acceleration

While MOC offers many benefits including treatment of complex geometries and

amenability to parallelization, it suffers from slow convergence which necessitates

the use of acceleration methods. Numerous acceleration schemes have been pro-

posed for MOC such as CMFD [13], coarse mesh rebalance (CMR) [2, 18], hybrid

CMFD/macro-group MOC acceleration [10], and low order transport operator ac-

celeration [17] with CMFD being the most widely adopted due to its simplicity and

acceleration performance. OpenMOC uses the CMFD nonlinear diffusion acceler-

ation (NDA) scheme to reduce the number of iterations required for convergence.

Acceleration schemes, such as NDA, are necessary when solving full-core problems

which require thousands of power iterations in LWR problems that tend to have high

dominance ratios. CMFD was first proposed by Smith [13] and has been widely used

in accelerating neutron diffusion and transport problems for many years [9, 24]. In
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particular, it has been shown that CMFD acceleration gives >100 x speedups on large

LWR problems [14].

CMFD acceleration functions by using the solution of a coarse mesh diffusion

problem to accelerate the convergence of a fine mesh transport problem. It is imple-

mented by overlaying a 2D rectilinear mesh over an FSR mesh. Figure 2-4 gives an

illustration of the FSR mesh layout and coarse mesh layout used for solving a 17 x

17 PWR assembly problem.

Figure 2-4. Flat source region (left) and CMFD (right) mesh layout for a 17 x 17
PWR assembly where each colored cell denotes a different region.

To derive the CMFD equations, we begin with the 2D, steady state multi-group

neutron diffusion equation:

G

-v Dg (x, y)VOg (x, y) + zgA (x, y)Og (x, y) + E g,(x, y)#g(x, y)
g/=1
g/fg

Sf(xY)

keff

G

(2.20)

G

S v4 (x, Y)qOw (x, y) 5: Z">"(x, Y)qOg, (x, y)
g1=1 g/=g

g/og

where terms in Equation 2.20 are defined in Table 2.1
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Table 2.1. Descriptions of the diffusion equation terms

Variable Description Variable Description

D Diffusion coefficient # Scalar flux on coarse mesh
A Coarse mesh absorption XS X Fission spectrum

ZS Coarse mesh scattering XS keff Neutron multiplication factor
EF Coarse mesh fission XS v Neutrons per fission

g, g' Energy group index x, y Position variable
G Coarse mesh energy groups

2.2.1 Generation of cross sections for the coarse mesh

The cross sections for the CMFD diffusion equation are generated by energy-condensation

and area-averaging of the cross sections from the fine mesh as shown in Equation 2.21.

The energy group structure of the CMFD diffusion equation does not have to be the

same as the energy group structure used in MOC. For example, Figure 2-5 shows

the various ways to formulate the CMFD group structure to accelerate a three group

MOC problem.

91 g1 91
- --- - - --- 1g
92 92 g1

93 93 92

CMFD
Structure 1

CMFD
Structure 2

CMFD
Structure 3

CMFD
Structure 4

Figure 2-5. Illustration of possible CMFD energy
MOC calculation.

group structures for a three group

where energy groups in MOC are denoted with g and energy groups in CMFD

are denoted with g. The generalized equations for computing cross sections on the

coarse mesh are then described by Equation 2.21.

37

MOC
Structure



ZA 4D Ar
ZA,i,j _ ge rE(i,j) (2.2 la)

gEg re(i j)

SF 4(D~r Ar

ZFi,j _ gEg rE(ij) (2.2 1b)
g I: I: r,g~lr

gEg rE(ij)

5: E ' r,g rAr
-Fij gEg rE(ij) (2.21c)

g 1: E r,gAr

gEg re(ij)

Es 4Dg-gA

zs,i,j gEg g/Eg/rE(ij) (2.21d)

gE9 rEij 3ArMr1 r,g r

D Z' -(2.21le)

gEg rE(ij)

G

Lr r,g Ar

_ gE rE(ij)9=1gXg rGi,) G~ (2.21f)

Xr,g!Iv rg1 r,g/Ar

r E(ij) 9/=1 9/1=1

5DrgAr
- gEg rE(ij)

5 Ar
re(ij)

where i and j denote the mesh cell indices in the x and y directions, respectively.

2.2.2 Finite difference approximation of flux between neigh-

boring cells

The diffusion operator in Equation 2.20 can be expanded to yield:
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-- Dg(x, y) - (x, y) - D (x, y) - (x, y) + (x, y)#g(x, y) (2.22)
O9x ax ay ' 0  g a'

- f zg(X (X S) Og yqg(X, Y) + zG g(X y)qOg(X, y)
effg=1 g=1

g/#g

where the removal cross section, ZE is defined as:

G

Zg 'A+ E _S (2.23)
g/=1

g/$g

In cases where axial buckling is specified the removal cross section takes the fol-

lowing form:

G

E >Dg B2 + E + I zE_, (2.24)
g/=1
g/$g

We can integrate Equation 2.22 over a mesh cell to get the neutron balance in

that cell. Performing the integration on cell (i, j) and simplifying we get:

! D'9' dxdy -J j+ D''j 'jdxdy (2.25)
i 1 a~ x 9a x _ 1 y 09 ay

ijG G

+A ij'~y' AyjZ 5' A,) Yg g + AX2'3Ay' g/
keff g/=1 gI= +

where Ax'j and Ay'1 denote the width and height of cell (i, j), respectively.

Using the Divergence Theorem, we can reduce the volume integrals of the streaming

terms to surface integrals over the bounding surfaces of a cell. The surface integrals

will then represent currents across the surfaces of a cell. Using streaming in the x-

direction as an example, we can rewrite the volume integral of the streaming term in

the x-direction as:
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Dj - #g'dxdy = - y'(J ' -J 2,)

2 2;J-2

(2.26)

where J+,j and J~ ' represent the surface-averaged net current across the right

surface and across the left surface, respectively. An analogous equation can be written

for streaming in the y-direction.

As an example, we will now solve for the currents on the right surface of a cell

(i, j) with neighboring cell (i + 1, j) as illustrated in Figure 2-6.

D. +! D+2' D2+j
g9 J

0~ 2 qi+l~j

Figure 2-6. Illustration of terms required to solve for streaming of neutrons between
cells (i, j) and (i + 1, j) in CMFD diffusion.

To solve for the current at cell boundaries, we can perform finite difference ap-

proximations of the flux at a surface using the flux in the adjacent cells:

i+1 j

Jggg
+i+,j, dx

4 9 dx

i+ .! j i+ .,-j

(2.27)_.-+i+1,,5 -
g Axi+l,

2

g Ax'j
2

where J ,2+ and J2 7 , are the surface-averaged net currents as approximated

using a backward difference approximation from the cell at (i, j) and a forward dif-

ference approximation from the cell at (i + 1, j), respectively. Equating these repre-

sentations of the current we can solve for the flux at the surface:
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i+ "j D-jO'JiAx'+1J + D +1JO +1J Ax J
#9 = . . 9 (2.28)

D'Axi+lj +D+Axid

The net current across the surface at (i + 1, j) is then:

J+ , _,z O+1j _ ij) (2.29)

where:

- i~i2D'jD'+1d
Dg D' = . . l + (2.30)9 D 'J Ai+1dj + Dg+1,s Azid

The neutron balance equation in a cell then becomes:

S-J AXZ,- (J - Ji' g) (2.31)

ij G G
-g 3 F ,i, , ' S -J 2

g~g

ffg/= g/=
g/$g

Note that Equation 2.29 is the algebraic net current based on the finite difference

approximation being applied across the surface of two neighboring cells and not the

actual net current in the MOC problem. The actual current from the MOC problem is

computed by accumulating the current contribution from every segment that crosses

a surface as will be shown in the subsection 2.2.3.

2.2.3 Introduction of nonlinear diffusion correction factors

In order to conserve neutron balance between the CMFD and MOC problems, the

net currents across the coarse mesh cell surfaces must be equal. The surface diffusion

coefficient expression in Equation 2.30 results in a neutron current close to the actual

current produced via the MOC solve, but there is no guarantee the currents will be

equal. To compute the currents from MOC, the net currents are tallied during a fixed
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source iteration by summing the current contributions from each track that intersects

a surface. For example, Equation 2.32 represents the net current tally expression for

surface (i + }, j).

+j2)= 27lWm(k) WkWp sin Op'k,g,p - n (2.32)
kn(i+ ,j) gEg

where ft is the unit surface normal and Ck is the length of surface crossed by the

track, as illustrated in Figure 2-7. The first sum in Equation 2.32 is over all tracks

that cross the surface between mesh cells (i, j) and (i + 1, j).

Wk ------ '
1 !k,g,p

cell (i, j) cell (i + 1, j)

Figure 2-7. Angular flux from track k with energy group g and polar angle p crossing
surface (i + }, j).

The length of surface crossed by the track is defined as:

Wk
Wk = (2.33)

cos B

Inserting Equation 2.33 into Equation 2.32 gives us:

ji+.!,j =_ S = E 27rWm(k) COS Ok wp sin Op k,g,p - .34
kn(i+I,j) gEg

When we apply the scalar product between the track azimuthal angle with the

unit surface normal of the track, we get cos 6 k, which reduces Equation 2.34 to:

+4 = 27rWm(k)UWkUp sin 0 pk,g,p (2.35)
kn(i+,j) gEg

In order for the tallied net currents to equal the net current expression, a nonlinear
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diffusion coefficient term is added to Equation 2.29:

+ 11j

Ayij = -D 9 J -9 Dg g (2.36)

where b is the nonlinear diffusion coefficient correction factor. Note that the

current expression on the right hand side of Equation 2.36 computes the surface-

averaged net current whereas the current tallied from MOC has not been averaged

over the surface; therefore, in Equation 2.36 the net current tallied from MOC has

been divided by the length of the surface that is being crossed. 5 is computed to

make Equation 2.36 valid for the tallied net surface current in MOC for the most

recent fixed source iteration:

-b + J O + jOij 
i.

D - D .2 J~Zl~ i (2.37)g - (i+1~j + ij) (.7

2.2.4 Treatment of optically thick regions

As shown in Figure 2-4 the CMFD mesh is often applied at the pin cell level with cells

on the order of 1-2 cm. By conserving reaction and leakage rates within cells, CMFD

guarantees preservation of area-averaged scalar fluxes and net surface currents from

the MOC fixed source iteration if the CMFD equations can be converged. However,

when the fine mesh cell size becomes significantly larger than the neutron mean free

path in that cell, the step characteristics no longer preserve the linear infinite medium

solution to the transport equation [6]. While the nonlinear diffusion correction term in

CMFD is guaranteed to preserve reaction rates and surface net currents for any choice

of diffusion coefficient, convergence (and convergence rate) of the nonlinear iteration

acceleration of CMFD is affected by the choice of diffusion coefficient. All flat source

methods, when applied for thick optical meshes, artificially distribute neutrons in

space. This is the reason that Larsen's effective diffusion coefficient [6] is useful in

assuring that the CMFD acceleration equations have a diffusion coefficient (on the flux

gradient term) that is consistent, not with the physical transport problem, but with

the transport problem that is being accelerated by the CMFD equations. Larsen's
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effective diffusion coefficient is precisely this term in the one-dimensional limit. The

effective diffusion coefficient in the x-direction for cell (i, j) can be expressed as:

Di'ieff'x - D' ( 1 + A i - (2.38a)
g 9 2DZ 3 ( a

P

cos(OP)wpa cx

pg, - p (2.38b)

p= 1

1 + exp1[-y i']\ 2
K1'e'p[-Z%']) (2.38c)

JI' - (2.38d)
"'V 3D 'cos((O)

Note that the effective diffusion coefficient depends on the width of the cell and

is therefore directional in a 2D mesh. Equation 2.38 can also be used to compute

the effective diffusion coefficient in the y-direction, which will differ from the effective

diffusion coefficient in the x-direction if the cell is not square. As the size of the cell

approaches zero and the optical thickness of the cell approaches the optically thin

limit, the effective diffusion coefficient will approach the material diffusion coefficient.

For simplicity, we continue to use the surface diffusion coefficient terms in the rest of

this thesis without the "eff" superscript.

2.2.5 Treatment of coarse mesh cell corner crossings

In the CMFD formalism introduced in the previous sections, we only treat transport

to adjacent cells. However, MOC produces tracks that directly and indirectly intersect

mesh cell corners. A direct crossing is defined as a crossing where the centerline of a

track directly intersects a mesh cell corner. An indirect crossing is defined as a crossing

where the track sweeps through a corner but the track centerline does not directly

cross through it. Illustrations of these two crossing types are shown in Figure 2-8.

There are three main approximations to treat corner crossings:
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(I + I

Figure 2-8. Illustration of direct (1) and indirect (2) track corner crossings.

1. Consistently tallying the current from direct corner crossings to only one of

the surfaces. This approximation effectively moves the tracks that directly

cross through a corner far enough to one side such that the entire segment

crosses a single surface. In order to maintain neutron balance, tracks must be

consistently moved to the same side for tracking forward and backwards along

a track. Indirect crossings are ignored.

2. Split the current from direct corner crossings to each of the neighboring surfaces.

This approximation effectively splits the track into two half-weighted tracks and

moves them to either side of the corner such that each new half-weighted track

only sweeps across one surface. Indirect crossings are ignored. This is essentially

a special case of approximation 3 where only direct crossings are treated.

3. Split the current from direct and indirect corner crossings to each of the neigh-

boring surfaces and weight the current contribution to each surface based on

the length of that surface swept through by the track.

Note that tracks are not physically moved in any of these cases; rather, we make

the assumption that they are moved when we tally the surface currents. In OpenMOC

we have implemented approximation 2 where only direct corner crossings are treated;

indirect crossings are tallied only on the surface that is directly crossed by a track.

While applying approximation 3 would be more accurate, this would incur additional

storage requirements as each segment that crosses a surface needs to know which

surface(s) it crosses and a weight for splitting the current contribution to each surface
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crossed. Illustrations of the approximations applied to direct and indirect surface

crossings are illustrated in Figure 2-9.

(i,j + 1)

(i, j) ,

(i + 1,j +

'I(i +11j)

1)

0
(ij +1)

(i + 1, j + 1)

(i + 1, j)

+ 1, + 1)

(ij + 1)

(ij)

+ 1,j + 1)

(i + 1,j)

(ij 1)

(i,.j) -i

1, + 1 1 )

/(i +1, j)

Figure 2-9. Illustration of approximations applied to direct (above) and indirect
(below) corner crossings. The approximation applied is denoted by the number in
the circle. The blue dashed lines bound the track sweeping area and the red dashed
lines separate partially weighted tracks.

The tallies for a track that crosses from cell (i, J) to (i+1, j+1) with approximation

1 include a tally on the surface between cell (i, J) and cell (i + 1, j) and on the surface

between cells (i + 1, j) and cell (i + 1, j + 1). The current must be tallied on the second

surface in order to preserve neutron balance and ensure that neutrons traveling on

the track get transferred from cell (i, j) to cell (i + 1, j + 1). It is also important that
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the track be assigned to the same surface for both forward and reverse tracking.

The tallies with approximation 2 are simply half-weighted tallies for tracks that

pass on either side of the corner:

-i+A I j
4 1+=

2

J + 2

Jg 2
+=

4 1+=

kI
kn(i+}I,j+

kn(i+A ,j+

kn(i+A ,j+

Z Ek,g1p
2}) gEg

Z: Ek,g,p
-}) 9Eg

E Ek,g1p

.1) 9Eg

Z) kgp

2-gEg

6 k,g, - 27rum(k)WkWp sin 6 pXk,g,p

(2.39a)

(2.39b)

(2.39c)

(2.39d)

(2.40)

The first summation in Equation 2.39 is over the tracks that directly cross through

corner (i + , j + 1). Like the tallies in approximation 1, the tallies used in approxi-

mation 2 include tallies for the surface of the adjacent cell to the diagonal cell. The

tallies with approximation 3 are slightly more complicated as they include the po-

sition at which the track crosses the surface and the position of the corner. Let's

assume that a track crosses the surface between cells (i, j) and cell (i + 1, j) at point

(Xk, Yk) and the corner of interest is at point (xi+!, y+A) as shown in Figure 2-10.

The tallies for tracks that directly or indirectly intersect the corner illustrated in

Figure 2-10 and described in Equation 2.41.
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Figure 2-10. Illustration
sections and corner point.

of an indirect corner crossing with labeled surface inter-

i,j +=

i, 2 +=
tji,j+1!

kn(i+-,j+}) gEg

E grd

kn(i+},j+}) gEg

SE
E gE

xk -- Xi+i 12

(0.5- - -
Wk

( (Xk -

(0-5+ Wk

(0.5 -

(0.5 +

(Xk

(k -- y1{)2
S k Ek,, (2.41a)

(Yk /Yj )2

Cjk 2 .) C,,, (2.41b)

-- 2k - y+1)2

Cjk + Ck _)6~

(Xk - i+1)2

Wk

(Yk -- Yj+.)2

Cjk 2 ) k,g,p (2.41d)

where the summation is over the tracks that directly and indirectly cross through

corner (i + ', j + '). All other surface crossings are treated with Equation 2.35.
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2.2.6 Matrix form of CMFD method

Going back to Equation 2.31 and inserting the nonlinear diffusion coefficients from

Equation 2.36, the finite difference form of the diffusion equation over a mesh cell

becomes:

Aj(b23[3-2- Z1 3]1 + D g21q~ + i1J> (2.42)

(+ - +i+ l -

+1 +1

Axyi 3 ~[oi+, - q$2~jl] + D~ [A~+ 3 _0%,])+

2j~ i _ OA 3 1 C.b 2GO

i G G
gkeff g=1 g/=1 -+gi9

We can condense the CMFD diffusion equations down to matrix form to get the

following generalized non-hermitian eigenvalue problem:

1
A# = M# (2.43)

keff

The matrices can be arranged in either a group-wise or cell-wise ordering. The

CMFD implementation in OpenMOC uses a cell-wise order where the A matrix is

composed of a block diagonal with blocks of size G x G and four off-diagonals for

transport to neighboring cells as shown in Figure 2-11.

In subsection 2.2.7 we discuss how this matrix equation will be solved and used

to accelerate the solution of the MOC solve.

2.2.7 CMFD accelerated MOC algorithm

The general flowchart for MOC algorithm and CMFD acceleration are shown in Fig-

ure 2-12.
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Figure 2-11. CMFD mesh layout (left) and spy of CMFD A matrix (right) for a 4
x 4 infinite lattice pin-cell problem with 7 energy group cross sections.

CMFD acceleration is implemented in OpenMOC by overlaying a rectilinear coarse

mesh on top of the unstructured flat source region mesh as shown in Figure 2-4.

During an MOC fixed source iteration, OpenMOC tallies the net currents across

the surfaces of each mesh cell. The fixed source iteration algorithm then becomes

Algorithm 3.

