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Abstract

Uncertainty quantification in thermal-hydraulic safety codes is a very challenging and
computationally expensive endeavor. Methods are therefore needed to reduce that
computational burden, while still providing a reasonable estimate for uncertainty.
To do so, a Quantitative Phenomena Identification and Ranking Table (QPIRT)
is implemented to screen down to key parameters that influence a figure of merit.
From there, a surrogate model is built to approximate the complex input-output
relationship of the safety code. The surrogate model type chosen is that of a prob-
abilistic response surface following the Gaussian Process (GP) model framework. A
GP prior is placed on the input/output functional relationship, which ultimately
leads to a Bayesian non-parametric non-linear model of the safety code. The sur-
rogate emulates the behavior of the long running computer code and thanks to the
GP, provides a simple estimate to the additional uncertainty in making a predic-
tion. In addition, for emulating multiple outputs together, which is difficult to do
with standard GP models, Gaussian Process Factor Analysis (GPFA) models also
known as Function Factorization with Gaussian Process Priors (FFGP) models were
applied. The FFGP models are far more complicated than the standard GP model
and so various simplifying approximations were made to enable fast yet accurate
emulation of the safety code. All together a suite of surrogate models with varying
levels of complexity and thus flexibility were developed for emulating the complex
response from a safety code. These very computationally cheap surrogates are then
used to propagate the uncertainty in the key parameters onto the FOM. Information
from previous Separate and Integral Effect Tests is then used to calibrate those key
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parameter distributions with Markov Chain Monte Carlo (MCMC). This allows the
ultimate uncertainty of the figure of merit to be found conditioned on the knowledge
gained from those past experiments.

Thesis Supervisor: Dr. Jacopo Buongiorno
Title: Associate Professor of Nuclear Science and Engineering, MIT

Thesis Reader: Dr. Robert Youngblood
Title: Senior Risk Consultant, Idaho National Laboratory
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Chapter 1

Introduction

Propagating parameter uncertainty for a nuclear reactor system code is a challeng-

ing problem due to often non-linear system response to the numerous parameters

involved and lengthy computational times; issues that compound when a statistical

sampling procedure is adopted, since the code must be run many times. Addition-

ally, the parameters are sampled from distributions that are themselves uncertain.

The current approach relies heavily on expert opinion for setting the assumed pa-

rameter distributions. Observational data is only used to validate predictions that

"follow trends" and are "good enough" by "eyeball estimates". All together, these

complications lead to current uncertainty quantification (UQ) efforts relying on very

conservative assumptions to make the problem feasible.

This work adopts a Bayesian framework that allows reducing the predictive un-

certainty by calibrating parameters directly to observational data (also known as

solving the inverse problem). Unlike the "eyeball" approach, Bayesian calibration

is systematic and statistically rigorous, by calibrating the parameter distributions

to the data, not simply tuning point values. With enough data, any biases from
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expert opinion on the starting parameter distributions can be completely removed.

Multiple levels of data are easier to handle as well, since Integral and Separate Effect

Test (IET and SET) data can be used simultaneously in the calibration process. The

only drawback of the Bayesian framework is the intense computational cost. It is

more expensive than current UQ practices because the system code must be run tens

to possibly hundreds of thousands of times in series. A very fast approximation to

the system code is thus required to use the Bayesian approach. This work applies

a relatively new class of statistical model, the Function Factorization with Gaus-

sian Process (FFGP) priors model, to emulate the behavior of the system code. The

FFGP model builds off of the more commonly used Gaussian Process (GP) emulator,

but overcomes certain limiting assumptions inherent to the GP emulator. The FFGP

model is therefore better suited to emulate the complex time series output produced

by the system code. The surrogate is used in place of the system code to perform the

parameter calibration, thereby allowing the observational data to directly improve

the current state of knowledge.

1.1 Objectives and Contributions

The primary objective of this thesis is to perform Bayesian inference on system code

(RELAP) models using both Separate and Integral Effect Test (SET and IET) data.

In order to accomplish this task, a surrogate model better suited to emulate the

complex time series behavior of the system code response needed to be developed.

Additionally, many system code models have an enormous number of uncertain pa-

rameters that could be "tuned" to match data. Therefore a very fast, physics-based

screening step needed to be developed to try and limit the number of important

uncertain parameters to as few as possible.
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The three main contributions of this thesis include:

* Development of a Qunatitative Phenomena Identification and Ranking Table

(QPIRT) methodology to identify significant uncertain parameters as viewed

by the safety code.

" Development of an emulator-based calibration process for safety codes.

" Application of the emulator-based calibration process to the calibration of mul-

tiple RELAP models with multiple types of data, simultaneously.

The QPIRT provides a very fast screening step that ensures the selected parameters

are involved only in the dominant physical processes controlling the figure-of-merit

(FOM) and system response. Limiting the number of parameters that need to be in-

ferred from the data improves the implementation of most computational Bayesian

inference schemes. However, as will be described later, Bayesian inference is very

computationally intensive. Thus even with limiting the focus to only the most im-

portant parameters, Bayesian inference is implausible due to the long run times of

most safety codes. Computational Bayesian inference relies on drawing samples in

series and therefore the safety code must be evaluated tens to possibly hundreds of

thousands of times in series. Even if the safety code is "fast" and only takes 1 seconds

to execute, running 10 samples in series would take over 27 hours to complete.

The emulator developed as part of this thesis is built off of the Gaussian Process

(GP) framework, but overcomes some of the limiting assumptions within the GP

model. This thesis is the first time the Function Factorization with Gaussian Process

(FFGP) priors model - also known as Gaussian Process Factor Analysis (GPFA) -

has been applied to emulate a reactor safety analysis code (RELAP). The FFGP

emulator calibrated the uncertain parameters within a RELAP model of an EBR-II
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loss-of-flow experiment. Additionally, data from various SETs were combined with

the IET data to calibrate the uncertain parameters with the IET RELAP model

simultaneously. This constituted a first of a kind Bayesian RELAP model.

1.2 Organization of this Thesis

Chapter 2 provides an introduction to Bayesian inference. Bayesian versus frequentist

(classical) inference is compared to provide the reader with justification for why the

Bayesian approach is used in this work. Approximate inference with Markov Chain

Monte Carlo (MCMC) sampling is also discussed by applying several types of MCMC

schemes to a simple inference problem. This chapter sets the foundation for why the

emulator approach is required in order to use MCMC with safety codes.

Chapter 3 describes the QPIRT methodology in detail. The QPIRT equations are

developed using the governing equations in RELAP5 and the process is applied to

a Total Loss of main Feedwater Flow (TLOFW) accident with subsequent feed and

bleed. The TLOFW demonstration shows how the QPIRT is capable of tracking

through time and location, the dominant physical phenomena that influence the

FOM.

Chapter 4 describes the emulators used in this work. The standard GP formula-

tion is described first, before moving onto the FFGP emulator developed as part of

this thesis. The FFGP (also known as the GPFA) model has been used in other fields

before this thesis, but this is one of the first applications using the FFGP model to

emulate a long-running computer code. This thesis is the first to do so in the nuclear

field, however. In order to make predictions as quickly as possible with the FFGP

model, several important approximations were made and they are discussed in detail

in Chapter 4.
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Chapter 5 applies the QPIRT + emulator-based calibration approach to the cal-

ibration of a gas blowdown model. The numerical solver is discussed in detail along

with the QPIRT equations specific to the blowdown model. The QPIRT results

demonstrate how easily it can screen down to a few key uncertain parameters, which

are then used to build the various emulators developed in this work. The emulator-

based results are then compared.

Chapter 6 applies the emulator-based calibration approach to an actual safety

analysis scenario, calibrating an EBR-II RELAP loss-of-flow model. The EBR-II

RELAP model is described in detail as well as the various SET models used in

conjunction with the full EBR-II model (the IET model). The various emulators are

compared for each of the models, and a simple way to choose the "best" emulator is

described. After calibrating each model individually, all of the SET and IET data

are used simultaneously.

Chapter 7 provides a summary of the thesis as discusses potential options for

future work which could improve the emulator-based calibration approach even fur-

ther.
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Chapter 2

Bayesian Inference for Inverse

Problems

2.1 Inverse Problems

Conceptually, inverse problems are very simple. We wish to estimate unknown ob-

jects, such as parameters or functions, from indirect noisy observations [1]. As a

simple example, consider some output y, which is a function of the input x. The

"forward problem" is simply computing y given x, y = f (x). But if we observe y and

want to know the x-value that produced that particular y-value we need to compute

the inverse function x = f- (y). Thus, as the phrase "inverse problem" suggests,

we want to solve a problem in reverse. To think of it another way, the forward

problem is deductive logic: given a cause, we work out the consequences. Inverse

problems however, require inductive logic: given certain observed effects, what are

the underlying causes [2].

In the context of uncertainty quantification (UQ), forward UQ takes (assumed)
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distributions on the input parameters and propagates those onto the output. This

is straightforward to do with ordinary or standard Monte Carlo (MC) sampling

(though it might be computationally expensive to do). Backwards UQ must then

work in reverse, using the observed output to find the corresponding input parameter

distributions. Therefore, backwards UQ is a special kind of inverse problem focusing

on infering out parameter distributions from noisy data. Another term used in the

literature for this class of problem is model calibration. Though, some sources make

the distinction that model calibration is a specific type of inverse problem with the

goal of finding computer model input parameter values that result in outputs that

agree well with observed data [1]. In the context of this thesis, all three terms

backwards UQ, inverse problems and model calibration will all be used to mean

essentially the same thing.

Although straightforward to understand, inverse problems are very challenging

in practice. The inverse function may not exist, or even if it does, it might be nearly

impossible to work out (such as finding the inverse function in a RELAP calculation).

Additionally, many inverse problems are ill-posed in the sense that small perturba-

tions in the output may lead to large errors in the inversion estimates [1]. For these

reasons, the input parameters must be inferred from the observed output, which from

here on will be known as the observational or measurement data. Statistical inference

can be performed in one of several ways, using (classical) Frequentists or Bayesian

methods. Probability, in the Bayesian sense, represents a degree - of - belief or

plausibility: how much we think something is true, based on the available evidence.

The Frequentist view however, defines probability as the long run relative frequency

an event occurred, given (infinitely) many repeated trials [2]. There is a vast lit-

erature debating the pros and cons of the two approaches, regarding which I will

not go into detail, if the reader is interested please consult Refer es [3], [1, nd
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[4] (though admittedly these are very pro-Bayesian sources). Although some of the

differences are philosophical, one of the major advantages of the Bayesian approach

is that both the unknowns of interest and the data have distributions, whereas in the

Frequentist approach the only variables that have distributions are the data. Also,

estimators for the unknowns of interest must be chosen, which is not straightforward

for non-linear problems, and those estimators are treated as fixed. The Frequentist

approach would result in some confidence interval on the estimator of an input pa-

rameter, whereas the Bayesian approach results in a probability distribution on the

input parameter itself. The primary objection to Bayesian inference is that it seems

too subjective due to the use of the prior distribution (which will be described be-

low). However, the prior may bring important structural information to the problem

about the current state-of-knowledge about a parameter, from expert judgment or

past experiments. Or, non-informative priors might be constructed to try and allow

only the data to influence the solution to the inverse problem [5]. In the end, the

main benefit of the Bayesian approach is that it is the proper logic of inference under

uncertainty, which is the overall theme of this work.

2.2 Bayesian Inference

The fundamental concept of Bayesian analysis is that unknowns are treated as ran-

dom variables. The power of this approach is that the established mathematical

methods of probability theory are applied to develop informative representations of

the state of knowledge regarding the unknowns [1]. Bayesian analysis relies on Bayes'

theorem, which is a fundamental relationship of conditional probabilities. The un-

knowns are given what are commonly referred to as prior probability distributions,

which as already mentioned reflect the current state of knowledge regarding their
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possible values. These prior distributions are then refined or "updated" conditional

on new information, through the likelihood function. The result is a posterior dis-

tribution that represents the new state-of-knowledge, as a combination of the prior

evidence and the observed data. If x is the vector of unknown parameters we want

to learn more about, and y is the vector of observed data, Bayes' rule is written as:

p (yjx) p(x)
p (xy) = .p(ylx)p(X) (2.1)

f p (ylx) p (x) dx*

The numerator in Eq. 2.1 consists of the likelihood function, p (yjx), which gives the

probability of the data given the unknown parameters, and the prior distribution on

the unknowns, p (x). The denominator is known by several names, the evidence, the

marginal likelihood, or integral likelihood, since it integrates out (marginalizes) the

unknown parameters. The denominator is therefore equivalent to,

p(y) = Jp (yx) p (x) dx. (2.2)

The evidence does not depend on the unknown parameters and is therefore a nor-

malizing constant. Because of this, Bayes' rule is commonly written simply as the

posterior being proportional to the likelihood multiplied by the prior:

p (xy) oc p (yx) p (x) . (2.3)

In statistics and probability sources, Eq. 2.3 is commonly written with x and y

replaced with hypothesis and data, respectively. With this viewpoint, the power

of Bayes' rule lies in that it relates the quantity of interest, the probability the

hypothesis is true given the data (the posterior), to the term we have a better chance

at being able to assign, the probability that we would have observed the measured
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data if the hypothesis was true (the likelihood) [2].

The difficulty in implementing Bayes' rule however, primarily stems from com-

puting Eq. 2.2, the evidence. Evaluating the potentially (very) high dimensional

integral could be intractable analytically, and/or very expensive computationally to

compute. Analytical intractability may result from the fact that the likelihood func-

tion might involve a non-linear mapping between the unknowns and the observed

data. This is the case for Bayesian model calibration of computer models, where the

output of the computer model is a function of the unknown input parameters (as well

as possibly other inputs which are not necessarily "unknown" such as time). The

computer model will also be referred to as the computer code, the code, or some-

times as the simulator, and will be represented as f (x). The likelihood function is

therefore not between the unknown input parameters themselves, but between the

output of the computer code and the observed data: p (yIf (x)). With closed form

solutions out of the picture, we have to resort to sampling based methods. The high

computational cost of most sampling schemes was one of the barriers preventing more

wide spread use of Bayesian inference for model calibration (though Laplace was the

first to use Bayesian methods to infer the mass of Saturn from orbital observations

in 1773). However due to faster computers, better numerical algorithms, and soft-

ware packages such as R amd OpenBUGS, Bayesian inference has really started to

take off over the last two decades [6]. These sampling schemes are primarily Markov

Chain Monte Carlo (MCMC) sampling strategies that try to draw samples from the

posterior directly. The next section will briefly summarize several MCMC schemes

used in this work.
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2.3 Approximate Inference with MCMC

I will only summarize the key points of Markov Chain Monte Carlo (MCMC) that are

important for its implemention. If the reader would like detailed discussions on its

mathematical theory and formulation, please consult [7], [8], [9], and [4]. The basic

idea behind MCMC is to construct a Markov chain whose stationary distribution is

the target density we wish to sample [8]. The MCMC samples are theoretically guar-

anteed to be samples from the stationary distribution due to satisfying a condition

known as detailed balance. Detailed balance ensures that a Markov chain is ergodic

[8] which essentially means that all states are recurrent. In the context of Bayesian

model calibration, that target density is the posterior distribution of the unknown

parameters given the data, p (xly). The theory of MCMC is similar to the theory of

ordinary MC, except that now we are drawing correlated samples rather than inde-

pedent and identically distributed (iid) samples. The samples are correlated due to

the Markov chain and is the price we pay for not knowing the actual posterior dis-

tribution, but rather only the likelihood and the prior densities. The main benefit of

MCMC is that it does not need to compute the evidence, Eq. 2.2 and therefore never

needs to compute a potentially very high dimensional integral. MCMC gets around

that integral by essentially a scientific method of "guessing and checking" which will

become more clear below. The main downside however is there is no clear stopping

point to MCMC. There are various heuristics and rules of thumb for when to stop

the sampling, but in general determining when to stop can be quite tricky. For those

reasons, some refer to MCMC as more of an art more than a science, with even

the OpenBUGS user's manual containing the following caution: "Beware: MCMC

sampling can be dangerous!" [10]. That being said, MCMC is a very powerful tool

that when used properly allows very high dimensional problems to be tackled in a

34



consistent framework.

All MCMC strategies involve some sort of random walk around the state space of

the unknown parameters of interest. The more naive the sampler, the more random

that walk is, while more efficient samplers may try to suppress the randomness

through various mechanisms. The key ingredients in MCMC are:

" an initial guess, x0

" a proposal (or transition) distribution, q (x* Ix), where x* is the proposed sam-

ple for the unknown parameters of interest

" an accept/reject rule for whether to keep the proposed sample or not

Finding a good initial guess for the unknown parameters might be very difficult.

Sometimes the prior mean is a good starting point, but if the posterior distribution

is quite different from the prior it might take the sampler a long time to move the

parameter values to the correct region of the state space. The chain will gradually

"forget" its initial state and will eventually converge to a unique stationary distri-

bution, which does not depend on the sample number [7]. A poor starting point

therefore really only impacts the length of time it takes for the chain to "forget".

But if a limited number of samples are used, that initial sequence may impact the

results. That is why in practice it is common to discard a portion of the samples as

"burn-in", thereby neglecting the potentially poorly sampled values at the beginning.

[9] discusses how burn-in is not actually needed in MCMC, but I use it as a simple

approach to "find" a good starting value for the MCMC sampler.

The proposal distribution, q (x* Ix), is what determines the efficiency of the MCMC

sampling scheme. The more naive and therefore more random the proposal, the

less efficient the MCMC scheme is. Usually efficiency relates to how correlated the
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samples are, where a more efficient proposal distribution allows the MCMC chain

to "forget" the initial state faster. The proposal distribution is also what usually

characterizes a particular MCMC sampling scheme. The specific types of proposal

distributions I used in this work usually are Gaussian proposals centered on the cur-

rent guess (random walk behavior) with a fixed covariance structure. The specific

proposal distribution types will be discussed in more detail below.

The most common accept/reject rule is the Metropolis-Hastings (MH) acceptance

criteria. The Metropolis criteria was developed specifically for symmetric proposal

distributions, then extended to asymmetric proposals through the Hastings correc-

tion. The MH rule compares the posterior of the proposal value to the posterior of

the current guess value. If the posterior increases, then accept the proposed value,

but if the proposed posterior value is less than the current posterior value, ran-

domly choose to accept the proposed value or not with acceptance probability (for

symmetric proposals):

M(xy(2.4)am = nun (1, W

where t is the current sample in the chain. Thus, if the proposed value, x*, is

less propable than the current guess, xt, we may still move there anyway. Instead

of greedily moving to only more probable states, we occasionally allow "downhill"

moves to less probable states [8]. This kind of behavior ensures that the fraction of

time spent in each state x, is proportional to the posterior distribution p (xly). The

other important point to note about Eq. 2.4 is that because it deals with ratios of

the posterior density, the normalizing constant, the evidence (or marginal likelihood)

cancels out. Hence, we are able to draw samples from the posterior distribution even

if we cannot compute Eq. 2.2.

In order to decide when to stop the MCMC chain, an important heuristic is the
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"mixing rate". Explaining if a chain is "well-mixed" is best done through demon-

strations and will be shown later. But in general, a "well-mixed" chain should not

show a noticable trend in the sampling pattern, which reflects a correlated structure

in the samples. This kind of effect can be quantified a little better through the

autocorrelation of the samples over some specified lag-length.

2.3.1 Random-Walk Metropolis

The simplest MCMC scheme is the Random-Walk Metropolis (RWM) sampler with

a symmetric Gaussian proposal distribution. Here, the proposal distribution is cen-

tered at the current guess for the unknown parameters, x, with a specified co-

variance matrix, s2E. The scalar s2 is some constant set to facilitate "rapid mix-

ing" [8]. Usually the covariance matrix E, is taken to be diagonal, thereby assum-

ing uncorrelated parameters. If the unnormalized posterior density is written as

h (x) = p (yIf (x)) p (x), the RWM update has the following steps:

" for current guess, xt, with current unnormalized posterior h (xt), propose a

move to x* with proposal density: q (x*Ixt) = N (x, s2 E)

* compute the proposed unnormalized posterior h (x*)

" compute Metropolis acceptance probability using Eq. 2.4

" set the next sample value to be: x+ = x*, with probability am

xt, with probability 1 - am

This update sequence is repeated the desired number of times. The scalar constant

in the proposal covariance matrix, s2, can be set by tuning the number of acceptances

during the sampling chain to meet some optimal rate. The optimal rate comes about

from the fact that if a proposal is very large, and so x* is very different from xt, the
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chances of being accepted and thus the chances of the chain moving might be rather

low and thus the chain will most likely "sit" at the same value for a long time. If the

proposal is very close to the current guess, the chances of being accepted are very

high, but very little new information is gained. An optimal "middle ground" exists

where the proposal jumps "just far enough" at any one particular step in the MCMC

sampling. [11] proove that for Gaussian proposals the asymptotically optimal value

is S2 = 2.38 2/D, where D is the number of parameters in x. They also found that the

optimal acceptance rate is 0.234 - so about 23% of the all the proposed samples are

accepted. The asymptotic value is valid as the dimension D approaches infinity, but

for smaller dimensional problems the asymptotic value may not necessarily be the

best choice. Thus, the scalar constant may be tuned to try and force the sampling

to stay near the optimal acceptance rate of 0.234. If the scalar constant is tuned, it

can only be tuned during the burn-in phase and must be remained fixed afterwards.

This is because the tuning impacts the memoryless-ness nature of the Markov chain.

But, as long as the tuning is not continued through the entire sequence then the

chain will gradually "forget that the tuning occurred".

2.3.2 Adaptive Metropolis

Tuning the scalar constant, s2, above is a very simple adaptive scheme. In effect

tuning S2 adapts the variance of each element in x equally, since it is important to re-

member that x is a vector of all the unknown input parameters: x = [x 1, X2,... , 2A .

It is possible to tune the proposal variance of each element sequentially, but as the

dimension D grows, this could become prohibitively expensive. Haario et al. (2001)

set up an Adaptive Metropolis (AM) scheme that adapts the entire proposal covari-

ance matrix E, by using the past samples of the Markov chain [12]. This allows
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the proposal distribution to capture the covariance structure between the various

elements in x, which can greatly improve the efficiency of the MCMC sequence. To

denote the fact that the proposal covariance matrix is no longer "hard-coded" but

computed on the fly, it will be labeled as E, and the proposal distribution is now:

q (x*Ixt) = N (xe, I). A single update step is identical to the update in the RWM

except the proposal distribution uses E instead of s2 E.

Early on, a set of pilot runs are used where the proposal covariance matrix is

not updated, and is the only part of the AM sampling scheme that the potenially

poor "hard-coded" guess proposal covariance matrix is used. After the initial pilot

phase, adaptation of the proposal covariance matrix is allowed by using a specified

number of past samples, after a certain number of iterations. For example, every

1000 iterations, the past 1000 samples will be used to compute empirical covariance

matrix, E. [12] found this approach more computationally efficient than computing

the empirical covariance matrix at every iteration using all of the past samples.

2.3.3 Demonstration Problem

To demonstrate Bayesian model calibration with approximate inference using MCMC,

a method of manufactured solutions procedure is used where the observational data

is generated using the computer model itself at specified true-parameter values. The

goal is to then see if the MCMC sampling procedure is capable of yielding posterior

distributions around these true-parameter values. The "computer model" is a simple

turbulent friction factor model parameterized as:

f = exp (b) Re-"c, (2.5)
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where Re is the Reynolds number and two uncertain parameters: b and c. Eq. 2.5

is usually written as f = B -Re-C, but it was easier to parameterize the coefficient

and exponent in the model to always have positive values by transforming them as:

B = exp (b) and C = exp (c). This transformation made it easier to use Gaussian

distributions for the priors on the unknown parameters, which gives the original

parameters, B and C to have log-normal prior distributions. With E [x] denoting

the mean value of x, the prior mean values were chosen so that the exp (E [b]) = 0.184

and exp (E [c]) = 0.2 (which correspond to B and C at the McAdams' friction factor

correlation values). Each of the transformed parameters were then assumed to have

prior variances so that 95% of the probability covered 50% around the prior means.

Twenty-five "data" points were generated at the specified true-parameter values

at evenly spaced intervals between Reynolds numbers of 5000 and 45000. Using nota-

tion consistent with earlier sections, the data is denoted y = [yi, y2,... , YNO ,where

No = 25 is the number of observational data points. The simple friction factor

model shows that usually multiple types of input variables exists. The b and c pa-

rameters are the unknown or uncertain parameters, but the Reynolds number, Re,

is not unknown. In fact, there are specified Re values that the data is "located" at

that we wish to compare predictions against. Variables such as the Reynolds number

are known commonly as control variables [13]. Other examples of control variables

include time, boundary conditions such inlet mass flow rates, or perhaps the pressure

that an experiment is conducted at. For notation purposes, the uncertain parameters

will be denoted collectively as 0 = [b, cIT, and the control variables will be denoted

as xe, = [Re,, Re2 , ... , ReNoIT. Denoting the prior means and variances as /4, Pc
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and cb, o-2, respectively, the prior distribution is a multivariate normal (MVN):

P (0)= , o] (2.6)
p .C J 0 C J )

A Gaussian likelihood function is used to relate the data to the model prediction:

p (ylf (xcv, 0)) = Af(f (xc , 0) , Ee). (2.7)

The observational error covariance matrix is assumed to be diagonal, with the ob-

servational error (variance) to have 10% of the data value covering 95% of the

probability.

Three different MCMC schemes are used to draw samples from the posterior

distribution on the uncertain parameters, p (01y). All three use 5e4 burn-in samples

and 5e4 posterior samples. The first is a RWM-sampler with the scalar constant s2

hard-coded to be s2 = (1.2)2. The second is a tunable-RWM where the s2 value is

tuned to maintain the acceptance rate near the optimal value of 0.234. The tuning

does not start till after the 2 00th iteration, and then checks the acceptance rate

every 100h iteration. The last is the AM sampler, which does not adapt during the

first half of burn-in (the first 2.5e4 samples) and then keeps the proposal covariance

matrix fixed during the posterior sampling phase. When adapting, it computes the

empirical covariance matrix every 1000 iterations using the past 1000 samples.

The sample histories for the three MCMC schemes for both the b and c parameters

are shown below in Fig. 2-1.
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Figure 2-1: Sample Histories For Each MCMC Scheme

Fig. 2-1 illustrates poor, medium, and "well-mixed" behaviors. The top plots

show the sample histories for the untuned RWM scheme. There are long streches

where the parameter values seem to "sit" still, which correspond to a large number

of rejects. The middle plots show the sample histories for the tuned-RWM scheme,

and although the mixing appears a lot better than in the untuned-RWM case, these

samples are clearly not as "well-mixed" as the AM results, shown in the last row

of plots. Before adapting the proposal covariance matrix, the samples shown in the

42

n

-4

0

-4

-4

'2 AIL
P



bottom row look very close to the untuned-RWM samples. But, once the adaption

phase starts for the AM scheme, it is difficult to distinguish any noticable trend in

the sampling. This is idea of well-mixed sampling behavior, passing an "eye-ball"

test. Quantifying "well-mixed" can be done using the autocorrelation length over a

specified lag. Fig. 2-2 gives the autocorrelation length for the three schemes over a

lag of 100. As shown below, the autocorrelation in the AM scheme drops off close

to zero rather quickly, while both RWM schemes show that there still exists a very

high correlation between the samples.
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Figure 2-2: Autocorrelation Lengths Over a Lag of 100

But, even with the tuned-RWM scheme not being truly "well-mixed" the poste-

rior samples can still give very good results. As shown in Fig. 2-3, the estimated

posterior density using the tuned-RWM samples is very close to the estimated density

from the AM samples. The correlation amongst the posterior samples impacts the

MC standard error, with the standard error increasing as the correlation increases

[9]. Since the tuned-RWM samples are much more tightly correlated than the AM

samples, the effective number of independent samples in the tuned-RWM results is
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very small. Whereas, for the AM results, about every 30'4 sample is effectively an

independent sample draw from the posterior. For more challenging problems, with

less data and more uncertain parameters, the medium mixing rate of the tuned-RWM

samples might be an issue. But for a simple problem such as this, the increased MC

standard error does not really impact the accuracy of the posterior samples at find-

ing the true parameter values. The true value for the c parameter was intentionally

placed rather far from the prior mean, at nearly two prior standard deviations away.

But, the posterior sample modes are very close to the true c value, which is the

red vertical line in the plots. As a check, the MCMC sampling was run again with

the observational error cut in half, which should reduce the posteior variance and

have the posterior modes even closer to the true parameter values - if the MCMC

sampling is working correctly. As shown in Fig. 2-4 that is indeed the case, though

it is somewhat difficult to see the posterior modes in the figure. The density shapes

were estimated using the built-in MATLAB function ksdensity.m.
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Figure 2-4: Estimated Posterior Densities with 5% Observational Error

As for the posterior predictions, the AM results show that the posterior out-

put predictions follow the observational data very well. Fig. 2-5 shows the prior

and posterior predictive quantiles at the 5%, 25%, 50%, 75%, and 95% cumaltive

probabilities in grey and blue, respectively. The observational data has error bars

representing two standard deviations around the observed data mean values. In

addition, the posterior covariance stucture can be computed and is shown for the

AM case results in Fig. 2-6. This figure was generated using the built-in MATLAB
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function plotmatrix which places histograms along the diagonals and shows that the

two parameters are very tightly correlated. The tight posterior correlation was not

represented at all in the assumed prior distribution which means that correlation

resulted from the data entirely.

AM PosteriotCalibrated Predictions

- Prior Quantiles
- P sterior Quantiles

* Data

-. ..... 1

0.5 1 1 2 2.5 3 35 4 45 5
Re4':

Figure 2-5: Predictive Quantiles
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Figure 2-6: Posterior Covariance Structure
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Chapter 3

Dimensionality Reduction

Techniques

Before attempting to calibrate a model it is important to try and limit the number

of parameters we have to work with. This is even more important in our case since

we will ultimately be building surrogate models to approximate the long-running

computer codes, and use those surrogates in their place when performing MCMC

sampling. Limiting the number of input parameters limits the number of train-

ing runs that are required which ultimately means the entire process is faster. In

addition, MCMC techniques become more complicated to implement as the num-

ber of parameters increases, and especially if a large number of those parameters

are (tightly) correlated. In situations with a very large number of very correlated

parameters, MCMC techniques exist but their computational cost starts to grow

considerably [14]. So if we want to maintain fast inference methods, we need to limit

the number of parameters we will ultimately be sampling with MCMC.

Reducing the number of inputs, also known as dimensionality reduction, can be
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done in a wide variety of ways. Most are statistical based approaches that require

some form of sampling [15]. Since we will be sampling with MCMC, we want to screen

out the unimportant parameters in as few code runs as possible. For that reason,

we have chosen to adapt the Phenomena Ranking and Identification Table (PIRT)

process to rank physical phenomena using quantifiable measures from the code output

directly. This Quantitative PIRT or QPIRT, is an engineering approach to screening

that focuses on finding the most important physical processes that influence our

key output metric, or figure of merit (FOM). Once those key physical processes are

identified, their various empirical correlations and models are examined to pull out

their uncertain or "tunable" parameters.

3.1 QPIRT Methodology Overview

The QPIRT process consists of two primary steps, with the overall goal being to iden-

tify parameters that significantly influence the figure of merit (FOM) for a specific

transient of interest. The first step, the Top-Down step, determines which physical

processes dominate the value of the FOM, by focusing on the governing equations

used in the safety code (the two-fluid six equation model in RELAP5, for example).

The second step, the Bottom-Up, step then examines in detail the dominant pro-

cesses identified by the Top-Down step by analyzing the specific correlations used

in the safety code to model those processes. Specific "tunable" parameters for each

correlation are then identified, as well as relationships to other processes. Together,

the Top-Down and Bottom-Up steps ensure that only physically relevant parameters

are chosen for uncertainty propagation.

The Top-Down step itself consists of several hierarchical length scales. This

approach is similar to the hierarchical scales used in the Zuber Pi-group approach in
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[16]. The multiple scales are required because the physical phenomena governing the

whole primary loop response may be different from the ones governing flow along the

hot fuel rod within the core, for example. The multiple scales used in the QPIRT

methodology consist of local (or cell volume) level, component, and system level. For

each scale, the governing equations are cast in control volume balance form. The

local level analyzes the governing equations affecting the value of the FOM directly,

thereby ensuring the parameters that directly impact the FOM receive sufficiently

detailed analysis. The specific FOM is solved for from the control volume balance

equations and the various processes are weighted by their contribution onto that

value. Processes with the largest weighted contributions are therefore considered

dominant. This concept will be made clearer in the next section which discusses the

various equations for a specific example transient.

With the local level scale capturing phenomena directly impacting the FOM, the

higher level scales are required to capture indirect effects from components through-

out the rest of the system. The component level scale has results from each cell in a

particular component volume averaged together. The system level scale then has re-

sults from individual components volume averaged together over specific component

groups (for example if there are several pipe component sections in the hot leg). The

system level scale results in a system of equations with various physical phenom-

ena occurring in multiple component groups. The various terms in the system level

equations are weighted by their overall magnitude (no value in particular is solved

for in the system level equations) where the processes with the largest magnitude

are considered dominant. The system level balance equations therefore ensure the

dynamic behavior of the system as a whole is properly characterized.

Results of the Top-Down step give a time history of the physical phenomena

that dominate the FOM locally as well as a time and spatial history of physical
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phenomena that dominate the system behavior, as viewed by the safety code. The

Bottom-Up step then analyzes the correlations used to model each of these dominant

physical phenomena. The Bottom-Up step is therefore where two-phase flow specifics

such as flow regimes become important because even if the same process dominates

throughout a transient (such as heat transfer rate to the liquid phase) the flow

regime will dictate which specific correlations are used to model that process. At

the conclusion of the Bottom-Up step, the QPIRT generates a list of the specific

correlations along with their "tunable" parameters that act through the dominant

physical processes to influence the FOM.

The easiest way to describe the QPIRT process is to demonstrate it on a physically

relevant problem. The Top-Down equations will be formulated for a Total Loss of

main Feedwater Flow (TLOFW) accident with subsequent feed and bleed. The next

several sections will go through all of the equations that lead to the Top-Down step

identifying the dominant physical phenomena during the TLOFW accident.

3.2 Top Down Control Volume Balance Equations

As described previously, the Top-Down focuses on control volume balance formu-

lations of the governing equations in the safety code. The local level consists of

identifying relevant constituents involved in the transient and formulating appropri-

ate balance equations consistent with the safety code. The equations will be problem

dependent at the local level since the physical phenomena involved depend on the

specific FOM. For example, if clad oxidation rate is the FOM, different local level

equations will be used than if max peak clad temperature (PCT) is the FOM. The

system level equations should most likely only depend on the system nodalization and

code model used, since this level captures effects "carried throughout" the system.
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The following equation formulations will be given for cases where max PCT is

the FOM, such as for the feed-and-bleed transients currently being described. At

the local level the four constituents involved are the clad, fuel, liquid phase and

vapor phase. As will be seen, whenever a particular constituent's associated temper-

ature value is significant in the local level clad energy equation, that constituent's

energy equation is analyzed to see what influences that particular temperature value.

System-level energy and momentum equations for the vapor and liquid phases are

formulated to be consistent with the RELAP5 code model.

3.2.1 Local Level Equations

At the local, or cell, level the following energy control volume balance equations are

used. For the clad:

d
Wt-[V (pcT)cI = -QC-L - Qc-v + QF-c- 3-1)

The subscripts in Eq. 3.1 are C for the clad, L for the liquid phase, V for the vapor

phase, and F for the fuel. The brackets (-) represent the volume averaging operator.

The fuel energy balance equation is:

d
Tt[V (pCT)F QGEN - IQF-C- (3.2)

The general control volume internal energy equation for either phase from the RE-

LAP5 Manual (taken from RELAP5 Manual Vol. 1 Section 3.1.10.1.1) is:
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a (a pkuV) + S (AakpkuAvk)j =

Wv + Qiv - P V + E (PAakvA ) + hiV + DsV. (3.3)
L dt kI

The subscript k denotes the phase, where 1 represents liquid and v for vapor. Note

that the symbol V in Eq. 3.3 denotes the coolant cell volume, while the same symbol

in Eq. 3.1 and 3.2 denotes the clad and fuel volumes, respectively. The summation

terms in Eq. 3.3 are the sums of the convective internal energy flowing and flow work

into and out of the control volume at the junction faces. The term, QwV, is the

heat from the clad transferred to the phase in the cell volume, while QOV represents

the interfacial heat transfer in the cell volume. The mass transfer term is hiPV and

the last term, DsV, is the viscous dissipation term. The processes in Eqs. 3.1 - 3.3

will be defined in the subsequent sections.

