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ABSTRACT

Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid
growth of the offshore wind energy sector and allow the exploration of vast high quality
wind resources over coastal and offshore areas with intermediate and large water depths.
This generates the need for a new generation of Wind Turbine control systems that take
into account the added complexity of the dynamics and wave-induced motions of the
specific floater. The present work presents a simulation study of advanced controls for
Tension Leg Platform (TLP) FOWT that attempts to enhance the power output of the Wind
Turbine by conversion of the surge Kinetic energy of the TLP into wind energy. The public
access data of the NREL 5MW offshore wind turbine have been used to perform the study.

After establishing a theoretical upper bound for the possible wave energy extraction using
frequency-domain methods, a time-domain state-space dynamic model of the FOWT with
coupled dynamics of platform surge motion and turbine rotation has been developed that
includes both a simplified model of the turbine aerodynamics and the floater surge
hydrodynamics. This simulation model has then been used to implement advanced controls
that maximize energy extraction by the Wind Turbine in the below rated power region. The
proposed controllers are variations of a Linear-Quadratic Regulator (LQR), considering
both a steady-state case and a non-stationary, finite horizon LQR case. The latter requires
wave-elevation forecasting to be implemented and therefore two different forecasting
algorithms have also been developed according to existing literature.

While the wave-induced annual energy yield enhancement of the studied FOWT in the two
considered locations is small (around 0.02% the baseline annual energy yield of the studied
turbine in the two locations) the study is not exhaustive and other FOWT topologies might
achieve better results. The present results clearly indicate, however, that the existing
correlation between strong wind and waves makes FOWTs a sub-optimal choice as energy

extraction mechanism for ocean wave energy harvesting.
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A(w)
As
B(w)
Bw(w)
Br

Cp

K(t)
K(s)
fu(t)

(] o

e

X(t)
X(w)

fe(t)

Fy

Frequency [rad/s]

Imaginary unit

Acceleration of gravity

density

Time

Wave elevation

Wave elevation spectrum
Significant wave height

Wave amplitude

Standard deviation

Mean wave period

Buoy Radius

Buoy Draft

System mass coefficient in surge
Freq. dependent added mass coef.
Added mass coef. for infinite freq.
Freq. dep. hydrodyn. damping
Linearized total hydrodyn. damping
Equivalent turbine damping

Drag coefficient

Restoring coefficient (stiffness)
Viscous damping coefficient
Retardation function

Laplace trans. of retardation function
Hydrodynamic forces related to
memory effects

Time domain surge displacement
Freq. domain surge displacement
Freq. domain surge velocity

Time domain wave excitation forces
Freq. domain wave excitation forces
Normalized wave excitation
Impulse response of surge exc. force
Wind thrust force

Power

p coef. of numerator polynomial of a
transfer function

q Coef. of denominator polynomial of a
transfer function

X System state

u System input

[X] State vector

[U] Input vector

As, Bs, G, Dy State-space matrices for the
mechanical system dynamics

\ Wind speed

Ve Far-field wind speed (upstream)

Vg Wind speed at the rotor

a Induction factor
Tip-speed ratio

J Control objective

Rr Rotor radius

Sk Swept rotor surface

[ Inertia

Cp Turbine power coefficient

Cr Turbine thrust coefficient

Taero  Aerodynamic torque on rotor

Teen Electrical torque on generator

n Gearbox ratio

Q Rotor rotational speed

(0] Rotor speed fluctuation around
equilibrium position

) Rotor collective pitch angle

P Pitch angle fluctuation around

equilibrium position

Note: despite the apparent conflicts for u, U, x, X, A, their
meaning can always be easily determined from context



1. Introduction

The rapid expansion of the wind energy industry over the past 40 years, initially spurred by
the 1973 oil crisis, is now moving offshore with the promise of stronger, steadier oceanic
winds and the limitations of further onshore wind farm developments in areas where wind
energy penetration is already high, such as Germany or Denmark. The first commercial
offshore wind farms, erected in the 1990s, are located in very shallow waters in the North
Sea, facilitating the use of fixed monopile foundations. The shallow waters of the North Sea
are, however, more an exception than the norm, and fixed foundations become very
expensive as water depth increases. For this reason there is an interest in the development
of floating offshore wind turbines (FOWTSs), and there are already a number of prototypes
in the water that are experimenting with floater designs, most of them drawing from the
extensive experience of the Oil & Gas industry with floating offshore rigs, as shown in figure
i o

Figure 1.1 - Floating wind turbine concepts adopted from the Oil & Gas industry. A spar buoy (left), a TLP
(middle) and a semi-submersible (right). Image courtesy of the National Renewable Energy Laboratory (NREL)
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While most of the underlying technology for the turbine itself (blades, tower, generator, etc)
is common between onshore, fixed foundation offshore and floating offshore turbines, the
latter have an added layer of complexity due to the dynamics of the floater and the ocean
environment. This is particularly relevant in the area of turbine control systems, with
existing control algorithms designed for fixed foundation turbines not being applicable for
floating designs. Large displacements of the structure generate complex interactions with
the rotational degree of freedom (DoF) and the aerodynamics of the turbine that need to be
taken into account explicitly to achieve good turbine performance and avoid system
instability.

The present work focuses on the specific case of a Tension Leg Platform (TLP) foundation,
which has raised a lot of interest due to its relatively low weight and the stability it provides
to the turbine, which is almost restricted to only move in surge and sway. A simple but well
grounded state-space dynamic model of the TLP FOWT, including coupled dynamics of
platform surge and the rotational DoF has been built in Matlab to study the potential
absorption of ocean wave kinetic energy hitting the substructure by the wind turbine
generator, without adding any new physical device specifically built for wave energy
absorption. This would lead to some degree of energy yield enhancement when the turbine
is operating below its rated power. The model has then been used to develop advanced
controls that maximize the wave energy extraction capacity of the system. This involves the
creation of a state-space description of the hydrodynamic and aerodynamic properties of
the turbine and floater, the implementation of algorithms for wave elevation forecasting
that would be necessary, and the creation of of the advanced control algorithms themselves,
which are variations of the well known Linear Quadratic Regulator (LQR) adapted to the
specific problem. While the actual wave energy extraction potential of the studied turbine
have been found to be low compared to its baseline annual power production, the
developed models are a good example of how to approach the complexity of coupled wave
and wind dynamics on FOWTs, and the tools developed over the course of this work can be
readily applied to other control problems for similar structures such as load mitigation and
system stabilization.
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2. System description and modeling

2.1 General model of the TLP wind turbine

The base system referenced throughout this report is based on the NREL 5 MW wind
turbine, as described by NREL [1]. A tension leg platform (TLP) for this turbine has been
developed for this work, adapting the design proposed by Garrad-Hassan [2]. Refer to
Appendix I for a detailed description of this adaptation.

TLPs are characterized by a high heave and pitch stiffness, which makes an uncoupled
modeling of the surge and sway dynamics possible. Considering the surge direction to be
aligned with the WTG rotation axis (the direction of the wind), the surge equation of motion
(EOM), which is built upon the Cummins equation, is the following:

[M+Aw]§+j'K(t—r)~£dr+D§+C§=X(t)+FT(t)

where

M System mass (platform + turbine)

A, Hydrodynamic added mass coefficient in surge for infinite frequency
K(t) Retardation function, related to hydrodynamic memory effects

C System restoring coefficient in surge

D System linearized viscous damping coefficient in surge

é"(t) Surge displacement

X(t) Time dependent wave excitation forces

F; (t) Time dependent aerodynamic thrust force, from the WTG

The values for stiffness C and mass M are obtained by implementing the model in the
Laboratory of Ship and Platform Flow (LSPF) existing frequency domain codes, but can be
computed analytically by hand calculations in the case of the TLP given their relatively
simple mooring line layout. A model for the retardation function K is described in section
2.2 leading to a state-space description of the hydrodynamic memory effects. The linearized
value for the viscous damping coefficient is obtained through stochastic linearization, as
described in Appendix II.

Rotational dynamics of the wind turbine have been simplified to a first order model, since
rotor position is unimportant. Only its rotational velocity will matter for the problem being
considered. The drive train is considered to be rigid, which is an adequate hypothesis
considering the very low frequency dynamics of the wave phenomena under study. The
rotation EOM is therefore:

12



/ EZ T
where:
Q rotational speed of the rotor
F=le. ¥l inertia of the rotor plus generator, reduced to the low speed shaft
At aerodynamic torque on the rotor
T o electrical torque in the generator
n=Q., /Q gearbox ratio

Rotor and generator Inertia, as well as gearbox ratio, are taken from the NREL 5 MW

turbine data.

Regarding the controller, the documentation for the NREL 5 MW turbine [1] includes a
thorough description of the control system, which operates on 3 main control regions and 2

transition regions.

50,000 s
Region 1

—OPﬁmal
=—=\/ariable-Speed Controller

2
g

g
&

Generator Torque, N*m
~N
k=)

10,000

0 200 400 600 800 1,000 1,200 1,400
Generator Speed, rpm

Fig. 2.1: Torque vs Speed response of the NREL torque controller [1]

Regions 2 and 3 are the main power-generating regions, with 2 being below rated power
and 3 being above-rated power. Wave energy capture is restricted to region 2, since the
turbine is already operating at full power in region 3 and it is not possible to absorb any
additional energy from the waves at that point. The focus of this project is therefore in

region 2.
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2.2 Hydrodynamic model of the buoy

The proposed TLP design is based on a cylindrical buoy of radius 4.75 m and draft 30 m, in
100 m water depth. Such a buoy has been implemented in WAMIT to obtain frequency
dependent added mass A(w), potential damping B(w), and complex exciting force X(w).

