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ABSTRACT

Without using any order acceptance criteria, retail companies distributing products with private
transportation fleets are not able to maximize their profits because they are not adequately
utilizing their capacity. The objective of this paper was to create and validate a model to
determine if historical demand data can be used by retail firms operating private fleets to make
effective real-time order acceptance/rejection decisions with the purpose of eliminating
unprofitable orders in a short-haul transportation setting. A Java tool was generated to
instantaneously decide whether or not to accept an order depending on the order location and
time of receipt. The model was tested against optimal decisions using total demand knowledge
and several alternative real-time decision-making strategies. The model was found to
significantly outperform the alternative real-time decision making strategies and provided profits
approximately eight percent lower than the optimal decisions. We conclude that using historical
demand probabilities is useful in informing the decisions of retail firms seeking to utilize private
fleets efficiently and increase profitability through cost reduction.

Thesis Supervisor: Christopher Caplice
Thesis Advisor: Francisco Jauffred
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1. INTRODUCTION

Package delivery refers to the service of delivering small packages to end consumers. Delivery

can be provided by postal services, parcel service companies, less-than-truckload third party

transportation companies, and private company fleets. Each distribution service type is suitable

for unique situations. Large parcel delivery companies, like UPS, can afford to accept all orders

to achieve high customer service because they have resources and physical networks, which

allow them to utilize economies of scale to decrease marginal cost of delivery. Alternatively,

firms with private company fleets have the option to decide which orders to personally deliver.

Although package delivery modes include ground, air, and water, for the purposes of this paper

we focus on ground transportation.

1.1 Motivation for Research

The online retail industry has been rapidly growing over the past decade with a 16% increase in

revenues from 2012 to 2013 (US Census Bureau, 2013). The choice to switch from third party

transportation distribution to private company fleets is becoming increasingly important as

increasing global competition continues to apply pressure on retail companies to provide faster

delivery and higher service levels. In addition to lowering operating costs, retail companies can

increase control over delivery by utilizing privately owned transportation vehicles. Increased

transportation control gives these companies the power to maintain high service levels, which is

critical in sustaining positive customer relationships. One retail company that is moving toward

private fleet distribution is Amazon.com. In the Christmas holiday season of 2013, Amazon.com

suffered widespread distribution failure when its key parcel delivery partner, UPS, failed to
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deliver large numbers of packages on time, which ultimately led to a large decline in stock

prices. Although Amazon has stated that their.distribution centers were prepared for the seasonal

demand spikes, it is speculated that the cause of the failure was largely linked to Amazon's

promise of two day delivery times to Amazon prime subscribers who pay additional fees for

premium service. The agreement with these customers contributed to a large number of last

minute purchases, which were not properly forecasted. UPS was therefore unable to meet this

unexpected surge in demand due to lack of preparation and capacity constraints. Amazon's

reputation was damaged greatly from the distribution failure, and executives sought to avoid any

similar occurrences in the future. This contributed to Amazon's decision to implement a private

fleet distribution to 30-40 US markets in 2014 (Banker, 2014).

In transportation, cost is minimized through shipment aggregation. Firms may have to reject

certain incoming orders due to limited vehicle capacity. Accepting orders indiscriminately can

put unwanted constraints on the ability to combine shipments. Despite this, minimal research has

been done on order acceptance criteria involving probabilities of order deliveries in sub-regions

based on historical demand. Because of this, many companies simply accept incoming loads to

fill their capacities, foregoing many profitable future orders due to lack of available capacity. In

this paper, we develop order acceptance criteria based on the probability distribution of orders

across service regions, marginal cost of accepting the order, and truck capacity.

1.2 Research Question

Without using any order acceptance criteria, companies aren't able to maximize their profits

because they are not adequately utilizing their capacity. Our research objective is to create and

validate a model to determine if demand probabilities can be used by retail firms operating
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private fleets to inform order acceptance/rejection decisions with the purpose of eliminating

unprofitable orders in a short-haul transportation setting.

1.3 Structure

This paper is organized as follows: Chapter 2 provides insights into decision making in other

industries. Chapter 3 describes the methodology behind the model creation process. Chapter 4

outlines the testing and design phase by introducing various alternative strategies for comparison

purposes. Chapter 5 shows the model output and provides detailed analyses of our model

performance versus the performance of the alternative strategies. Chapter 6 summarizes the

conclusions drawn from our model validation and suggests future research opportunities.
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2. LITERATURE REVIEW

In many industries, a lack of standards in operational decision making processes is detrimental to

the profitability of a firm. Sequential order acceptance in certain industries leads to orders being

accepted that are not feasible due to capacity constraints. Moreover, an order may be feasible, yet

unprofitable due to allocation of resources at the plant level. Although decision making processes

have been evolving over the last several decades, opportunities for improvement are plentiful.

Models for decision making typically involve quantitative methods such as linear programming,

simulation, and regression analysis. Acceptance criteria are also frequently used by firms to

prevent acceptance of orders that are infeasible or unprofitable. Several industries that benefit

from making intelligent order acceptance decisions are the manufacturing industry and the

trucking industry.

2.1 - Order Acceptance in Make-To-Order Manufacturing

Make-To-Order (MTO) manufacturing is an example of an industry where firms must make

frequent decisions on how to handle incoming orders. Effective operational decision making is

critical in overall firm success because production capacity provides a unique constraint, as firms

must choose not only which orders to accept, but also order priority. Order acceptance decisions

can incorporate a variety of factors including available capacity, technological ability, order

revenue, and order due date.

Complementing the concept of lean manufacturing, the MTO industry has been using order

acceptance criteria to make acceptance/rejection decisions to increase operational efficiency.

Hemmati, Ebadian, and Nahvi (2012) discuss order acceptance criteria for accepting orders in an
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MTO environment involving factors such as feasibility, production schedules, and delivery end

dates. Accounting for these factors allows MTO companies to select the incoming orders that

will maximize profit and facilitate a smooth production planning process. They propose a

process for decision making that includes classification and prioritization of orders. By

incorporating criteria into the decision to accept and assign priority to orders, the firm is able to

optimize daily operations and avoid overcommitting capacity.

Mathematical simulation is also a valuable tool in determining order acceptance procedures in

manufacturing environments. Nandi and Rogers (2004) created a simulation model that utilizes

the "full amount of information on the shop floor status." The detailed information allows the

model to predict current and future behavior by utilizing a systems approach. Nandi and Rogers,

however, recognize that the model is limited by certain assumptions, including deterministic

processing times and the inability to account for future orders during a simulation.

While many MTO companies use factors at the plant level to inform their decision making

processes, other research suggests that taking customer value into consideration is the key in

creating and maintaining maximum long-term profits through customer relationships. Hao, Yu,

Wu, and Chen (2013) use linear programming optimization techniques to determine optimal

order acceptance in an MTO environment. The research proposes order acceptance policies that

focus not only on short-term gains from orders, but also on long term effects of relationship

building tactics. These variables are represented by weights and customer-value based revenue

parameters. Although Hao, Yu, Wu, and Chen found success incorporating the concept of

relationships into their model, this is uncommon in mathematical models due to the qualitative

nature of relationship building.
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2.2 - Order Acceptance in the Trucking Industry

In the US trucking industry, third party logistics companies for less-than-truckload (LTL)

shipments have difficulty with effective operational decision making due to high variability in

pricing and high uncertainty in demand. In addition to high uncertainty, aggressive competition

leads to low margins. This makes profit maximization crucial to the success of individual firms

and leads to innovation, such as collaboration between carriers to reduce cost (Hernandez &

Peeta, 2014).