At the end of the fixed source iteration, OpenMOC proceeds to condense the cross

sections, flux, and diffusion coefficients according to Equation 2.21. The diffusion

coefficient coupling terms that link neighboring cells, b and D, are then computed

using Equation 2.30 and Equation 2.37. There are two subtle points in computing

the nonlinear coupling coefficients b. First, the condition DIb < DI must be met

in order to guarantee the diagonal dominance in the destruction matrix, A. If this

condition is not met, the surface diffusion coefficients will be re-computed such that

they are equal in magnitude and satisfy Equation 2.36. Second, under-relaxation of

the nonlinear coupling coefficient is used to accelerate and maintain stability of the

MOC problem for large, heterogeneous geometries. OpenMOC does so by applying a

fixed damping factor on the - terms. The nonlinear diffusion coefficients are initially

set to zero and modified according to Equation 2.44.
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Figure 2-12. The solution procedure for CMFD accelerated MOC.

i ij(n) i+1,j,(n) j~j(n + j-D 21 1 (0 ijj,(n

D9 -) (1 Wd/ +Wd Oi+1,j,(n) ji(n)) (2.44)
(# + #9

where Wd is the under-relaxation damping factor and (n) is the fixed source iter-

ation. Within each CMFD iteration, OpenMOC uses power iterations to solve the

generalized non-Hermitian eigenvalue problem as shown in Algorithm 4. In each

power iteration, the linear system is solved using a parallel (red-black) implementa-

tion of the Gauss-Seidel (GS) method as shown in Algorithm 5. Upon convergence of

the CMFD diffusion problem, OpenMOC performs prolongation by multiplying each

FSR's scalar flux by the ratio of the converged coarse mesh scalar flux to the initial
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Algorithm 3 Fixed source iteration for CMFD accelerated OpenMOC
frg +- 0 V r, g E {R, G} # Initialize FSR scalar fluxes to zero
while Q,,g V r not converged do

for all m E M do # Loop over azimuthal angles
for all k E K(m) do # Loop over tracks

for all s E S(k) do # Loop over segments
for all g E G do # Loop over energy groups

for all p E P do # Loop over polar angles
r +- R(s) # Get FSR for this segment

_~ -- kr,g,p)
A'Irkjrjgjp +('J'k ,g,p -Etr)( ek

r <-<r,,g + !'f-m(k)WpWk sin Oplk,rAXFk,r,g,p

ik,g,p +- k,g,p - AFk,g,p
end for

end for
if Xik,r,g,pn surface then # Check if segment on a surface

for all g E G do # Loop over energy groups
for all p E P do # Loop over polar angles

-i 1 ,j
Jg 2 2 +- 2 7rwm(k)WkWp sin OpXIk,g,p

end for
end for

end if
end for

end for
if B.C. are reflective then # Set incoming flux for outgoing track

J'k'.,g,p(O) - k,g,p # Reflective B.C.'s
else

'Ik',g,p(O) <- 0 # Vacuum B.C.'s
L <- L + 2 lrwm(k)WpWk sin O,,

end if
end for
Solve CMFD diffusion problem # Algorithm 4
Update MOC scalar flux # Equation 2.45
Update keff and Q,,g V r # Algorithm 2

end while

coarse mesh scalar flux in the acceleration step:

~/i,j,new
bng = 4Dg ., V r E (i, j) (2.45)

Where #ij'old is the coarse mesh scalar flux computed using equation Equation 2.21

and #,3,n,, is the converged CMFD coarse mesh scalar flux for coarse group g that

contains group g.

Instead of splitting the corner currents during the MOC fixed source iteration,

OpenMOC tallies the corner currents as independent surfaces and then splits the
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Algorithm 4 Power Iteration

X, ES,A,F,tr S,A,F D,#
Compute D, D
Sold = MO5

Sold /= N*2 "
while Se, not converged do

0 = A-1Sold
Snew =M#

keff = S"."'

Sold = kef f
R = (Snew - Sold)/Snew
EPS= lXR2/(N * G)

Snew /"Snew5few/ N*G
Sold = Snew

end while

Outer Loop Source Iteration

Condense XS using Equation 2.21
Equation 2.30 and Equation 2.37
Compute initial source
Normal source to average 1.0

Algorithm 5
Compute the new source
Compute keff

Scale the old source
Compute the fission source residual
Compute the fission source RMSD

Normal source to average 1.0
Pass new source to old source

corner currents between their neighboring surfaces in step 2 of Algorithm 4. With

the corner currents accounted for, the surface diffusion coefficients are then computed

just prior to the power method eigenvalue solve. The first step in the power method

inner loop iteration is to solve a linear fixed fission source problem. The GS method

is used to solve the linear system as described by Algorithm 5. While more com-

putationally efficient methods exist for solving generalized non-Hermitian eigenvalue

problems like Krylov-subspace methods, we chose the power method for its simplicity

and stability. Additionally, more computationally efficient methods exist for solving

the linear system like Generalized Minimum Residual (GMRES) and stabilized bi-

conjugate gradient (BiCGStab). As we will show in the timing results in Chapter 5,

the power method with GS performs sufficiently well for this application where the

time to complete the fixed source iteration with dominate the problem run time.
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Algorithm 5 Parallel (red-black) Gauss-Seidel numerical flux inversion
while # not converged do

#O=ld # Copy # to 0,1d

for all y E Y do # Loop over red cells
for x = mod(y, 2): x+=2: x < X do

for all g E G do # Loop over groups

xy,(k+1) =
g9 - (SaA ,y,(k+)

\l~ Axy 0 - Ay# x'y'(k)

Y>X
end for

end for
end for
for all y E Y do # Loop over black cells

for x = 1 - mod(y, 2) : x += 2 : x < X do
for all g E G do # Loop over groups

x,y,(k+l) (sOdX - xj ,y,(k+1)

end for
end for

end for
R = (MO(k+l) - M#(k))/(M#(k+1))
EPS = Z R2/(N * G)

end while

(k))
- Z A

# Compute the fission source residual
# Compute the fission source RMSD

54



Chapter 3

Steady State Results

In this chapter we analyze the sensitivity of simulation parameters and model the

performance of OpenMOC for solving the steady state transport specifications of the

LRA and C5G7 benchmarks. The sensitivity analysis was performed to determine

the simulation parameters (e.g. track spacing, number of azimuthal angles, and ge-

ometry discretization) required to converge the eigenvalue. A performance analysis

was performed to understand the acceleration capabilities of CMFD as a function of

coarse mesh cell size and energy group structure.

3.1 LRA Transport Benchmark

The transport version of the 2D LRA transient benchmark problem is specified in

section A.1. The 2D LRA benchmark is a 2-group, quarter-core BWR transient

problem this is specified using diffusion theory cross sections. A transport version of

the benchmark was presented by [16] as a test problem for modern transport theory

neutronics codes. To our knowledge, no one has presented a spatially converged

solution to the initial state of the transport version of this benchmark. Therefore,

we use an ultrafine mesh and dense track layout to generate a spatially converged

solution that can be used for comparisons.

The geometry of the LRA problem is discretized into homogenized assemblies

of size 15 cm x 15 cm. In order to spatially resolve the flux, the assemblies were
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uniformly refined until the eigenvalue converged. The following refinements and cor-

responding flat source regions sizes were used in the study:

Table 3.1. FSR discretizations used in LRA convergence study

Uniform Refinements FSRs per assembly FSR size (cm)

0 1 15x15
1 4 7.5 x 7.5
2 16 3.75 x 3.75
3 64 1.875 x 1.875
4 256 0.9375 x 0.9375
5 1024 0.46875 x 0.46875
6 4096 0.2343675 x 0.2343675
7 16384 0.1171875 x 0.1171875

In all simulations the parameters listed in Table 3.2 were used:

Table 3.2.

Parameter

Number of polar angles
CMFD damping factor

CPU architecture
Threads

Calculation conditions

Value

3 (using TY quadrature set)
0.5 (unless otherwise specified)
2 6-core Intel Xeon processors

12

For the sensitivity analysis, a three dimensional parameter space was explored to

find the conditions necessary to achieve a spatially converged solution. The dimen-

sions include track spacing, number of azimuthal angles, and mesh cell size. The finest

mesh cell size and densest track layout was assumed to be the spatially converged

solution. The parameters and flux plots for this reference solution are presented in

Table 3.3 and Figure 3-1.

3.1.1 Sensitivity analysis to simulation parameters

In solving a problem with the 2D formulation of the method of characteristics, there

are three main parameters to manipulate to refine the solution: the track spacing,

the number of azimuthal angles, and the number of FSRs. There are obvious memory
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Table 3.3. Calculation parameters for converged LRA problem

Parameter Value

# of azimuthal angles 32
Track spacing 0.05 cm

MOC mesh size 0.1171875 cm x 0.1171875 cm
Converged keff 0.997213

0.00135
0.0032

0.00120

50 0.0028 50
0.00105

0.0024
0.00090

0.0020
0.00075

0.0016
0.00060

0.0012 0.00045

500.0008 -50.00030

0.0004 0.00015

-50 0 50 0.0000 -50 0 50 0.00000

Figure 3-1. Flux plots for fast (left) and thermal (right) groups of the initial state
of the transport LRA benchmark.

and runtime advantages to limiting the mesh size and number of tracks that traverse

the geometry. However, different problems require different combinations of mesh and

track refinement in order to spatially resolve the fission source. For example, regions

where there are large flux gradients, such as in fuel pins where spatial self-shielding

occurs, can result in fission rates that vary by a factor of 2 or more depending on

location. Additionally regions around the core/reflector boundary can require a very

fine mesh to resolve the position and magnitude of the flux peak in the reflector.

To understand the influence of track spacing, number of azimuthal angles, and

the number of FSRs on the problem eigenvalue, a series of trials were conducted to

examine the parameter space. The track spacing and number of azimuthal angles

used in trials is presented in Table 3.4 and the spatial discretizations are presented

in Table 3.1.

From these trials, we found the eigenvalue to be relatively insensitive to the num-
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Table 3.4. Calculation conditions

Parameter Values

Azimuthal angles 8, 16, 32
Track spacings (cm) 0.1, 0.05, 0.025, 0.01

ber of azimuthal angles and track spacing. For example, Figure 3-2 shows the eigen-

value error, Ak, for trials conducted with an FSR mesh with 5 uniform refinements

(0.46875 cm x 0.46875 cm FSRs). The insensitivity to the number of azimuthal

angles and track spacing is expected as the materials in the LRA problem are homog-

enized over large regions and the energy group structure is condensed to 2 groups.

This makes it impossible to resolve the fine spatial and energetic flux features that

would result in sharp local flux gradients in the physical geometry. For example,

highly absorbing materials (e.g. control rods or burnable poisons) or neighboring fuel

assemblies with significantly different U/MOX contents can cause significant local

flux gradients that would require a fine track lay down to properly resolve. With this

information, we selected a track spacing of 0.05 cm and 32 azimuthal angles as

sufficient values to converge the eigenvalue.

The eigenvalue was found to be very sensitive to the FSR size. Figure 3-3 shows

the eigenvalue error as compared to the spatially converged solution for a series of

trials conducted with a track spacing of 0.05 cm and 32 azimuthal angles.

The data in Figure 3-3 demonstrates that in order to achieve an eigenvalue error

of -25 pcm, the FSR mesh needs to be refined to below 0.5 cm x 0.5 cm. From this

analysis, we selected the FSR mesh size of 0.46875 cm x 0.46875 cm to be used

in our transient analysis.

3.1.2 Performance analysis of CMFD acceleration

Coarse mesh finite difference acceleration has been shown to produce speedups of

> 100x for large LWR problems [14]. In OpenMOC we have adopted a generalized

CMFD scheme that allows users to set the CMFD mesh size independent of FSR mesh

size but with the requirement that FSRs can lie within only one CMFD mesh cell.

This allows for CMFD acceleration to be performed on a (multi-) pin-cell, (multi-)
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Figure 3-2. Plot of eigenvalue error vs track spacing for various azimuthal angle
values for the steady state LRA benchmark. The FSR size was selected to be 0.46875
cm x 0.46875 cm.

assembly, or core level. Furthermore, the energy group structure for CMFD acceler-

ation can be set independent of the group structure used in the MOC problem with

the requirement that MOC energy groups must be fully contained within one CMFD

energy group. This allows for fine-group transport calculations to be performed and

significant acceleration to be achieved without a fine-group CMFD diffusion solve that

can require significant compute time when the group structure goes beyond 50-100

groups.

The main parameters that affect the performance of CMFD in accelerating the

solution to an MOC transport problem include the CMFD mesh cell size, CMFD

energy group structure, and CMFD non-linear diffusion coefficient damping factor.

All performance trials were conducted using parameters identified in subsection 3.1.1

as producing a sufficiently converged solution. Figure 3-4 shows the runtime and
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Figure 3-4 shows that there is a tradeoff between minimizing the number of MOC

fixed source iterations and the runtime to converge the fission source in our implemen-

tation of CMFD. The assembly-wise CMFD meshes (0 refinements) produced poor

performance due to the excessive number of MOC fixed source iterations. Similarly,

the fine CMFD meshes (4 and 5 refinements) had poor runtime performance due to

excessive computing time to solve the CMFD diffusion problem after each MOC fixed

source iteration. The CMFD energy group structure had a small effect on the runtime

and number of MOC fixed source iterations required to converge the solution. In all

cases, the performance of the 2 group structure was better than the 1 group case.

This performance advantage can be attributed to the reduction in MOC fixed source

iterations required to converge the fission source for the 2 group structure. It should

also be noted that the eigenvalue for all these trials was within 10 pcm of each other

demonstrating consistency between answers produced with various CMFD mesh levels

and unaccelerated MOC. A small difference in eigenvalues can be expected between

the unaccelerated and accelerated cases due to slightly premature convergence for the

unaccelerated and coarse spatial/energy discretization cases. Using this information,

we selected CMFD mesh sizes of 1.875 cm x 1.875 cm and 3.75 cm x 3.75 cm to

be further studied in transient analysis due to their ability to rapidly accelerate the

convergence of the MOC problem. For completeness, we have included the runtime,

MOC fixed source iterations, and eigenvalue for each of the cases plotted in Figure 3-4

in Table 3.5.

The effect of a fixed damping factor on the CMFD method was also investigated.

In all cases the same 2 group structure was used in MOC and CMFD. Table 3.6 and

Figure 3-5 show the number of fixed source iterations required to converge the fission

source distribution to le-6 for the LRA benchmark problem using various damping

factors. The effective diffusion coefficient is applied in solving the CMFD equations

for simulations with CMFD mesh sizes of 15 cm, 7.5 cm, and 3.75 cm. As shown

in Table 3.6 the CMFD method with a damping factor of less than 0.6 reduces the

number of MOC fixed source iterations by a factor of >100 and the runtime by a

factor of >45. For this specific case, the optimal damping factor was found to be
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Table 3.5. The eigenvalue, runtime, and number of fixed source iterations required
to converge the LRA benchmark with different CMFD mesh sizes.

CMFD mesh CMFD Fixed source keff Runtime
size (cm) groups iterations (s)

no accel - 5305 0.996950 3437.5
15 2 333 0.996955 234.2
7.5 2 161 0.996957 117.1

3.75 2 86 0.996956 77.3
1.875 2 35 0.996955 71.5

0.9375 2 22 0.996955 177.8
0.46875 2 23 0.996954 2798.5

15 1 330 0.996955 239.5
7.5 1 181 0.996956 137.6

3.75 1 107 0.996956 96.4
1.875 1 72 0.996957 142.7

0.9375 1 74 0.996956 439.6
0.46875 1 71 0.996956 4928.1

-0.5 and a damping factor of 0.7 or greater would fail to converge the problem.

0

L.

0

- C"

0

Ifl

Ifl

0:

105

104

10 3

10 2

10,

100

10-
10-

10-

105

10-
20 40

iteration #
80 100

Figure 3-5. Plot of relative RMSD in group-wise fission source (Equation 2.19) vs
iteration # for trials with various damping factors.

62

no accel - DF = 0.6
DF = 0.1 - DF = 0.7

- DF = 0.2 +-+ DF = 0.8
SDF = 0.3 - DF = 0.9

DF = 0.4 +-+ DF = 1.0
DF = 0.5

0 60



Table 3.6. The eigenvalue, runtime, and number of fixed source iterations required
to converge the LRA benchmark with different CMFD damping factors.

CMFD Damping factor fixed source iterations keff Runtime (s)

N - 5305 0.996950 3437.5
Y 0.1 78 0.996955 146.9
Y 0.2 43 0.996955 95.6
Y 0.3 36 0.996955 77.0
Y 0.4 36 0.996955 72.3
Y 0.5 35 0.996955 71.5
Y 0.6 31 0.996956 68.0
Y 0.7 - - -
Y 0.8 - -
Y 0.9 - - -
Y 1.0 - - -

Based on the runtime performance and stability for the various damping factors

used, we selected a damping factor of 0.5 to be used in the transient analysis.

3.2 C5G7 Transport Benchmark

The transient version of the 2D C5G7 transport benchmark problem is specified in

section A.2. To summarize, the C5G7 problem was developed as a modern benchmark

for deterministic neutron transport methods without spatial homogenization. The

problem contains sixteen 17 x 17 pin cell assemblies surrounded by water with vacuum

boundary conditions on all sides. The benchmark maintains heterogeneity between

the fuel and moderator regions. Typically the problem is presented as a quarter core

problem with reflective boundary conditions on inner surfaces (Figure A-2). In the

steady state analysis, the quarter core geometry is used.

The C5G7 benchmark specification provides the reference eigenvalue and pin pow-

ers to allow code developers to compare the accuracy of their codes. Before performing

the sensitivity analysis, we tested the accuracy of OpenMOC by simulating the C5G7

benchmark problem with an ultrafine FSR discretization, 128 azimuthal angles, and

0.05 track spacing. The pin cells in the ultrafine FSR case discretized into three equal
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volume fuel rings, three water rings of inner radius 0.54 cm, 0.58 cm, and 0.62 cm,

and eight sectors. The reflector region adjacent to the bundles is discretized into two

regions of thickness 13.86 cm and 7.56 cm when going from the fueled assemblies to

the boundaries. The region closest to the fueled assemblies is discretized into square

cells of side length 0.126 cm followed by the outermost region with square cells of side

length 1.26 cm. A summary of the results and plots of the fast and thermal flux for

this simulation are shown in Table 3.7 and Figure 3-6, respectively.

Calculation parameters for

Parameter

# of azimuthal angles
Track spacing

Flat source regions
Converged keff

Reference keff

Akeff (pcm)

converged C5G7 problem

Value

128
0.05 cm
142,964
1.18672
1.18655

+17 pcm

0.0072 30

0.0064
20

0.0056

0.0048 10

0.0040

0.0032

-10
0.0024

0.0016 -20

0.0008

-30
0.0000-OV -41V -Av V J.V AU -JU -C _A V AU

Figure 3-6. Flux plots for fast (left) and thermal (right) groups of the C5G7 bench-
mark.

While we would ideally run our transient simulations with an ultrafine FSR dis-

cretization and track layout, the runtime performance will be significantly affected

by our choice of these parameters. Therefore, we conducted a sensitivity analysis of

the eigenvalue on the the FSR discretization, number of azimuthal angles, and track
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spacing. In order to spatially resolve the flux within the fueled regions, the pin cells

were discretized using axial divisions and radial rings in the the fuel and moderator.

Four discretization schemes were used and are described in Table 3.8 and Figure 3-7.

The reflector region adjacent to the bundles was also discretized as shown in Figure 3-

8. The reflector region is broken up into three regions of thickness 6.3 cm, 7.56 cm,

and 7.56 cm when going from the fueled assemblies to the boundaries. The region

closest to the fueled assemblies is discretized into square cells of side length 0.21 cm,

followed by a region of square cells of side length 0.315 cm, followed by the outermost

region with square cells of side length 1.26 cm.

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Figure 3-7. Illustration of spatial discretization schemes used to model the pin cells
in the C5G7 problem. The moderator and fuel regions are shown in blue and orange,
respectively.