Due to the complexity of dealing with the convolution integral in the surge EOM, the
methodology described by Perez-Fossen [3] has been used to fit the convolution integral in
the Laplace domain, from which it can be transformed into a state-space model so that it can
easily be implemented in time-domain simulations. Considering this convolution term,
which describes a force related to fluid memory effects fu(t):

Z.Z‘K(I—T)‘fd’[ =/ (1)
The convolution integral becomes simple products in the Laplace domain:
L{j’K(z—r)-gdr} =K(s)-U(s)=F,(s)
g
Now using the Ogilvie relationships (1964)
A(0)= 4, -i [ K (1)sin(wr)dr

B(w) =] K(t)cos(wr)dr

combined with the Euler formulas for complex exponentials, the following expression can
be obtained:

K(jo)= B(a))+ja)[A(a))—Aw]

This equation provides a direct formula for the frequency dependent transfer function K
between surge velocity and the force related to memory effects Fy which can be calculated
for any given frequency using data from WAMIT or similar codes and even analytically for
the cylinder case. Taking into account that the convolution integral describing fw can be
related to a high-order ODE it can be seen that the Laplace transform of the retardation
function acts as the transfer function between the frequency domain force Fy and surge
velocity U, which can be written as the quotient of polynomials P and Q:

14



r r—l1
K(S):prs +pr—lS +“.+p0

s"+q, ST+t g,

The challenge of fitting the known properties of K in the frequency domain is addressed by

Perez and Fossen [3], who provide a clear methodology and an implementation using

MATLAB. A number of constraints can be placed into this transfer function due to the

characteristics of fluid memory models that are reflected in the retardation function. These

constraints are summarized in
Table 2.1:

Property Implications Comments
' K(s) has zeros at s = 0 Low frequency asymptotic
lim,_,, K(ja)) =0 value of K(s). P(s) has to be
po=0. zero for w = 0
High frequency asymptotic
. K(s) is strictly proper. value of K(s). Denominator
lim,, ,, K(ja)) =0 ©)

deg(Q) >deg (P)

has to grow faster with

frequency.

Relative degree of K(s) is

Initial-value theorem of the

exactly 1. Laplace transform for K(t)
) ) P(S) Sr+1p
=limsK (s) =lims = r 1=
5o s Q(S) s” r =n
Bounded-input bounded- Final-time value of K(t).
lim,_, K(f) =0 output (BIBO) stability of | Impulse response goes to

the model

zero at infinite time.

Mapping of § = f (t) is passive

K(jw) is positive real

Passivity is a property
related to the dissipative

nature of K(t).

Table 2.1 - Constraints on transfer function
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The iterative approach provided by Perez and Fossen can be summarized in the following

algorithm [3]:

1. Calculate the frequency response K(jw) for an adequate number (i) of frequencies

(wi)

2. In order to avoid numerical problems due to the numerator coefficients being much
larger than the denominator, scale the vector dividing it by the maximum value
obtained for K for all w;

K'(jo)=a -K(jo,) q0— L
' max|K(ja)i)|

3. Select the order of the approximation# =deg(Q(ja), 67)) A starting point can be
n=2.

4. Estimate the parameters

N ‘ K’(ja),)_P’(jw"’e)\
6 =argmin, Z jo, Q(ja),,g)’

1

2

s
Where P'(s) = L is used, and it can be shown that it has no roots on the imaginary axis
s

of the complex plane and has a degree deg(P') =n-2

(To solve this non-linear complex curve fitting a Gauss-Newton algorithm can be
used, or else a linear approximation)

5. Check stability. Computing the roots 4, ..., 4, of Q(ja)ﬁ*) and change the sign of
the real part of the roots that are found to have positive real part. This has to be
done unless stability has been enforced as a constraint in the optimization algorithm
in the previous step.

6. Construct the desired transfer function:

s-P'(s,é’*)

O Gy
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7. Estimate the added mass and damping based on the approximation that has been
obtained, using:

Compare this result with the original added mass and damping coefficients given by
WAMIT or analytical calculations. Repeat steps 3 to 7 increasing the order of the
approximation until an acceptable fit is obtained.

This implementation has been adapted for this project, and an order 4 model is found to be
enough to adequately describe the added mass and damping of the system throughout the
required range of frequencies. Figure 2.2 shows the added mass and potential damping
comparison between the original WAMIT dataset for the buoy and the output of the fitted
model in frequencies from 0 to 5 rad/s.

x 10° Potential Damping in Surge
1D | T T T T T T T 1
= @ Original WAMIT dataset
B leominosgiio. . I RO ~ Identification of order 4
B
E— 0 o ... ... ....................................................................
O .
= :
5 I i i | L 1 i i 1
05 1 k<] 2 25 3 35 4 45 5
Frequency [rad/s]
x 10° Added Mass in Surge
2.2 T

T T T T T I
: { : ‘| ©  Original WAMIT dataset
3 a0 .......... AAAAAAA e ) .......... . .......... Identification of order 4

a7}

Added Mass [Kg]
@
i

=1
4

05 1 15 2 25 3 35 4 45 5
Frequency [rad/s)

Fig. 2.2: Added mass and potential damping fit through a fourth order model

Once the K transfer function polynomial coefficients have been fitted, it is straightforward
to transform K into a state-space model with a number of parameters that is equal to the
order of the system, in this case 4. Using the phase-variable canonical form:

17



X, 0 0 0 —q,||x 0 X,
X, 1 0 0 - . 5
e T2 e P Lg F=[0o 0o 1]™
X3 0 1.0 —q,||x b, X3
X, 0 0 1 —q,][x b X4

These internal states x; to x4 represent the memory effects, with x4 being already the
desired output. It can be shown that the system is fully observable, and therefore these
states can be used in a full-state feedback control loop.

2.3 Aerodynamic model

A simplified aerodynamic model is considered for evaluation of the aerodynamic thrust Fr
and torque Taero using the definitions of power coefficient Cp and thrust coefficient Cr [4]:

P 1 V.-¢)
TAero = 5 = EIDASRCP (/?” 0) (T)
1 .\2
F; :EPASRCT (l,@)-(Vw —f)
where:
o) air density
Sk rotor swept area
R,Q . .
A= - rotor tip-speed ratio
Vo—¢
R, rotor radius

The main limitation of this model is that it assumes steady-state conditions, assumption that
will no longer hold considering the dynamic surge motion. However the surge velocity and
specially the surge acceleration are small, due to the very low frequencies being considered,
so a quasi-static approach seems still good enough at this stage.

The Cp and Cr surfaces for the NREL 5 MW turbine were calculated using the code WT_Perf
v3.00 by Rannam Chaaban from Universtit Siegen (Germany), who has kindly authorized
its use for this project. The available dataset has been implemented as a cubic spline surface
in Matlab, in order to obtain the necessary partial derivatives.

18



Thrust Coeffcient Ct Power Coefficient Cp

Fig 2.3: The NREL 5MW Cp and Cr surfaces
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3. Frequency domain approach

3.1 Seastate and wave spectrum

The seastate has been defined according to the ISSC (International Ship Structures

Committee) and the ITTC (International Towing Tank Conference) [5], with the following
spectral density:

-5 o, \™?
0.11 (T o4 |
S(&))ZH;ZT — m .e (27{}
27
Where:
H; significant wave height

Tm mean wave period

Using this spectrum, relevant quantities like standard deviation of surge displacement (o),

velocity (o.) can be calculated if the response amplitude operators (RAO) of these
quantities are known, with:

« £l
o: :J‘o S(w)’— dw
» Ul
o5 =], S(a;)lZ do
Where
U :
; Surge velocity RAO
é Surge RAO
A

3.2 Wave energy extraction in frequency domain

The underlying principles for a wave energy extraction device used in the present work are
based on the approach by Falnes [6]. The basic idea follows from the idealization of a
submerged system as a spring-damper system with wave-body interaction, considering at
first monochromatic waves. Although the explanation follows the heave movement case, it
is the same for a system moving in surge with obvious adaptations.

20
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Fig. 3.1 - Schematic representation of a generic energy extraction device [6]
For the heaving system schematically presented in figure 3.1 and considering a

monochromatic wave excitation force X, the frequency domain equation of motion of the
system can be written as:

(-0 (M + 4(0))+io(B, + B, )+C |E=X

X
[—wz(M + A(w))+io(B, +BW)+C:|

So surge displacement ==
where

X complex frequency domain representation of the wave exciting force
B, linearized total hydrodynamic damping, including potential and viscous damping
B, energy extraction device (the WTG in this case) equivalent damping

The parameter Br is, in a normal wave energy extraction system, chosen by the controller to
try to optimize energy capture. However in the wind turbine case, this equivalent damping
is determined by the rate of change of the thrust force with the far field wind speed V!

T( m):dV

0
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Values for Br can be obtained from the steady-state thrust curve of the NREL 5 MW turbine
simply taking the local derivative with respect to V... For small variations of surge speed
this value of Br can be considered constant. The underlying assumption here is that the
turbine is working at optimal tip-speed ratio, therefore the values of Br obtained in this way
can be considered to provide an upper bound when used to calculate wave energy
extraction.

NREL 5MW Thrust curve
800 P

700 - / \
600
500
a0} o &
300}

200

100 1 1 1 1 1
0

mis

Fig. 3.2 - The NREL 5 MW thrust curve. Abscissa refers to the apparent far-field wind speed upstream

When the turbine moves in surge, this movement is damped as long as the turbine is
operating in below-rated condition, so that the slope of the thrust curve is negative. The
amount of power extracted from the surge movement by this mechanism would be:

Pex::FT(l_a)(Vx_‘f)

Where the factor (1-a), where a is the axial flow induction factor, is necessary because the
speed V; of the flow across the turbine rotor is not the apparent far field wind, but lower [4]:

V,=(V.-£)(1-a)

The thrust force can be expanded around a mean wind speed V., as:

Fr=F +AF, = F, + B, (V, - £)
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Considering now sinusoidal motion with period T: E=Usin (27”1?]

The mean energy extracted from the surge movement over a full period would be:
T . . 1 2
j(F +B, (V. —5))(1 —a)(V, —€)dr = 5 (1-a)|U]
0

The effect of the mean thrust force and the non-quadratic terms cancels out over a full
oscillation as the integral of a sine/cosine over a full period is zero. The remainder is an

expression that only depends on the complex surge velocity amplitude U.

An expression for U in the harmonic movement can be obtained simply from:
U=iw-=

ioX
[»a)2 (M + A(@))+iw(B, +B, )+ C}

U=

And therefore the mean power extracted from the monochromatic, harmonic surge

movement:

2 2

w | X
[C—a)z(M +A(a)))} + 0 (B +B,)

P,

Xt

8]

1 >
ZEBr(l_")M :EBT(l_a)

From here, it is possible to achieve a closed expression for power in terms of turbine
parameters by using the Haskind relations [5], which relate the wave damping of bodies to
the hydrodynamic loads. In the case of surge, and for an axisymmetric body such as a

cylindrical buoy:
2

ok
8pgl,

X
A

where k& is the wave number and V; is the wave group velocity. Applying deep water
approximations to the above:

- b -
8pg- £ prg
2w
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In a complex seastate represented by the wave elevation spectrum S(w), discretized at N
frequency intervals Aw, the wave elevation A; corresponding to the j-th frequency w; follows
the equation:

4> =25(w,)A0

The total power extracted in such a seastate will be the sum of the power related to each of
the individual frequencies:

2

S(Qf)Aa)

) N
J
j=

2
U
o AJZ':BT(I—a)Z A

_j
H 4%

Combined with the Haskind relation for surge and the expression for U, a closed-form
expression that calculates the mean energy extracted from the surge movement by the wind
turbine can be written as:

_ N B )
P, =4(1-a)pg’B, Y vi/©

= [C -o (M + A(“’j ))}

3.3 Wave power extraction potential for NREL 5 MW turbine

Using the formulation from Section 3.2, an analysis of wave power extraction potential has
been performed using data from the NREL 5MW turbine. Tests have been carried out for 4
different combinations of water depth and buoy. The base buoy design (30 m draft) has
been analyzed at water depths of 50 m and 100 m, and an alternative, bluffer buoy of same
buoyancy but 15 m draft has been also tested at both water depths. For each of these 4
combinations, three mean wind speeds V., are considered (6, 8 and 10 m/s). The wave
spectrum has been discretized in 100 divisions and up to 2 rad/s. The results are
summarized in Table 3.1.