Clad Energy Equation

Equation 3.1 simply states that the time rate of change of the volume averaged

internal energy of the clad is the balance of the heat transferred between the clad-to-

liquid, clad-to-vapor, and fuel-to-clad. Applying Newton's law of cooling, the heat

transfer process can be expressed in terms of heat transfer coefficients:

d
Tt[V (pCT)cI = -hLSco (Tco - TL) -hvSco (Tco - TV) -hGAPSGAP (TFO - TCI)-

(3.4)

In Eq. 3.4, h is the heat transfer coefficient, S denotes surface area, the subscript CO

denotes the outer clad position, FO denotes the outer fuel position, and CI denotes
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the inner clad position. The heat transfer between the fuel and clad is represented

by the heat transfer through the gap using the gap conductance hOAP and effective

gap heat transfer area SGAp. For cases where the FOM is the PCT, the outer clad

temperature, TO is solved for from Eq. 3.4. First define the area heat transfer

coefficients:

HL = hLSCO, Hv = hySco, HGA0  = hGApSGAP, (3.5)

as well as the effective heat transfer coefficient acting on the outer clad:

Hco = HL + Hv. (3.6)

Thus giving the outer clad temperature to be:

Ha HL Hv ld
TCo (TFO ~ TCIT) + TL + Tv - - I c ] . (7)

Hco Hco H [co dt

Equation 3.7 shows that the temperature values associated with each process as well

as the fuel thermal capacitance are scaled by the effective heat transfer coefficient

acting on the coolant side of the clad.

Fuel Energy Equation

Equation 3.2 compares the internal heat generation rate in the fuel with the heat

transfer rate to the clad. Using the definitions defined previously, Equation 3.2 is

used to solve for the associated temperature for the fuel-to-clad heat transfer:

(TFO - TCI) GE 1 d IV F (3-8)
HOAP HGAP t
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The fuel-to-clad heat transfer rate is thus associated with the temperature jump

across the gap. Equation 3.8 examines the fuel's contribution to that temperature

jump by scaling the heat source term and fuel thermal capacitance by the effective

heat transfer coefficient through the gap.

Phase Temperature Energy Equations

The remaining processes of the right hand side of Eq.

notation), for the liquid phase:

iV = [Hf (Ts(PS)-T) - 1+e)

And for the

3.3 are given as (using RELAP5

(3.9)

(3.10)

(3.11)

DsV = DISSV = V (apv2 ) FWF,

h~I'V = - [igh* + Pwh] V.

vapor phase:

QiV = [Hig (TS (Ps) -T) ) rw (h' - h'f)

DsV = DISSgV =V (apv2) FWG,

hrv = - [ih* + rwh] V.

IV,
(3.12)

(3.13)

(3.14)

58

rw (h' - h'f') V,



In the interfacial heat transfer terms given by Eqs. 3.9 and 3.12, the first term on

the right hand side in the bracket represents the interfacial heat transfer in the bulk

fluid, while the second term represents the interfacial heat transfer in the region

"near the wall". Likewise, in the mass transfer terms given by Eqs. 3.11and 3.14,

the first term on the right hand side in the brackets models the mass transfer in the

bulk fluid, while the second models the mass transfer "near the wall".

The heat transfer rate with the clad and the bulk fluid interfacial heat transfer

are used to define a total effective heat transfer coefficient acting on each phase. For

the liquid this is given as:

Htt = HL + HfV, (3.15)

and for the vapor phase:

Ht t = Hv + Hi,,V. (3.16)

Using the above definitions, Eq. 3.3 is solved for each phase temperature. The liquid

phase temperature is given as:

I d 1
TL- (aipiuiV) - H (Aajpjguvi )

V 1 + '\ h h'1)

H *t 2 w h, -ghf)

+V Hf TS (Ps)+ HLTco - HPV da (Aav)jHtjot to ttdt jt~

V V V
H jj Pigh* - H 'wh' + HLa (apv2), FWF. (3.17)

Hto tot t
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And for the vapor phase temperature:

1 d 1
TV-~ (a,,puV) - j7- F. (Aa~puvv)jT = H dt to

V i-E i

H (26 w (h, - h)

H H. j T P V PV da, P
+V T P)+ To-H dt (Aa~v,

Ht ~ tVot C _ tVot dt - tot

+V V , V aV)F G
V gh*+ -- Lwh, H (Wt 2 W (3.18)

ttot

Weighted Contributions

As seen in each constituent's energy equation, the various processes are scaled by

the effective heat transfer coefficient acting on that particular associated tempera-

ture value. The value of each term in the Eqs 3.7, 3.8, 3.17, and 3.18 (the equations

that solve for each associated temperature value) is considered to represent the con-

tribution onto the FOM from a particular physical phenomena. Each term is then

scaled, or weighted by the sum of absolute value of each term in the equation, thereby

defining the weighted contribution of each physical phenomenon on the FOM. For

example, for the clad-to-liquid heat transfer process, the associated weighted contri-

bution is:

W( -)+j_ .(3.19)
S FO - TCIL+ vI + I [V pcT)cI

Weighted contributions for the remaining physical processes in the clad energy equa-

tion as well as in the other constituent energy equations are defined similarly.

The phase energy equations, however, complicate the weighted contributions be-
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cause of the convective energy flow terms. Convective energy outflow terms are

considered "effects" from the various heat transfer processes in a cell, not a "cause".

Therefore, the convective energy outflow terms are neglected from the weighted con-

tribution denominator terms. This assumption can be justified using the method of

characteristics.

3.2.2 System Level Balance Equations

The system-level balance equations correspond to summing up all the component-

level balance equations. Thus, the system-level balance equation also represents

the component-level balance equation, just on a bigger scale. Each physical process

can then occur in each component group. To be general, the following system-level

equations will represent the number of component groups in the system by just

labeling the summation term with "ALL". Also, from looking at Eq. 3.3, summing

up around the entire system cancels out the inflow and outflow terms at all locations

except at system wide source and sink locations (for example, flow from the ECCS

or flow out of a break). The source and sink flow terms will be represented by "A"

to show it is the difference between the system wide inflow and outflow terms.

Phase Energy Equation

The system-level phase energy equations follow directly from the local-level phase

energy equation, given by Eq. 3.3. After computing the component-averaged process

values and then component-group averaged process values and summing up around

the entire system, the system level phase energy equation is given by:
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ALL [d ((akpkuk). Vn)] + A [(AakPkukvk).]

ALL ALL ALL

= Z w) Vn] + E [($ vn - Zt
ALL ALL

Z [(hi')n V] + Z (Ds)n Vn. (3.20)

The subscript n denotes a particular component group.

Unlike the local level equations, weighted contributions to a specific value are not

computed for the system level energy equations. Instead, a normalized fractional

contribution is computed by scaling each term in Eq. 3.20 by the sum of the absolute

values of all the terms. Doing this allows the max possible value of a fractional

contribution at any timestep to be 1. The largest magnitude fractional contribution

terms are then considered to dominate the system average phase energy at that

particular time.

Phase Momentum Equations

Since the system level equation results from summing up the various component

groups in the system, the individual cell volume momentum equation will first be

described. The different processes will be defined at the cell level with the corre-

sponding system level processes defined just as in the system energy equation. The
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phase control volume balance momentum equation in a particular cell is:

(a pkVV) + ( (Aakpkvkvk)j
3

= Fwk + Fformk + Fsc,sk + FvM,k

- Z(PAak)3 + rvAkV + (akpk) B.. (3.21)

Equqation 3.21is simply a force balance between all the forces acting on a particular

phase in a cell volume. The first term on the LHS is the phase inertia and the

second term is the acceleration of the phase at the control volume boundaries. The

first three terms on the right hand side of Eq. 3.21are the wall friction, form loss,

and interfacial friction forces, respectively. The fourth term is the virtual mass force

acting on phase k. The fifth term is the pressure force acting at the boundaries of

the control volume. The sixth term is the momentum transfer due to mass exchange

at the interface and the last term is the body force.

Before defining the friction terms, it is important to note that the RELAP5 phase

momentum equations are not applied to the same cell volumes that the mass and

energy equations are applied to. The RELAP5 difference equations for energy (and

mass), on the cell volume level, balance the rate of energy (or mass) into and out

of the cell boundaries with the source terms. This model requires the energy (and

mass) terms defined as volume averaged properties while requiring knowledge of the

velocities at the cell boundaries [17]. Momentum cells are therefore defined with

their centers at the mass/energy cell boundaries, resulting in a staggered spatial

mesh. Scalar properties such as pressure, internal energy, and void fraction are

defined at the mass/energy cell centers while vector quantities such as velocity are

defined at the cell boundaries. Using the RELAP5 notation the cell boundaries are
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referred to as junctions. An illustration of this setup, from Volume I of the RELAP5

manual is given by Fig. 3-1.

JM~McM Inh mdewg ycmat
V1 vtsadedW volumaerb&

vf7
J+1

vMcme Wr wevahm or C&

Figure 3-1: RELAP5 Spatial Mesh Illustration

The RELAP5 numerical scheme then integrates the mass/energy equations from

junction to junction position over each mass/energy cell and integrates the momen-

tum equations from cell center to cell center. Therefore, the momentum cells at

the beginning and end of a particular straddle two different components. Since the

current work for the system level analysis depends on defining component averaged

forces, it would be ideal if friction forces were defined then over a mass/energy cell

instead. Conveniently, RELAP5 computes a mass/energy cell volume averaged veloc-

ity, using velocities from the junctions. This velocity is used in the code to comput-

ing various correlations from friction factors to heat transfer coefficients. However,

because the RELAP5 source code is not available, the current work can only use

minor edit control variable calls to manipulate results as a post processing step and
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is therefore limited to the minor edit information present. Wall friction coefficient

information over the mass/energy cell volume is available, but interfacial friction co-

efficient and form loss coefficient information is only available at the junctions. The

friction forces are thus computed two different ways, wall friction and virtual mass

forces using mass/energy cell minor edit calls while the interfacial friction and form

loss forces computed as contributions from the momentum cells "attached" to the

mass/energy cell volumes.

The generic wall friction force in a cell volume is given by:

FA = -V (ak pAvA) FWK = -VvkFWALK. (3.22)

The wall friction coefficient, FWK, is related to the minor edit call FWALK by:

FWALK = akpPkFWK. (3.23)

The total wall friction force depends on whether the drift flux model is used for a

particular flow regime. Therefore, defining a drift flux marker f", as being 1 if the

drift flux model is used and 0 if it is not used, the total wall friction force is given

as:

Fk = -VvkFWALK + f. [a.VvkFWALK - akVvFWALN]. (3.24)

In Eq. 3.24 the subscript n represents the phase other than phase k. This notation

will be used for the interfacial friction terms as well.

The virtual mass force in RELAP5 is computed as:

d
FVM,k = -VCaknP,,T (Vk - Vn) . (3.25)
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The value C is the virtual mass coefficient which in RELAP5 is independent of the

flow regime and is only a function of the void fraction. The subscript m represents

a mixture quantity.

The interfacial friction and form loss forces in a mass/energy cell volume are

computed by summing up the contributions of the momentum cells in that particular

mass/energy cell. Using the notation in Fig. 3-1, the mass/energy cell L has two

momentum cells "acting" on it through junctions j and j +1. The interfacial friction

and form loss forces are therefore computed in the momentum cells associated with

both junctions j and j + 1, then summed up based on the volume each of those

momentum cells has in cell L.

The interfacial friction force from a junction j inside a particular cell i is given

by:
1

(Fi.SC,), = (Ax)i A, (akpk), (FIK), (v, - Vk),. (3.26)

Each junction in cell volume i has a length equal to half the cell length, that is why

the volume occupied by junction j in cell i is defined as the junction area multiplied

by 1 (Ax)i. The phase fraction and phase density at the junction j are minor edit

calls from RELAP5 deetermined using the interpolations of the values found at the

two cell centers.

The form loss force in a particular momentum cell is defined as:

(Formk), = (akPkVk), (HLOSSK)j Aj

= (akpkvk)j 1 (FORMK)k JvkI, A,. (3.27)

The form loss force expression is therefore just a conventional expression for the

form loss pressure drop multiplied by the junction area. The form loss coefficient,
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FORMK, is the sum of the RELAP5 calculated abrupt area change value and the

user defined form loss coefficient for that particular junction. The form loss force

in cell i is then scaled by the length of that momentum cell in cell i with the total

length of that particular momentum cell.

The total mass/energy cell force value is then the sum of the junction acting on

that particular cell. Using the interfacial friction force as an example, the total cell

volume friction in cell i is:

J

(Fiack,ak)i = (Fvisc,k )j,. (3.28)

The momentum transfer force due to mass exchange relies on a velocity of the

phase at the interface. In RELAP5 that velocity is approximated by:

vsk = VI - Vk, (3.29)

v, = Avv + (1 - A) vi, (3.30)

A = r o. (3.31)
+1, r <

The body force term captures not only the gravity force acting on a particular

phase, but also the pump driving force. In a pump component, the standard body

force term is replaced by the driving pump head, in Pascals, multiplied by the pump
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component flow area. For all other components, the body force term B, is given as:

Bz = g (Az) A. (3.32)

The system level phase momentum equation is set up just as the system level

phase energy equation. Once the component group average values are computed and

the component groups are summed up around the entire system, the system level

phase momentum balance equation becomes (using the same notation discussed for

the system level phase energy equations):

ALL

Z [((akpV)n)] + A [(Aakpkvkvk), 8 ]

ALL ALL ALL ALL

= [Fk] + Z [Formk + [Fc,,8k + 1 [Fv,k

ALL ALL

- A [(PAak),,,] + : [ )n Vn1 + E [((akpk) B).]. (3.33)

Fractional contributions are similarly computed for the system level phase momen-

tum equations.

3.3 Feed and Bleed Transient Model

3.3.1 RELAP5 Model

The QPIRT methodology was applied to a TLOFW accident with subsequent feed

and bleed. The MIT LB-LOCA PWR input deck was modified to simulate the

desired transient. Figure 3-2 provides an illustration of the LB-LOCA input deck
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nodalization. The model consists of two loops a single loop and a lumped triple loop

to simulate a four loop nearly 3500 MWth PWR. The core is modeled with three

channels, a core averaged channel, a hot assembly channel, and a hot rod channel.

It is important to note that this input deck does not correspond to any plant in

particular and uses only generic PWR geometry values. To handle the TLOFW

accident, the LB-LOCA break was removed and an additional safety injection (SI)

line was put in place on the singlet loop (or broken loop) side of Fig. 3-2. TRIP

parameters were set to be consistent with an input deck given by INL for a feed and

bleed transient.

RELAP5 Nodalization Diagram for Reference PWR

I,.D

Figure 3-2: RELAP5 Nodalization Modified for the Feed and Bleed Sequence

The number of PORVs to open was selected to be consistent with the PORV flow

area of standard four loop PWR plants and similar power levels. From a literature
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search the flow area was chosen to simulate three PORVs being open [18], [19], [20].

3.3.2 RELAP Results

The transient was simulated by forcing shut off the main feedwater flow to the

secondary side steam generators five seconds after the start of the simulation. Thirty

seconds later the reactor was scrammed. PORV and SRV pressure set point were set

to be consistent with the literature [18], [19], [20]. Once the primary system pressure

reaches those set point values, the rapid opening and closing of the PORVs and SRVs

maintains the system pressure at the set point value, while the system continues to

heat up. If there is no operator initiated bleed through the PORV the pressure set

points control the depressurization rate. Thus, the system pressure remains high

and there is no way for the ECCS to inject into the primary system through the

SI lines once the primary system begins generating vapor and uncovering the core.

Operator action was modeled as a TRIP function that forced the PORV to remain

open after a certain point in time. This time was varied until a limiting case was

found. The limiting case is defined as being the case with the last possible time for

operator initiated bleed to occur without the max PCT going above the NRC limit

of about 1478 K (2200 *F). Figure 3-3 shows the PCT history results for five different

cases each with the times for operator initiated bleed indicated on the figures. The

horizontal line corresponds to the NRC limit. As the max PCT crosses the limit if

the PORVs are forced open 40 minutes after loss of main feedwater flow, the limiting

case is therefore defined as operator initiated bleed occurring at 39 minutes.
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Figure 3-3: PCT for Multiple RELAP Runs with Different Operator Initiated Bleed

Times

The QPIRT process was applied to this limiting case to determine the processes

that significantly influence the PCT. Ultimately, the QPIRT process can also be

used to identify specifically which physical phenomena keep the limiting case from

crossing the NRC max PCT limit by comparing the 39 minute case to the 40 minute

case.
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3.4 QPIRT Analysis

From looking at the PCT results in Fig. 3-3, three distinct time phases are present.

These three time phases are explicitly labeled in Fig. 3-4, which depicts the PCT

results just for the limiting case of interest. Time Phase I lasts from the start of the

transient to about 50 minutes. Between about 50 minutes and nearly 75 minutes

is Time Phase II, and Time Phase III occurs from nearly 75 minutes to the end of

the transient. QPIRT results will be given in each time phase. The Top-Down local

level analysis includes the dominant processes over a particular time phase that sig-

nificantly influence the clad temperature, fuel temperature liquid phase temperature

and vapor phase temperature. The system level analysis gives the processes that

significantly influence the system wide phase energy and phase momentum during a

particular time phase.

A significant process was considered to be any process whose weighted contribu-

tion or fractional contribution was at least 10%. This value was chosen arbitrarily

just for this work and a sensitivity analysis to this threshold value is discussed later

on in Section 6.

For the limiting case of interest the PCT occurs in cell 11 of the hot rod channel.

Thus, all local level results are from this cell location in the hot rod channel.
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Figure 3-4: Limiting Case Clad Temperature in Cell 11 Where Max PCT Occurs

3.4.1 Local Level Top-Down Results

The Local Level Top-Down significant processes are given in Table 3.1 and the System

Level Top-Down significant processes are given in Table 3.2. The results will be

explained in detail in the sections that follow. The columns in Table 1 represent the

significant processes that influence that particular constituent's temperature. The

analysis starts with the clad temperature. For example, in Time Phase I, the only

significant process that influences the clad temperature is the heat transfer to liquid.

Thus, in Time Phase I the Fuel and Vapor constituent processes are ignored and the

processes that influence the liquid phase temperature are examined.

For convective energy flow terms, "bottom" means the flow goes through the
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bottom junction connected to the cell volume. "Top" therefore means the flow comes

through the top junction and "cross-flow" means the flow comes through the junction

connected to the adjacent hot assembly channel.

Table 3.1: Local Level Significant Processes
TimePase Cind Tmp. (FMd) FulTemp. Lijuid Tenp. VzpwTamp.

I Chd4iguiihuat kmevamt CoecEtiw eneWy elevant
tranfer am, idrfi6A

H cawD-vapofh.t Intmeal beat Inhdfacial heat ceavemtiw
tramfu, clad trwum gemratin, fud ramfer, eiective enegyfkw ath
cmeibmM fielAD- twmzaul emrgylw,iquid- amalandem)
did hut ftamse4 clad- M pacitum phne ftwma
toaiquid heat trawfir I "

IM Clad-liquideat kmlevant Conveefim ergy Ifrelevant
traoffer f iw 6i~d~ial

hamfer

Clad Temperature Results

The weighted contributions to the clad temperature are shown in Fig. 3-5. The

Clad-to-Liquid heat transfer completely dominates the clad temperature value dur-

ing Time Phases I and III. Figure 3-6 zooms in on Time Phase II to give a better

view of the break down in this phase. Time Phase II corresponds to when that cell

location in the hot rod channel has become uncovered. There are two interesting

aspects of Time Phase II. The first is the significant influence of the Clad Thermal

Capacitance on the clad temperature value. A Bottom-Up analysis of the clad ma-

terial volumetric heat capacity shows a major spike in the value corresponding to a

crystalline phase transition of the Zircaloy material. The second interesting point is
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the role of the liquid phase on the clad temperature. It is difficult to see but at the

times corresponding to the major temperature drops in Time Phase II at about 54

minutes and 62 minutes, the Clad-to-Liquid heat transfer rate becomes again signif-

icant. Thus, even though Time Phase II is characterized by lack of liquid locally,

these two specific time instances have had enough liquid enter the fluid cell to allow

the heat transfer rate to increase significantly.

CIO Eneq Eqcatn Sipmat cod ms

25 so 75 100 125
time PuRN

150 175 200 225 250

Figure 3-5: Clad Temp. Weighted Contributions
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Figure 3-6: Clad Temp. Weighted Contributions During Phase II

Fuel Temperature Results

The fuel temperature weighted contributions are shown in Fig. 3-7. The internal heat

generation dominates Time Phases I and III while Time Phase II is characterized by

a balance of the heat source with the fuel thermal capacitance.
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Figure 3-7: Fuel Temp. Weighted Contributions

Liquid Temperature Results

The liquid temperature weighted contributions are plotted in Fig. 3-8 for the entire

transient duration. Time Phases I and III are visible, but Fig. 3-9 zooms in on

Time Phase II to give a more detailed view for this most important phase. The early

part of the transient shows that the liquid temperature is dominated by the energy

brought into the fluid cell via convection and the heat transfer rate with the clad.

The contributions of these two processes stay roughly constant during the natural

circulation phase of the transient, up until the liquid flow rate drops off and vapor

begins to show up in the fluid volume, as indicated by the presence of interfacial

heat transfer. Time Phase III interestingly enough shows that the clad-to-liquid
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heat transfer rate is balanced by interfacial heat transfer and convective energy flow

through the top junction. This represents that the local liquid flow field has not

steadied out even though the clad temperature results are very smooth during Time

Phase III. Eventually though, by about 150 minutes into the transient, the local

liquid temperature weighted contributions steady-out as a balance between the heat

transfer with the clad and interfacial heat transfer.

The liquid is important in Time Phase II only during those few key moments

when the liquid presence causes a sudden spike in the heat transfer rate at the clad.

So even though these two points in time are very short and sudden the processes that

contribute to the liquid temperature will be important to the PCT. The interfacial

heat transfer in the bulk fluid is always significant during this time period. At the

two points in time that correspond to the sudden clad temperature drop, the liquid

phase energy transient term becomes significant. Several minutes before these points

in time, the convective energy flow through the bottom and cross-flow junctions also

become significant. Interestingly, the heat transfer rate with the clad has an insignif-

icant effect on the liquid temperature at both of these times. The clad therefore

does not control the liquid phase temperature during Phase II even though at two

very important times the liquid phase temperature impacts the clad temperature.

This result is very different from Phases I and III where the clad and liquid phase

temperatures axe linked together.
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Figure 3-8: Liquid Temp. Weighted Contributions
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Figure 3-9: Liquid Temp. Weighted Contributions During Phase II

Vapor Temperature Results

The weighted contributions onto the vapor phase temperature are shown in Fig. 3-

10. Time Phases I and III show that the vapor temperature is dominated by the

balance between interfacial heat transfer and convective energy flow from the bottom

junction. The results for Time Phase II are zoomed in on in Fig. 3-11. The heat

transfer rate with the clad is balanced by convective energy flow through the bottom

junction for a majority of Phase II, but also with convective energy cross-flow as well.

Cross-flow links the smaller hot rod channel with the larger hot assembly channel.

The convective energy flow terms represent energy brought into the local cell

volume from another cell. This motivates the system level analysis by seeing what
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processes and component groups significantly influence the system level flow dynam-

ics.

r2
M

im

0

a9

&a

Q3

012

Vapor Elar EqPal Tempera- Sijpcat coeUtio

a L
zM

time pIm

-VWlUvidt
VWTeMp

- vw1aabgn
-Vwlvemt

-VWlINNCuf
-VW1MTU

VWLITW
VW101

--- VW1DC.
--- VW1VD3

175 200 225 250

Figure 3-10: Vapor Temp. Weighted Contributions

3.4.2 System Level Top-Down Results

Due to the large amount of data generated from the system level equations, the

results only go up to 100 minutes, or about half the length of local level results. This

was mainly done to make handling the data easier while the QPIRT scripts used to

manipulate the RELAP results were debugged.
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System Level Phase Energy Equations

Tables 3.2 gives the dominant physical phenomena that govern the system level phase

energy equations. Since the same physical process can occur in multiple component

groups at once, the locations where the particular process occurs is listed in the

adjacent column in Table 3.2.

The results from the system level energy equation relate directly to the known

dynamics of the system throughout the transient. Early on in Time Phase I, there

is an energy balance between the heat generated in the core and the heat trans-

ferred through the steam generators. However, once the secondary side of the steam

generators dries out (since all feedwater was shutoff), the heat transfer through the

primary side steam generators decreases dramatically, leading to an energy imbal-

ance. This energy imbalance is captured in the system level liquid phase energy

equation because the pressurizer energy transient term becomes significant once the

heat transfer through the steam generators loses dominance. The pressurizer liquid

energy transient term corresponds to the pressurizer filling up with liquid as the

primary system heats up and the liquid expands. Once the pressurizer goes solid,

liquid is ejected out the PORV. At this time more and more vapor begins to form in

the primary system leading up to interfacial heat transfer and mass transfer terms

becoming important. With the vapor phase, the primary dominant process is the

convective energy outflow though the PORV. This makes sense and ties system level

vapor energy equation to identifying when the PORV is opened to allow this to occur,

which goes back to any uncertainty for when the operator can perform the action.

The system level energy equations results in essentially showing that the Bottom-

Up step must be performed on the correlations in RELAP that model: wall-to-liquid

heat transfer, interfacial heat transfer, and mass transfer. But it should be noted,
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the location where each process occurs is important because different components

may be in different flow regimes even if the same process is occurring, which results

in different correlations to investigate.

Table 3.2: System Level Phase Energy Significant Processes_

I~n h
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System Level Phase Momentum Equations

The same process was carried out for the system level phase momentum equations.

Table 3.3 gives the significant processes that influence the system level phase mo-

mentum equations and is setup the same way as Table 3.2.

At steady-state the pump provides the largest fractional contribution value, fol-

lowed by the wall friction in the lumped loop steam-generator primary side tubes.

84



Table 3.3 does not give the fractional contribution values, but it is important to note

here that these two processes alone do not provide even half of the total fractional

contribution (a value of 1). This shows that there will be a potentially substantial

influence on the number of processes considered significant by the choice of the im-

portance threshold value. The results in both Tables 3.2 and 3.3 are determined

using an importance threshold value of 10%. The next section will go into further

detail analyzing the influence of varying that value.

Once the accident sequence begins, the main feature from the results, as shown in

Table 3.3, is the balance between interfacial friction forces and buoyancy forces. This

balance is the main influence on the liquid momentum equation, while several other

processes contribute significantly to the vapor momentum equation. The pressure

force from the PORV represents the PORV opening up and the system depressurizing,

which again is consistent with the dynamics of the problem.
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3.4.3 Importance Threshold Value Sensitivity

As stated previously, the threshold value for significance was rather arbitrarily chosen

as 10%. Lowering the threshold value will allow more processes to be considered

significant at a cost of adding more pieces to the Bottom-Up step. Ideally, the

threshold value should give a minimal number of processes that still captures a major

portion of the dynamics of the system response. The system level equations were

reanalyzed using multiple threshold values ranging from 1% to the already chosen

value of 10%. There are two key pieces of information here, the "fidelity" of the

results and the total number of processes considered significant. The "fidelity" of

the results refers to checking if the chosen significant fractional contributions sum
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up close to one. Obviously the closer that value is to one, the more accurately the

significant processes represent the total system dynamics.

Plots for the number of significant processes through time for the various thresh-

old values used are given by Fig. 3-12. The four plots in Fig. 3-12 correspond to each

one of the system level equations analyzed. The y-axis, in Fig. 3-12, is the number

of of significant processes and the colored lines in each sub-plot are the threshold

values. Figure 3-13 then gives the corresponding "fidelity" of the chosen significant

processes through time for the threshold values depicted in Fig. 3-12.

87



System Lquid Momentum Balance

15 ---------------- .- - - - - -- -----------------------.--------- - -1A0 ----- -------- - -..- -

0
0 10 20 30 40 50 60 70 80 s0 100

stem Vapor Eanertg Blance

2DI I IIIII I I

15 --------------------- - ---------- ----- --------------- ------- w
10 ----------------- --- --- ---- -- ----- - -- --

. 5 -- - - - - - -i
0.03 0
0.05 0 10 20 30 40 50 60 70 80 so 100

portaSynquid EThrry BaVanl
0.1 25 -- -- ---- ------ --- ------- - -- --- - ---- !- --- ------- - ------ - --- --- --

21) ------------------------------------- et)- ------- ---------------------
15 -- - - - - - - - - - - - -A.- - . .. - - . - .
10 -- - ---- -

00 10 2D 30 40 5D so 70 so 90 100

SysMn Vapor EnrgyW Bahumc

20

0 10 20 3 0 5D so TO 80 so IOD
Trow [min]

Figure 3-12: Sensitivity of the Number of Significant Processes (y-axis) to the Im-

portance Threshold Value

88



Sysem LDpt Matitism IMoce

05 -

- 5 0 10 --- 0-- 30 ------- -- 0--0-7-----------00

I I I I --I I _ _ I
0 10 20 30 40 50 50 70 80 s0 100

Sysem Vr Moefntum Bauce

-as 0 10 20 30 40 50 60 70 W 90 100

Figurem sy stem iPif EPcth emmote

015 ----------------- - - - ----- --------- - - - - - --- - ----- - --------- -

S 10 20 30 4a 50 Go 70 W go 100

Syste VVrENe 5afta

0.25 - ------------ - - - - - - - - - - - - - - - - - - -- -- -- - - -- - - -- ..

0 10 20 30 40 so Go 7M 8 90 1W
-Wie [mMJ

Figure 3-13: Sensitivity of the Fidelity of the Significant Processes to the Importance

Threshold Value

As described in the previous section, the "fidelity" of the system level liquid

momentum equation is very low at the steady-state condition (time equals zero).

Reducing the threshold value raises the fidelity by capturing the influence of form

loss and wall friction in the core. But to get the fidelity of the significant processes

to be greater than 80%, the threshold value has to be as low as 2%, giving a total

of about 15 processes to analyze in the Bottom-Up step just at the steady-state

condition. The liquid level energy equation shows the opposite behavior at the

steady-state condition, with the higher threshold value basically capturing the entire

dynamics of the system. The difference in fidelity between the two equations comes
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simply from the fact that the energy equation has only three really dominant terms,

the heat transfer in the core and the two steam generators. The momentum equation

on the other hand, balances the two pumps with the wall friction and form loss in

multiple component groups.

As the accident progresses however, the opposite is true, as the fidelity of the

higher threshold values in the liquid momentum equation improves while it worsens

for the liquid energy equation. The vapor energy equation becomes more important

through Time Phase II, as described in the local level results. Even though there

are several points in time where the higher threshold values capture less than 20% of

the liquid energy equation, the liquid phase is not as important during those times

anyway. The fidelity of the higher threshold values are better for the vapor energy

equation but are still only near 50% during the first half of Time Phase II. These

results suggest that the threshold value of 10% might be too high to use to ensure that

enough of the key significant processes are captured throughout the entire accident

sequence.

3.4.4 Bottom-Up Results

The Bottom-Up step is more qualitative in nature, because it involves going through

all of the physical phenomena identified from the Top-Down step. The various clo-

sure models and empirical correlations used in RELAP5 for the various physical

phenomena are listed in Table 3.4 below. The uncertain parameters that a surrogate

model would be built from would come from these models and correlations listed in

Table 3.4.
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Table 3.4: Bottom Up Step Important Closure Models and Empirical Correlations

Physical Phenomena Name of Correlations Used
WaI-to-Coolwt Heat Transfer Dkis-Boeker

Churcliffi-Chu
Chen

Chen-Sundaran-Ozkaynak
MoMed Bronley

Interfacial Heat Transfer - Bk Plesset-Zwick/Lee-Ryley + Nukiyaa-Tamasawa
Moaied Unal-Lahey

'Ad hoc" Taylor Bubble Crie&a + Isi-Mishiima
Moded Thenrans/modified Brown

Interfacial Heat Transfer -Neaw Wal Saha-Ziber + Lahey + wal-to-coolait heat transfer
correlations

Interfacial Mass Transfer - Bik Same as the iterfacial heat transfer -lbxk
correlations

Interfacial Mass Transfer -Near wal Same as the interfacial heat transfer - near wad

correlations

Choked Flow Ransom-Trqpp

Wal Friction Factor Zigraeg-Sylvester approximation to Colebrook-
Whlite

hiterfacial Friction Zuber-Finulay
KatKa-Ishii

WaEis CorrelatioWIshii-Chawla
EPRI

Material Properties Clad Thermal Capackmce

Fuel Thermal Capacitance
Gap Conmictance Model

Decay Heat Model 1973 ANS Standard

Pump Fann-Anderson Pump Model
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Chapter 4

Surrogate Models using Gaussian

Processes

4.1 Surrogate Models Overview

Even with the uncertain parameters reduced to only the most important ones, as seen

in Chapter 2, performing Bayesian inference still comes down to drawing thousands

upon thousands of samples with MCMC. Applying Bayesian inference to relevant,

large scale engineering problems, such as nuclear reactor safety analysis is therefore

completely limited by the speed of drawing one sample. Since one sample means

evaluating the likelihood function, p (yIf (x,, 0)), the computer code, f (x., 0), must

be evaluated thousands and thousands of times in series. Even if the computer code

is considered fast and takes only 1 second to execute, Bayesian inference would be

computationally intractable if 1e5 or more samples are needed.

We therefore need ways to quickly and accurately approximate the input/output

relationship of the computer code. This approximation will then act as a computa-
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tionally cheap surrogate model (also known as a meta-model) to the full long-running

computer code in the Bayesian model calibration process. The long-running com-

puter code is used to generate a set of training data which will, as the name implies,

train the surrogate model so that it is able to match the input/output relationship,

as closely as possible. The simplest of all surrogates is a response surface or best fit

line in 1-D. Once the parameters in the best-fit line are estimated from the training

data, the best-fit line can make a prediction of the output for any new input value.

But, what if a linear relationship is not an accurate assumption for the input/output

relationship? What if a quadratic, cubic or log-transformation is a better fit for the

input/output relationship? This simple thought experiment illustrates a fundamen-

tal limitation of parametric models, where a parametric model is completely defined

by the parameters in it (the slope and intercept of the best-fit line, for example). It

would be better if the training data itself would dictate to the surrogate the trends,

rather than a modeling choice before hand. Non-parametric models offer this kind of

flexibility, and in many engineering disciplines, we already use non-parametric mod-

els quite frequently in the form of look-up tables. Flow regime maps, Critical Heat

Flux (CHF) look-up tables, even material property data such as steam tables are

non-parametric models. The one major drawback to a non-parametric model is that

the training data is never discarded, so if a large number of training runs is required

to accurately capture the input/output trends, all of that data must be retained and

passed between computer functions appropriately.

Since we are focused on the comprehensive treatments of uncertainties in the

Bayesian approach, we must account for the added layer of uncertainty in using the

surrogate in place of the computer code. Therefore, we need a way to estimate how

uncertain the surrogate is when making predictions at input values not used in the

training set. In a linear interpolation look-up table, instead of simply interpolating
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between two training points, the probability distribution needs to be known in order

to propagate the surrogate's effect onto the output. This way, if the surrogate is

poor, and is therefore uncertain about a prediction, that needs to be reflected in

the output probability distribution. The surrogate is therefore a probabilistic model,

which is often referred to as an emulator throughout the literature [13], [1], since it

is trying to emulate the computer code behavior.

A very popular choice as an emulator in Bayesian non-parametric models is the

Gaussian Process (GP). The underlying principles of the approach were developed

in the 1960s in the geostastics field where it was known as Kriging [15]. Since then

Kriging has been widely used for optimization, but starting the late 1980s and early

1990s [21], [22], and [23] popularized the approach as Bayesian approximations to

deterministic computer codes. The machine learning community has also extensively

used GP models for both regression and classification (regression is used for contin-

uous functions while classification is used for discrete datasets) [8], [24]. The most

popular and (in my opinion) best resource on GP models is Rasmussen's Gaussian

Processes for Machine Learning which includes a MATLAB package GPML to per-

form both GP regression and classification. The GPML package is a great asset

as a starting point for using and applying GP models and most of the terminology

and notation will be made consistent with that source. But even with all of their

flexibility, GP models are still somewhat limited by certain assumptions which will

be discussed later. Therefore in order to handle more complicated datasets (and

thus more complicated input/output relationships) factor analysis techniques based

on GP models have been developed [25], [26].

The rest of this chapter consists as follows. Section 4.2 summarizes the key

fundamentals of standard GP regression, Section 4.3 extends GPs to the factor anal-

ysis techniques for more complicated problems, and Section 4.4 applies the various
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emulator types to the simple friction factor demonstration problem.

4.2 Standard Gaussian Process Regression

4.2.1 Formulation

In the Bayesian framework a Gaussian Process (GP) prior is placed on the unknown

computer code. The computer code, such as RELAP, is actually deterministic -

meaning that the same output will result if the same input parameters and settings

are used over and over. But, the output is in some sense unknown until the computer

code is run, and will therefore be treated as a random variable. The GP prior is a

distribution over the functional form of the input/output relationship. Formally, a

GP is a collection of random variables, any finite number of which have a joint Gaus-

sian distribution [24]. The relatively impressive name of Gaussian Process therefore

really means a MVN distribution is used as a prior distribution. What makes the

application special here, is that the covariance matrix of this MVN distribution will

be computed using the training dataset. This feature will allow the GP model to try

and interpolate (or rather regress) the training data thereby emulating the behavior

of the long-running computer code.