Table 3.8. Discretization schemes for pin cell

Pin-Cell Fuel Ring Water Ring Sectors
Scheme Radii (cm) Radii (cm)

1 0.54 0.54 0
2 0.54 0.54 8
3 0.382, 0.54 0.54, 0.58 0
4 0.382, 0.54 0.54, 0.58 8

In all simulations the parameters listed in Table 3.9 were used.

For the sensitivity analysis, a three dimensional parameter space was explored to

find the conditions necessary to achieve a spatially converged solution. The dimen-

sions include track spacing, number of azimuthal angles, and mesh cell size.
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Figure 3-8. Flat source region discretization scheme for the quarter-core C5G7
geometry with pin-cell discretization scheme 4.

Table 3.9. Calculation conditions for C5G7 steady state benchmark

Parameter Value

Number of polar angles 3 (using TY quadrature set)
MOC convergence criteria le-6 on root-mean-square-difference of fission source
CMFD convergence criteria le-6 on root-mean-square-difference of fission source

GS convergence criteria le-8 on root-mean-square-difference of fission source
CMFD damping factor 0.6 (unless otherwise specified)

CPU architecture 2 6-core Intel Xeon processors
Threads 12

3.2.1 Sensitivity analysis to simulation parameters

To understand the influence of track spacing, number of azimuthal angles, and the

number of FSRs on converging the C5G7 eigenvalue, a series of trials were performed

to map out the parameter space. The track spacings and number of azimuthal an-

gles used are presented in Table 3.10 and the spatial discretizations are provided in

Table 3.8.
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Table 3.10. Calculation conditions

Parameter Values

Azimuthal angles 8, 16, 32, 64, 128
Track spacings (cm) 0.1, 0.05, 0.025, 0.01

From these trials, we found the eigenvalue to be relatively insensitive to the track

spacing, but sensitive to the number of azimuthal angles. For example, Figure 3-9

shows the eigenvalue error for trials conducted with pin-cell discretization scheme

4. The sensitivity to number of azimuthal angles is likely due to the sharp flux

gradients in the reflector just outside the core and the presence of neighboring U/MOX

assemblies. With this information, we selected a track spacing of 0.05 cm and 64

azimuthal angles as sufficient values to converge the eigenvalue.
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Figure 3-9. Plot of eigenvalue error vs track
values for the steady state C5G7 benchmark.
spatial discretization.

spacing for various azimuthal angle
Scheme 4 was used for the pin cell

The eigenvalue was found to be very sensitive to the FSR size. Figure 3-10 shows
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the eigenvalue error as compared to the reference solution for a series of trials con-

ducted with a track spacing of 0.05 cim and 64 azimuthal angles.

100.

0

U
CL

-100

-200

-300

-400

-500-

-600-

-70 A

E E E
U U
U, LA

E
4)

Figure 3-10. Plot of absolute eigenvalue error
C5G7 benchmark.

vs track spacing for the steady state

The data in Figure 3-10 demonstrates that the eigenvalue is highly sensitive to

the spatial discretization. In particular, the presence of sectors (schemes 2 and 4)

is a crucial characteristic in reducing the eigenvalue error. In order to achieve an

eigenvalue error of -25 pcm, at least 32 azimuthal angles and a pin cell spatial

discretization of 2 water rings, 2 fuel rings, and 8 sectors was required. From this

analysis, we selected a track spacing of 0.05 cm, number of azimuthal angles of 64

angles, and pin cell discretization of 2 water rings, 2 fuel rings, and 8 sectors

to use in our transient analysis.

3.2.2 Performance analysis of CMFD acceleration

The main parameters that affect the performance of CMFD in accelerating the solu-

tion to an MOC transport problem include the CMFD mesh cell size, CMFD energy
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group structure, and CMFD non-linear diffusion coefficient damping factor. All per-

formance trials were conducted using parameters identified in subsection 3.2.1 as

producing a sufficiently converged solution. The four different CMFD energy group

structures studied are shown

number of MOC fixed source

function of CMFD mesh size.

91

93

94

95

96

97

g1

93

g4

96

97

in Figure 3-11. Figure 3-12 shows the runtime and

iterations required to converge the fission source as a

aa

MOC group
structure

CMFD 7 group
structure

CMFD 4 group
structure

CMFD 2 group CMFD 1 group
structure structure

Figure 3-11. Illustration of CMFD energy group structures used in solving the
C5G7 benchmark.

As was the case with the LRA benchmark, the coarse CMFD meshes produced

poor performance due to an excessive number of MOC fixed source iterations. The

CMFD energy group structure had a small effect on the runtime and number of itera-

tions required to converge the solution. For the pin-wise CMFD mesh, the multigroup

structures were clearly favored in terms of both runtime and number of MOC fixed

source iterations. It should also be noted that the eigenvalue for all these trials was

within 10 pcm of each other demonstrating consistency between answers produced

with various CMFD mesh levels and unaccelerated MOC. A small difference can be

expected due to slightly premature convergence for the unaccelerated and coarse spa-

tial/energy discretization cases. Using this information, we selected a pin-cell CMFD
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Figure 3-12. Plots of the runtime and number of fixed source iterations vs the
CMFD mesh size.

mesh along with the MOC simulation parameters identified in subsection 3.2.1 to

be the focus in our transient analysis. For completeness, we have included the run-

time, MOC fixed source iterations, and eigenvalue for each of the cases plotted in

Figure 3-12 in Table 3.11.

Table 3.11. The eigenvalue, runtime, and number of fixed source iterations required
to converge the C5G7 benchmark with different CMFD spatial discretization schemes.

CMFD mesh CMFD Fixed source keff Runtime
level groups iterations (s)

no accel - 775 1.186743 798.5
core-wise 1 775 1.186743 788.9
core-wise 2 760 1.186748 794.6
core-wise 4 754 1.186750 847.9
core-wise 7 754 1.186750 971.8

assembly-wise 1 323 1.186788 324.2
assembly-wise 2 321 1.186789 321.5
assembly-wise 4 322 1.186790 328.1
assembly-wise 7 321 1.186790 352.0

pin-wise 1 56 1.186787 73.8
pin-wise 2 29 1.186788 41.7
pin-wise 4 27 1.186789 42.9
pin-wise 7 27 1.186789 55.0

The effect of a fixed damping factor on the CMFD method is further investigated.

In all cases the same group structure was used in MOC and CMFD. Table 3.12 and
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Figure 3-13 show the number of fixed source iterations required to converge the fission

source distribution to le-6 for the C5G7 benchmark problem. As shown in Table 3.12

the CMFD method with a damping factor of -0.6-0.7 reduces the number of MOC

fixed source iterations by a factor of -30 and the runtime by a factor of -15. For

this specific case, the optimal damping factor is about 0.6 and a damping factor of

0.9 or greater fails to converge the problem.
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C 40 60
iteration #

Figure 3-13. Plot of relative RMSD in group-wise fission source (Equation 2.19) vs
iteration # for trials with various damping factors.

Based on the runtime performance and stability for the various damping factors

used, we selected a damping factor of 0.6 to be used in the transient analysis.
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Table 3.12. The eigenvalue, runtime, and number of fixed source iterations required
to converge the LRA benchmark with different CMFD damping factors.

CMFD Damping factor fixed source iterations kefj Runtime (s)

N - 775 1.186743 798.5
Y 0.1 78 1.186786 144.6
Y 0.2 46 1.186788 90.5
Y 0.3 35 1.186789 71.8
Y 0.4 30 1.186789 61.4
Y 0.5 28 1.186789 58.0
Y 0.6 27 1.186789 55.0
Y 0.7 26 1.186789 51.8
Y 0.8 100 1.186790 163.9
Y 0.9 - - -
Y 1.0
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Chapter 4

Time-dependent Method of

Characteristics

Many methods for solving the time-dependent neutron transport and neutron diffu-

sion equations rely on the separation of the spatial (shape) and temporal (amplitude)

components of the neutron flux during a transient simulation [20]. Solving for the

fine-grained neutron flux at a particular moment in time typically comprises the ma-

jority of the run time in a transient simulation. For this reason we seek to develop

methods that minimize the number of fine-grained spatial solves. In the last few

decades, several approaches of using the CMFD framework for solving time depen-

dent MOC and nodal diffusion problems have been developed ([23], [11], [7]). Solving

for the temporal component of the neutron flux often involves a spatial homogeniza-

tion and/or energy condensation allowing for the neutron flux to be approximated at

times between spatial solves as illustrated in Figure 4-1.

In Figure 4-1 Ata and At, represent the time step size for the amplitude function

and shape function, respectively. The time values ta and ta-i represent the time at

the current and previous amplitude function time step, respectively. The time values

t' and t- 1 represent the time of the current and previous shape function solve. This

concept of separating the spatial and temporal solves of a transient simulation can

be employed because the spatial component of the neutron flux is often slowly vary-

ing whereas the amplitude component varies rapidly. In this thesis we have selected
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Ats

Figure 4-1. The relative size of the shape function and amplitude function time
step sizes. The notation for time values during an arbitrary amplitude function solve
a within shape function solve s is also shown.

three spatial methods, the Adiabatic, Theta, and MAF methods, to investigate. The

derivation of these methods is provided in section 4.1. All methods utilized the fully

implicit formulation of the time-dependent coarse mesh finite difference (TCMFD)

equations with non-linear coupling coefficients for the temporal solve, which will be

derived in section 4.3. In section 4.4 we will discuss our implementation of the tran-

sient methods in OpenMOC.

4.1 Derivation of Time-dependent Method of Char-

acteristics Methods

The derivation for the Adiabatic, Theta, and Multigrid Amplitude Function spatial

methods begins with the time-dependent neutron transport equation with assumed

isotropic angular flux time derivative [15] and the delayed neutron precursor

density balance equation:

1 a<Dg (r, 0)14= t = Q - VI '(r, Q, t) - Etr(r, t) Tg(r, Q, t) + Qg(r, t),4 lrVg at
1 (Xrg(l - ) G M m

Qg(r, t) = 1' vE ,(r, t)<gD,(r, t) + E ESg,(r, t)<Dg(r, t) + E Xr ACm(r, t)
eff g,=1 g/=1 m=1

(4.1)
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T-0rn(r, t) =D, v (r,t) - Am Cm(r, t) V m = 1, ..., M
eff gI=1

(4.2)

Terms in the balance equation are defined in Table 4.1. When solving a problem

using the time-dependent methods, we typically assume the initial state is critical. To

ensure criticality in the neutron balance equation, we include the initial eigenvalue,

koff, on the fission source term as shown in Equation 4.1 and Equation 4.2. The

neutron spectrum from fission, Xr,g, has been assumed to be the same for both prompt

and delayed neutrons from a given material.

Treating the temporal derivative of the angular flux explicitly instead of imposing

the isotropic assumption has been studied, but incurs either significant memory re-

quirements to store the segment-averaged angular fluxes at the current and previous

time steps or computational overhead to recompute the angular flux at the previous

time step on-the-fly [1, 16]. Furthermore, the purpose of our study was to focus more

on the sensitivity of time-dependent MOC methods and less on the implementing

high-precision temporal flux approximations for the MOC method.

Table 4.1. Descriptions

Description

Velocity
Scalar flux
Transport cross section
Scattering cross section
Isotropic neutron source
Fission spectrum
Time
Energy group
Precursor group

of the transport equation terms

Variable Description

Q Direction of neutron travel
T Angular flux

EF Fission cross section
v Neutrons per fission
C Delayed neutron precursor density

Delayed neutron fraction
r Position vector
A Precursor decay constant

In these methods, the fine mesh scalar flux, 1b, is factorized into a coarse mesh

scalar flux, <$, and a fine mesh flux shape function, p. Equation 4.3 provides the

definition for the fine mesh shape.
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q$ft)Vg (r, t) r,4.)

The superscripts, i, j, on the coarse mesh scalar flux, #$ (t), represent the coarse

mesh cell indices. In our derivation of time-dependent transport methods we have

assumed that the fine mesh and coarse mesh share the same group structure with

groups denoted by index g. The coarse mesh scalar flux for a particular mesh cell

and group is computed by area averaging the fine mesh flux of the FSRs contained

within that cell using the procedure shown in Equation 2.21.

4.1.1 The Adiabatic Method

The Adiabatic method is conceptually the simplest of the transient methods and in-

volves ignoring the time derivative of the neutron flux. This reduces the transport

equation to its steady-state form (Equation 2.1). Therefore, at each time step, the

neutron flux is computed using a standard steady-state MOC eigenvalue problem (Al-

gorithm 3) where the material properties have been perturbed to reflect any material

movements and feedback. The delayed neutron precursors are essentially ignored in

the Adiabatic method as they are assumed to be at their steady state values.

An important aspect of the Adiabatic method is that the flux shape produced by

the steady-state MOC eigenvalue problem is an eigenvector and therefore independent

of power level. Before Equation 2.21 can be used to compute an updated coarse mesh

flux, the fine mesh flux must be renormalized to the current power level. This is

achieved by using the flux renormalization procedure presented in Equation 4.4.

(D r )=4 r )P(t) (4.4)~Igr~)=I9rt R G

A1r Z S ,KZ'(r, t)(D(r, t)A(r)
r=1 g=1

where P(t) is the average power density in the core at time t prior to the shape

function solve, Acore is the area of the fueled material in the core, b*(t) is the fine

mesh scalar flux that is output by the MOC solver, 4Dg(t) is the fine mesh scalar flux
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after renormalization, and K is the thermal energy per fission.

4.1.2 The Theta Method

Before describing the Theta method, we first define a new MOC source term, Q, that

incorporates the flux temporal derivative:

1 &'Ib(r, t) (5Q,(r,t') = Q(r,ts) - (4.5)

The fully implicit Theta method makes a backwards difference approximation on

the flux temporal derivative resulting in the following source term:

Qg(r, t') = Qg(r, ts) - 4<v At shape (bg(r, t') - <gb(r, ts)) (4.6)

Where t and t- 1 represent the time at the current and previous shape function

time steps, respectively. Note that Equation 4.6 contains the scalar flux for the

current time step, which is being computed. The initial estimate of this term is the

scalar flux computed during the previous fixed source iteration (Algorithm 3). The

source term for the Theta method can be computed by Algorithm 6.

Algorithm 6 FSR source update for Theta method in OpenMOC
for all i E I do # Loop over mesh cells

for all r E i do # Loop over FSRs in cell
for all g E G do # Loop over energy groups

Q(fl+l)(ts) Xr (1-4(n
eff

for all g' e G do # Loop over energy groups

end for
for all m E M do # Loop over delayed groups

r~ Qf+ LXr,gAmCm,r(ts)

end for

end for
end for

end for

The fixed source iteration algorithm for the Theta method is identical to the fixed

source iteration algorithm for the steady-state MOC problem (Algorithm 3) where
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the cross sections at the current time step, t, are used.

4.1.3 The Multigrid Amplitude Function Method

In the MAF method, the flux derivative is broken up using the product rule and

described as:

a<g(r, t) = (t) 4g(r, t) + $3(t) r, t)(47)
at 9 t at

where:

og ~ 9 (4.8)1 
(t)3(t $9 (t) at

Inserting wo'j(t) into the MOC source term we get:

Q (r, ts) = Qg(r, t) - ogs(ts)<D,(r, t-) - og (t) t (4.9)

Applying the backwards difference approximation on the temporal derivative of

the shape function and using algebra to convert the shape function terms into scalar

fluxes, we get:

<bg (r, ts) 1 < Dg(r ts-1) 0',j(t")
Qg(r, t') = Qg(r, t') - gt 1 g(tt) + + t 4 (t-) (4.10)4

lrVg Kw9~s Ats J+47rgLAt,, O~it1

As with the Theta method, the MAF method contains the scalar flux for the

current time step. Additionally, the MAF method source contains the coarse mesh

flux and derivative at the current time step. There are two main approximations

that could be used here. In the first choice, the coarse mesh flux computed from

the most recent time-dependent CMFD solve can be used along with its derivative.

With this choice, the coarse mesh flux and derivative are unchanged during the MOC

solve. The second choice is to extend the first choice by updating the amplitude

function and derivative after each MOC fixed source iteration with the coarse mesh

flux after each CMFD update. In OpenMOC we have chosen to implement the first

choice, but acknowledge that other valid approximations exist and possibly present
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different behavior in solving the time-dependent MOC problem. In order to denote

this approximation in the source term, we will rewrite Equation 4.11 with the coarse

mesh flux and derivative terms at the current time step denoted with a * on the time

variable to indicate that they are constant during the MOC solve. As we will see

later in subsection 4.1.4, this notation will be important in helping avoid confusion

when we perform CMFD acceleration.

(D tS + Cpg(,r ts- ) i's(t '*)
Qg(r, t') = Qg (r, t8) - t Wij (tS'*) + 94' (4.11)

47rvg 9 At, 47rvgAts Oi(ts-l)

The source term for the MAF method can be represented by Algorithm 7.

Algorithm 7 FSR source update for MAF method in OpenMOC
for all i E I do # Loop over mesh cells

for all r E i do # Loop over FSRs in cell
for all g c G do # Loop over energy groups

+ - (1 -#) X D (n) (ts)
eff

for all g' E G do # Loop over energy groups
Q$.%+l)(ts9) +.Q~~)(s + Lil Er g' n)-+g

end for
for all m E M do # Loop over delayed groups

Q$"+l (ts) _ Q(n+l)(ts) + Xr,gAmCm,r(tS)
end for

4rt t 4

end for
end for

end for

It is important to note one additional point in solving the MOC problem with the

Theta and MAF methods. At each shape function solve, a fixed source MOC problem

is being solved. The transport equation has fission and scattering source components

that will change during each iteration of the MOC solve while the components of

the source describing the delayed neutron precursor concentrations and shape at the

previous time step will be fixed. As will be shown in chapter 5, this important feature

results in a reduction in the run time required for a particular MOC solve with the

Theta and MAF methods as compared with the Adiabatic method.

In summary, the Adiabatic, Theta, and MAF methods mainly differ in their rep-

resentation of the source term. This results in small, but significant changes in the
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formulation of the algorithms used to solve the transient MOC problem with each

method. For comparison, the source terms have been included again in Table 4.2.

Table 4.2. MOC source terms for transient methods

Method Q,(r, t' 1)
G G

Adiabatic X VEF(,@ g,(r, ts) + 5 E's, g(r, t) g,(r, t)4kef f g/=1 g/=1

Theta (FI) Q9 (r, ts) - 1 KD9(r, t') - 4 g (r, t-)

M)''i ts * ) (ts-*)MAE Qg (r, ts) - (Dg rI ) (W ij(ts,*) 1 + (Dg (r tBi) (ts,*)

4.1.4 CMFD acceleration for time-dependent MOC

As shown in the previous two subsections, the Theta and MAF methods change the

parameters in the MOC algorithm. More specifically, these methods have additional

source terms that approximate the temporal derivative of the neutron flux. In addition

to the parameters in the MOC algorithm being changed, the parameters in the CMFD

acceleration algorithms will be similarly modified. In section 2.2 the CMFD method

was derived by starting with the steady state multi-group neutron diffusion equation

(Equation 2.20). In order to use CMFD to accelerate a time-dependent MOC method,

the time-dependent multi-group neutron diffusion equation (Equation 4.12) must be

used. In this section we present the slight differences in performing time-dependent

CMFD acceleration on a time-dependent MOC problem.