The data highlighted in red, the lower-left corner, correspond to the base design, for which a
controller will be designed in the following sections.
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Turbine and simulation characteristics

Turbine | NREL - 5 MW - TLP platform
Mean thrust at nominal power | Aprox .800 kN
Hydrodynamic viscous damping coeff. used | Stochastic linearization with Cp = 1
Buoy characteristics
Draft 30 m Draft 15m
Radius 475 m Radius 6.72 m
Depth Conditions Additional Power (+% of turbine power at that wind speed)
Sig. WaveH.[m] |6 10 6 10

Mean Period [s] 11.6 13.6 11.6 13.6
Wind 6 m/s 39.8 kW 115.5 kW 62.8 kW 174.8 kW
50 m (£ 3.13%) (+8.94%) (+4.92%) (+13.5%)
Wind 8 m/s 60.6 kW 167.2 kW 95.5 kW 251.7kW
(4+2.47%) (+6.73%) (+3.89%) (+10.2%)
Wind 10 m/s 101.6 kW 249.8 kW 158.8 kW 371.4 kW
(+2.29%) (4+5.59%) (+3.58%) (+8.33%)

Sig. Wave H.[m] |6 10 6 10

Mean Period [s] 11.6 13.6 11.6 13.6
Wind 6 m/s 29.3 kW 83.3 kW 453 kW 122.5 kW
100 m (+2.3%) (+6.46%) (+3.55%) (+9.5%)
Wind 8 m/s 42.8 kKW 120.1 kW 66.2 kW 176.8 kW
(+1.74%) (+4.83%) (+2.69%) (+7.11%)
Wind 10 m/s 67.1 kW 182.5kW 104.2 kW 268.8 kW
(+1.51%) (+4.06%) (+2.34%) (4+5.98%)

Table 3.1: Energy extraction results with different buoys and water depths for moderate to severe storms
It can be seen that reduced water depth and increased buoy bluffness lead to increased

energy capture potential, with the combined effect of both leading to a nearly doubled yield
in the present study.
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4. Control implementation in time domain

4.1 Model linearization

For control design purposes, it is convenient to write the equations of motion (EOM) in
state-space form. The EOMs presented in section 2 are nonlinear but they can be linearized
if the far-field wind speed V. is considered constant.

Let 9(1‘) = §+(//(t) where 0 is the mean pitch setting (generally zero in the below-rated
region) and !,//(t) is the fluctuation of the pitch angle to be optimally determined. Let
Q(l‘) :§+w(t), where Q is the mean rotation speed of the turbine rotor and w is the
small variations around this mean rotation speed. Then the C, and C. surfaces can be
linearized around a mean operating point. Using a first-order approximation for the tip-
speed ratio, assuming small speed fluctuations:

1= (Q+w),RR B QR, -(Hg)(nijﬂ %(l+g+—é—]=1£1+g+ij
Vome Vo U QA V) VU Q) ar

0 o0 PO

The first order Taylor expansion of the thrust coefficient Cr the power coefficient Cp are, for
small fluctuations around mean 6 and A:

— , - = oC oC. T @ _f_
Cr (40 +y)1C(1,0)+ agf qur a,{ HA §+Vm
C,(10+v)=C,(1.5)+ 2 gzg‘/”a;{’ 7 Tz

Now expanding the Thrust force up to first order:

F(t)= %pASRCT (4,6)-(V., -¢)

2

1 = A oC oC, —| @ é: 2 . 2
=—p, S C, (1,60 Ly+—L | —+=2- | [(VI-2V E+
sz R T( )+ 89‘// PY) (Q+V]:|(oo 5 5)

>e]

and keeping only linear terms:
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Similarly for the rotational EOM, linearizing the aerodynamic torque:

C Y
TAer() u %pASRRI:: [aCP l// + rom (1 _E_?/_ﬁj](g- +2w§2+ - )ﬂ

30 Ay Aopr Q
C _ 0> C _ C 02 .
U lpASRRz ( P;OPT Qz + aCP g? l// + (2 _3) P;OPT QZU . P;OPT 3Q é:) —
2 Aopr o0 ZOPT OPT /10PT Ve
l C‘I’ OPT Vu: ac 3 V3 CVP OPT 3C’TP OPT P
=—p.S T 0 Tl oy B Sy RO 2
5 L4 [ O 20 O 4 o = s

Defining 7, =17, +AT,, where AT;., is the variation of torque around a mean value
that depends on the steady mean wind, we can simplify the surge EOM by cancelling out the
steady-state values:

dQ  do 1 aC, Vo Chopr 3C
dt da  27F v

I—==1"|1—p,S —= PO Vi - — 22 E |~ pAT,
p 86 Q Qz o0 Q Lé: ’7 Gen

These linearizations lead to the base state-space model for the dynamics of the system:

X‘S = ASXS + B.YUS + f;
)/,Y = C\'XS +DSUS

where:
T
XS:I:xr X, X, X X X x4]

Us = [ATGen l//]T

X =@ state describing the deviation from the mean rotational speed of the rotor
X, = - g? state describing the deviation from the mean surge position
X, = & state describing the surge velocity

X, X,,X;,X,  states describing the memory effects (see section 2.2)
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4.2 Time domain implementations of the wave exciting force

There are several ways to model the surge wave exciting force, f.. Depending on the needs
of the control algorithm, but in general the wave elevation record (WER) is built as the
harmonic sum of monochromatic waves. The wave spectrum is discretized in 100 divisions
up to 2 rad/s, and random phases ¢; are selected for each of the frequency components. The
amplitudes of each frequency component is determined with:

4;=25(0,)Aw

g(’):ﬁA/ Sin(a’jtﬂ”j)

J=1
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To build the exciting force record, the same process is followed but each amplitude 4 is
multiplied further by the complex wave exciting force RAO (X/A); at that frequency, as
obtained from WAMIT for the buoy.

X(1)= f({ﬂj 4;sin(w1+9))

J=t

4.3 The baseline NREL controller

The baseline region 2 torque controller as described in the NREL documentation uses a
quadratic law of the generator speed to define the generator torque input, with a constant
that is determined to optimize the tip speed ratio. Following the current notation this would
be:

T. =K.

Gen Gen™ “Gen

1 R
Ken = EIOASRCP,OPT '773—/1[;3”—

This controller can be readily implemented in the linearized model, using:
Té}en = 7_ﬂ(ien + AT’(:’en

ATGen = TGen - TGen = K(}'(m (Qéan - QzGen ) u 2KGL’)7§ ent

The generator torque variation has been linearized around the mean torque leading to a
linear dependence on the variation of the angular velocity. This expression can be
substituted in the equation for the angular velocity of the generator derived earlier in this
section so that the baseline torque controller can be embedded in the system matrices. In
practice this means that the 1-1 entry of the A; matrix gets multiplied by 3. This modified
state matrix that includes the linearized baseline control is used for the overlaid control
described in section 4.7. This extension of the modeling and control of the generator torque
involves the introduction of a new control 7 in the definition of the torque variation namely
AT, =2Q, K. @+t

The new torque variation control 7 may be implemented in practice in the generator via the
inverter settings.
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4.4 LQR and the cost function

With the linear state-space model described in Section 4.1, it is possible to design an
optimal controller to maximize energy capture using Linear Quadratic Regulator (LQR)
techniques. To do this, it is necessary to first develop a quadratic cost function for energy
capture. The power captured by the wind turbine can be written as:

| .\3
P(t) = EpASRCP (1’0)'(1/00 - f)
_ QRR.
Ve=¢
This cubic equation need to be Taylor expanded up to second order to have a valid,
quadratic cost function. The expansion of the C, coefficient up to order 2 is:

A

c,,(z,aw):c,,(z,a)ﬁa% "’*aaip Z[%*r/é)*
6=6 A=1 w
LA/ O 72 A | i [y 4
250, 28| Qv 0400),z \Q V.
=6

Using a slightly more compact notation the turbine power becomes:

(7P+—8C”¢//+BCPZ T,e |, 196 v+
| 00" ax Qv ) 2

5 ) 5 B . NN\2 s B .
+la,ﬁ A Z+_§_ +aiwb Z+i
204 Q v, 0A 06 Q J

Considering that the mean operating point corresponds to optimal tip-speed ratio, so
A = A,pr,» we can further simplify the expression by setting the partial derivative of C, with
respect to A to be zero, leading to:

3 , 5 B . \\2 5 B .
P(t):%pASR' CP+8C”(//+16 Ce z//2+lazc” (2[Q+E—D LS w&(g+i} -

(V23284308 - &)

00 2 00 20 oA 00

(V2 -3r2E+30,E8 - &)
Expanding and keeping up to quadratic terms, in order to have a quadratic cost function:
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Rearranging in symmetric matrix form:
1
1 - ¢
P(t)_EpAS [1 S @ ‘//:IQ() -
W
C,V; l3—6,,V,j 0 19, 18
) 2 2 06
—_35PV5 351)[/% l@“f]P Q°R, 18“7C'p ()R; l@CP — ) w_gacp
2 204 YV, 2 04 20406 2 06
O, = 2 2 2
0 10 o; 105 Ry, 10 gy
204 2 04 2 0406
2 2 2
laCPVS lBCP QRRVw—iaCPVj l@CP RRVOOZ laC 9Lrys
|2 06 20406 2 06 20406 2 o’0

This expression for power has very good agreement with the nonlinear formula, as shown
in figure 5.2, and will be used to evaluate power in the simulations. It tends to slightly
underestimate power output compared to the nonlinear formula using the full C, and C:

surfaces, so it will yield conservative estimates of extracted wave energy power.