I will use a slight break in notation from what I had earlier only to be consistent

with Rasmussen's notation in GPML. The input x will be all the inputs to the

computer model that the GP is trying to emulate. The output f (x) is considered a

random variable. A GP is completely specified by its mean function and covariance
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function. The mean function m (x) and covariance function k (x, x') are defined as:

m (x) = E [f (x)],

k (x, x') = E [(f (x) - m (x)) (f (x') - m (x'))],

and the GP is written as:

f (x) ~ 9P (m (x) , k (x, x')) . (4.2)

An important aspect of Eq. 4.2 is that the covariance between the outputs is written

as a function of the inputs. This is a key assumption in the simplicity of standard

GP models and will be discssued in more detail later on. Following Rasumussen, as

well as many other sources, the mean function is usually taken to be zero. Besides

being the simplest approach, it also gives no prior bias to the trend of the data

since no mean trend (such as linear or quadratic) is assumed. Covariance functions

themselves depend on a set of hyperparameters, so even though the GP is a non-

parametric model, these hyperparameters specify the covariance function and must

be learned from the training data. The GP model is still considered a non-parametric

model because the actual prediction requires regressing the training dataset. But be-

cause of the hyperparameters sometimes GP models are considered semi-parametric.

Numerous covariance functions exist, ranging from the very simple to very complex

neural net-like functions [24]. The most popular covariance function in the literature

is the squared-exponential (SE) covariance function, which is usually parameterized

in the following way:

k (x,, x,) =o.exp((x,-x)TM(x,-x), (4.3)
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where the subscripts p and q denote (potentially) two different values for the input

vector x. The hyperparameters in Eq. 4.3 are the signal variance of and the matrix

M, which is a symmetric matrix that is usually given as:

M = diag (j)-, (4.4)

where I is a vector of positive values and each element, li,..., , plays the role of

a characteristic length-scale for each input parameter. Loosely speaking, the length

scale represents how far you need to move (along a particular axis) in input space for

the function values to become uncorrelated [24]. Since each input parmater has its

own unique length scale hyperparameter this formulation implements what is known

as automatic relevance determination (ARD), since the inverse of the length-scale

determines how relevant the input is: if the length-scale has a very large value, the

covariance will become almost independent of that input. Linkletter et al. (2006)

[27] used ARD to determine inactive/active input parameters using GP models.

Strictly speaking the GP model can interpolate the training data exactly if no

noise is allowed between the training data points and the GP prior. However, I found

allowing for noise makes building the emulator easier since it can prevent many ill-

conditioning issues, which will be more readily present shortly. For that reason, the

GP model is labeled a Gaussian Process Regression (GPR) model since it is trying

to regress the training dataset within some allowable noise level. The GP prior is

therefore placed on a latent (or hidden) function f (x), that we wish to infer out

from the noisy data, y. This viewpoint brings to light the signal processing nature of

the GPR framework, since we wish to infer out the true signal pattern from noisy or

"corrupted" data. In emulating computer codes, the training output is not noisy or

"corrupt" but this setup provides a useful mathematical framework. The computer
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model output of interest, y, is then related to the GP latent function, f (x), as:

y = f (x) + E, (4.5)

where E is the assumed error structure. The error can take a wide variety of forms, but

if a Gaussian likelihood is used with additive independent identitically distributed

noise c with variance o., the remaining calculations are analytically tractable. More

complicated likelihoods and error structures can be used, but then the following

calculations would not have analytical solutions (though those situations are very

useful in other circumstances such as classification).

Before moving forward some important notation needs to be defined. If there are

a total of N training points, the input parameters are stacked into an N x D matrix

of all of the training input values:

XT
xl

X=

XN

Each row of X contains the D input parameter values for that particular training

case run. The training outputs values, y, are stacked into a vector of size N x 1

and written as y = [yi, y2, ... , YNIT. Since f (x) has a GP prior, and the likelihood

function is Gaussian the prior on the training output is also Gaussian:

y ~ A(0, K (X, X) + nIl) , (4.6)

where K (X, X) is the training set covariance matrix and I is the identity matrix.
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The training set covariance matrix requires applying the chosen covariance function

to each pair of input parameter values:

k (xi, xi) k (xi, x2) ... k(xl, xN)

K (XX) k (x2, xi) k (x2 , x2 ) k(X 2 , XN) (47)

k(xN,xl) k,(xN,X 2 ) ** k(xN, xN)

The training set covariance matrix is thus a full matrix. If the SE covariance function

in Eq. 4.3 is used, each diagonal element of K (X, X) is the signal variance Uf

Assuming for now that the covariance function hyperparameters are known, we

want to use the training set to make predictions at new input parameter values,

which Rasmussen refers to as test points. If there are N. test points, the test input

matrix is the N, x D matrix X*. Under the GP model framework, the latent function

at these new test points has the same GP prior as the training points, which will be

written in vector form as

f. ~ N (0, K (X*, X*)), (4.8)

the test covariance matrix K (X., X.) has the same setup as the training set co-

variance matrix except now the elements in it are computed using the test input

parameter values. As written, the test prior in Eq. 4.8 provides very little useful

information, since it has no idea about the structure of the training dataset. In order

to restrict the test function values to only those that agree with the training dataset,

we must condition the test distribution on the training data distribution. To do this,
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start with the joint prior, which is written out as:

Y ([ 0 K (X, X) + oal K (X, X) (49)

f J [o K (X*, X) K (X., X.) )

where K (X, X.) is the cross-covariance matrix between the training and test input

values of size N x N., and K (X., X) is its transpose. Standard multivariate normal

theory allows us to write the conditional distribution p (f.Iy) which gives the key

predictive equations for GPR [24]:

f Iy - A (Y, cov (f.)) , (4.10)

. -A E [f Iy] = K (X., X) [K (X, X) + o fl]~ 1 y, (4.11)

cov (f.) = K (X*, X.) - K (X., X) [K (X, X) + oaI]~1 K (X, X). (4.12)

In order to make a posterior prediction in the training data space (since f is the

latent function), the posterior distribution is simply:

y. ~N (., coy (f.)+ oI). (4.13)

The posterior distribution of the test "targets" y. is simply the same as the latent

function posterior distribution except with the additional error term added in.

Examining Eqs. 4.11 and 4.12 reveal the important features of GPR models.

First, the posterior predictive covariance shrinks the prior covariance as witnessed

by the subtraction between the first and second terms on the right hand side of
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Eq. 4.12. Second, when making predictions at the training points (X. = X), the

predictive uncertainty shrinks to the allowable error tolerance. The computational

burden is completely determined by the computational cost of inverting the train-

ing set covariance matrix. If the training set is very large (greater than 1e4 data

points for example) the cost of inverting the matrix might start to become pro-

hibitive, and acceleration techniques might be needed. And lastly, if the training

set covariance matrix is ill-conditioned, its inverse cannot be computed. That is

why I allow some noise between the training data and the latent function, to make

sure [K (X, X) + o-I1] is invertible. This suprisingly simple, and yet seemingly brute-

force solution to ill-conditioning problems is widely used though it is usually only

mentioned in footnotes of many references.

4.2.2 Building the Emulator

When writing the key GPR predictive equations, there was one important aspect

left out: the fact that those predictions are also conditioned on the hyperparameter

values. Using the SE covariance function and the likelihood noise structure above

the complete set of hyperparameters is 1 = {l, O o}. The posterior predictive

distribution is then more formally written as fC.y, #, ~K (f., cov (f.)). The posterior

predictive mean and covariance are the same however as given in Eqs. 4.11 and 4.12.

Training or building the emulator consists of learning those hyperparameters, 4,

out from the training dataset. The two main ways of building the emulator con-

sists of the empirical Bayes approach and the fully Bayesian approach. The fully

Bayesian method uses MCMC to draw samples from the posterior distribution of the

hyperparameters while the empirical Bayes method uses optimization schemes to find

point estimates to the hyperparameters. The main advantage of the empirical Bayes
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method is that finding point estimates through optimization is much, much faster

than using MCMC inference in the fully Bayesian approach. However, the draw-

back that I have found is that cross-validation is essential in order to determine if

the "optimized" hyperparameters yield the "best" results. The optimization method

must deal with very multi-modal functions that have several local maxima/minima

which can cause the optimizer to get "stuck" at a poor choice location. The sec-

ond drawback to the empirical Bayes approach is that by using point estimates it

does neglect the influence of the hyperparameter uncertainty on the output. The

entire model is still considered Bayesian because the GP itself is a statement of the

probability'of the latent function, f (x). Most authors have found small differences

between the final results of the empirical and fully Bayesian approaches [15], [13],

but I have found the cross-validation is essential in more realistic problems. Because

of this, I use the fully Bayesian approach, but will discuss both approaches anyway.

Empirical Bayes

This is the approach used by Rasmussen in [24] as well as with the GPML MATLAB

package, which includes a very useful optimiziation function. The main benefit of

this approach, again is its speed. The hyperparameter values are optimized by maxi-

mizing the marginal likelihood, which recalling from Chapter 2 is the denominator in

Bayes' rule. Due to the change in notation from Chapter 2, the marginal likelihood

is rewritten here as

p (yIX) = p(yf ,X)p(fIX)df. (4.14)

The above probability statements explicitely condition on the training input matrix

X just to show that we are working with the training set, not test inputs. The

marginal likelihood again is integrating out the unknown variables of interest, which
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in this setting is actually the latent function f (x) at the the training input points.

The prior, p (fJX) is just the GP prior specified above, and the likelihood as stated

earlier is a Gaussian likelihood of the form

ylf ~ J(f, oI). (4.15)

Integrating out the latent function has actually already been done above in Eq. 4.6,

but writing this out explicitely gives the function we wish to maximize during the

optimization, the log-marginal likelihood:

=-1 YT1]l_21 N
log [p (yIX)] = [K (X, X) + Or y -log [JK (X, X) + oI] XKlog [27r].

(4.16)

The three terms in Eq. 4.16 have easily interpretable roles. The first term on the right

hand side is the data fit, the second term is the complexity penalty term depending

only on the covariance function and the inputs, and the last term is a normalizing

constant. The difficulty in performing the optimiziation results from the fact that

Eq. 4.16 can be very multi-modal, especially as the number of input parameters

increases. Cross-validation is important to determine which mode is the "best" to

use, and sometimes the absolute global maximum does not always yield the best

data fits [13].

Full Bayesian

In the full Bayesian approach, a prior must be placed on the hyperparameters, p (q),

and the goal is to sample the posterior distribution conditioned on the training data.
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Since the latent function is also unknown, the joint posterior is written as:

p (yIf, 4, X)p (fV4, X) p (0)
f p (yjf, 4, X) p (f 1#, X) p (4) dfd4

But since the latent function variables can be integrated out, the posterior on the

hyperparameters can be written, up to a normalizing constant for brevity as:

p (5y, X) oc p (yI, X)p (0). (4.18)

The "new" likelihood, p (yk#, X), is simply given by Eq. 4.6, where again the ex-

plicit conditioning on the hyperparameters and the training input matrix, X is to

show it is for constructing the emulator. Drawing samples from the hyperparameter

posterior can be done using the MCMC techniques discussed in Chapter 2. But,

the hyperparameter prior, which will be referred to as the hyperprior, must still be

specified. The easiest hyperprior to implement is the improper "flat" hyperprior

p (4) oc 1, which puts no bias a priori on the hyperparameter values.

Specifying useful hyperpriors for the GPR emulator is rather straightforward as

described in multiple references [27], [28], [29], and [1]. The inputs are all scaled

to be between 0 and 1 and the output is scaled to a standard normal. Thanks to

this output scaling, we want to bias the signal variance oe to be close to 1. Thus

making each diagonal element in the covariance matrix close to 1. To be consistent

with the GPML toolbox notation, the hyperprior was setup on the Of value instead

using the change-of-variables transformation on the hyperprior. The hyperprior on

the likelihood noise term is set to bias a,, towards a small value since we want the

GPR emulator to be very accurate relative to the training data. The simplest biasing

hyperprior to use is a normal with a prior mean of 10-6. The length scale hyperpriors
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are still relatively tricky to define but the specification from Higdon is used [27], [28],

[29]. These length scale hyperpriors a priori bias the length scales to yield "smooth"

input/output relationships and so only the training data can "push" the length

scales to smaller values. Additionally, to make sure the covariance matrix is always

invertible a small "nugget" value or "jitter" of 10-6 was added to the diagonal of

the covariance matrix. The nugget term is crucial in practical implementation of GP

models but is rarely mentioned outside of foot notes [24]. The nugget adds a small

amount of additional noise, preventing even a perfectly interpolating GPR model

from interpolating the training set exactly. But this additional noise can prevent

the covariance matrix from becoming ill-conditioned. There has been some detailed

investigations into the nugget's influence on the marginal likelihood [30] but for

practical purposes the nugget is the easiest way to make sure the covariance matrix

is always invertible.

Toy Problem Demonstration

A simple 1-D example from [13] is used to illustrate the GPR emulator. This dataset

was used because it is a relatively complicated shape and shows that the GPR em-

ulator is trying to interpolate between the data points. The empirical Bayes GPR

emulator is built using the GPML MATLAB toolbox and the full Bayes GPR emu-

lator is built using the AM MCMC sampling scheme with 2e4 burn-in samples and

2e4 posterior samples. Nine training points are used to train the emulators and then

100 equally spaced test predictions, after the emulators have been built. Fig. 4-1

shows the posterior prediction results, where the grey shaded regions covers 95% of

the probability of the empirical Bayes emulator prediction, and the blue lines are

the 5%, 25%, 50%, 75%, and 95% predictive quantiles of the full Bayes emulator.
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Both emulators pass through the training points with very small error and both ex-

hibit similar behavior where away from the training points the uncertainty grows, as

expected. Outside the training set bounds, both emulators predictive uncertainty in-

creases sharply, which illustrates that standard GPR models are not very well suited

for extrapolation. The empirical Bayes predictive mean is very similar to the full

Bayes predictive median (which is equivalent to the predictive mean because the

distribution is Gaussian).
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Figure 4-1: GPR Emulator Predictions

The differences in the two emulators is best seen though by looking at the co-

variance function hyperparameter values. Fig. 4-2 shows the sample histories of the

length scale in the top plot and the signal variance in the bottom plot. In both plots,

the red lines are the GPML toolbox optimized point estimates. Due to the signal
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variance hyperprior, the posterior samples are centered around 1, but the GPML op-

timized value has no such restriction and is lower. Although it is difficult to see, the

value of the GPML optimized length scale is sampled during the MCMC sampling of

the full Bayes emulator. However, that particular value has a very low probability of

occuring, which could be due to the hyperprior characteristics, or the optimization

method got "stuck" in that particular local optimum. Either way, the final predictive

results are similar between the two approaches, as expected, though the predictive

uncertainty band is different, which is consistent with literature discussions on the

topic [15]. The major difference is the construction time. The empirical Bayes ap-

proach takes about 0.2 seconds to construct, while the MCMC sampling takes 12

seconds total, or roughly 3e-4 seconds per MCMC iteration. In the context of em-

ulating long-running computer codes, the additional training time due to MCMC

sampling is almost negligible.
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Figure 4-2: Covariance Function Hyperparameter Histories

4.2.3 GPR Emulator-Based Uncertain Parameter Calibra-

tion

Once the GPR emulator is constructed, it can be used to calibrate the uncertain

parameters, in place of the simulator. In Chapter 2, uncertain parameter calibration

with MCMC sampling was demonstrated by treating the simulator as a non-linear
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mapping function between the uncertain parameters, 0, and the simulator predic-

tions. The likelihood function between the observational data and the uncertain

parameters was then simply p (yIf (x,, 0)) . But, the likelihood function could be

written in a "hierarchical-like" fashion with the "total" likelihood broken up into two

parts. But first, the following discussion will use a slight change in notation to the

notation used in Chapter 2. The observational data points will be denoted as, y., the

simulator predictions will now be denoted as, y. This notational change hopefully

helps prevent confusion between the latent variables and the simulator response. The

first part of the "total" likelihood is then the likelihood between the observational

data and the simulator predictions, p (y. y), while the second part is the likelihood

between the simulator predictions and the uncertain parameters, p (ylx,, 0). The

posterior distribution is now the joint-posterior distribution between the uncertain

parameters and the simulator predictions conditioned on the observational data:

P (y, 0 IY) oc P (Y y (yjxC,, 0 ) )p (8).- (4.19)

The likelihood between the observational data and the simulator predictions,

p (y.Iy), is simply the assumed likelihood model for the experiment. As in the

simple toy problem of Chapter 2, I use very simple Gaussian likelihood models

with known measurement error values, o. With No observational "locations"

(data points), the vectors are setup as, yo = [yo,i, Yo,2,..., Yo,l, ... , yo,NolT and y =

[yi, 2, 2 ... Y - ..., YNOIT. Assuming a diagonal measurement error covariance matrix,

the likelihood model can be written in a factorized form as:

No No

p (y.jy, F) = ll p(yo,ilyi)= ll V(yi, o,). (4.20)
1=1 1=1
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To complete the joint-posterior we need to know the likelihood between the simula-

tor prediction and the inputs (where inputs denotes both the observational control

variable locations x,, and the uncertain parameters 9). Since the simulator can

be (very) non-linear and very complex it is essentially impossible to analytically

write out this distribution. But thanks to the surrogate model, we can approximate

this distribution using the GPR emulator posterior predictive distribution given in

Eq. ??. Assuming the GPR emulator is already built from a given training set

V = {y, X}, and the hyperparameters were determined using either the Empiri-

cal of Full Bayesian approach, the joint-posterior between the emulator estimated

predictions y. and the uncertain parameters is:

p (y., OJyO, D, #) OC P (yoIy.) p (y* I .{V, 0, 0}, 1), k) p (0). (4.21)

But because both the likelihood model in Eq. 4.20 is Gaussian and the emulator pos-

terior predictive distribution is Gaussian, the emulator predictions can be integrated

out of Eq. 4.21. The likelihood is now the GPR emulator modified likelihood, which

is itself simply the emulator posterior predictive distribution with the measurement

error added to the predictive variance:

Y01 { ,} , , 4~' -A (f*, coy (f.)+ aI+ E). (4.22)

The (integrated) posterior distribution of 0 conditioned on the observational data is

then

p (0 1yo, D, 0) oC p (yo I xc,O, 01}, V, #) p (0) . (4.23)

If more complicated likelihood models between the observational data and the sim-

ulator were assumed however Eqs. 4.22 and 4.23 would be different and potentially
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analytically intractable.

4.3 Multi-Variate Output Emulators

As shown above, the GPR model provides a flexible framework for emulating non-

linear functions from a specified number of training points. Their widespread use is

due in many respects to their high degree of accuracy, and also due to their simplicity

since all predictions are computed analytically, once the hyperparameters are known.

However, their simplicity does impose certain important limitations, with the most

important being that the covariance of the outputs is modeled as a function of the

inputs. For many situations this assumption works fine, however in modeling multi-

ple, or vector outputs, this means the covariance between the outputs themselves is

neglected. Since we are ultimately trying to model a time series of temperatures, for

example, neglecting the correlation between temperatures at different times means

we cannot fully model the trajectory the temperature takes through the transient.

If the only input we were dealing with was time, then with a sufficient sized

training set, standard GPR models would still provide very accurate approximations

of the time series. However, we are concerned about a more complex situation where

the output, the temperature, also depends on other inputs as well, namely a set of

uncertain parameters that we ultimately want to calibrate against observational data.

A particular output trajectory, or case run as I call it, gives the output at certain time

locations for a specific set of uncertain parameters. Depending on the problem, a

large number of case runs might be required for the GP model to sufficiently learn the

output relationship to the various uncertain parameters. Applying standard GPR

techniques to this training set requires taking only one point in time from each case

run. For computationally expensive computer models this seems to be "throwing
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away" a large amount of data when the training point is taken at the end of a long

case run. In order to take multiple points in time from each case run, we need to

be able to capture the correlation amongst the outputs themselves, in addition to

the correlation between the inputs (which accounts for the correlation between case

runs essentially). We would be maximizing the amount of information gained from a

single case run, which would really improve the efficiency of the emulator approach

if the computer model is very computationally expensive.

Adding this additional complexity is very challenging with two main views on

how to do so: allow the additional covariance structure to occur in the GP covari-

ance function directly or to perform some type of dimensionality reduction on the

output. Allowing the covariance function to handle covariance between the outputs

and inputs at the same time makes it very difficult to handle [31] and thus was not

considered here. The other approach, of first applying a dimensionality reduction

technique, simplifies the emulator construction by then allowing a series of standard

GPR models to be summed together [29]. The main advantage of this approach

is that once the dimensionality reduction has been performed, the standard GPR

framework can be applied. Typically Principal Component Analysis (PCA) is used

as the dimensionality reduction scheme [1]. The main disadvantage though is that

the series of standard GPR models emulates that PCA-version of the output and thus

must be transformed back to the original (high-dimensional) version of the output-

space in order to compare to observational data (or equivalently transforming the

observational data to the lower dimensional PCA-version of the output) and the un-

certainty involved in that transformation needs to be accounted for. Additionally,

the user must decide how many principle components to keep, and thus how many

standard GPR models to build.

I have chosen an approach that uses the dimensionality reduction as part of the
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emulator directly, instead of it being a transformation that must first be applied

to the output. The method factorizes the high-dimensional output into the sum of

products of lower-dimensional, "simpler", functions. These "simpler" functions are

given GP priors using a subset of the total input space [25]. Several names are used

for this approach, and I primarily refer to Schmidt's nomenclature in [25] and refer to

it as Function Factorization with Gaussian Process Priors (FFGP) - I do not apply

the warping function as he does and so do not refer to it as Function Factorization

with Warped Gaussain Process Prior (FFWGP). The FFGP is a non-parametric

factor analysis approach and is also refered to as Gaussian Process Factor Analysis

(GPFA) models as in [26] and in several other statistical literature sources [32]. The

appealing aspect of the factor analysis view is, each factor represents the functional

relationship of the output to a particular subset of inputs, or to put it another way

each factor captures the pattern or trend attributed to those particular inputs. Unlike

the PCA transformation method, each factor has an easily intepretable role because

the user predefined the inputs for that particular pattern. The PCA transformation

method builds each of the standard GPR models using all of the input parameters,

and so it becomes harder to intepret how each of the inputs relate to the output.

4.3.1 Function Factorization using Gaussian Process Priors

Model Formulation

The main idea of function factorization (FF) is to approximate a complicated func-

tion, y (x), on a high dimensional space, X, by the sum of products of a number of

simpler functions, fi,k (xi), on lower dimensional subspaces, Xi,
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K I

y (x) ~ fiAk (xi). (4.24)
k=1 i=1

In Eq. 4.24, I is the number of different factors and K is the number of different

components within each factor. The terminology here is consistent with Schmidt's

nomenclature, so the "components" is not the same as the "principal components"

in PCA. The PCA "components" are somewhat like "factors" in the present usage.

Due to the abstraction of Eq. 4.24, I will explain the model instead using just two

factors, I = 2, K = 1, and assume that the total input x, is simply two input

parameters: x = {X 1, X2}. Expanding the model to more factors is straight forward

in theory, though book keeping is an important issue during implementation. The

FF-model is written simply then as,

y (x) -fA (X1) f2 (x2). (4.25)

A two-component version simply adds an additional product pair:

y (x) z fi,1 (X1) f2,1 (x2 ) + fl,2 (X 1) f2,2 (x2 ). (4.26)

Comparing the above equations shows that if the output actually is the product of

two separate functions of the two inputs, then Eq. 4.25 can reproduce the output

exactly (within the allowable noise). But, if the output is the result of a more

complex interaction of the inputs, then Eq. 4.25 is just an approximation, and

allowing additional components as in Eq. 4.26 can help reduce the error between the

output and the FF-model. Even though I have written Eqs. 4.25 and 4.26, where

each factor acts upon a different one of the two inputs, in general any combination

of the inputs can be used. Different factors can even act on the same set of inputs
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as in [33] to study the effects of non-stationarity in the inputs.

The training dataset will consist of, as mentioned previously, a set of case runs

where each case run has different set of values of the uncertain parameters. Choosing

those particular values is very important but will not be discussed right now. For

each case run, a specified number of control variable (which will usually be time) "lo-

cations" are chosen. The training output data, Y, is then a M x N matrix where M

is the number of points taken per case run (number of control variable locations) and

N is the number of case runs to make (the number of different uncertain parameter

values). In general the training input data will be denoted as X, which consists of

the input parameter values for each of the case runs. Following the running example

above of two factors, the input values consist of M separate locations of x1 and N

separate case runs of x 2. And thus the training input is X = {x1, x2} where x1 is a

M x 1 column vector and x2 is an N x 1 column vector. The entire training dataset

will be denoted as V = {X, Y}. The FF-model, then becomes the matrix product

of two vectors fi and f2 for the one-component model:

Y fi2I, (4.27)

where T denotes the transpose of the vector. For the more complicated two-component

model, the FF-model is the outer (tensor) product of matrices where each ma-

trix stores that factor's different components as column vectors: F1 = [fi 1, f 2 ],
F2 = [ 2 ,1,2]Tand the FF-model is:

Y T F1F . (4.28)

Each of the factorization functions then becomes a set of latent (hidden) variables
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that must be learned from the training dataset. Performing Bayesian inference on

the FF-model requires the specification of a likelihood function as well as priors

on each of the factorizing functions. For likelihood models, I stick with the simple

Gaussian likelihood between the FF-model output and the training data. But for

the priors, this is where the GP framework is used, and GP priors are placed on

each of the factorizing functions. I always use a specified zero mean function and

the SE covariance function in Eq. 4.3, where each input for that factor has its own

characteristic length scale. Denoting the covariance function as k (x, x') and the

hyperparameters as 0, the GP priors on each of the factors in the one-component

example are:

f (xi) ~ gP (0, k (xi, x') ; #1), f (X2) ~ gP(0, k (X2, X') ; 42). (4.29)

Writing the GP priors in vector notation requires applying each of the covariance

functions to their respective number of input pairs, giving the factor training covari-

ance matrices K1 (x1 , xi) and K2 (x2, x2). The vectorized GP priors are:

f, ~ 9P (0, K1 (xi, xi); 01) f2 ~P (0, K2 (x2 , x2) ; k2). (4.30)

With only 1-factor and 1-component the FFGP model reduces to the standard

GPR emulator. However, there are important differences between the underlying

assumptions of the two approaches. These differences are best highlighted when

comparing 4.30 to the standard GPR emulator formulation described earlier. In

standard GPR, the training covariance matrix consists of the covariance function

applied to every input in the entire training set. For this scenario the total number

of training points is NM, which means we will have to invert an NM x NM to make

117



predictions. But in the FFGP setup, the training covariance matrices are applied

only over their respective subsets of the total input space. Thus K1 is size M x M

and K2 is size N x N and so the FFGP model could offer substational computational

savings if there are a large number of training inputs (very large NM value) since

only two smaller matrices must be inverted to make predictions. For this reason the

FFGP model is similar to certain sparse GP model approximations [24].

The other important difference between the FFGP model and standard GPR

comes in how the training set is chosen. In standard GPR, ideally we want each

training input point to offer as much new information as possible. If several training

points all have the same value of x1 for example while x2 is varied, the standard

GPR model does not learn anything about the relationship between x1 and y (x)

from those points. That is why the concept of finding "space filling" designs for

the training set are so very important in standard GPR models. Using the current

nomenclature of case runs and control variable locations, the uncertain parameter

inputs are fixed during a case run, and thus the model should only be able to learn

about the control varibles. The model learns about the uncertain parameters from

the multitude of case runs that are used, but if the same control variable locations are

used for each case run, the control variable pattern is not learned between case runs.

However, in the FFGP or GPFA approach, learning a particular factor is maximized

when the inputs for the other factors are held constant and thus all the variation

is due to the change in that particular factor's input. So if x1 corresponds to the

control variable and x 2 corresponds to the uncertain parameter, a particular case run

maximizes the learning about the pattern of x1. This concept is better illustrated

by the manufactured solution example later on.

118



FFGP Probability Model

The main price to pay for the added flexibility of the FFGP model is that training the

emulator is far more computationally expensive than the standard GPR case. The

primary reason for that is because the latent variables, fi and f2, cannot be integrated

out analytically anymore. In the standard GPR model, with a Gaussian likelihood

relating the latent variables to the target outputs, the GP prior allows integrating

out the latent variables to yield a GP model for the outputs themselves. As shown

in the Empirical Bayes section earlier, the GPR latent variables,f, are integrated

out and all predictions are compared to y, the GPR training output variables. Now

though, that integration is no longer analytically possible. Schmidt uses MCMC to

sample the posterior distribution of the latent variables [25], though variational Bayes

(VB) [26], and Expectation Propagation (EP) [33] methods can also be used to turn

learning the latent variables into an optimization problem. For now, I have focused

on using MCMC to sample the posterior latent variables. MCMC gives arbitrary

accuracy in the limit of very long run times, and therefore in principle, can be used

as a baseline to compare the VB and EP results if they are used in the future.

Parameterizing the likelihood function with the log-noise, 2f = exp(2qn), the

full joint posterior between the latent variables and all the hyperparameters (for the

one-component model) is proportional to:

p (f1, f2 , 1 #2, knID) oc p (Ylf1, f2, n)p (fik|i)p (f2kk2)P (ki)p (42)p (4n). (4.31)

As in all Bayesian inference, the joint posterior is simply proportional to the like-

lihood function times the prior, where the prior in Eq. 4.31 is factorized as the

product of the GP priors for each factor and the priors on all of the hyperparameters

- known. as hyperpriors. The log-likelihood for the Gaussian likelihood function is
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proportional to:

1 2 NM
logp(Y~fi,f2 , On) oc 2 I - f-iF2 - 2 log o, (4.32)

where 11.112 denotes the Frobenius norm. The log of the GP priors is just as in the

case of standard GPR:

11
log p (f# 10i) oc - log KiI - - K7 fi, (4.33)2

where i = 1,2 for each of the two factors. Note that the prior formulation assumes

that the two factors are independent. One of the benefits of performing inference with

MCMC is that the no assumption in the posterior correlation structure is required.

Thus, if the training data warrants it, the two factors can be correlated in the

posterior.

Implementation Issues

Drawing samples from the full joint posterior poses significant challenges. First,

the latent variables within each factor are tightly correlated due to the GP priors.

Second, the hyperparameters complicate matters further because they specify the

covariance matrix for each GP prior, and are thus at a "higher" level from a hierar-

chical model point of view. Lastly, the likelihood function noise, On, will dictate how

well the FFGP model approximates the training data. When the noise level is large,

the training output can be explained for many different values of the latent variables

and covariance hyperparameters, which makes finding their posterior values difficult.

If the noise level is small, then the FFGP model would prefer to want to explain

the training output via the latent factors. Since we are using the FFGP model to
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approximate a complex, long running computer simlator, which generated the train-

ing data, we want very little noise between the training output and the emulator.

Even though this sounds like common sense it really helps the sampling of the latent

variables to start out with a small , value. An initial guess of 10-6 for a. is used

at the start of the FFGP emulator calibration.

The GPR emulator hyperprior specification was facilitated by scaling the training

output to a standard normal. But a simple output scaling of the FFGP training out-

put does not exist and so specifying the hyperpriors are also more difficult. Schmidt

used improper "flat" hyperpriors for all of the hyperparameters and so I used the

same approach. But the danger of using improper flat hyperpriors is that now the

covariance function length scale hyperparameters might "jump" to values that lead

to ill-conditioned covariance matrices even with a hard coded nugget value of 10-6.

The simplest solution to this problem was to treat the nugget as a hyperparame-

ter that must be learned from the training data as well. Each factor's covariance

function is then a modified SE covariance function:

k (x,, x.) = ai exp (- (x, - x)T M (X, - xq)) + (,aj, (4.34)

where SpN is 1 if p = q and 0 otherwise. Thus the nugget value, aj is added only to

the diagonal of the covariance matrix, as stated already. The matrix M is specified

the same way as for the standard GPR model where each input (for each factor)

has its own length scale value. The length scales are also reparameterized so that

1d,i = exp (kd,j). Each factor was allowed to use a different nugget value and both

were reparameterized in similar fashion to the likelihood noise reparameterization,

thus ajj = exp (20;,j) where the subscripts j, i referes to the i-th factor's nugget term.

The length scale and signal variance hyperparameters for each factor are defined as
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Oi = {[1,i, ... , OD,i] , Ofi} where D, i is the number of inputs for factor i. And

the two additional nugget hyperparameters are defined together as #2 = {0,1, 'j,2}-

With improper "flat" hyperpriors, p (#1) oc 1, p (#2) oc 1, p (%k) oc 1 and p (0,) oc 1,

the joint-posterior is simply given as:

P (fli, f2, 7#1, 02,7O 72 On I ) oc P (Y Ifli, f2, 7 n) P (fil 11, 2,1) P (f2|#2, Oj,2).- (4.35)

As stated in the GPR model setup, these hyperparameter reparameterizations

put all hyperparameters on the same order of magnitude, which I found makes spec-

ifying MCMC proposal distributions much easier. If the sampling needed to make

a proposal jump for of,4 and it was a really tiny value then the same proposal jump

of a length scale Id,i that was near a value of 5 would be basically meaningless.

But thanks to this reparameterization proposal jumps are easier to specify for all

hyperparameters simultaneously which speeds up the MCMC sampling.

With that said a check is still required to make sure the covariance matrices are

invertible. Following the GPML toolbox, I do not compute the covariance matrix

directly, but first compute the cholesky decomposition which is essentially the "ma-

trix square root" of the covariance matrix. For covariance matrix K the cholesky

decomposition is a lower triangular matrix defined as LLT = K (alternatively an

upper triangular matrix can be used for the cholesky decomposition but I use the

lower triangular format). The covariance matrix inverse is then computed using the

cholesky decomposition as

K- = LT \ (L \ I), (4.36)

where the "backslash" notation A \ b is the vector x that solves Ax = b. In

MATLAB the cholesky decomposition is computed simply with the function call:
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L=chol(K,'lower'). If K is ill-conditioned MATLAB will generate an error which

would kill the emulator calibration scheme. But if the cholesky decomposition is

computed using the function call: [L,pI=chol(K,'lower') in MATLAB even if Kis

ill-conditioned MATLAB will not generate an error. If K is positive definite (and

not thus not ill-conditioned) p=O and L is the cholesky decomposition defined as

LLT = K. If K however is not positive definite (and thus ill-conditioned) pL0 such

that the returned L matrix is the cholesky decomposition of a smaller subset of K

defined as LLT = K (1 : (p - 1),1 : (p - 1)). Thus during the MCMC sampling I use

a check where if the MATLAB computed p-value for either factor covariance matrix

is greater than zero those hyperparameter values are immediately rejected.

Another complication inherent to working with factor analysis models in general

is the problem of "unidentifiability" [8]. Unidentifiability is best explained through

an example. Consider the 2-factor 1-component model in Eq. 4.30; if the output y (x)

is positive, the latent factors can be either both positive or both negative. Their signs

do not actually matter as long as their product has the correct sign. Thus, there is

not a truly unique solution. Although unidentifiability does not impact the predictive

quality of the factor analysis model [8] many "tricks" exist to try and work around

it. I have chosen to not to try and specifically deal with this issue primarily because

I am using the FFGP model as a surrogate to the computer code, rather than trying

to use the FFGP to intepret something about the structure of the output.

Calibrating the Emulator with MCMC

To draw samples from the posterior, I break up the sampling into two steps follow-

ing Ch. 5 in [9] which samples the latent variables using Hamiltonian Monte Carlo

(HMC) with the hyperparameters fixed, then samples the hyperparameters with an-
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other scheme with the latent variables fixed. HMC makes use of gradient information

to suppress the randomness of the random-walk sampling behavior [34], [9] and is

very useful for sampling a large number of highly correlated variables, which is just

what the latent variables are. For the hyperparameters I use basic RWM sampling,

which although is the most basic MCMC algorithm, seems to work well in the exam-

ple problems I have worked with. All of the hyperparameters use the same proposal

jumping variance thanks to the reparameterizations described above. If the reparam-

eterizations were not used, different jumping variances would be required for each

hyperparameter type, which makes specifying the RWM scheme more challenging.

The RWM step is the slow step since the factor covariance matrices must be inverted

(using the cholesky decomposition as shown above). The HMC step is faster since

the covariance matrices are fixed and all computations are just matrix computations

in MATLAB.

This approach is "Gibbs-like" in that each step is only sampling part of the

total variable-space while the other part is fixed. In true Gibbs sampling the full-

conditional distribution can be written out analytically and so all proposals are

accepted [8]. Here though, the full-conditional distribution cannot be written out

analytically which is why an accept/reject step must still be used for each proposal.

Both steps evaulate the same expressions though because I assume improper "flat"

hyperpriors. If proper hyperpriors were used they would only be evaulated when

the hyperparameters are sampled. Following this, the "full-conditional-like" joint

posterior distribution evaulated when the latent variables are sampled is:

P (f"f2-coditio2alike oint p t(Ylfi, f2,rn)P(ftn ej,l)P (f22, t,2) (4.37)

The "full-conditional-like" joint posterior distribution evaulated when the hyperpa-
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rameteres are sampled is:

P (#1, 02, #j, On|'D fi, f2) Oc P (Y Ifl , f2, i n) P (fil 11, j,1) P (f2102, # O,2) . (4.38)

I found from experience that during the MCMC sampling when the latent vari-

ables are being sampled at very high mixing rates the hyperparameter mixing rate is

poor and vice versa. This does make some intuitive sense in that while the hyperpa-

rameters are "moving around" a single latent variable proposal might have a different

covariance matrix compared to the previous sample, which changes the log-GP prior

along with the change in latent variable values. Since a proposal is randomly accepted

if it does not increase the log-joint-posterior, a poor guess in the hyperparameters

would compound a poor guess in the latent variables or even a suppress a decent

guess in the latent variables leading to the proposal being rejected. But once "good"

hyperparameter values are found, the sampling becomes dominated by the latent

variable sampling due to the data-fit between the training output and the FF-model

likelihood. The latent variables then have very high mixing rates while the hyper-

parameters are "stuck" these "good" values. Thus, the hyperparameter sampling

essentially results in point estimates. Continuing to compute the factor covariance

matrix inverses is essentially a waste and is the results are almost an Empirical Bayes

type of approach where the latent variable samples depend on the hyperparameter

point estimates. For that reason I broke the FFGP training into two phases: the

latent burnin phase that samples both hyperparameters and latent variables and the

latent posterior phase where only the latent variables are sampled. Before the start

of the latent posterior phase, the hyperparameters are fixed a specified value which I

usually set as their mean values over the last half of the latent burnin phase (which

allows for a hyperparameter burnin during the latent burnin phase). Additionally I
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set the latent posterior phase initial values to the empirically estimated latent vari-

able means computed from the last half of the latent burnin samples. I refer to

this setup as the Empirical Bayes FFGP model, which has a very computationally

intensive training process since the hyperparameter point estimates are themselves

found from MCMC sampling.

