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Abstract

The interest in reducing emission and improving engine efficiency has become
a major push in industry, due to upcoming stricter regulations. A great deal of
attention has been given to the frictional losses due to piston and liner interaction, as
they represent a significant portion of the total mechanical losses.

This thesis work focuses on further development and application of an existing
model for the piston's secondary motion and skirt lubrication.

Model development has been focused on introducing liner dynamic
deformation, temperature and shear-thinning effect on viscosity, and arbitrary skirt's
shape definition. The theory behind the inclusion of these components is discussed
and the modifications to the existing model are explained.

In regards to the model's applications, an important topic is the model
validation, for which friction results from simulations are compared with
experimental results obtained on a floating liner engine. The analysis covers the
running condition of 1000 rpm, at partial and full load. This study is, however, not
concluded and more cases need to be studied in order to complete the validation of
the model.

The second application focuses on the effects of geometrical patterns on the
skirt on friction and secondary motion of the piston. First, some regular patterns
were studied and found to have negative effects on friction due to their inability to
build sufficient hydrodynamic pressure, compared to the baseline design. Then, a
different sets of patterns were proposed to more effectively utilize available oil and to
maximize the hydrodynamic pressure generation in the skirt region. The results show
that new strategy can significantly reduce friction of the skirt without introducing
negative impact on the secondary motion.

This thesis work aims to make the model a more complete and powerful tool
to understand piston's secondary motion and the applications are meant to show the
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capabilities of the model, as an instrument to approach piston's design and inspire
new ways and ideas to reduce frictional losses.

Thesis Supervisor: Dr. Tian Tian
Title: Principle Research Engineer, Department of Mechanical Engineering
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Chapter 1

Introduction

1.1 Project Motivations

Internal combustion engines have heavily changed our life ever since their

invention. Every day in our usual routine one or more of our actions is made possible

or easier thanks to the use of this technology. During many years internal combustion

engines have become more sophisticated and their usage has widely spread and

increased in the transportation system and industry. Since 1890, when the internal

combustion engine industry was effectively founded, only 50,000 engines were sold

[1]; in the 2013 the units sold have been 15 million.

The usage of IC engines is however strictly correlated with concerns about

CO 2 and pollutants release in the atmosphere, and the standards regulating emissions

are becoming stricter and stricter. In the 2012, in the United States, the EPA

(Environmental Protection Agency) has set a limit of 263 g/mi on carbon dioxide

emission corresponding to 27.3 mpg of fuel economy for passenger cars [2]. The long

term plan is however to further decrease emission by 31 % by 2020 [3].

In this scenario a lot of efforts are put into research to improve the design of

engines and meet the standards. In particular a lot of attention is given to mechanical

frictional losses, which approximately account for 10% of total energy losses. Among

these, 40-55% are observed in the power cylinder system, made up of piston (25-

47%), ring-pack (28-45%) and connecting-rod bearings (18-33%) [4].The potential

that this system has to improve is the motive that has encouraged this thesis work.
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One dominating phenomenon in the power cylinder system is the piston-liner

interaction. This interaction can be described by studying piston's secondary motion

and lubrication, which is the main topic of this project. A comprehensive

understanding of this motion is extremely useful to study how the design of pistons

affects the frictional losses, wear, oil consumption, engine noise and reliability.

This thesis focuses on the further development of the piston's secondary

motion and lubrication model, already built during the progress of this project, and

will also address model validation and interesting applications.

1.2 Thesis Work

The existing model, first developed by Dongfang Bai [4], has set a good and

comprehensive basis to study piston's secondary motion, but the further development

of it is necessary as some physical phenomena occurring in the system are not yet

represented, some assumptions needs to be relaxed and the code has not been used

previously to study real cases or address real problems.

The development of the model is discussed in Chapter 2 of this thesis. The

first issue addressed is the introduction of liner dynamic deformation. The dynamic

deformation is defined as the deformation due to the interaction between piston and

liner, or more practically the deformation due to the force that the piston applies on

the liner. As it will be discussed in more details, the existing version of the model

only included the skirt's dynamic deformation, assuming the liner a rigid component.

This assumption, however, may not be a good approximation; in fact, the liner can

be rather flexible in some regions, and deform as much as the skirt does. Furthermore,

the assumption of rigid liner makes it easier for the piston to enter in solid to solid

contact with the liner, affecting the final results of friction force.
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The second important introduction in the code is the consideration of

temperature and shear-thinning effect on viscosity. The existing version of the model

considers a constant and unique value of viscosity for the whole calculation, but this

can prevent the results to be realistic. Usually the temperature along the liner can

vary from 130-110 'C at TDC and 80-90 'C at BDC, and also the local shear rate

at which the oil is subject in the skirt region can change depending on piston's speed,

oil feel thickness and side force. These phenomena can change the viscosity by order

of magnitude and therefore affect the results of the model.

Another major modification to the model regards the structure of the

calculation domain. The calculation domain for the skirt region, used in the existing

model, it has been assumed rectangular for both thrust side and anti-thrust side.

Generally, however, the skirt is not rectangular, and the thrust and anti-thrust side

can also be different. This has been taken into account and the possibility to define

an arbitrary and different domain geometry for thrust and anti-thrust side has been

introduced.

A big part of this thesis work has also been the direct application of the model.

One important application regards the simulation of engine's cycles based on the

Floating Liner Engine. The Floating Liner Engine is an experimental set-up in our

lab, through which it is possible to measure the instantaneous friction force. The

main purpose of this study is to compare the friction force calculated and

experimentally measured, in order to analyze the accuracy of the model.

A second, really interesting, application of the model, it has been studying the

effect of graphite patterns on the piston's skirt. Several prototypes have been

analyzed, finding a physical explanation to the resulting frictional losses calculated.

Since none of the patterns has resulted to give less frictional losses when compared
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to a baseline piston, a new pattern has been designed from scratch and tested,

reporting interesting improvements in performances.

As a conclusion, in Chapter 5, the main achievements made in this thesis are

summarized and suggestions to contribute to this project in the future are discussed.
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Chapter 2

Developments on previous model

2.1 Introduction to power cylinder system

The first thing that needs to be introduced, in order to understand the content

of this thesis, is the mechanical system that has been modeled, highlighting key

components and concepts.

Cylinder Bore

Thrust Side Anit-thrust Side

Ring-pack

Piston
Piston Pin

Connecting
Rod

Figure 2.1 - Power cylinder system
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Figure 1 shows a simplified representation of the system. The piston has the

role of transferring the energy released by the combustion to the crank shaft. The

combustion chamber pressure, however, due to the geometry of the system, will cause

a side force that pushes the piston towards the liner, as showed in Figure 2.

Combustion
force

Reacting force
of con-rod

Resulting
Side Force

Figure 2.2 - Side Force

The side force is the cause of the so called secondary motion of the piston.

This motion can be decoupled in two main components: lateral motion and tilting

motion. As shown in Figure 3, the first describes the pure translation of the piston in

the radial direction, the second describes the relative rotation of the piston around

the pin. Along with these definitions, it is usually also made a distinction between

the two skirt's sides of the system: it is called thrust side, the side of the system

towards which the piston is pushed during the expansion stroke, whereas the anti-
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thrust side is the opposite side. This is an important distinction to keep in mind when

designing pistons, in fact, usually the skirt geometry is different from side to side.

Primary Motion Secondary Motion

Tilting motion

Lateral motion

Figure 2.3 - Primary and Secondary motion

The first part to model, in order to describe the piston's secondary motion, is

the dynamics of the system (described in detail in Chapter 2 of [4]), which describes

the primary motion of the piston and the forces acting on it. This is, however, not

the most complicated part to understand. The secondary motion and lubrication is,

in fact, also largely influenced by the amount of lubricant available to the skirt at any

instant. To study this phenomenon it is critical to take track of the oil on the liner

and in the skirt's region. The details describing the modeling of oil transport between

skirt and adjacent areas are widely explained in Chapter 3 and 4 of Bai's thesis [4],

in this thesis the discussion will be limited to describe capability, assumptions and

improvements done on the existing model.

2.2 Existing model

The development of the piston secondary motion model is the result of the

modeling work done over the years [4, 5, 9]. Also experimental observations from

the 2D LIF engine [6, 7, 8] have helped the development of the oil lubrication sub-
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model in the existing model. This section will summarize the work done and discuss

the further developments.