For the purpose of the optimization problem, it is not necessary to keep the constant term,
nor the linear terms, which do not contribute to the average power over time. Therefore it is

useful to rewrite the objective function as:

,
J:rg(e};(JAO P*(r)dr

1 é

P*() 2pxt R [5 a ‘//]Qo* o

%
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For implementation purposes, the maximization problem can be set up as a minimization
problem just changing the sign, since LQR is in itself a minimizing algorithm. It should be
noted that this cost function is not positive definite and therefore this is an unconventional
LQR problem, but the algorithm can still provide an optimal control as long as the dynamic
system is stabilizable, that is, as long as the uncontrollable states (such as the states

associated with the memory effects) are stable, which they are.

4.5 Steady-state LQR

The steady-state LQR formalism applies to systems of the general form:

XS = AS XS + B.Y U.T
)/S = C\‘XS + DSUS

This means that, in order to proceed, it is necessary to include the wave exciting force
directly in the system matrices through the introduction of additional states. Furthermore,
this representation needs to be stable, since these states will inherently be uncontrollable.
In order to test the algorithm, perfect forecast of the seastate will be assumed, which allows
representing each of the individual frequencies in the wave spectrum as a 2 by 2 subsystem
representing a decaying complex exponential. Taking the real part of the exponential with
the adequate initial conditions will return the desired exciting force:

X/’ (,) — Re(XjAjeyHi((o”H%) ): Re(Xj.Ajei(/}’ eyt+im,1)

this is equivalent to the state xg; in the 2 by 2 system:
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To represent the proposed discretization of the wave spectrum in 100 bands, 200 new

states need to be included and initialized as above. The new system matrix, Asiqgr will be as

As Al2
ASLQR = 0 A
Exc

follows:

with As as defined and:

0 0 0 0
0 0 0 0 0
0 0 - : 0
A,=| M+A4, M+ A4, M+ A,
0 0 0 0 0 0
0 0 0 0 0 0 0]
'y @ 00 0 0]
-o, ¥y 0 0
0 0 w, 0 0
4. =10 0 -, vy 0 0
0 0 0 4 v
L0 0 0 -0y ¥ |

The expansion of the rest of the system (Bygg, etc) is simply zero-padding up to the required
dimension.

The LQR algorithm will minimize the following cost function:
J= j: (XTOX +UTRU +2X" NU) dt

Starting from Qo" as presented in Section 4.4, and changing the sign (since the algorithm will
carry out a minimization) the following Q, R and N matrices are obtained:
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The standard solution from MATLAB has been used to solve the minimization problem

’

which basically consists in solving for P in the steady-state Riccati equation:
Alen P+ PAy gy —(PByop + N)R™ (Bly P+ N7 )+ 0 =0
With P, the optimal gains K can be computed with:
K=R"'(B"P+NT)

leading to the optimal control U =-KX,

4.6 Finite-horizon LQR

An alternative solution to the LQ problem that can deal with the original system

XS = ASXS + B.\'US + f;’
)IS = CS‘XS + DSUS

has also been implemented, following Yong & Zhou [7], in which f. needs to be known up to
a horizon T. Therefore perfect forecast of the wave elevation is not necessary, and

34



forecasting methods with limited horizon (such as simple autoregressive models, see
section 7) can be used.

With initial time t = 0 for the optimization problem, the cost functional takes the form:

J =% [ (XTOX +U"RU +2U7SX) dit + %X(T)T GX (T)

with the last term corresponding to a terminal cost, that in the current problem will be zero
(G=0). Note also the slight change in notation, with S = NT.

The optimal control input (and optimal trajectory) are computed throughout the horizon T.
See Appendix Il for a thorough description of the solution process.

4.7 Overlaid LQR control

The last control development consists in combining the baseline NREL torque controller
with the unsteady LQR algorithm. This is just the practical implementation of the finite-
horizon LQR control, since in practice it would be impossible to implement it alone; the
normal speed-dependent region 2 torque control needs to be present to keep the turbine
working normally under variable wind speed conditions.

The implementation is basically the same than what is described in section 4.6, but the

system matrix As now incorporates a linearized version of the NREL torque controller as
described in section 4.3.
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5. Time domain control results

This section analyzes and compares the different control options using mostly the same
metric from Table 3.1, that is, giving a percentage increase of power yield for the NREL 5
MW turbine over the power that the equivalent fixed-bottom turbine would be producing at

the same constant wind speed.

5.1 Sensitivity analysis of finite-horizon LQR parameters

The solution of the finite-horizon LQR problem depends on the solution horizon T and the
control reset period Tg, which is the amount of time that the current solution is actually
being used by the controller before a new control reset. Of course Tk < T, and it is useful to
define the over/ap 8 ratio between the two periods:

s=1z

T

A number of simulations with the exact same wave elevation record (Hs = 6 m, T, = 10.3 s)
have been performed at 10 m/s wind speed changing both the horizon T and the overlap, to
see if there existed a strong trend indicating optimal solution parameters. Table 5.1 next
shows the results:

T 0 0.2 0.5 0.8 0.95

05s 1.1662% 1.1662% 1.1663% 1.1662% 1.1662%
25 1.167% 1.167% 1.1672% 1.1672% 1.1672%
5s 1.1678% 1.1691% 1.1693% 1.1693% 1.169%
10s 1.1693% 1.1687% 1.1694% 1.1692% 1.1688%
15s 1.1668% 1.171% 1.171% 1.1712% 1.1702%
20s 1.1682% 1.1716% 1.1693% 1.1691% 1.1688%

Table 5.1: Sensitivity of wave energy capture to horizon and overlap in a particular seastate at 10 m/s

It can be seen that yield stabilizes for horizons beyond 5-10 seconds. This is consistent with
what is shown in other wave-energy extraction papers using dynamic programming [8], in
which energy yield also stagnates for prediction horizons over a certain value. Overall it
seems most of the benefit of the unsteady LQR lies in being able to know the most
immediate trend of the exciting force, and some additional benefit of it up to about one

significant period Tm.
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Overlap has also a marginal impact in energy yield, especially for shorter horizons where
sensitivity to it is completely flat. It does however play a big role in computational demand.
Choosing high overlap requires more frequent control resets and thus more computations.

Another factor to consider is the smoothness of the control input, with high overlap
resulting in a smoother control input. Low overlap results in some degree of control chatter
appearing, especially in the torque control (pitch control has far less marked jumps).
Compared to the mean value these jumps are not so big and they can also be filtered, so they
may not be very detrimental. Figure 5.1 shows the same fragment of simulation with
different overlap values.
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Fig. 5.1: Sensitivity of torque input smoothness to overlap with T=10s.
Top graph 8=0.5, middle graph §=0.9, bottom §=0.99

It would appear then that choosing low overlaps provides the same energy yield with far
less computational demand, which would be desirable as long as the control jumps can be
smoothed out. Regarding horizon T, choosing a horizon length about the same duration
than the mean wave period T seems to give good results as well. For the following sections,
an overlap §=0.5 (for faster computation time) and T = Ty, will be used.
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5.2 Results with different control options

Table 5.2 offers a comparison of all the proposed control methods:

* No control: Keeps pitch at zero and torque at its constant mean value, 7, =T, .
Due to the movement of the platform, wave energy is captured even with constant
control inputs.

* Base torque: Keeps pitch at zero and uses the quadratic control law for torque from
Section 4.3, following the specifications from the NREL documentation.

¢ Steady LQR: Variable pitch and torque, following the steady-state LQR formulation
from section 4.5.

* Unsteady LQR: Variable pitch and torque, following the finite-horizon LQR
formulation from Section 4.6.

* Overlaid control: Variable pitch decided by finite-horizon LQR and variable torque
that combines the baseline NREL torque controller with an additional variation
decided by finite-horizon LQR, as described in section 4.7.

e Target: Values from Table 3.1, providing the upper bound for wave energy capture.

Due to the stochastic nature of the problem, 10 simulations have been run for each case. The
values from the table correspond to the mean of the ten simulations, but still some
stochastic variation exists in the results.

Hs 6 m 10 m

Vo 6 m/s 8m/s 10 m/s 6 m/s 8m/s 10 m/s
Target +2.3% +1.74% +1.51% +6.46% +4.83% +4.06%
No Control | +1.836% +1.135% +0.747% +4.811% +3.049% +2.293%
Base Torq. | +2.147% +1.337% +0.967% +6.210% +4.041% +2.830%
Stea. LQR +2.498% +1.383% +0.937% +7.035% +4.101% +2.833%
Unst. LQR | +2.709% +1.570% +1.246% +7.414% +4.342% +3.009%
Overlaid +2.952% +1.595% +1.261% +8.306% +4.889% +3.927%

Table 5.2: Energy yield enhancement result comparison for Hs = 6 m and Hs= 10 m

The overlaid control outperforms the other controllers in all cases, and even exceeds the
target energy yield at lower wind speeds. Noteworthy is the fact that keeping constant pitch
and torque already achieves significant energy capture, since surge oscillation alone can be
expected to produce bigger energy yield due to the cubic equation for power.

The cubic law for power is well approximated by the second-order Taylor expansion as long
as the deviations from the mean values are not too big, as shown by Figure 5.2. The fully
nonlinear case has been computed by post-processing the results and extracting the real Cp
values corresponding to the instantaneous tip-speed and pitch angle. Note that this is
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referring to aerodynamic power and thus presents big variations over time; the output
power of the turbine is much more stable due to the rotor inertia acting as a flywheel.

Power over time
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Fig. 5.2: Comparison between the quadratic approximation of the aerodynamic power used for LQR
and the post-processed equivalent power using the cubic law and real C, values at wind speed 8 m/s.

Comparing the baseline torque controller inputs to the finite-horizon LQR inputs, they show
very different behaviors. The finite-horizon LQR keeps very low torque variations
compared to the NREL torque controller, but the pitch activity manages to extract more

energy from the wind.
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Fig 5.3a: Inputs for the NREL torque controller
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Fig 5.3b: Inputs for the finite-horizon LQR control
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Torque control activity in the finite-horizon LQR case could in theory be increased by
reducing its cost in the R matrix, currently set to 0.1. However, matrix R is already very
poorly conditioned and setting an even lower cost for the torque activity results in
instability of the ODE system solution. Tuning of the cost matrices might be able to optimize
energy capture further but it is not straightforward and this has not been attempted as part
of the present work. A way around it is using the overlaid controller described in section
4.6, that combines both controllers. This results in torque activity that is basically similar to
the baseline NREL torque controller with an added low amplitude variation set by LQR,
while the pitch activity is kept similar to the unsteady LQR case.