Toy Problem

To verify the FFGP model construction was working properly a method of manu-

factured solution approach was used. Two covariance functions were specified by

specifying hyperparameter values. These covariance functions were used to create

the covariance matrix for two GPs, a random vector was drawn from each GP. These

vectors act as the latent functions in the FFGP model, f, and f2, and were then

vector multiplied together to create the training matrix Y = fif2. With 25 training

input points for each function, there are a total of 625 training data points. The true

functions are shown in Fig. 4-3 below and are very non-linear. The FFGP model

is constructed by trying to infer out the true latent function values at each of the

training input locations. The MCMC sampling used 5e4 latent burn-in samples and

10e4 latent posterior samples, using the MCMC procedure described above. The

training results are shown in Fig. 4-4 where the red are the true function values and

the blue lines are the posterior quantiles of the latent factors at each of the input

locations. This perfectly demonstrates the unidentifiability issue, with the latent

factors mirroring the true function values. The posterior quantiles are very tight,

representing that there is very little uncertainty in the posterior latent function dis-

tributions, which makes sense since by definition the training output is the vector

product of two functions.
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Figure 4-3: True Functions in the Toy Problem
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Figure 4-4: Posterior Latent Training Variable Quantiles
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Making Posterior Predictions

The FFGP posterior predictive distribution is far more complex than the GPR poste-

rior predictive distribution. In order to make a prediction with the FF-model itself,

the predictions in the latent space must first be known. Thanks to the GP prior

placed on each of the factors (and potentially each of the components within each

factor), predictions within the latent space follow the standard GPR theory [25]. All

component latent variables within a particular factor will be stacked together into

a single stacked-vector notation: f2 = [fi,..., fK]T . Each of the factor stacked-

vectors are then stacked again into a "super" stacked vector consisting of all latent

variables in the FF-model: i = [ft, ... , f]T . Since I have exclusively used only two

factors in this work, relating the factor stacked-vectors to the factor matrices in Eq.

4.28 requires stacking the columns within each matrix on top of each other. A typical

notation for that operation is f1 = vec (F1) and t2 = vec (F2). All of the following

assumes I am using the Empirical Bayes FFGP model where all the hyperparameter

point estimates are denoted as E. The GP prior on the super-stacked FF-model

latent variables with two factors is:

A 0 K, 0
f ~ J , ; ,(4.39)

0 0 K2 6

where Ki is the block-factor training covariance matrix for factor i. Each sub-block

within KN is the covariance matrix for each component within factor i. For simplicity

I assume each component within a particular factor has the same covariance function

(and therefore covariance matrix). In general this does not have to be the case, but

the number of hyperparameters would increase considerably if each component had

its own covariance function and set of hyperparameters. The block-factor training
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covariance matrix in a 2-component model with each component having the same

covariance matrix is then just:

(4.40)

Defining the super-block training covariance matrix as Kf Eq. 4.39 can be rewritten

as)

Arv (0, ^f; - (4.41)

The super-stacked latent variable prediction prior is also just a GP prior just like Eq.

4.41, f. ~-. (0, K.; N), where the subscript ** denotes the super-block prediction

points self-covariance matrix. The term self-covariance means the covariance matrix

is betweenjust the prediction points themselves. This is an important distinction

since in order to make predictions the cross-covariance between the training points

and the predictions must be computed and will be denoted in super-block form

as Kf,.. The joint prior between the super-stacked training and prediction latent

variables is:
f ~ 0 Kf Kf,*

~V 7 (4.42)
f 10 Kf* KJJ

The super-stacked joint prior in Eq. 4.42 is conceptually identical to the standard

GP joint prior in Eq. ??. The only differences are in the construction of the super-

block covariance matrices but the predictions can be conditioned on the training

variables in exactly the same way using standard MVN theory. The super-stacked

latent variable posterior predictive (conditional) distribution is then:

(4.43)
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where the posterior predictive (conditional) mean is:

Ef,* .f = , (4.44)

and the posterior predictive (conditional) covariance matrix is:

cov (f*If, K) = - , K,.. (4.45)

The term I put in parantheses - conditional - is actually very important here,

because even though the standard GPR posterior predictive distribution was also

a conditional distribution it was conditioned on the training output directly. The

above posterior predictive conditional distribution is not conditioned on the training

output, but rather the training latent variables. Thus to get the posterior predic-

tions conditions only the training dataset rather than the training latent variables,

the training latent variables must be integrated out. But we do not know the train-

ing latent variables own conditional distribution on the training dataset analytically.

The FFGP emulator MCMC calibration summarizes the training latent variable pos-

terior distributions as a large number of samples, so I empirically estimate the means

and covariance matrix from those samples. Thus the true end result of the Empirical

Bayes FFGP emulator calibration process is the latent variable empirically estimated

means and covariance matrix. Due to the GP prior, the latent variables are biased to

be Gaussian, but their posterior distributions are not necessarily Gaussian. From ex-

amining results from multiple problems used in this work, many of the training latent

variables have nearly Gaussian posterior distributions. But a substantial fraction can

also be very non-Gaussian with multi-modal posterior distributions. The Gaussian

approximation therefore over estimates the variance of some latent variables.
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The predictive distribution will also be approximated as a Gaussian with the

posterior predictive distribution estimated using the Law of Total Expectation [8]:

E ['Dv f = J flf ) (fI, E) df. (4.46)

Substituting in Eq. 4.44 gives:

E [f.i,)E] = K i fJp f ,) df. (4.47)

The part of the expression within the integral is simply the mean of the super-stacked

training latent variables. Thus, the posterior predictive super-stacked latent variable

means is:

E [f.iV J ] K= N fN1E [li, 1 ]. (4.48)

The Law of Total Covariance is used to estimate the posterior predictive covari-

ance of the super-stacked latent variables. In words the Law of Total Covariance

sums up the mean of the predictive conditional covariance with the covariance of the

predictive conditional means, which is given as:

coV ( f?-i,) = E [cov (.| --2,) )]+ cov (E [f.f, D,). (4.49)

Plugging in Eqs. 4.44 and 4.45 into the Law of Total Covariance and re-arranging

the terms yields:

iv | K) = .- I icov IfjD, E) Kf K . (4.50)

Equations 4.48 and 4.50 are the approximate posterior predictive (super-stacked)
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latent variable mean and covariance matrix. They are approximations because the

training latent variable posterior distribution was approximated by a Gaussian with

empirically estimated means and covariance matrix from the emulator calibration

samples.

With the latent variable predictions known, now the FF-model predictions can

be estimated. The FF-model predictive distribution is approximated as a Gaussian

so the mean and variance for each predictive point is computed. To be consistent

with the original FF-model setup, the super-stacked predictive latent variables are

reorganized back into matrix form by first splitting up the super-stacked vector into

]Tthe two factor vectors, f* [fi' f2]T then by reshaping the stacked-factor vectors

into matrices, F1. = vec-1 ( 1 ) and F2. = vec- (f2 . The estimated FF-model

predictive means are stored in an M* x NM matrix denoted as H., where M. is the

number of predictive control variable locations we wish to make and N. is the number

of cases we are making predictions at. In general, the FFGP emulator can therefore

make a predictions at a large number of case runs all at once, which is something

a computer code cannot do unless multiple instances are run simultaneously. But

for the uncertain parameter calibration process we will only be making predictions

at one case run at a time since each MCMC iteration gives one proposal for each

uncertain parameter value. But to keep things general, the expressions will focus

on the predictive FF-model distribution at the (m.,n.)-th predictive point where

m. = 1,..., M. and n = 1,... , N.. The main reason I am switching from matrix

notation to a single point notation is because it makes the math easier to write out.

The FF-model approximate predictive mean requires computing the expectation
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of the product of the two latent variable factors,

K

E [H. (m., n.)] = E [F1. (m., k) F2, (n., k)]. (4.51)
k=1

The k-th component in the summation in Eq. 4.51 is simply the standard result for

the product of two correlated random variables:

E [F1 . (m., k) F2. (n., k)] = E [F1 . (m., k)]E [F2* (n*, k)] (4.52)

+cov (F1 . (m., k) , F2 , (n., k)).

The FF-model approximate predictive variance is:

var (H. (m., n.)) = var {{F1 (m., k) F2, (n., k)} + on, (4.53)
k=1

which is the variance of the summation of products of random variables (where again

the summation is over the number of components used in the FF-model) along with

the FF-model likelihood noise added in. Writing out the expression completely gives:

K

var (H. (m., n.)) = or + var (F1. (m., k) F2 , (n., k)) ...
k=1 (4.54)

... + 2Z cov (F1 . (m., k)F2* (n., k),F1 . (m., k') F2* (n., k')).
1<k <k'<K

The predictive covariance structure required in Eqs. 4.51 and 4.54 is quite com-

plex and adds considerable computational time compared to assuming the predictive

factors are indepedent. But, neglecting the latent predictive covariance structure can

significantly over-estimate the FF-model predictive variance.
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4.3.2 FFGP Emulator-based Uncertain Parameter Calibra-

tion

With the FFGP emulator posterior predictive distribution approximated as a Gaus-

sian distribution a modified likelihood can be formulated similarily to the GPR-

modified likelihood function described in Section 4.2.3. The main difference between

the GPR-modified and the approximate FFGP-modified likelihood of course is the

FFGP emulator is acting as the likelihood model between the observational data

and the uncertain parameters, 0. I always use factor 1 as the control variable factor

and factor 2 as the uncertain parameter factor. As stated earlier only a single case

run is being predicted at each MCMC iteration, so N. = 1. The number of control

variable predictions must at least equal the number of observational points. More

control variable locations can be predicted if desired, but then the predictions that

correspond to the appropriate control variable locations must be properly separated.

For convenience for now, assume M. = No. The FFGP emulator predictions are

then a vector of size (No x 1).

The joint-posterior distribution between the emulator predictions, H., and un-

certain parameters, 0 is:

p (H* 1,y , ) oc p (y.IH.)p (HI {x,,,0,}, ,E) p (0). (4.55)

Just as in Section 4.2.3 the likelihood model between the observational data and pre-

dictions is assumed to be Gaussian with a known observational error matrix E = oeI.

Integrating out the predictions gives the uncertain parameter posterior distribution
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which looks very similar in form to 4.23:

p vyo, Oc p (YOI {xcVo, } , ) p (9). (4.56)

The FFGP-modified likelihood factorizes for simplicity each of the observational

points:
No

O (I{c ,}, v, = p (yoi {xco,,, V} , ), (4.57)

where for each observational location the FFGP-modified likelihood is:

No

P (Ol {xC,o,l, } , M) JI (E [H* (1)], var (H. (1)) + of). (4.58)
1=1

4.4 Calibration Demonstration

In order to truly know if the surrogate model approach is working, the surrogate mod-

els must be able to replicate the uncertain parameter posterior distributions resulting

from Bayesian model calibration. If they are able to that means they accurately cap-

ture the potentially complicated input/output relationship of the computer model,

and replicates the amount of new information gained by conditioning against observa-

tional data. Chapter 2 used a simple friction factor model to demonstrate Bayesian

inference with MCMC. That same model will be used here as the "long-running"

computer code we wish to emulate, but since it is not in fact computationally ex-

pensive the surrogate model results will be compared directly to the inference results

found using the simulator in the MCMC sampling. This also demonstrates the steps

involved in a real problem where the computer code is in fact too long to run to use

in MCMC inference. These steps are:
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" From the uncertain parameter prior distributions, choose bounding values on

each of the uncertain parameters

" Generate "space-filling" training input values (I use the built in MATLAB

function lhsdesign.m)

* Generate the training output by running the computer code at each of the

training input points

" Build the emulator(s)

* Calibrate the uncertain parameters using MCMC inference with the emulator

in place of the computer code

The simple friction factor model is repeated here for convenience, but it is important

to not confuse the friction factor f with the latent variable notation:

f = exp(b)Re-exP(c)*. (4.59)

The following discussion will also focus on why additional components in the FFGP

model can improve performance, since the previous section only demonstrated a 2-

factor 1-component model. The same method of manufactured solution approach

is used where the "observational data" is generated using preset true values of the

uncertain parameters. But now there is the additional layer of the emulator that

must figure out those true uncertain parameters, not simply the computer model

itself.
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4.4.1 One Uncertain Parameter FFGP model

To start out, only the b-parameter is considered uncertain, which means the simulator

is itself the product of two separate functions, one for the control variable and one

for the uncertain parameter. These two functions are simply:

f = g(b)g(Re), g(b) = exp(b), g(Re) = Re-*(. (4.60)

The one-component FFGP model should then be able to exactly model this simulator,

within the desired noise level. Fig. 4-5below shows the training dataset along with

the observational data used in this problem. The training data is in blue and consists

of 15 case runs and 10 control variable locations chosen per case run (N = 15 and

M = 10 using the notation from earlier). The observational data is shown as the red

errorbars, where the errorbars correspond to 2a around the observational mean.

The observational error was assumed to be 10% of the mean value of the friction

factor. Note that the input in Fig. 4-5 is scaled between 0 and 1. I found that using

that scaling of the input helps and gives better results than using the raw input

ranges themselves. The raw Re number values range from 5000 to 45000, where

the scaled 0 value corresponds to the raw value of 5000. The output however is not

scaled and is shown at its actual raw values.
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Figure 4-5: One Uncertain Parameter Training and Observational Data

The observational data shows that the true value of the b-parameter falls between

two of the training case runs. Even with only one uncertain parameter, there are

actually two inputs: Re and the b-parameter. If the standard GPR model was built,

a space filling design would have to be used, such as Latin Hypercube Sampling

(LHS) to generate input values that covers the input space, to try and maximize the

information gained from each training point. But as discussed earlier, maximizing

the information gained for each factor corresponds to holding the other factor's input

constant and so it is very simple to choose training input values here. With only one

input per factor, the "space filling" design is simply choosing equally spaced points

in each input direction.

Emulator calibration is performed as described previously using HMC to sam-
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ple the latent variables and RWM to sample the hyperparameters. The posterior

results of the observation space training points are shown in Fig. 4-6 below. The

red dots are the actual training output and although it is difficult to see, but the

blue lines are the posterior quantiles on the emulator predictions at those training

points. The quantiles are the 5 th, 2 5t", 5 0 '4, 7 5th, and 95th-percent quantiles and

are just very tighlty packed together representing how little uncertainty exists in the

posterior predictions. Again this has to do with the FFGP model capable of exactly

representing the simulator in this case.

FFGP model Training Quantiles
0.2 -

0. 18'-

0.16(

0.04

0.02
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaled Re

Figure 4-6: Posterior Observational Space Training Points

The calibrated emulator is then used in place of the simulator to calibrate the

uncertain b-parameter. The b-parameter prior is assumed Gaussian with a mean

value set at the McAdam's friction factor correlation value, log(O.184) and a variance
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set so that the 95% of the prior probability is 50% around the prior mean. Scaling

the b-parameter between 0 and 1 means that the prior mean is simply 0.5 and the

prior standard deviation is 0.25. Posterior samples are drawn using RWM sampling

due to the simplicity of this problem and the posterior samples are shown in Fig.

4-7. The red line is the true scaled value and as shown in the figure, the sampling

quickly finds the true value and exhibits very well mixed behavior. Fig. 4-8 shows

the estimated density of the posterior distribution in blue, the prior distribution in

black, and the true value as the vertical red line. This shows how precise the posterior

distribution on the b-parameter is.

0.85

0.7

0.65

0.5'
0

Scaled Uncertain Parameter Histories

I 1I.L .1 1

I'r -r 'q " HI' l'I I

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X 104

Figure 4-7: Scaled Uncertain Parameter Sample Histories

141

0.8 -

0.75 -

0.6 -

0.55 -

i I I I I I I I



scaled b-parameter prior and posterior densities
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Figure 4-8: Estimated Scaled Posterior and Prior Densities

As already described, it was expected that for this simple demonstration the

FFGP-model should perform very well. But it confirms that the FFGP model is at

least working as expected.

4.4.2 Two Uncertain Parameters FFGP model

Next, both the b and c-parameters are assumed uncertain. Sticking with a two-factor

model means that the uncertain parameter factor is now a very complicated function

and the FFGP-model assumption is no longer exactly correct. It is easy to see why

this should be difficult for the two-factor one-component model, since one of the

factors is now written as the latent function g (b, c) which cannot be written down
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explicitely. A three-factor model could be used, but since the "book keeping" for

that setup is more complicated I've stuck to the two-factor model approach and will

add flexibility by adding additional components. The downside of doing this though

is the training set for the uncertain parameters' factor must now be "space filling". I

use latin hypercube sampling (LHS) to generate the uncertain parameter values with

a built in MATLAB LHS function, lhsdesign.m. This function is not guaranteed to

give the optimal training dataset and in fact the values it finds are usually very

different when running it multiple times. Finding better points would improve the

predictive capability, but for now this LHS procedure will be used.

The LHS generated training dataset is shown in Fig. 4-9 along with the obser-

vational data as red error bars as before. Fifty case runs were made and twenty

five points were taken per case, giving N = 50 and M = 25. Using more case

helped guarantee the training dataset would "surround" or cover the observational

data. Additionally, for comparison purposes I built a standard GPR emulator of the

friction factor model, which as previously discussed has a different input structure

than the FFGP emulator. The general rule of them thumb for standard GPR emu-

lator training set sizes is to use 10 training points for input [13]. With 2 uncertain

parameters and 1 control variable, 30 training points should be enough but just to

be on the safe side I increased that number to 50 training points. The GPR and

FFGP training sets have the same case runs, but as shown by Fig. 4-9, the GPR

training set takes only one point per case run while the FFGP emulator uses all 25

control variable locations. This illustrates how the FFGP emulator decomposes, or

literally factorizes, the training set into smaller subsets. The FFGP emulator uses a

total of NM = 1250 training points but each factor has covariance matrices of sizes

(M x M) = (25 x 25) for factor 1 and (N x N) = (50 x 50) for factor 2. If every

training point was also used for the GPR emulator then the covariance matrix would
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be size (NM x NM) = (1250 x 1250). The FFGP emulator setup therefore can

drastically reduce the computational burden and facilitate using as many training

points as possible.

The other important point to take away from Fig. 4-9 is that choosing the

training set is easier for the FFGP emulator than the GPR emulator. The true

uncertain parameter values were set so that the observational data would not be

near the cluster of training points. And as shown in Fig. 4-9 there are very few

GPR training points near the observational data. Even though the FFGP training

set uses the exact same case runs, since more control variable locations can be taken

per case run, more information is learned from each case run. In general the training

datasets shown in Fig. 4-9 are quite poor in the context of using the emulators

for uncertain parameter calibration. Only a few case runs even lie within the error

bars of the data. This suggests the prior bounds on the uncertain parameters which

built the training set were very poor. And since this is a simple model with only

2 uncertain parameters it would be relatively easy to change the prior bounds to

better surround the observational data. But, in a real problem with many uncertain

parameters that interact in very complicated ways to produce the output modifying

constantly rebuilding the training set would not only be difficult but potentially very

time consuming. That is why this demonstration problem was purposely setup this

way. It is more representative of the sometimes difficult task of building a training set

from prior information and the goal is to show if the emulators can nearly reproduce

the uncertain parameter calibration results if the simulator was used directly.

The emulators were built using the algorithms described previously. Unfortu-

nately due to the different output scaling between the GPR emulator and FFGP

emulator formulations it is difficult to compare the performance of the two emu-

lator types after training is complete. But a simple way to compare the FFGP

144



dctin anig Datstnd Observationaa

FFGP Traihing Set
0.16 0 GPfTrainingSct

Observationa Data

012401

02 A 04 10 oa 12
scaled Re-

Figure 4-9: Two Uncertain Parameters Training And Observational Data
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emulator training results between different components is through the likelihood

noise hyperparameter, 0,,. The more negative 0, is the smaller the likelihood noise

since a, = exp(24,). Figures 4-10 and 4-11 below show the FFGP likelihood noise

hyperparameter training results for the 1-component and 2-component emulators,

respectively. In each figure, the grey line is the initial guess, the blue line shows the

samples and the red line shows the point estimate. It is very clear the 2-component

FFGP emulator is far more accurate relative to the training set than the 1-component

FFGP emulator. The #, point estimate for the 1-component emulator gives a like-

lihood noise term that has a standard deviation over 45x that of the 2-component

emulator. This illustrates the point how the 2-factor 1-component F FGP emulator is

no longer an exact assumption of the simulator model and thus the additional com-

ponent in the 2-factor 2-component emulator provides the extra flexibility needed to

match the training set more accurately. The other point to take away from Figs.

4-10 and 4-11 is how once the 0, values reach a "steady" point the sampling rate

drastically drops off. This is why the Empirical Bayes approach was used for the

FFGP emulator training process.

With the FFGP emulators built they are used to calibrate the uncertain param-

eters using the FFGP-modified likelihood format described earlier. The uncertain

parameters were sampled using the AM MCMC algorithm discussed in Chapter 2.

A total of 10 samples were made with the first half discarded as burn-in. The

calibrated posterior predictions for the 1-component and 2-component emulators are

shown in Figs. 4-12 and 4-13, respectively. In both figures, the blue lines are the pos-

terior quantiles of the predictive means and although difficult to see the black line is

the mean of the predictive means. The green band is the total predictive uncertainty

band of the emulator, spanning 95% of the emulator prediction probability and is

2a- around the mean of the predictive means. The blue lines therefore represent
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what the emulator feels the simulator uncertainty would be due to the propagating

the uncertain parameter posterior distributions onto the simulator output. The green

band includes the emulator predictive variance, and thus includes how uncertain the

emulator is about a prediction. The closer the edge of the green band is to the blue

lines means, the more certain the emulator is about its predictions. The 2-component

emulator is not just far more accurate relative to the observational data than the

1-component but it is also more certain in its predictions. As shown in Fig. 4-13

the green band is very close to the spread in the blue lines, and those the emulator

adds very little additional uncertainty to the predictions. The 1-component emulator

however adds more uncertainty to its predictions, in addition to the fact it does not

represent the trend in the observational data.

The uncertain parameters were also calibrated with the built GPR emulator

using the GPR-modified likelihood format described earlier. The same number of

samples were used in the AM MCMC algorithm. The GPR emulator calibrated

posterior predictions are shown in Fig. 4-14, using the same format as the FFGP

predictions. The GPR emulator adds less uncertainty to the predictions than the

1-component FFGP emulator but is more uncertain and less accurate relative to the

data than the 2-component FFGP emulator. The predictions over the first half of

the (scaled) Reynolds numbers are very accurate and are similar to the 2-component

FFGP emulator predictions. But the later half of the (scaled) Reynolds number

predictions, no longer have the mean prediction match the observational data and

the GPR emulator predictive variance increases slightly. A better training dataset

would most likely correct these inaccuracies in the GPR emulator predictions, but

the fact the FFGP emulator was able to out perform the GPR emulator with this

training set was encouraging.

But the real goal of using the FFGP emulators is to have a surrogate that can
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replace the simulator as accurately as possible in the uncertain parameter calibra-

tion process. Since the simulator in this demonstration problem, the friction factor

model, is so computationally cheap we can use it in the AM MCMC sampling di-

rectly. The simulator based calibration results represent the best we could do and

we want to be as close to these results as possible. Figures 4-15, 4-16, and 4-17

show the emulator based uncertain parameter posterior distributions compared to

the simulator based results for the GPR, 1-component FFGP, 2-component FFGP,

respectively. In each plot, the black curve is the prior distribution on the scaled

parameter, where the scaled prior mean is 0.5 and has a scaled standard deviation of

0.25. The blue curve is the emulator based posterior distribution, the green curve is

the simulator based posterior distribution, and the red vertical line is the true scaled

parameter value. The simulator based posterior distribution are capable of finding

the true parameter values quite well, with the posterior distribution modes almost

directly at the true parameter values. If the observational error was assumed smaller

then the posterior variance would be reduced. Although the GPR emulator is capa-

ble of finding the correct posterior modes the overall posterior distributions do not

match the simulator based posterior distributions. Odd smaller second modes are

present in both parameters. Most likely, these secondary modes are due to proposal

values outside the training set, which would have significantly highly GPR emulator

predictive uncertainty. With the GPR-modified likelihood structure a higher emu-

lator predictive uncertainty effectively increases the overall noise. With more of the

data variation explained by noise the parameters can take on values they would not

normally be, since from the emulator's point of view the noisy prediction "overlaps"

with the data's own error. The 1-component FFGP emulator based results also sup-

port this view, since the posterior distributions in Fig. 4-16 are still quite broad.

The emulator is capable of shifting the posterior distributions in the right direction
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but the additional emulator uncertainty prevents the MCMC sampling from resolv-

ing any additional information about the uncertain parameters. The 2-component

FFGP emulator, however, is so accurate relative to the simulator that its uncertain

parameter posterior distributions are almost identical to the simulator's uncertain

parameter posterior distributions, as shown in Fig. 4-17. In more complex problems,

we cannot expect the FFGP based results to always be as accurate as in this simple

demonstration problem. However the FFGP emulator-based calibration is capable

of matching the simulator-based calibration results as shown here. In more complex,

and realistic problems however, we will not have the simulator-based results to com-

pare with because the simulator will be just too slow to use. So it was important

to verify through this method of manufactured solution problem that the FFGP

emulator works as we expect it to.
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Figure 4-16: 1-component FFGP-based uncertain parameter posterior distributions
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Chapter 5

Blowdown Problem Demonstration

The QPIRT + emulator-based approach to performing Bayesian model calibration

will be demonstrated on a conceptually simple gas blowdown model. The long-

running computer code in this case is a numerical solver of a gas blowdown transient

which models a benchmark blowdown experiment of a vertical cylindrical vessel filled

with nitrogen, performed at London's Imperial College [35]. This problem was also

analyzed by Petruzzi et al. (2010) [36] as a demonstration of a data assimilation

method for model calibration. Their approach, however, relies on the computation

of local sensitives in order to identify important parameters as well as to propagate

parameter uncertainty onto the figure of merit (FOM), developed by Cacuci [37].

Petruzzi and Cacuci's work provides a useful comparison for the results of the cur-

rent approach, but their approach requires the first derivatives to be computed along

side the computer model prediction. For complicated non-linear thermal hydraulic

codes that we are ultimately interested in, setting up those computations in gen-

eral may be very difficult, though adjoint methods [38] or automatic differentiation

techniques [15] could be applied. Also, if the first derivatives are known, they can
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be incorporated into the emulator framework to improve the emulator predictive ac-

curacy by conditioning not only on the known output, but on the known gradient

information as well [15], [391. The gradient provides even more information about the

relationship between the inputs and the outputs and therefore would only improve

the emulator-based approach.

The QPIRT + emulator-based calibration approach has the following steps: First

start out with the original computer model at the nominal parameter settings. These

nominal values will most likely be set by expert opinion. The QPIRT process from

Chapter 3 is applied in order to identify the key physical phenomena that dominate

the FOM response. From there, the uncertain parameters within the various models

of those key physical processes are identified in the QPIRT Bottom-Up step. Using

the prior distributions on the uncertain parameters, which are most likely set by

expert opinion, the original computer model (the simulator) is re-run a specified

number of times to generate the training output data. The prior distributions set the

maximum and minimum value bounds on the uncertain parameters when using space

filling designs such as Latin Hypercube Sampling (LHS). Alternatively, the prior

distributions could be used to bias the training input values so that they are clustered

around certain values. In either case, the priors are what set the training input values.

The training data set is then used to build the desired number of emulators, which as

shown in Chapter 4 can range in levels of complexity. Following this, the uncertain

parameters are calibrated using the MCMC techniques described in Chapter 2. The

experimental data is required at this step. The GPR and FFGP-modified likelihodo

functions described in Chapter 4 are used in place of the simulator-based likelihood

function in Chapter 2. The emulator contributed additional uncertainty is therefore

completely accounted for. If multiple emulators are built, the calibration process can

be run in parallel for each emulator type.
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With multiple types of emulators, Bayesian Model Selection would identify the

emulator that best explains the training data, by fulfilling Bayesian Occam's razor [8].

Occam's razor states that the simplest answer is usually the best and how it applies

to model selection will be described later on. But for now, multiple emulators are

used to compare the performance of the standard GPR model to the various FFGP

levels of complexity, and the "best" emulator will not be quantitatively identified.

The current approach builds an emulator and then fixes that emulator when cal-

ibrating the uncertain parameters. Thus, there are two calibration steps: emulator

calibration (which builds the emulator) followed by emulator-based calibration of

the uncertain parameters. Alternatively, the emulator could be calibrated simulta-

neously with the uncertain parameters [28], [29]. Ultimately, both approaches create

an emulator-modified likelihood function. As shown in Chapter 4, the current work's

emulator-modified likelihood functions use the emulator posterior predictive distri-

butions. Whereas, the approach in References [281, [29], used emulator-modified

likelihood functions formulated around the emulator prior predictive functions. The

alternative approach therefore makes posterior predictions conditioned on both the

training data and the observational data simultaneously. In some sense the alter-

native approach is more of a data or information "fusion" method [29] rather than

a calibration focused approach. Figures 5-1 and 5-2 provide flow charts of the two

approaches. The downside of the alternative approach though is that the emulator is

not built until after the entire uncertain parameter calibration process is complete.

Thus, if multiple levels of data, such as Integral and Separate Effect Tests (IETs and

SETs), are present, the emulators for all of the IET and SETs must be calibrated si-

multaneously. As will be shown in Chapter 6, IET and SET simultaneous calibration

with already built emulators (following the current approach) is challenging enough.

Including the various hyperparameters from multiple emulators with the uncertain
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parameters in the calibration process would only complicate the MCMC sampling

further. Choosing an appropriate MCMC scheme would be very challenging and

sampling would be very slow. That is why the alternative approach was not used in

favor the current work's emulator-based calibration process.
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Figure 5-1: Current emulator-based calibration approach flow chart
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Figure 5-2: Alternative data fusion flow chart

The remaining sections of this Chapter are as follows: Section 5.1 describes the

blowdown model and Section 5.2 describes the numerical solver used in [36], Section

5.3 describes how the QPIRT process is applied to that blowdown model, Section

5.4 then discusses the nominal results and the QPIRT findings. The emulator-based
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calibration results are then described in Section 5.5.

5.1 Blowdown Model

The following notation is consistent with [36] and is therefore a break from some

of the notation used previously. An illustration of the blowdown tank is given in

Fig. 5-3 below. The tank is a cylindrical gas pressure vessel, of known dimensions,

filled with high pressure nitrogen. Initially the tank is at the same temperature as

the ambient air, outside the tank. So initially there is no heat transfer between gas,

pressure vessel walls, and the ambient air. A nozzle of known flow area has a valve

that is opened to start the gas blowdown. Table 5.1 gives the values for all the

variables in the blowdown model. The gas tank dimensions, boundary and initial

conditions, as well as the nominal uncertain parameter values are shown. The terms

in Table 5.1 will be described in more detail in the sections that follow.
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T able 5.1: N om inal P aram eter V alues T _ V alue_ U nit
Component I Description Symbol Value Unit

Vessel Height H 152.4 cm

Internal diameter D 27.3 cm

Wall thickness S 2.5 cm

Thermal conductivity kw 14.42 ;

Thermal diffusivity a, 4.5 x 10-6 m2

Volume V 89207.25 cm3

Vessel surface area As 14839.83 cm2

Break orifice Equivalent area A 0.31669 cm2

Discharge coefficient Cd 0.8

Nitogren (gas) Specific gas constant R 296.79 k9 _
c, to c,, ratio 7 1.399

Air Pressure PA 1.01 bar

Temperature TA 290.0 K

Initial conditions Gas pressure P 150.0 bar

Gas temperature TO = TA 290.0 K

Vessel wall temperature T.(x, t = 0) = To 290.0 K

Correlations Laminar - constant a 0.555

Laminar - exponent b 1/4

Turbulent- constant c 0.130

Turbulent - exponent d 1/3

Numerical timestep At 0.1 s

Mesh size Ax 0.25 cm
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5.1.1 Governing Equations

The governing equations of interest are a mass and energy balance along with a rigid

volume constraint:
d M-- - (5.1)dt

T (Me) = -6hohou + q As, (5.2)
dt

-- = 0 = d (MV). (5.3)
dt dt

where:M is the gas mass, fnot is the mass flow rate out the break, e is the gas

specific internal energy, h is the gas specific enthalpy with the subscript out denoting

the enthalpy at the break location, qj is the heat flux through the internal walls of

the vessel, As is the vessel internal surface area, and V is the vessel internal volume

while v is the gas specific volume. The governing equations assume a lumped average

response of the gas within the tank. The lumped energy balance equation, in Eq.

5.2, neglects the kinetic and potential energy terms of the lumped average gas within

the tank. The energy balance is therefore simply between the energy lost out the

valve (the break location) aln addition to the governing equations, the following state

relationships are required:

Pv = RT, (5.4)

e = cT h = cT. (5.5)

Above, R is the specific gas constant, which is related to the specific heats by:

R = c, - c,. Equations 5.1-5.5 can be re-written in terms of the two gas state
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variables, the pressure P (t) and temperature T (t):

(5.6)

(5.7)

dP 1 (,y - 1) Qj"As - yrh,,.Rt1.]

dT~~ [- Q"AsT rhoutRT2
Tt -P .

In Eq. 5.6 and 5.7 -y is the ratio of the specific heats -y = v/c,, for the gas.

The temperature distribution through the vessel wall,T. (x, t), is given by the

transient heat conduction equation:

T (x,t)
82

= awZTW (x,t). (5.8)

5.1.2 Boundary and Initial Conditions

The vessel internal, x = 0, and external wall, x = S, boundary conditions (BCs) are:

-k - - hN (T - Tw,I ) = q;.
xJ c=O

[kw - hA TA - Tw,E) = qE.
ax XT S

(5.9)

(5.10)

Note that hN and hA denote the heat transfer coefficients between the vessel wall

and the internal gas (nitrogen) and external air, respectively.

The initial conditions for the gas pressure and temperature are:

P(t =0) = P T (t =0) = To.
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The initial temperature distribution through the vessel wall is:

T (xt = 0) = To, 0 < x < S.

The air outside the vessel is held at a fixed pressure and temperature throughout the

transient:

Pair (t) = PA Tair (t) =TA.

5.1.3 Breakflow

The mass flow rate out the break, Tout = rnbreak, is determined by the following

correlation:

mhow (P, T) =Inchoc (P, T) ~r2 r ,

r (P) < r.

rc < r(P) < 1 (5.11)

0, r(P) > 1

In Eq. 5.11 r (P) is the ratio of the air pressure to the internal gas (nitrogen) pressure:

r(P) = P
P (t)

The critical pressure ratio, re, at which choked flow starts, for an ideal gas is set by

y and is given by:
PC 

P (t)

with the critical pressure value given as:

PC = P (t)

( 2 '-7 +1
(5.12)

(5.13)
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Including an orifice discharge coefficient, Cd, the choked mass flow rate for an

ideal gas is given by:

p (, )2 2\* -
Thchoke (PT ) = CdA ( )t (5.14)

5.1.4 Heat Transfer Coefficients

The heat transfer coefficients, hN and hA are consider only the heat transfer through

natural convection between the gas and the vessel wall. The correlation is then based

on the product of the Grashof (Gr) and Prandtl (Pr) numbers. The Grashof number

is:

GrN NH =3 (T(=)T). (5.15)
AN

The Grashof number is defined between the gas temperature, T, and the vessel inner

wall temperature T(x = 0). The Prandtl number is:

rN = -NAN. (5.16)
kN

The heat transfer coefficient for the internal vessel wall is given by:

kNNUN
hN= (5.17)

where H denotes the vessel height. The correlation for the Nusselt number (Nu)

depends on whether the flow is laminar or turbulent and is given by:

NUN f a [GrNPrN b, GrNPrN 109(
c [GrNPrN d , GrNPrN > 10(
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The heat transfer coefficient for the vessel external wall, hA is determined similarly.

5.1.5 Physical Properties

To be consistent with Petruzzi's solution procedure, look-up tables were created for

the gas properties of nitrogen and air. The nitrogen property look-up table using

double linear interpolation of the gas temperature and pressure while the air prop-

erty look-up table only uses linear interpolation of the air temperature, since the

outside air pressure is assumed to be roughly constant for this problem. The tem-

perature values actually used in the look-up tables though are the average between

the respective gas temperature and the wall temperature in contact with that gas.