The first part to analyze is the dynamics sub-model, which is fairly easy to solve

[4]. The assumptions done in this part are

not too many, but it is useful to list them,

as they could be topics of further work in

the future. A first simplification made to

solve the motion of the piston is the
PmnLubrication Connecting

assumption of no friction at the connecting Rod Bearing

rod bearing and at the pin bosses. The first

hypothesis is close to reality and its

influence to the motion is negligible. On

the other hand, the pin lubrication is a

subtle phenomenon. The assumption of no

friction at the pin bosses requires the pin and Figure 2.4 - Bearings

piston to be perfectly lubricated, assuming that no solid to solid contact takes place,

however, this may not be the case. In fact, when the piston is subject to important

inertial forces, the friction at the pin bosses can be significant and the tilting motion

can be affected by the motion and rotation of the connecting rod, especially between

strokes, when the side force changes sign, and the interaction between piston and

liner is limited. On the other hand, modeling the lubrication between piston and pin

is a really complicated problem and it is been currently neglected in this model [17].

Nonetheless, it could be an interesting topic to work on in the future, in order to

improve the model.
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Another important topic to discuss is the deformations taking place into the

system. The only components for which deformations are taken into account are

piston and liner. We can divide the deformations in three groups: cold, thermal and

dynamic deformations. The cold deformations are considered those caused by

particular constrains in the power cylinder block or by manufacturing process.

Specifically for the liner, the ideal shape is different from the real one because of static

stresses introduced when assembling the whole engine block (Figure 5), whereas for

the piston, its manufacturing process defines the profile of the skirt for lubrication

purposes (Figure 6).

Deformation from nominal radius (pm)
.5

x 10

0.2-...- -*~ .
1.5

t~4 0.15,

0.1
.5

1

Figure 2.5 - Liner cold deformation
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Piston cold shape
Radial difference respect nominal radius (pm) X 104

0.06 - Lands. RegiOni

0.05 -. -.. 5

0.04

0.03
- .. .5

0.02-

0.01 --

Figure 2.6- Piston cold shape

The second type of deformations are thermo-mechanical and are due to the

temperature rise of the components. The piston's deformation is usually greater at

the crown, usually reaching values between 200 - 250 yim. The liner's deformation

depends on the way the component is connected to the engine's head and can usually

reach values between 80 - 120 Mm. The magnitude of radius increase due to

thermal-mechanical stresses is usually greater that the cold clearance and needs to be

considered in the model.
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Liner hot deformation (pm)
x 10

................. 1.4
0.25.

1.3

0.2.
1.2

P0.15. 1.1

0.1 ......-.
.9

.8

Piston hot deformation (pm)

X 10

. ands Region
0.05 - 2

0.04 -

0.03 18

" 0.02
.6

0.01

0 1.

1.2

Figure 2.7 - Piston and Liner thermal deformation

As determinant as thermal stresses are dynamical stresses due to piston-liner

interaction and chamber pressure. In the existing model dynamical deformations are

only considered for the piston; these includes deformations due to piston-liner

interactions, inertial forces and chamber pressure, with the first being the most

important. Usually the side force can reach values of thousands of Newton, even for

passenger cars, and this would cause the piston to deform substantially. The

deformation are determined using a compliance matrix, which is an input obtained

with appropriate FEA models. Differently from the pistons, the liner is considered

rigid in the existing model. This might be not a good approximation in those cases
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where the liner is rather flexible and deform with a magnitude comparable to the

skirt when interacting with it. This assumption has been relaxed in the current

version of the model and the approach used is described in Section 2.3.

The last part to discuss is the hydrodynamics and lubrication model.

Physically, any mechanism that can influence the oil motion is described, in fact,

pressure and inertia driven flow are calculated, as well as Couette flow [10, 4]. The

oil film thickness is calculated at every calculation step, for every point in the

calculation domain, once the boundary conditions are defined. This represents an

important difference with other models [15,16], which either assume constant oil

film thickness or constant boundary condition. As shown in Figure 8, oil is free to

be attached with skirt or liner, so that it is possible to realistically describe fully

flooded and partially flooded regions. The surface tension is not taken into account

in the model, therefore the amount of oil, at a specific point in the domain, is

empirically associated half with the liner, half with the piston. This is an aspect that

can be improved. The boundary conditions are partial calculated, partially pre-

determined. In order to explain this part of the model, the calculation process will be

quickly introduced.
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Figure 2.8 - Oil visualizationin the piston-liner interface at central section of the skirt,
thrust side

* The first step to start the calculation is to define the initial oil amount in the

system, namely in the skirt and liner region, at the beginning of an intake stroke

(Figure 2.10, left).

* Once the simulation begins, the oil film thickness in the system will be purely

defined by dynamics and hydrodynamics (Figure 2.10 and 2.11). As the piston

starts the stroke, oil will enter the bottom of the skirt since scraped from the

liner (Figure 2.10). At the same time oil will be accumulated below the oil

control ring, as it is assumed that no oil can reach the ring pack. This is good

approximation as the oil control ring allows much less oil to pass through on

the liner than the piston's skirt. A certain amount of oil may also enter the oil

control ring groove and be drained through the drain holes. The significance of

this oil release depends on the oil supply rate to the liner region below the skirt

26
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and will be a subject for future investigations. Currently, the oil accumulated in

the piston's chamfer during a down-stroke is stored and will become a source

of oil supply during the following up-stroke.

* Once the piston reaches BDC, it will start its upstroke and the oil exiting the

lower boundary of the skirt is supposed to stay on the liner and is recorded as

part of the oil supply available to the piston for the following down-stroke.

* Once the piston reaches TDC, the oil film thickness calculated on the portion

of the liner below the piston is increased by a constant value to model oil supply

to the system, and it will represent the lower boundary condition for the skirt,

during the following down-stroke (Figure 2.12, left).

This is a crude way to practically represent the oil droplets coming from various

interactions below the piston's skirt. How oil can flow to the liner, below the piston's

skirt area, depends on the design of the crank shaft (wet or dry sump) as well as the

oil cooling jets. This is also a subject for future investigations. Note that oil can also

escape the skirt from the sides by means of pressure driver flow, as the side boundary

pressure is assumed atmospheric (Figure 2.9).

Pressie innertia driven

Pressure driven Pressure driven
flow flow

Pressure, inertia driven
and Couette flow

Figure 2.9 - Oilflow at the skirt's boundaries
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0
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Figure 2.12 - Oilfllm thickness distribution on liner in microns

Oil supplied on the liner region - Expansion stroke - Thrust side

In summary, the oil film thickness and boundary conditions in the system,

except that for the initial condition, are always calculated. The hydrodynamic is well

described in the model, the only thing that needs to be improved, is the way oil

supply to the system is defined.

2.3 Liner dynamic deformation

As already introduced in the previous sections, the liner dynamic deformation

was a missing part in the existing model and it has been implemented in the model

in this work. In order to comprehend this topic, the numerical-iteration process used

to solve the secondary motion needs to be briefly described.

The first step in the simulation process is to calculate the primary motion of

the piston. This only depends on the geometry of the components and on the set
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speed, therefore it is straightforward to achieve. Once the side force, the piston

vertical position, velocity and acceleration have been determined, it is necessary to

determine the lateral displacement and tilt of the piston, dynamic deformation of the

components, hydrodynamic and solid to solid contact pressure distribution over the

skirt region, and instantaneous clearance volume. Most of these variables are

interconnected. For example in order to determine the pressure distribution in the

skirt region, the clearance volume needs to be known; however, the clearance is

affected by secondary motion and dynamic deformations, which themselves are

influenced by the pressure distribution. To solve such a problem it is necessary to

guess the value of a group variables, calculate the others and correct the guess. This

process has to be repeated until the value of the variables satisfy a system of equations,

which in this case is represented by the force and torque balance equations on the

piston.

The specific process is summarized in Figure 2.13. The lateral displacement,

tilt and dynamic deformations are variable for which, at the first iteration, the value

is guessed. Once these variables are fixed, the clearance is determined and the pressure

distribution can be found, solving the hydrodynamics of the system.
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First guess for tilt angel, lateral displacement and dynamic deformations.
Clearance volume is so defined.

Hydrmdynamic Solver
Pressure and new oil distribution are

calculated.

Force and torque balance
Verify that the system of equations

is satisfied

Figure 2.13- Newton's iterative solving scheme

Once the hydrodynamic solver has generated a solution for the pressure

distribution, the force and torque balance equations for the piston are verified. If the

system of equations is satisfied, the calculation for that specific crank angle is

completed; if not, the Jacobean of the system (which will be described in more details

in the next section) is used to change the initial guess.

