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Abstract

This thesis compares the performance improvement rates of 28 technological domains

with characteristics derived from the patents of the domains, seeking to objectively test theories of

how and why technologies change over time. Performance metrics for 28 technological domains

were tracked over time and showed exponential improvement. Each of the 28 domains increases

at a different exponential technological improvement rate (the annual percentage increase in

performance). These improvement rates vary substantially, including the ~36% annual

improvement of Moore's Law (doubling ever 2 years) and the ~3.4% yearly improvement in

electrochemical battery specific energy storage. A set of patents is selected for each domain and
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analyzed using patent based markers that are designed to test hypotheses of technological

change. We find that the best indicator of a high improvement rate for a technology is the

average number of citations that the patents in that domain receive within the first 3 years after

publication, with a Pearson correlation coefficient of 0.74. This, along with several of the other

tests support the hypothesis that domains whose patents are more highly cited patents are

published more recently on average are likely to improve more rapidly. These measures are

combined into a predictive model that can be used to accurately estimate the technological

improvement rates of a domain using only patent data. A measure of reliance on basic science,

the average ratio of non-patent literature citations to overall citations, did not show a correlation

with improvement rate. Additionally, our data does not show a correlation between the number

of patents issued and the improvement rate in a domain, however we show that patents can be

used as an effort variable when compared with the functional performance metrics of a

technology. By study of multiple effort variables, we find evidence to support time as the

fundamental variable for which technological performance should be measured against. This is

not in support of production-based theories such as Wright's Law. Ultimately the thesis provides

a falsifiable quantitative and qualitative method to test how and why different technologies

improve over time.
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Professor Christopher L. Magee (Chair and Supervisor)
Department of Mechanical Engineering
Engineering Systems Division

Professor A. John Hart
Department of Mechanical Engineering

Professor Steven D. Eppinger
Engineering Systems Division
Sloan School of Management
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Chapter 1: Introduction

As technologies continue to improve at an exponential rate, there becomes an ever-greater

need for understanding how technology has and will evolve (Koh and Magee, 2006). While it

may be nearly impossible to fully predict how technology will change, even modest

improvements in our ability to understand and potentially forecast technological change could

create considerable impact in a number of areas where reducing the uncertainty of future

technological capabilities is advantageous. In this chapter, we will discuss three areas that can

benefit from improved understanding of technological improvement. Then we will describe in

detail the problem that we are addressing in this research followed by the structure of the thesis.

1.1. Reducing Technological Uncertainty

Understanding how technology changes over time and what capabilities are likely to exist

in several years can influence how products are designed. As an example, Schaller (1997) points

out that once software designers became aware of Moore's law and the rapid exponential

improvement rate of computer processors, they began to push the limits of software programs at
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a similar pace, increasing the lines of code in software such as Microsoft Word from 27000 in its

initial release (in 1983) to 2.5 million lines in 1997.

Another area where a better understanding of technological growth could make a large

impact is in private investing. Fehrenbacher (2012) writes that 'One of the key misplaced

assumptions that [Silicon] Valley venture capitalists made in cleantech boom times is that the

rapid progress of Moore's Law could be created for cleantech with a little bit of VC funding and

Valley smarts.' In the end the technological domains associated with clean energy never

matched the high technological improvement rate of computer processors, resulting in high

profile failures of heavily funded companies (Worstall, 2012).

The rapid advancement of technology also affects decisions to be made in public policy.

Rycroft (2006) notes that there is a 'growing divergence between time cycles of government and

those of technological change... either [the government] lives with a shorter response time and

run the risk of ill-considered actions or else government become less relevant'. With a greater

understanding of how technologies change over time, the government will be better suited to

identify technologies with high potential and allocate resources appropriately to support the

development of future technologies. This knowledge could be particularly useful for funding

agencies such as the National Science Foundation (NSF), National Institute of Health (NIH),

Department of Energy (DOE), Department of Defense (DOD) and many other organizations

that are responsible for ensuring that the United States is technologically prepared for the future.

Agencies with similar goals exist around the world, such as the Campus for Research Excellence

and Creative Enterprise (CREATE) in Singapore, and the European Research Commission

(ERC) in Europe.
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1.2. Problem Statement

Much of the prior work to understand how technology changes over time has been

focused around case studies. Quantitative data is sometimes an important part of the case study

but usually the understanding or explanation is based upon narrative. The resulting qualitative

theories include the linear model of innovation, the theory of radical inventions, the theory of

disruptive innovations, life-cycle theory, S-curve theory, punctuated equilibrium and

combinatorial knowledge-based innovation. This thesis complements the prior work by creating

quantifiable hypotheses to test such theories of technological improvement. Specifically, 28

different technical domains such as solar photovoltaics (PV), computed tomography, combustion

engines, etc., are studied to determine their technological improvement rates (TIRs). Using the

TIRs of each domain as the dependent variable of interest, data from patents are used to derive

characteristics of each domain that are used to test hypotheses derived from the prior theories of

technological change.