Marginal cost and marginal revenue have been used as decision making tools to maximize profit

through effective order acceptance. In a long distance trucking decision model, Powell and

Sheffi (1988) effectively introduce marginal cost and marginal revenue of adding and removing

truck capacity from locations upon receiving an order. In long haul trucking, profitability of an

order is determined not only by the direct revenue and cost associated with the order, but also by

the probability that the truck will be able to find another order upon delivery completion. For that

reason, an order to a large, robust city is more attractive to a trucker because opportunities for

outbound loads will be greater relative to areas with low population. To capture this idea

quantitatively, Powell and Sheffi use a concept called Total System Contribution (TSC) to factor

opportunity cost into each decision, where TSC is equal to order profit plus the marginal

contribution of adding a truck to the destination minus the marginal contribution of subtracting a

truck from the origin region. Marginal contribution is determined by assigning quantitative

values, or end effects, to various cities. By including these indirect contributions into a decision,

Powell and Sheffi are able to take profitability of future orders into account. This type of
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analysis, involving assigning values to possible outcomes, represents a trend of systems thinking

that is evolving to take advantage of all factors that affect profitability of a firm.

2.3 - Complementary Research on Real-Time Trucking Delivery Acceptance

The problem investigated in this paper, deciding to accept or reject orders in package delivery,

has previously been investigated in academia. Patrick Jailletz and Xin Lu (2012) provide an

instantaneous decision making strategy for an optimal routing problem, known as the traveling

salesmen problem, to minimize cost under uncertain conditions which are commonly used by

taxi, trucking, and courier services. In the typical traveling salesman problem, orders are

aggregated at the end of an acceptance period and routing decisions are made at one time. Jailletz

and Lu consider a situation where orders are received online and an acceptance/rejection

decision is made immediately upon order receipt. In Jailletz and Lu's model, the trucker has

already determined a route and must make a decision to incorporate the new order into the

current delivery route. This decision is made with an objective to minimize the total route

distance and penalties for not accepting an order. Although Jailletz and Lu's research gives

insight into the complexity of real-time decision making in a truck delivery setting, their model

does not include historical customer demand as a consideration. Jailletz and Lu state that

including a probabilistic model to forecast and optimize design routes is sometimes "not possible

nor desirable," however, do not explain their rational further.

2.4 - Commonality of Research in Operational Decision-Making Processes

The research presented above shares one major commonality: it does not incorporate

probabilistic demand when determining optimal order acceptance. In transportation, profitability
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of an order is determined by the manner in which orders can be aggregated in terms of capacity.

The reason for this is that by taking advantage of order proximity, companies minimize cost of

delivery given capacity constraints. Because of this, we do not seek to optimize route distance,

but rather to incorporate demand probability into the decision making process of our model to

maximize the effects of economies of scale on deliveries, minimizing marginal cost of each

order.
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3. METHODS

The purpose of this thesis is to provide an alternative to the current processes that govern the

operational decision making of retail companies with their own private fleet. We develop a

probabilistic model that uses order information to output a decision on order acceptance in real-

time. The model utilizes historical demand data to determine the likelihood of profitability of

delivering to specific locations. The goal of the model is to give a tool to package delivery

companies to allow them to differentiate between profitable and unprofitable orders prior to

order acceptance.

3.1 - Obtaining and Preparing Data

The data to create and validate the model was acquired from a small retail company in the

Greater Boston area of Massachusetts. The company operated its own transportation fleet and

delivered orders within a 20 mile radius of its distribution center. The data contained only

information on customer location; however, exact addresses were unavailable for use. Hence,

customers were segregated into 19 separately defined regions of varying customer distribution as

seen in Figure 1 below.
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Figure 1: Data representation of the 19 regions of the Greater Boston area. Customer density is
represented by strength of shading, with darker regions signaling higher customer density.

The company data acquired did not include samples of daily demand. For the purposes of model

formulation and testing, representative demand samples were generated. To simulate daily

demand samples that exceed our model capacity, an assumption is made that a unique five

percent of customers submit an order every business day. This allowed for 100% of the

customers to submit an order in a 20 day period. To determine the orders that occur on each

random daily sample of demand, a random number between 1 and 20 was generated for each

customer. The entire simulated data set therefore consisted of 20 simulated days of demand with

orders assigned with the same number being received on the same day. Each order is also

attributed with an order size, which is introduced as number of totes.
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The model relies on the time an order is received; therefore time stamps for each order needed to

be simulated. Equation 1, a Poisson process, was used to create stochastic time between orders

(refer to Appendix A for a data sample).

AT= - n(r)(1)

where,

AT: the time between orders

r: random number

A: expected order frequency

Expected order frequency is found by dividing the number of orders in a day by the length of the

order acceptance period. Using this method, a cumulative time stamp was created for each

simulated demand day. For the purposes of this model, the order acceptance period is defined as

the period of time that orders may be received, with an assumption that they are delivered

immediately afterwards. The order acceptance period can be adjusted to account for specific

business practices.

3.2 - Determining Probabilistic Model Criteria

To formulate the probabilistic model, we first determined the criteria that have large impacts on

transportation cost. The criteria that appear to most directly affect profitability of an order are

linked to that order's destination region. Profitability of an order requires that marginal revenue

exceed marginal cost for a region; therefore a certain amount of order revenues must be received

to offset the cost of delivering to a specific region. The breakeven number of orders for a region,

where revenues equal costs, can be calculated using a transportation cost approximation formula.
19



The two major criteria for the model are the breakeven number of orders and the probability of

receiving that many orders during the time left in the order acceptance period. Available truck

capacity is also an important consideration when developing the model.

3.3 - Probabilistic Model Structure

After determining criteria, a decision-making tree (Figure 2) was developed to demonstrate the

flow of each order through the model. The initial question determines whether or not orders have

already been accepted into this region. In the event that orders are already accepted in the region,

the fixed cost has already been incurred; therefore the order will always be accepted to decrease

marginal cost of delivery to that region until truck capacity is reached.

Figure 2: Decision making tree for the probabilistic model

The "will it be profitable?" node in the decision making tree above contains the most critical

computation. At this node, the model will determine the profitability of adding capacity to a new

region. In the event that a region has no prior orders, the model then determines the number of

20



totes expected to be received in the remainder of the order acceptance period. If the model

expects the breakeven point to be reached with the time left and capacity is available, it will

accept the order and subsequent orders in the same region until capacity is fully utilized. For

example, if an order is received for delivery to the Brookline region and there are no prior orders

there, the model will determine how many orders must be accepted to reach a breakeven point. If

the model finds that Brookline requires X orders to be profitable, and there are T hours left in the

order period, it will determine how many orders are expected to be received in those T hours. If

Brookline is expected to receive at least X orders in T hours, it will accept the order under the

assumption that the breakeven number of orders will be met or exceeded. In the event that

Brookline is expected to receive fewer than X orders in T hours, it will reject the order and all

future Brookline orders for the rest of that order acceptance period.