In this iterative process, the dynamic deformations (d) are first assumed

absent, to start the calculation, and then calculated, using the compliance matrices

(Cmat) of the parts, once the pressure distribution (P) is determined.

d = Cmat * P (1)

In the previous version, only the dynamic deformations of the piston was

considered. Introducing now the dynamic deformation of the liner, in theory, we

should distinguish between piston and liner deformations. However, since the

deformations are eventually only used to define the clearance volume (h) for the

pressure calculation, it is possible to sum up the piston and liner deformation and

consider it as a unique variable.
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dtot = dpiston+ diner (2)

h = f (lateral motion, tilt angle, dtot) (3)

Once the pressure distribution is calculated, all the deformations are

determined by virtue of a linear relation, therefore we can simply and directly

calculate the total deformation, using the compliance matrices of the two parts, as

expressed in following equations.

dpiston = Cmatpiston * P (4)

diner = Cmatiner * P (5)

dtot = dpiston + duiner = (Cmatpiston + Cmatuiner) * P (6)

In summary, the deformation term, that in the old model only accounted for

piston's deformation, it now takes into account the deformations of both piston and

liner. This does not create problems in the solving mathematical scheme, because the

number of variables is not changed and the relation between pressure distribution

and deformations is always linear. In the end, the only thing changed is that the

compliance matrix used is the sum of piston and liner compliance matrix.

Cmattot = Cmatpiston + Cmauiner (7)

Note that the Jacobean of the system of equations does not need to be changed,

because the number of variables and equations, which define the relations among

these variables, have not changed.

Lastly, it needs to be mentioned that for each time step in the calculation only

the compliance on the liner in the area covered by the piston is considered. Therefore,

interpolation is used to achieve the liner's compliance that matches the meshing of

the piston's compliance.
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Figure 2.14- Portion of liner compliance isolated for thrust side calculation, at two

different crank angles

Once the calculation is finished and the dynamical stresses acting on the liner

have been determined, one can easily recover its total deformation using its complete

compliance matrix.

2.4 Shear-thinning and temperature effect on viscosity

The viscosity of the oil is a really important for the skirt's lubrication. As

discussed previously, viscosity is affected by temperature and shear rate. The relation

used to describe the viscosity, in function of temperature and shear rate, is a

combination of the Vogel and Cross equations. Shell, which is a member of our

consortium, used the Vogel and Cross equation to model viscosity across a broad

shear rate ranges [11]. The equation is formulated as follow:

M(y, T)= Kexp (+ 0  (8)
\02 + T) /to + JOAY |

I0 A+T
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Equation (8) is usually obtained fitting experimental measurements of

viscosity with the Vogel and Cross equations. Equation (8) is usually obtained fitting

experimental measurements of viscosity. An example is showed in Figure 2.15. In the

equation K [Pa - s], i91[C], I92 [C], A and B[1/*C] are fitting parameters; T is the

temperature expressed in *C; y [1/s] is the shear rate; go is the viscosity value with

no oil film shearing, It, is the viscosity value when the shear rate has its maximum

effect. From the viscosity results of the example oil, it is possible to notice that both

temperature and shear-thinning effect can cause the viscosity to drop consistently.

This behavior, however, is different from oil to oil, depending on base oil and

viscosity modifier.

8.00 -1 ----
- 12M
-150

0 100C Expt
a 120C Expt
x 150C Expt

6 .00

*a
84.00

0.00 1 1 I 1 , 4
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Shear rate (1/secs)

Figure 2.15 - Example of oil viscosity measurements and data fitting results.

As discussed in the previous section, it is always necessary to analyze the solving

mathematical scheme of the model, when introducing new variables or relations into

it. In this case the parts that need to be discussed are the hydrodynamics solver and

the Jacobean of the system of equations.
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The temperature used in the model, in order to calculate the viscosity, is the

average temperature of piston and liner at every specific crank angle. This

temperature is given as an input data, therefore for every calculation step it is fixed

and does not represent a problem for the convergence of the model. The shear rate

dependence, however, can affect the solving scheme.

Due to the motion of the piston, the oil film can shear in consequence of

Couette or Poiseuille flow [10]. The contribution of the Couette flow to the shear

rate can be easily determined, since it only depends on the velocity of the piston,

which can be univocally calculated. On the other hand, the contribution of the

Poiseuille flow cannot be rapidly determined, because it depends on the pressure

distribution, which itself is affected by the viscosity. In other words, in order to

calculate the viscosity accurately, the pressure distribution needs to be known, and

vice versa, in order to calculate the pressure, the viscosity has to be determined.

The way to solve this problem is to slightly modify the hydrodynamic solver.

Basically, in order to start the solver, the viscosity is first calculated considering only

temperature and Couette flow. Once the viscosity is determined, a first

approximation for the pressure is found and the viscosity is updated, considering also

the Poiseuille flow. This process is repeated until the pressure is consistent with the

viscosity.
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Figure 2.16- Modification to the hydrodynamic solver

Note that the shear rate consequent from the Poiseuille flow changes along the film

thickness direction. In the model the average of the absolute value of the shear rate is

used, as an approximation.

The other part that needs to be carefully analyzed is the Jacobean of the system

of equations. In general given a specific set of equations and variables, the Jacobean

is defined as follows.

System of equations:

'af1
ax1

Jacobean: i
Ofn

Ax1

-f - -Xi -bl-

f2 X2 b2-] - =(9)

-f xn- .bn-

Of1 -

axn
'-. 3(10)

a fn

Clxn.

By introducing the relation for the viscosity, the number of equations and

variables of the system have increased. This might affect specific parts of the Jacobean
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that includes the viscosity in the calculation, which is no longer kept constant. Every

equation affected by this change has been analyzed.

The first equation that needs to be discussed is the torque balance equation on

the piston. In this equation, the term that is affected by the viscosity is the torque

applied on the piston caused by shear stresses. This term, called Tr, is proportional to

shear stress r, skirt area A and piston radius r.

T, = xAr (11)

In the Jacobean, the term , where h is the clearance volume, is calculated.aft

The only term depending on h is the shear stress, which is expressed as:

T=y-uy (12)

Where y is the shear rate. In the existing version of the model, keeping the viscosity

constant, the only term included was the shear stress term, P L. Now, in principle,

we should also consider the viscosity term, aA y.

OT ay

- y + alt a (1 3 )ah = ah + h

Before changing the Jacobean, however, it is necessary to check if the viscosity term

is dimensionally important when compared to the shear stress term. To do so, the

term y a has to be estimated using the viscosity equation (8).

aph

Op ( 0
1 ____+--_ 1\g

r ah -ryexp (02+ T) (+ Iy 1)2 10A+BT) M (14)

1OA+BT
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Therefore:

-1 + -C
Y1 Kepo ( hY

1 yKeXp (1 + I)2 (1OA+BT)
02+Ti _ \10+BT ah

Y Y _ MooYah Kex 
a+

0 +T o 10A+BT

-1 +PO

Io ( 1
+ 

, y 12 (10 A+BT )
JOyB (15)

1PO

Yo 1+ 110 ABTI

Using the data from several oils and considering a shear rate ranging from 105

to 10' 1/s, it is possible to get an approximation for the relative importance of the

two terms. The resulting estimate ranges from 0.002, for average temperature and

shear rate, to roughly 0.1, for critical condition, namely maximum shear rate and

high temperatures. This result shows that the shear rate term, i , has usually a

much stronger influence in the Jacobean than the viscosity term. It is true that for

critical conditions, the viscosity term increases its importance, but it is not a

dominant behavior. The torque balance equation, in fact, has not been modified to

introduce the viscosity influence and the convergence of the model, tested in several

applications, has resulted not compromised.

Another equation that needs to be discussed is the oil transport equation. This

equation is used to calculate the oil flow, and eventually the oil distribution, over the

piston's skirt. It has been derived using the averaged Reynolds equation, applied to

every point in the calculation domain [4], and describes the oil flow from point to
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point in function of the pressure gradient. Note that the oil flow due to Coette flow

is also calculated, but it is not dependent on viscosity, therefore it is not considered

in this discussion.

The equation that follows describes the oil flow rate q, along an arbitrary

direction x, in m3/s, in function of the oil film thickness hfilm. Note that in the

model, for every point in the calculation domain it is associated a cell, for which

pressure and oil film thickness are defined. In the equation, the cell's dimensions are

defined as Ax and Az, whereas Ap is the pressure difference across two cells.

h 3m p
qx m Az (16)

12,y Ax

z

Figure 2.17 - Cells definition in the calculation domain
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The oil flow depends, again, on the clearance volume, since the pressure is

determined in the hydrodynamic solver. The equation used in the Jacobean is,

therefore, the derivate of qj with respect to h.