The time-dependent multi-group neutron diffusion equation is:
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1 09o9(Xyt) = V -Dg(X, y, t)Vog (X, y, t)-E(x, t,(x, y, t + Qg (X, y, t),

G G

Qg (X,y, t) - o (1 - M3 E Vzg' (X, y, t) OgI (X, y, t) E EgS, g(X, y, t)(/0g, (X, y, t)
eff gi=i gI=1

M

+ E xg(x, y, t)AmCm(x, y, t)
m=1

(4.12)

where the terms are the same as presented in Table 2.1 and Table 4.1. The delayed

neutron precursors in Equation 4.12 are condensed from the fine to the coarse mesh

in a similar procedure as that performed for the cross sections. Equation 4.13 shows

the procedure for condensing the precursor for a coarse mesh cell, (i, j).

E Cm,rAr

C r(i') (4.13)

E Ar
re(ij)

As was the case with the MOC algorithms, the CMFD algorithms for the steady

state and time dependent problems are very similar. The main differences being the

separation of the fission source into prompt and delayed neutrons and the addition

of the flux temporal derivative. The time-dependent multi-group neutron diffusion

equation can be integrated over the coarse mesh cells and the finite difference ap-

proximation can be applied to the streaming term using the same procedure as for

the steady state CMFD method (section 2.2). Applying the integration and finite

differencing procedure results in Equation 4.14.
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1dO'3j(t)
- dg Ax' 3 Ayi'3 = Q' 3 (t)Ax,'"AyZ'" - EgRij (t)#'' (t)AX'iAAyi'

Vg dt g 9~

- Ay'~ili4 - $ 1'] Lb L#g +#(P- 's])

+ Ay?' 3 (Dg2' [#Z13 - #jI+ + 
[ _

- Axe'[(b0-+[4 - 4j-1] + D [07 +# -1])

+ Axi',(DJ+1 [3+1 - +i] + 2 [+ +1 +#g

9 ef

(4.14)

G G M

V +'#,3 (t) + E ) (#'?(t) +SX (t)mC?(t)
g/=1 g/=1 m=1

g/#g

We now turn our attention to the treatment of the flux temporal derivative term.

For the Theta method, we apply the same backwards difference approximation to the

flux temporal derivative as was used in subsection 4.1.2:

d14i(t) -43(ts) - OW1i(ts-)
9~( 15)(ts

dt Ats

Inserting Equation 4.15 into Equation 4.14 results in the final form of the CMFD

equations used to accelerate the Theta method MOC problem.

#fj (ts -1) Ax '3 Ayi'j +
V9 At,,8

4 gl(ts ).
Xf' AmCM/ (ts)Axi'jAyi,3 = 9it Axz'lAyZ')9 V9A

+ 9 '~''(t8)i (t8)Axi'Ayi'3 - . (t)Axi'Ay

+a'(f 213 [#Oi- i-1'j]+ #2 + (4.16)

-Ayi'j(b +-[$i+1,j _ #f] + Al2 [#01, j _

+AX 's(b~! [#fj - i -1]+ b [

-AXi'(b+ + _ ]+ b' +g+ + #])

Where the source has been modified to only include inscattering and prompt

neutron generation:

-1,3

Cg(t8 ) = X (1
eff

G

- #3) ~ v~'4'Zqj(ts)
gr=1

G

+ E z9 silq3'j (ts)
g1=1
g'9g
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For the MAF method, we return to Equation 4.18 where the scalar flux was broken

up using the product rule:

&4gb(r, t) ) + 4(t)t) 9 og (r, t) (4.18)

Applying the backwards difference approximation on the temporal derivative of

the shape function and using algebra to convert the shape function terms into scalar

fluxes, we get:

49bgb(r, ts) _ < (r, ts) ( ij (ts'*) + 1' _ <(r,tsl) #i'j(t'*)

a4trv, \j' At8J 4 7rvg At. 4 i (ts-1)

Condensing the fine mesh scalar flux terms we get an expression for the coarse

mesh scalar flux derivative:

O__(ts) $ig4 (ts) ( $ *(t ) i )- '
= 9~'* + (420 at V W At, vgAts (4.20)

It is important to remember that in subsection 4.1.3 we assumed that the coarse

mesh flux in the second term on the right hand side of Equation 4.20 and the coarse

mesh flux derivative in Equation 4.20 were taken to be constant during the MOC

solve using the values from the most recent time-dependent CMFD solve. This is

indicated in each of those terms with a * on the time variable. By specifying these

coarse mesh flux and flux derivative terms to be constant during an MOC solve they

effectively become fixed sources. This characteristic makes the CMFD problem linear

instead of being an eigenvalue problem. Inserting the coarse mesh flux derivative into

the time-dependent CMFD equations, we get the final form of the CMFD equations

for accelerating the MAF specification of time-dependent MOC:
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M, i' -~i + 1~A~~-it* AXj~~ + ' XjAmC'A3(tS)AXZJA'~ Wg13~t) (ts, +

Vgt m=1 At8

+ (t) (t)* A (ts)AX

2 - oz-13] + fi1'O' + ij)

Ay~ (Jji+~~ [I+1 - Oi]i + bi-'[i1j- q5Zi])

+AXT' (D 2 [0'1, - Oi-1 ]+ + I 071

A x'q$-? +D jjzf3] + i i+ i,7

(4.21)

It is important to notice that Equation 4.16 and Equation 4.21 have the same

form, but with slight differences on the fixed source term on the left hand side of the

equations and the first term multiplies the flux at the current time step on the right

hand side of the equations. This allows us to implement one algorithm that can be

used to solve the time-dependent CMFD problem for both methods. We can write

the time-dependent CMFD equations in matrix form as:

AOp = b (4.22)

This problem can then be solved with Algorithm 5. After solving for the flux, the

procedure for updating the fine mesh scalar flux is the same as the method presented

in subsection 2.2.7 for steady-state MOC.

4.2 Time integration of delayed neutron precur-

sors

An important part in modeling a nuclear reactor where the power level or shape

shifts rapidly (le-4 to le-3 seconds) is computing of the delayed neutron precursor

concentrations. During a transient, the precursor concentration shape and amplitude

will change in a similar manner to the neutron flux. In this thesis, we chose to solve
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the delayed neutron precursor equations independently of the shape function solve.

In Equation 4.2 we presented the delayed neutron precursor equation. To solve for

the delayed neutron precursors, we directly integrate this equation to yield:

CM(T t"= e-AmtCm(r, ts- 1 )+e-
Se 1

MG
e k 0  S vE F(r, t) Ig(r, t)dt

eff g=1

(4.23)

We now assume that the fission source varies linearly over a time step.

tion 4.23 integrates out to:

Cm(r,ts) = ki,mCm(r, t8 1 ) + k2,m OM ZvE(r,ts)<bg(rtS)

- k3 ,m E VEF(r, ts- 1)<D)g(r, t- 1 )
Ameff g=1

where:

ki,m

k2,m

k3,m

1 - eAmAt
1-

AmAt,

mAts 1 - e- AmAt,

AmAts

Equa-

(4.24)

(4.25a)

(4.25b)

(4.25c)

Equation 4.24 allows us to solve for the delayed neutron precursors on the fine

mesh at any point in time. As seen in subsection 4.1.4, the delayed neutron precursors

on the fine mesh can be condensed to precursor concentrations on the coarse mesh

using Equation 4.13.
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4.3 Time dependent CMFD equations

So far we have only described how to solve for the shape function during a transient

solve. Now we will change our focus to solving for the amplitude function in between

shape function solves using a fine time step size. In section 4.1 we derived three

methods to compute the shape functions. In this section we will derive a similar form

of the time dependent coarse mesh finite difference (TCMFD) equations as that used

to accelerate time-dependent MOC. It is important that we make clear that there are

differences between the TCMFD method we derived in section 4.1 and the method

derived in this section. Notably, the TCMFD method presented in this section will

make use of approximations for the nonlinear diffusion coefficients instead of exact

values computed from tallied MOC fluxes and will be solved on a finer time step. To

derive a procedure for solving the TCMFD equations on our coarse mesh, we begin

with the multigroup TCMFD balance equation integrated over a cell:

Q ( 4) = (t)Ax1 - i (t)LX( t )JAy - ZRij(t)i AXijA
t ) i(

Vg dt A'Q9

- ij1i +i I ~i3[j Oij13]

A g 23~+~ o-j ii] + [0 '19 + 0 Z-1

-j d1[ - #gst] -D #gi t J) (4.26)
+Axti(Db3 2 [Ot3+ - Oi-] + b ' [0 Z+3 + p3])J-

X jMGG M

eff g1=1 g1=1 m=1

The neutron current expressions are defined by Equation 2.36. We now perform

a backwards difference approximation on the cell flux temporal derivative over a fine

time step:

dIg 4 i(t) q i(ta) -_ r n w(te g4t:

dt /Ata

Inserting Equation 4.27 into Equation 4.26 and rearranging we get:
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+. ij 1. + - i1.!]) ij D 2 3-O-4J] + 2l1A' [q ,i +O- q$3i'D

+AY' (D9 9 9 9
2 [Oi+J _ Oij] + D)'_1 [q5ij+ Z1

2 - O2i]i + ij21[i+ ij]

(4.28)

The coarse mesh flux at the forward time step can then be computed using Algo-

rithm 8.

Algorithm 8 TCMFD Equations
Look up material XS
Interpolate D
Update precursor concentrations
while MOb not converged do

Solve TCMFD equations
Update material temperatures
Update precursor concentrations
Look up material XS

end while

Solution Procedure

# Ensure XS are at current time and temperature values
# Equation 4.30
# Equation 4.24

# Solve Equation 4.28 using Algorithm 5

# Equation 4.24
# Ensure XS are at current time and temperature values

4.3.1 Interpolation of shape function and nonlinear diffusion

coefficients

In between the large shape function time steps, the fine mesh flux shape and net

currents between coarse mesh cells often varies. To approximate the fine mesh flux

shape, it is linearly interpolated using Equation 4.29.

-ta _ts-l p(,t 1  ta -t*~
pg (r, t") = (1 - )Og (r, t'-') + ag (r, ts)

At, Ats
(4.29)

The net current across coarse mesh cell boundaries is treated indirectly through the

nonlinear coupling coefficient term. After the time-dependent MOC solve, the non-
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linear diffusion coefficients from the last fixed source iteration are saved. In between

shape function time steps, the nonlinear diffusion coefficients are linearly interpolated

using Equation 4.30.

f:i 1 j ta -ts '5 1 1 ta -ts-1 -i~i
*2 (r, t") = (1- - At- ) 23 (r, ts-1) + At, D9 2' (r, ts) (4.30a)

~ ta - t'-1 ~ 1 ta -t 1- -
D' 2 (r, ta) = (1 - )Dg 2(r, ~) + A D' 2 (r, ts) (4.30b)

4.3.2 Convergence criteria on shape and amplitude function

When solving for the shape or amplitude function using an implicit method, a con-

vergence relation must be adopted. For the shape function we have chosen to set the

convergence based on the fine mesh fission source. The error estimate is computed as

the relative root-mean-square-difference in the fission source from the previous iter-

ation compared to the fission source in the current iteration. The expression for the

fission source error is shown in Equation 4.31.

(I, ) G VE r ts)qoij(ts)pg'(r, t-9) _ VEIF'(r, ts,*)O$i~j(ts,*)Og (r, ts) ~\2

RMSD = (ij) rE(ij) g=1 vY9r t89 (4-31)r t)R*GM(4.31)

where terms evaluated at t,'* use the values from the previous fully implicit itera-

tion. Similar to the shape function convergence, the amplitude function convergence

is based on the relative root-mean-square-difference of the fission source. The expres-

sion for the fission source error is shown in Equation 4.32.

(IJ)G VF(ta)$j(ta) VgF~i(ta,*)$ij(ta,*) 2

_*)g 1 vz;?','3 (tao$ 0 (ta)
RMSD = \ I' I tJ * G/(4.32)

I*J*G
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4.4 Implementation in OpenMOC

The Adiabatic, FI Theta, and MAF methods have been implemented in the Open-

MOC code. The implementation consists of one base implementation with the op-

tional amplitude function prolongation and the requirement for each step to be solved

twice to ensure convergence. In all cases the solution procedures can be broken up

into two solves, the outer shape function solve and the inner amplitude function solve,

and several intermediate steps to propagate delayed neutron precursors, compute vari-

ables, look up material cross sections at the current simulation time, and check for

convergence. In this section we will provide an overview of how the transient methods

are implemented in OpenMOC.

4.4.1 Transient MOC Procedure

The most straight-forward approach in performing the shape function solve involves

updating the shape function at constant time step intervals. An illustration of the

shape function solve procedure along with the inner amplitude function solve proce-

dure is presented in Figure 4-2.

The amplitude function solve presented in Figure 4-2 utilizes the fully implicit

Theta method to approximate the flux derivative between time steps. In Figure 4-2,

the steps can be further explained as follows:

1. The steady-state MOC problem is solved using Algorithm 3.

2. The amplitude function is computed by condensing the fine mesh solution from

the MOC solve onto the coarse mesh using Equation 2.21. The fine mesh shape

is then computed using Equation 4.3. The nonlinear coupling coefficients are

computed using Equation 2.37 and the tallied net currents from the last MOC

fixed source iteration in Step 1.

3. Prolongation of flux amplitude. The TCMFD equations are solved from time t

to t+ At,.
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3a. The time for the amplitude function solve, ta, is set to t + Ata.

3b. Interpolate the shape function and nonlinear diffusion coefficients between

t and t + At, to time ta using Equation 4.29 and Equation 4.30.

3c. Look up the fine mesh XS at the current temperature and positions as

specified in the input or based on feedback. The fine mesh XS are then

condensed down to the coarse mesh using Equation 2.21.

3d. Update the precursor concentrations on the fine mesh using Equation 4.24.

Condense the precursor concentrations from the fine mesh to the coarse

mesh using Equation 4.13.

3e. Solve the TCMFD equations using Algorithm 5 to get the updated ampli-

tude function at time ta.

3f. Update the temperatures for materials on the fine mesh.

3g. Repeat Step 3c.

3h. Repeat Step 3d.

3i. If coarse mesh source converged (Equation 4.32) at time ta, go to Step 3j;

else, return to Step 3e.

3j. If end of outer time step reached, go to Step 31; else, go to Step 3k.

3k. Increment ta by Ata. Go to Step 3b.

31. Return to outer loop.

4. The material XS are adjusted to the conditions at time t + At,. This involves

resetting the material cross sections to be at the temperatures and positions of

the system at time t + At,. The time-dependent MOC problem is solved using

Algorithm 3 and Algorithm 2, Algorithm 6, or Algorithm 7.

5. The amplitude function is computed by condensing the fine mesh solution from

the MOC solve onto the coarse mesh using Equation 2.21. The fine mesh shape

is then computed using Equation 4.3. The nonlinear coupling coefficients are
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computed using Equation 2.37 and the tallied net currents from the last MOC

fixed source iteration in Step 4.

6. The TCMFD equations are solved from time t to t +At,. Repeat TCMFD solve

procedure from Step 3a to Step 31.

7. Check for the convergence of the fine mesh source at time t + At, using Equa-

tion 4.31. If converged go to Step 8; else, go to Step 3.

8. If the end of the simulation has been reached go to Step 10; else, go to Step 9.

9. Increment time t by At,. Go to Step 3.

10. Exit outer loop and perform any postprocessing.
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Figure 4-2. The solution procedure for the outer shape function solve (left) and
inner amplitude function solve (right) for the transient MOC procedure.
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Chapter 5

Transient Results

In this chapter we will use the transient methods described in chapter 4 to solve the

transient versions of the LRA and C5G7 benchmarks. These two transient benchmark

problems are distinct in that they allow for analysis of both homogeneous and het-

erogeneous representations of fuel and moderator materials within an assembly. The

transients each result in a reactivity insertion of over $1 due to withdrawal of neutron

absorbing materials. The effects of material perturbations, temperature feedback,

and delayed neutron precursors all influence the power profile during the transient.

The three transient methods, Adiabatic, Theta, and MAF, will be compared based on

their runtime performance and sensitivity to simulation parameters including shape

function step size, amplitude function step size, and CMFD mesh size. To our knowl-

edge, this analysis will yield the first fine spatial mesh and fine time step solutions

to the transient transport versions of the LRA and C5G7 benchmarks. Through this

analysis, we identify the key factors influencing the performance of the Adiabatic,

Theta, and MAF methods in hopes of gaining intuition on how these methods will

scale to large problems and stochastic neutron transport codes.

5.1 Transient LRA Benchmark

The 2D LRA benchmark is a 2-group, quarter-core BWR transient problem that

is fully specified in section A.1. The transport version of the LRA benchmark was
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originally published in [16] as a test problem for modern transport theory neutronics

codes. The geometry is represented with assembly homogenized cross section data

and a simple linear absorption cross-section ramp to model the withdrawal of a con-

trol blade in one of the regions. The simplicity of the geometry model makes the

problem tractable on personal computers and small clusters and therefore a good

initial benchmark for new transient neutron transport codes.

5.1.1 Static Control Blade Worth

We begin our analysis by determining the static control blade worth by computing

the eigenvalue at the initial and final material states. We compute the control blade

worth using two sets of FSR discretizations and track laydowns - the ultrafine FSR

discretization and track laydown used to compute the reference solution and the

coarse FSR discretization and track laydown identified as producing a sufficiently

converged solution in subsection 3.1.1. The simulation parameters and eigenvalues

for both cases and both states are presented in Table 5.1 and the initial and final

power distributions for the ultrafine reference case are shown in Figure 5-1.

Table 5.1. The simulation parameters and eigenvalues for the initial and final state
of the LRA transient transport benchmark

Azimuthal Track MOC mesh State keff reactivity
Angles Spacing (cm) size (cm) ($)

32 0.05 0.1171875 Initial 0.997213 -
32 0.05 0.1171875 Final 1.017080 3.0711
32 0.05 0.46875 Initial 0.996955 -
32 0.05 0.46875 Final 1.016675 3.0492

It should be noted that the initial eigenvalue for the case with 0.46875 cm MOC

mesh is within 10 pcm of the eigenvalue computed in [16] with 32 azimuthal angles,

a track spacing 0.04 cm, and a similar mesh size. The control blade reactivity worth

was computed using Equation 5.1.

kfinal - kin 11al

Pworth -=ita X (5.1)
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Figure 5-1. Plots of the relative power for the initial (left) and final (right) material
states of the LRA benchmark.

Where /3 is the sum of the delayed neutron fractions, 0.006487. Since the initial

state is assumed to be critical, we care much more about the reactivity comparison

between the two cases rather than eigenvalues. The control blade worth for our case

with a coarse MOC mesh of 0.46875 cm was found to be in good agreement with

the ultrafine mesh case, suggesting the coarse MOC mesh should be sufficient to

approximate the spatially-converged transient solution.

5.1.2 Reference Solution

To our knowledge there has been no previously reported spatially and temporally con-

verged reference solution for the transport version of the LRA transient benchmark.

To generate a reference solution, we performed a simulation with ultrafine shape and

amplitude function time steps coupled with a tight convergence on all simulation pa-

rameters. The parameters used in all LRA simulations in this chapter are provided

in Table 5.2.

The reference solution results and simulation parameters unique to the trial are

provided in the Table 5.3. The average core power and peak fuel temperature profile

during the transient are presented in Figure 5-2. In subsection 5.1.3 we will investi-

gate the sensitivity of the shape function and amplitude function step sizes for each
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Table 5.2. Calculation conditions

Number of polar angles
MOC convergence criteria

TCMFD convergence criteria
CMFD convergence criteria

GS convergence criteria
amp fct convergence criteria

shape fct convergence criteria
CMFD damping factor

CPU architecture
Threads

# of azimuthal angles
Track spacing

FSR size

3 (using TY quadrature set)
le-6 on RMSD of fission source
le-8 on RMSD of fission source
le-6 on RMSD of fission source
le-8 on RMSD of fission source
le-8 on RMSD of fission source
le-4 on RMSD of fission source

0.5
2 6-core Intel Xeon processors

12
32

0.05 cm
0.46875 cm x 0.46875 cm

transient method on the convergence of average core power profile.