3.4 - Primary Probabilistic Model Calculations

There are several key calculations at the core of the probabilistic model. First, the breakeven

number of totes must be calculated to determine the number of orders required in a region to

reach profitability. The breakeven number of totes requires a calculation of cost. Total cost

comprises purchase cost, transportation cost, and a fixed operating cost. Purchase cost includes

all costs incorporated with buying, handling, and storing inventory. In our case, we made an

assumption that purchase cost was equal to 85% of tote revenue, which allows for 15% of tote

revenue to be allocated toward transportation cost and profit margin. Fixed cost is the daily cost

of operating the truck, including the cost of labor. Equation 2, below, describes the company's

generalized cost structure:

Total Cost = 0.85 * Tote Revenue + Transportation Cost + Fixed Cost (2)

21



The nature of the model requires that orders are constantly being added to regions, which will

ultimately have an effect on the actual route driven at the end of the acceptance period. Because

we could not include route optimization in our model due to data constraints, exact transportation

cost was impossible to determine. For this reason, we modified an equation derived by Carlos

Daganzo (2010) to allow for an approximation of transportation cost (TC) to be calculated upon

addition of each order. Equation 3, below, uses number of customers and customer density of a

region to approximate costs associated with load totes, travel to and from a region, and unload

totes.

TC = C, E[n] + ntour + + Cd 2 ntour + dLineHaul + E [n] kTSP + cvsE[D] (3)

where,

E[n]: expected number of stops in a region

E[D]: expected demand in a region

dlinehaul: driving distance from the distribution center

ntour: number of tours in the region

Cs: cost per stop

Cd: cost per distance

Cvs: cost per unit per stop

6: number of stops per unit area

kTSP: dimensionless network factor

Assumptions were made to determine values of constants used in the equation, which can be

found in Appendix B. Transportation cost could now be updated upon receipt of each new order.
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By incorporating total cost of a certain number of orders with total revenue, a calculation could

be made to determine the number of orders that would create profitability in a region.

Figure 3, below, graphically demonstrates the breakeven point in Brookline, where the total

number of orders required for Brookline to be profitable occurs at the intersection point between

revenues and costs.

70

65

60

55

40

35

30
0

- Cost/Tote -Revenue/Tote

20 40 60

Number of Totes

Figure 3: Illustration of Brookline breakeven graph. The point at which revenue and cost functions cross
determines the breakeven number of totes. According to the graph, Brookline will require 28 totes in an

order period to allow the region to become profitable.

After the breakeven number of orders is known for each region, the likelihood of receiving that

number of orders must be determined. For the purposes of this model, an assumption was made

on the frequency of deliveries per customer and kept constant. This assumption is crucial in

allowing the model to determine the number of totes a region can expect to receive in a certain

23
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time period. By knowing the total number of customers in a region and assuming that each

customer will order periodically, a Poisson distribution analysis will allow for the computation of

the expected number of totes in a certain time interval. The Poisson distribution is calculated

using Equation 4 as follows:

Atke-At
f(k;/) = k!(

where,

k: number of orders

A: expected number of orders per unit time

t: time remaining in the order acceptance period

The Poisson output, f(k;X), tells us the probability of receiving exactly k orders in a time period

given an expected value, A. In this situation, however, the model requires the probability of

receiving at least k orders. The model does not only seek to meet the breakeven number of

orders, but is also satisfied if the number of orders is exceeded.

The graph in Figure 4 depicts the likelihood of receiving totes within a time period in the

Brookline region. Because probabilities are incorporated in calculations, the number of totes can

never be found deterministically. To account for this, various lines are plotted to demonstrate

different levels of confidence.
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Figure 4: Illustration of expected orders over time in Brookline.

Combining the Poisson distribution analysis with the breakeven analysis, the model is able to

determine the likelihood of receiving enough orders to reach the breakeven point for each region.

Orders for regions that are not expected to reach the breakeven number of totes in the time left

will be rejected.

3.5 -Assumptions, Justifications, and Limitations

The probabilistic model relies on assumptions that can be modified as needed. Several model

iterations were tested to create the final model and their assumptions are outlined below.

3.5.1 -Fixed Order Size Probabilistic Model Assumptions

The assumptions and their justifications for the initial model are as follows:
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* The order acceptance time period is 12 hours in length and is followed immediately by

delivery of the orders accepted within that time frame. The model assumes next day

delivery service. This follows the current trend in online delivery growth and decreasing

lead times.

* The model accepts an order for a new region with 70% certainty that it will receive

enough totes to reach a breakeven number of totes.

" Customers order once every 20 days, or about once a month. This assumption is based

loosely on the idea that customers are ordering common household items that must be

replenished frequently.

" Each order is four totes and each tote generates the same revenue of $40. This assumption

greatly simplifies the model and can be modified by incorporating statistical analysis of

order size and revenue.

" Each truck has a fixed capacity of 80 totes. For simplicity purposes, each truck serves

regions individually to isolate costs associated with each region.

* The number of trucks that the carrier should have to maximize its profits is included as a

parameter and determined through sensitivity analysis. Hence the model is tested for

different fleet sizes and the profits are compared to find the ideal fleet size.

" Entire orders are shipped together, which implies that orders are equivalent to shipments.

" The profit calculation considers the operational cost of the trucks. This fixed cost is set at

$100 per day per truck. The model also accounts for 60% of the fixed cost as a penalty

for not utilizing a truck.

" The cost for rejecting an order is not considered in this model. The only loss from

rejecting an order is the loss of revenue from that order.
26



3.5.2 -Variable Order Size Probabilistic Model Assumptions

The first iteration of the model gives some basic insights that are discussed further in Section 5.1.

However, the model is greatly simplified due to the assumptions mentioned above. In the second

iteration of the model, some of these basic assumptions were removed to match real-world

scenarios. The following assumptions were relaxed for this enhanced model.

" Orders now vary by order size. Number of totes is applied in the simulated data as a

uniform distribution between 1 and 7.

" Because orders now have a variable number of totes, the revenue from each order also

varies as per the number of totes in the order.

3.6 - Model Validation

We used Java as a platform to create and validate the probabilistic model. The tool allowed for

flexibility to easily alter parameters while maintaining underlying functionality. The tool allowed

us to validate the effectiveness of our model through profit calculations by using 20 days of

simulated data as inputs. The tool generated multiple echelons of outputs at the order, truck, and

daily levels. The following pseudo algorithm describes the logic built in the aforementioned Java

tool:

Notation:

currTruckList: List of trucks assigned to the different regions
truckCityList: List of trucks for a particular destination region
MaxTruckCapacity: Maximum truck capacity of each truck and is set to 80 totes
MaxNoOffrucks: Maximum number of trucks
timehnAcceptancePeriod = time the order came in.
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Algorithm:
For Every Order {

destinationRegion = Order.getDestination(;
truckCityList = get a list of trucks going to the destinationRegion;
For each Truck in truckCityList {

truckCapacityAvailable = MaxTruckCapacity - Truck.getCapacityUsedo;
if (Order.getOrderSize() <= truckCapacityAvailable) {

Accept the Order and add the Order to the Truck;
orderAccepted = true;
Break out of this loop;

}
}
If (orderAccepted is not true) {

startNewTruck = true;

}

If (startNewTruck is true) {
If (currTruckList.Size() < MaxNoOJTrucks) {

TimeInAcceptancePeriod = Order.getTime);
feasibleToStartNewTruck =
feasibleToStartTruck(TimelnAcceptancePeriod);
if (feasibleToStartNewTruck is true) {

Start a new truck;
Add the truck to currTruckList;
Accept the order and add the order to the new truck;

} else {
Reject the order;

}
} else {

Reject the order;
}

}
}

feasibleToStartTruck(TimeInAcceptancePeriod) {
RemainingTime = AcceptancePeriod - TimeInAcceptancePeriod;
Probability = Calculate P[Receiving breakeven number of orders in RemainingTime]
If (Probability >= 0.7){

Return true;
} else {

Return false;
}

}
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4. ALTERNATIVE STRATEGIES

Determining the effectiveness of the probabilistic models required a comparison of results of

various alternative strategies. The strategies chosen range from overly simple to complex. The

Java tool described in Chapter 3 incorporates each strategy for comparison in the Results section.