Lq, p ( h2  h3__Dy-=--Ap z-3h h 3at (17)
ah AX 12pI 12pg2 ah)

As we have seen for the torque balance equation, the viscosity has to be considered

here too, but it is again necessary to check if its influence is dimensionally comparable

ft 2

with the term 3 , which is considered in the existing model.
12 it

-+ +o-(h- ( 1 ay hh t a 2 ) A+BT a
A h _ 1 + 10A+BT |)

3 3t1 - A0 (18)

h 3 -00+ Ito
go _+ Y h

10A+BT)

All quantities can be estimated considering several oils and clearance values,

however, it is harder to get a sense of r. This term can be affected from both Couette
ah

and Poiseuille flow.

)y a (aay (19)

ah - ah) Couette h)Poiseuiue

The two terms scale differently with the clearance volume.

0Cy -piston (20))ahCouette h2

Soc p - (2 1)
(h)Poiseuiue ax
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However, the Couette contribution, due to the 1/ 2 term, has a much stronger

influence than the Poiseuille contribution, for every given value of viscosity or

pressure gradient. Therefore, for the purpose of estimating the viscosity importance

in the oil flow equation, we can only consider the Couette term for (O. Equation

(18) can be re-written as:

It V pistonh aM a ' ( 1 0 A+BT) h
y ah + b10A+BT (

3 31 10 (22)

h 3 "w+ It
S1t + 110^+BTI

The resulting estimate of the ratio above ranges from 0.01 to 0.07, using piston

average velocity up to 20 m/s, clearance volume between 10-s and 10-6 pm, and

shear rate between 105 and 107 1/s. Given the small influence that the viscosity

would have, the corresponding oil flow equation in Jacobean, does not need to be

modified.

In summary, by introducing the viscosity equation in the model, the only part

that needed to be modified was the hydrodynamic solver. The Jacobean has remained

the same, because the influence of viscosity is not comparable with the influence or

other variables. One section in Chapter 3 will focus on the effect that temperature

and shear rate have on viscosity, comparing different studies on the floating liner

engine.
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2.5 Arbitrary skirt domain definition

The aspect of the model that has been modified is the definition of the

calculation domain. Previously the domain was assumed rectangular and identical

for thrust and anti-thrust side, but this setup becomes restrictive in real application

as modern piston's skirt presents a fairly irregular shape, as shown in Figure 2.18,

right.

By introducing an arbitrary definition of skirt, luckily, it is not necessary to

make important modifications to the mathematical solving scheme, as the physics of

the problem remains the same. However, since the domain is not simply rectangular

anymore, the way the input data, which defines the piston, need to be processed has

become more complicated.

Previously, even if the skirt had not a perfectly rectangular shape, the user had

to define a rectangular region within it, in order to set up the domain. Since in the

current model the domain can have an arbitrary shape, this process need to be

automated, in fact, a border detection algorithm has been formulated and included.

Figure 2.18 - Skirt input data and rectangular domain definition (left)
Modern piston's skirt - thrust side (right)
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The theory beyond border detection algorithm is quite complicated, especially

when the border is concave. In literature, it is known that the best way to detect

arbitrary borders is to use the Delaunay triangulation method [12]. This approach is,

however, too complicated for our purposes, therefore a new, simpler and more

intuitive algorithm has been developed.

This algorithm relies on the Matlab function called convhull, which is able

to detect the border of convex figures. The only application of this function, however,

does not allow to find the concave boundary, in fact, applying convhull to the skirt

in Figure 2.19, the results would be the following, where the points in red are those

detected as boundary.

44,

*00

Figure 2.19 - Convex boundary detection

The use of the function, as it is, is not successful. The algorithm, however, in

order to complete the process, transforms the point cloud before applying the

function. The basic idea is to make the concave portions of the point cloud convex

so that the convhull function will be able to recognize them. In the end, the goal is
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only to get the indices of the points on the boundary, therefore this method would

work.

Qualitatively, what the transformation does is to stretch the figure along a

particular axis, as shown in Figure 2.20.

.g ... *~ . is...v

4 ..... 7# * *f.;;
00*'

Figure 2.20 - Point cloud transformation

Mathematically the transformation is done with the following equation.

Ath = C - exp(-z2 ) - th (23)

k Z

th

The z and th coordinate refer to the plotted axis and are used to determine the

points' position. Ath is the displacement from the z axis, at which every point is

subject to. The equation applies a bigger displacement to the point that are on th

axis and far from the z axis.
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Once the figure has been transformed, the convhull function is applied. This

process is repeated multiple times, changing the vertical position of the th axis and

rotating both axis, in order to recognize all the concave regions.

This algorithm turns out to be really efficient in finding all kinds of boundary,

some example are reported below. This approach can be really useful also in other

kinds of problems, where it is necessary to find the boundary of densely populated

point cloud, like those of the input data for this model.

Figure 2.21 - Example of boundary calculation

Once the boundary has been detected, a rectangular grid is over imposed to

the point cloud and only the cells situated inside the detected boundary are included

the domain of calculation.

These are the most important and interesting changes made in the model to

handle arbitrary skirt's shapes. Unfortunately, no case has been studied yet using this

very latest version of the model, therefore it will be left as a future objective to check

how influent the consideration of the whole skirt is in the calculations, if compared

to the existing version.

45



46



Chapter 3

Comparison of model's results with

experimental results

3.1 Floating liner engine set-up description

One of the experimental set-up in the Sloan Automotive Laboratory is the

Floating Liner Engine [13]. The purpose of this experiment is to directly measure

the friction force between piston and liner.

Cylinder case Lateral stoppers

Piezoelectric
sensors

Figure 3.1 - Floating Liner Engine set-up schematic
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As shown in Figure 3.1, the idea is to leave the liner free to move vertically, so that

the piezoelectric sensors, connected to it, would be able to measure the pressure that

the liner applies on them, and achieve, in this way, the vertical force that the piston

applies on the liner, namely the friction force. This measurement process, however,

can be affected by the secondary motion of the piston, therefore lateral stoppers are

connected to the liner to limit its horizontal motion.

Nevertheless, since the stoppers are not able to completely prevent the liner

from moving or even rotating, the measurements are affected. In order to understand

this behavior a few cases will be analyzed.

Starting from the ideal cases, in which the secondary motion should not affect

the measurements, the sensors are supposed to give the same measurements. For

example, during a down-stroke both sensors should be stretching and during an up-

stroke compressing. Note that in Figure 3.2 and throughout this section, stretching

is indicated with green color, compression with red color.

Figure 3.2 - Stretching (left) and compression (right) ofpiezoelectric sensors
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When, however, the side force applied on the piston and, consequently, the

secondary motion are significant, the sensors can measure forces of different sign. For

example, during a down-stroke, if the piston is pushing toward the anti-thrust side,

the side force can be strong enough to induce the liner block to rotate. This motion

is not excessive, however it can be definitively captured by the sensors. In some cases

it can be measured that the sensor on the anti-thrust side is stretching while the one

on thrust side is compressing.

Figure 3.3 - Sensors' behavior during down-stroke, with a strong side force

Similarly, also during an up-stroke the sensors might measure opposite forces. In this

case, if the piston is pushing toward thrust side, the sensor on this side can be

stretching, instead of compressing, and the sensor on thrust side can be compressed

even more.
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Figure 3.4- Sensors' behavior during up-stroke, with a strong side force

Looking at actual measurements, one can realize how significant this

phenomenon is.
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Figure 3.5 - Friction measured by the sensors on thrust and anti-thrust side
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From Figure 3.5, it is possible to note that this phenomenon is particularly

significant near TDC.

Certainly, this aspect needs to be taken into account when comparing

measurements and calculations. In fact, since the total friction is calculated as sum of

the measurements from both sensors, it will not be accurate in points, during cycle,

where the measurements have opposite sign. On the other hand, however, this

phenomenon can be of help in order to get an idea of the secondary motion of the

piston. This last topic will be discussed in Section 3.3.

Lastly, another important aspect of the measurements obtained is their

variation from cycle to cycle. Normally two main factors cause this variation: the

instability of the combustion process, which gives different pressure traces every cycle,

and the oil supply to the piston-liner interface, which is a chaotic phenomenon and

cannot be easily predicted. Looking at example set of measurements obtained for a

specific condition, the variation, at some points in the cycle, can be rather significant.