Table 5.3. Calculation conditions

Parameter Value

Shape function step size
Amplitude function step size

Method
CMFD mesh size

Initial keff
Time A 1" peak

Avg. fuel temperature L 1s' peak
Avg. power density A 1s' peak

Time A 2nd peak
Avg. fuel temperature ( 2nd peak

Avg. power density A 2 nd peak
Avg. fuel temperature Q t = 3s

Avg. power density t = 3s
Runtime

5e-4 s
5e-5 s
MAF

0.46875 cm
0.996955
1.41545 s
440.37 K

5513.84 W/cc
2.00125 s
876.85 K

813.46 W/cc
1129.93 K

100.71 W/cc
18.65 hours
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4 LRA Transient Reference Solution
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Figure 5-2. Plot of average core power (blue) and peak fuel temperature (red)
during the reference LRA transient.

5.1.3 Sensitivity Analysis

In order to evaluate the convergence and performance of the MAF, Theta, and Adia-

batic methods in modeling the LRA transient problem, we conducted a series of trials

where simulation parameters were adjusted. The simulation parameters considered

to be most influential to the solution include the shape function step size, amplitude

function step size, and coarse mesh cell size. There are many other solution param-

eters that will influence the transient solution including the fine mesh discretization,

track spacing, number of azimuthal angles, number of polar angles, and convergence

of the MOC, CMFD, TCMFD, shape function, and amplitude function during all

solves. We ultimately chose to only investigate the effects of the shape function size,

amplitude function size, and coarse mesh discretization as these parameters are ex-

pected to have a large influence on how the methods scale to larger, more complex

problems. Table 5.4 shows the values used for each parameter in their respective sen-

sitivity analyses. In this section, we investigate each parameter individually and seek
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to determine the values necessary to produce a converged solution. The reference so-

lution for each analysis was chosen such that only one simulation parameter changed

for each to the trials, allowing us to isolate the influence of this variable. Solution

convergence is determined by comparing the average core power error percentage and

magnitude as a function of time compared to a reference simulation for each analysis.

It is important to reiterate that the reference solution for each specific sensitivity

study is different; reference solutions were selected such that only one variable (At,

Ata, or CMFD mesh size) changed during each study.

Table 5.4. Calculation conditions

Parameter Values

Shape fct step size (At, in s) 5.0e-4, 1.0e-3, 2.5e-3, 5.0e-3
Amp fct step size (Ata in s) 5.0e-5, 1.0e-4, 2.5e-4, 5.0e-4, 1.0e-3

Coarse mesh size (cm) 1.875, 3.75, 7.5, 15

We begin by evaluating the effect of the shape function time step size on the

average core power profile convergence. In a series of trials the shape function step

size, At,, was adjusted with all other parameters being held constant at the values

listed in Table 5.2. Reference solutions were computed for each method with a shape

function time step size of 5.0e-4 seconds, an amplitude function step size of 1.0e-4

seconds, and a 0.46875 cm MOC mesh. Figure 5-3 shows the core average power

density error percentage and magnitude during the transient for a series of trials with

varying shape function time step sizes. Table 5.5 and Table 5.6 provide a summary

of other simulation results for these trials.

Figure 5-3 shows that the convergence of the core power is highly sensitive to

the shape function step size for the MAF and Theta methods. In particular, the

core power experienced the greatest magnitude and percentage error during the time

period t=1.3-2.1 seconds. During this period the core power is rapidly rising and

doppler feedback is beginning to influence the flux and power profile in the core. It is

expected that the error will be most significant during these times as the temperature

rise in the fuel from one time step to the next is largest as shown in plot of the peak

fuel temperature for the ultrafine mesh reference solution in Figure 5-2. The Adiabatic
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Figure 5-3. Plot of core average power density error percentage (left) and magnitude
(right) for the MAF (top), Theta (middle), and Adiabatic (bottom) methods during
the LRA transient simulated with different shape function step sizes.

method also experienced the maximum percentage and magnitude error during the

t=1.3-2.1 second time frame, but the error was substantially smaller than that seen

with the MAF and Theta methods.

Table 5.5 lists the power at various points during the transient, notably during
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Table 5.5. LRA - shape function sensitivity analysis results - average core power
and power peak timet

Method At, t ( 1 st peak 1 st Peak t 2 nd peak 2 nd Peak Final Power
(s) (s) Power (W/cc) (s) Power (W/cc) (W/cc)

*MAF 0.0005 1.4151 5502.47 2.0011 813.29 100.70
MAF 0.0010 1.4151 5508.00 2.0011 813.19 100.70
MAF 0.0025 1.4148 5556.62 2.0011 812.83 100.70
MAF 0.0050 1.4139 5801.08 2.0012 811.81 100.65

*THETA 0.0005 1.4151 5498.77 2.0011 813.26 100.70
THETA 0.0010 1.4151 5490.60 2.0007 813.06 100.70
THETA 0.0025 1.4148 5422.33 2.0000 812.20 100.71
THETA 0.0050 1.4137 5087.80 2.0000 807.39 100.74

*ADIABATIC 0.0005 1.4151 5478.31 2.0011 811.71 100.84
ADIABATIC 0.0010 1.4150 5476.04 2.0011 811.67 100.88
ADIABATIC 0.0025 1.4149 5469.49 2.0011 811.55 100.90
ADIABATIC 0.0050 1.4149 5459.53 2.0011 811.38 100.90

- All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

Table 5.6. LRA - shape function sensitivity analysis results - average core temper-
ature and runtimet

Method At, 1't Peak 2 nd Peak Final Temp Runtime MOC solve

(s) Temp (K) Temp (K) (K) (hr) time (hr)

*MAF 0.0005 440.00 876.78 1129.94 13.48 7.54
MAF 0.0010 440.21 876.73 1129.80 10.89 5.45
MAF 0.0025 439.82 876.59 1129.73 9.06 3.18
MAF 0.0050 440.07 876.54 1129.50 7.79 2.05

*THETA 0.0005 439.96 876.78 1129.94 13.51 7.98
THETA 0.0010 440.07 876.34 1129.90 11.49 5.59
THETA 0.0025 438.93 875.52 1129.73 8.72 3.11
THETA 0.0050 435.32 875.39 1129.50 7.71 2.06

*ADIABATIC 0.0005 439.93 876.70 1130.09 82.13 75.85
ADIABATIC 0.0010 439.91 876.57 1130.00 42.73 37.17
ADIABATIC 0.0025 439.19 876.19 1129.62 20.43 15.04
ADIABATIC 0.0050 439.10 875.53 1128.95 13.21 7.55

- All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

the first (and largest) power peak. The MAF and Theta methods incurred maxi-

mum errors of 5.4% and -7.5% in the average core power for the first power peak,

respectively. The Adiabatic method only incurred an error of -0.4%. The average

fuel temperature during the power peaks was not very sensitive to the shape function

time step size for any of the methods, with all temperatures residing within ~1% of

their reference values as shown in Table 5.6.

Next we evaluate the effect of the amplitude function time step size on the core

average power density profile convergence. In a series of trials the amplitude function

step size, Ata, was adjusted with all other parameters being held constant at the

100



values listed in Table 5.2. Reference solutions for all methods were generated with an

amplitude function step size of 5.0e-5 seconds, a shape function time step size of 1.0e-

3 seconds, and a 0.46875 cm MOC mesh . Figure 5-4 shows the core average power

density error percentage and magnitude during the transient for a series of trials

with varying amplitude function time step sizes. Table 5.7 and Table 5.8 provide a

summary of other simulation results for these trials.

Table 5.7. LRA - amplitude function sensitivity analysis results - average core power
and peak power timesl

Method Ata t ( is, peak 1st Peak t 2 nd peak 2 "d Peak Final Power
(s) (s) Power (W/cc) (s) Power (W/cc) (W/cc)

*MAF 0.00005 1.4154 5519.41 2.00125 813.36 100.71
MAF 0.00010 1.4151 5508.00 2.00110 813.19 100.70
MAF 0.00025 1.4140 5475.83 2.00100 812.61 100.71
MAF 0.00050 1.4125 5442.81 2.00100 811.44 100.71
MAF 0.00100 1.4090 5317.45 2.00100 809.21 100.72

*THETA 0.00005 1.4155 5501.03 2.00070 813.22 100.71
THETA 0.00010 1.4151 5490.60 2.00070 813.06 100.70
THETA 0.00025 1.4140 5461.28 2.00075 812.49 100.71
THETA 0.00050 1.4125 5413.06 2.00050 811.37 100.71
THETA 0.00100 1.4090 5316.70 2.00100 809.19 100.72

*ADIABATIC 0.00005 1.4153 5487.37 2.00130 811.83 100.92
ADIABATIC 0.00010 1.4150 5476.04 2.00110 811.67 100.88
ADIABATIC 0.00025 1.4140 5444.14 2.00100 811.09 100.93
ADIABATIC 0.00050 1.4125 5391.23 2.00100 809.98 100.94
ADIABATIC 0.00100 1.4090 5287.03 2.00100 807.83 100.96

1 - All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

Figure 5-4 shows that the convergence of the core power is sensitive to the ampli-

tude function step size for all methods. The trend where all three methods yield nearly

the same sensitivity is expected as the TCMFD solvers are identical for all methods.

Furthermore, the amplitude function solve is what determines the core average power

in between shape function time steps so therefore increasing the amplitude function

time step will increase the temporal truncation error.

While Figure 5-4 shows a significant maximum error of >50% for the core average

power during the first power peak for all methods, the core average power at the

first power peak from Table 5.7 shows that the peak power error has a maximum of

only 3.4-3.7% for each of the methods. The reason for the large peak power error in

Figure 5-4 is a shift in peak power to earlier times, which is clearly seen in Table 5.7.

In a series of trials the coarse mesh cell size was adjusted with all other parameters
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Figure 5-4. Plot of core average power density error percentage (left) and magnitude
(right) for the MAF (top), Theta (middle), and Adiabatic (bottom) methods during
the LRA transient simulated with different amplitude function step sizes.

being held constant at the values listed in Table 5.2. Reference solutions for each

method were generated with an amplitude function step size of 1.0e-4 seconds, a

shape function time step size of 1.0e-3 seconds, a coarse mesh cell size of 1.875 cm,

and a 0.46875 cm MOC mesh. Figure 5-5 shows the core average power density error
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Table 5.8. LRA - amplitude function sensitivity analysis results - average core
temperature and runtimet

Method Ata 1 1t Peak 2 nd Peak Final Temp Runtime MOC solve
(s) Temp (K) Temp (K) (K) (hr) time (hr)

*MAF 0.00005 440.26 876.80 1129.88 15.08 5.55
MAF 0.00010 440.21 876.73 1129.80 10.89 5.45
MAF 0.00025 438.69 876.60 1129.88 9.37 5.63
MAF 0.00050 438.36 876.65 1129.89 8.50 5.59
MAF 0.00100 434.55 876.75 1129.89 8.21 5.65

*THETA 0.00005 440.44 876.26 1129.88 15.15 5.51
THETA 0.00010 440.07 876.34 1129.90 11.49 5.59
THETA 0.00025 438.58 876.36 1129.88 9.24 5.52
THETA 0.00050 438.28 876.17 1129.88 8.55 5.59
THETA 0.00100 434.56 876.75 1129.88 8.15 5.65

*ADIABATIC 0.00005 439.96 876.69 1130.02 46.07 36.91
ADIABATIC 0.00010 439.91 876.57 1130.00 42.73 37.17
ADIABATIC 0.00025 439.05 876.44 1130.03 41.10 37.43
ADIABATIC 0.00050 438.70 876.49 1130.03 39.61 36.89
ADIABATIC 0.00100 434.91 876.58 1130.06 39.37 36.99

- All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

percentage and magnitude during the transient for a series of trials with varying coarse

mesh cell sizes. Table 5.9 and Table 5.10 provide a summary of other simulation

results for these trials.

Table 5.9. LRA - coarse mesh sensitivity analysis results - average core power and
peak power timesl

Method Mesh size t 0 1 't peak 1 st Peak t L 2 nd peak 2 "d Peak Final Power
(cm) (s) Power (W/cc) (s) Power (W/cc) (W/cc)

*MAF 1.875 1.4151 5508.00 2.0011 813.19 100.70
MAF 3.75 1.4150 5535.90 2.0011 813.89 100.69
MAF 7.5 1.4151 5549.28 2.0011 814.26 100.68
MAF 15 1.4151 5562.46 2.0011 814.52 100.69

*THETA 1.875 1.4151 5490.60 2.0007 813.06 100.70
THETA 3.75 1.4151 5518.13 2.0007 812.79 100.69
THETA 7.5 1.4152 5530.96 2.0006 814.16 100.68
THETA 15 1.4150 5543.64 2.0007 814.42 100.69

*ADIABATIC 1.875 1.4150 5476.04 2.0011 811.67 100.88
ADIABATIC 3.75 1.4161 5480.40 2.0012 813.64 100.84
ADIABATIC 7.5 1.4188 5489.32 2.0012 816.72 100.82
ADIABATIC 15 1.4204 5495.18 2.0012 818.75 100.79

- All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

Figure 5-5 shows that the convergence of the core power is relatively insensitive

to the coarse mesh discretization for the Theta and MAF methods. The Adiabatic

method was sensitive to the coarse mesh size experiencing a maximum error of over

40% for the trial with a 15 cm CMFD mesh. The results presented in Table 5.9 help

103



Core average power density error (%)

- MAF - 3.75 cm
4 MAF -7.5cm

30 -J

20

-10

-20.

-30

0.5 1.0 1.5 2.0 2.5 3.
Time ds er

s. Core average power density ,error ()
a
4
0-4L~

b.o T5 1.0 L.5
Tnme (s)

- THETA - 3.75 cm

- THETA - 7.5 cm

- THETA - 15 cm

44

0

S

2.0 2.5 3.0

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time s)

Figure 5-5. Plot of core average power density error percentage (left) and magnitude
(right) for the MAF (top), Theta (middle), and Adiabatic (bottom) methods during
the LRA transient simulated with different mesh sizes.

to explain these results. From Table 5.9 we see that the first power peak position

stays within 0.0001 second of the reference peak position for the MAF and Theta

methods, but incurs an error of up to 0.0054 seconds for the Adiabatic method. The

peak position error for the Adiabatic method shifts the peak to later times and results
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Table 5.10. LRA - coarse mesh sensitivity analysis results - average core tempe
and runtimet

rature

Method Mesh size 1st Peak 2 "d Peak

(cm) Temp (K) Temp (K)

*MAF 1.875 440.21 876.73
MAF 3.75 440.07 876.68
MAF 7.5 440.46 876.62
MAF 15 441.03 876.76

*THETA 1.875 440.07 876.34
THETA 3.75 440.52 876.29
THETA 7.5 440.94 876.13
THETA 15 440.88 876.35

*ADIABATIC 1.875 439.91 876.57
ADIABATIC 3.75 440.52 877.45
ADIABATIC 7.5 441.50 877.49
ADIABATIC 15 442.68 877.81

- All trials run with 12 threads on 2 6-core Intel
* - Denotes a reference case

Final Temp
(K)

1129.80
1129.86
1129.79
1129.98
1129.90
1129.87
1129.81
1129.99
1130.00
1131.32
1131.76
1132.37

Xeon processors

in the large error seen in Figure 5-5. It is important to note that Table 5.9 shows that

the magnitude of the average core power at the first power peak is relatively constant

with a maximum error below 1.0% for all methods and CMFD mesh sizes.

In addition to the core average power error, the runtime performance was also

analyzed. The runtime performance for a particular transient simulation can be sep-

arated into different components to represent the different procedures taking place.

Figure 5-6 shows the runtime breakdown for the shape function reference solutions

presented in Figure 5-3 into separate components for the MOC and TCMFD solves.

An additional wedge is included for looking up the material cross sections since this

procedure takes up a significant amount of time when an implicit procedure is used be-

cause it requires all material properties to be reset to a previous state point. The time

for the rest of the procedures including convergence checking, computing precursor

concentrations, computing cell powers, and other auxiliary functions is represented

in the Aux fcts wedge. Figure 5-6 also includes a breakdown of the MOC solve time

into separate components for the fixed source iteration, CMFD solve, computation

of the source for each FSR, and other auxiliary functions. From Figure 5-6 we see

that only 55-60% of the time is spent on the MOC solve for the MAF and Theta

methods whereas over 90% of the time is spent on the MOC solve for the Adiabatic

method. Furthermore, the MAF and Theta methods required ~84% less time than
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the Adiabatic method runtime to solve the problem which is almost entirely due to

the additional time required to perform the shape function solve at each time step.

Fixed source
Iteration

Aux fcts

Aux fcts

Compute sources

7.98 hours

Aux fcts

Aux fcts

TCMFD

MOC Aux fcts

I Aux fcts
Syncing

TCMFD

Figure 5-6. Plots that separate the runtime (left) and MOC solve time (right) for
LRA trials into various components representing different core processes. The top
plots were run with the MAF method, the middle plots with the Theta method, and
the bottom plots with the Adiabatic method. All simulations were run with a shape
function time step of 5e-4 s and an amplitude function time step of le-4 s.

In order to compare trials with an interest in extending these methods to larger

106



problems, we have analyzed both the total runtime and MOC runtime for all trials

presented in the sensitivity analysis. In Figure 5-7 the total runtime and MOC solve

time is plotted.
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Figure 5-7. Plots that compare the total (left) and MOC solve (right) time for the
shape function step size (top), amplitude function step size (middle) and coarse mesh
size (bottom) sensitivity studies.

Figure 5-7 highlights the clear performance advantages of the MAF and Theta

methods for fine shape function step sizes in solving the LRA benchmark. The reduc-
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tion in runtime for these methods is due almost entirely to the reduction in runtime

for the MOC solve. The MOC solve time is much shorter in these methods because

the eigenvalue problem is reduced to a fixed source problem that can be solved in

many fewer iterations as shown in Figure 5-8. Figure 5-7 also demonstrates that the

MOC solve time is dependent on the shape function time step size and has little

dependence on the amplitude function step size. The runtimes for the coarse mesh

solver tend to increase as the mesh is coarsened because it takes more iterations to

solve the MOC problems as shown in Table 3.5.

80, Total number of MOC iterations per shape function solve

701
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le 50
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Figure 5-8. Total number of MOC iterations required to solve the MOC problem
at each time step. In cases where multiple shape function solves were required to
converge the shape function at an outer time step, the total number of iterations is
the sum of the MOC iterations required for all solves. The MAF and Theta methods
overlap for the majority of the plot.

In summary, the LRA sensitivity study results highlight a few key points:

9 Shape function sensitivity - The MAF and Theta methods show the highest

sensitivity to the shape function time step size with maximum core average

power density errors of 5.4% and -7.5% for the trials studied, respectively. The
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Adiabatic method incurred a maximum core average power density error of -

0.4% for the trials tested, suggesting the Adiabatic method might be able to

maintain solution accuracy at larger shape function time step sizes than the

MAF and Theta methods for problems similar to the LRA benchmark.