Strategy descriptions are described below.

4.1 - Optimal Model Overview

In our problem, decisions must be made instantaneously upon order arrival. In an optimal

situation, we would have complete knowledge of all daily orders before making decisions. This

model optimizes capacity utilization and maximizes profit. By comparing our model against

results from the optimal situation, we can determine the effectiveness of the decision making

process in our model. The optimal model, described below, is only optimal under the assumption

of constant revenues per tote. With variable tote revenues, a more complex algorithm would be

formulated. The pseudo algorithm for finding the optimal results is as follows:

Notation:
regionOrderMap: It contains (key,value) pairs, where key is the region and value is list of orders
orderList: List of orders for a particular region
cityTruckList: List of trucks for a particular region
allTruckList: List of all the trucks across all the regions
currTruckList: List of trucks assigned to the different regions
MaxTruckCapacity: Maximum truck capacity of each truck and is set to 80 totes
MaxNoOffrucks: Maximum number of trucks
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Algorithm:
regionOrderMap = Segregate the orders as per the destination regions;
For each City in regionOrderMap{

orderList = get the list of orders for the City;
Sort the orderList based on the revenue of the totes;

For every Order in the sorted orderList {
orderAddedToTruck = false;
For every Truck in cityTruckList{

truckCapacityAvailable = MaxTruckCapacity - Truck.getCapacityUsed);
if (Order.getOrderSize() <= truckCapacityAvailable){

Accept the Order and add the Order to the Truck;
orderAddedToTruck = true;
Break out of this loop;

}
}
If (orderAddedTo Truck is not true){

Start a new truck;
Accept the order and add the order to the new truck;
Add the truck to cityTruckList;

}
}
Add all cityTruckList to allTruckList;

}

Sort allTruckList based on the profits for the truck;
Set currTruckList as the top (MaxNoOJTrucks) trucks from the allTruckList;
Accept all the orders in the trucks in currTruckList and reject the remaining;

4.2 - Myopic Manager Model Overview

In this model, we create a scenario where orders are accepted sequentially until capacity is filled.

As in our probabilistic model, decisions are again made instantaneously upon receipt of orders.

This model reflects the actions of a firm with no intelligent operational decision making process

and simulates a worst-case scenario. The pseudo algorithm used to find the results for this

strategy is as follows:
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Notation:
currTruckList: List of trucks assigned to the different regions
truckCityList: List of trucks for a particular destination region
MaxTruckCapacity: Maximum truck capacity of each truck and is set to 80 totes
MaxNoOffrucks: Maximum number of trucks

Algorithm:
For Every Order {

destinationRegion = Order.getDestination(;
truckCityList = get a list of trucks going to the destinationRegion;
For each Truck in truckCityList {

truckCapacityAvailable = MaxTruckCapacity - Truck.getCapacityUsed);
if (Order.getOrderSize() <= truckCapacityAvailable) {

Accept the Order and add the Order to the Truck;
orderAccepted = true;
Break out of this loop;

}
}
If (orderAccepted is not true) {

startNewTruck = true;

}

If (startNewTruck is true) {
I f (currTruckList.Size() < MaxNoOJTrucks) {

Start a new truck;
Accept the order and add the order to the new truck;
Add the truck to currTruckList;

} else {
Reject the order;

}
}

}

4.3 - Binary Logistic Regression Model Overview

The binary logistic regression uses explanatory variables and previous decisions to predict the

discrete outcomes of future decisions in order to make instantaneous order acceptance decisions.

To determine the previous decisions to use for the regression formulation, we used binary

outputs from the optimal solution model on a dedicated dataset containing 20 days of simulated
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demand. In our model, explanatory variables used to create the model are the incoming order's

distance (miles) from the distribution center and order size (number of totes). Time that the order

was received was not included in the regression analysis because the optimal model explained in

Section 4.1 does not incorporate order time when making decisions; therefore any correlations

would be purely coincidental. The parameters from the regression are used to create a function

with outputs between 0 and 1. As orders are received, the function output is compared to an

acceptance threshold, above which orders are accepted. The functions are determined by the

following equation (Hosmer & Lemeshow, 2000):

1
E(Y/X1 , X2) = + e-BO-BX2-B2x2 (5)

where,

Y: optimal decision binary

X: distance of the order from the distribution center

X2 : the number of totes of the order

Bo: constant regression coefficient

B1 : distance regression coefficient

B2: order size regression coefficient

The pseudo algorithm for the logistic regression strategy is as follows:

Notation:
currTruckList: List of trucks assigned to the different regions
truckCityList: List of trucks for a particular destination region
MaxTruckCapacity: Maximum truck capacity of each truck and is set to 80 totes
MaxNoOffrucks: Maximum number of trucks
thresholdValue: The threshold value for the logistic regression equation and is set at 0.53
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Algorithm:
For Every Order {

destinationRegion = Order.getDestination(;
distance = get driving distance from the DC to destination region;
orderSize = Order.getOrderSizeo;
regression Value = get regression value using the logistic regression equation for distance
and order size.
If (regression Value > thresholdValue){

orderToBeAccepted = true;

}
If (orderToBeAccepted is true) {

truckCityList = get a list of trucks going to the destinationRegion;
For each Truck in truckCityList {

truckCapacityAvailable = MaxTruckCapacity - Truck.getCapacityUsedo;
if (Order.getOrderSize() <= truckCapacityAvailable) {

Accept the Order and add the Order to the Truck;
orderAccepted = true;
Break out of this loop;

}
}
If (orderAccepted is not true) {

startNewTruck = true;
}

If (startNewTruck is true) {
If (currTruckList.Size() <MaxNoOJTrucks) {

Start a new truck;
Accept the order and add the order to the new truck;
Add the truck to currTruckList;

} else {
Reject the order;

}
}

}else {
Reject the order;

}
}
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4.3.1 Binary Logistic Regression Model Derivation

Running the regression analysis, we obtain parameter values shown below in Table 1.

Table 1: Binary logistic regression parameters

Regression Explanatory Coefficient Standard Error p-Value

Coefficients Variable Units

Constant (BO) - -1.578 0.09895 < 0.0001

Line haul (B1) Miles -0.08093 0.01143 < 0.0001

Order size (B2 ) Totes 0.5559 0.01860 < 0.0001

From Table 1, we see that p-Values for regression parameters are less than 0.0001. Using an

alpha value of 0.05, we conclude that the regression parameters are statistically significant,

which allows us to reject the null hypothesis that they do not explain the data sufficiently.