The gas properties in the look-up table are: the gas density pi, the viscosity Pi, the

thermal conductivity ki, the specific heat c,,, and the thermal expansion coefficient

flu, where the subscript i is either N or A.

The required vessel physical properties, the thermal conductivity k, and thermal

diffusivity a,, are assumed to be constant with respect to the vessel wall temperature.

5.2 Numerical Scheme

5.2.1 Spatial Discretization

The vessel heat conduction equation, Eq. 5.8 was discretized using (J - 1) uniform

intervals of width Ax = S/.. To handle the the boundary conditions, two addtional

intervals of thickness Ax/ 2 were placed adjacent to each boundary location, denoted as

mesh point 0 and J, respectively. The finite difference approximation to the spatial

172



second derivative in Eq. 5.8 at mesh point j is then:

02 02 _ _+ _ _ _ _ __T4(t)+ ~... (-- TW (x, t) = - (t) ;t Tj+l (t) - 2Twj (t) + .(t) (5.19)
OX2 -2 (AX) 2

Substituting Eq. 5.19 into Eq. 5.8, and applying the boundary conditions, ultimately

gives a total of (J+ 3) ordinary differential equations to be solved.

5.2.2 Time Discretization

Following Cacuci, the time discretization is performed in two steps. The first is a

Forward Euler step for the gas pressure and temperature equations, Eq. 5.6 and

Eq. 5.7, respectively. The second is a Backward Euler step for the vessel wall

temperature equations. At the current timestep n, the current solution values are

used to determine the current heat transfer coefficients, hyr and h n, and breakflow

rate, rhn. These are then used to compute the solutions at the (n +1) timestep for

the gas pressure and temperature. Substituting in the Forward Euler approximation

into Eq. 5.6 and 5.7 gives the discrete time equations to be:

Pn+ = n +At _~nR-
Pf+l = P" + - {( - 1) hnN (T,1 - T") As - ouihRT"}. (5.20)

+17 - 1 T" R (T")2
T+ =Tn+ At( 1  [hy (W, 1 -T) As] - h. (5.21)

The gas pressure and temperature values for the (n + 1) timestep are then passed

into the boundary conditions for the vessel wall temperature equations Backward

Euler step. Written in matrix form, the vector of vessel wall temperatures, T. =
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(T,o, T., 1 , ... , TW,,- 1, T,J)T, at the (n + 1) timestep are:

Tn+1 = C-1D.

where the matrix C and vector D are given by:

(1 + 2Fo + 2FoBin)

-Fo

-2Fo

(1+2Fo)

0

0

0

-Fo

-Fo

0

(1+2Fo)

-2Fo

0

0

-Fo

(1 + 2Fo + 2FoBin)
(5.23)

(7",o + 2FoBinT"+1)

w,1

W,J-1

(T"n,j + 2FoBinTm+1 )

(5.24)

In Eq. 5.23 and 5.24 the first and last rows are modified due to the boundary

conditions, while the interior mesh points are the conventional tri-diagonal matrix

setup. Also, Fo is the mesh Fourier number defined as:

Fo = a,, At 2

(A7X)
(5.25)

and BiN and BiA are the Biot numbers numbers for the interior vessel wall in contact

with the nitrogen and the exterior vessel wall in contact with the air, respectively.
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The Biot number is defined to be:

Bi =h-. (5.26)
kwL

5.3 QPIRT Formulation

The FOM for this problem is the gas temperature. The governing equations are used

to determine the relative importance between the various physical processes, in the

Top-Down step. Various hierarchical length scales are used. The local-level exam-

ines the governing equations directly impacting the FOM, by comparing the weighted

contribution of each physical process onto the value of the FOM. The system-level

captures the influence of the entire system's dynamic response, by computing the

fractional contribution of each process relative to the sum of all the processes. The

Bottom-Up step then examines the dominant physical processes, to determine which

parameters to include as the parameters of interest for the surrogate model construc-

tion.

5.3.1 Top-Down Equations

Gas Temperature

For the benchmark blowdown problem, however, the FOM is a lumped-parameter

quantity. Thus, the local and system level hierarchical scales are the same. Therefore

a slightly modified QPIRT is used as compared to that put forward in Chap 3.

Fractional contributions are computed for each of the processes in Eq. 5.7. These
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processes are easier to identify when Eq. 5.7 is re-written as:

(i ) - + ii. RT2 - hN (T, - T) AST = 0. (5.27)
1 1 dt

The three physical processes of interest are then: the thermal capacitance of the

gas (the first term on the LHS of Eq. 5.27), the break flow energy term, and the

heat transfer rate with the vessel inner wall. The fractional contributions for each

process are then defined as:

FmI = , (5.28)
Vm

-F2 =,tRT 2  (5.29)

Xna - IhN (Tw,I - T) ASTI (5.30)

where the denominator term Dm is simply the sum of the numerators of each of

the processes:

=M - + IhN (Tw,I - T) ASTI + IfoutRT2|. (5.31)

Equations 5.28 - 5.31 show how simple the Top-Down QPIRT is to setup, espe-

cially for this problem. Each fractional contribution will take a value between 0 and

1 and the process is considered to be significant if the fractional contribution is at

least 0.1.
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Vessel Inner Wall Temperature

If the heat transfer rate between the gas and vessel inner wall is signficant, the

processes impacting the vessel inner temperature, T,, 1 , must also be examined. This

follows the local-level formulation from Chap. 3 for the clad wall inner temperature.

The vessel wall energy equation is simply a balance between the heat transfered from

the air to the vessel and the heat transfered between the vessel and the nitrogen gas:

d
S[Vw (pcT )u,J -hN (T2w,i - T) As + hA (TA - Tw,E) A5 . (5.32)

The brackets in Eq. 5.32 denote the average value with respect to the vessel wall.

Solving Eq. 5.32 for T,,, scales each of the processes by the heat transfer coefficient

with nitrogen:

1 d ha
T,= - - [Vw (pcT),] + T + -- (TA - Tw,E). (5.33)

hN AS dt hN

The weighted contribution for each process then scales each term on the RHS

of Eq. 5.33 by the sum of their absolute values. The weighted contribution terms

then like the fractional contributions, take on values between 0 and 1. The three

processes of interest are the thermal capacitance of the vessel wall, heat transfer

with the nitrogen gas, and heat transfer with the air outside, and their respective

weighted contributions are:

WW1 = , (5.34)

Ww2 TI (5.35)
Du,
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_ (TA - TW,E
WW3 = D(5.36)

where the denominator term is simply the sum of each of the numerators:

D = - VT ] + ITI + A (TA - Tw,E) (5.37)
hNAS dt [V, w N

5.3.2 Using the QPIRT

The results of the numerical solver are used to compute the fractional contributions

for each of the three processes influencing the FOM, at each timestep. If a term is

considered significant, then it is analyzed further through a local-level analysis and/or

the Bottom-Up procedure. For this specific problem, the only term that would also

have a local-level analysis performed is the vessel wall inner temperature, as described

previously. This allows tracking through various processes which physical phenomena

ultimately influence the FOM. The Bottom-Up step then looks at each process and

examines the correlations and parameters used to compute each process term. For

example, if the break flow energy term, Fm2, is significant, then Eq. 5.11 is examined

because it is the correlation that computes the break flow rate. If the heat transfer

with the vessel wall is important, then besides performing the local-level analysis on

Ter, a Bottom-Up analysis is performed on Eq. 5.17 and Eq. 5.18 because that is

how the heat transfer coefficient is computed. The end result of the QPIRT is a list

of the physical processes and their associated parameters that influence the FOM

through time.
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5.4 Blowdown Model Results

5.4.1 Nominal Case Results

The nominal values for all of the parameters used in the numerical solver as given by

[36] are summarized in 5.1. The time history of the computed gas pressure is shown

in Fig. 5-4and the gas temperature with inner and outer vessel wall temperatures

are shown in Fig. 5-5. The same nominal case results, as determined by Petruzzi et

al. (2010) are shown accompanying the current work's results. The present nominal

results and Petruzzi's nominal results appear to be essentially the same. The gas

pressure drops rapidly during the depressurization process essentially following an

exponential trend. The gas temperature also drops rapidly early on, until leveling

off and eventually rising due to heat transfer with the warmer vessel walls.
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5.4.2 QPIRT Results

Top-Down Step

The plot of the fractional contributions for the three processes influencing the gas

temperature is shown by Fig. 5-6. The fractional contribution results are in line

with the physical intuition for the blowdown transient. While the gas temperature

rapidly decreases, the break flow energy term and the gas thermal capacitance are

the most important. Once the the gas temperature starts to level however, the heat

transfer rate with the vessel wall becomes more and more important. After around

40 seconds, the heat transfer rate has a stronger influence on the gas temperature

than the break flow energy term, which makes sense since the gas temperature is

increasing. Then, around 85 seconds, the importance of the break flow energy term

drops off dramatically, consistent with the gas pressure reaching nearly the ambient

pressure. The gas temperature begins to rise at a faster rate now with the heat

transfer rate becoming even more important at the end of the transient.

Since the heat transfer rate with the vessel wall is important, the local-level

weighted contributions on T 1 are shown in Fig. 5-7. The heat transfer with the

nitrogen dominates for the entire transient, but the thermal capacitcance term is

also significant.
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Figure 5-6: Fractional Contributions on the Gas Temperature

183

E
LL



Local Level T, Weighted Contributions
1

0.9

0.8

0.7

0.6

S0.5

0.4

0.3

0.2

0.1

0
0 60 70 80 90 100

Figure 5-7: Local Level Weighted Contributions

Bottom-Up Step

The Bottom-Up step examines each of the significant processes identified in the

Top-Down step in order to choose which parameters to include in the GP emulator

construction. Following Petruzzi et al. (2010), the parameters are all assumed to

have normal distributions with the nominal values identified in Table 5.1 as the mean

values. The standard deviations for each of the parameters are also given in [36].

For the present work, all parameters with standard deviations less than 0.5% of their

mean values were disregarded. The geometrical terms, initial conditions, and the

nitrogen density and specific heat state relationships all met this criterion and are

therefore considered to be known values.
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That leaves a total of eight parameters that are considered uncertain and will be

included in the GP emulator construction. The uncertain parameter from the break

flow energy term is the orifice discharge coefficient, Cd, which influences the break

mass flow rate. The heat transfer between the vessel wall and the nitrogen has five

uncertain parameters associated with it. The first two are the turbulent flow regime

constant, c, and exponent, d, used to compute the Nusselt number in Eq. 5.18.

The flow regime was always turbulent, so the laminar regime parameters were not

important. The other three are the following nitrogen gas properties: thermal con-

ductivity, kN, visCOsity, AN, and the thermal expansion coefficient 8N. The final two

parameters relate to the local-level analysis of the vessel wall temperature thermal

capacitance term. The vessel wall volumetric heat capacity, (pc)., was computed

from the vessel wall thermal conductivity, k,, and thermal diffusivity, a.. Those

eight parameters are summarized in Table 5.2 below, along with their associated un-

certainty levels from Petruzzi et al (2010). These are the assumed prior distributions

that are used in the emulator-based calibration process.

Table 5.2: Bottom-Up Step Uncertain Parameters

Parameter name I Parameter symbol Uncertainty (%)

1 Cd 10

2 c 2

3 d 2

4 kN 2

5 AN 2

6 N

7 kw 2

8 aw 2
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5.5 Emulator-Based Calibration

5.5.1 Building the Emulators

A total of five emulators were used, a standard GPR model and four types of FFGP

models. Each of the FFGP models have 2 factors, but with 1, 2, 3 and 4 components.

For the standard GPR model, time is included as an input parameter giving a total

of 9 inputs. The FFGP models treat the first factor as the time factor (or pattern)

while the second factor is the uncertain parameter factor (or pattern). This setup

is therefore the same as the setup in the simple friction factor verification problem

in Chapter 4. Latin Hypercube Sampling (LHS) was used to generate 100 different

values of the GPR input parameters, and the blowdown computer model was run 100

times. The time input corresponds to the point in time that output was taken at.

The same 100 values of the uncertain parameters were used for the FFGP models,

but now 15 equally spaced points in time were used as the input for the time factor.

Thus, the GPR and FFGP model training data were generated from the same set of

100 case runs, the difference being the GPR model used only 1 point from each case

run, a total of 100 training points, while the FFGP models "took" 15 points from

each case run. It is important to note that the GPR model will be interpolating (or

rather regressing) between those 100 training points in order to make a prediction,

while the FFGP models use the 1500 training points to infer out patterns and those

patterns are used to make predictions.

Both the GPR and FFGP training data are shown in Fig. 5-8. The GPR train-

ing data points are shown as black circles and the FFGP training points are in grey.

The observational data are also shown in Fig. 5-8, as red dots with the error bars

corresponds to the 2o- around the data mean values. The observational data was
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estimated from the Petruzzi et al. (2010) results shown in Fig. 5-5. As the figure

shows, the training data set "encompasses" the observational data. If the observa-

tional data were outside the training data, then the training points were very poorly

chosen and the prior distributions on the uncertain parameters must be reconsidered.

Training and Observational Data

-0.2 0 0.2 0.4 0.6
scaled tirne

0.8 1 1.2

Figure 5-8: Blowdown Model Training Data

The GPR emulator was built using the MCMC sampling scheme described in

Chapter 4. However, the hyperparameters were summarized as point estimates.

This Empirical Bayes approach was only used to prevent MATLAB from reaching

its RAM limit. Unless an incredibly large number of samples were used to train the

emulator (such as 5 million samples or more), the RAM limit was never an issue for

the blowdown problem. The Empirical Bayes approach was therefore used simply as
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a precaution, and to be consistent with the GPR emulators used later on in Chapter

6. The GPR emulator likelihood noise hyperparameter is shown in Fig. 5-9 (along

with the signal variance hyperparameter). The blue lines are samples and the red

horizontal line is the point estimate. A total of 1.5 x 105 samples were made, with

the first 5 x 104 samples discarded as burn-in. The length scale hyperparameters

are shown in Fig. 5-10, where again the red lines denote the point estimates. As

discussed in Chapter 4, the length scales indicate which of the inputs control the

output response. Using the same notation from Chapter 4, the length scale for input

d is Id and its hyperparameter is kd, and the two are related by Id = exp(od). The

closer ld gets to 0, the more the output response is controlled by input d. A length

scale value near zero corresponds to a very negative #d value. Thus, the inputs can

be ranked by how negative their length scale hyperparameter values are. Input 9,

the time input, has the most negative #d value and therefore dominates the output

response. This makes sense since we are modeling the time series history of the

gas temperature. The inputs whose #d values are closer to 10 therefore have very

little influence on the output response, as viewed by the GPR emulator. Therefore

before even calibrating the blowdown model, the length scale hyperparameter values

indicate that uncertain parameters 5 through 8 are not important to explaining the

gas temperature response.

Each of the FFGP emulators were built using the "Gibbs-like" MCMC sampling

procedure described in Chapter 4. The simplest way to compare FFGP emulator

accuracy relative to the training data is to examine the likelihood noise hyperparam-

eter value. The more negative the value, the more accurate the FFGP emulator is

relative to the training data. Figure 5-11 shows the likelihood noise hyperparameter

values for each of the four FFGP emulators. In each sub-plot, the grey line is the

initial likelihood noise hyperparameter guess, the blue lines are the samples, and the

188



2
signal noise

-0.50 1 2 3 4 8 9 1

x

likelihood noise

-6.7 -

-6.8

-6.9

-7

-7.1'
0 1 2 3 4 5 6 7 8 9 10

x10

Figure 5-9: Blowdown GPR likelihood noise hyperparameter

189



Length Scale Hyper 1
2

1

0

-1
0 5 10

Length Scale Hyper 2
6

2

0 5 10

Length Scale Hyper 3
4

0

0 5 10
x104  x 104  x 10

Length Scale Hyper 4 Length Scale Hyper 5 Length Scale Hyper 6
6 20 20

10 10
2

00 5 10 0 5 10 0 5 10

x 10,
Length Scale Hyper 7

20i

10

00 5 10

x 10e

x10,
Length Scale Hyper 8

20

10x

00 5 10

x 10e

x10e
Length Scale Hyper 9

-1

-1.5

-2

-2.5051
0 5 10

Figure 5-10: Blowdown GPR length scale hyperparameters

190



red line is the point estimate. Clearly, the 1 and 2-component emulators do not offer

enough flexibility to accurately approximate the training data. The 3-component em-

ulator is almost 50x more accurate relative to the training set than the 2-component

emulator. The increased complexity between the 2 and 3-component emulators is

clearly worth it. The 4-component emulator is then even more accurate than the 3-

component emulator, though with a smaller relative change than the change between

2 and 3-components. A total of 105 latent bum-in samples were made, after which

the latent variables were re-initialized at the mean values and sampling continued in

the latent burn-in phase for another 101 samples.

The function factorization models are actually dealing with a much more com-

plicated training data set than the standard GPR emulator training set. This is

why the 1 and 2-component FFGP models are so innaccurate relative to the simu-

lator. To understand why the data set is more complicated, just look at the grey

lines in Fig. 5-8. The later half of the transient actually shows a substantial frac-

tion of the trajectories that overlap. Remember that the QPIRT identified a change

in the relationship between the physical phenomena, and thus the input parameters

change their relationship with the output throughout the transient. This is known as

non-stationary behavior in statistical models [24]. The FFGP models are using the

stationary SE covariance function and thus more flexibility is required to capture

these effects more accurately, which corresponds to adding complexity with more

components. The standard GPR emulator, by only dealing with 100 training points

actually does not "see" this complicated behavior. It is also using a stationary SE

covariance function and using it to regress the training data, but with fewer data

points it simply tries to average out any of that complicated behavior.

The computational time required to build each of the emulators is summarized

in Table 5.3 below. The total time sums the time it takes to create the training set
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Table 5.3: Blowdown emulaor build times
Emulator Burn-in Posterior Total time Effective

time [s] time [s] [s] number of
simulator
runs

GPR 55.5 106.2 377.7 174
1-component 88.66 26.00 330.66 154
2-component 96.12 41.41 353.53 164
3-component 109.05 45.81 370.81 172
4-component 127.63 58.00 401.63 186

with the burn-in + posteior sampling times. Each case run took approximately 2.16

seconds, thus creating the training set took 216 seconds. The effective number of

simulator runs corresponds to the number of times the simulator could have been

run over the total emulator build time. The first key point from Table 5.3 is that

building the most complex FFGP emulator adds less than 100 case runs worth of

time on top of the time it takes to create the training set. This confirms that the

even with the complex MCMC sampling required to build the FFGP emulators, the

overhead due to training is small relative to the time to run the simulator. Each of

the emulators could have been built in parallel, but for simplicity they were built in

series, starting with the GPR emulator. The total time to build all of the emulators

corresponds to effectively running the simulator 450 times. As described in Chapter

2, thousands upon thousands of simulator runs would be needed if the simulator

was used directly to calibrate the uncertain parameters. Thus, even building each

of the emulator sequentially, adds almost negligible time to the uncertain parameter

calibration process relative to using the simulator directly.

193



5.5.2 Posterior Results

Emulator-based uncertain parameter calibration was performed just as in the Chap-

ter 4 simple friction factor verification problem. The emulator-modified likelihood

functions were used with the AM-MCMC scheme to draw samples from the posterior.

Therefore, just as in the simple friction factor verification problem, the emulator's

contribution to the total predictive uncertainty is accounted for. The posterior pre-

dictions are reported just as in Chapter 4, as well. The posterior predictive mean

quantiles are all shown as blue lines and the total predictive uncertainty band is

shown in green. If the emulator is very uncertain there will be a large gap between

the outer blue lines (the 5 th and 9 5 th quantiles) and the edge of the green band.

Ideally we want almost no difference between the outer blue lines and the edge of

the green band.

The observational errors were all estimated from the figures in Petruzzi et al.

(2010). A total of 9 observational data points were used because these were the 9

easiest to read off of the figures in their paper. As shown in the plot of the training

data in Fig. 5-8, the last half of the transient has considerably- more measurement

error than the first half.

In the results to follow, the posterior predictive results will be on the left and

the posterior uncertain parameter histograms will the right hand side plot. The

posterior histograms are shown in blue and the prior histograms are shown in green.

If the posterior histograms are essentially the same as the prior, then that particular

parameter does not explain the data and therefore cannot be updated at all. The

uncertain parameters are shown in their scaled values where 0 corresponds to the

prior minimum bounding value and 1 is the prior maximum value. The scaled prior

mean value is therefore 0.5 and all of the scaled prior standard deviations equal 0.25.
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Standard GPR emulator results

The posterior results using the standard GPR emulator in place of the blowdown

simulator are shown in Fig. 5-12 below. The posterior predictive results follow the

observational data while only the first and third uncertain parameters, Cd and d,

respectively show any substantial change from their prior distributions. This means

that really only Cd, the gas discharge coefficient which controls the break flow rate,

and the heat transfer correlation exponent, d, are explained by the data. This is

consistent with what we saw from the GPR length scale hyperparameters earlier.

The GPR emulator also appears to be very accurate, with only a slight a difference

between the posterior predictive mean quantiles and the total predictive uncertainty

band near the end of the transient.

Looking at the posterior predictive results in more detail, we see that the first

three and last five data points follow the posterior predictive median (which for a

normal distribution is also the mean value) very well. But, the fourth and fifth data

points lie on the outer "edge" of the posterior predictive probability distribution.

Relating these results back to the Top-Down QPIRT findings, these two data points

correspond to when the break flow rate and heat transfer rate are starting to balance

out. The Top-Down QPIRT results given in Fig. 5-6, show that around this time,

the physical phenomena start to change how they interact and relate to one another,

indicated by the fact that the gas temperature starts to heat up afterwards. Over

the first 30 seconds, the break flow is more dominant. After about 50 seconds, the

physical phenomena are in nearly the same interactive relationship as shown by the

QPIRT, which correspond to the last 5 data points. So it actually makes sense that

the fourth and fifth data points are the most difficult to predict with high certainty

compared to the other data points. Additionally, these two data points correspond to
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when the observational error term increases rather significantly compared to the first

three data points. Thus, it is not only harder to predict but more error is allowed in

relating a prediction to the data. In order to better predict these two data points,

more data would be necessary.

FFGP 1-component emulator results

The posterior results using the FFGP 1-component emulator are shown in Fig. 5-13.

With the posterior predictive mean quantiles taking up only a fraction of the total

predictive uncertainty band, it is clear that The FFGP 1-component emulator is very

uncertain. Therefore the emulator's uncertainty is capable of explaining most of the

variation in the observational data. Even with the very uncertain FFGP 1-component

emulator, the d-parameter posterior mode does move in a similar direction to the

GPR-based posterior mode. However, the emulator predictive uncertainty is too

large in the first half of the transient to allow for C-parameter to be updated.

FFGP 2-component emulator results

The FFGP 2-component emulator-based results are shown in Fig. 5-14. Since the

FFGP 2-component emulator is more accurate than the 1-component emulator, the

total predictive uncertainty band is smaller in Fig. 5-14 than it was in Fig. 5-

13. However, the emulator predictive uncertainty still dominates the total predic-

tive uncertainty. The uncertain parameter posteriors are therefore similar to the

1-component emulator-based posteriors.
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FFGP 3-component emulator results

As shown in Fig. 5-11, the FFGP 3-component emulator is almost 50x more accurate

than its 1 and 2-component counterparts. The 3-component emulator-based results

reflect this, as shown in Fig. 5-15. The emulator contributes far less to the total

predictive uncertainty, allowing not only the d-paxameter to be more precisely known,

but the Cd-parameter to be learned out as well. The first 10% of the transient,

however, still has very large emulator predictive variance. This is an artifact of

the Gaussian approximation to the training latent variable posterior samples. The

additional uncertainty has minimal impact on the uncertain parameter posteriors

however because the first data point is simply the initial condition, and it provides

very little new "information" to the uncertain parameters. Later on in the transient,

the emulator predictive uncertainty is much smaller, allowing the The first data point

however is just the initial condition

The The FFGP 3-component-based results, in Fig. 5-15, are very similar to

the GPR emulator results. The sample mixing rate is very high, and just as in

the GPR case, only the Cd and d-parameters show any updating between the prior

and posterior. The one minor difference in the posterior predictive probabilities is

that the posterior trajectories appear slightly more smooth than the GPR results.

What I mean is, if you look closely at the last half of the GPR posterior predictive

trajectories, they exhibit a slight wavy shape pattern, which is absent in the FFGP

3-component posterior predictive trajectories. The FFGP model is more complicated

and intended to capture the correlation amongst the outputs themselves, which is

probably why that wavy-like pattern is absent.
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FFGP 4-component emulator results

The FFGP 4-component-based results are shown in Fig. 5-16. The emulator con-

tributes very little additional uncertainty even at the beginning of the transient. The

posterior predictive distribution is very similar to the GPR-based posterior predic-

tive distribution. Only the fourth and fifth data points do not follow the posterior

predictive medians. The uncertain parameter posterior distributions are also very

similar to the GPR-based posterior distributions.

Both the FFGP 4-component-based and GPR-based total predictive uncertain-

ties are less than the observational error. As stated earlier, the data was taken from

reading values off of the figures in Petruzzi et al. (2010). Thus, one possible reason as

to why this occurs is that the chosen data values were too "smooth". The posterior

predictive medians suggest the blowdown numerical model is capable of following

these points correctly. If more scatter was present in the data, the predictive mean

would only be able to regress the data, since the blowdown numerical model (and

therefore the emulator) produces smooth time trajectories, not choppy trajectories.

The total predictive uncertainty would then increase since many more possible tem-

perature trajectories would regress the scatter in the data mean values. Another

reason has to do with the simplicity of the numerical model itself.

5.5.3 Emulator Based Calibration Summary

The blowdown problem was a very good demonstration of the pros/cons of the various

emulator types and the challenges that each must overcome. The standard GPR

emulator and the much more complicated FFGP 2-factor 4-component emulator yield

very similar results. The fact that two very different emulators with very different

underlying assumptions in their construction (though the GPR model is a special
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case of the FFGP model) yield very nearly the same posterior results helps gives

confidence that these are the true posterior results.

The one minor difference between the GPR and FFGP 4-component posterior pre-

dictive distributions is that the FFGP emulator posterior trajectories appear slightly

"smoother". The last half of the GPR posterior predictive trajectories exhibit a slight

wavy shape pattern, which is abset in the FFGP posterior predictive trajectories.

The GPR emulator does not "know" the temperature at time t - 1 when making a

prediction at time t. It simply tries to interpolate (or rather regress) between all of

the training points regardless of the "path history". Due to the use of the two factors,

the FFGP emulators are able to "know" the "history" of a time series. Factor 1, the

time factor, captures the latent (or hidden) trend through time of the training set.

Making predictions with the FFGP emulators therefore fully accounts for the cor-

relation through time, and thus emulates the trajectory more precisely. As a whole

though, the GPR emulator is a very good choice for this particular problem. Only

two uncertain parameters, the gas discharge coefficient, Cd, and the heat transfer

correlation exponent, d, could be updated by the observational data. The remaining

six uncertain parameters could not be updated relative to their priors, and as shown

by the GPR length scale hyperparameters, these do not control the gas tempera-

ture response as strongly as the Cd and d-parameters do. With 100 training points,

the GPR emulator had more than enough training points to accurately approximate

the response as these two parameters were varied during the MCMC sampling. As

will be shown in Chapter 6 though, the assumptions inherent to the GPR emulator

become more restrictive as the problem becomes more and more complex.

The blowdown problem also provided a more realistic application for where the

speed of the emulator based approach is crucial to actually performing Bayesian

model calibration. Table 5.4 summarizes the computational times required to cali-
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brate the uncertain parameters with each of the emulator types. All of the emulator-

based calibration processes used 10' MCMC samples, with the first half discarded as

burn-in. The total emulator-based calibration time includes the time to create the

training set, the time to build the specific emulator, and the time perform MCMC

sampling with the specific emulator. The third column in Table 5.4 gives the total

number of completed simulator (the blowdown numerical solver) runs that could be

completed in the same time it takes to perform the entire emulator-based calibration

process, for each emulator type. The last column, is the ratio of the time to com-

plete a single emulator case run to the time it takes to make a prediction with each

emulator. Table 5.4 makes it very clear that the emulators are all much faster than

the numerical solver, with even the slowest FFGP emulator being over 1700x faster

than the numerical solver. To clarify, a single emulator prediction denotes predicting

the entire temperature trajectory, not simply a single point in time. The total time

create the training set, to build all of the emulators (the training set only needs to be

created once) and perform all of the emulator-based uncertain parameter calibration

schemes was the equivalent of running the simulator 621 times. Thus, even though

multiple emulators were built, and the 1 and 2-component FFGP emulators were very

uncertain, having them as comparisons had almost negligible computational impact

compared to using the simulator directly in the MCMC sampling. Running the simu-

lator 10 MCMC samples would have taken 60 hours compared to the approximately

22 minutes it took to complete everything with the all of the emulators.
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Table 5.4: Blowdown emulator-based calibration process computational times
Emulator type Uncertain Total Effective Single

parameter emulator- number of simulator run
calibration based simulator to single

time [s] calibration runs emulator
time [s] prediction

ratio

GPR 67.30 445 206 3209.5
FFGP 1-comp 48.09 378.75 175 4491.6
FFGP 2-comp 60.02 413.55 191 3598.8
FFGP 3-comp 75.77 446.58 206 2850.7
FFGP 4-comp 121.25 522.88 242 1781.4
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Chapter 6

EBR-II Model Calibration

The overall goal is to demonstrate emulator-based calibration on a physically relevant

situation with "realistic" modeling issues. The EBR-II simulation is performed using

RELAP rather than my own numerical solver. This limits the amount of control I

have over the uncertain parameters, since I am constrained by the RELAP input

deck setup. Although somewhat of a minor point, it does impact certain choices

in how the EBR-II model is setup and is not a trivial issue as will become more

apparent later on. But more importantly, unlike the blowdown problem described

in Chapter 5, the EBR-II model has a large number of uncertain parameters - 41

compared to only 8. These parameters may or may not be correlated with multiple

physical phenomena coupled together. Additionally, Integral Effect Test (IET) data

will be used in conjuction with Separate Effect Test (SET) to calibrate the uncertain

parameters. The blowdown problem only used IET data - the gas blowdown data

itself - to calibrate the uncertain parameters. With the large number of uncertain

parameters in the EBR-II model, the SET data will help constrain some of the

EBR-II uncertain parameters while the IET data influences all of the parameters.
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Practicaly speaking, this means separate RELAP models must be constructed for

each of the SET datasets as well as the IET data. From an error point of view, the

posterior distributions of the uncertain parameters shared between the IET and SET

models, consist of values that try to minimize the difference the data and emulator

predictions for each of the models. The posterior distributions effectively regress the

information from the IET and SET data, where the posterior distributions "satisfy"

the IET data as constrained by the SET data. Uncertain parameters used only in

the IET model are also impacted by the SET data since those shared parameters

might be known more precisely (smaller posterior variance), which could drastically

change the unshared parameter posterior distributions.

However, the QPIRT process, as described in Chapter 3, will not be applied to

the EBR-II RELAP model. The primary reason is because as many user-defined

functions were used as possible within the RELAP model. The exact correlations

were therefore known before hand, and a QPIRT process was not needed to iden-

tify the important ones. Additionally no two-phase flow phenomena needed to be

considered, since EBR-II uses single-phase liquid sodium as the primary coolant.

That greatly reduced the number of required constitutive correlations and therefore

uncertain parameters compared to a PWR model. Furthermore, since the RELAP

model was built "from scratch" for this work, the modeler could decide to either

lump various physical phenomena together, or split them up. The frictional form

loss within the plenums, for example, could have been modeled by trying to model

the various flow paths "exactly" or by simply lumping the friction form loss into a

a few form loss coefficients. All together this greatly reduces the total number of

uncertain parameters within the EBR-II RELAP model and we can afford to treat

them all as uncertain.

The rest of the chapter is organized into the following sections. Section 6.1
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provides a general description of the EBR-II facility and Section 6.2 describes the

chosen IET and the data used in the IET. The RELAP model for the IET is then

described in Section 6.3. The various SETs are described in Section 6.4, along

with their associated emulator-based calibration results. The IET emulator based

calibration results are given in Section 6.5. Simultaneous calibration is described in

Section 6.6 with simultaneous results discussed after.

6.1 EBR-II

6.1.1 Description of the Facility

The Experimental Breeder Reactor II (EBR-II) was a sodium cooled fast-breeder-

reactor plant. It generated about 20 MWe with a conventional steam cycle at a

design power of 62.5 MWth [40]. It first achieved criticality in 1965 and operated

for 30 years and served as a prototype to the Integral Fast Reactor (IFR) program.

The EBR-II complex is shown in Fig. 6-1 below [41]. The EBR-II performed many

important demonstration and validation experiments for sodium fast reactor (SFR)

development including fuel validation, various thermal-hydraulic phenomena tests,

and passive safety tests. The EBR-II testing program followed a "bootstrapping"

approach which culminated in two historic tests on April 3, 1986: an unprotected

(without scram) loss-of-flow from 100% power, and an unprotected loss-of-heat-sink

at 100% power [42}. These two tests confirmed the inherent safety features of the

pool-type SFR. Additionally, the experimental results have been used to validate

many iterations of fast-reactor and sodium thermal-hydraulic computer codes for

decades [43], [44], [45].

The EBR-II was a pool-type plant, with the reactor, primary coolant pumps
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and intemediate heat exchanger (IHX) immersed in a large volume of sodium in the

primary pool [40]. The nomenclature used for the EBR-II components depends some-

what on the reference. I will try to always use the terms used in the EBR-II Hazard

Summary and Addendum to the Hazard Summary reports [41]. These documents

were from the very early stages of the EBR-II program, the initial Hazard Report

was published before construction began, but the Addendum was published after the

initial construction was completed. So the core configuration described in the Ad-

dendum to the Hazard Report is actually different from the later references from the

1980s. But for consistency I use the Hazard Report terminology. Additionally, all of

the figures showing schematics of the various components come from the Addendum

to the Hazard Report. A schematic of the pimary sodium system is shown in Fig. 6-2

[41]. The primary pumps are single-stage centrifugal pumps, each rated to produce

4500 gpm at 200 ft head. The pumps take a suction of sodium from the primary

pool and discharge it to the high pressure plenum (HPP) via the high pressure pipe

network and the low pressure plenum (LPP) via the low pressure pipe network. The

flow split between the high and low pressure streams is controlled by the low pressure

throttle valve. Roughly 84% of the primary flow feeds the HPP while the remaining

16% goes into the LPP. The HPP feeds the core (where the driver fuel is located)

and inner blanket (IB) subassemblies while the LPP feeds the outer blanket (OB)

subassemblies. The reactor consists of a total of 637 subassemblies, with 53 core,

12 control, 2 safety, 60 IB and 510 OB subassemblies. The subassembly types will

be described in further detail later on. Figure 6-3 shows an "overhead" view of the

reactor arrangement with the core subassemblies located in the center of the reactor.

The sodium coolant exits the top of the various subassemblies where it all mixes in

the upper (outlet) plenum before exiting the reactor through the "Z-pipe" to the

IHX. A sideways view of the reactor vessel configuration is shown in Fig. 6-4.
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The "Z-pipe" is a pipe that from the side literally looks like the letter "Z". A

safety-grade auxiliary electromagnetic pump in the Z-pipe provides about 5% flow to

remove heat following reactor shutdown. The IHX is a counterflow tube-in-shell heat

exchanger with the primary sodium on the shell side. Figure 6-5 shows the flow path

from the primary pump inlets to the primary side IHX outlet from the view of the

Z-pipe side of the primary pool. The secondary sodium removes the heat from the

IHX and transports it to the steam-generator system. The secondary sodium pump

is an electromagnetic pump rated at 6000 gpm. At full power, 32 kg/s of steam at

4380C and 8.70 MPa is delivered to the turbine.

6.1.2 History of Testing at EBR-11

As already mentioned, the EBR-II testing program "bootstrapped" from test to test,

starting with the mildest tests first in order to avoid any potential risks to the on-

going operation of the plant. The sequence was evolutionary in nature where the

learning process would dictate new tests based upon answering new questions or

resolving uncertainties from earlier tests. The EBR-II tests are commonly references

by the name of the instrumented subassembly within the core. The XX07 series tests

were the earliest, followed by the XX08 series of tests, and then the Shutdown Heat

Removal Tests (SHRT) that used two instrumented subassemblies, XX09 and XX10.

The XX07 tests evaluated the effects of the fission or decay power level and the

secondary flowrate upon the natural convective core flowrate and temperature rise

[42]. All but one of the XX07 tests were steady-state tests. The transient dynamics

of the transition from forced to natural convective cooling were conducted in the

XX08 series of tests that followed. These loss-of-flow tests were conducted from a

variety of initial conditions including full primary flow at hot-standby conditions,
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auxiliary pump flow at decay power levels as well as other various combinations of

reduced fission power and primary flow rates [42]. The XX08 tests essentially slowly

built confidence that EBR-II could handle loss-of-flow tests at higher and higher

initial power levels before the SHRT program was started. The SHRT program was

the culmination of the testing to show the complete passive safety features of the

EBR-II design in support of generic liquid metal pool type reactors.