" Amplitude function sensitivity - All methods showed some sensitivity in core

average power to the amplitude function step size. However, this sensitivity was

mainly due to a time-shift in the power profile and not necessarily an increase

or decrease in the magnitude of the maximum core average power density.

" Coarse mesh sensitivity - The MAF and Theta methods were relatively insensi-

tive to the coarse mesh size whereas the Adiabatic method incurred some error

in the core average power density at the first power peak. This error was due

almost entirely to a shift in the core average power density to later times and

not a shift in the magnitude of the core average power density.

" Runtime performance - The MAF and Theta methods required ~84% less run-

time compared with the Adiabatic method. This is due to the increased number

of fixed source iterations required to compute the shape function at each shape

function time step.

5.2 Transient C5G7 Benchmark

The 2D C5G7 benchmark is a 7 group, quarter-core LWR transport problem that is

fully specified in section A.2. A transient version of the C5G7 transport benchmark

was originally published in [1]. Herein, we have added a doppler feedback model and

treated the transient as a ramp withdrawal over 2.0 seconds instead of a prompt with-

drawal. The geometry is presented with heterogeneous fuel/clad and water regions

cross section data and a simple linear absorption and scattering cross-section ramp

to model the withdrawal of the control rods in one assembly. The discretization of

this problem makes it more difficult to resolve the spatial flux profile, as shown in

subsection 3.2.1.
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5.2.1 Static Control Rod Worth

We begin our analysis by determining the static control rod worth by computing

the eigenvalue at the initial and final material states. We compute the control rod

worth using two sets of FSR discretizations and track laydowns - the ultrafine FSR

discretization and track laydown used to compute the reference solution in section 3.2

and the coarse FSR discretization and track laydown identified as producing a suffi-

ciently converged solution in subsection 3.2.1. The simulation parameters and eigen-

values for both cases and both states are presented in Table 5.11 and the initial and

final power distributions for the ultrafine reference case are shown in Figure 5-9.

Table 5.11. The simulation parameters and eigenvalues for the initial and final state
of the C5G7 transient transport benchmark

Azimuthal Track # State keff reactivity ($)
Angles Spacing (cm) FSRs

128 0.05 571,856 Initial 1.148122 -
128 0.05 571,856 Final 1.158253 1.3575
64 0.05 235,088 Initial 1.148224 -
64 0.05 235,088 Final 1.158347 1.3563
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Figure 5-9. Plots of the relative power for the initial (left) and final (right) material
states of the C5G7 benchmark.

The initial eigenvalue for the ultrafine mesh case is within 17 pcm of the reference

eigenvalue computed in [5]. The control rod worth was computed using Equation 5.1
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where 3 is 0.0065 for this problem. Since the initial state is assumed to be critical, we

care much more about the reactivity comparison between the two cases rather than

eigenvalues. The control rod worth for our case with a slightly coarser MOC mesh

was found to be in very good agreement with the ultrafine mesh case, suggesting

the coarse MOC mesh should be sufficient to approximate the spatially converged

transient solution.

5.2.2 Reference Solution

To our knowledge there has been no previously reported spatially and temporally

converged reference solution for the transport version of the C5G7 transient bench-

mark. Therefore, we simulated the transient with a fine spatial mesh and fine step

sizes in order to generate a reference solution. The parameters used to generate all

transient results in the section are provided in Table 5.12.

Table 5.12. Ca

Parameter

Number of polar angles
MOC convergence criteria

TCMFD convergence criteria
CMFD convergence criteria

GS convergence criteria
CMFD damping factor

CPU architecture
Threads

# of azimuthal angles
Track spacing

Pin Cell discretization

lculation conditions

Value

3 (using TY quadrature set)
le-6 on RMSD of fission source
le-8 on RMSD of fission source
le-6 on RMSD of fission source
le-8 on RMSD of fission source

0.5
2 6-core Intel Xeon processors

12
64

0.05 cm
Scheme 4

The results from the reference simulation are provided in the Table 5.13. The av-

erage core power and peak fuel temperature profile during the transient are presented

in Figure 5-10.

111



102

10

10

101

102

10
610-

10-s

10~

Table 5.13. Calculation conditions

Parameter Value

Shape function step size le-3 s
Amplitude function step size le-4 s

Method MAF
CMFD mesh size pin-cell

Initial keff 1.148224
Time @ peak 1.9796 s

Avg. fuel temperature A peak 342.45 K
Avg. power density A peak 1333.64 W/cc

Avg. fuel temperature A t = 3s 447.77 K
Avg. power density A t = 3s 34.10 W/cc

Runtime 64.44 hours

C5G7 Transient Reference Solution

0.0 0.5 1.0 1.5
Time (s)

Figure 5-10. Plot of average core power (blue)
during the reference C5G7 transient.
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5.2.3 Sensitivity Analysis

In order to evaluate the convergence and performance of the MAF, Theta, and Adia-

batic methods in modeling the C5G7 transient problem, we conducted a series of trials

where simulation parameters were adjusted. Table 5.14 shows the values used for each
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parameter in their respective sensitivity analyses. In this section, we investigate each

parameter individually and seek to determine the influence of each parameter on so-

lution convergence. The reference solution for each analysis was chosen such that

only one simulation parameter changed for each to the trials, allowing us to isolate

the influence of this variable. Solution convergence is determined by comparing the

core average power density error percentage and magnitude as a function of time

compared to the reference simulation for each analysis.

Table 5.14. Calculation conditions

Parameter Values

Shape fct step size (At, in s) 5.0e-4, 1.0e-3, 2.0e-3
Amp fct step size (Ata in s) 5.0e-4, 1.0e-3, 2.0e-3

Coarse mesh size pin-cell and assembly

In all trials two different shape function time step sizes were used. From 0 to 1.5

seconds and 2.2 to 3.0 seconds, where the power profile is slowly changing, the shape

function time step size was set to 1.0e-2 seconds. From 1.5 to 2.2 seconds, where the

power profile is rapidly changing, the time step size was set to one of the values in

Table 5.14.

We begin by evaluating the effect of the shape function time step size on the core

average power density profile convergence. In a series of trials the shape function

step size, At,, from 1.5 to 2.2 seconds was adjusted with all other parameters being

held constant at the values listed in Table 5.12. Reference solutions for each method

were generated with a shape function time step size of 5.0e-4 seconds, an amplitude

function step size of 5.0e-4 seconds, and pin-cell discretization scheme 4 from Figure 3-

8. Figure 5-11 shows the core average power density error percentage and magnitude

during the transient for a series of trials with varying shape function time step sizes.

Table 5.15 and Table 5.16 provide a summary of other simulation results for these

trials.

Figure 5-11 shows that the convergence of the core power is not very sensitive to

the shape function step size for any of the methods. However, when the transient

step size was increased beyond the noted values, the simulation became unstable for
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Figure 5-11. Plot of core average power density error percentage (left) and mag-
nitude (right) for the MAF (top), Theta (middle), and Adiabatic (bottom) methods
during the C5G7 transient simulated with different shape function step sizes.

the MAF and Theta methods. As was seen for the LRA transient, the Adiabatic

method was the least sensitive to shape function time step size in the range tested.

The error for all methods is sharply peaked around the core average power peak at

~1.98 s with a maximum core average power-density error below 0.5% for all methods
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Table 5.15. C5G7 - shape function sensitivity analysis results - average core power
and peak power timest

Method At, t L 1st peak 1 st Peak Final Power

(s) (s) Power (W/cc) (W/cc)

*MAF 0.0005 1.9770 1318.28 34.20
MAF 0.0010 1.9770 1319.44 34.20
MAF 0.0020 1.9770 1324.90 34.20

*THETA 0.0005 1.9770 1318.22 34.19
THETA 0.0010 1.9770 1317.70 34.19
THETA 0.0020 1.9770 1314.31 34.20

*ADIABATIC 0.0005 1.9760 1316.70 34.10
ADIABATIC 0.0010 1.9760 1316.52 34.10
ADIABATIC 0.0020 1.9760 1316.21 34.10

- All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

Table 5.16.
perature and

C5G7 - shape function sensitivity analysis results - average core tem-
runtimel

Method At, 18t Peak

(s) Temp (K)

*MAF 0.0005 341.67
MAF 0.0010 341.76
MAF 0.0020 342.00

*THETA 0.0005 341.70
THETA 0.0010 341.80
THETA 0.0020 342.05

*ADIABATIC 0.0005 341.70
ADIABATIC 0.0010 341.69
ADIABATIC 0.0020 341.66

- All trials run with 12 threads
* - Denotes a reference case

Final Temp Runtime MO
(K) (hr) tim

447.75 39.85
447.74 38.22
447.72 37.83
447.74 41.67
447.72 38.14
447.68 40.73
447.45 39.07
447.44 37.11
447.43 35.75

on 2 6-core Intel Xeon processors

C solve
e (hr)

3.02
1.54
1.46
3.62
1.57
7.19
5.68
3.83
2.53

and all trials as shown in Table 5.15. Table 5.16 shows that the temperature at the

power peak was nearly constant, staying within 0.4 K of the reference values for all

trials.

Next we evaluate the effect of the amplitude function time step size on the core

average power density profile convergence. In a series of trials the amplitude function

step size, At,, was adjusted with all other parameters being held constant at the

values listed in Table 5.12. Reference solutions were generated with an amplitude

function step size of 5.0e-4 seconds, a shape function time step size of 2.0e-3 seconds

from 1.5 to 2.2 seconds, and scheme 4 pin cell discretization on the MOC mesh.

Figure 5-12 shows the core average power density error percentage and magnitude

during the transient for a series of trials with varying amplitude function time step

sizes. Table 5.17 and Table 5.18 provide a summary of other simulation results for
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these trials.
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Figure 5-12. Plot of core average power density error percentage (left) and mag-
nitude (right) for the MAF (top), Theta (middle), and Adiabatic (bottom) methods
during the C5G7 transient simulated with different amplitude function step sizes.

Figure 5-12 shows that the convergence of the core power is sensitive to the am-

plitude function step size for all methods, incurring errors of >60% near the power

peak. This behavior is very similar to the behavior seen for the sensitivity of the

116

Core average power density error (W/cc)

- MAF - 1.0e-3 s
0-- MAF - 2.0e-3 s

0

0

0

0.0 0.5 1.0 1.5 2.0 2.5 3.
Time (s)

Core average power density error (W/cc)

- THETA - 1.0e-3 s
- THETA -2.0e-3 s

0

0-

0

0.0 0.5 1.0 1.5 2.0 2.5 3.
Time (s)

Core average power density error (W/cc)

- ADIABATIC - 1.0e-3 s
- ADIABATIC - 2.0e-3 s

0

0

10

so

20

40

20

0

S
&

-20

- ADIABATIC - 1.0e-3 s
- ADIABATIC - 2.0e-3 sso

80

40

20

0

S
&

-20

0,0 0.5 1.0 1.5
Time (s)

2.0 2.5 3.0

0

0



Table 5.17. C5G7 - amplitude function sensitivity analysis results
power and peak power timesl

Method At, t L 1s peak 1st Peak Final Power

(s) (s) Power (W/cc) (W/cc)

*MAF 0.0005 1.9770 1324.90 34.20
MAF 0.0010 1.9740 1306.03 34.20
MAF 0.0020 1.9680 1267.88 34.21

*THETA 0.0005 1.9770 1314.31 34.20
THETA 0.0010 1.9740 1298.63 34.20
THETA 0.0020 1.9680 1266.58 34.21

*ADIABATIC 0.0005 1.9760 1316.21 34.10
ADIABATIC 0.0010 1.9730 1297.52 34.10
ADIABATIC 0.0020 1.9680 1259.56 34.11

- All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

- average core

Table 5.18. C5G7 - amplitude
temperature and runtimel

function sensitivity analysis results - average core

Method Ata 1 st Peak

(s) Temp (K)

*MAF 0.0005 342.00
MAF 0.0010 341.10
MAF 0.0020 339.45

*THETA 0.0005 342.05
THETA 0.0010 341.15
THETA 0.0020 339.49

*ADIABATIC 0.0005 341.66
ADIABATIC 0.0010 340.77
ADIABATIC 0.0020 340.65

- All trials run with 12 threads
* - Denotes a reference case

Final Temp Runtime MOC solve
(K) (hr) time (hr)

447.72 37.83 4.46
447.48 35.31 4.42
446.98 32.98 4.34
447.68 40.73 7.19
447.44 37.52 6.57
446.95 33.53 5.00
447.43 35.75 2.53
447.19 33.44 2.52
446.67 31.04 2.52

on 2 6-core Intel Xeon processors

amplitude function time step size for the LRA benchmark. Table 5.17 indicates that

the error in core average power density at the peak seen in Figure 5-12 is due to both

a shift in the power peak to earlier times and a decrease in magnitude of the power

peak as the amplitude function step size increases.

The shape and amplitude function step sizes are important to consider in tempo-

rally converging the transient solution. In order to spatially converge the solution, it

is important to look at both the FSR discretization and coarse mesh cell discretiza-

tion. In chapter 3 the influence of FSR discretization on the convergence of the initial

steady state eigenvalue was investigated. A pin cell discretization with 2 rings in the

fuel, 2 rings in the water, and 8 sectors was selected to be used in transient analysis

as it produced a sufficiently converged solution to the steady state problem. During

the transient solve, both a fine mesh transport and coarse mesh nonlinear diffusion
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problem are being solved so its important to consider both the fine mesh (FSR) and

coarse mesh discretization in trying to converge the transient solution.

In a series of trials the coarse mesh cell size was adjusted with all other parameters

being held constant at the values listed in Table 5.12. Reference solutions were

generated with an amplitude function step size of 5.0e-4 seconds, a shape function

time step size from 1.5 to 2.2 seconds of 1.0e-3 seconds, a pin-cell coarse mesh, and

scheme 4 pin cell discretization on the MOC mesh. Figure 5-13 shows the core average

power density error percentage and magnitude during the transient for a series of trials

with varying coarse mesh cell sizes. Table 5.19 and Table 5.20 provide a summary of

other simulation results for these trials.

Table 5.19. C5G7 - coarse mesh sensitivity analysis results - average core power
and peak power timest

Method Mesh size t @ 1 't peak 1Vt Peak Final Power

(s) Power (W/cc) (W/cc)

*MAF pin-cell 1.9770 1319.44 34.20
MAF assembly 1.9755 1361.24 34.87

*THETA pin-cell 1.9770 1317.70 34.19
THETA assembly 1.9755 1359.41 34.88

*ADIABATIC pin-cell 1.9760 1316.52 34.10
ADIABATIC assembly 1.9895 1340.38 34.11

- All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

Table 5.20. C5G7 - coarse mesh sensitivity analysis results - average core tempera-
ture and runtime*

Method Mesh size 1" Peak Final Temp Runtime MOC solve
Temp (K) (K) (hr) time (hr)

*MAF pin-cell 341.76 447.74 38.22 4.54
MAF assembly 343.45 451.30 42.66 37.69

*THETA pin-cell 341.80 447.72 38.14 4.57
THETA assembly 343.48 451.30 41.73 36.68

*ADIABATIC pin-cell 341.69 447.44 37.11 3.83
ADIABATIC assembly 343.64 449.01 20.88 15.76

- All trials run with 12 threads on 2 6-core Intel Xeon processors
* - Denotes a reference case

Figure 5-13 shows that the convergence of the core power is sensitive to the coarse

mesh discretization for all three methods. While Figure 5-13 shows a large error

in core average power density around the power peak, Table 5.19 indicates that the

magnitude of the core average power density at the power peak changes by at most
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Figure 5-13. Plot of core average power density error percentage (left) and mag-
nitude (right) for the MAF (top), Theta (middle), and Adiabatic (bottom) methods
during the C5G7 transient simulated with a coarse mesh on the assembly level.

3.2% for all methods. This suggests that the error encountered in the core average

power density for an assembly-wise mesh is mainly due to a shifting of the power

peak and not a change in magnitude.

In addition to the core average power density error, the runtime performance
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was also analyzed. Figure 5-14 shows the runtime breakdown for the shape function

reference solutions presented in Figure 5-11 into separate components for the MOC

and TCMFD solves. Figure 5-14 also includes a breakdown of the MOC solve time

into separate components for the fixed source iteration, CMFD solve, computation of

the source for each FSR, and other auxiliary functions. From Figure 5-14 we see that

only ~15% of the time is spent on the MOC solve for all methods whereas -75% of

the time was spent on the TCMFD solve. This is quite different from the behavior

seen in the LRA transient simulations and can be attributed to the CMFD/TCMFD

problem containing ~4.7x more unknowns for the C5G7 problem. Additionally, the

total and MOC runtime was about the same for all three methods. We would expect

total runtimes to be similar since they are dominated by the TCMFD solve which

does not depend on the transient method used.

In order to compare trials with an interest in extending these methods to larger

problems, we have analyzed both the total runtime and MOC runtime for all trials

presented in the sensitivity analysis. In Figure 5-15 the total runtime and MOC solve

time is plotted.

The results in Figure 5-15 are mixed with no clear performance advantage for

any one method. The only discernible trend is a sharp increase the MOC solve time

for the assembly level CMFD meshes due to an increase in the number of iterations

required to converge the shape at each time step. The MOC solve time is nearly

the same for all methods. Figure 5-16 shows that the shape function solve for each

method required roughly the same number of MOC fixed source iterations during

each MOC solve which would explain the similar solver time. We will note that this

behavior was not expected and is noticeably different from the LRA problem results.

In is unclear why the Adiabatic method did not require more iterations to converge

at each time step, but we postulate that this could be due to the relatively small shift

in flux and power shape during the C5G7 transient and the lower dominance ratio of

the C5G7 problem.

In summary, the C5G7 sensitivity study results highlight a few key points:

e Shape function sensitivity - None of the methods showed significant sensitivity
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Figure 5-14. Plots that separate the runtime (left) and MOC solve time (right) for
C5G7 trials into various components representing different core processes. The top
plots were run with the MAF method, the middle plots with the Theta method, and
the bottom plots with the Adiabatic method. All simulations were run with a shape
function time step of 5.0e-4 s and an amplitude function time step size of 5.0e-4 s.

to the shape function time step size with maximum core average power density

errors of below 2.0% for all times during the trials tested. The Adiabatic method

incurred the least error, similar to the behavior seen in the LRA benchmark.
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Figure 5-15. Plots that compare the total (left) and MOC solve (right) time for
the shape function step size (top), amplitude function step size (middle) and coarse
mesh size (bottom) sensitivity studies.

Amplitude function sensitivity - All methods showed some sensitivity in core

average power to the amplitude function step size. However, this sensitivity was

mainly due to a time-shift in the power profile and not necessarily an increase

or decrease in the magnitude of the maximum core average power density.
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Figure 5-16. Total number of MOC iterations required to solve the MOC problem
at each time step. In cases where multiple shape function solves were required to
converge the shape function at an outer time step, the total number of iterations is
the sum of the MOC iterations required for all solves. The discontinuities at t=1.5s
and t=2.2s are due to the transition to and from the fine shape function step size,
respectively.

" Coarse mesh sensitivity - The MAF and Theta methods were relatively insensi-

tive to the coarse mesh size whereas the Adiabatic method incurred some error

in the core average power density at the power peak. This error was due partly

to a shift in the core average power density to earlier times and an increase in

the magnitude of the core average power density.