According to the regression function described in Section 4.3, positive coefficients dictate that as

an input variable increases, the output increases. From our regression analysis, we find a line

haul coefficient (B1) of -0.08093 and an order size coefficient (B2) of 0.5559. This tells us that

large values for line haul will decrease the model output, increasing the likelihood of order

rejection, while large values for order size will increase the model output, increasing the

likelihood of order acceptance. Large sized orders that are in close proximity to the distribution

center are therefore desirable. Table 2, below, describes the relative strength of the explanatory

variables in computing logistic regression decisions.
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Table 2: Heat map table of logistic regression output as a function of order size and line haul

Line haul (miles)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 711% 75%Y

6'i -1 -2 70% 69% 67% 65% 63%
5 72% 71% 69% 67% 65% 64% 62% 60% 58% 56% 54% 52% 50%
-466% 64% 62% 60% 58% 56% 54% 52% 50% 48% 46% 44% 42% 40,o$$

3 52% 50% 48% 4% 44% 42% 4% 'S-Z4

Table 2 demonstrates the comparative strength of the two explanatory variables used to create

the model. The table shows that variability in order size has a much greater impact than line haul

in the likeliness to accept an order. As line haul increases, marginal decreases in the likelihood of

order acceptance are small relative. This tells us that the benefits from larger order sizes

outweigh the disadvantages of larger line haul distances.

To determine an appropriate threshold for accepting and rejecting orders based on the function

output, sensitivity analysis was done on the same dataset from which regression was created to

minimize the number of incorrect values. For the entire dataset, the total number of incorrect

values was calculated with Equation 6 as follows:

(6)Min abs(Yoptimai - Yregression)

where,

Yoptima: binary decision output from the optimal model

Yregression: binary decision output from the regression model
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By varying the threshold of acceptance, we find a threshold of 0.53 allows for the minimum

number of incorrect answers. With the threshold set, we can now calculate a pseudo-R 2 value to

determine goodness of fit of the regression curve. The pseudo-R 2 value is determined by

Equation 7, shown below (Freese & Long, 2005).

# Correct
Pseudo - R 2 = (7)

Total # of Decisions

Given a threshold of 0.53, we find 3615 correct decisions out of a total of 4777 orders; therefore

the regression model has a pseudo-R2 value of 0.757. Additionally, the accuracy of the

regression model as compared with the optimal model is shown in Figures 5 and 6 with goodness

of fit curves. Explanatory variables were investigated separately to isolate the effectiveness of

their contributions to the model.
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Figure 5: Binary logistic regression goodness of fit to the optimal model output. This graph compares the
average regression and optimal outputs with a constant order size to isolate the line haul variable for

evaluation purposes. The average order size of four totes was chosen to avoid bias from extreme values.

Figure 5 demonstrates the goodness of fit of the binary logistic regression as compared with the

optimal model decision, specifically pertaining to the line haul explanatory variable. From the

graph, we can see that while the optimal decision is highly variable across line haul distances, the

logistics regression model strictly accepts or rejects orders based on a certain distance thresshold.

The variations in the optimal model are due to information that is not captured by the

explanatory variables used to create the logistic regrssion model. Overall, we see a basic trend

for both models to accept orders in close proximity to the distribution center and reject orders

with large line hauls.
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Figure 6: Binary logistic regression goodness of fit to the optimal model output. This graph compares the
average regression and optimal outputs with a constant line haul from the distribution center to isolate the
order size variable for evaluation purposes. A line haul approximately 6 miles was chosen to avoid bias

from extreme values.

Figure 6 demonstrates the goodness of fit of the binary logistic regression as compared with the

optimal model decision, specifically pertaining to the order size explanatory variable. Again we

see that while the optimal decision is variable across order size, the logistics regression model

strictly accepts or rejects orders based on a certain order size thresshold. For example, when a

truck only has space for 2 totes, the optimal strategy will accept an order size of 2 totes. The

binary logistics model, however, cannot take capacity into account, and therefore will never

accept small orders Overall, we see a basic trend for both models to accept large orders and

reject small orders.
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5. RESULTS & ANALYSIS

The purpose of the probabilistic model is to allow companies with private fleets to allocate

resources effectively and eliminate unprofitable orders. In order to determine the effectiveness of

our proposed models, we tested them against the various possible strategies described in Chapter

4. We tested each strategy using the same randomly generated demand data and capacity

constraints to determine the expected daily profits. The results were obtained by inputting 20

days of simulated demand into each model. Profits are reported as daily averages. Each model is

also tested for different fleet sizes to provide insights on the ideal fleet size the company should

have to generate the greatest profits. The results are dependent on values used for model

parameters, which are listed in Appendix B.

This section displays the results obtained for the two model iterations mentioned in Section 3.5

and draws key insights from the results obtained from the various strategies. The first iteration,

in which order size was kept constant, illustrated the key insight that our probabilistic model

could help the firms to increase their profits by not accepting unprofitable orders. However, the

model needed to be tested under real-world conditions to understand its potential. Therefore, the

assumption of constant order size was removed. The variable order size probabilistic model

confirmed our hypothesis that our order acceptance model based on the past history will benefit

the company monetarily by accepting only profitable orders. The detailed insights for each of the

models can be found in the below sub-sections.
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5.1- Fixed Order Size Results and Analysis

Figure 7, below, compares the results for the first iteration of our model with the alternative

strategies under the assumptions stated in Section 3.5.1. In this scenario, order size is kept

constant. The graph depicts the average daily profit for each strategy across fleet sizes.
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Figure 7: Average daily profit by strategy. The figure shows the profit earned by using different strategies
with orders containing a constant number of totes. We can see from the graph that each strategy has a

different optimal fleet size.

We can see from Figure 7 that the optimal model would allow the company to make a maximum

profit of $2,916 when the fleet size is 14. The optimal model makes maximum profit as it makes

a decision based on the complete demand data and only accepts order which would maximize its

capacity. Among the three instantaneous decision models, the probabilistic model performs

better than the myopic manager model and the logistic regression model. Detailed analyses of
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these results are described below. Figure 8, below, depicts the number of trucks the models

actually use as compared to the fleet size and provides insight to the behavior of the models

depicted in Figure 7.
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Figure 8: Number of trucks used by fleet size for all strategies in a fixed order size scenario. Myopic
manager and optimal models fully overlap. Each model linearly utilizes trucks until a certain fleet size,

when additional trucks are no longer useful.

As can be seen from Figure 8, the number of trucks used by the myopic manager and optimal

models increase linearly with the fleet size until they reach a capacity of approximately 22

trucks. Until 22 trucks, every truck added gives the model increased capacity to service new

regions or deploy multiple trucks in densely populated regions. However, after 22 trucks, both

the models do not fully utilize all the available trucks as they have enough capacity available on

their currently deployed trucks to meet the daily demand. The probabilistic model also grows

linearly with the increase in fleet size, but tapers when it reaches 13 trucks. This is because the
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model will not deploy new trucks after a certain point in the acceptance region as it will not be

able to make any profit from the new trucks. The logistic regression curve also levels off after

using approximately 13 trucks as it will accept only those regions that are closer to the

distribution center and will eventually reach a point where it has enough capacity on its truck to

service these closer regions.

The purpose of the first fixed order size probabilistic model was to verify whether our order

acceptance model, based on likelihood of receiving breakeven number of orders in the

acceptance period, allows the company with no decision making tool to increase its profitability.