6.2 Description of the chosen IET

In order to work with a "realistic" safety analysis modeling scenario, the IET of

interest needed to be a transient, thus ruling out the XX07 series of tests. For this

project, we wanted to focus strictly on thermal-hydraulic phenomena, not on any

reactivity feedback or coupling issues to neutronics calculations. That ruled out

the full power tests in the SHRT program, putting the focus on the XX08 series

of tests at decay power levels. Another simplification was to try and find transients

where the primary pumps would not have to be modeled in RELAP. Modeling pumps

within RELAP can be very difficult because the pump homologous curves must be

input into RELAP. Therefore, transition to natural circulation tests were the main

candidates for tests to model. Looking through the available literature on the older

XX08 series of tests at the lower power flow rates showed that most gave very little

real data besides overall trends. One source however, by Baumann et al. gave

a decent amount of data as well as provided a reference numerical model of the

EBR-II reactor vessel to help give guidance on initial and boundary conditions [45].

They examined Transient Test No. 10 phase 2, which studied the transition from

forced to natural convection at decay power levels, while examining the effect of flow

reversal in the LPP. Flow reversal refers to the sodium flow within the OB channel
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reversing from upward to downward during the transition from forced flow to natural

convection. This test gave data therefore not just for the sodium temperature within

the core but also the low pressure flow rate entering the LPP. So multiple types of

data could be used from this transient which would be interesting to compare the

posterior distribution results between using only temperatures compared to using

only the low pressure flow rate data.

Additionally the other benefit of using Baumann et al., was it provided a discus-

sion on the simulation of Transient Test No. 10 using the COMMIX-1A computer

code. The numerical model was a 2-D axi-symmetric simulation of the test primarily

focused on examining the flow reversal phenemona within the reactor vessel. So this

is a completely different computer code style than RELAP which is a 1-D control

volume code. Baumann et al. treated the total primary flow rate as a boundary

condition into the reactor vessel, which meant the primary pumps are not modeled.

The numerical model was responsible for splitting the total primary flow between

the high and low pressure streams correctly, but the total flow rate itself was just

a boundary condition. Of course this is a major approximation since the total flow

rate, once the primary pumps are tripped, is a result of the buoyancy forces between

the core, IHX, and primary pool. Not having to model the primary pumps within

RELAP greatly simplified the model setup, without detracting of the goal of a "re-

alistic" safety analysis scenario since as will be seen later on there are still a large

number of uncertain parameters within this IET model. For these reasons I decided

to follow the format of the Baumann et al. model by modeling just the primary flow

loop from the primary pump inlet to the upper (outlet) plenum of the reactor vessel.

The Transient Test No. 10 observational data is shown in Figs. 6-6 through

6-8 compared against the COMMIX-1A predictions from Baumann et al. The term

OTC refers to the core outlet temperature which is located just before the exit of the
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instrumented XX08 subassembly. TTC refers to top-of-core temperature just before

the exit of the driver fuel which as shown in 6-4 is in the middle of the reactor vessel.

The OTC temperature therefore can include a temperature reduction compared to

the TTC temperature due to the conduction within the sodium coolant, diffusing the

temperature throughout the reactor. The normalized LPP flow is the low pressure

flow rate normalized to the steady state LPP flow rate. As shown in Fig. 6-8,

the LPP flow is in fact negative from almost 50 seconds to the end of the data at

200 seconds. The data are taken directly from Baumann et al., so the additional

COMMIX-1A prediction is not relevant to the current work. The main point was to

simply show the observational data.

As stated earlier, all of the obsevational data will be used to calibrate the RELAP

model. This means the emulators must estimate the RELAP predictions for the OTC

and TTC temperatures, as well as the LPP flow rate.

6.3 EBR-II IET RELAP Model

A schematic of the EBR-II Transient Test No. 10 RELAP model (from now on

referred to as the IET RELAP model or just the IET model) is shown in Fig. 6-9.

The different colors represent different component groups. The grey squares are the

inlet/outlet boundary conditions. The dark blue shapes are the high pressure piping

network and the lighter blue shapes are the low pressure piping network. The dark

green shapes represent the HPP while the light green shapes represent the LPP. The

core channel, which is divided up into the lower blanket (LB), driver fuel (DF), and

upper blanket (UB) zones, is given by the bright red shapes. The IB channel is

shown by the maroon shape beside the core channel. The OB channel is divided into

two zones, the OB-lower adaptor (OBLA) tubes and the OB subassemblies, which
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Figure 6-6: Transient Test No. 10 Core Outlet Temperature Data
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Figure 6-7: Transient Test No. 10 Top-of-Core Temperature Data
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Figure 6-8: Transient Test No. 10 Low Pressure Flow Rate Data
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are represented by the light pink shapes. The upper (outlet) plenum is the yellow

rectangle.

I

-I--

Figure 6-9: EBR-II IET RELAP model schematic

The following sections go through each of the component types in more detail.

The main focus is to describe the various uncertain parameters used in each of

the components, but the actual EBR-II components are compared to their RELAP

model counterparts. But before describing the components, the RELAP user-defined
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friction factor correlations are discussed as well as the RELAP heat transfer model

setup. This aids the component description since I describe what components share

friction factor parameters. RELAP is not setup to account for conduction within

the liquid metal coolant, therefore additional steps were required to allow RELAP

to include these effects. All of the conduction within the fluid for radial conduction

are described together, followed by the axial conduction parameters. The material

properties were not treated as uncertain in this work, but the material properties

used are described as well. Lastly, the uncertain parameters in the boundary and

initial conditions are discussed before summarizing all of the uncertain parameters

within the IET RELAP model.

6.3.1 RELAP User Defined Friction Factor Correlation

In order to have access at changing the parameters within the friction factor corre-

lations, all of the components within the IET RELAP model use the RELAP user-

defined friction factor correlation. For the turbulent flow regime, defined as when

Re > 3000 for a fluid cell the user-defined friction factor is the standard friction

factor formulation of:

fT = A+ B (RefC. (6.1)

In the laminar flow regime, defined for when the fluid cell Reynolds number is,

0 < Re < 2200, the friction factor is:

fL = 4 (6.2)

224



In the transition regime, the friction factor is an interpolation between the above

friction factor values defined as:

f= 3.75 Re (fAW- f2M) + f=, (6.3)

where fL. denotes the turbulent friction factor computed at Re = 3000 and similarly

f2L0 denotes the laminar friction factor computed at Re = 2200.

The turbulent friction factor correlation is the same format as used in the simple

friction factor calibration demonstrations in Chapter 4. Because of that, the A-

parameter is set to 0 for all components. But unlike Chapter 4, the parameters are

not reparameterized here. The B and C-parameters are referred to collectively as the

turbulent friction parameters, and B, C, and ts-parameters are collectively referred

to as the friction parameters.

The user-defined friction factor correlation has hard coded flow regime transition

Reynolds numbers within RELAP. For components that are modeling structures

very different from pipes, such as the wire-wrapped fuel bundle within the driver

fuel zone of the core, the flow regime transition Reynolds number could be very

different from these values [46]. The the B, C, and 4 s-parameters must therefore

change accordingly during the calibration process to allow the predictions to match

the data.

6.3.2 RELAP Heat Transfer Models

In RELAP only two heat transfer correlations exist for liquid-metal coolants. One for

non-bundles and one for bundles. I only allow heat transfer within the reactor and so

correlation intended for the bundles was used. That correlation is the Westinghouse
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[46] given as:

Nu = 4.0 + 0.33 ( 0.16 ( P), (6.4)
T 100 D)

where P/D is the pitch-to-diameter ratio of the rods, and Pe is the Peclet number,

Pe = RePr. In order to modify the heat transfer coefficient, RELAP does not

allow changing any of the coefficients or exponents in the Westinghouse correlation.

But RELAP does allow heat transfer multipliers to be applied to Westinghouse

correlation. The heat transfer uncertain parameters are therefore the multipliers

applied by RELAP to each of the heat transfer coefficients computed internally

within RELAP.

Heat structures must be defined within RELAP and connected to corresponding

fluid cells. The specific reactor vessel components heat structures are described

within their corresponding sections below.

6.3.3 High and Low Pressure Piping Network

There are two separate inlet piping networks, one for each of the two primary pumps.

But to simplify the RELAP model nodalization, the two inlet piping networks were

lumped together. Following the RELAP guidelines [17], the flow areas for all the

pipes were then doubled while the hydrualic diameters of the pipes were maintained

at their actual values. The inlet to the high pressure piping network represents the

exit of the primary pumps. But as already described the primary pumps are not

modeled so the inlet simply connects to the inlet boundary condition. The flow split

between the high and low pressure piping is modeled as a TEE component within

RELAP with the flow split junction given its own junction loss coefficient. All of the
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high and low pressure pipe cells share the same friction factor uncertain parameters

The low pressure throttle valve is shown in Fig. 6-9 as the circle with the "X"

within it. It is located at the correct elevation above the reactor center plane. The

throttle valve itself is simply modeled as a single junction between two low pressure

piping sections (the upward vertical portion to the left of the throttle valve and the

downward vertical portion to the right of the throttle valve). It has its own loss

coefficient as an uncertain parameter.

The flow path of the high and low pressure piping network is not modeled exactly.

I match any elevation changes, but as shown in Fig. 6-5, the high and low pressure

pipes have several twists and turns within the x - y plane (where x - y plane refers

to a horizontal plane at a particular axial location). I do not model those particular

twists. As shown in the IET model schematic in Fig. 6-9, the RELAP model is

effectively a 2-D projection of the high and low pressure pipes in the z-y plane (where

z - y plane refers to a vertical plane). The elevation changes are all correct but any

additional frictional losses from the horizontal twists and turns are simply lumped

into the various loss coefficients within the pipe network models. This lumping

approach is reasonable because sodium can be modeled as an incompressible fluid,

thus the spatial distribution of the form losses within the flow path does not affect

the flow/pressure drop characteristics of the pipe. All of the elbow bends within the

pipe network components share the same loss coefficient. Additionally the junctions

that connect the high pressure pipe to the HPP and the low pressure pipe to the

LPP have their own separate loss coefficients.

The number of fluid cell volumes used in each of the pipe sections was taken

from a references on validating the MARS code with EBR-II data [43]. Although

this reference looked at modeling an SHRT test, their piping network nodalization

provided a useful starting point so that I did not have to perform a sensitivity study
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on the nodalization scheme.

6.3.4 Lower Plenums

The lower plena are quite difficult in order to model all of the fluid flow paths

exactly. Figure 6-10 shows an illustration of the lower plena from the Addendum to

the Hazard Report, with the locations of the HPP and LPP denoted in red. The

LPP is located beneath the HPP and is annular in shape. It sits only below the OB

subassemblies. The HPP sits beneath all of the subassemblies, but only connects to

the core and IB subassemblies.

High Pressure Plenum (HPP)

The HPP flow path is very complex. Upon exiting the high pressure pipe, the high

pressure stream enters an annular portion before flowing through a baffle plate. After

the baffle plate the high pressure stream flows around the the OBLA tubes. From

here, the high pressure stream enters an interior zone where the coolant enters into

the core and IB lower adaptor tubes through their respective inlet nozzles. The inlet

nozzles are a series of small holes at the bottom of the core and IB lower adaptor

tubes. As shown in Fig. 6-11, the interior zone has a stepped lower grid which allows

for orificing of the flow through the various rows of the core. The IB lower adaptor

tubes have more of the inlet nozzle holes covered up by the steps than the hotter

core channels.

The RELAP model of the HPP was broken into two zones, the outer HPP

(OHPP) and the inner HPP (IHPP). The OHPP spans the flow path volume from

the entrance of the HPP, through the baffle plate and around the OBLA tubes. The

IHPP covers the interior portion of the HPP that has the orificing stepped grid and
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Figure 6-10: EBR-II lower plena
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Figure 6-11: Core and IB lower adaptor tubes within the IHPP
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the core and IB lower adaptor tubes. These two zones are modeled as single volumes

within RELAP with the wall friction turned off. Wall friction uses the friction factor

coefficient (which as stated earlier is always the user-defined form for the IET model),

and by turning it off all frictional losses within the two HPP volumes comes entirely

from the loss coefficients within the HPP model. The OHPP inlet is given its own

loss coefficient as well as the IHPP inlet. The IHPP inlet loss coefficient effectively

models the frictional losses due to flowing passed the rows of OBLA tubes.

As a further simplification, any frictional losses due to entering the inlet nozzle

holes, turning and flowing upward through the core and IB lower adaptor tubes is

modeled just a two separate loss coefficients: one for the core channel inlet nozzles

and the other for the IB channel inlet nozzles. Part of the reason for this was the

exact dimension of the inlet nozzle holes is difficult to find in addition to finding the

exact orificing layout of the stepped grid. Thus, the core and IB channel inlet nozzle

flow areas are not modeled as the orificing layout shown in Fig. 6-11, but simply

modeled as constant flow areas with loss coefficients applied to them.

Low Pressure Plenum (LPP)

The LPP flow path is also quite complex. Upon exiting the low pressure piping,

the low pressure flow stream enters an annular zone before flowing through a baffle

plate. It then has to turn upwards within a second annular zone and passes through

a second baffle plate where it then continues flowing upward and enters the OBLA

inlet nozzles. The OBLA inlet nozzles, also shown in Fig. 6-11, are slightly more

conventional nozzle shapes than the core and IB inlet nozzles.

The three flow zones described above are turned into three separate single volumes

in RELAP, as shown in Fig. 6-9. The first LPP volume covers the annular zone
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between the entrance from the low pressure piping to the first baffle plate. The

second LPP volume is the lower inner annular zone where the flow turns upward to

the second baffle plate. And the last LPP volume is the zone just before the OBLA

inlet nozzles. The LPP frictional modeling format is the same as that used in the

HPP, all wall friction is turned off and the frictional losses are lumped into several

loss coefficients. The LPP inlet, from the low pressure piping, is given its own loss

coefficient and each LPP baffle plate has its own loss coefficient. The second LPP

baffle plate has the losses attributed to also turning the flow upwards lumped into

it. The OBLA inlet nozzles also have their own loss coefficient.

6.3.5 Core Channel

The core channel consists of 53 core subassemblies and 12 control + 2 safety sub-

assemblies. For simplicity the control and safety subassemblies are lumped into the

core subassemblies into the IET model. Any additional frictional losses due to the

control and safety subassemblies will then be accounted for by the various loss co-

efficients within the IET model. The core subassemblies, shown in Fig. 6-12, are

divided into three sections, the lower blanket (LB), driver fuel (DF), and upper

blanket (UB). All dimensions are in inches because the figure was taken from the

Addendum to the Hazard Report. The bundle is surrounded by a hexcan, as are

all subassemblies within the reactor vessel. The LB and UB have the exact same

geometry and are 19 pin hexagonal bundles with bare rods. All rods but the center

use blanket material, while the center rod in the LB/UB sections is steel. The DF

section is a wire-wrapped bundle with 91 rods, all with fuel material. Figure 6-13

gives the specifics of the layout of the DF and LB/UB rods. Fastener grids hold the

three sections together.
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Figure 6-12: Core subassemblies
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Fluid Cells

All of the core subassemblies are lumped together to form an average core channel.

Thus, the IET RELAP model cannot distinguish between hotter and colder channels,

it simply models an average-lumped core channel. As shown in Fig. 6-9, the core

channel is divided into three zones, just like the actual core channel. The lowest

zone is the LB, the middle zone is the DF, and the top zone is the UB. With all

core subassemblies lumped together, the RELAP channels have a flow area equal to

the total flow area of all of the respective zones, but the hydraulic characteristics

of a single subassembly. The number of cell volumes in each zone was also taken

to be consistent with Ref. [43]. The LB has 6 fluid cells, the DF has 5 fluid cells,

and the UB also has 5 fluid cells. The LB zone has an additional fluid cell due to

the "diffuser" portion of the subassembly located the first 25/8 inches from the start

of the core subassembly (above the lower support grid). The last cell in each zone

represents the fastener portion that connects the zone to the next one, or in the case

of the UB is the subassembly exit portion.

Since the LB and UB zones share the same geometry, they share the same friction

uncertain parameters parameters. The DF zone has its own set of friction parameters.

The fasteners would add to the frictional losses through the subassemblies due to

additional form losses. However, I do not give each fastener its own loss coefficient.

Any additional losses due to the fasteners are lumped into the core channel inlet

nozzle loss coefficient.

Heat Structures

In RELAP heat structures must be defined in order to generate and/or transfer heat

to fluid cells. The temperature distribution through the heat structure is determined
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using a finite difference approximation to the heat conduction equation along with

the specified boundary conditions. The user must specify how the heat structure

axial cells will connect to the axial cells in the corresponding fluid cell volumes. For

simplicity, I used a one-to-one correspondence between heat structure cells and fluid

cells, so one heat structure axial cell connects to one and only one fluid cell. The

LB and UB heat structure setup was identical and represented the average LB and

UB rod within the average LB/UB section, repsectively. The DF heat structure

represented the average driver fuel rod within the average driver fuel subassembly.

To do so, the total heat transfer surface area for each rod type was equal to the total

heat transfer surface area from all rods from all core subassemblies.

The nodalization of the core heat structures followed Memmott [47]. A total of 9

nodes, or 8 intervals, were used in the DF heat structure. Five intervals within the

active fuel region, one interval for the thermal bond gap, and two intervals for the

clad. The LB/UB heat structure meshes also used 9 nodes, or 8 intervals, but each

interval was over the same material type, the blanket material. The steel center rod

in the LB/UB sections was also included but since it does not have heat generation

only 5 nodes were used. The axial power profiles in each section were setup to try

and match Baumann et al. [45].

The LB/UB heat structures share the same heat transfer coefficient multiplier,

while the DF has its own heat transfer coefficient multiplier.

6.3.6 Inner Blanket and Outer Blanket Channels

The Inner Blanket (IB) and Outer Blanket (OB) channels are almost identical to

each other. Both are 19 rod hexagonal bundles with bare rods within the hexcan.

Figure 6-14 shows the IB and OB subassembly schematic while Fig. 6-15 shows a
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cross section of the IB/OB bundle. The key differences are the lower adaptor inlet

nozzles between the IB and OB subassemblies as well as the flow distribution strips

within the bundles. As described earlier, the IB lower adaptor tubes are not modeled

explicitly. The IHPP connects directly to the core and IB channels and any effect

from the core and IB lower adaptor tubes are lumped into the core and IB inlet

nozzle loss coefficients. Including the OBLA tubes was necessary to do the elevation

differences within the reactor vessel, so as shown by Fig. 6-9 the LPP zone 3 connects

to the OBLA tubes, which then connect to the OB channel. The flow distribution

strips within the OB subassembly are larger and yield a non-trivial reduction in the

OB subassembly flow area compared to the IB subassembly. Including the flow strip

effect on the subassembly hydraulic characteristics was difficult though due to the

change in the wetted perimeter. Thus, any additional frictional losses due to the

flow strips was accounted for by IB and OBLA inlet nozzles..

Fluid Cells

As with the core channel, the IB and OB channels represent the averaged-lumped IB

and OB subassembly within the reactor vessel, respectively. The IB and OB axial

cell lengths were set to be consistent with the lengths used in the core channel, giving

a total of 15 axial cells in each. Since the flow strips are not explicitely modeled, the

IB and OB bundles have the same geometry and therefore share the same friction

parameters. The added frictional losses in the OB channel due to the flow strips is,

again, accounted for by the OBLA inlet nozzle loss coefficient.

The OBLA tube volume are also an averaged-lumped represention of the OBLA

tubes. Four axial cell volumes are used, and the OBLA tubes have their own set of

friction parameters since they are different from the OB subassembly geometry (they
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Figure 6-15: IB/OB bundle cross-section
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are simply straight pipes). The connection between the OBLA tubes and the OB

subassembly channel is modeled by a single junction but for simplicity there is no

loss coefficient applied here. Any additional frictional losses are again simply lumped

into the OBLA inlet nozzle loss coefficient.

Heat Structures

The IB/OB heat structures are modeled similarly to the LB/UB heat structures.

Nine nodes, 8 intervals, are used all within the same blanket material. The axial

power profile is also setup to follow Baumann et al. [45]. The IB/OB heat structures

also share the same heat transfer coefficient multiplier.

6.3.7 Upper (Outlet) Plenum

The upper (outlet) plenum is single fluid volume, as shown in Fig. 6-9. The one

complication is that all of the reactor vessel channels, the core channel, IB channel,

and OB channel connect to this one volume. Additionally the outlet pipe which con-

nects to the outlet boundary condition also connects to this single volume. Therefore

a RELAP BRANCH component was used to model the upper (outlet) plenum. Like

the lower plena volumes, all wall friction was turned off in the upper (outlet) plenum,

but no additional loss coefficients were applied here.

6.3.8 Conduction Within the Fluid Models

Theory

RELAP was originally developed for light water reactor analysis and so does not

represent axial or radial heat conduction within the fluid because of the relatively
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low thermal conductivity of water [48]. But with the thermal conductivity of sodium

roughly 100 times that of water and the fact that we are modeling very low flow

conditions during the transition from forced to natural convection, axial and radial

heat conduction within the sodium coolant could be very important. Following Mem-

mott (2009) [47] and Davis (2007) [48], axial and radial conduction was accounted

for by creating "pseudo" heat structures whose source terms were determined by

axial and radial conduction equations using the RELAP control variable scheme.

Note RELAP control variables is the nomenclature within RELAP that allows com-

puting quantities from variables within RELAP, just as how the QPIRT quantities

were computed in Chapter 3. RELAP control variables does not refer to the control

variable nomenclature I use for model calibration.

The axial and radial conduction models will be described for axial conduction

only, but the theory can be extended to radial conduction as well. I will use nomen-

clature consistent with Davis (2007) for describing the axial conduction equations.

But as will be seen shortly, the key difference for my implementation of the ax-

ial/radial conduction equations is I treat several key parameters as uncertain which

must be inferred out from the data. Davis (2007) and Memmott (2009) treat those

parameters as known values computed from the geometry and material properties.

Figure 6-16 illustrates a simple nodalization of three axial cells and two junctions.

The temperature, T, at each cell volume center is assumed known. Fourier's law is

used to calculate the heat transfer rate, 4, between cell m - 1, and junction m - 1/2:

4M-1,M-1/2 = -km-iAm- 1 Tm-i 2  -T. (6.5)
0.5AXm-i
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The heat transfer rate between junction m - 1/2 and cell m is likewise computed as:

dM-1/2,M= -kmAm Tm - Tm-1/2  
(6.6)

0.5Axm

Davis (2007) defines a volume parameter, B as,

Bm = kmAm (6.7)
AXm

and a junction parameter, D:

Dm-1,m = .2 BmBm (6.8)
Bm-1 + Bm

Assuming no energy is stored at the junction between volumes, 4m-1,m-1/2 and

qm-1/2,m can be equated to solve for the junction temperature:

Tm-1/2 = Bm.Tm.iBmTm (6.9)
Bm-1 + Bm

Substituting in the junction temperature into either the expressions for qm- 1,,- 1/2

and dm-1/2,m gives the heat transfer rate between cell m - 1 and cell m as:

qm-1,m = Dm-1,m (Tm - Tm- 1). (6.10)

In more complicated situations when multiple cells are attached to a single cell

volume, a parallel resistance thermal circuit can be used to solve for the heat transfer

rate from cell j to cell m, as shown in Fig. 6-17. The heat transfer rate from cell j
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Figure 6-16: Nodalization diagram for axial heat conduction

to cell m is:

q3, = -2Bj (Bm(Tm- Tj)+ EZ BiTi - T Ei Bi)
\ BBm+ Ei Bi

The total heat transfer rate received by cell volume m through the "face"

is simply the summation of the heat transfer rate from each of the cells

connected to it:

M-1/2,m = 4j,m.

(6.11)

m - 1/2,

that are

(6.12)

A similar derivation can be made for the case of multiple cells attached to the

outlet of cell volume m. The heat transfer rate from cell m to cell j through the

"face" m + 1/2 is:

mj=2Bj Bm(Tj - T) - Ei BiTi +T E Bi
B.n+ Ei Bi

(6.13)

The total heat added to a cell volume m due to axial conduction is then just the

summation of the heat transfered through the inlet faces and outlet faces attached
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j+M

Figure 6-17: Axial conduction nodalization with multiple cells

to that cell:

Qrn = i, - dm,i (6.14)
inlets outlets

Similar equations can be derived for the heat transfer due to radial conduction.

Though the volume parametersBm must be defined accordingly since the radial dis-

tances are not as straightforward as the axial distance between cell centers in RELAP

nodalizations.

Implementation

As already stated, Davis (2007) and Memmott (2009) must compute the volume

parameters for axial and radial conduction based on the specific geometry and fluid

properties of the RELAP model. I however, treat each of the conduction volume

parameters as an uncertain parameter. For simplicity, I assume the axial and radial
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conduction volume parameters (which will just be referred to as the axial and radial

conduction paraemters) are constant within a component. So each cell volume within

the DF component has the same axial and radial conduction parameter value, for

example. Additionally, the LB and UB axial and radial conduction parameters are

assumed to be the same. Since the core, IB, and OB channels are all connected to

the upper (outlet) plenum, the upper plenum also has an axial conduction parameter

associated with it. However, I do not include axial conduction between the core, IB

and OB channels with their respective lower plena.

Figure 6-18 shows the conduction network between the various components within

the reactor vessel. Axial conduction is determined between not only the cells within

a particular component, but between the axial cells of adjacent components. The

result is that the reactor vessel heat transfer is completely interconnected through

axial and radial conduction.

Figure 6-18: Axial and radial conduction illustration

The RELAP control variable system is used to compute the Q, value in each cell

within the reactor vessel due to both axial and radial conduction. These quantities

become the source terms to a set of "pseudo" heat structures that are connected to
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the corresponding fluid cells. The dimensions of these pseudo heat structures are set

so that they represent less than 1% of the actual heat structure volume attached to

each component. For example, the pseudo heat structures due to axial and radial

conduction attached to the DF fluid cells have their volume set so they are less than

1% of the total driver fuel rod and wire-wrapped spacer volume. Additionally the

RELAP heat structure direct heating option is used. As the name implies, direct

heating directly adds the heat structure heat to the fluid cell volume. Therefore

it is not added by through a heat transfer coefficient. This ensures the axial and

radial conduction "source terms" are added to their corresponding fluid cell volumes

correctly.

6.3.9 Material Properties

The material properties were all considered known. The main reason for this was

to simplify the problem given the already large number of uncertain parameters

involved. The driver fuel and blanket fuel material properties were considered con-

stants while the stainless steel material properties were determined using a linear fit.

All of the values were taken from Baumann et al.. The thermal bond gap effective

thermal conductivity within the driver fuel rod however were estimated by comput-

ing the temperature drop from the Addendum to the Hazard Report results. The

thermal bond gap volumetric heat capacity was estimated using sodium properties

at the steady-state operating temperatures. The thermal bond typically represents

a negligible thermal resistance and a negligible thermal capacity, which is why it was

not treated as uncertain in this work.
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6.3.10 Boundary Conditions

As stated earlier, the boundary conditions from Baumann et al. specify the total

primary flow rate at the pipe inlet and the inlet coolant temperature. Additionally,

the outlet pressure is held constant through the simulation. The grey boxes in Fig.

6-9 represent the generic boundary conditions to the IET RELAP model. The inlet

mass flow rate is modeled using a time-dependent junction with a specified mass flow

rate through time as a general table. The values were taken from the figure given

in Baumann et al. and is shown in Fig. 6-19. The decay power was also input as a

boundary condition as given in Baumann et al., and is shown in Fig. 6-20.

Figure 6-19: Total primary (inlet) flow rate boundary condition

An obvious point from looking at Fig. 6-19 is that it is somewhat difficult to

read. The minimum total flow rate occurs somewhere between 40 and 50 seconds

after the start of the transient. It is difficult to tell if the minimum value is 0.5%

or 1% of nominal flow. Although those differences sound small, 1% of nominal flow
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Figure 6-20: Total core power boundary condition

is 100% higher than a minimum flow rate of 0.5% of nominal flow. Likewise at the

end of the transient, what I have been referring to as the natural circulation rate

value can be between 2% and 5% of nominal flow. It is simply too difficult to read

with any more accuracy than that from Fig. 6-19. Therefore, these two mass flow

rates, the minimum flow rate and the natural circulation flow rate were considered

uncertain.

Before the minimum flow rate is reached, during the pump coastdown phase it is

easier to read a few of the values off of Fig. 6-19. So these values were input into

the time dependent junction mass flow rate general table along with the uncertain

minimum flow rate value. A linear trend was assumed between the minimum flow

rate value and the natural circulation rate at the end of the transient simulation.

Although this is not correct, it was a simple method of setting the inlet flow boundary

condition during this phase.
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6.3.11 Initial Conditions

The blowdown problem of Chapter 5 had a very simple initial condition, just a

known gas temperature and pressure within the gas tank. Here though it is much

more difficult to set the initial conditions through the entire IET RELAP model

because each fluid cell volume requires a mass flow, pressure and temperature value

assigned to it. Additionally, each of the heat structure temperature nodes must be

initialized. Since the initial condition is the steady-state condition for the Transient

Test No. 10 decay power level at the given nominal flow rate, I do not know all

of the information a priori to initialize every single fluid cell and heat structure

node. In RELAP, the standard procedure for this is to first run a "steady-state"

calculation where a "steady-state" condition is achieved using the specified boundary

conditions. The initial conditions to the "steady-state" calculation are just guesses,

and of course the more accurate they are the better. Then using those results "re-

start" the simulation with any additional information specific to the transient. I

followed the RELAP manual on how to setup and perform the re-start [17].

Additionally, Baumann et al. state that the initial core decay power uncertainty

was estimated to be on the order of 10% [45]. Therefore the initial total power level

was had an uncertain multiplier applied to it to account for this uncertainty.

6.3.12 Summary of Uncertain Parameters

In total, 41 uncertain parameters are in the IET RELAP model. In order to build

the training set, bounding values based on the parameter prior distributions needed

to be established. For the friction parameters this was relatively straightforward by

starting with McAdams turbulent friction parameter values [46] and a laminar shape

factor value of 1, and increasing the uncertainty around those values. Additionally,
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the SET models, which will be described shortly, helped define the bounding values

on many of the friction parameters because the SETs constrain those particular un-

certain parameters. For other parameters, such as loss coefficients and especially the

radial conduction parameters this was much more challenging to do. The blowdown

problem came with priors on each of the uncertain parameters, but priors do not

exist for the loss coefficients and radial conduction parameters since they are specific

to this IET model and cannot be generalized outside of this context. Therefore I

needed to establish priors myself.

My basic strategy for setting bounding values is to run scoping studies that try

and find ranges of uncertain parameter values that give predictions that "surround"

the obervational data. For smaller dimensional problems this, although maybe time

consuming if priors are not well established, is straightforward. But for the larger

dimensional problems like the EBR-II IET RELAP model, this is very difficult to

do. But, Table 6.1 provides the summary list of all 41 uncertain parameters along

with their bounding values used to build the IET model training set. The uncertain

parameter numbers are important because that is how they will be referred to in the

calibration results later on. The number identifier was easier to use in MATLAB

than defining their names. Notice how in Table 6.1 many of the loss coefficients

and conduction parameters have very large ranges, with the maximum values being

nearly 10x the minimum value. This shows just how uncertain I am in those values

a priors.
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Table 6.1: Summary of IET model uncertain parameters
number I uncertain parameter name minimum value maximum value

1 pipe network laminar shape factor 0.75 1.25
2 pipe network turbulent coefficient 0.138 0.23
3 pipe network turbulent exponent 0.15 0.25
4 pipe network flow split loss coefficient 0.65 1.7
5 pipe network elbow loss coefficient 0.35 0.9
6 low pressure throttle valve 5 50
7 HPP inlet loss coefficient 3 15
8 core channel inlet nozzle loss coefficient 5 40
9 IB channel inlet nozzle loss coefficient 1 50

10 IHPP OBLA tubes loss coefficient 3 15
11 LPP inlet loss coefficient 3 15
12 LPP baffle plate 1 loss coefficient 3 15
13 LPP baffle plate 2 loss coefficient 3 15
14 OBLA inlet nozzle loss coefficient 12.5 100
15 LB/UB turbulent coefficient 0.138 0.23
16 LB/UB turbulent exponent 0.15 0.25
17 LB/UB laminar shape factor 0.125 1.875
18 DF turbulent coefficient 0.138 0.23
19 DF turbulent exponent 0.15 0.25
20 DF laminar shape factor 0.125 1.875
21 IB/OB turbulent coefficient 0.023 0.23
22 IB/OB turbulent exponent 0.025 0.25
23 IB/OB laminar shape factor 0.125 5
24 OBLA turbulent coefficient 0.138 0.23
25 OBLA turbulent exponent 0.15 0.25
26 OBLA laminar shape factor 0.125 1.875
27 DF heat transfer coefficient multiplier 0.5 1.5
28 LB/UB heat transfer coefficient multiplier 0.5 1.5
29 IB/OB heat transfer coefficient multiplier 0.5 1.5
30 IB radial conduction parameter 500 4000
31 OB radial conduction parameter 500 4000
32 DF radial conduction parameter 500 4000
33 LB/UB radial conduction parameter 500 4000
34 OB axial conduction parameter 54.5 163.5
35 IB axial conduction parameter 6.5 19.5
36 DF axial conduction parameter 30 90
37 LB/UB axial conduction qUameter 33 99
38 UP axial conduction parameter 75 225
39 minimum inlet flow rate 0.05 0.9
40 natural circulation flow rate 1.5 4.5
41 initial core power multiplier 0.9 1.1



6.4 Pseudo SET RELAP Models

6.4.1 Overview

A series of Separate Effect Tests (SETs) were used to help inform the various wall

friction and inlet nozzle loss coefficients within the reactor vessel IET RELAP model.

I call these SETs, "pseudo" SETs because the "data" is generated from an empirical

correlation rather than coming from a true experiment. The main reason for this was

simplicity. I could use the exact components from the IET RELAP model for each

of the specific SET RELAP models. Rather than requiring a completely separate

RELAP model for each of the specific SETs. Therefore the SETs can be viewed

as updating the various uncertain parameter values to match a physical phenomena

that the IET RELAP model was not originally capable of handling. Additionally,

with the "pseudo" SET format I did not have deal with any potential discrepency

issues between the SETs and IET.

There are two types of SETs: a bundle specific SET and a channel SET. The

bundle specific SET only calibrates the friction parameters within the RELAP user-

defined friction factor correlation: the B, C, and Ds-parameters. The channel SET

calibrates those same friction parameters as well as the channel inlet nozzle loss

coefficient. The bundle specific SET has the "data" generated by the Cheng and

Todreas friction factor correlation [46]. For the DF bundle, the Cheng & Todreas

wire-wrapped bundle average friction factor correlation is used. While for the IB/OB

bundle the Cheng & Todreas bare-bundle friction factor factor correlation is used.

The channel SET "data" come from Gapalakrishnan & Gillette (1973) [49], which will

be referred to as G&G-1973. Baumann et al. actually used the results from G&G-

1973 to set the various loss coefficients and friction parameters in their COMMIX-1A
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code for their own EBR-II model. I refer to G&G-1973 as "pseudo" data because the

empirical correlations they derive for the EBR-II subassemblies originally came from

hydraulically scaled water tests [49]. Therefore it is difficult to tell in the paper if the

results I use come from experimental data directly or from the empirical correlations.

The G&G-1973 "data" was taken directly from their paper and is shown in Fig. 6-21.

Figure 6-21: G&G-1973 pressure drop "data"

Each of the SETs have the same general RELAP model, as shown in Fig. 6-

22. The dimensions and flow rates depend on the specific SET but the component

layout is basically the same. The inlet boundary condition is a time dependent

junction which sets the mass flow rate through the bundle or channel. This inlet
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boundary condition is attached to a dummy volume, labeled as component 200 in

Fig. 6-22. Dummy volume 200 is attached to the bundle/channel of interest labeled

component 400 via junction 201. If the SET is a channel SET, junction 201 is

where the inlet nozzle loss coefficient is applied. The bundle/channel component

is attached to another dummy volume, labeled as component 100, which is itself

attached to the outlet pressure boundary condition. Both dummy volumes, 200

and 100, have the wall friction turned off. Therefore the pressure drop across the

bundle/channel component is determined by subtracting the pressures within dummy

volumes 200 and 100. With the outlet pressure fixed, the inlet pressure within the

inlet mass flow boundary condition adjusts depending on the frictional characteristics

of the components and the specified mass flow rate. The resulting pressure drop is

considered to be the RELAP predicted AP value.

All of the emulators are built using the exact same formulation as described

in Chapter 4. The standard GPR emulators are built using the Empirical Bayes

approach, however. The main reason for this was to ensure that MATLAB never

breached its RAM limit, which was never a concern for calibrating the SETs indi-

vidually but could occur for simultaneous calibration described later. The Empirical

Bayes approach did not use the GPML toolkit but rather found a point estimate

from the posterior hyperparameter samples using the sampling procedure described

in Chapter 4 for the GPR emulator. The emulator-based uncertain parameter cali-

bration process is performed using the GPR-modified and FFGP-modified likelihood

functions described in Chapter 4. A key difference though between the simple friction

factor demonstration problem of Chapter 4 and the blowdown problem of Chapter

5, is that the uncertain parameter priors here are all assumed to be uniform between

their bounding values. The first reason for doing this is I did not have any a priori

bias towards any particular values, given the discussion earlier about the IET model

254



1 P-
. (0 CL0-
-

0

40
0

dl
e/

ch
an

ne
l

om
po

ne
nt

T10
1 

10
3

10
0 

50
0

RE
LA

P 
o

u
tle

t
pr

es
su

re
 B

ou
nd

ar
y

C
on

di
tio

n

If 
ch

an
ne

l S
ET

, t
hi

s
ju

n
ct

io
n

 is
 w

he
re

 th
e

in
le

t n
oz

zl
e 

lo
ss

---
---

---
- 

co
ef

fic
ie

nt
 is

 a
pp

lie
d

20
1

go
o 

-
(
0
1
 

20
0

B
un cc

L
 

...
...