In Figure 3.6 the maximum and minimum friction measured for a test run at 1000

rpm and 2 bar load are shown.
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Figure 3.6- Cycles friction (left) and expansion stroke (right) friction variation
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Given the importance of this phenomenon, it needs to be considered when

comparing calculations and measurements. Even if the combustion pressure's

influence on this variation can be limited, if the average pressure trace is used in the

calculation, the real oil supply cannot be predicted and it can still cause differences

between experiments and simulations.

In the next section measurements and calculations for specific conditions will

be compared. The friction compared to the calculations' results will be the average

friction experimentally measured over several hours of testing.

3.2 Friction results comparison

Similarly to every model that aims to describe a particular phenomenon in

internal combustion engines, it needs to be validated comparing its results with

experimental observations. This section will focus on the analysis of a few engine's

operating conditions, in order to verify the accuracy of the model. Note that this

study is not concluded yet, in fact more operating conditions need to be tested, in

order to infer on the model's validity; nonetheless, the results obtained in this chapter

are a good starting point to understand what can be improved and what can be

relevant in the calculations.

Figure 3.7 summarizes the cases analyzed in this study. The engine operating

conditions studied so far are only two: 1000 rpm with IMEP of 2 bar and 1000 rpm

with IMEP of 4 bar. The model has been run both assuming a constant viscosity of

0.005 Pa s and considering the viscosity relation, expressed by equation (8), using

HTHS2.9 oil, for which the rate of low shear rate and high shear ratio viscosity is

0.5404. The piston' skirt has been coated with graphite, which has a boundary
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friction coefficient of 0.03. The oil supply to the system, as defined in Section 2.2, is

assumed 25 pm per revolution. This way to describe the oil supply may not be

accurate, and the influence of this parameter will be a subject for future investigation.

Also, in order to give an idea of the engine tested, same geometrical parameters are

reported in Figure 3.8.

Speed 1000 rpm

Load 2 bar IMEP 4 bar IMEP

Viscosity y = 5mPa constant HTHS2.9 oil

Boundary friction coefficient 0.03
Oil supply 25 pm every revolution

Figure 3.7 - Cases studied and influent simulation's parameters

Nominal Bore 82.510 mm

Piston Diameter 82.455mm
Coated Material Thickness 15 pm in radius

Connecting Rod Length 144mm

Crank Shaft Radius 46.4mm

Figure 3.8 - Engine's data

The first group of results presented are friction calculations obtained at

1000rpm with an IMEP of 2 bar, assuming constant viscosity of 0.005 Pa s,

compared with friction measurements. Note that the calculations does not include

the ring pack friction, as the model only evaluates the hydrodynamic friction and

possible contact friction of skirt or lands. The ring pack model is itself a complicated

system to describe and other students in our research group are working on it. When
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looking at the comparisons, therefore, we need to keep in mind that the friction from

the model is supposed to be smaller than the friction measured.
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Figure 3.9 - 1000rpm - 2bar IMEP - constant viscosity

Boundary friction coefficient 0.03

From Figure 3.9, it is possible to see that in some portions of the cycle, the

friction's magnitude calculated is bigger than the measurements, and since the ring

friction, as explained, is not included in the calculations, this result is not satisfactory.

Looking at the friction's magnitude associated with hydrodynamics and solid to solid

contact (Figure 3.10), the latter results to be much more significant, therefore it is

necessary to understand what causes this behavior.
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Figure 3.10 - Comparison between total and hydrodynamic friction

In general, there are several components that can affect the contact friction:

boundary friction coefficient, viscosity, components' deformations and contact

model used. The first one linearly influences the contact friction calculated, but its

value only depends on the coating material, and it has been determined. Viscosity

affects wear, hence the contact friction in the system, and will be analyzed. The piston

and liner's deformations affect the geometry of the system and consequently the

secondary motion, which might cause excessive contact. The specific input data for

the deformations are unfortunately not easy to obtain, in fact, the liner cold and hot

deformation used in the model are only approximated. Furthermore, the dynamic

deformation of this component is not considered, because the compliance matrices

are not available. The dynamic deformations, in particular, represent a meaningful

component that needs to be taken into account in future calculations, because if the

liner is assumed rigid the contact friction would tend to increase. Lastly, the solid to

solid contact model is certainly something that influences the contact friction

calculation and can be analyzed and improved, but it will not be a focus in this thesis.
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After discussing the major components that influences the contact friction, the

next study analyzes the temperature and shear-thinning effect on viscosity. The

results for friction are presented as follow.
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Figure 3.11 - 1000rpm - 2bar IMEP - HTHS 2.9 oil
Boundary friction coefficient 0.03

The first thing that one can note is that the contact friction for this calculation, since

the hydrodynamic friction does not change significantly, it is much smaller than the

corresponding case with constant viscosity. This is mainly due to the different values

that the viscosity assumes during the cycle.
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Thrust side Anti-thrust side
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Figure 3.12 - Average viscosity value in Pa s during expansion stroke as seen on the
liner

Looking at Figure 3.12, which shows the average value of viscosity during an

expansion stroke as seen on the liner, we can see that overall the viscosity has higher

values than 5 mPa -s, assumed as contact viscosity in the first calculations.

Especially near BDC, where the temperature is roughly 950C and shear-thinning

effect is not excessively dominant, the viscosity ranges roughly between 0.01

and 0.016 Pa - s. In general, higher values of viscosity lead to less solid to solid

contact, which is the main difference between the two calculations presented.

Unfortunately, the only thing that it is possible to check from the results

presented so far is that the calculated friction is following the right trend and its

magnitude is smaller than the total friction measured. As noted previously, the model

does not include the ring pack friction, therefore this represents a limitation for such
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study. Nonetheless, other students in our research group are working to build models

to describe the ring pack [14, 26]. Yang Liu, whose work is currently focused on

rings' friction calculation, has provided the rings' friction results for the running

condition here studied. These results can allow to calculate the hypothetical piston's

friction by subtracting the rings' friction calculated to the total friction measured and

compare it with the model's calculation. Note, however, that this is approach, alone,

cannot validate the model, it is only meant to give a better understanding of the

model's result.
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Figure 3.13 - Comparison between piston's friction calculated with the model and
estimated with measurements and ring's friction calculation

Figure 3.13 shows the comparison between the calculated friction, already

presented in Figure 3.9, and the hypothetical piston's friction estimated with

measurements and rings' friction calculation. As we can see, in general the

calculations have a good prediction of friction near TDC and BDC, however during

mid-stroke we can have errors up to 10 N.
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The last results presented focus on the second running condition tested: 1000

rpm, 4 bar IMEP. As follow, Figure 3.14 shows the comparison between calculation

and total friction measured, Figure 3.15 the comparison between calculation and

estimated piston's friction, obtained again subtracting the calculated rings' friction

to the total friction measured. For brevity only the calculation done considering

temperature and shear-thinning effect on viscosity are presented.

Exhaust

Figure 3.14 - 1000rpm - 4bar IMEP - HTHS 2.9 oil
Boundary friction coefficient 0.03
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Figure 3.15 - Comparison between piston's friction calculated with the model and

estimated with measurements and ring's friction calculation

The plots above shows a slightly different behavior of the calculations in

respect to the previous running condition. Here the error during mid-stroke is

generally smaller and we still have a good match at TDC and BDC during intake

and compression stroke, however the friction at the beginning of the expansion stroke

and at the end of the exhaust stroke is too high compared with the estimate.

Drawing some conclusions, this study has not been able to access the validity

of the model, since more cases need to be studied. The estimated piston's friction,

achieved using the ring friction's calculation, shows a good match, however this

analysis is only illustrative and cannot be considered for a convincing validation. On

the other hand, the study has shown the importance of considering the temperature

and shear-thinning effect on viscosity in the calculation, and has brought attention

on the prediction of contact friction, which causes the most important discrepancies

with measurements. Furthermore, it needs to be noted that it was not possible to

build a complete model of the system, because some information were not

60

- Calculation

-Measurement



obtainable: for example, the data for the liner dynamic deformation were not

available and the liner is considered rigid, its thermal deformation is only

approximated, and also the oil supply to the system, which is influent in the

measurements, cannot be easily determined. Other uncertainties are also related to

the measurement system, which have been described in the previous section. The

next step in this study would be to complete the definition of the model, gathering

all the missing information, and simulate other running condition. In particular, it

is necessary to test different oil supply, in order to study its influence on the results,

and more importantly different pistons, in order to highlight the friction's differences

related to this component. This would be the best way to understand if any part in

the model need to be improved.