The main mechanism to explain the differences in performance between the controllers
seems to be the ability to keep a higher C; coefficient, as shown in Figure 5.4.

Cp coefficient over time
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Fig 5.4: Power Coefficient comparison with Hs =6 m

Surge velocity variation is almost the same in both cases, so the different C; is the only
parameter making a difference in energy yield. No controller is able to actually keep optimal
tip-speed ratio since the rotational speed variations are not big enough to keep up with the
changes in apparent wind speed due to surge. This implies that the finite-horizon LQR is
setting the pitch angle to minimize drop in C, when tip-speed ratio is away from optimal.
When tip speed is near optimal, the C, surface is flat and small changes in pitch do not affect
power capture.
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Figure 5.5 next shows the evolution of tip-speed ratio during simulation with 6 m significant
wave height, and how neither controller manages to stay at optimal tip-speed.
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Fig. 5.5: Tip-speed ratio comparison

The overlaid control does slightly better than the baseline NREL torque but the difference is
so small that it has not been included in fig 5.5. The inability of all controllers to track
optimal tip speed ratio, and the fact that moderate pitch activity does not result in
significant changes in surge speed (despite pitch angle having direct impact on turbine
thrust) are both symptoms of the limited authority of the control inputs on the dynamics of
the system, i.e. the aerodynamic thrust and torque variations due to wave-induced surge
motion are bigger than what limited control action could counteract. For gentle seastates
this is less so, as wave-induced surge motions are much smaller, but there the potential
energy gains are already very small to begin with. In any case, the energy gains due to surge
oscillation are bigger than the losses for not being able to follow optimal tip speed and the
result is a net energy gain.
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6. Annual energy yield enhancement

An estimation of the additional annual energy that the turbine under study (the NREL 5 MW
turbine on the designed TLP platform) would be able to produce as a result of wave energy
capture has been carried out using data from the University of Maine test site in the Gulf of
Maine [9] and also the Ijmuiden site the North Sea [10]. The first site is very sheltered and
has low wave statistics, whereas the second site is more open.

The data for the joint distribution of mean wind speed and significant wave height have
been used to set the combined wind and sea conditions for a number of simulations using
the finite-horizon LQR controller. The data was insufficient to perform an ideal assessment
(which would require binned data providing number of hours for binned combinations of
wind speed, significant wave height and period, as in a 3D grid), so it was necessary to make
a hypothesis. The mean significant wave height corresponding to each mean wind speed
was binned assuming a Rayleigh distribution for significant wave height with the
corresponding mean and standard deviation from the document. The mean period for each
simulation was calculated using the regression data relating wave height and period.

10 simulations are run for each set of conditions, and the average is multiplied by the time
that those conditions are considered to dominate during the year. In doing so with the
available yearly data, an estimation of total wave energy capture during the year is

calculated.
Annual energy yield enhancement - Gulf of Maine test site
av.H, | av. T, | P_baseline E_baseline | AE
V.. [m/s] Hours/year | [m] [sec] (kW] AP [kW] | [kKWHr] [kWHTr]
3 963.90 0.806 6.861 40.5 0.18803 19518.96 90.62099
5 1367.36 0.863 6.927 403.9 0.40589 552276.471 277.4988
7 1503.19 0.922 6.992 1187.2 0.66623 1784586.72 500.735
9 1400.10811 1.002 7.082 2518.6 0.86714 3526312.3 607.0449
11 1143.70691 1.124 7.212 4562.5 2.0345 5218162.79 1163.436
13 833.43 1.298 7.394 5000 0 4167132.46 0
15 547.03 1.533 7.631 5000 0 2735174.69 0
17 325.36 1.834 7.922 5000 0 1626819.93 0
19 176.062393 2.198 8.261 5000 0 880311.963 0
21 86.9198691 2.622 8.638 5000 0 434599.345 0
23 39.23 3.093 9.042 5000 0 196144.991 0
25 2.4 3.598 9.46 5000 0 6932.26073 0
TOTAL - - - - - 21147972.9 2639.335

Table 6.1: Expected annual yield enhancement at the Gulf of Maine test site
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The additional 2640 kWHr in the Gulf of Maine location are the result of wave energy
extraction, and suppose a 0.0125% annual energy increase. This relatively low annual figure

is partly a result of the low wave statistics of the U. Maine test site.

Annual energy yield enhancement - Gulf of Maine test site

av.H; | av. T, | P_baseline E_baseline
Ve [M/s] Hours/year | [m] [sec] | [kW] AP [kW] | [kWHr] AE [kWHTr]
3 794.35 1.085 | 5.955 40.5 0.3985035 | 16085.5875 158.2756
5 1199.75 1.14 5.82 403.9 0.7184738 | 484579.025 430.9945
7 1400.40 1.245 | 5715 1187.2 1.2899 | 1662554.88 903.188
9 1384.45 1.395 | 5.705 2518.6 2.4284 | 3486875.77 1680.999
11 1200.8 1.59 5.81 4562.5 4.0872 5478650 2453.955
13 929.35 1.805 | 5.975 5000 0 4646750 0
15 647.80 2.05 6.22 5000 0 3239000 0
17 408.95 2.33 6.54 5000 0 2044750 0
19 234.65 2.615 6.85 5000 0 1173250 0
21 122.65 2.925 | 7195 5000 0 613250 0
23 58.50 3.255 1.6 5000 0 292500 0
25 25.50 3.59 7.97 5000 0 63750 0
TOTAL - - - = = 23201995.3 5627.412

Table 6.2: Expected annual yield enhancement at the [jmuiden site in the North Sea

The Ijmuiden test site has somewhat higher wave statistics, which results in almost double

wave energy extraction potential representing a 0.0243% annual energy increase.

The difference between both sites clearly shows the quadratic relation between energy in
the wave and wave height, where a relatively modest increase in wave heights results in a
doubling of the available energy. However it is clear that the clear correlation between high
winds and high waves, together with the impossibility of extracting wave energy at high
wind speeds due to the turbine already operating at full power, limits wave energy
extraction since when waves are high the turbine is unable to extract additional energy

from the waves.
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7. Wave elevation forecasting

Forecasting of ocean waves has been extensively studied in the wave energy converter
literature, where typically the system can absorb energy from short waves, with frequencies
above 1 rad/s. The forecasting needs to include these relatively high frequencies, and the
prediction horizon is long. Much work has been done to develop suitable forecasting
techniques as reviewed by Fusco [11], [12]. A possible and common approach is using a
wave elevation reading to fit a model of the incoming wave by spectral decomposition,
which can be accomplished for example using Prony-like methods [13] or more advanced
methods using spheroidal wave functions [14].

As mentioned in section 4.6, the use of the finite-horizon LQR algorithm requires
forecasting the exciting force some seconds into the future. This chapter starts by discussing
the relation between the exciting force and the wave elevation, and then goes on to explain
two different methods to produce a wave elevation forecast based on a known wave
elevation signal. The first is a simple autoregressive (AR) algorithm, with limited predicition
capability but very simple implementation with basic matrix algebra. The second algorithm
is the ESPRIT method presented in a recent paper by Potts-Tasche [13]. Attempts to
implement forecasting methods using generalized prolate spheroidal wave functions
(GPSWF) following [15] and [16] have faced numerical difficulties and the results will not
been presented here. Although fitting a wave signal using GPSWF theory has been achieved,
methods requiring explicit computation of the GPSWFs [16] are too computationally
demanding to get the necessary accuracy and the ones that do not require computing the
GPSWFs seem to have very poor forecasting capability. While in theory GPSWFs are the
most advanced method for forecasting wave signals, there seem to be considerable hurdles
in their practical implementation and more work is needed to implement an efficient
algorithm with this theory.

The issue of waves coming from multiple directions represents a problem of its own that
will not be addressed here, but can be tackled by taking measurements in different points
around the turbine (i.e. the tip of the three arms of the TLP) and proper postprocessing.

7.1 Relation between wave exciting force and wave elevation

Several methods - developed primarily for wave energy converters - have been described
in the literature, for example [15], [11], [12] that address the issue of calculating the wave-
exciting force based on knowledge of the sea-state. The main issue that needs to be dealt
with is the non-causality of the impulse response function of the wave excitation force, as
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explained in Yu-Falnes [15]. Computation of the impulse response function of the surge
force A can be done by inverse Fourier transform of the frequency domain excitation force
data obtained for a number of relevant frequencies by i.e. WAMIT, based on the geometry of
the buoy, water depth etc. Since WAMIT will give data for positive frequencies up to a finite
value, and the inverse Fourier transform integral requires -co < w < oo:

h(t)= T X(w)e"do

=G0

This means that it will be necessary to calculate the exciting force X up to a frequency with
very low excitation. The negative frequency values of X are simply the complex conjugate of
the value of X at the same positive frequency:

X(-0)= conj(X(a)))

For the suggested baseline buoy of the NREL 5MW, with 4.75 m radius and 30 m draft, this
impulse response function is as follows:

Surge force impulse response
3 T T T T

-15 -10 5 0 8 10 15
[s]
Figure 7.1 - Surge force impulse response function Ar for a 4.75 m radius,
30 m draft buoy at 100 m water depth

This function is clearly non-causal, since it has non-zero values for negative time. Note that
the point tc in time at which the signal can no longer be assumed to be zero is a bit open to
interpretation, and in this case (Figure 1I1.1) we could differentiate t; (most strict), tz
(strict), or t3, which basically disregards the small values of /4, before the first prominent
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peak. At time = Ty, the signal can be assumed to be zero again. Once 4y is known, the wave

excitation force can be calculated as the convolution integral:
1+t
L =["h(1-7)¢ (v)dr

Where {(t) is the wave elevation at time t.

To proceed in this way it is necessary to estimate the wave elevation up to t. seconds into
the future, which will be called the prediction horizon. The calculation of the convolution
integral simplifies considerably in discrete-time, in which the value of the force at time step
k = tx/At, can be expressed as:

£ =3 b (=)< (k+ )

Jj=—kr

Here ke = t/At, kr = tr/At, and T, tc and the time step At has to be chosen so that all the
values of k, k, kr and j are integers.