--
...

..-
--

--
--

--
-

RE
LA

P 
in

le
t 

m
as

s 
flo

w
B

ou
nd

ar
y 

C
on

di
tio

n



setup. But a uniform prior completely biases the uncertain parameter values to

stay within the prior bounds, since the uniform prior has a density of 0 outside the

bounding values. This should keep the uncertain parameters from going outside the

training set, an issue which is better suited for future work. The following subsec-

tions give the emulator training results for each of the SET RELAP models. Then

the emulator-based calibration results are given.

All of the pseudo SET names are summarized in Table 6.2 below. Each SET has

its own RELAP model and "observational data', as well as an accompanying "best"

emulator. The criteria for deciding the "best" emulator will be described below.

Additionally, Table 6.3 summarizes the various types of FFGP emulators built for

each of the SET models. The "maximum number of components" column in Table

6.3 means that all FFGP emulators up to and including that many components were

built for the corresponding SET model. For example, 1-component, 2-component,

3-component, and 4-component FFGP emulators were built for the GGcore model.

Table 6.2: "Pseudo" SET Names
Acronym j Full name

CTDF Cheng & Todreas Driver Fuel bundle-specific AP SET
GGcore Core Channel G&G-1973 channel AP SET
IBCT IB/OB Cheng & Todreas bundle-specific AP SET
IBGG IB G&G-1973 channel AP SET
OBGG OB G&G-1973 channel AP SET

6.4.2 Core Channel SETs

Cheng & Todreas Driver Fuel SET

The Cheng & Todreas driver fuel (CTDF) pseudo SET computes the friction factor

from the wire-wrapped bundle average Cheng & Todreas correlation. This friction
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Table 6.3: SET FFGP emulator type summary
SET Number of factors INumber of components

CTDF 2 3
GGcore 2 4
IBCT 2 4
IBGG 2 4
OBGG 2 4

factor is then used to compute the pressure drop across the DF subassembly bundle

length. This pressure drop value is considered to be the "data" for the pseudo SET.

Twenty-five data points are generated ranging from 1% of nominal core channel flow

to 100% core channel flow. The observational error was assumed to be that 95% of

the probability was covered by 33% around the mean data value of the first data

point. This error (variance) value was assumed then to be constant for each of the

25 data points.

With 3 uncertain parameters, the DF friction parameters - which correspond to

the IET numbers 18, 19, and 20 - a total of 50 RELAP case runs were used. The

50 different uncertain parameter values were determined using the MATLAB func-

tion 'lhsdesign' just as in Chapter 4. In the FFGP emulator setup, the uncertain

parameter factor is factor 2, while the control variable factor is factor 1. Fifteen

control variable locations were taken for the training set. But, the major differ-

ence between this current FFGP setup and the simple friction factor demonstration

problem in Chapter 4 is that each control variable location (an inlet mass flow rate

value) corresponds to a separate RELAP run. Thus, with 50 cases - 50 different

values of the uncertain parameters - and 15 control variable locations RELAP had

to be run 750 times. the CTDF FFGP training set is shown in Fig. 6-23, as grey

lines, along with the Cheng & Todreas "observational data" points as red error bars.
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The error bars are difficult to distinguish because the observational error is quite

small. Each RELAP run took roughly 2 seconds, thus it took about 25 minutes to

build the entire FFGP training set. As that computation time suggests, I did not

take advantage of any parallel computing resources. Although my personal PC has

a Quad Core processor (with 8 threads) I simply ran the training set in series. A

benefit of creating the emulator training sets is that once the training inputs are

all specified the training case runs could be run in parallel, which could drastically

reduce the computational time of creating the training set. But, I always performed

calculations in series to keep things simple.

The FFGP 2-factor 1-component, 2-component, and 3-component emulators were

built using the training dataset shown in Fig. 6-23. As in Chapter 4, the FFGP em-

ulator accuracy is compared by examining the likelihood noise hyperparameter point

estimate values. Figures 6-24 through 6-26 give the likelihood noise hyperparameter

samples in blue and the point estimate in red for the 1-component, 2-component,

and 3-component FFGP emulators, respectively. Similarly to the simple friction fac-

tor demonstration problem in Chapter 4, the 2-component emulator is much more

accurate relative to the training set than the 1-component emulator.

All FFGP emulators were built with a total of 10 latent burn-in samples and

2 x 10 latent posterior samples with the first half of those discarded, yielding a total

of 105 posterior samples saved. Table 6.4 summarizes the FFGP emulator build

times. If the total emulator build times are compared to the the time it takes to

run a single RELAP case, ~2 s, then the CTDF RELAP model could be run 45,

58, and 68 times in the time it takes to build the 1-component, 2-component, and

3-component emulators, respectively.

The built FFGP emulators were then used to calibrate the 3 uncertain parame-

ters in the CTDF SET model. The FFGP-modified likelihood structure described in
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4 CTDFFFGP Training Set and Observatinal Data

0 0.2 0.4 0 .
scaled inlet mass flow rate

Figure 6-23: CTDF FFGP Training set

Table 6.4: CTDF FFGP emulator build times
avg. time per

total latent avg. time per total latent latent
burnin time tetin posterior time posterior

iteration iteration

2-fact 1-comp 54.73 s 5.473 x 10-4 s 36.59 s 1.825 x 10-4 S

2-fact 2-comp 63.47 s 6.347 x 10-4 s 52.98 s 2.649 x 10- s

2-fact 3-comp 71.23 s 7.123 x 10-4 s 65.64 s 3.282 x 10-4 s
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Figure 6-24: CTDF FFGP 2-factor 1-component likelihood noise hyperparameter

260

- . . . . . .. .-.. .



FFGP 2-component Likelihood Noise Hyperparameter Sample History

-6.5

-7

-7.5

-8

-8.5

-9

-Q

I I I I I I I I I

-b --- 4=S

0 1 2 3 4 5 6 7 8 9 10

x 10'

Figure 6-25: CTDF FFGP 2-factor 2-component likelihood noise hyperparameter
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Figure 6-26: CTDF FFGP 2-factor 3-component likelihood noise hyperparameter
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Chapter 4 was used. A total of 10 MCMC samples were made using the AM scheme,

just as in Chapter 4. Figures 6-27 through 6-29 show the calibrated posterior predic-

tions and the scaled posterior uncertain parameter histograms, for the 1-component,

2-component, and 3-component emulator-based calibration process. Again, in the

plot of the posterior predictions, the blue lines are the posterior quantiles of the

posterior predictive means, while the green band is the total predictive variance -

including the emulator uncertainty. The posterior uncertain parameter histograms

are shown over their scaled ranges. The scaled values of 0 and 1 correspond to the

minimum and maximum values given in Table 6.1. I presented the uncertain param-

eters as their scaled values because it was easier to show them this way in MATLAB.

For reference, the scaled prior histograms are shown in green behind the posterior

histograms shown in blue.

Given the demonstration problem in Chapter 4, we expected the 1-component

FFGP emulator to be very uncertain. Additionally, the likelihood noise hyperparam-

eter training results in Figures 6-24 through 6-26 confirmed that additional compo-

nents are necessary in order to emulate the CTDF model accurately. The prediction

results shown in Figures 6-27 through 6-29 confirm this since the 1-component FFGP

calibrated posterior predictions have a very large total predictive uncertainty band

compared to the 2 and 3-component FFGP emulators. It makes sense that the addi-

tional uncertainty from the 1-component FFGP emulator prevents it from learning

more about the uncertain parameters. Comparing the posterior histograms, the 1-

component-based results show it is only able to properly identify the posterior on

the C-parameter is somewhere within the lower half of the prior range of values. But

what is concerning between the 2-component and 3-component-based results is the

4s-parameter has completely different posterior distributions. It was expected that

since both have very little error relative to the training set they should yield similar
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posterior results. However, the 3-component emulator makes it appear that there is

still too much additional uncertainty contributed by the 2-component emulator to

fully resolve the uncertain parameter posterior distributions.

We are then faced with the issue of choosing which of the posterior distributions

are "the best". The most formal way to answer this is with Bayesian Model Selection

which essentially tries to fulfill Bayesian Occam's Razor by finding the "simplest

answer" to a scenario [24]. The best solution - from a Bayesian Model Selection

point of view - is the solution that maximizes the marginal likelihood which from

Chapter 2 is the denominator in the posterior distribution. But, since we use MCMC

sampling we never actually compute the marginal likelihood. In general, computing

the marginal likelihood with MCMC sampling is very difficult [7], [9], {?]. Therefore,

I will only use an "eye ball" test to decide the "best solution" for now. The section

on future work in Chapter 7 will discuss how improvements to the FFGP emulator

construction can help get around having to use an "eye ball" test and actually have

an estimate to the marginal likelihood.

Figure 6-30 shows the sampled log-joint-posterior values for 2-component and

3-component-based calibration processes. Since the uncertain parameter priors are

all uniform distributions over the scaled range of 0 to 1, the posterior essentially

equals the likelihood. The exact way of computing the marginal likelihood is to then

compute the average joint-posterior value from the large number of samples. The

"eye ball" test simply looks at the posterior samples of the log-joint-posterior to see

which appears to on average have the largest value. The 2-component "eye ball"

average log-joint-josterior value is around 195, while the 3-component "eye ball"

average log-joint-posterior value is around 145. To compare models, Bayes Factors

are computed which take the ratio of the marginal likelihood from one model to

another. If that ratio is large, the model in the numerator is considered to be better,
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or more formally explain the data better, than the model in the denominator [4]. The

"eye ball" Bayes Factor between the 2-component and 3-component based results is

therefore on the order of 10". Thus, the 2-component FFGP emulator is better than

the 3-component emulator and we should take the 2-component FFGP emulator-

based results as "better" or "more correct" than the 3-component FFGP emulator

based results. This may seem counter-intuitive, since the 3-component emulator has

more flexibility than the 2-component emulator. Bayesian model selection, however,

penalizes models with too much complexity. It is essentially a Bayesian alternative

to "overfitting" since a model with too many degrees of freedom can have a large

number of possible combinations that still match the data. The "simplest solution" is

therefore a balance between the accuracy and the degrees of freedom (the complexity)

within a model. The 3-component emulator is "overfit", in a Bayesian sense, to

the training data preventing it from generalizing as well as the (slightly) simpler

2-component emulator.

A key aspect of using the emulator-based approach is to make sure there is consid-

erable computational savings from building the emulator and applying the emulator

to calibrate the uncertain parameters. Table 6.5 below summarizes the computa-

tional expense of the emulator-based calibration process. The major take away from

Table 6.5 is that the FFGP emulators are almost an insignificant amount of time

compared to just creating the training set. Once that training set is created the

training the emulators for the CTDF model is fast and then using the emulators to

calibrate the CTDF model is even faster. In the time it takes to build and apply the

slowest FFGP emulator (the 3-component emulator) 100 RELAP runs of the CTDF

could be made. That number is just for the approximately 2 second run time of a

single CTDF RELAP case run. As stated before, if the CTDF RELAP model was

used directly in the MCMC sampling, the CTDF RELAP model must be run 25
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separate times to compare to the 25 "data" points. If parallel computing resources

were available to run on 25 separate processors then this would only take a little

over 2 seconds per MCMC sample. Each MCMC iteration with the slowest FFGP

emulator is over 3000x faster than the parallel computing direct simulator-based ap-

proach. Or, as in how I have run RELAP, if each RELAP run was made in series

a single MCMC iteration would take roughly 50 seconds to complete. The slowest

emulator is therefore over 75000x faster than the in-series simulator-based approach.

Table 6.5: CTDF Uncertain parameter calibration computational times
Total

emulator- Effective
Avg time per based number of

MCMC calibration RELAP runs
FFGP tyPe sample with time in the same

the emulator (including amount of
time to create time
training set)

2-fact 1-comp 4.199x10~ 4 s 1633.31 s 66 (816)

173.56 s
2-fact 2-comp 5.711 x 10-4 s 1673.56 s) 86 (836)

201.83 s
2-fact 3-comp 6.496 x 10-4 s 1701.83 s) 100 (850)

Core Channel G&G-1973

The Core Channel G&G-1973 (GGcore) pseudo SET has a slightly different RELAP

model than the generic pseudo SET RELAP model shown in Fig. 6-22. This is only

because as shown in Fig. 6-9, the core channel is split into 3 sections, the lower

blanket (LB), driver fuel (DF), and upper blanket (UB). The RELAP component

400 in Fig. 6-22 is therefore replaced by the core channel layout used in the IET
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model directly. This means the LB/UB friction parameters are also included within

the GGcore RELAP model. The GGcore SET setup and application is identical to

the CTDF SET discussion above, but it simply includes more uncertain parameters.

As described earlier as well, the purpose of the GGcore SET is to include the

inlet nozzle loss coefficient, since the G&G-1973 data is the pressure drop across

the entire channel. The GGcore RELAP model therefore has a total of 7 uncertain

parameters. Their corresponding IET uncertain parameter numbers are: 18, 19, 20

(the DF friction parameters), 15, 16, 17 (the LB/UB friction parameters) and 8 (the

core channel inlet nozzle loss coefficient). The number of case runs in the training

set was increased to 100 to accomodate more uncertain parameters, but the number

of control variable locations was maintained at 15. A single RELAP run took ~3

seconds now instead of the ~2 seconds for the CTDF RELAP model. So it took

rough 75 minutes to create the entire GGcore FFGP training set which is shown

in Fig. 6-31. The observational "data" taken from the G&G-1973 reference [49] is

shown as red error bars using the same assumptions on the observational error as

used for the CTDF "data".

The procedure of building various FFGP emulators and applying them to cali-

brate the uncertain parameters was the same as described for the CTDF RELAP

model. The log-joint-posterior "eye ball" test was also used to determine which em-

ulator was the "best". To save space, only results for the "best" FFGP emulator will

be shown. Table 6.6 provides the computational times required to build each of the

GGcore FFGP emulators.

The 2-factor 3-component FFGP emulator was considered to be the "best". Its

likelihood noise hyperparameter training results are shown in Fig. 6-32 and its

calibrated posterior results are shown in Fig. 6-33. As expected only the inlet

nozzle loss coefficient is learned from the G&G-1973 data. The calibrated posterior
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Figure 6-31: GGcore FFGP training set

Table 6.6: GGcore FFGP emulator build times
FFGP type total latent avg. time per total latent avg. time per

burnin time latent burnin posterior time latent
[s] iteration [s] [s] posterior

I I_ I_ I I iteration [s]

2-fact 1-comp 85.87 8.587 x 10-4 46.60 2.330 x 10-4

2-fact 2-comp 92.43 9.243 x 10-4 66.19 3.31 x 10-r
2-fact 3-comp 105.66 1.057 x 10- 3  85.55 4.227 x 1i-
2-fact 4-comp 114.24 1.1 x 10- 102.97 5.149 x 10~4
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predictions have a larger amount of emulator uncertainty compared to the CTDF

calibrated posterior predictions. The friction parameters exhibit bimodal posterior

distributions, with modes at the bounding extremes of their priors. Originally, this

was slightly surprising to see. The uniform priors do not bias the parameters to

take any particular set of values, over the prior range. With a majority of the

data variability explained by the inlet nozzle loss coefficient, the posterior friction

posterior values simply allow the emulator predictions to match the G&G-1973 data.

The GGcore model cannot "see" the specific physics dictating the pressure drop

across the LB/UB and DF subassemblies. It only sees the channel wide response

which is why it makes sense that the inlet nozzle loss coefficient (IET uncertain

parameter 8) is learned the most from the data. It should be noted that there

are only 6 observational data points in the GGcore SET, compared to the 25 data

points in the CTDF SET. More data points would have allowed the inlet nozzle loss

coefficient to be inferred with even higher precision.

The computational times required to perform the uncertain parameter MCMC

sampling sampling with each of the FFGP emulators are shown in Table 6.7. In order

to achieve better mixing rates, the emulator-based uncertain parameter calibration

needed to be run a total of 2 x 105 (with the first half discarded as burn-in), compared

to the 105 total samples used previously. Even though more samples were required

the time to create the GGcore training set still dominates the total emulator-based

calibration execution time. The slowest emulator the 2-factor 4-component FFGP

emulator was not considered to be better than the 2-factor 3-component emulator,

due to the Bayesian model selection "eye ball" test described previously. But even

this complex, and relatively slow emulator takes the equivalent of 80 runs of the

GGcore RELAP model. Creating the GGcore training set takes roughly 95% of

the total emulator-based calibration time. Thus, again the emulator computational
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demand is effectively negligible compared to running the RELAP model.

Table 6.7: GGcore Uncertain parameter calibration computational times
Total

emulator- Effective
Avg time per based number of

FFGP type MCMC calibration RELAP runs
sample with time in the same
the emulator (including amount of

time to create time
training set)

2-fact 1-comp 5.075 x 10-1 (01.5) 33 (1533)

2-fact 2-comp 6.162 x 10-4 (23.2) 41 (1541)
46.2)

2-fact 3-comp 7.341 x 10(4 46.8) 48 (1548)

2-fact 4-comp 1.2 x 10-4 240.00 (4740) 80 (1580)

6.4.3 Blanket SETs

IB/OB Cheng & Todreas SET

The IB/OB Cheng & Todreas (IBCT) pseudo SET computes the friction factor using

the Cheng & Todreas bare-rod bundle friction factor correlation. Unlike the wire-

wrapped bundle average friction factor factor, the bare-rod bundle version required

computing an averaging process of all the subchannels within the IB subassembly

bundle [46]. But, other than that difference, the IBCT pseudo SET setup is identical

to the CTDF pseudo SET setup. The friction factor is then used to compute the AP

across the IB subassembly length(which is identical to the OB subassembly bundle as

described previously). The length is just the length of the bare-rods within the hex
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can and so that any additional frictional losses are not included within this pseudo

SET.

With 3 uncertain parameters, 50 case runs were used to create the training

dataset. But, after trial and error, I found that using 25 control variable loca-

tions, instead of 15 provided better FFGP emulator results for the blanket SETs.

The IBCT FFGP training set and observational data are shown in Fig. 6-34.

x 10 IBOCT FFGP Training Set and Observational Data
14

10 I-

8 I-

C

4

2

0 0.2 0.4 0.6
scaled inlet massflow rate

Figure 6-34: IBCT FFGP training set

The likelihood hyperparameter for the FFGP 2-factor 3-component emulator of
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the IBCT is shown in Fig. 6-35. This was the "best" emulator as determined by my

"eye ball" Bayesian Model Selection criteria and will be the only results shown for

the IBCT model. Once built, the FFGP 2-factor 3-component emulator was used

to calibrate the uncertain parameters in the IBCT RELAP model, using the FFGP-

modified likelihood with the AM-MCMC scheme. The emulator based calibration

results are shown in Fig. . The IB/OB friction parameters' corresponding IET

uncertain parameter numbers are: 22, 23 and 24. The posterior IB/OB friction

parameters' histograms look far more Gaussian-like than the DF friction parameters'

posterior histograms. One important thing to note about the IBCT SET compared

to the CTDF SET is that the inlet mass flow rate for the IBCT SET is lower than

that of the CTDF SET inlet mass flow rate. The core channel (and thus the driver

fuel subassembly) receives a majority of the high pressure stream and so has a much

higher mass flow rate through it than the IB channel. I present all of the results

using the scaled inlet mass flow rate because it was simply easier to use in MATLAB

a quantity between 0 and 1. But the max scaled inlet mass flow rate (a value of 1)

for the IBCT SET was much smaller than the max scaled inlet mass flow for the

CTDF SET. Therefore, the IBCT SET has more data points that fall within the

transition and laminar flow regime, than the purely turbulent flow regime compared

to the CTDF SET. That suggests why IB/OB laminar shape factor (IET uncertain

parameter number 23) has a much larger posterior mode value than the posterior

DF laminar shape factor as shown in Fig. 6-28. This also explains why the blanket

SETs required more control variable locations than the core channel SETs, since the

transition flow regime friction factor is an interpolation between the laminar and

turbulent friction factors and is therefore a more complicated function.

The emulator-based calibration compuational times for the IBCT model are very

similar to the computational times for the CTDF model. Although the IBCT emula-

278



tors required more factor-1 (the control variable factor) training points, the factor-1

size does not impact the computational speed that much.

FFGP 3-component Likelihood Noise Hyperparameter Sample History
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Figure 6-35: IBCT FFGP 2-fact 3-comp likelihood noise hyperparameter

IB G&G-1973

The IB G&G-1973 (IBGG) pseudo SET is similar to the GGcore SET described

previously. But, as expected the G&G-1973 data pertains to the IB channel rather
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than the core channel. Since the IB channel only has the IB subassembly in it, the

only additional uncertain parameter is the IB channel inlet nozzle loss coefficient,

IET uncertain parameter number 9. The IBGG training set is shown in Fig. 6-37

which had 75 case runs along with 25 control variable locations. The red error bars

in Fig. 6-37 are the G&G-1973 observational data points.
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Figure 6-37: IBGG FFGP training set

The "best" FFGP emulator for the IBGG training set was the FFGP 2-factor

3-component emulator. The corresponding likelihood hyperparameter for the FFGP
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2-factor 3-component emulator is shown in Fig. 6-38 and the emulator-based cali-

bration results are shown in Fig. 6-39. The most striking feature of the uncertain

parameter posterior histograms in Fig. 6-39 are how different the IB/OB friction

parameter posteriors are from their corresponding posterior results from the IBCT

SET. The question of which SET is "more correct" will be answered in the section

on simultaneous calibration later on. The IBGG emulator computational times are

also similar to their core channel counterparts, the GGcore emulators.
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Figure 6-38: IBGG FFGP 2-fact 3-comp likelihood noise hyperparameter
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Figure 6-39: IBGG FFGP 2-fact 3-comp-based calibration results
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OB G&G-1973

The OB G&G-1973 (OBGG) pseudo SET has more in common with the GGcore

SET than the IBGG SET did. The OBGG RELAP model includes the OBLA

tubes beneath the OB subassembly channel, and so includes the 3 OBLA friction

parameters. With the OBLA inlet nozzle loss coefficient, the OBGG RELAP model

has 7 uncertain parameters, whose corresponding IET uncertain parameter numbers

are: 21, 22, and 23 (IB/OB friction parameters), 24, 25, and 26 (OBLA friction

parameters), and 14 (OBLA inlet nozzle loss coefficient). The OBGG training set

uses 100 case runs, like the GGcore training set, and uses 15 control variable locations

like the core channel SETs. The OBGG FFGP training set and G&G-1973 data are

shown in Fig. 6-40.

The "best" FFGP emulator for the OBGG training set was also the FFGP 2-

factor 3-component emulator. The corresponding likelihood hyperparameter and

emulator-based calibration results are shown in Figures 6-41 and 6-42. The OBGG

SET observational error is larger than for the other SETs, because I still use the

same procedure as described in the CTDF section where I assumed 95% of the

observational data probability falls with 33% around the data mean value for the

first data point. The first data point for the OBGG SET data has a larger AP than

the first data points in the other SETs due to data points that I chose from Fig. 6-21.

The scaled inlet mass flow rate was also not able to be as low of a fraction of the

nominal OB channel flow rate (the low pressure flow rate) compared to the minimum

flow rate values in the other SETs due to the G&G-1973 data set. The mass flow

rate values are then still within the transition flow regime and not purely laminar

flow. Which explains why the laminar shape factor posteriors are not changed all

that much relative to the priors for the OBGG SET.
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Figure 6-40: OBGG FFGP training set
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FFGP 3-component Likelihood Noise Hyperparameter Sample History
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Figure 6-41: OBGG FFGP 2-fact 3-comp likelihood noise hyperparameter
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Figure 6-42: OBGG FFGP 2-fact 3-comp-based calibration results
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6.5 IET Output Calibration Results

With the SET model calibrations completed, the IET RELAP model calibration was

performed. Unlike the pseudo SETs however, the IET data is real data taken from the

EBR-II Transient Test No.10 Phase 2, as described earlier. Three types of data are

given in Baumann et al.: the low pressure flow through into the low pressure plenum,

labeled as LPP flow; the top-of-core temperature, denoted TTC; and the core-outlet

temperature, denoted OTC. Even though several references detailed the estimated

measurement error within the XX08 instrumented subassembly [50], simply reading

Transient Test No.10 measurement data off of Figures 6-6 through 6-8 constituted the

largest source of error for the observational data. Therefore the IET observational

error value is really just my own uncertainty in reading the figures since tabulated

data was not given. The OTC and TTC errors were set to have 95% of the data

probability to fall within 3.5*C around the data mean. The LPP flow measurement

error was much harder to set. Reading Fig. 6-8 is very difficult, but I wanted to

make sure the assumed measurement error was not large enough to allow the LPP

flow rates to be positive during the second half of the transient. Therefore, I solved

for the measurement error so even 2 standard deviations away from the mean gives

a negative LPP flow value. I kept that measurement error value constant for all of

the LPP flow data points, which meant LPP flow data set was much more precise

compared to the OTC and TTC observational datasets.

In order to create the training sets for each output, fluid cell locations had to be

chosen to correspond with the with the XX08 OTC and TTC thermocouple posi-

tions. Based upon the thermocouple locations in Ref. [50] the OTC thermocouple

corresponded nearly to the cell center of the last cell in the UB section of the core

channel. Also from Ref. [50] the TTC thermocouple position was very close to the
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cell center of the next to last cell within the DF section of the core channel. The

LPP flow was easier because this was just the low pressure stream flow rate and was

taken at the junction connecting the low pressure piping to the low pressure lower

plenum.

With 41 uncertain parameters a large number of RELAP cases needed to be run.

Since this is a transient simulation a single case run produces the predictions at

various points in time. I chose to use 500 case runs and 51 control variable locations

(points in time) taken per case. The uncertain parameter values for the 500 case runs

were determined using the MATLAB latin hypercube sampling function 'lhsdesign',

with time included as an input. This allowed a standard GPR emulator to be built

for each of the IET model output types as well. But of the 500 case runs 10 crashed,

therefore 490 training cases were used, and so a total of 24,990 FFGP training points

were used for each of the IET output types. A single IET RELAP model case run

took between 40 and 42 seconds. The time difference I think had to do with the

time-stepping scheme which might have needed to reduce to reduce the time step

size depending on the values of the uncertain parameters for that particular case.

But creating the training set for the IET model therefore took roughly 5.5 hours.

Building the emulators with these many training points was not a trivial task.

During the latent bum-in phase of the FFGP training process, each MCMC sample

required inverting 2 covariance matrices: factor 1 was size 51 x 51 and factor 2 was

size 490 x 490. Once the hyperparameter point estimates are found at the end of the

latent burn-in phase, the latent posterior sampling phase is still quite complex since

depending on the number of components used, thousands of latent variables must

be sampled. With 3 components, factor 1 has 51 x 3=153 training latent variables

and factor 2 has 490 x 3=1470 training latent variables. Without the Hamiltonian

Monte Carlo (HMC) MCMC algorithm sampling a latent variable space of that size
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with potentially very correlated latent variables would be almost impossible.

Only the "best" emulators will be shown in the following subsections for each of

the IET outputs. The FFGP emulator-based calibration results will be compared to

the GPR emulator-based calibration results for each output as well. Table 6.8 be-

low summarizes various emulators built for each of the IET outputs. The "minimum

number of components" column means that FFGP emulators with fewer components

were not built for the corresponding IET output type. This saved time since the em-

ulator training, as will be described below, was not trivial for the IET outputs. Table

6.9 summarizes the emulator-based calibration computational times for each of the

IET outputs using their corresponding "best" emulators. The following subsections

will describe each of the emulator-based calibration results in detail. Due to more

complex nature of emulating the IET output, more samples were needed compared to

the SET emulators. The total emulator-based calibration times include the time to

create the training set in parantheses, but the training set does not need to be rerun

for each of the outputs. Each RELAP run produces all three IET outputs. Thus the

total emulator-based calibration computational time (including creating the training

sets, building the "best" emulators for each of the IET outputs, and performing un-

certain parameter calibration with each of the "best" emulators) took 526 minutes

(approximately 8.77 hours), or the equivalent of running the IET RELAP model only

789 times.

6.5.1 LPP flow results

The LPP flow FFGP training set is shown in Fig. 6-43. The RELAP output was

taken at 1 second intervals, so there are actually 201 LPP flow RELAP predictions.

But, as stated already, I only used 51 time locations as for the control variable factor,
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Table 6.8: IET output emulator type summary
Output Output full Number of factors Min. number Max. number

name of of
components components

LPP Low pressure 2 2 3
flow rate

TTC Top-of-core 2 3 4
Temp.

OTC Core-outlet 2 4 5
Temp.

Table 6.9: IET output "best" emulator-based calibration computational times
Output Best FFGP total latent total latent total total

emulator type burnin posterior uncertain emulator-
training time training time parameter based

[minutes] [minutes] calibration calibration
time time

[minutes] (including
time to create
training set)

[minutes]
LPP 2-fact 3-comp 29 19 10 58 (388)
TTC 2-fact 4-comp 29 10 17 56 (386)
OTC 2-fact 5-comp 29 25 28 82 (412)
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factor 1. All of the RELAP LPP flow predictions are shown in blue in Fig. 6-43,

while the 51 time locations taken per case run are shown in grey. The Transient Test

No.10 observational data is shown in red as usual. The LPP flow output is presented

unitless as a normalized mass flow rate where the normalizing constant is the known

low pressure nominal flow rate. As seen in Fig. 6-43, some of the cases yield LPP

flow rates above the nominal low pressure flow rate, due to those case runs having

frictional characteristics lower than the actual EBR-II system.

Normalized LPP flow rate

-

0 0-2 0.4 0.6
scaled time

0.6 1 12

Figure 6-43: LPP flow FFGP training set
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The LPP standard GPR emulator consisted of 42 input parameters, the first 41

were the IET model uncertain parameters and the 4 2" input was time. Just as in

the blowdown problem, only one training point was taken per case run so there were

490 training points. The GPR emulator was built using 5 x 104 bum-in samples

and 5 x 104 posterior samples. To prevent RAM overload, the Empirical Bayes

approach was used here as well with the hyperparameter point estimates taken as

the mean values from the sampling results. Building the GPR emulator took roughly

74 minutes to complete and the likelihood hyperparameter (and covariance function

signal noise) results are shown in Fig. 6-44. The mixing rate was very poor which

was rather unusual for the GPR emulator training. I tried retraining multiple times,

but the GPR emulator training results of the LPP flow output always came back

similar. The reason for why I think the mixing rate is so poor actually is best seen

from the GPR-based calibration results. The GPR-modified likelihood function was

used to perform the AM-MCMC scheme with 5 x 10 samples. Figure 6-45 shows

the calibrated posterior scaled predictions. The GPR output is scaled to a standard

normal, and the reason why Fig. 6-45 shows the scaled predictions is because it

shows potentially why the GPR emulator can be such a poor choice for the LPP flow

output. The first observational data point, besides being located outside the training

set (shown as the grey dots in the figure), is roughly 8 standard deviations away from

the scaled mean. The training points in the very beginning of the transient are all

located at least 2 standard devations away from the scaled mean. These training

points are essentially extreme values, and with how the GPR emulator predictions

work, may influence predictions closer to the rest of the training set that is around

the scaled mean (which is 0). Building the GPR emulator is difficult because then

it must find hyperparameter values that not only give "good" matches with the

training points near the scaled mean, but also at the training points that are beyond
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2 standard deviations away from the scaled mean. This is a difficult situation for the

standard GPR emulator to handle and as shown in the posterior predictions, results

in very high levels of predictive uncertainty.
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Figure 6-44: LPP GPR likelihood noise hyperparameter

The LPP FFGP 2-factor 3-component emulator was considered to be the "best".

The FFGP 2-factor 3-component emulator was built using 10' latent burn-in samples

and 5 x 10 5 latent posterior samples. I used such a large number of latent posterior
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Scaled Posterior Calibrated Predictions
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Figure 6-45: LPP GPR calibrated predictions

295

6

4

28)

-U

0

-2 1-

-4'
-0. 2 1.2



samples to try and guarantee a good mixing rate of the training latent variables. The

latent burn-in phase took roughly 29 minutes and the latent posterior phase took

roughly 19 minutes. The FFGP emulator training is faster for a few reasons, first

the GPR emulator training uses a different MCMC scheme, the delayed rejection

(DR) + adaptive metropolis (AM) scheme. So if the first stage proposal is rejected,

the second stage proposal requires inverting the covariance matrix again. Therefore

each MCMC iteration might have to invert 2 covariance matrices of size 490 x 490.

As pointed out, each MCMC stage inverts two covariances, but inverting the 51 x 51

factor 1 covariance matrix is very fast compared to inverting a second 490 x 490

covariance matrix. Secondly, to try and speed up the MATLAB computations, I used

the MATLAB MEX feature to write a compiled function to build smaller dimensional

covariance matrices. The factor 1 covariance matrix is small enough to make use of

that compiled function which greatly accelerates a single MCMC iteration. The

larger factor 2 covariance matrix (and thus the GPR covariance matrix) are too

large to make use of that faster compiled function. Figure 6-46 shows the likelihood

noise hyperparameter for the LPP FFGP 2-factor 3-component emulator.

The built LPP FFGP 2-factor 3-component emulator was then used to calibrate

the IET uncertain parameters. All of the IET uncertain parameters influence (some

more than others) all three IET outputs. So calibrating the uncertain parame-

ters with each IET output separately first, compared to calibrating with all three

IET outputs simultaneously provides a useful demonstration of which of which pa-

rameters influence each output the most. Only 5 x 10 samples were used in the

FFGP emulator-based uncertain parameter calibration process because each itera-

tion is relatively slow. A single AM-MCMC iteration with the LPP FFGP 2-factor

3-component emulator takes approximately 0.0117 seconds. And so these results

were generated in about 10 minutes. The FFGP predictions are so slow for several
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Figure 6-46: LPP FFGP 2-fact 3-comp likelihood noise hyperparameter
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reasons, first of the size of the training set. Second, I make 201 predictions at one

second (simulation time) intervals - corresponding to a one-to-one comparison in the

amount of predictions I take from a single RELAP run. In order to make a predic-

tion, each predictive point must be compared to each training set point (as shown in

Chapter 4). Thanks to the structure of the FFGP emulator, each MCMC iteration is

only changing the factor 2 (the uncertain parameter factor) predictive input, so this

large factor 1 (the control variable - or time - factor) only needs predictive "informa-

tion" only needs to be computed once. But, this does mean the matrix operations are

larger than other emulators I have constructed as part of this thesis and that slows

down the computation slightly. Lastly, computing the posterior predictive variance

with contributions from covariances between each factor and each component are

quite slow. If the posterior predictive covariance structure was ignored, the FFGP

emulator prediction is almost twice as fast. But depending on the model, doing that

can drastically over-estimate the posterior predictive variance.

The LPP FFGP emulator-based calibrated posterior predictions are shown in Fig.

6-47 and the associated posterior uncertain parameter histograms are shown in Fig.

6-48. The FFGP emulator-based posterior predictions follow the observational data

very well. Many of the data points fall within the emulator total predictive variance,

which does limit some of the posterior "learning" of the uncertain parameters. But it

is very apparent the FFGP emulator predictions are far superior to the standard GPR

emulator predictions for the LPP flow output. Several of the uncertain parameters

that change the most from their uniform priors make intrinsic sense given that this

is the LPP flow data. IET uncertain parameters 39 and 40, the uncertain inlet flow

boundary condition parameters and IET uncertain parameter 6, the low pressure

throttle valve clearly dominate the LPP flow data since they directly impact the low

pressure flow rate. But since these are relatively few samples some of the movement
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in other parameters might be more due to just the sampling not being the best.
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Figure 6-47: LPP FFGP emulator-based calibrated predictions

6.5.2 TTC results

The TTC output training set is shown in Fig. 6-49 and is setup just like the LPP flow

training set. The TTC GPR emulator was built with the same number of samples

and took about same amount of time to train as the LPP flow GPR emulator. Figure
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6-50 shows the GPR emulator likelihood noise hyperparameter. The fact the mixing

rate is so much better than the likelihood noise hyperparameter for the LPP flow

output, suggests the GPR emulator should perform better on the TTC output than

the LPP flow output. That is indeed the case as shown by the calibrated posterior

GPR TTC predictions in Figure 6-51. The posterior predictions roughly follow the

data points and the total emulator predicted variance is not much larger than the

assumed observational error. As we expected from the blowdown problem in Chapter

5, the GPR emulator posterior predictions do not appear to follow a trajectory. The

GPR emulator is simply trying to interpolate (regress, really) the various training

points when making a prediction and so does not "see" if one point in time comes

before or after another. But that said, if the FFGP emulators were not available,

this would have been considered a pretty good emulator of the TTC output.Also,

predictions are only made at points in time corresponding to a data point. This

was done to save time for the GPR predictions since each prediction point must be

compared against all training points.