" Runtime performance - All methods showed similar runtime performance in

terms of both total and MOC runtime.
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Chapter 6

Summary and Conclusions

6.1 Summary

In this thesis, we have investigated the Adiabatic, Theta, and Multigrid Amplitude

Function methods for solving 2D time-dependent neutron transport problems. A

sensitivity study was conducted on two 2D transient transport benchmarks. The

results highlight the superior runtime performance of the MAF and Theta methods

for the LRA problem where the flux and power profile experience a significant shift

during the transient. The runtime performance for the C5G7 benchmark, which

incurs a less significant flux and power profile shift than the LRA benchmark, was

nearly the same for all three methods. The amplitude function time step size was

seen to have a similar influence on the convergence of the power profile for all trials.

All methods showed a change in position and small change in magnitude of the core

average power density peak for both problems. The MAF and Theta methods showed

the most sensitivity to the shape function step size, with the Adiabatic method being

relatively insensitive to this parameter. The Adiabatic method showed the most

sensitivity to the coarse mesh size of all the methods, but the error in core average

power density was rather small and due mainly to a shift in the peak core average

power density.
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6.1.1 Steady State Method of Characteristics

In chapter 2 the steady state Method of Characteristics formulation of the neutron

transport equation was derived. A thorough derivation of the CMFD acceleration

framework was also included. The initial states of the transient transport versions

of the LRA and C5G7 benchmarks were investigated to understand the influence of

the number of azimuthal angles, track spacing, and FSR mesh discretization on the

convergence of the problem eigenvalue.

We began our analysis by presenting a spatially converged reference solution to

the LRA problem by using an ultrafine FSR discretization and track lay down. The

reference eigenvalue was computed to be 0.997213. Using the reference eigenvalue,

a sensitivity analysis was conducted. The LRA problem was found to be insensitive

to the number of azimuthal angles and track spacing. Next, the effect of the FSR

discretization was studied by performing a series of trials with different numbers of

uniform refinements on the assembly-wise mesh. In order to converge the eigenvalue

to within ~25 pcm of the reference solution, an FSR size of 0.46875 cm was required.

From this analysis, we selected this mesh size, 32 azimuthal angles, and a track spacing

of 0.05 cm to be used in all transient trials. The performance of the CMFD solver was

also investigated for different coarse mesh sizes and CMFD group structures. The 3.75

and 1.875 cm coarse meshes were found to provide the most significant speedup of

~45x in runtime and 150-240x in number of MOC iterations. The optimum damping

factor was found to be between 0.4 and 0.6. A damping factor of 0.5 was selected for

use in transient trials.

Next we performed the same sensitivity analysis on the C5G7 transport bench-

mark. The reference eigenvalue was computed to be 1.18672 which is +17 pcm off the

benchmark value. Using the benchmark eigenvalue, a sensitivity analysis was con-

ducted. The C5G7 problem was found to be sensitive to the number of azimuthal an-

gles, but not sensitive to the track spacing. Next, the effect of the FSR discretization

was studied by performing a series of trials with different pin-cell FSR discretizations.

In order to converge the eigenvalue to within ~25 pcm of the benchmark solution,
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a pin-cell discretization with 2 fuel rings, 2 water rings, and 8 sectors was required.

From this analysis, we selected this pin-cell discretization, 64 azimuthal angles, and

a track spacing of 0.05 cm to be used in all transient trials. The performance of the

CMFD solver was also investigated for different coarse mesh sizes and CMFD group

structures. Pin-cell, assembly, and core wise coarse meshes and CMFD group struc-

tures with 1, 2, 4, and 7 groups were studied. The pin-wise CMFD provided the most

significant speed of 10-20x in runtime and 14-29x in number of MOC iterations. The

2, 4, and 7 energy group structures had similar performance suggesting the CMFD

group structure can be coarsened for fine group problems and still achieve reasonable

acceleration. The optimum damping factor was found to be between 0.5 and 0.7. A

damping factor of 0.6 was selected for use in transient trials.

6.1.2 Time Dependent Method of Characteristics

In chapter 4 the time dependent Method of Characteristics formulation of the neu-

tron transport equation was presented. A derivation of the Adiabatic, fully implicit

Theta, and Multigrid Amplitude Function methods were included along with the

corresponding modifications of the CMFD acceleration framework required for these

methods. The fully implicit Theta method was used to solve for the amplitude func-

tion between large shape function time steps. A procedure for implementing the time

dependent MOC methods was described and algorithms for solving each of the steps

were included.

In chapter 5 the results for transient simulations of the LRA and C5G7 benchmarks

were presented. First, the transport version of the LRA transient benchmark was

studied. The static control blade worth was computed to be 3.0711$ for an ultrafine

mesh case and 3.0492$ for a coarse mesh case. A reference solution was computed

using ultrafine shape and amplitude function time steps. The peak core average

power density was found to be 5513.84 W/cc at t=1.41545 seconds. Interestingly,

this value is very close to the diffusion reference value of 5411 W/cc at 1.436 seconds.

A sensitivity analysis was conducted on the shape function time step, amplitude

function time step, and coarse mesh size. Table 6.1 provides a qualitative comparison
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of the sensitivity of each method to the simulation parameters for the LRA problem.

Table 6.1. LRA - Sensitivity to simulation parameters
Adiabatic Theta MAF

Shape function time step low high high
Amplitude function time step moderate moderate moderate

Coarse mesh size moderate low low

The goal of our study was to investigate these methods with particular attention

to how they will scale to larger, more computationally demanding problems. The

sensitivity analysis only provides half of the picture with the other factor being the

runtime performance. The Theta and MAF methods have clear performance ad-

vantages at small shape function time step sizes due to a decrease in computation

time required to solve the shape function at each time step. For the representative

cases studied in the performance analysis, the time spent solving the shape function

was ~10x greater with the Adiabatic method. This can be attributed to the Theta

and MAF methods using a fixed source shape function solve whereas the Adiabatic

method requires a full eigenvalue solve. However, the Adiabatic method is much less

sensitive to the shape function time step size allowing for solution accuracy to be

maintained at much larger time step sizes. This presents a tradeoff - if the time saved

from fewer shape function solves with the Adiabatic method is greater than the extra

time required per solve, the Adiabatic method would be preferred; otherwise, the

Theta or MAF method would be preferred.

Next, the transient version of the C5G7 transport benchmark was studied. The

static control rod worth was computed to be 1.3575$ for an ultrafine mesh case and

1.3563$ for a coarse mesh case that was used for transient simulations. A reference

solution was computed using ultrafine shape and amplitude function time steps. The

peak core average power density was found to be 1333.64 W/cc at t=1.9796 seconds.

Since this was a contrived problem that we created for this work, no other solutions

existed to compare with. It is our hope that future developers will analyze this

problem and publish their results so researchers can compare implementations of

transient transport methods. A sensitivity analysis was conducted on the shape
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function time step, amplitude function time step, and coarse mesh size. Table 6.2

provides a qualitative comparison of the sensitivity of each method to the simulation

parameters.

Table 6.2. C5G7 - Sensitivity to simulation parameters
Adiabatic Theta MAF

Shape function time step low low low
Amplitude function time step moderate moderate moderate

Coarse mesh size moderate low low

In contrast to the LRA problem, the C5G7 flux and power shape does not change

significantly during the transient. This characteristic is likely what makes the methods

relatively insensitive to the shape function size during the transient. All methods were

moderately sensitive to the amplitude function step size with the peak power shifting

to earlier times as the step size increased. The magnitude of the peak changed by

a maximum value of 6%. All methods showed some sensitivity to coarse mesh size

since the spatial resolution of the amplitude is very poor on an assembly level. The

Adiabatic method had similar performance to the MAF and Theta methods which is

in contrast to the behavior seen for the LRA problem. This difference in behavior is

likely due to the shape function solves requiring roughly the same number of MOC

iterations per solve. The MOC solve time showed a clear preference for the pin-cell

coarse mesh, which is due to the reduced number of iterations to converge the shape

function at each time step.

6.2 Conclusions

In summary, we have analyzed, described, implemented, and performed a sensitivity

analysis on the Adiabatic, Theta, and MAF methods in 2D Method of Characteristics

neutron transport. We have tested these methods on the transient transport versions

of the LRA and C5G7 benchmarks. The results show the Adiabatic method is com-

putationally more expensive for high dominance ratio problems that result in large

spatial changes in the flux, but is much less sensitive to shape function time step size.
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The MAF and Theta methods are preferred when the flux shape is rapidly changing

and the shape function time step size is small because of the more computationally

efficient fixed source shape function solve. All methods were shown to be sensitive

to the amplitude function step size with small values required in order to converge

the position of the power profile. In general, it is best to use a CMFD and TCMFD

mesh on the pin-cell level where fine spatial flux features can be resolved and used to

provide significant speed up for the shape function solve.

6.3 Recommendations for Future Work

In this thesis we have described the Adiabatic, Theta, and MAF methods and pro-

vided results for a sensitivity analysis on two small, simplified 2D transient problems.

Real reactor analysis of transient scenarios will require the addition of more realistic

feedback models, incorporation of thermal hydraulic feedback, thermal expansion of

materials, and a more accurate representation of the flux behavior in the axial di-

rection. This work has demonstrated that there are advantages to the Theta and

MAF methods in certain scenarios as well as advantages to the Adiabatic method in

others. Our recommendations for future work lie in two areas: incorporation of more

detailed models to account for spatial and temperature dependence and extension of

these and other similar methods to Monte Carlo neutron transport.

The implementation of the Adiabatic, Theta, and MAF methods presented in

this thesis makes use of a flux factorization formalism whereby problems are broken

up into fine mesh transport and coarse mesh nonlinear diffusion subproblems. The

fine mesh transport subproblem exists merely to provide an update to the nonlinear

diffusion problem allowing for the flux amplitude, delayed neutron precursors, and

temperature feedback to be performed on the coarse mesh. There is a tremendous

advantage to this approach as we solve larger problems - the convergence of these

parameters can be done using a much more computationally efficient coarse mesh

nonlinear diffusion problem. When the Adiabatic, Theta, and MAF methods are

expanded to incorporate thermal hydraulic feedback, thermal expansion of materials,

130



and treatment of flux in the axial direction, it should be done in a way that allows for

these characteristics to be converged on the coarse mesh. Ideally thermal hydraulic

feedback, thermal expansion of materials, doppler feedback, and convergence of the

delayed neutron precursor concentrations will be converged simultaneously on the

coarse mesh at each amplitude function time step. Additionally, when performing

the shape function update, feedback should be performed and converged after each

MOC iteration's CMFD solve. The simplified buckling model for flux treatment in the

axial direction will need to be updated with more realistic diffusion or transport theory

models. Current codes have begun to implement full 3D MOC neutron transport, but

there has been very little transient analysis performed in this area so it is not yet clear

what models are needed to treat axial flux behavior.

We also recommend that these methods be extended to other neutron transport

methods and in particular Monte Carlo. Implementation in Monte Carlo brings ad-

ditional computational and statistical challenges. In particular, uncertainty quan-

tification and propagation will need to be considered in analyzing the merit and

performance of the methods. The Adiabatic method should be straightforward to

implement and could offer the ability to simulate transients with large shape func-

tion time steps. Additionally, the frequency transform method should be considered

whereby the fine mesh flux temporal derivative term in the transport equation can be

approximated using a dynamic frequency that is computed from a coarse mesh solu-

tion. In conjunction with implementing the frequency transform method, nonlinear

updates to the dynamic frequency during the Monte Carlo solve should be imple-

mented at the same time that nonlinear thermal-hydraulic feedback is performed.

In order for Monte Carlo to be a tangible method for transient analysis in the near

term, the one thing this is clear is that methods will be required to use large shape

function time steps. Flux factorization methods, like the ones studied in this thesis,

show promise in being able to achieve this goal.

Our analysis has provided a glance at industrially relevant time-dependent reactor

physics problems using neutron transport theory. While time-dependent neutron

transport methods have come a long way in the past 7 decades, there is still much

131



work to be done before fast transport theory codes will be capable of solving large

3D, industrially relevant transient problems.
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Appendix A

Test Problems

There do not exist many 2D transient LWR benchmark problems that have been thor-

oughly studied using transport theory. Numerous diffusion theory transient bench-

marks in 2D and 3D exist with the LRA, TWIGL, and LMW benchmarks being some

of the most widely studied [20]. Recently, a transport version of the LRA transient

diffusion benchmark was proposed [16]. The LRA problem is characterized by a very

large change in power (> 1010x) with doppler feedback. These two characteristics

make the LRA problem challenging to model accurately and therefore allow us to

differentiate between methods. In addition to a transient diffusion benchmark that

has been modified into a transport problem, there has been an attempt to design a

contrived transient problem from a static transport benchmark. In 2013, a transient

problem for the C5G7 static 2D transport benchmark was proposed [1]. The C5G7

benchmark has spatially discretized fuel and moderator regions, which is not the case

for the LRA benchmark. This discretization causes the flux shape to be more spa-

tially undulating, which creates additional challenges in homogenization approaches

to solving transient problems. Recently, the transport version of the TWIGL tran-

sient diffusion benchmark was solved with both studies reporting results that agree

quite well [15, 1]. The TWIGL transient benchmark is a 2D unreflected seed-blanket

reactor modeled with two energy groups, one delayed precursor group, and assembly-

homogenized diffusion coefficients and cross sections. The transient has been modeled

with both step and ramp reactivity insertions in one of the seeded regions of the core.
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The problem is sufficient to allow spatial and temporal effects of flux changes to be

analyzed, but the lack of feedback and a large (> lox) power excursion makes the

TWIGL problem relatively easy to solve with simple models that break down on

more complex problems.

Taking into consideration the previous transient transport problems attempted,

we have chosen to solve the transport version of the LRA benchmark as presented in

[16] and a modified version of the transient C5G7 benchmark as presented in [1].

A.1 2D LRA Benchmark

The 2D LRA benchmark is a 2-group, quarter-core BWR transient problem [4]. The

geometry consists of 78 15 cm x 15 cm homogenized fuel assemblies (regions 1-4)

surrounded by water cells (region 5) to fill the 165 cm x 165 cm geometry as depicted

in Figure A-1. The LRA problem was originally posed as a diffusion problem and

has been extensively solved with coarse mesh and nodal diffusion methods [12]. The

transport version of the LRA benchmark was originally published in [16] as a test

problem for modern transport theory neutronics codes. In our analysis, we will use

this version of the benchmark to allow ourselves and others to compare results. The

cross sections for the initial state are presented in Table A.1.

vacuum

reflective

Figure A-1. The LRA benchmark geometry.
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Table A.1. Material properties for transport version of 2D LRA benchmark

Region g D [cm] Et [cm-1] EA [cm- 1 ] VEF [c-1 ES-+ g2 Cm-

1 1 1.2550 0.265604 0.008252 0.004602 0.232022 0.025330
2 0.2110 1.579779 0.100300 0.109100 0.000000 1.479479

2 1 1.2680 0.262881 0.007181 0.004609 0.228030 0.027670
2 0.1902 1.752541 0.070470 0.086750 0.000000 1.682071

3,R 1 1.2590 0.264760 0.008002 0.004663 0.230588 0.026170
2 0.2091 1.594134 0.083440 0.102100 0.000000 1.510694

4 1 1.2590 0.264760 0.008002 0.004663 0.230588 0.026170
2 0.2091 1.594134 0.073324 0.102100 0.000000 1.520810

5 1 1.2570 0.265182 0.000603 0.000000 0.217039 0.047540
2 0.1592 2.093802 0.019110 0.000000 0.000000 2.074692

Since the LRA benchmark does not specify total and in scattering cross sections,

some estimation needs to be performed in order to obtain these terms. The total cross

section can be approximated using the diffusion coefficient as shown in Equation A. 1.

ET~ Etr
g 

D
(A.1)

The in scattering cross section is then computed by requiring the absorption and

scattering cross sections to equal the total cross section at all times as shown in

Equation A.2. During the transient the absorption cross sections will change due to

materials perturbation and feedback, so the in-group scattering cross sections will

need to be recomputed in order to satisfy Equation A.2.

G
: ET - E
g-+g g - EZ L~g-+g

g/=1
g94g

(A.2)

Temperature feedback is modeled with doppler on the fast (group 1) absorption

cross sections in the fueled regions with the following equation:

E (t) = EA(O) + v( T(t) - VT(O)) (A.3)

The control blade drop in region 3R is modeled using a linear approximation on

the thermal (group 2) absorption cross section:
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E(t)= E2()- [1 - (0.0606184s -t)]

EA(O). [1 - (0.0606184s- 1 - 2s)]

if t < 2 s

if t > 2 s

(A.4)

The fueled material (regions 1-4) is assumed to heat up adiabatically according

to the following equation:

Tf uel(r, t) = a (r, t)<Dg(r, t)at =g= 1
(A.5)

The average power density, P, and core temperature, IT', are given by:

P(t) = A J E 1Z (r, t)<D(r, t)dA
Acore Acoreg=

A core JAcore
T(r, t)dA

(A.6)

(A.7)

Where Acore is the area of the fueled regions. Additional parameters used to solve

the problem are listed in Table A.2.

Table A.2. Parameters used to solve LRA transient benchmark problem

Parameter Symbol Value

Neutron velocity (group 1) Vi 3e7 cm s-1
Neutron velocity (group 2) V2 3e5 cm s-1

Delayed neutron fraction (delay group 1) 01 0.0054
Delayed neutron fraction (delay group 2) #2 0.001087
Precursor decay constant (delay group 1) A, 0.00654 s-
Precursor decay constant (delay group 2) A2  1.35 s-I

Axial buckling B2 le-4 cm-2
Neutrons per fission V 2.43 n/fission

Temperature conversion factor Oz 3.83e-11 K cm 3

Doppler feedback constant y 3.034e-3 K-0 5

Thermal energy per fission K 3.204e-11 J/fission
Fission emission spectrum (group 1) X1 1.0
Fission emission spectrum (group 2) X2 0.0

The initial average power density in the core is:
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P(0) = le-6 W/cm3

The initial temperature of all materials in the core is assumed to be:

T(r, 0) = 300K (A.9)

A.2 2D C5G7 Benchmark

The C5G7 transport benchmark was also studied due to the numerous benchmarking

studies that have been performed on the static 2D unrodded case of this problem.

This benchmark was presented as a static 2D and 3D, 7 energy group transport the-

ory problem for benchmarking new reactor analysis codes. The C5G7 benchmark

maintains heterogeneity between the fuel and moderator regions in a pin-cell, allow-

ing developers to investigate homogenization approaches for lattice physics problems.

Recently a transient version of the benchmark was proposed where a control rod drive

ejection was simulated [1]. In this thesis, we present a similar transient version of

the C5G7 benchmark problem with the incorporation of a thermal feedback model to

allow the feedback and delayed neutron precursor effects to be modeled in a hetero-

geneous problem where a significant reactivity insertion (> is) with a commensurate

power excursion has occurred. For the thermal feedback, we constructed a doppler

feedback model for the epithermal energy regions of the fuel similar to the doppler

feedback model used in the LRA benchmark. While the transient version of the

C5G7 benchmark is a contrived problem, the geometric specifications are much closer

to what would be expected for a real reactor transient and the problem allows us to

examine the effects of thermal feedback, flux shape modeling, and delayed neutron

precursors in a heterogeneous medium.

The C5G7 problem was developed as a modern benchmark for deterministic neu-

tron transport methods without spatial homogenization. The problem contains six-

teen 17 x 17 pin-cell assemblies surrounded by water with vacuum boundary condi-

tions on all sides. Typically, the problem is presented as a quarter core problem with
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reflective boundary conditions on inner surfaces (Figure A-2)

reflective

vacuum

Figure A-2. The C5G7 benchmark problem.