7.2 Autoregressive (AR) forecasting

7.2.1 AR model theory

Due to the relatively short-term prediction that is required to calculate the exciting force,
and also considering that the very low surge eigen-frequency will make the system behave
as a low-pass filter for high frequency waves, it is possible in the case of the TLP to proceed
with a very simple discrete-time forecasting scheme based on linear auto-regressive (AR)
methods. An AR model can be trained to accurately describe the relation between the wave
elevation {y at instant & ({(t) = {x) and the previous values of wave elevation, such as:

N

& :zajé’k—j =0, FG, ot ayd,
Jj=1

where Nar is the order of the model. By extracting M samples from the wave elevation
record, it will be possible to fit the coefficients o; using linear least squares. For forecasting
purposes, the estimated value of {x will be used to estimate {y+1, both will be used to
estimate Ck+2, and so on until the desired prediction horizon is met. It is easy to arrange this
filter in convenient discrete state-space form as:
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This matrix can be used to obtain a wave elevation vector that is shifted t. seconds (k. steps)

into the future and use it to calculate the exciting force. Considering now that {x is the
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With the above equation as a basis, it is straightforward to build a matrix W (not necessarily

square) such that:
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Going back to the calculation of the surge wave exciting force, this wave elevation vector

with some forecasted values will be multiplied by the discretized values of the surge force

impulse response function using:
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wave elevation [m)

This equation can be used to obtain a discrete-time forecast of the exciting force that can be
turned into continuous time by introducing a spline fit that connects the known discrete
values of the exciting force.

7.2.2 AR model performance and parameter sensitivity

Since the least-squares identification puts no constrains on the stability of the system, the
prediction will generally be inaccurate due to instability after a few steps, but if it can
provide a good estimate up to the prediction horizon t. this approach should give good
enough results. A sensitivity study has been performed using a wave elevation record
generated by superposition of sinusoids with amplitudes Aj coming from the spectrum from
section 3.1 and random phases 8j to study this issue:

Drmax

Z{y= Z 4 cos(cojt+t9_f.)

@ =Ao

The frequencies are evenly distributed from zero to 2 rad/s, at intervals Aw = 0.001 rad/s.
A small Aw was chosen to allow generating a long wave record (1000 seconds) that is not
periodic. The values of { were sampled at 2 Hz (At = 0.5 s). M samples of Nar values of
were taken to train the AR model, which was then used to predict 20 future values of wave
elevation for a new sample. Results are shown next in figures 7.2 - 7.5 for AR models of
orders 12 to 48, with M ranging from 20 to 80. The figures include training with the original
signal, and also with a low-pass filtered signal with a cutoff frequency of 1 rad/s. As already
hinted in Fusco [13], this significantly improves the fit, while in our case will not affect the
expected system response due to the TLP acting as a low-pass filter itself regarding
excitation forces in surge.

Wave elevation prediction with AR model of order N=12 Wave elevation prediction with AR model of order N=12

4 T
past values past values
3 —&— measured future values 3 —&— measured future values
[| —— Training samples = 20 i | —— Training samples = 20 )
—— Training samples = 40 —— Training samples = 40
2k Training samples = 60 4 2| = Training samples = 60 4
——— Training samples = 80 o —— Training samples = 80
£
L . s 1} i
1 /@f‘& -\ : .%
® &
/ @
of & \ E § o ‘ b
g 4 @
1| 4 1 :_/ 1
2 5 2F L
3 s 1 1 1 1 .3 1 I I 1 L
2 0 2 4 B 8 10 2 0 2 4 B B 10
time [s] time [s]
Figure 7.2a - Nar = 12, unfiltered wave signal Figure 7.2b - Nar = 12, filtered wave signal
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Wave elevation prediction with AR mod.
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Figure 7.3a - Nar = 24, unfiltered wave signal
Wave elevation prediction with AR model of order N=36
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Figure 7.4a - Nar = 36, unfiltered wave signal
Wave elevation prediction with AR model of order N=48
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Figure 7.5a - Nar = 48, unfiltered wave signal

wave elevation [m]

wave elevation [m]

wave elevation [m]

Wave elevation prediction with AR model of order N=24

4 T T T T T
past values
3l —&— measured future values 1
——Training samples = 20
~—=—Training samples = 40
2| = Training samples = 60 a1l
——— Training samples = 80
1 ]
.Q'-
oF o E
o
4 :_/ ]
21 J
% 0 2 4 6 8 10
time [s]
Figure 7.3b - Nar = 24, filtered wave signal
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Figure 7.4b - Nar = 36, filtered wave signal
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Data shows that for each model order there seems to be an optimal range of training
samples below which the prediction capabilities are poor, and above which the system

stops improving and even worsens due to overfitting.

After several tests, an order 24 AR model with 40 training samples seems to consistently be
able to predict 5 seconds into the future with an unfiltered wave elevation record, and 6
seconds with a low-pass filtered record. Orders 20 and below will struggle in some cases to
provide reliable prediction 4 seconds into the future, even with filtering. Better results can
be obtained for larger model order and more training samples, with for example order 48
with 80 samples being able to sometimes predict up to 10 seconds accurately, but this is not
guaranteed even with filtering. As seen in figure 7.1, for the purpose of calculating the
present-time exciting force there seems to be no need to go beyond a 4 second forecast, so
an order 24 model with 40 training samples seems like a good compromise between

performance and model size in this case.

In addition to this, using the matrix form to perform the prediction in a single operation
leads to additional error, due to numerical issues related to some of the matrix coefficients
becoming large. The prediction seems to become unstable, after around 7 seconds for a
prediction horizon of 10 seconds, almost independently of model order, when using the

matrix computation as shown in figure 7.6:

Wave elevation prediction with AR model of order N=48

T T T T T T T

past values ; }1 4
—&— measured future values '3
—— prediction (polynomial)
4 | —— prediction (matrix) / 4

nN
T

o
T

wave elevation [m]

time [s]

Figure 7.6 - Matrix model showing numerical instability after 7 seconds

Concluding, the AR model provides forecasting capabilities that seem to be enough to
calculate the exciting force at the present time based on a wave elevation reading. It also
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allows implementation with a simple matrix formulation that can itself be cast into state-
space form. In doing so, additional instability due to numerical issues appears for forecasts
longer than 6-7 seconds, so it seems best to stay within a shorter prediction horizon of
about 4 seconds. This requires only an order 24 model with 40 training samples. The
limitation of the prediction horizon clearly below 10 seconds makes the AR algorithm
unsuitable for forecasting the exciting force far into the future, so for the implantation of the
finite-horizon LQR method from section 4.6 it could only be used to evaluate a solution
horizon T = 10 - t.. This means that at best we can have T = 5 seconds. Fortunately it has
been shown that T = 5 already allows to absorb most of the available wave energy with the
finite-horizon LQR method, so the AR algorithm can potentially be used in this application
despite its relatively low forecast horizon.

7.3 ESPRIT forecasting

7.3.1 ESPRIT method theory

A powerful forecasting algorithm, the ESPRIT method described by Potts-Tasche [13], has
been implemented to test its forecasting capabilities. This method tries to fit the wave
record to a sum of complex exponentials. The number of complex exponentials is the
parameter M to be determined by the algorithm given L (an upper bound for M) that needs
to be set. The objective is then finding complex coefficients cand £ such that:

Unlike other known implementations of the ESPRIT method that use the rotational
invariance property, the Potts-Tasche formulation is based on standard matrix
computations such as singular value decomposition (SVD), eigenvalue decomposition,
pseudoinverse and standard least squares, all of them available by default in MATLAB and
thus easy to implement.

The algorithm itself starts with a wave record with 2N samples taken at time interval At.

These are used to form a rectangular Hankel matrix H, where / is the row number and m is
the column number:;
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2N-L,L+1

Hyy 110 = [4 (l + m)]

!, m=1

s £(2) o (L)
H.. . = 4'(2) §(3) é’(L.+2)
4’(2]\./—[4) §(2N;L+]) ;(2N)

Now the SVD decomposition of H leads to [/ =UDW where D is a rectangular matrix of
the same size as H with zeros everywhere except on the main diagonal, which contains the
singular values a. The algorithm will set M as the rank of D, by analyzing the singular values
and discarding all that are below a certain threshold (the product of the biggest singular
value o and the relative tolerance ) as being irrelevant:

O < €0,

Now matrix W needs to be truncated to discard the rows corresponding to the singular
values below the desired threshold:

Wyn =W(1:M,1:L+1)
Defined based on this matrix:
Wy (s)=Wy ., (1:M,1+5:L+s)

Taking the cases s=0 and s=1:

These matrices are combined to form FsypM, that has the form:
Mo r\f T
FSVD = (WM,L (0) ) WM,L (1)

where the symbol t stands for the Moore-Penrose generalized inverse or pseudoinverse.
The eigenvalues z; of matrix FsypM will lead to the exponent coefficients f; of the exponential
sum as:

_ log(z].)
/;= At
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To calculate the coefficients ¢j a simple linear least-squares problem needs to be solved:

Once all the coefficients c;, f of the exponential sum have been determined in this way, and if
the fit to the initial wave elevation record is good, it is possible to produce a forecast just by
extending the time ¢

The beauty of this method, unlike FFT, is that it finds the main frequency components in the
signal without forcing an arbitrary discretization of frequency, which should lead to a more
precise determination of the frequency components.

7.3.2 ESPRIT method performance and parameter sensitivity

Due to the bigger amount of relevant parameters in the ESPRIT algorithm, compared to the
AR algorithm, a slightly different approach has been used to evaluate its performance.
Analyses with two different bandwidths (as in the AR algorithm analysis) but also with
three discretization levels of the sea spectrum have been performed to analyze different
aspects. The following table labels and summarizes the characteristics of the different

spectra.
Number of spectral frequency components considered
10 50 400
Bandwidth of 0to1rad/s Al B1 C1
the spectrum 0to2rad/s A2 B2 C2

Table 7.1 - Characteristics of the different spectra used for the ESPRIT method analysis

Spectrum A1 then is band limited to 1 rad/s and only has 10 frequency components, making
it relatively easy for the algorithm to pick up all the frequency components. Spectrum B1 is
still band limited but has a more challenging amount of frequency content. Spectrum C2 has
a wider bandwidth up to 2 rad/s, and has a very fine discretization (400 components) so
that it will be impossible for the algorithm to find them all due to the limitations imposed by
parameter L. This is the most similar to real operating conditions, in which it will be of
interest to evaluate up to 2 rad/s and the sea spectrum is continuous, so that it is not
possible for the algorithm to actually find all the components.
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The parameters that need to be studied are the duration T of the signal to be fitted (the
training period), the time step At, the parameter € (affecting the selection of the number of
exponential components M) and the parameter L (the upper value of M, set by the user).
Regarding L, since it determines the maximum amount of exponential components, it
should be set to be at least twice the number of sinusoidal components in the exponential
(since there will be a pair of complex poles for each frequency component). However in
general (and certainly in the case of analyzing a real wave height record) the number of
frequency components is not known. In this case the recommendation of Potts-Tasche is to
just choose N=L, that is, L is half the number of points in the signal. Setting L in this way

does seem to give the best results, as will be shown.