The "best" FFGP emulator for the TTC output was the 2-factor 4-component

emulator. Unfortunately, I found from experience that if I used 5 x 101 latent pos-

terior samples with a 2-factor 4-component or 5-component emulator, sometimes

MATLAB would exceed its RAM limit. Therefore I used only 2 x 10' latent poste-

rior samples to build the TTC FFGP emulator. There are definitely ways to modify

my existing FFGP training functions to completely avoid this issue. However, as

described in the future work chapter later on, there are other changes that would be

more beneficial to implement instead. The latent burn-in phase took about 29 min-

utes using 10 samples, and with fewer samples than the LPP FFGP emulator, the

latent posterior sampling phase took about 10 minutes. The associated likelihood

noise hyperparameter is shown in Fig. 6-52 and this alone shows just how complex
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the TTC output is since even a 2-factor 4-component FFGP emulator has a likeli-

hood noise hyperparameter value only slightly more negative than the initial guess

value. Simpler problems would have a likelihood noise hyperparameter value around

-10 at least for a 4-component FFGP emulator. However, the TTC relationship to

all of the uncertain parameters is so complex, even with the thousands of latent

variables within this FFGP emulator, it is still a difficult output to emulate. This

built FFGP emulator was then used to calibrate the uncertain parameters in the IET

model. The calibrated posterior TTC FFGP emulator predictions are shown in Fig.

6-53 and the emulator-based calibrated uncertain parameter histograms are shown in

Fig. 6-54. The calibrated posterior FFGP-based TTC predictions are clearly better

than the GPR-based predictions. There is even less total predictive variance initially

which then increases as the transient simulation time increases. As with the LPP

FFGP emulator, a single AM-MCMC iteration was relatively slow, taking ~0.0204

seconds. The calibrated uncertain parameter histograms also appear to "make sense"

in that the uncertain inlet flow boundary condition parameters as well as the initial

power multiplier (IET uncertain parameters 39, 40, and 41) are quite different from

their uniform priors. The radial and axial conduction parameters (IET uncertain pa-

rameters 30 through 37) have also been updated, which makes sense given that the

conduction within the fluid will impact the temperature distribution at the low flow

rates within the core channel. But the DF heat transfer coefficient multiplier (IET

uncertain parameter 27) was not updated nearly as much as I originally expected it

to. It is very important to remember that these are the scaled uncertain parameter

values and so their absolute value ranges, as shown in Table 6.1 can very significantly

from parameter to parameter. The heat transfer coefficient multiplier prior ranges

are only 50% around a prior mean of 1, while the radial conduction parameters'

maximum bounds are 9x greater than their minimum bound. It is therefore diffi-
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cult to assess just which of the parameters are more important since the conduction

parameters priors were perhaps far too uncertain. Those priors did represent just

how uncertain the conduction parameters were initially. Additionally, many of the

friction parameters and loss coefficients might not be known precisely enough to help

reduce the posterior variance in the heat transfer coefficient multipliers. Since the

frictional characteristics of the reactor vessel will dictate the flow split between the

high and low pressure streams as well as between the core and IB channel within the

high pressure stream, if they are not known precisely enough it might be difficult to

further resolve the heat transfer coefficient multipliers. This is where simultaneous

calibration should help later on.

6.5.3 OTC results

The OTC output FFGP training set is shown in Fig. 6-55. The training set alone

shows how complicated the OTC functional relationship is to the uncertain parame-

ters. A handful of case runs behave completely differently from the majority of cases

over the middle portion of the transient. Presumably these correspond to extreme

values of the conduction parameters along with other uncertain parameters. Addi-

tionally, the observational data seems to fall between many of the training case runs,

and sits in "white space" in Fig. 6-55. The training set alone therefore suggests that

making emulator predictions on the OTC output might be challenging.

The GPR emulator for the OTC output was built following the same setup as the

LPP and TTC output GPR emulators and took a similar amount of time. The GPR

emulator likelihood noise hyperparameter is shown in Fig. 6-56. The mixing rate

is similar to the TTC likelihood noise hyperparameter mixing rate. The calibrated

posterior GPR predictions of the TTC output are then shown in Fig. 6-57. Although
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Figure 6-53: TTC FFGP emulator-based calibrated posterior predictions
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Figure 6-55: OTC FFGP training set

310

460

440}1-

420 -

... 400

380-

I I~ I

t

360

340
-0. 2 0.8 1 1.2



the predictions in general follow the observational data, the large amount of emulator

total predictive variance clearly impacts the posterior results.
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Figure 6-56: OTC GPR likelihood noise hyperparameter

In building the FFGP emulators for the OTC output, it took till a 2-factor

5-component emulator to start to get likelihood noise values low enough to yield

an FFGP emulator reasonably accurate relative to the training set. The FFGP 2-

factor 5-component likelihood noise hyperparameter is shown in Fig. 6-58. This
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Figure 6-57: OTC GPR calibrated predictions
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just further highlights how complex the OTC output is, with a large number of

uncertain parameters all interacting together. Inherently this makes sense since

the OTC output is the core outlet temperature which is located at the top of the

UB portion of the core channel. Thus after being heated within the driver fuel

section the hotter sodium can conduct its heat to the cooler portions within the

reactor vessel. Conduction within the fluid should then be correlated to many of

the friction parameters and loss coefficients within the IET model which dictate the

flow rates through the system, as well as the uncertain inlet flow boundary condition

parameters. As with the TTC 2-factor 4-component emulator, only 2 x 105 latent

posterior samples were used. Training took about 29 minutes for the latent burn-in

phase, and about 25 minutes for the latent posterior sampling phase.

The calibrated posterior OTC FFGP emulator predictions are shown in Fig. 6-59

with the associated calibrated uncertain parameter histograms shown in Fig. 6-60.

A single AM-MCMC iteration with this emulator took about 0.0336 seconds. The

most striking feature about the posterior predictions is that there is still a relatively

large amount of emulator total predictive variance. And this clearly impacts the how

well the MCMC sampling can update the uncertain parameters. What is interesting

though, is how the best match between the posterior predictive means and the data

occurs when the OTC temperature is increasing, and therefore the coolant is heating

up within the core channel. Conversely, when the OTC temperature is more level the

predictive means are more innaccurate relative to the data. I think this suggests that

when the conduction parameters are completely dominating the OTC response, by

smoothing out the temperature within the core channel, the FFGP emulator struggles

the most. The calibrated uncertain parameter histograms seem to reflect this, since

the conduction parameters (IET uncertain parameters 30 through 38) are updated

from their uniform priors. The uncertain inlet flow boundary condition parameters

313



-4.5

-5

-5.5 

-6

-6.5 R

-7

FFGP 5-component Likelihood Noise Hyperparameter Sample History

..- ......

0 1 2 3 4 5 6 7 8 9 10
x 10'

Figure 6-58: OTC FFGP 2-fact 5-comp likelihood noise hyperparameter

314

'
7



(IET uncertain parameters 39 and 40) show considerable updating which makes sense

since the flow rate is so important in determining when conduction within the fluid

becomes important.

450
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2 0 0.2 0.4 0.6
scaled time

0.8 1.2

Figure 6-59: OTC FFGP emulator-based calibrated predictions
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6.6 Simultaneous Calibration

Simultaneous calibration, as the name implies, refers to calibrating multiple models

at the same time. The uncertain parameters involved in each of the models are

then updated using additional information. The IET model alone represents how

simultaneous calibration is useful since all three IET outputs (and thus data types)

depend on the 41 IET uncertain parameters. The LPP flow data can help inform

various friction and loss coefficients through the system more precisely than the

OTC or TTC data might be able to. And as already discussed, with the frictional

characteristics of the system known more precisely that should help better inform the

conduction parameters. Incorporating the information gained from the SETs only

compounds this effect since the SETs are capable of updating their corresponding

uncertain parameters to a high level of precision. Table 6.10 summarizes the "best"

FFGP emulators for each of the SET models and IET outputs.

Table 6.10: Summary of "best" FFGP emulators
[ Model FFGP type

CTDF 2-factor 2-component
GGcore 2-factor 3-component
IBCT 2-factor 3-component
IBGG 2-factor 3-component
OBGG 2-factor 3-component
LPP 2-factor 3-component
TTC 2-factor 4-component
OTC 2-factor 5-component

The following subsections will show the results of simultaneously calibrating mul-

tiple models together in various combinations. Each of the bundle-specific SETs will

be calibrated simultaneously with their respective channel SET. This provides a sim-

ple demonstration and is easier to describe the results since the number of uncertain
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parameters is smaller than the full IET case. After this, the simultaneous calibration

of all three IET output types is performed, followed by the simultaneous calibration

of all SETs with all three IET output types. This last case constitutes updating

the IET uncertain parameters with the most amount of information available. Only

the "best" FFGP emulators, as shown previously, will be used for each of the model

types.

During simultaneous calibration, I make each of the various emulator predictions

in series. This is obviously slower than if the computations were done in parallel, but

I found in MATLAB sometimes making computations in parallel with the standard

parallel loop, 'parfor', might mess up results. As a student, my MATLAB license

does not cover the MATLAB Parallel Computing Toolbox, so maybe having that

Toolbox enabled would remove any of the issues I encountered when I tried making

emulator predictions in parallel. Obviously, if the simulators were all used directly,

parallel computations would improve the overall speed as well. But using emulator

predictions in series was just the simplest way to perform the simultaneous calibration

process.

6.6.1 Likelihood structure

In order to perform simultaneous calibration, the simultaneous likelihood function

must be setup. For simplicity I always assume that the various models are indepedent

a priori. Thus only the observational data can introduce any correlation amongst

the outputs. This is obviously not ideal for the three IET output types, but with

the current FFGP formulation this is the simplest method. More complex FFGP

formulations however would allow this assumption to be removed, as will be discussed

in the future work chapter. In keeping with the notation from Chapter 2, the model
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predictions are denoted as y = {yJz}=i and the observational data is denoted as

Yo = {Yo,}z.=. Z is the total number of models, and yz denotes the predictions

for model z specifically. The complete likelihood function between all models simply

takes a factorized form:
z

p (yo ly) = P (YO, |y.). (6.15)
Z=1

The convenience of this assumption is that now the specific model z likelihood func-

tion p (y.,z|yz) can be the exact same emulator-modified likelihood function I de-

scribed in Chapter 4 without any alterations. All of the uncertain parameters will

still be denoted as 0 but now the uncertain parameters specific to model z will be

defined as Oz. The various models may all use the exact same uncertain parameters

(such as the case for the three IET output types) or they may share only a fraction of

the uncertain parameters (such as between the various SETs, and the SETs between

the IET outputs). The joint-posterior between all of the model predictions and all

uncertain parameters is also just a factorized form, following Eq. 6.15:

Z
p (y, I1yo) Oc H {p (yo, |yZ) P (yIO)} p (9). (6.16)

Z=1

The model predictions can be integrated out using the emulator-modified likeli-

hood functions. Using the notation from Chapter 4, the FFGP-modified likelihood

function for model z is just:

No ,,

P (yO,, {xC,,0,97 , , V , = 17 p YO,,Il {X-, 0,1,, ), , (6.17)

where V. and =Z denotes the z-th model's emulator training set and set of Empirical

Bayes determined FFGP hyperparameters, respecitively. The posterior distribution
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on all uncertain parameters is then given as:

Z No,.

P 0 {yo, IVZ, I Oc f t p y | ,1 OZ , D., z) p (0). (6.18)
Z=1 I =1

6.6.2 Core Channel SETs Simultaneous Calibration

The simultaneous calibration of the CTDF and GGcore SETs used the FFGP 2-factor

2-component emulator and 2-factor 3-component emulator for the CTDF model and

GGcore model, respectively. A total of 2 x 105 AM-MCMC samples were made with

the first 105 samples discarded as burn-in. For each proposal during the sampling,

the CTDF emulator prediction is made, followed by the GGcore emulator prediction.

Then the proposal (un-normalized) log-joint-posterior value is computed using the

FFGP-modified simultaneous joint-posterior structure in Eq. 6.18. A single iteration

took only slightly longer than the sum of the two individual SET calibration iterations

times, at about 0.0014 seconds. Figures 6-61 through 6-63, show the calibrated

uncertain parameter histograms, associated CTDF calibrated posterior predictions

and GGcore calibrated posterior predictions, respectively. The calibrated uncertain

parameter histograms in Fig. 6-61 show exactly what we would expect to happen

by using both the CTDF and GGcore "observational" datasets together: the DF

turbulent friction parameters (IET uncertain parameters 18 and 19) are updated by

the CTDF data while all the other uncertain parameters essentially match the results

from when the GGcore SET was calibrated individually. The posterior histogram on

the core channel inlet nozzle loss coefficient (IET uncertain parameter 8) looks more

Gaussian than what was shown in Fig. 6-28, however. This can be due to several

reasons. First, since the DF turbulent friction parameters are known more precisely

the loss coefficient can be resolved more. And secondly, the mixing rate might be
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Figure 6-62: Simultaneous calibration prediction results for CTDF
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Figure 6-63: Simultaneous calibration prediction results for GGcore
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6.6.3 Blanket SETs Simultaneous Calibration

Each of the blanket SET models, the IBCT, IBGG, and OBGG, used their FFGP 2-

factor 3-component emulator as part of the simultaneous calibration. All three share

the IB/OB friction parameters (IET uncertain parameters 21, 22, and 23), while

the IB channel loss coefficient is unique to the IBGG model, and the OBLA friction

parameters along with the OBLA inlet nozzle loss coefficient are unique to the OBGG

model. As with the core channel SETs simultaneous calibration, 2 x 105 AM-MCMC

samples were made with the first half discarded as burn-in. For each proposal, the

emulator predictions were also made in series and each iteration took approximately

1.9 x 10-3 seconds. The simultaneous calibrated posterior results for the calibrated

uncertain parameters, IBCT predictions, IBGG predictions, and OBGG predictions

are shown in Figures 6-64 through 6-67, respectively. As we expect, the IB/OB

turbulent parameters simultaneous calibrated histograms are really similar to the

results shown in 6-36 when the IBCT model was calibrated individually. But, as

shown in Fig. 6-39 with the IBGG individual calibration results, the posterior IB/OB

turbulent parameter histograms were very, very different from the individual IBCT

calibration results. So now with the IB/OB turbulent parameters constrained by the

IBCT data, the IB channel inlet nozzle loss coefficient (IET uncertain parameter 9)

was able to be resolved to a much higher level of precision. The IB channel inlet

nozzle loss coefficient posterior mode is in the "direction" of the posterior mode found

in the individual IBGG calibration results. This clearly illustrates that it dominates

the IB channel pressure drop, since with the IB/OB friction parameters at completely

different values its own posterior modes are still fairly close between the two cases.

The OBLA inlet nozzle loss coefficient (IET uncertain parameter 14) is pretty close

to its posterior histogram determined from the individual OBGG calibration process.
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This should be expected since the individual OBGG data was shown to have minimal

influence form the IB/OB turbulent parameters and the IB/OB laminar shape factor

posterior histogram was similar between the individual IBCT and OBGG calibration

results. The OBLA friction parameters posterior results are essentially unchanged,

signifying that there is not sufficient data in any of the datasets to better resolve

them from their priors.

6.6.4 All IET output Simultaneous Calibration

All three IET output types were calibrated simultaneously using the FFGP 2-factor 3-

component emulator for the LPP output, the FFGP 2-factor 4-component emulator

for the TTC output, and the FFGP 2-factor 5-component emulator for the OTC

output. A total of 2.5 x 105 AM-MCMC samples were made with the first 5 x 104

discarded as burn-in. I used fewer burn-in samples because a single iteration takes

a lot longer when making the IET emulator predictions in series. A single iteration

took about 0.0654 seconds so this particular run took about 4.5 hours to complete.

But to put this in perspective, the IET model training set which had 500 case runs

(initially but 10 crashed) took about 5.5 hours. So even though this is slow compared

to any of the other emulator-based calibration processes that I have shown, this is

still over 600x faster than using RELAP directly. If the emulator predictions were

made in parallel however the simultaneous IET calibration scheme would be over

1100x faster than RELAP.

The simultaneous calibration results are shown in Figures 6-68 though 6-71. Even

though these results are calibrated simultaneously with all three outputs, they are

not weighted equally. The weighting comes from the FFGP-modified likelihood as

the sum of the measurement error and total predictive variance. This fact down-
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Figure 6-65: Simultaneous calibration prediction results for IBCT
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Figure 6-66: Simultaneous calibration prediction results for IBGG
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weights the importance of the OTC and TTC data since they have a much larger

measurement error as explained earlier. But the TTC and OTC data are down-

weighted further because their respective emulators have a higher total predictive

variances associated with them than the LPP flow emulator. The net effect means

that the uncertain parameters are updated more in line with the LPP flow data than

the OTC or TTC data. With the TTC emulator total predictive variance on the

order of the measurement error, the simultaneous calibrated predictions effectively

regress the TTC data. This effect is even more pronounced with the simultaneous

calibrated OTC predictions. The OTC total predictive variance is larger than the

measurement error and so as long as the measurement error and total predictive

variance "overlap" as shown in Fig. 6-71, that might be "good enough" from the

total log-joint-pointerior if the LPP flow emulator predictions match the LPP flow

data as accurately as possible. Within the uncertain parameter posteriors, the initial

core power multiplier (IET uncertain parameter 41) illustrates this concept the best.

The individual TTC and OTC calibration results skewed the its initial core power

multiplier more to the left, with a broad posterior mode closer to the lower value

ranges, while the inidiviual LPP flow calibration results had the posterior more

uniformly spread out over the prior range. The simultaneous posterior for the initial

core power multiplier, as shown in Fig. 6-68, has its posterior mode almost directly

in the center of the range, corresponding to a multiplier value of 1 (remember the

uncertain parameter histograms are all the scaled values so the multiplier value of 1

is a scaled value of 0.5). Thus, the TTC and OTC data could not provide enough

"effective" information due to the down-weighting from their total predictive variance

and measurement error values compared to the LPP flow data. The other important

take away from Fig. 6-68 is that many of the uncertain parameters are completely

shifted to one side or the other of their prior ranges. This means that my prior
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Figure 6-69: Simultaneous calibration predictions results for the LPP output
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Figure 6-70: Simultaneous calibration prediction results for the TTC output
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Figure 6-71: Simultaneous calibration prediction results for the OTC output
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6.6.5 All IET and SET simultaneous calibration

Calibrating all of the SET models and IET outputs simultaneously accounts for as

much possible when updating the uncertain parameters. The SET data will be very

highly weighted in the completel likelihood function between they have very precise

"data?' and the SET emulators are all very accurate relative to their respective mod-

els. This will greatly restrain the IET output emulators since proposals that increase

the IET output modified likelihoods but decrease the SET modified likelihoods will

result in that proposal being (most likely) rejected. A single AM-MCMC iteration

computed each emulator prediction in series again and took roughly 0.0723 seconds.

A total of 8 emulators are used, which means each iteration emulates the behavior

of 8 different RELAP models. If all RELAP models were run in series it would take

about 56 seconds to complete. But as described earlier, the CTDF model would

have to be run 25 times in order to have enough predictions to compare to CTDF

data. The same would have to be done for the IBCT model, while the channel SET

models would need 6 for GGcore, 6 for IBGG, and 3 for OBGG. The total number

of RELAP runs (across the 8 models) required to perform a single MCMC iteration

is therefore 66. The emulator-based approach is therefore not only faster but would

actualy make parallelizing simpler since only 8 emulators need to be run in paral-

lel compared to dealing with the 66 models that must be run in parallel each with

potentially different run times.

The results shown use only a total of 105 AM-MCMC samples with the first

half discarded as burn-in. Anytime I tried running more samples I would always

get chains that had a lower "eye ball" log-marginal likelihood and would not pass

the "eye ball" test of Bayesian Model Selection. Due to making predictions with 8

different models and a large number of uncertain parameters, this issue would occur
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whether the emulators or the RELAP models themselves were used. But thanks to

the emulators I was able to at least try running the MCMC sampling multiple times

in order to compare the sampling results. Figures 6-72 through 6-80 provide the

simultaneous IET-SET calibration results for the uncertain parameter histograms

and each of the output types. The "down-weight" concept applies to even some of

the OBGG SET results as shown in Fig. 6-77. The OBGG SET has the a larger

measurement error value than the others, so the sampling will try and regress the

OBGG data if it means the CTDF and IBCT models are more accurate.

The major take away from the posterior uncertain parameter histograms is that

their prior bounding values were far too wide. For those that give posteriors com-

pletely shifted to one side, such as the low pressure throttle valve loss coefficient

(IET uncertain parameter 6), basically 80% of the prior range on their values were

almost "meaningless" since those prior values were nowhere near the posterior val-

ues. The overally large prior ranges on many of the IET-only parameters area clearly

contributing to the still large total predictive variance of the OTC output. With the

SET-shared uncertain parameters constrained so tightly, many of the IET-only un-

certain parameters also become very tightly as well. The reason for this, is most

likely that for TTC and OTC emulator total predictive variance predictive explains

a large amount of the data variation and so add very little "effective" information

relative to finding values that match the LPP flow data the best. In order to decide if

these are the absolute best posterior uncertain parameter values the TTC and OTC

emulator predictive variance must be reduced. But even so, in the Bayesian context

these posterior distributions represent the updated state-of-knowledge about the un-

certain parameters that did not exist before performing the IET-SET simultaneous

calibration process.
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Figure 6-73: IET-SET simultaneous calibration prediction results for CTDF
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Figure 6-75: IET-SET simultaneous calibration prediction results IBCT
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Figure 6-76: IET-SET simultaneous calibration prediction results IBGG

341

4

3.5 F

3

5:'

48

2.5 I

2

1.5 F

1

0.5 -

0

-0.5
0

x 1W5
14.Z5 r



14

12

10 -

0.

0

8

6

4

2

0

x I ~ OBGG Calibrated Posterior Predictions FFGP-3

0 0.2 0.4 0.6 0.8 1
scaled scaled massflow

Figure 6-77: IET-SET simultaneous calibration prediction results OBGG

342

I I I-
OBGG Calibrated Posterior Predictions FFGP-3x 104



LPP Calibrated Posterior Predictions FFGP-3
1.2

1

0.8

0.6-

0.4-

0.2 -

0

-U.
0 0.2 0.4 0.6

scaled scaled time
0.8 1

Figure 6-78: IET-SET simultaneous calibration prediction results LPP

343

N

Q.

-



TTC Calibrated Posterior Predictions FFGP-4
500

450 1-

400 -

350
0 0.2 0.4 0.6 0.8

scaled scaled time

Figure 6-79: IET-SET simultaneous calibration prediction results TTC
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Figure 6-80: IET-SET simultaneous calibration prediction results OTC
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Chapter 7

Summary, Conclusions, and Future

Work

7.1 Summary

Bayesian inference provides a mathematically and statistically rigorous framework

of solving inverse problems, which would otherwise be ill-posed or are analytically

intractable. In the context of uncertainty quantification (UQ), observational data

can be used to calibrate computer model predictions and infer out the numerous

parameters within the computer model thereby properly performing backwards UQ.

The resulting posterior distributions combine data with the expert judgement en-

coded within the priors. But for even relatively "fast" computer models practical

implementation of Bayesian inference with Markov Chain Monte Carlo (MCMC)

would simply take too long. A computer model that takes 1 second to run but needs

10 MCMC samples to achieve "good" mixing rates would take over 27 hours to

complete. Surrogate models that emulate (the emulator) the behavior of the in-
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put/output relationship of the computer model but are very computationally cheap

allow MCMC sampling to be possible. An emulator that is 1000x faster than the

computer model would need only 100 seconds to perform the same number of MCMC

samples. As the computer model run time increases, the surrogate model becomes

even more important because MCMC sampling would simply become impractical to

even attempt.

The general objective of this thesis was the development and implementation of an

emulator based calibration process for nuclear reactor safety analysis codes. The work

was broken into three distinct parts: development of an emulator to help model the

complex time series modeling of a reactor safety analysis code, a Quantitative PIRT

methodology to help identify the dominant uncertain parameters thereby reducing

the number of parameters involved in the calibration process, and applications of the

emulator based calibration process to realistic safety analysis scenarios. Furthermore,

we wished to combine multiple "levels" of data using Separate Effect and Integral

Effect Tests (SETs and IETs) simultaneously. The hope was that the SET data

would constrain the parameter distributions to only physically acceptable values

during the MCMC sampling. The IET data would be prevented from simply finding

unphysical parameter values that allow the emulator (and thus the computer model)

predictions to match the data.

. Chapter 2 provided a basic introduction to approximate Bayesian inference with

MCMC sampling. A general discussion on the merits of Bayesian inference over

classical frequentist inference was provided before describing why MCMC sampling

is needed to implement Bayesian inference. A method of manufactured solutions

demonstration problem - using a simple friction factor model - was used to com-

pare the performance of several common MCMC schemes. The results showed that

MCMC sampling was indeed capable of finding the "true" parameter values. But
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since Bayesian inference deals with probability distributions and not simply point

estimates, the parameter posterior distributions provided a sense of how uncertain

the results were given the available data.

Chapter 3 described the Quantitative Phenomena Ranking and Identification Ta-

ble (QPIRT) methodology. The QPIRT consists of two steps, the Top-Down step

which focuses on the governing equations in the computer model and a Bottom-Up

step which focuses on specific constitutive relations and closure models within the

computer model. The Top-Down step ultimately tracks the dominant physical pro-

cesses that influence the figure-of-merit (FOM) within the system over the duration

the transient of interest. The Top-Down step recasts the computer model governing

equations in control volume balance form at two hierarchical levels: the local and

system levels. The local level equations are problem dependent focusing only on the

physical phenomena that directly influence the FOM. The system level equations

capture the effects "carried throughout" the system, and rank the physical processes

that dominate the system level response. The QPIRT methodology was demon-

strated on a Total Loss of main Feedwater Flow (TLOFW) accident with subsequent

feed and bleed. The Top-Down step identified the key physical phenomena that

influenced the FOM, the peak clad temperature (PCT). The Bottom-Up step then

examined the specific consitutive relations used by the computer model, RELAP5, to

model each of the physical processes identified in the Top-Down step. The result was

a list of empirical correlations for each of the key physical phenomena that influence

response of the PCT during the transient, as viewed by the computer code.

Chapter 4 goes into detail on the formulation of the surrogate models, or emula-

tors developed in this work. All of the emulators are based on the Gaussian Process

(GP) and so the first part of Chapter 4 summarizes the math behind standard Gaus-

sian Process Regression (GPR). One major benefit of the GP framework is that it
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gives a very simple estimate of the uncertainty in a prediction. Therefore the ad-

ditional uncertainty of using the emulator in place of the computer model can be

included in the calibration process. But, to overcome the limitations of the standard

GPR emulator, Function Factorization with Gaussian Process (FFGP) priors was

used. The basic premise of the FFGP emulator is to assume the output can be rep-

resented by the sum of a product of factors. These factors are given GP priors which

must be then learned from the training data. One of the benefits of this formula-

tion is that each factor can "work" over a smaller subspace of the total input space.

Thus, even though the FFGP emulator is far more complex than the standard GPR

emulator, it is more efficient at handling very large dimensional problems. FFGP

models are also known as Gaussian Process Factor Analysis (GPFA) models, and as

discussed in Chapter 4, they have been used extensively in other fields to decom-

pose and analyze various data structures. But this thesis focused on using them to

emulate a computer model and so the work focused on the practical issues involved

with building and making predictions with them, as quickly as possible. Several ap-

proximations were made to the FFGP emulator which greatly improved their speed

compared to most general setup. These approximations were also used to develop

an FFGP-modified likelihood structure for uncertain parameter calibration. It was

then very simple to estimate the approximate FFGP prediction contribution to the

total predictive uncertainty. The same method of manufactured solutions problem

from Chapter 2 was reworked in Chapter 4 but now with the emulators. The results

showed that the FFGP emulator is flexible enough to accurately emulate the com-

puter model (the simple friction factor model) and achieve posterior distributions on

the uncertain parameters that almost exactly match those shown in Chapter 2.

Chapter 5 was the first application of the emulator based calibration process to a

relevant safety analysis scenario. The computer model was a numerical solver for a
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blowdown of a gas tank and the goal was to calibrate the uncertain parameters within

the model using data taken from an actual gas blowdown experiment. The QPIRT

process was demonstrated as well showing how the number of uncertain parameters

was limited to 8. From here the emulators were constructed and used in place of

the numerical model in the MCMC sampling. The results and performances of the

various emulator types were compared, showing how the almost all uncertainty in

the model prediction came from actually only 2 of the parameters. A single case run

of the numerical solver took approximately 2.16 seconds, so running the numerical

solver directly with 105 MCMC samples would have taken approximately 60 hours to

complete. The total time to create the training set, build the most complex FFGP

emulator and make predictions with that emulator using 101 MCMC samples took

less than 10 minutes. With the emulator based approach in place now far more

complex computer models can be calibrated.

Chapter 6 presents the emulator based calibration process applied to an EBR-II

loss of flow transient. The EBR-II transient starts from decay power conditions, so

only thermal-hydraulic phenomena needed to be considered. After presenting a brief

introduction to the EBR-II facility, the RELAP model for the transient of interest

of described (the IET model). With a total of 41 uncertain parameters within the

IET model and 3 output types, SETs would greatly aid the calibration process. To

simplify the work however, "pseudo" SETs with "data" generated from empirical

correlations rather than actual experimental data were incorporated into the cal-

ibration process. The "pseudo" SETs effectively allowed calibrating the RELAP

user-defined friction models with empirical friction factor correlations more relevant

to the EBR-II geometry than the friction factor correlations available within RE-

LAP directly. A total of 5 "pseudo" SETs were used and which specific uncertain

parameters they calibrated were described in detail. The emulator based calibration
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results for each of the SETs were shown as well as a simple "eye ball" test heuristic to

decide which FFGP emulator type is the "best". Then the IET RELAP model was

calibrated using each of its 3 output types individually. Afterward the simultaneous

calibration of all SETs and IET outputs was described by first showing the specific

likelihood structure used for simultaneous calibration. The final results show the de-

velopment of the 41 uncertain parameter posterior distributions from their uniform

priors through the individual SET and IET output calibrations to their IET-SET

simultaneously calibrated posterior distributions. The SETs were able to "learn"

their specific uncertain parameters to a high degree of precision. This therefore al-

lowed the IET model to "learn" out the remaining parameters to a high degree of

precision as well. A single RELAP run of the IET model took approximately 40

seconds and so without the emulators, it would have been almost impossible to cal-

ibrate the IET RELAP to the data. Additionally, the emulators made including the

SETs in the calibration process due to the approximate FFGP-modified likelihood

structure. Limitations of the current setup however were noted with th6 predictive

results showing the emulators contributing a large fraction of the total predictive

uncertainty to one of the IET model outputs.

7.2 Conclusions

The emulator based calibration process was shown to make Bayesian inference with

MCMC sampling possible. In each of the demonstrations presented in this thesis,

the largest portion of the total computational time was actually creating the em-

ulator training set. Building and making predictions with the emulators, although

not trivial for the EBR-II IET emulators, were much faster than simply using the

computer model (RELAP) directly. The posterior model predictions therefore are
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far more useful than simply setting many of the numerous uncertain parameters to

fixed values. By fully accounting for all uncertainty due to the uncertain parameters

any discrepancy between the posterior predictions and the observational data can

only be due to discrepencies inherent to the formulation of the model itself. This

"model form" uncertainty, is a larger issue that without fully propagating the uncer-

tain parameter uncertainty would be very difficult to assess on its own. But thanks to

emulator based calibration, the uncertain parameter distributions are their posterior

distributions conditioned on the available observational data.

7.3 Recommendations for Future Work

Each of the recommendations for future work revolve around the issue of improving

the FFGP emulators even further. Because although they are very powerful, as

pointed out in various parts of this thesis, they can be improved further. These

improvements then lend to applying them in even more useful ways beyond just

making predictions as part of MCMC sampling.

7.3.1 Emulator Training with Varitional Bayes

As seen in Chapter 4, building the FFGP emulators is quite complex. This issue is

only compounded further by the "art" of knowing when to stop MCMC sampling. An

optimization based approach to building the FFGP emulators would provide a more

useful "convergence" stopping criteria. As described in Chapter 4, the approximate

FFGP predictive distributions estimate the training latent variable posterior distri-

butions as Gaussians. So rather than estimating those Gaussians empirically, that

structure could be assumed into their posterior distribution from the start. This is
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essentially the concept behind Variational Bayes (VB) methods, where more complex

posterior distributions are approximated by known (and easier to work with) distri-

butions, such as Gaussians [8], [24]. This allows estimating the training marginal

likelihood and so the training algorithm becomes essentially an optimization algo-

rithm to maximize the training marginal likelihood. Multiple references have applied

VB algorithms to GP models and other latent variable models [51], [52]. With the

training posterior distributions easier to estimate, it becomes easier to generalize the

predictive distribution to more factors. This would greatly enhance the flexibility of

the current FFGP emulator setup.

7.3.2 Bayesian Monte Carlo

Bayesian Monte Carlo (BMC) is an alternative to Monte Carlo sampling to approx-

imating integrals [53]. BMC uses a GP prior over the function that is getting inte-

grated. In the context of UQ, BMC can be used to analytically propagate uncertain

parameter distributions onto the output, as long as the parameter distributions are

Gaussians. So it can help provide a very fast approximation to the prior uncertainty

on the output of interest. The approximate FFGP posterior predictive distribution

can be used in place of the GP prior, used in Ref. [53]. This could allow BMC

to capture far more complex input/output relationships, required for reactor safety

analysis codes.

7.3.3 Non-Informative Priors

Non-informative priors help remove any a priori bias on the parameter values from

the prior distribution. Although the priors can be very important as ways of encoding

prior expert opinion belief, it can be a useful exercise to use a non-informative prior
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and compare the resulting posterior distributions. The simplest non-informative

prior is an improper "flat" prior, just as the "flat" hyperprior used on the FFGP

hyperparameters in Chapter 4. True non-informative priors do not add absolutely

no bias, but rather bias the parameters to stay away from values outside the data [5].

Non-informative priors therefore depend on the likelihood function, and are in general

quite difficult to compute [4]. Since the likelihood function cannot be explicitely

written down for RELAP, the emulator-modified likelihood functions in Chapter 4

must be used. This is therefore an additional benefit that only the emulator-based

approach is capable of. BMC techniques will most likely be needed because many

non-informative priors require evaluating complex integrals.

7.3.4 Dynamic Validation + Training + Calibration

The IET-SET calibration results in Chapter 7 show that my prior bounding values

on many of the uncertain parameters were very poor. Many of the parameters' pos-

terior histograms were completely skewed to one side of their prior bounds. Thus, a

majority of the training values were effectively useless for many of the parameters.

Ideally, we would want the training set to shift around to a region of the state-space

to maximize the "information" from each training point, as well as to reduce the

number of points required. Rasmussen developed an approach to use GPs speed up

the computation of complex integrals by combining GPs with Hamiltonian Monte

Carlo (HMC) [39]. The GP was used to approximate the derivatives of the complex

function, and those derivatives were used in place of the true derivatives in the HMC

proposal distribution (where HMC is the same MCMC scheme used to sample the

FFGP training latent variables described in Chapter 4). Given an intial training

set, Rasmussen first modified the likelihood function so that it tried to minimize the
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error between the prediction and the data, while maximizing the GP predictive vari-

ance. This was used to identify new training point values until the GP was accurate

to within some tolerance level. Additionally, this acts as a sort of dynamic valida-

tion since the additional training points are found within the uncertain parameter

posterior state-space that the GP was uncertain about.

This setup could be adapted to the approximate FFGP posterior predictive distri-

bution. Where now the RELAP output gradient relative to the uncertain parameters

is estimated using the approximate FFGP posterior predictive distribution. After

each new training point is identified, the FFGP emulator must be rebuilt and so this

could only be used once the VB training algorithm is completed. This could help

greatly improve the accuracy of the emulator since the training process itself actu-

ally quantifies what posterior uncertain parameter values give the greatest predictive

uncertainty.

The additional benefit of this setup is the uncertain parameter calibration process

could be carried out using the HMC scheme. Realistic safety analysis problems are

similar to the EBR-II RELAP model in Chapter 7 with a large number of uncertain

parameters, with many of them highly correlated. HMC is perfect then for such

a scenario, but we must be able to compute the gradient. That is not currently

available in RELAP. Even if an adjoint solver was implemented in RELAP, due to

the highly non-linear nature of thermo-hydraulic modeling, the RELAP model would

have to be run for each HMC proposal. Thus, it would become impossible to use

RELAP for HMC. So the emulator could allow using HMC to help draw samples

that would be too difficult with other MCMC schemes.
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7.3.5 Uncertain Parameter Calibration Without MCMC

Since the FFGP emulator could be trained using VB rather than MCMC, it is pos-

sible to do something similar for the uncertain parameter calibration itself. The

optimal maps procedure [54] actually does something similar to this idea already.

The optimal maps approach finds a mapping function that "pushes" the prior to the

posterior, by monitoring the marginal likelihood. Therefore the gradient informa-

tion of the likelihood function, similar to HMC, must be computable. Rather than

finding a maping function, the approximate FFGP posterior predictive distribution

could be used just as it is in the FFGP-modified likelihood format of Chapter 4. The

VB framework could be modified to then try and maximize the marginal likelihood

between the observational data and the emulator prediction. Although the opti-

mization would be complex, a stopping criteria exists by monitoring the marginal

likelihood convergence rate. Additionally, it would be very easy to compare the per-

formances of multiple emulator types since the actual marginal likelihood would be

estimated, so the "eye ball" test described in Chapter 5 is no longer necessary.
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