3.3 Secondary motion trend estimation

As introduced in Section 3.1, the secondary motion can affect the

measurements that the piezoelectric sensors give. This certainly affects negatively the

accuracy of the results, nonetheless, this defect can constructively be used to achieve

an estimation for the trend of piston's secondary motion and compare it with the

model's results. It is important, however, to note that it is reasonable to use this

approach only in points during the cycle where the sensors give signals of opposite

sign, because only in these points the secondary motion appreciably affects the

measurements. From Figure 3.5, it is possible to see that the strokes that are mostly

affected by this phenomenon are the intake, compression and expansion stroke,

therefore these will be analyzed.

The approach used is to take the difference of the measurements given by the

sensors in N and compare it with the lateral motion calculated with the model. Note
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that the purpose is not to compare their values but to compare their trend. As stated

at the beginning of this section, this study is just meant to give a sense of secondary

motion, it is not supposed to validate the model results. Only one case is analyzed

here that is the running condition at 1000 rpm and 2 bar IMEP, the plots below

summarize the results.
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Looking at the figures the trend are well matched, especially during intake and

compression stroke.
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In conclusion, this study is, again, not pretended to be a way to validate the secondary

motion calculation of the model, but it represents a way to check that the results are

reasonable. Furthermore, such use of the sensors has been included in this thesis as it

could be of inspiration for other different and interesting analysis.
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Chapter 4

Piston's skirt pattern analysis

4.1 Skirt patterns

Among all the applications of the code, probably the most interesting has been

the study of skirt patterns. With the advancement of manufacturing processes in

producing pistons, coating patterns can be made quite easily. There has been a great

interest to optimize the skirt design to reduce the friction without introducing

negative effects on other behaviors associated to the piston secondary motion. Figure

4.1 shows an example of different coating patterns on the piston skirt.

Figure 4.1 - Piston's skirt pattern prototyped

In order, top left picture shows a so called baseline piston; top right picture

shows a "rows" pattern, as the name says the pattern is formed by parallel horizontal
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lines of coated material; bottom left picture shows a "dots" pattern, formed by a grid

of coated dots; bottom right picture shows a "voids" pattern, which is essentially the

inverse of the dots pattern. To be precise, the actual prototypes are only the last three.

The baseline piston, in fact, has for long been used, because the coated material,

softer than aluminum or steel, will accommodate the conformation of the skirt profile

to the liner, simplifying the design of the piston's skirt, and it also has a lower

boundary friction coefficient.

Parallel efforts have been made on the measurement side to examine the effects

of different coating patterns on friction using a floating liner engine and on oil

transport by visualizing the evolution of the oil accumulation with two dimensional

laser induced fluorescence technique [6]. This work will focus on the simulation of

these patterns with the model, in order to gain a better understanding of their

performances. This chapter will first summarize the calculation results on the skirt

designs shown in Figure 4.1. Then, new geometrical patterns are proposed to give

better performance in friction without increasing the magnitude of the secondary

motion.

4.2 Skirt FMEP results from the model

The main purpose of these calculations is to understand the correlation

between frictional losses and the geometry of the pattern. From the beginning, the

problem has been approached trying to highlight the hydrodynamic response of the

patterns, which is believed to be the main cause of differences among them.
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This strategy is applied by testing features of two different sizes (for dots, for

example, the diameter tested was 2.5 and 1 mm); an example is shown in Figure 4.2.

The purpose is to study the influence of the features' dimension on oil transport and

lubrication. Secondly, two different thicknesses of coating material, namely

10 and 5 yim, are tested, using an oil supply to the system of 5ptm each revolution.

This is a fairly dry condition, but it is chosen to accentuate the differences between

patterns' thicknesses.

RadialdIrection

Figure 4.2 - Patterns with different features'size - Dots pattern

A note on the engine and running condition simulated for this study is

necessary. Unfortunately, at the time these calculation were performed, a complete

data set was only available for a racing engine. Nonetheless, the physics contributing

to the effects of the patterns for the high speed operation is similar to low speed.
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Another important concept to keep in mind, before showing the results, is that

the nominal piston's diameter is the same for all designs, but if a pattern is applied

to the piston's skirt, the clearance volume will be different with respect to the baseline

piston. Specifically, since the coated material increases by several microns the radius

of the skirt, the baseline piston would have the smallest clearance volume, whereas,

the other designs would have region on the skirt, where the coated material has been

removed, increasing the local clearance. Figure 4.3 shows, as an example, a

comparison between baseline piston and dots pattern. This specific characteristic will

change the space available to store oil over the skirt region and it drastically affects

the hydrodynamic response of each design.

.............. .........../..............

.....................................

Radial dire ctio n - - .......................

Clerance

Figure 4.3 -Skirt's center cross section - Baseline and dots pattern

The running condition at which the simulations are executed is

full load with a peak cylinder pressure of 95 bars at 16000 rpm. The first pattern

analyzed will be the dots pattern, as the discussion brings up good points to

understand the behavior of patterns in general. The first result shown is the skirt

FMEP comparison with the baseline piston. Remember that the model does not

include ring friction, therefore the FMEP calculated only accounts for skirt and lands
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frictional losses. Also, note that the actual values cannot be released for confidentiality

reasons, nonetheless, the bars are proportional to actual values.

Looking at Figure 4.4, the baseline piston has a much smaller FMEP,

compared to the other patterns. Also, we can note that the losses decrease if the coated

material has smaller thickness and if the features are finer. This trends are directly

correlated with the hydrodynamic response of the patterns.

Figure 4.4 - Skirt FMEP comparison between baseline and dots pattern

Figure 4.5 shows the friction force comparison during a cycle, in the case of

big features and 10pim thickness of coating material. It is apparent that the dots

pattern causes a much higher friction than the baseline piston in some portion of the

cycle. Large skirt friction forces for the dots pattern are a result of direct solid-to solid

contact between the skirt and liner. Figure 4.6 shows the average contact pressure on

the thrust side of the dots patterned skirt during the expansion stroke, which is the

stroke with highest losses. The baseline piston does not experience contact at all,

whereas the dots pattern presents important solid to solid contact.
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Figure 4.5 - Friction comparison

Baseline (top) - Dots, big features, 10um (bottom)

-~1
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Radial direction,

Figure 4.6- Dots pattern

Contact regions (left) and average contact pressure (right)

Expansion stroke - Thrust side

This difference is mainly caused by the hydrodynamic pressure generated on

the skirt. The baseline piston, in fact, does not present solid to solid contact because
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the hydrodynamic pressure generated on the skirt is sufficient to balance the side

force. Using the dots pattern, however, even if the side force does not change, the

hydrodynamic pressure generate cannot alone balance the force, therefore the piston

enters in contact with the liner. If we calculate the force generated by the

hydrodynamic interaction between skirt and liner during the expansion stroke, the

baseline piston generates an average force 96% greater than the one generates using

dots pattern. This difference is correlated to the way the oil distributes over the skirt

as illustrated in the following figures. Figure 4.7 and 4.8 shows, on the left, the

regions on the skirt at thrust side that, on average, are fully flooded, meaning

completely filled with oil, and where hydrodynamic pressure can be generated. Blue

color indicates regions where the flooded condition is never achieved, red color

indicates regions usually flooded during expansion stroke. On the right, the average

hydrodynamic pressure distribution over the skirt, always at thrust side, is shown.

106 Pa

Radial dIrejo,

1

Figure 4.7 - Baseline piston
Average fully flooded regions (left) and hydrodynamic pressure (right)

Expansion stroke - Thrust side
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Radial direeffon~-

Figure 4.8 - Dots pattern
Average fully flooded regions (left) and hydrodynamic pressure (right)

Expansion stroke - Thrust side

Intuitively, the best way to generate hydrodynamic pressure is to concentrate

the oil in a specific region on the skirt, because a continuous puddle is needed in

order to create high pressures on an extensive region. This is, in fact, the case for the

baseline piston. On the other hand, the presents of particular patterns, like dots,

creates rather severe discontinuity of the skirt's profile, and it is much more difficult

for the oil to concentrate in a specific region, because it either tends to accumulate

below each dot or around them. This is counterproductive in terms of

hydrodynamics, in fact, the pressure created is overall smaller in magnitude and

non-uniformly distributed. Without specifically looking at the pattern's geometry,

this behavior is related to the increase in clearance volume, since the oil tends to fill

the space made available between the features rather than lubricate the components.
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The weaker hydrodynamic pressure generation ability of the dots pattern, also

greatly affects the secondary motion of the piston, which becomes much more

unstable and oscillating. Figure 4.9 shows the lateral motion and the tilt angle

comparison. For the first, positive values indicate motion towards thrust side, for the

second, positive values indicate tilting of the top land toward anti-thrust side.
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Figure 4.9 - Lateral motion and tiht angle comparison

In regards to the lateral motion, the dots pattern seems to follow the general

trend of the baseline but with important oscillations. As for the tilt angle, it is

completely unstable, it does not seem to follow a specific trend and its magnitude is

much bigger if compared with the baseline's behavior.
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This instability is connected to the way the side force on the piston is balanced.