7.3.2.1 Performance metrics

It is necessary to find a quantitative metric for the forecast performance. The approach
taken has been to calculate the standard deviation o of the wave elevation signal and set an
absolute error tolerance of 20% of this standard deviation, i.e. tol = 0.2 . This is roughly
equivalent to a 5% relative error compared to the wave elevation Hs, since Hs = 4 0. The
algorithm will calculate absolute error at each time step, and forecast duration is the time at
which this absolute error exceeds the tolerance. To tackle stochastic changes in
performance, the presented forecast results from the following sub sections will be the
mean of 5 runs starting at different points in the wave record.

Figure 1 next shows the qualitative result of the set tolerance. The forecast starts at t = 150
s, and goes up to t = 178 s where the absolute error exceeds tolerance. As the figure shows,
the metric provides a good numerical representation of a qualitatively good fit.

ft)
o
i |

2l 4

s \“ _
1 1 1 1 1 1
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(5]
Figure 7.7 - Example showing the qualitative meaning of the selected tolerance
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7.3.2.2 Parameter epsilon &

This section analyzes the influence of parameter epsilon in the performance of the
algorithm. For the analysis a training period T = 100 s, and time step At = 0.4 s have been
selected (a combination that has shown to give good results).

average forecast horizon as function of epsilon
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Figure 7.8 - Influence of parameter ¢

As figure 7.8 shows, performance improves with smaller epsilon up to a point (around le-
15) where performance sharply falls. This is due to numerical problems (badly conditioned
matrices). Therefore it will make sense to keep epsilon as low as possible, but not so low
that the algorithm runs into numerical issues. A value of € = 3e-14 will be used in general
for the following analyses.

7.3.2.3 Sensitivity to parameter L

Parameter L in the Potts-Tasche algorithm is the upper bound of the amount of poles to be
analyized in the algorithm (upper bound of M). Considering that the algorithm will use two
complex-conjugate poles for each frequency component, it seems logical that L needs to be
at least twice as high as the number of frequency components in the signal being analyzed,
for best performance. The following figure 7.9 shows forecast length again for a training
period T = 100 s, and time step At = 0.4 s, using different values of L.
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Fig 7.9a - Results for spectrum A1l Fig 7.9b - Results from spectrum B1

Results for spectrum A1 (10 frequency components up to 1 rad/s) show perfect forecast (1
minute is the maximum considered) is achieved for L = 20 (exactly twice the amount of
frequencies) or higher. Results for spectrum B1 (using 50 frequencies) are not perfect, but
best performance is achieved for L = 90 and then further increasing L does not result in
significant improvements.

It would seem then that, as expected, parameter L needs to be at Jeast twice the number of
frequency components in the spectrum. There seems to be some variation depending on the
specific wave record, unlike with the sensitivity to epsilon which always seems to give best
results for the same value.

When the number of frequencies is unknown and potentially very high, such as in the case
of a real wave record, it is impossible to choose L based on the number of frequencies
present in the signal. The recommendation in this case is to keep N=L, as mentioned in
Potts-Tasche. The next section shows how this is the case by playing with N while keeping L
constant.

7.3.2.4 Sensitivity to time step and training period length

A first analysis with spectra A1, B1, A2 and B2 is performed to analyze general sensitivity of
the forecast to training period T and time step At. L is set to be higher than twice the
(known) number of frequency components in each spectrum. Figures 7.10 and 7.11 show
grayscale colormaps, where the bar to the right indicates the forecast length, in seconds,
corresponding to each color. White is the highest forecast length in the set.
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Fig 7.10a - 0 -1 rad/s spectrum, 10 components (A1)
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Fig 7.10b - 0 -2 rad/s spectrum, 10 components (AZ)

It can be seen that in both cases (spectra A1 and A2) the ESPRIT algorithm is capable (for
sufficiently large time step) of finding all the frequency components exactly and delivering a

perfect forecast (the maximum considered is one minute), almost independently of the

training sample length T.

The following figure 7.11 presents a similar comparison but now the spectrum has a more

realistic discretization of 50 components (spectra Bl and B2). Parameter L is set to 100 in

both cases. ESPRIT is no longer able to achieve perfect forecast, with best results being

around 30 second forecast for the narrow band spectrum B1 and about 10 second forecast

for the wider spectrum B2.
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Fig 7.11a - 0 -1 rad/s spectrum, 50 components (B1)
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Fig 7.11b - 0 -2 rad/s spectrum, 50 components (B2)
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Considering that the case with At=0.4 and T=50 leading to only 125 data points in the
training sample, it is not possible to analyze a much larger time-step or longer period while
keeping L=100 since L necessarily is smaller than the number of time-steps for the ESPRIT
algorithm to be consistent. Since bigger time-steps and relatively short records seem to
work best, an additional analysis has been done to investigate longer time-steps. In theory
(sampling theorem) to reproduce a frequency of 2 rad/s it is possible to use a time step as
big as 1/2, so theoretically time steps of around 1 second are still feasible (but require a
record of more than 200 seconds so that N>L). The result of some additional combinations
is presented in table 1 next:

At=0.5s At=0.75s At=1s
T=100s 10.4 X X
T=200s 0.5 1.8 7.4
T=300s 1.6 0.9 1.4
T=400s =l 0.75 1.2

Table 7.2 - Additional combinations of time step and period for spectrum B2

What the best two combinations have in common is that the number of points in the
training period is almost equal to 2L, resulting in an almost square matrix H in the

algorithm (the matrix where SVD is performed). This supports Potts-Tasche claim of
keeping N=L for best performance.

Looking into some additional cases for spectrum B2, including the limit case where At =

/2 but keeping now the fixed relation L=N=100 (adapting the period T as needed), lead to
the following results:

At=0.5s At=1t/4 s At=m/2s
T=100s T=157s T=314 s = 5 min
10.4 s 93s +60s

Table 7.3 - Forecast horizons with N=L for large values of At for spectrum B2

The excellent performance with the maximum allowed At is shown in figure 7.12. The green
line represent the training period (not shown entirely), while the red line is the forecasted
signal. The blue is the original signal, and is invisible because the forecast is perfect. The
simulation stops at 60 seconds forecast but it could continue for probably much longer,
since ESPRIT is able to find all the component frequencies very precisely.
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[s]
Fig 7.12- Example torecast with maximum At, showing pertect torecast up to 60 (spectrum B2)

It would seem then that there is an optimal combination of At, N and L that provides perfect
forecast, namely:

/4
¢ Al =—— (wmax being the maximum frequency present in the signal)

max

e L > twice number of frequency components in the signal

T
e N=L,resultingin 7 =2L——
a

max

However this only works because the number of frequency components of the signal is
known and we can choose L to be larger. In the case of a real wave elevation record this will
not be possible. A real, fully developed sea-state has a continuous, non-discretized spectrum
of theoretically infinite frequency components. Interference and modulation phenomena
are commonplace and make forecasting over long periods much more difficult. To illustrate
this case, it is interesting to take a look at the performance of the algorithm for spectra C1
and CZ, both featuring 400 frequency components. L is limited to L=100, so that it is not
possible for the algorithm to capture all the information. Note that choosing the “optimal
combination” from above would lead to T=2513 seconds, about 42 minutes: this is not
really feasible, the ocean conditions can no longer be considered stable over such a training
period.

Table 7.4 summarizes the estimated average forecast obtained for the finely discretized

(400 frequencies) spectra C1 and C2 with L=100 and several combinations of At and T, all
of them forcing N=L. Same information is shown in figure 7.13.

59



At=0.1s At=0.25s At=05s At=1s At=1/2 s At=1s
T=20s T=50s T=100s T=200s T=5min | T= 10 min
S
il ) 22.94 25.17 27.5 26.04 6.03
(0-1 rad/s)
Spectrum C2
8.32 8.147 10.12 7.74 337 -
(0-2 rad/s)

horizon [s]

Figure 7.13 - Forecast horizons with N=L for finely discretized spectra (C1 and C2)

Table 7.1 - Forecast horizons with N=L for finely discretized spectra (C1 and C2)

Average forecast horizon

30 T i T 1 T T
spectrum C1 - 0to 1 rad/s
/\'ﬁ—-— spectrum C2 - 0 to 2 rad/s
25+ / -
20} -
15F \ -
10+ N .
51 -
0 L 1 L 1 77T__ﬁ7_—_‘-*+
0 05 1 15 2 25 =]
deltat [s]

In this analysis L=100 and there are 400 frequency components. It would be necessary to
choose L = 800 to capture all the components reliably. Results show that in this case where
L is not high enough to capture all the frequencies, choosing the maximum possible At is
counterproductive and gives very poor results. This is because the algorithm already fails to

fit the training period properly to a sum a exponentials. Best results seem to appear using a
At = 1/Wmax and then choosing T so that N=L, as suggested before. When doing this, the
algorithm can reliably forecast 27.5 seconds into the future for a wave elevation signal that
is band-limited to 1 rad/s, and 10.12 seconds if the signal is band-limited to 2 rad/s.

There is also a clear advantage regarding forecasting ability for lower frequency band

signals, even more pronounced than it was in the case of the AR algorithm. The possibility of

low-pass filtering a real wave record up to 1 rad/s is then preferable if the dynamics of

interest are also low frequency (rigid-body modes of the TLP, for example, as the surge
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velocity). However for structural loads this might be a bad policy if there are vibration
modes between 1 and 2 rad/s. Finally note that the results of this parameter study are
applicable to the use of the ESPRIT method to forecast ocean wave elevation; the use of the

algorithm to forecast other signals will require a similar study to optimize forecasting
performance for the specific signal.
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8. Conclusions

A successful implementation of advanced controls for wave energy extraction with a
floating wind turbine as wave energy extraction device was carried out using optimal
control methods (variations of LQR), and estimates of wave energy absorption capabilities
of this system were calculated. Wave energy extraction targets were estimated first using
frequency domain methods, and these were later on shown to be mostly realizable using the
new time-domain controllers. A two degree of freedom model (turbine rotation and
platform surge displacement) was used for the controller design, in conjunction with a
simplified aerodynamic model (based on actuator disk theory, with known values for power
and thrust coefficients).