For the initial model comparison, order size was kept constant and the model was tested for

different fleet sizes. The initial results are encouraging and indicate that using past data to

determine the probability of receiving orders helps to improve the bottom line figures.

As can be seen from Table 3, below, the optimal strategy results are much higher than those of

other strategies as it has complete knowledge of the daily demand and accepts only those orders

that maximize truck utilization and daily profit. Because our probabilistic model is forced to

make instantaneous informed decision under uncertainty, the profits earned are about 6% less

than the profits earned using the optimal strategy. Our model, however, assists the firms in

improving response time by making an instantaneous decision rather than having to wait for the

entire order acceptance period before making the optimal decision.
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Table 3: Comparison of maximum daily profit for all strategies with fixed order size

Model Type Ideal Fleet Maximum Difference Difference from

Size Average Daily From Optimal Optimal (%)

Profit($) ($)

Optimal 14 2916

Myopic manager 20 2435 (481) (16.5)

Fixed order size probabilistic 13 2748 (168) (5.8)

Logistic regression 12 2157 (759) (26.0)

In the fixed order size scenario, the probabilistic model allows the firm to make an additional

$313 per day over the myopic manager model; an increase of approximately 12%. The difference

in profits occurs because the probabilistic model rejects orders for certain regions that would

cause the operating costs to be greater than the revenue, whereas the myopic manager's model

would accept all orders, including those to regions which will not reach a breakeven number of

totes.

The logistic regression model is the poorest performing real-time decision making model in the

fixed order size scenario, earning approximately 26% less than the optimal profits. The results

show that the explanatory variables used for the logistic regression model are not able to

accurately capture the effects of demand behavior and capacity constraints.

The probabilistic model makes the greatest profits with fewer trucks than the optimal model,

because of its inherent nature. The model accepts orders until it expects profits will not be

reached. Due to the probabilistic nature, in some cases actual orders in a region will be lower
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than expected orders. When this occurs, profits are decreased. Alternatively, when demand is

greater than a single truck capacity it will fill the truck and then begin a new truck, time

permitting. When the last truck is deployed to a region, however, the model will not capture the

profits from additional orders after the capacity is filled. This phenomenon decreases the daily

profit when number of orders is less than expected, but does not increase the daily profit when

number of orders is greater than expected, thus underestimating the ideal fleet size under optimal

conditions.

The results obtained from the fixed order size iteration of our model provide important insights

of how a company can use past history to predict the probability of receiving enough orders in a

region. However, these results should be substantiated further to assess their real-life capability.

The next iteration seeks to account for this by incorporating variable order sizes into the demand

dataset. The results obtained from the next iteration of the model are discussed in the following

section.

5.2 - Variable Order Size Results and Analysis

The second iteration of the model, which includes real-world conditions of variable order size,

provides deeper insights into the strength of our model. In this iteration, because the orders vary

in size, firms can increase their potential revenues by accepting larger orders as transportation

cost is decreased when multiple totes are delivered to the same location. Each model was tested

with the same dataset, which included a uniform distribution of order size ranging from 1 tote to

7 totes. We also evaluated the optimal fleet size that a company should have to maximize its

profit through sensitivity analysis. Detailed results of all strategies are reported below in Figures

9 and 10.
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Figure 9: Average daily profit by strategy. The figure shows the profit earned by using different strategies
with orders containing a variable number of totes. We can see from the graph that each strategy has a

different optimal fleet size.
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Figure 10: Number of trucks used by fleet size for all strategies with variable order size. As with the fixed
scenario, myopic manager and optimal models fully overlap. Again, each model linearly utilizes trucks

until a certain fleet size, when additional trucks are no longer useful.

The following sections provide comparison analyses for each strategy in the variable order size

iteration.

5.2.1 - Optimal Model Analysis

The combined results in Figure 9 show that the maximum profit earned for the optimal strategy

is much higher than that of any other strategy as it has complete information of the demand and

only chooses those orders that earn higher revenue and allow for utilizing maximum truck

capacity. The model maximizes profit when the fleet size is 14 trucks. When the fleet size is

greater than 14 trucks, the profits start decreasing as the cost of operating the new trucks is

higher than the revenues earned from accepting the orders. The profits earned decrease as the

trucks are underutilized and not able to reach the breakeven number of orders required to meet
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the operational cost of running the truck. Figure 10 shows that the optimal model curve grows

linearly with the fleet size until a fleet size of 21. The explanation for the linear growth is that

with more trucks available, the model has increased ability to service new regions or service the

same region multiple times. When the fleet size becomes greater than 21 trucks, the existing

trucks have sufficient capacity to service the regions and fulfill the demand.

5.2.2 - Myopic Manager Model Analysis

The results in Figure 9 indicate that for the myopic manager model the profit increases as the

fleet size increases. The reason for this behavior is that more trucks enable the firm to service

more regions and increase its potential to accept more incoming orders. However, after 21

trucks there is capacity available in each of the trucks to meet the daily demand for a majority of

regions, hence new trucks will not be utilized and will incur a penalty. This accounts for the

behavior of the myopic manager curve in Figure 10, explaining why the curve levels off at 21

trucks used. The myopic manager model behaves like an optimal model at the point where the

profits converge because all the daily demand can be accepted as there is effectively no capacity

constraint.

The profits for this strategy are lower compared to the optimal model and the probabilistic model

when the fleet size is less than 20. This is because the model deploys trucks in the regions for

earlier incoming orders. As a result of this, it can accept an order for a region which does not

have a high customer density and will cause most of the truck's capacity to be underutilized. As

a result, the company will lose money in these unprofitable regions and report lower profits. As

there are up to 19 regions to service, the model will make maximum profit if it can meet the

demand sufficiently in each region. Some regions require more than one truck and some regions
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may not have enough demand to justify a single truck. Through sensitivity analysis, we found the

ideal fleet size for this model should be 20 trucks to allow the model to secure enough capacity

in high volume regions. Having a fleet size of more than 20 trucks results in some trucks not

being deployed and incurring a penalty.

5.2.3 - Variable Order Size Probabilistic Model Analysis

Figure 9 provides useful insights about the validity of the probabilistic model. Average daily

profit is maximized when the fleet size is 13 trucks. This indicates that the company's ideal fleet

size should be 13 trucks. Having more than 13 trucks does not help to increase profits or the

probability of accepting new orders as the model is highly influenced by the order acceptance

period. The model will not deploy a new truck after a certain point in the acceptance period as

the likelihood of meeting the breakeven number of orders falls below 70%. Hence, the profits

start decreasing after they reach their peak as the model incurs the penalty for not utilizing the

available trucks. This behavior of not utilizing all the available trucks when the fleet size is

greater than 13 is also reflected in Figure 10 above.

5.2.4 - Binary Logistic Regression Model Analysis

Compared with all other strategies, the logistic regression analysis offers the poorest

performance, as shown in Figure 9. For capacities greater than 16 trucks, profits decrease due to

the penalty for not utilizing trucks. Figure 10 shows that the number of trucks used grows

linearly with fleet size until the available trucks reach a count of 17. For 18 or more trucks, the

curve flattens as the existing trucks can hold all of the orders that the binary logistic regression

model will accept. One factor causing low profits is that the model did not adequately describe

the situation with the available explanatory variables. This contributed to the fairly low pseudo-
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R2 value of 75.7% correct decisions described in Section 4.3.1. The regression model actually

performs worse than the myopic manager model because the nature of the regression parameters

allows for some regions to be ruled out entirely due to high line haul distances that may

otherwise be profitable due to high demand. Similarly, orders with only one tote will most likely

not be accepted even if there is already available capacity to the same region.