In general, generating hydrodynamic pressure on the skirt through lubrication creates

a reaction force that can rapidly counter balance the side force, if the skirt is properly

lubricated. If, however, the hydrodynamic pressure generated is weak, the skirt will

balance the side force with solid to solid contact. In this scenario, since the piston

will need to move further toward the liner in order to find contact, the response to

the side force is delayed and the magnitude of lateral motion is increased. Since the

friction force due to contact is much stronger than that due to shear stresses, the

tilting motion of the piston is emphasized amplitude as well. As a result, the piston

becomes more unstable. Further evidence can be seen from Figure 4.10 that the

inertia force of the piston from its lateral acceleration has higher magnitude and more

pronounced oscillatory behavior in the case of the dots patterns.

800 900 1000 1100 1200 1300 1400

Crank Angle (deg)

Baseline
L WS

Figure 4 .10 - Inertia force comparison

Both frictional losses and secondary motion gets closer to the behavior of the

baseline piston, if finer features of smaller thickness are used. This is again correlated

to the hydrodynamic response of the pattern and to the clearance volume and space

available to the oil, which in these cases would decrease, improving the capacity to
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create a uniform oil film on the skirt and balance the side force with hydrodynamic

pressure.

The analysis made for this first pattern is valuable also for the study of other

patterns. The skirt FMEP results for the voids and rows pattern, compared to the

baseline piston, are reported in Figure 4.11.

Figure 4.11 - Skirt FMEP comparison between baseline, voids and rows patterns

Also in this case the frictional losses are in general greater than the baseline

piston, but they are definitively smaller if compared to the dots pattern. The FMEP

always reduces using finer features and smaller thickness of the coating material, and

in particular for the rows pattern the losses are slightly smaller than the baseline

piston. The causes that lead to higher friction are always connected to the

hydrodynamic response of the patterns and to the way the side force is balanced as

discussed earlier in the section, therefore the cases of worse performance will be not

analyzed for brevity. Nevertheless, it is interesting to briefly focus, as last topic of this

section, on the cases that present a similar or better performance than the baseline

piston and understand what the difference with respect to the dots pattern is.
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The patterns studied for this discussion are the voids and rows pattern, with

finer features and coating material thickness of 5ptm. In order to understand why

these cases have close performances to the baseline piston, we need to look at the way

the oil distributes over the skirt. To do so, again, the regions that on average are fully

flooded during the expansion stroke at thrust side are presented in Figure 4.12.

Radial direction

Figure 4.12 - Average fully flooded regions
Rows (top left), voids (top right) and baseline piston (bottom)

From the figures we can see that the flooded regions are similar to each other,

even if the presence of the features is visible. This makes the hydrodynamic behavior

also similar, in fact, the solid to solid contact for voids and rows pattern is very small,

meaning that the hydrodynamic pressure generated can itself balance the side force.

This comparison explains the similar performances. As we have previously described

however, this is not the case for the dots pattern, and the cause is related to the way

the oil tends to redistribute over the skirt.
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Figure 4.13 - Oil paths for dots, voids and rows pattern

Examining the average fully flooded region during the expansion stroke, it is possible

to highlight the paths that the oil tends to follow. Figure 4.13 shows these path for

every pattern. As already explained previously, the increase in clearance volume

generally makes more space available on the skirt for the oil, however, the specific

geometry of the feature will influence the way oil moves over the skirt and this can

make an important difference. Qualitatively, we can see that for the dots pattern, the

oil tends to slightly accumulate below the dots, but most of it is able to find a path
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to reach the top of the skirt because the geometry of the features is not able to block

its motion. The consequence is that the oil will mostly accumulate in the chamfer

region and will not be available to lubricate the skirt. The situation is different for

the other patterns, in which the feature's geometry is promoting the accumulation of

oil, for example inside the voids or between rows, so that it can be available to

lubricate the skirt. Note that this tendency to accumulate oil is productive only if the

increase in clearance volume, in relation to the oil supply, is not excessive.

In summary, none of the patterns has given a better performance than the

baseline for the engine and operating condition studied. On the other hand, this

study has provided the opportunity to understand what can be productive and

counter-productive by including patterns on the piston's skirt. The next section will

focus on exploring new types of patterns and their potential for skirt friction

reduction.

4.3 New pattern design - Racing engine

The use of patterns has been proposed, since the beginning, to reduce

frictional losses, but this has not been achieved yet with the designs tested. The

concept of creating particular geometries on the piston's skirt can however be

promising, and the use of the model would be extremely helpful to that end, since

any design can be first simulated, in order to study its behavior, and then prototyped

and tested experimentally, saving time and money. This section will focus on the

development of a new pattern and the results from the model will be illustrated.

In order to understand how the new pattern has been conceived, it is necessary

to emphasize a few basic concepts to keep in mind. As we have discussed in the
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previous section, the presence of a pattern can drastically worsen the hydrodynamic

behavior of the skirt. In particular this is related to the increase in clearance volume,

to the way the oil tends to distributes over the skirt and to the discontinuity that a

pattern gives to the skirt profile, which affects the hydrodynamic lubrication. If these

negative effect can be limited, the pattern can actually be used to decrease frictional

losses by promoting the accumulation of oil on the skirt and enhance its lubrication.

The new pattern, in particular, has been designed taking into account a couple

of problems that could be resolved with the use of particular geometry on the skirt.

The first issue discussed analyses the oil that enters or exits the lower boundary of the

skirt. In general the oil accumulated on the liner is a good form of oil supply for the

piston, since it enters and accumulates in the skirt region during a down-stroke,

creating a favorable condition for lubrication. The situation is however different

during an up-stroke, in which the oil, accumulated in the previous

down-stroke, will be rapidly released on the liner's surface, as the piston proceeds in

its motion, reducing the amount of lubricant available to the skirt. Figure 4.14

schematically shows this concept. The second issue is related to the skirt profile.

Generally, the skirt profile, as shown in Figure 4.15, has a point of minimum

clearance around the center of it, in which the highest hydrodynamic pressure and

shear stresses are generated. The new pattern has been designed in order to try to

address these issues.

The idea is to create a feature that promotes oil accumulation on the skirt,

towards the point of minimum clearance, and helps to retain oil during an up-stroke.

This needs to be done without creating excessive discontinuity of the skirt profile and

limiting the effect of increase in clearance volume. The very first pattern designed to

accomplish to this objectives is schematically illustrated in Figure 4.16.
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The pattern is really simple and it is ideally composed of a single curved line

of coated material on thrust and anti-thrust side. The purpose of the different

configurations is that at thrust side, where the losses are usually important during the

expansion stroke, the pattern will help to accumulate oil near the point of minimum

clearance, whereas at anti-thrust side, which usually is the side that experiences

important losses during up-strokes, the pattern will retain oil on the skirt.

Figure 4.14 - Oil supply to skirt from liner, down-stroke and up-stroke
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Radial dirto

Figure 4.15- Usual skirt profile

TH ATH

Piston's Skirt

Oil flow

Pattern

Figure 4.16- New pattern's schematic

One particularity of this pattern is that the features are not repeated. The

repetition, in fact, can negatively affect the purpose of the pattern and more

importantly would create more discontinuity of the skirt's profile.

Once the basic idea of the pattern is defined, it is necessary to introduce it in

the model and describe its actual profile. Figure 4.17 shows how the initial idea has

been modeled. Please note that the figures only shows the profile of the pattern,

without including the profile of the skirt.
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Feature's profile

Feature's cross-section

Sn width

Figure 4.17 - Feature's profile and cross-section

In this case the cross section of the feature has been smoothened to improve

its hydrodynamic behavior. Also, the cross section is defined by height and width;

the height represents the thickness of the coated material and is kept fixed in the

calculation, however, the width has a great influence on the results, in fact, its

influence will be studied to find an optimum value. An example of the skirt profile

with the inclusion of the pattern is shown in Figure 4.18.
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Figure 4.18 - Example of thrust side and anti-thrust side with the new pattern

The calculations are again executed simulating a racing engine, at 16000 rpm,

full load. The first result presented is the friction force comparison between baseline

and the new pattern.
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Figure 4.19 - Friction force comparison

Interestingly, the friction force has resulted reduced with the use of the pattern,

specifically with a skirt FMEP decreased of roughly 29%. Furthermore, looking at

the hydrodynamic pressure distribution and fully flooded regions on the skirt,

represented in red, in Figure 4.20 and 4.21, we can see that the features are

accomplishing to their purpose. During the expansion stroke, at thrust side, the

feature is succeeding to accumulate oil towards the center of the skirt, which is where
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the clearance is usually smaller, whereas, during the compression stroke, at anti-thrust

side, the feature is helping to retain oil in the skirt region. Also, calculating the contact

friction, it has been reduced by 13%.