The implementation of the controller required a number of interesting developments with
intrinsic value for controller design and time-domain simulation of floating wind turbines in
general. These include the state-space representation of the hydrodynamic memory effects,
which is computationally much more efficient than evaluating the convolution integral in
the Cummins equation, and can be extended to include all 6 degrees of freedom, providing
an efficient alternative for coupled wind-wave simulations of offshore turbines. Due to the
non-causal nature of the exciting force impulse response, there was an interest to develop
forecasting algorithms for the wave elevation signal, and as a result of this two forecasting
algorithms were developed. One of them is a simple autoregressive algorithm, with limited
forecasting ability but very simple in its execution. The second is an algorithm based on the
ESPRIT method, which has shown very good forecasting performance, especially with band-
limited signals. The latter can also be used in general for fitting functions to sums of

decaying exponentials, providing a very useful tool in several applications.

The wave energy extraction capability of the NREL S5MW turbine on the chosen TLP
platform using the proposed controllers has been found to range from 1.5% to 8% the rated
power during moderate to severe seastates, also depending on wind speed. This figure
could be increased by a factor of roughly 1.5 with buoy optimization. However, optimizing
the buoy to capture more wave energy will generally result in wave load increases, so a
total cost analysis of the consequences of this buoy optimization should be performed based
not only on the energy yield increase, but also the indirect structural costs of increased
wave loads overall.

Annual yield increase in a tentative test site at the Gulf of Maine was found to be low, at
+0.0125% the baseline annual energy yield, due to the sheltered location of the site.
Another site in the North Sea was evaluated as well and found to have a yield increase of
+0.0243% the baseline, due to having slightly higher wave statistics. Both locations have
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high correlation between high waves and high wind speeds, which severely limits the wave
energy extraction potential since the wind turbine is already operation at full power when
wind speeds are high, so the much higher wave energy extraction potential from the bigger
waves is wasted. It can be expected that locations in open Atlantic or Pacific waters will
benefit from swells and have higher annual wave energy extraction, but a high correlation
between high wind speeds and high waves seems to limit the potential of wave energy
extraction technology through floating wind turbines operating at above rated wind speeds.

The proposed optimal control techniques have been used so far to optimize wave energy
capture in the below-rated power region. However, the same techniques can be used with
minimal adaptations, enhanced by the inclusion the generator inverter control, to maximize
energy capture when a forecast of the wind speed is available (e.g. with LIDAR). They can
also be used for structural load mitigation in the above-rated power region, where the
technique can be expected to have very good results due to LQR methods being very
effective in system stabilization in general.
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Appendix I: Adaptation of NREL turbine to a new TLP

Adaptation of the NREL baseline 5-MW turbine to the LSPF code has been based in the
design proposed by GH [2]. The main parameters that have been kept are arm length and
tether tension, while several adaptations have been made due to the original GH design
having the arms under water and contributing to buoyancy.

=1 Turbine Rated Power SMW
Column Arm Length ' 32.5m
Arm Diameter ' 4.5m
Column Diameter ? ' 5m
__________________ Column Length ? 20m
Steel Wall Thickness (average) 50 mm
- e Diameter Column | TLP-WTG Total Mass * 1,338t
Diameter Army TLP Submerged Structure Mass . 7200 t
’ Tendon Mass 1t
Wall Thickness 1! ! SRS Tendon diameter 0.167m
Lenath 1 optimised
ot 2 assumed
Arm Tendons 3 excluding tendons
4 each

GH TLP floater characteristics [2]

Transition piece and arms adaptation

The original length of the arms proposed by GH [2] of 32.5 m is to be changed to a length of
17.5m. The reason for this is there is an interest in keeping a relatively high tether tension
to avoid excessive surge displacement under the mean wind thrust, which leads to
increased coupling between heave and surge and undermines the validity of the 1 DOF
model. The arms protrude from a central column of radius 2.5 m which is kept in the MIT
design, so the cylindrical length each arm is 15 m. The contribution to mass of the transition
from the central column to the arms themselves is small and will be ignored. The height of
the arms above sea level is set at 15 m, and is determined by the extreme wave amplitudes,
with the objective of avoiding any possibility of the arms themselves being hit by waves.

The diameter of the arm cylindrical section of 4.5 m will be maintained, but the steel wall
thickness will be reduced in order to account for the substantial mass optimization that
would eventually be achieved. A mass reduction factor of nearly 0.6 can be achieved by
substituting the cylindrical section by an IPN section of the same bending resistance.
Assuming that the Garrad-Hassan design was designed to resist bending loads at the arm
root, and taking into account the bending moment reduction coming from the position of
the arms above sea level AND further optimization of the arm (longitudinally diminishing
resistance instead of constant section), it seems reasonable that a total mass reduction in
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arm mass of at least 0.6 can be obtained in detail design. Therefore a conservative mass
reduction factor of 0.6 is introduced into the steel wall thickness of the arms, which goes
from 50 mm to 30 mm.

Floater adaptation

The GH floater takes its buoyancy from the combined displaced mass of the arms plus
central column. The MIT floater aims at approximately doubling the line tension (as a result
of the half-length arms). A balance of the buoyancy B provided by the GH design with the
total mass of the system of 1338 metric tons will lead to the original value of the tension for

B:pg-[207r(§j +3'307Z'(i2—5j }:18.377MN
T =

%(B—g-l338E3)=1784kN

this design.

This tension is one of the main inputs of LSPF (note that LSPF uses a double line for each
arm of the TLP, so the input is approximately T rounded up to 1800 kN), which will
calculate the dimensions of the buoy that provide the amount of buoyancy. The other
parameter is the draft of the buoy. LSPF iterates the radius until the tension target is
achieved. Two versions of the buoy are considered, one with 30 m draft and the other with
15 m draft but with the same total buoyancy.

Tower and turbine adaptation

The turbine and tower characteristics are taken directly from the NREL baseline model [1].
While the nacelle and rotor are kept exactly the same, the tower sections are only kept from
the height of the transition piece upwards, so the center of gravity of the tower + nacelle
assembly moves up about 6 meters and the total mass of the assembly goes down by about
150 tons, due to the lower sections of the tower being removed. Suitable inertia reduction
factors have been introduced over the original inertia matrix of the linearized FAST model
of the NREL turbine which feeds the LSPF model. Yaw inertia is considered unaffected and
is kept exactly from the NREL file, since it is mainly driven by blade inertia.
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Appendix II: Stochastic linearization of viscous damping

Due to the fact that the potential damping (as provided by WAMIT or analytical methods) is
very close to zero in the very low frequency range, where the TLP surge natural frequency is
located, it is important to use a realistic viscous damping model to calculate the system
dynamic response near that frequency. While exact values for viscous damping are usually
not available without model testing, reasonable values for viscous damping can be
calculated using standard methods. While using a constant viscous damping ratio is could
be a first approximation, this damping ratio is not realistic since it fails to account for the
non-linear nature of viscous damping. A possible way to address this is using a stochastic
linearization method [16]. The viscous force term in the Morison equations

Fu=5 PRLCy ¢S

can be linearized, for a given sea state described by a sea spectrum, taking into account that
the surge velocity can be considered a Gaussian process. Under this consideration, the

following linearization is possible:
" Q .
5|§|D\Faf--f
e

where o, is the standard deviation of surge velocity.

A linearized viscous damping coefficient therefore can be calculated as:

1 8

Since surge velocity itself is calculated by solving the equations of motion, which depend on
the amount of viscous damping in the system, it will be necessary to start from an assumed
damping, calculate the standard deviation of surge velocity, use this value to recalculate
viscous damping coefficient for a next loop, and iterating until convergence is achieved.

The selection of an appropriate drag coefficient Cp is not trivial, since it depends on flow
separation effects and Keulegan-Carpenter number [17]. Depending on the conditions, a
cylinder can have drag coefficients that range from 0.6 to 4. Usually model testing will be
necessary to obtain a reliable value. An assumption of C, = 1 seems reasonable for the
present study and so it has been introduced in the models.

68



Appendix III: Solution of the finite-horizon LQR problem

The solution of the finite-horizon LQR problem has been taken from the Yong and Zhou
book [7]. Consider rewriting the system in the form:

X(1y=A()X()+B()U(1)+ 1.(2)

X(s)=Y
where f. is the time varying, wave exciting “acceleration” (assumed to be known within the
optimization horizon T) and state matrices A and B are allowed, if necessary, to be time

variant.

With initial time t = 0 for the optimization problem, the cost functional takes the form:
| ¢7 1 7
J(S,Y;U)= EIO (XTQX +UTRU +2U7SX) dt + EX(T)' GX (T)

with Q, R as before and S = NT. The last term corresponding to a terminal cost, that in the
current problem will be zero (G=0).

It can then be shown that, for some P and ¢ to be calculated, the optimal control U will take
a state feedback form:

O(1)=-R"[(B"P(1)+S) X (t)+ B (1)]
P(t) and @(t) here are the solutions to the Riccati equations:

P(t)=P(t)BR'B P(1)-Q+S5"R"'S~P(1)(A-BR 'S)~(4-BR"'S) P(1)
P(T

0
Q

o(t)= [P(t)BR"BT ~(4- BRIS)T}(p(t) —P(t)b(r)
go(T) =0

Both these equations have a known fina/ value and thus need to be solved backwards in
time, and the second one needs the solution to the first in order to be evaluated. In general
terms, an ODE with known final state can be solved using normal methods with initial
conditions by transforming the problem in the following manner:
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& _ F(xt) with t=[to,T]

dr
I . t'=T-t _ . .
considering the change of variable it is possible to write
dt'=dt
dx dx
—=——=f(x,T-1'
at atr' f( )

Or equivalently

Lo f(uT-r) with  x('=0)=x(t=T)

Where the initial condition is the final condition of the original ODE, and now conventional
solution methods can be used.

This transformation can be extended in a straightforward manner to ODE systems.
Introducing it to the above systems yields the following ODE systems with known initial
conditions:

P(1')=~P(t"\BR'B'P(1)+Q~S"R'S+ P(1')( A~ BR'S)+(4-BR'S) P(t')
P(0)=G

o(t) = (A—BR"S)T—P(t)BR"BT}qo(t)-FP(t)b(t)

p(0)=0

In order to calculate the optimal control input U it is necessary to also compute the optimal
trajectory, which follows the ODE system:

X(r)=(4-BR"'S)X(t)+ BR'B'5(1) +b(1)

X(0)=x(0)

with Z)'(t) = —P(t))?(t) ~(p(t) which can be calculated once P and ¢ are known.
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