Another driver for this phenomena is that the regression model does not change acceptance

threshold based on capacity; therefore it cannot adjust its decision making process throughout the

day. In our probabilistic model, the decision to accept a new region is highly dependent on the

time an order is received; however in the logistic regression model, the time an order received is

irrelevant, which creates a poor decision making process.

5.2.5 - Combined Analysis

Figure 9 combines the individual model results to demonstrate visually how the strategies

compare with each other. From the graph we can see that our probabilistic model outperforms all

other instantaneous decision making models.

Table 4, below, shows that the maximum profit earned by applying the myopic manager strategy

is 17.5% less than the optimal results and the probabilistic model performs better than the

myopic manager model. The profit earned by applying our strategy is within 8% of the optimal

profits and also requires one less truck.
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Table 4: Comparison of maximum daily profit for all strategies with variable order size

Ideal Maximum
Difference from Difference from

Model Type Fleet Average Daily
Optimal ($) Optimal (%)

Size Profit ($)

Optimal 14 2917 -

Myopic Manager 20 2407 (510) (17.5)

Variable Order Size Probabilistic 13 2691 (226) (7.5)

Logistic Regression 16 1770 (1147) (39.3)

The results indicate that the logistic regression model is not an ideal choice for an order

acceptance model as it offers a significantly lower profit than all other strategies. Comparing the

instantaneous decision making models, the myopic manager model provides 10.5% less profit

than our probabilistic model and the logistic regression model provides 34.2% less profit. We

can conclude from Table 4 that incorporating demand history, as in the probabilistic model, is

useful for increasing profitability through informed decision making processes.

Table 5, below, compares the profits gained by each model when the fleet size is fixed at 13

trucks, which is the ideal fleet size of the probabilistic model. This allows us to compare each

strategy against the best case scenario for the probabilistic model developed in this thesis. This

comparison is useful from a realistic viewpoint, as companies will not have perfect flexible

control over fleet size, and must make decisions that will allow for the best utilization of current

available resources.

50



Table 5: Comparison of average daily profit earned with fleet size of 13

Average Difference from Percent Difference
Model Type

- Daily Profit Optimal from Optimal

Optimal 2894 -

Myopic Manager 1792 (1102) (38.1)

Variable Order Size Probabilistic 2691 (203) (7.0)

Logistic Regression 1652 (1242) (42.9)

From Table 5 we can see that in a scenario with fixed capacity of 13 trucks, the probabilistic

model provides only 7% less profit than the optimal model, while the myopic manager and

logistic regression models provide 38.1% and 42.9% less, respectively. These results further

prove that a real-time order acceptance decision model based on likelihood of receiving orders in

a region performs nearly as well as the optimal model.
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6. CONCLUSION

To determine the effect of historical demand on the effectiveness of real-time operational

decision making, a probabilistic model was created to maximize profit through rejection of

unprofitable orders for retail firms with its own operating fleet. As orders are received for service

regions with no available capacity, the model determines if expected daily revenues justify the

cost of deploying an additional truck to those regions. The expected revenues are determined by

probabilistic analysis of customer data. When trucks are deployed to a region, all orders from

that region are accepted until truck capacity is full.

To provide a baseline for profit analysis, an optimal model was created that was able to use all

demand data simultaneously. To further test our probability model, two alternate real-time order

acceptance strategies were run in parallel: the myopic manager model and a binary logistic

regression model. Java tools were created for all four strategies to facilitate model validation. By

inputting the same simulated demand data sets into each Java tool, we were able to determine

that our probabilistic model provided approximately 8% less profit than the optimal solution;

however, it outperformed all other instantaneous decision making models. In the variable order

size scenario, average daily profits for the myopic manager model and the logistic regression

model were about 11% and 34% lower than the probabilistic model, respectively. We determine

that the myopic manager and logistic regression models simply do not offer the insights required

to match supply with demand in an effective way.

We are able to conclude that demand probabilities are an important variable for use in real-time

operational decision making processes. This research shows that demand probabilities through
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historical demand patterns should be considered by companies with private fleets who have to

make decisions to accept or reject orders under capacity constraints.

6.1 - Probabilistic Model Limitations

For practicality, several assumptions were made to create the probabilistic model to account for

the lack of availability of detailed demand data for a retail company operating its own private

transportation fleet. The underlying assumptions that remove strength from the model are as

follows:

* Each customer orders once every 20 days. This assumption was crucial in allowing

straightforward statistical analysis; however, it does not accurately depict the distribution

of demand that a real firm will face under uncertainty.

" Each order provides constant revenue per tote. By assuming constant revenue pet tote for

the probabilistic model, we were able to simplify the profit equations and focus the

effects of the model on cost minimization.

" Each truck can only deliver to one region. This assumption was used to allow for

simplicity in cost calculations in order to separate breakeven costs by region. In reality,

regions that are close together provide further opportunity for shipment aggregation.

" There is no cost for rejecting an order. In reality, a retail company will not reject the

customer's order, but instead opt to hire a third party logistics transportation company to

make the delivery. To model this accurately, these outsourcing costs must be modeled

and then incorporated into the total cost equation described in Chapter 3. Additionally, by

passing delivery to third party providers, the company relinquishes control and service

levels may be affected.
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* Transportation cost parameters were estimated based on experience and common sense,

rather than determined through data analysis. Therefore, actual operational cost may not

be accurately illustrated by the transportation cost estimation equation described in

Chapter 3, which may affect calculations for breakeven number of totes.

6.2 - Suggestions for Future Research

Using probability to create a decision making process for order acceptance has been shown to

increase profitability under the assumptions dictated in this paper. To understand how the model

would function in a more realistic setting, however, more research must be done to amend the

model to remove naive assumptions.

First, acquiring real package delivery demand data would allow for the model to be tested more

accurately. Assumptions surrounding customer order frequency, order size, and order revenue

would be refined to include realistic probability distributions to be included in the creation of

demand samples.

Second, the model should be adjusted to allow trucks to deliver to more than one region. This

would allow for the possibility of additional aggregation of orders, which would cause the model

to be more favorable to orders from low customer density regions if they are in close proximity

to high density regions.

Third, the cost for order rejection must be included in the model. Using parcel delivery cost data

from third party transportation companies; we can determine accurate cost of outsourcing tote

delivery and incorporate this cost into the regional breakeven analysis.
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Last, parameters for transportation cost must be more accurately determined. A thorough

analysis of transportation data will provide more insights into the true values and allow for more

accurate transportation cost estimations.