Hydrodynamic pressure (Pa)
Max Pressure: 260 bar Max Pressure: 230 bar

Fully flooded regions

Figure 4.20 - Hydrodynamic pressure and fully flooded regions
Thrust side - Expansions stroke - Baseline (left) new pattern (right)
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Hydrodynamic pressure (Pa)

Max Pressure: 100 bar Max Pressure: 86 bar

Fully flooded regions

Figure 4.21 - Hydrodynamic pressure andfully flooded regions
Anti-thrust side - Compression Stroke - Baseline (left) new pattern (right)

A further improvement can be done by studying the influence of the feature

cross-action's width. This characteristic of the feature, in fact, affects the solid to solid

contact that the skirt can experience. Figure 4.22 shows the friction force for the

optimized pattern, and we can see in Figure 4.23 that the contact experienced at the

end of the intake stroke in the previous case is much less pronounced here.

Calculating the skirt FMEP for this case, it is further decreased by 35%.
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Figure 4.22 - Friction force comparison for the optimized pattern
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Figure 4.23 - Pattern' riction force comparison - Intake stroke

In conclusion, this study has proven that it is possible to design a skirt's pattern

that can help to reduce frictional losses. The study, however, is not completed, in

fact, more alternatives can be tested and different engines need to be simulated.
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4.4 New pattern design - Passenger car engine

The interesting results achieved studying the performances of the new pattern

on a racing engine, have brought attention to the concept of this design, and its

application to passenger can engines needed to be covered. Luckily, soon after the

conclusion of this investigation, the data for the 2D LIF engine have come available

and have been used for the calculations in this section. The running condition

simulated is 2000 rpm, partial load.

The first result presented will illustrate the friction results calculated by

applying the same pattern described in the previous section. Also in this case the skirt

FMEP has been decreased, specifically by 36%. Figure 4.24 shows the friction

comparison.
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Figure 4.24 - Friction force comparison
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This results can be further improved by studying the width of the pattern.

However, other alternative designs can be tested, before analyzing the geometry of

the pattern. For this purpose, the basic idea of the current pattern has been used to

create other options that are a modification of the current design. Figure 4.25 shows

the features' profile at thrust and anti-thrust of the two other patterns tested.

Alternative A Alternative B

TH

ATH

Figure 4.25 - New pattern's alternatives

Executing the calculation, the performances are further improved. Specifically,

Alternative B have resulted to decrease piston's frictional losses by 41%. Optimizing

then the width of the features, the skirt FMEP results reduced by 48%.

89



One concern related to the presence of the patterns is that the increase of

clearance volume might affect the secondary motion of the piston, which can

negatively influence oil consumption, especially if the tilt angle reaches significant

magnitudes. Comparing the results for secondary motion, however, the differences

between the baseline piston and the optimized pattern are negligible.
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Figure 4.26- Piston's secondary motion comparison
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Secondly, since one of the purpose of the patterns is to hold or accumulate oil

on the skirt, the amount of lubricant reaching the chamfer region of the piston might

increase and this again represents a problem for oil consumption. Analyzing the

average oil film thickness in the chamfer region, in fact, there are some point during

the cycle in which the baseline present less oil in the chamfer region, especially at
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thrust side at the end of the intake stroke. This might be something to take into

consideration when testing these patterns.

- Intake Co ression Expansion
100 200 300 400 500 600 700

0 100 200 300 400 500 600 700
Crank Angle (deg)

-- PatemI

Figure 4.27 - Average oilfilm thickness in the chamfer region comparison
Thrust side (top) anti-thrust side (bottom)

In summary, this chapter have proven that it is possible to design skirt's pattern

that can help to reduce frictional losses and in particular the one described in this

thesis has resulted to give really good improvement of the skirt FMEP. Certainly,

Further simulation need to be done to access its behavior at other running conditions

with different oil supply and this will be part of the future work. Nonetheless, even

with the current results, our sponsors have expressed the interest to prototype the

pattern and experimentally test its performances, in order to bring this design concept

a step further.
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Chapter 5
Conclusion

5.1 Development and application of the model

The first part of this thesis work has focused on improving the existing model,

including some important phenomena that make the general physical description of

the system better.

In the existing version of the model [4], the liner dynamic deformation was

not included, however it can greatly affect the results. In particular, when the liner is

rather flexible, its dynamic deformation can reach magnitude of 50 - 40 Itm,

influencing the secondary motion. Also, assuming the liner as a rigid component

facilitate solid to solid contact, affecting the friction calculated.

A second major change is the calculation of viscosity considering temperature

and shear-thinning effect. As it has been illustrated in Chapter 3, the viscosity can

appreciably change during the cycle, due to different temperatures at TDC and BDC,

and different shear rates over the skirt. Considering an average value of viscosity,

which takes into account a low shear-stress and high shear-stress viscosity, does not

allow to capture the real situation, in fact for example, solid to solid to contact at

TDC and BDC is usually less if the viscosity is directly calculated, since in these

points of the cycle the shear stress is almost absent and the real value of viscosity will

be higher than the average value. On the other hand at mid-stroke, the actual value

of viscosity can be less than the average value, resulting in less hydrodynamics

friction. The downs side is that adding shear-rate and temperature influence on

viscosity increases the computation time.
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The second part of this thesis work mainly focuses on the application of the

model, by studying the effects of geometrical features on piston secondary motion,

skirt lubrication, and friction.

The comparison of calculation's results and experimental measurements, from

the floating liner engine, have shown the importance to include temperature and

shear-thinning effect on viscosity in the calculation, and have brought attention to

the contact friction calculated in the simulations. At this stage, however, it is early to

judge the accuracy of the code, since more cases need to be studied.

The skirt's pattern study has shown how the model can be used to help the

design of piston's skirt. The discussion has demonstrated how the lubrication of the

skirt can be greatly affected by the additional features to the existing profile. If the

features introduce channels to ease the oil flows between the skirt and liner, filling

the space made available, the hydrodynamic lubrication will be negatively affected

and more solid-solid contact can occur. However, if the features promote oil

accumulation on the skirt and do not create excessive discontinuities of the skirt's

profile, the performances can improve. The new design presented, is an example of a

good application of the pattern and represents a starting point in the process of better

designing the skirt's profile.

5.2 Future work

The work done so far has definitively improved the way the model can

realistically describe the power cylinder system, however, this process is not finished

yet. As discussed in Chapter 2, the way the oil supply to the system is modeled is

simplistic, in fact, how additional oil flows to the liner and how it is distributed

obviously depends on the crankcase design and the behavior of the oil cooling jet,

and this needs more work. Another topic of interest is the pin-piston lubrication.
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Currently it is assumed that the interaction between pin and piston is frictionless,

but it is not in reality. This particular phenomenon can affect the secondary motion

of the piston, especially when the piston's primary acceleration is important, due to

the friction at the pin bosses. This is a complicated system to describe, as it involves

modeling the hydrodynamic lubrication and the oil supply of the pin, nonetheless, it

is an important component to be studied in the future and included in the model.

With regard to the validation of the model, the study described in Chapter 3

is not completed. More running conditions need to be analyzed, possibly focusing

on different pistons and keeping the ring pack unchanged, in order to highlight the

friction differences that the piston only causes. Also the model itself needs to be

provided of the missing data for liner's thermal and dynamic deformation, which

may importantly affect the results.

Also the application of the model as a tool for piston's design needs to go

forward. The studies presented in this thesis are specific to the skirt's patterns,

however, a general and broad study to optimize the skirt's profile has not been done

yet. So far the piston's skirt profile used has always been roughly the same, but a

broad variety of options can be tested. This project needs to continue on studying

the influence that every parameter that defines the skirt, such as profile, clearance

volume, chamfer volume, skirt length or width, has on performances. The ultimate

goal is trying to understand how frictional losses scale with the geometry of the

piston.
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