The transport version of the problem is presented in the full sixteen assembly

form to model a transient case where quarter core symmetry is not maintained. In

our transient form of the benchmark, there is both an initial and final state (Figure A-

3). The initial state is composed of the sixteen bundle C5G7 benchmark with each

of the inner four assemblies containing control rods in the guide tube positions. In

the final state, the control rods have been removed from the southeast rodded U0 2

bundle.

Each bundle consist of a 17 x 17 array of pins where each pin has a 0.54 cm

radius with a pitch of 1.26 cm. Three bundle types, two U0 2 and one MOX, are

presented in an initially quarter-core symmetric pattern and specified in Figure A-4.

Each assembly contains a pattern of fuel pin-cells of varying enrichments, guide tubes,

and fission chambers. Unrodded bundles are denoted as U02-U/MOX-U and rodded

bundles are denoted U02-R.

The C5G7 problem uses 7 group transport corrected, isotropic scattering cross sec-

tions generated from a 69 group library using the collision probability code DRAGON.

For reference, the cross section data has been included in subsection A.2.1. The con-

trol rod cross sections were taken to be the values presented in a previous version
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vacuum

S2 2

vacuum vacuum

Figure A-3. Assembly layout for the initial state (left) and final state (right) of the
transient version of the C5G7 benchmark. The suffix R and U denote rodded and
unrodded, respectively.

MOX-U U0 2-R U0 2-U

4.3% MOX Fuel Control Rod

7.0% MOX Fuel Fission Chamber

* 8.7% MOX Fuel * Guide Tube

UO2 Fuel Moderator

Figure A-4. The pin layouts for the three bundle types in the C5G7 benchmark
problem.

of the C5G7 transient problem and not the actual values from the benchmark spec-

ification [1]. The C5G7 benchmark does not include kinetics, feedback, or delayed

neutron precursor parameters, so representative parameters were adopted from other

sources or, in the case of doppler feedback, a model was created. The kinetics and

delayed neutron precursor parameters were taken from [1] and shown in Table A.3
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and Table A.4.

Table A.3. Energy group structure and transient parameters for transient version
of 2D C5G7 benchmark

Group 1 2 3 4 5 6 7

Etop (eV) 2e7 1e6 5e5 3e0 6.25e-1 le-1 2e-2
Ebottom (eV) 1e6 5e5 3e0 6.25e-1 le-1 2e-2 le-5
Vmidpoint (cm/s) 4.48e9 1.20e9 6.92e8 1.86e6 8.33e5 3.39e5 1.85e5

Table A.4. Delayed neutron group
benchmark

Group 1 2

#3 2.470e-4 1.3845e-3
A (s- 1) 0.0127 0.0317

parameters for transient version of 2D C5G7

3 4 5 6

1.222e-3 2.6455e-3 8.32e-4 1.690e-4
0.115 0.311 1.40 3.87

Additional parameters used to solve the C5G7 benchmark are included in Ta-

ble A.5.

Table A.5. Parameters used to solve C5G7 transient benchmark problem

Parameter Symbol Value

Temperature conversion factor a 3.83e-11 K cm3

Thermal energy per fission K 3.204e-11 JIfission

A feedback model was created based on the assumption of doppler feedback in the

epithermal region of fuel materials. We used a model similar to the LRA benchmark

feedback model with doppler occurring for the C5G7 problem in group 3 (3 eV to 500

keV) as shown in Equation A.10.

EA(t) = EA(O) 1+ ((t) - (O) (A.10)

The doppler feedback coefficients for the fissile materials were set based on the

assumption of an average feedback of -3 pcm/K from an initial state at 300K to

a final state at 1000K. The cross sections from the benchmark were assumed to be
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generated at 300K, giving Equation A. 11 as the expression for computing the feedback

coefficient.
'3A(T=1000)1

E' (T=300K)

x1000K - v300K
(A.11)

The feedback coefficients were computed by making an infinite lattice pin-cell

geometry of each fuel material and running a series of trials where the epithermal

absorption cross section was steadily increased. Using the following expression, we

were able to compute the reactivity, p, of the material as a function of absorption

cross section.

p(Af)k= knf(E A) - kinf(yA(0))
kinf (E3 (0))

(A.12)

Figure A-5 shows a plot of the reactivity as function of change in E from the

base case.
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Figure A-5. Reactivity for
types.

infinite lattice pin-cell geometries for the various fuel

Using Equation A.11 and the data from Figure A-5 the doppler feedback coeffi-

cients were computed and are presented in Table A.6.

The doppler feedback coefficient for the fission chamber was assumed to be the
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Table A.6. Doppler feedback coefficients for the fissile materials

Material 3 1OLa P = -3pcm/K -y (K- 0-5 )EA (300K)

U0 2 Fuel 1.1881 1.315e-02
4.3% MOX Fuel 1.1862 1.302e-02
7.0% MOX Fuel 1.1655 1.157e-02
8.7% MOX Fuel 1.1546 1.081e-02

same as the U02 Fuel.

The control rods in the southeast U02-R assembly were ejected using a ramp

change in material compositions over the course of two seconds. In the ramp reac-

tivity model, the scattering and absorption cross sections of the rodded regions were

linearly interpolated between the control rod material and the guide tube material

cross sections as shown in Equation A.13. The transport cross sections were adjusted

for all fissile materials (including fission chambers) such that they equal the sum of

the scattering and absorption cross sections at all times as shown in Equation A.14.

E AS ro( 2 -t) + FA,'S (t~ if t < 2 s
EASt = control ro( 2 guide tube() ft (A. 13)

guide tube if t > 2 s

G

Etr = EA^+ E ES,(A.14)
g1=1

The initial average power density in the fissile materials is assumed to be:

P(O) = le-6 W/cm 3  (A.15)

The initial temperature of all materials in the core is assumed to be:

T(r, 0) = 300K (A. 16)

The fissile materials (including the fission chamber) are assumed to heat up adia-

batically according to Equation A. 17. Thermal hydraulic feedback was not considered

during the transient and therefore the moderator temperature and cross sections were
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assumed to be constant at their initial values.

Tf uel (r, t) G E (r, t)<bg(r, t)
at____ _ aEzFr . >~~r (A.17)

The average power density, P, and was taken to be:

G

P(t)= AF ' n (r, t)<(r, t)dA
Afuel Af~ el 9

(A.18)

Where Afuel is the area of the fissile materials (excluding water around pin cells)

in the core.

A.2.1 C5G7 Cross Sections

Table A.7. Control rod macroscopic cross sections
Group Etr [cm-] EA [cm-1] E [cm-']

1 1.3511e-01 6.3068e-04 0.00000e+00
2 3.1185e-01 9.0445e-04 0.00000e+00
3 3.4445e-01 8.6632e-03 0.00000e+00
4 3.4987e-01 4.0822e-02 0.00000e+00
5 3.9204e-01 7.2934e-02 0.00000e+00
6 6.2285e-01 1.0122e-01 0.00000e+00
7 1.2390e+00 1.3875e-01 0.00000e+00

Table A.8. Control rod macroscopic scattering cross sections

E 6- 1 2 3 4 5 6 7
1 7.6606e-02 5.7603e-02 2.6484e-04 1.3288e-06 1.8578e-08 0.0000e+00 0.00000e+00
2 0.0000e+00 2.6344e-01 4.7260e-02 2.2491e-04 1.7315e-05 2.6888e-06 3.7926e-07
3 0.0000e+00 0.0000e+00 2.4515e-01 8.3229e-02 6.2501e-03 9.7227e-04 1.8510e-04
4 0.0000e+00 0.0000e+00 0.0000e+00 1.2804e-01 1.5327e-01 2.3293e-02 4.4367e-03
5 0.0000e+00 0.0000e+00 0.0000e+00 4.0155e-05 1.1055e-01 1.8649e-01 2.2030e-02
6 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 9.2796e-04 3.0534e-01 2.1537e-01
7 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.5166e-02 1.0551e+00

Table A.9. U0 2 fuel-clad macroscopic cross sections
Group Etr [cm~1] EA [cm-1] E [cm-rV v x

1 1.77949e-01 8.02480e-03 7.21206e-03 2.78145 5.87910e-01
2 3.29805e-01 3.71740e-03 8.19301e-04 2.47443 4.11760e-01
3 4.80388e-01 2.67690e-02 6.45320e-03 2.43383 3.39060e-04
4 5.54367e-01 9.62360e-02 1.85648e-02 2.43380 1.17610e-07
5 3.11801e-01 3.00200e-02 1.78084e-02 2.43380 0.00000e+00
6 3.95168e-01 1.11260e-01 8.30348e-02 2.43380 0.00000e+00
7 5.64406e-01 2.82780e-01 2.16004e-01 2.43380 0.00000e+00
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Table A.1M. U0 2 fuel-clad macroscopic scattering cross sections

1 2 3 4 5 6 7
1 1.27537e-01 4.23780e-02 9.43740e-06 5.51630e-09 0.00000e+00 0.00000e+00 0.00000e+00
2 0.00000e+00 3.24456e-01 1.63140e-03 3.14270e-09 0.00000e+00 0.00000e+00 0.00000e+00
3 0.00000e+00 0.00000e+00 4.50940e-01 2.67920e-03 0.00000e+00 0.00000e+00 0.00000e+00
4 0.00000e+00 0.00000e+00 0.00000e+00 4.52565e-01 5.56640e-03 0.00000e+00 0.00000e+00
5 0.00000e+00 0.00000e+00 0.00000e+00 1.25250e-04 2.71401e-01 1.02550e-02 1.00210e-08
6 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.29680e-03 2.65802e-01 1.68090e-02
7 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 8.54580e-03 2.73080e-01

Table A.11. 4.3 % MOX fuel-clad macroscopic cross sections
Group Et [ 11 EA [cm-

1
] [CM-1 v x

1 1.78731e-01 8.43390e-03 7.62704e-03 2.85209 5.87910e-01
2 3.30849e-01 3.75770e-03 8.76898e-04 2.89099 4.11760e-01
3 4.83772e-01 2.79700e-02 5.69835e-03 2.85486 3.39060e-04
4 5.66922e-01 1.04210e-01 2.28872e-02 2.86073 1.17610e-07
5 4.26227e-01 1.39940e-01 1.07635e-02 2.85447 0.00000e+00
6 6.78997e-01 4.09180e-01 2.32757e-01 2.86415 0.00000e+00
7 6.82852e-01 4.09350e-01 2.48968e-01 2.86780 0.00000e+00

Table A.12. 4.3 % MOX fuel-clad macroscopic scattering cross sections

1 2 3 4 5 6 7
1 1.28876e-01 4.14130e-02 8.22900e-06 5.04050e-09 0.00000e+00 0.00000e+00 0.00000e+00
2 0.00000e+00 3.25452e-01 1.63950e-03 1.59820e-09 0.00000e+00 0.00000e+00 0.00000e+00
3 0.00000e+00 0.00000e+00 4.53188e-01 2.61420e-03 0.00000e+00 0.00000e+00 0.00000e+00
4 0.00000e+00 0.00000e+00 0.00000e+00 4.57173e-01 5.53940e-03 0.00000e+00 0.00000e+00
5 0.00000e+00 0.00000e+00 0.00000e+00 1.60460e-04 2.76814e-01 9.31270e-03 9.16560e-09
6 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00510e-03 2.52962e-01 1.48500e-02
7 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 8.49480e-03 2.65007e-01

Table A.13. 7.0 % MOX fuel-clad macroscopic cross sections
Group Etr [cm-1] EA [cm-1] EF [cm-1] v x

1 1.81323e-01 9.06570e-03 8.25446e-03 2.88498 5.87910e-01
2 3.34368e-01 4.29670e-03 1.32565e-03 2.91079 4.11760e-01
3 4.93785e-01 3.28810e-02 8.42156e-03 2.86574 3.39060e-04
4 5.91216e-01 1.22030e-01 3.28730e-02 2.87063 1.17610e-07
5 4.74198e-01 1.82980e-01 1.59636e-02 2.86714 0.00000e+00
6 8.33601e-01 5.68460e-01 3.23794e-01 2.86658 0.00000e+00
7 8.53603e-01 5.85210e-01 3.62803e-01 2.87539 0.00000e+00

Table A.14. 7.0 % MOX fuel-clad macroscopic scattering cross sections

1 2 3 4 5 6 7
1 1.30457e-01 4.17920e-02 8.51050e-06 5.13290e-09 0.00000e+00 0.00000e+00 0.00000e+00
2 0.00000e+00 3.28428e-01 1.64360e-03 2.20170e-09 0.00000e+00 0.00000e+00 0.00000e+00
3 0.00000e+00 0.00000e+00 4.58371e-01 2.53310e-03 0.00000e+00 0.00000e+00 0.00000e+00
4 0.00000e+00 0.00000e+00 0.00000e+00 4.63709e-01 5.47660e-03 0.00000e+00 0.00000e+00
5 0.00000e+00 0.00000e+00 0.00000e+00 1.76190e-04 2.82313e-01 8.72890e-03 9.00160e-09
6 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.27600e-03 2.49751e-01 1.31140e-02
7 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 8.86450e-03 2.59529e-01
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Table A.15. 8.7 % MOX fuel-clad macroscopic cross sections
Group Etr [cm- 1

] EA [cm-1] EF [cm- 1
] v x

1 1.83045e-01 9.48620e-03 8.67209e-03 2.90426 5.87910e-01
2 3.36705e-01 4.65560e-03 1.62426e-03 2.91795 4.11760e-01
3 5.00507e-01 3.62400e-02 1.02716e-02 2.86986 3.39060e-04
4 6.06174e-01 1.32720e-01 3.90447e-02 2.87491 1.17610e-07
5 5.02754e-01 2.08400e-01 1.92576e-02 2.87175 0.00000e+00
6 9.21028e-01 6.58700e-01 3.74888e-01 2.86752 0.00000e+00
7 9.55231e-01 6.90170e-01 4.30599e-01 2.87808 0.00000e+00

Table A.16. 8.7 % MOX fuel-clad macroscopic scattering cross sections

1 2 3 4 5 6 7
1 1.31504e-01 4.20460e-02 8.69720e-06 5.19380e-09 0.00000e+00 0.00000e+00 0.00000e+00
2 0.00000e+00 3.30403e-01 1.64630e-03 2.60060e-09 0.00000e+00 0.00000e+00 0.00000e+00
3 0.00000e+00 0.00000e+00 4.61792e-01 2.47490e-03 0.00000e+00 0.00000e+00 0.00000e+00
4 0.00000e+00 0.00000e+00 0.00000e+00 4.68021e-01 5.43300e-03 0.00000e+00 0.00000e+00
5 0.00000e+00 0.00000e+00 0.00000e+00 1.85970e-04 2.85771e-01 8.39730e-03 8.92800e-09
6 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.39160e-03 2.47614e-01 1.23220e-02
7 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 8.96810e-03 2.56093e-01

Table A.17. Fission chamber macroscopic cross sections
Group Etr [cm- 1

] EA [cm-
1
] El'P [cm-

1
] v x

1 1.26032e-01 5.11320e-04 4.79002e-09 2.76283 5.87910e-01
2 2.93160e-01 7.58130e-05 5.82564e-09 2.46239 4.11760e-01
3 2.84250e-01 3.16430e-04 4.63719e-07 2.43380 3.39060e-04
4 2.81020e-01 1.16750e-03 5.24406e-06 2.43380 1.17610e-07
5 3.34460e-01 3.39770e-03 1.45390e-07 2.43380 0.00000e+00
6 5.65640e-01 9.18860e-03 7.14972e-07 2.43380 0.00000e+00
7 1.17214e+00 2.32440e-02 2.08041e-06 2.43380 0.00000e+00

Table A.18. Fission chamber macroscopic scattering cross sections

1 2 3 4 5 6 7
1 6.61659e-02 5.90700e-02 2.83340e-04 1.46220e-06 2.06420e-08 0.00000e+00 0.00000e+00
2 0.00000e+00 2.40377e-01 5.24350e-02 2.49900e-04 1.92390e-05 2.98750e-06 4.21400e-07
3 0.00000e+00 0.00000e+00 1.83425e-01 9.22880e-02 6.93650e-03 1.07900e-03 2.05430e-04
4 0.00000e+00 0.00000e+00 0.00000e+00 7.90769e-02 1.69990e-01 2.58600e-02 4.92560e-03
5 0.00000e+00 0.00000e+00 0.00000e+00 3.73400e-05 9.97570e-02 2.06790e-01 2.44780e-02
6 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 9.17420e-04 3.16774e-01 2.38760e-01
7 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.97930e-02 1.09910e+00

Table A.19. Guide tube macroscopic cross sections
Group Etr [cm- 1] EA [cm-1] EF [cm-

1
]

1 1.26032e-01 5.11320e-04 0.00000e+00
2 2.93160e-01 7.58010e-05 0.00000e+00
3 2.84240e-01 3.15720e-04 0.00000e+00
4 2.80960e-01 1.15820e-03 0.00000e+00
5 3.34440e-01 3.39750e-03 0.00000e+00
6 5.65640e-01 9.18780e-03 0.00000e+00
7 1.17215e+00 2.32420e-02 0.00000e+00
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Table A.20. Guide tube macroscopic scattering cross sections

1 2 3 4 5 6 7
1 6.61659e-02 5.90700e-02 2.83340e-04 1.46220e-06 2.06420e-08 0.00000e+00 0.00000e+00
2 0.00000e+00 2.40377e-01 5.24350e-02 2.49900e-04 1.92390e-05 2.98750e-06 4.21400e-07
3 0.00000e+00 0.00000e+00 1.83297e-01 9.23970e-02 6.94460e-03 1.08030e-03 2.05670e-04
4 0.00000e+00 0.00000e+00 0.00000e+00 7.88511e-02 1.70140e-01 2.58810e-02 4.92970e-03
5 0.00000e+00 0.00000e+00 0.00000e+00 3.73330e-05 9.97372e-02 2.06790e-01 2.44780e-02
6 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 9.17260e-04 3.16765e-01 2.38770e-01
7 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.97920e-02 1.09912e+00

Table A.21. Moderator macroscopic cross sections
Group Etr [cm-1] FA [cm-11 EF [CM-1]

1 1.59206e-01 , 6.01050e-04 0.00000e+00
2 4.12970e-01 1.57930e-05 0.00000e+00
3 5.90310e-01 3.37160e-04 0.00000e+00
4 5.84350e-01 1.94060e-03 0.00000e+00
5 7.18000e-01 5.74160e-03 0.00000e+00
6 1.25445e+00 1.50010e-02 0.00000e+00
7 2.65038e+00 3.72390e-02 0.00000e+00

Table A.22. Moderator macroscopic scattering cross sections

1 2 3 4 5 6 7
1 4.44777e-02 1.13400e-01 7.23470e-04 3.74990e-06 5.31840e-08 0.00000e+00 0.00000e+00
2 0.00000e+00 2.82334e-01 1.29940e-01 6.23400e-04 4.80020e-05 7.44860e-06 1.04550e-06
3 0.00000e+00 0.00000e+00 3.45256e-01 2.24570e-01 1.69990e-02 2.64430e-03 5.03440e-04
4 0.00000e+00 0.00000e+00 0.00000e+00 9.10284e-02 4.15510e-01 6.37320e-02 1.21390e-02
5 0.00000e+00 0.00000e+00 0.00000e+00 7.14370e-05 1.39138e-01 5.11820e-01 6.12290e-02
6 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.21570e-03 6.99913e-01 5.37320e-01
7 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.32440e-01 2.48070e+00
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