In addition to relaxing assumptions, future research should be done to create accurate models of

current practices of retail companies operating private fleets. In our thesis, we simplify the

actions of these companies with the myopic manager model, a worst-case scenario in which

companies will simply accept every order until capacity is unavailable. This is most likely not

true for many companies, as they may adapt strategies and develop decision making heuristics

over time. By investigating the real processes used by companies, we can more accurately assess

the benefits of the model. Finally, the model should be tested in different locations, other than

the Greater Boston area, to conclusively determine its effectiveness across various geographic

areas.
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APPENDIX A - Data Sample

Order Customer City State Day Time Cumulative Number
Number ID Between Time (Hours) of Totes

Orders
1 31781 Boston MA 1 0.020 0.02 7
2 9234 Boston MA 1 0.037 0.06 6
3 8002 Boston MA 1 0.011 0.07 4
4 44511 Newton MA 1 0.050 0.12 7
5 43819 Dorchester MA 1 0.006 0.12 4
6 47458 Jamaica Plain MA 1 0.006 0.13 1

7 34804 Newton MA 1 0.018 0.15 3
8 38792 Boston MA 1 0.085 0.23 7
9 36072 Roxbury MA 1 0.014 0.25 7
10 45196 Boston MA 1 0.029 0.28 1
11 39512 Boston MA 1 0.312 0.59 2
12 14374 Cambridge MA 1 0.021 0.61 3
13 9904 Boston MA 1 0.030 0.64 7
14 14173 Allston-Brighton MA 1 0.016 0.65 7
15 35431 Boston MA 1 0.071 0.72 1
16 44415 Boston MA 1 0.036 0.76 4
17 20154 Boston MA 1 0.104 0.86 6
18 465 Somerville MA 1 0.021 0.89 7
19 33562 Boston MA 1 0.025 0.91 6
20 41815 Cambridge MA 1 0.113 1.02 1
21 45751 Brookline MA 1 0.090 1.11 2
22 18686 Dorchester MA 1 0.039 1.15 3
23 33828 Boston MA 1 0.104 1.26 6
24 263 Brookline MA 1 0.063 1.32 2
25 47268 Boston MA 1 0.052 1.37 2
26 12838 Cambridge MA 1 0.086 1.46 2
27 45822 Charlestown MA 1 0.012 1.47 4
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APPENDIX B - Mo

Constant

Fleet capacity

Revenue per tote

Cost per tote

Fixed cost per truck

Penalty for not using the truck

Order acceptance period

Average number of totes per order

Average revenue per order

Number of local tours per region

Network constant, k

Cost per distance

Cost per stop

Cost per unit per stop

Constant regression coefficient

Line haul regression coefficient

Number of totes regression coefficient

Threshold value for logistic regression

Threshold probability for meeting

breakeven number of orders
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del Parameters

Value

20 trucks

$40

85% of rev

$100

$60

12 hours

4 totes

4 totes *

1

0.765

0.75 / mile

$2

$0.25

-1.578

-0.08093

0.5559

0.53

enue/tote

40 = $160

0.7



APPENDIX C - Model Output Summary

Type Day Fleet
Size

Trucks
Used

Orders
Accepted

No of
Totes

Revenue Cost Profit

Myopic Manager 8 1 1 14 60 2400 2091 209
Our Model 8 1 1 14 60 2400 2091 209
Optimal 8 1 1 13 80 3200 2783 317
Logistic 8 1 1 7 44 1760 1528 132
Myopic Manager 8 2 2 37 140 5600 4899 501
Our Model 8 2 2 37 140 5600 4899 501
Optimal 8 2 2 27 160 6400 5571 629
Logistic 8 2 2 21 121 4840 4213 427
Myopic Manager 8 3 3 43 160 6400 5619 481
Our Model 8 3 3 47 183 7320 6414 606
Optimal 8 3 3 43 240 9600 8360 940
Logistic 8 3 3 35 201 8040 6998 742
Myopic Manager 8 4 4 53 203 8120 7134 586
Our Model 8 4 4 65 263 10520 9208 912
Optimal 8 4 4 59 320 12800 11153 1247
Logistic 8 4 4 49 281 11240 9788 1052
Myopic Manager 8 5 5 71 283 11320 9927 893
Our Model 8 5 5 68 272 10880 9543 837
Optimal 8 5 5 74 400 16000 13945 1555
Logistic 8 5 5 54 313 12520 10915 1105
Myopic Manager 8 6 6 74 292 11680 10262 818
Our Model 8 6 6 87 352 14080 12344 1136
Optimal 8 6 6 88 480 19200 16751 1849
Logistic 8 6 6 55 318 12720 11115 1005
Myopic Manager 8 7 7 93 372 14880 13063 1117
Our Model 8 7 7 106 432 17280 15161 1419
Optimal 8 7 7 119 560 22400 19576 2124
Logistic 8 7 7 67 396 15840 13849 1291
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APPENDIX D - Model Output at Order Level

Order City Day Cumulative No. of Myopic Optimal Our Logistic
No. Time Totes Manager Decision Model Regression

Decision Decision Decision
1 Boston 1 0.02 7 1 1 1 1
2 Boston 1 0.06 6 1 1 1 1
3 Boston 1 0.07 4 1 1 1 1
4 Newton 1 0.12 7 1 1 1 1
5 Dorchester 1 0.12 4 1 1 0 0
6 Jamaica Plain 1 0.13 1 1 1 1 0
7 Newton 1 0.15 3 1 1 1 0
8 Boston 1 0.23 7 1 1 1 1
9 Roxbury 1 0.25 7 1 1 1 1
10 Boston 1 0.28 1 1 1 1 0
11 Boston 1 0.59 2 1 1 1 0
12 Cambridge 1 0.61 3 1 1 1 0
13 Boston 1 0.64 7 1 1 1 1
14 Allston-Brighton 1 0.65 7 1 1 1 1
15 Boston 1 0.72 1 1 1 1 0
16 Boston 1 0.76 4 1 1 1 1
17 Boston 1 0.86 6 1 1 1 1
18 Somerville 1 0.89 7 1 1 1 1
19 Boston 1 0.91 6 1 1 1 1
20 Cambridge 1 1.02 1 1 1 1 0
21 Brookline 1 1.11 2 1 1 1 0
22 Dorchester 1 1.15 3 1 1 0 0
23 Boston 1 1.26 6 1 1 1 1
24 Brookline 1 1.32 2 1 1 1 0
25 Boston 1 1.37 2 1 1 1 0
26 Cambridge 1 1.46 2 1 1 1 0
27 Charlestown 1 1.47 4 1 1 0 1
28 Cambridge 1 1.5 6 1 1 1 1
29 Jamaica Plain 1 1.52 4 1 1 1 0
30 Newton 1 1.57 3 1 1 1 0
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APPENDIX E - Model Output at Daily Level
Our Model Output

******************* Day 1 *************************
Truck 1: Boston
No of Orders: 19
Capacity Used: 80
Revenue: 3200.0
Cost: 2799.11
Profit: 300.88

Truck 2: Newton
No of Orders: 21
Capacity Used: 73
Revenue: 2920.0
Cost: 2582.47
Profit: 237.52

Truck 3: Jamaica Plain
No of Orders: 9
Capacity Used: 36
Revenue: 1440.0
Cost: 1276.64
Profit: 63.35

Truck 4: Roxbury
No of Orders: 13
Capacity Used: 59
Revenue: 2360.0
Cost: 2069.45
Profit: 190.54

Truck 5: Cambridge
No of Orders: 24
Capacity Used: 80
Revenue: 3200.0
Cost: 2806.55
Profit: 293.44

Summary
Total No of Orders Accepted: 86
Total No of Totes Accepted: 328
Total Revenue: 13120.0
Total Cost: 11534.24
Total Profit: 1085.75
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