This thesis does not aspire to provide an answer to all of the questions about how or why

technologies change. Rather, it is an attempt to define the technological improvement rates of a

fairly large set of important technological fields and to better understand why these fields
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improve at different rates. At a higher level, this research aims to provide an avenue for future

research into technological change that is based upon falsifiable tests.

1.3. Falsifiability

First, a quick note on the general tone of this thesis; an overarching theme of this thesis

will be the falsifiability of the prior theories of technological change. The methods and results

contained hereafter include contributions to their respective fields, and they all follow the

common goal of creating an objective and repeatable methodology for testing theories of how

technologies change over time. This theme of falsifiability is drawn largely from Popper (1962):

The way in which knowledge progresses, and especially our scientific knowledge, is by unjustified (and

unjustifiable) anticipations, by guesses, by tentative solutions to our problems, by conjectures. These conjectures are

controlled by criticism; that is, by attempted refutations, which include severely critical tests. They may suwvive

these tests; but they can never be positively justified: they can be established neither as certainly true nor even as

Probable' (in the sense of the probability calculus). Criticisms of our conjectures is of decisive importance: by bring

out our mistakes it makes us understand the dftiulties of the problem which we are trying to solve. This is how we

become acquainted with the problem, and able to propose more mature solutions. the very refutation of a theory -

that is, of any serious tentative solution to our problem - is always a step forward that takes us nearer to the truth.

And this how we can learnfrom our mistakes.

Those among our theories which turn out to be highly resistant to criticism, and which appear to us at a

certain moment of time to be better approximations to the truth than the other known theories may be described,
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together with the reports of their tests, as 'the science' of that time. Since none them can be positiveyjustited, it is

essentially their critical and progressive character - thefact that we can argue about their claim to solve our problems

better than their competitors - which constitutes the rationaliy of science. (Popper, 1962)

Many parts of this thesis are designed to be falsifiable - it is possible to test and then

logically assert that they are false. This characteristic is important in that it allows for future

testing and building upon the work done here yet requires more specificity in the details of the

methods and results of the research.

1.4. Thesis Structure

In Chapter 2 previous theories regarding technological development are discussed.

Section 2.1 explores the ideas from Wright, Moore, Ayres and Foster and related theories on how

technologies change over time and what effort variables they should be compared against (i.e.

Time, R&D, revenue). Section 2.2 introduces the works of Bush, Arrow, Dosi, Shumpeter,

Christensen, Abernathy and Utterback regarding theories on why technologies change over time.

Section 2.3 introduces patents as a proxy for inventions and prior studies from Trajtenberg, Jaffe

and Henderson using patents to test technological and economic theories are discussed.

In Chapter 3 the major components of the methodology for comparing technological

improvement rates with patent derived characteristics are documented. Section 3.1 discusses the

definition of a technological domain (TD) and introduces the 28 domains that are analyzed in

this thesis. Section 3.2 walks through the process of determining an appropriate functional

performance metric (FPM) and finding the technological improvement rate (TIR) for each of the

28 TDs. Section 3.3 is a case study of 4 manufacturing technological domains on how to define

appropriate FPMs and calculate TIRs. Section 3.4 introduces the classification Overlap Method
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(COM) for objectively and repeatably locating a set of patents that represents a TD. Section 3.5

derives the theoretical basis for each of the main 5 hypotheses that are tested in this thesis and

also the domain patent markers (DPMs) that are used to test each hypothesis. Section 3.6

provides a summary of one of the author's recent publications focused on two pairs of renewable

energy technologies, and demonstrates the process of comparing the DPMs and the TIRs.

Section 3.7 discusses the statistical comparison of the TIRs and the DPMs for each TD.

In Chapter 4 the results of the cross-domain TIR and DPM comparison are revealed.

Section 4.1 discussed the TIRs that were derived for each of the 28 TDs and the statistical filters

used to select the most complete and reliable TIR for each domain. Section 4.2 demonstrates the

broad applicability of the COM and shows the patent sets that were selected to represent each of

the 28 TDs. Section 4.3 walks through each of the 5 hypotheses and shows the results of the

correlation tests between the TIRs and FPMs for each of the 28 TDs. Section 4.4 demonstrates

using patents, revenue and R&D spending as effort variables for comparing with increasing

technological capability. Section 4.5 concludes the chapter with a short summary of the most

relevant results.

Chapter 5 discusses the interpretations of results of the thesis and their contributions.

Section 5.1 discusses how the objective and repeatable methodology created in the thesis can

contribute to further testing and understanding of theories of technological change. Section 5.2

discusses how the results of the comparison between the TIRs and DPMs contribute to theories

on technological change. Section 5.3 discusses the practical implications of the results, especially

how the prediction of TIRs using only patent data can be immediately impactful. Section 6
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concludes the thesis with a short summary, limitations of the study, and possibilities for future

work on this topic.

Due to the large breadth of the cross-domain technological improvement rate comparison

with patent derived characteristics, many of the specific details about each of the 28 domains can

be found in the appendices. Appendix A shows the technological improvement rates along with

statistical information for each of the domains. Appendix B shows how each of the patent sets for

the 28 domains was found. Appendix C shows every one of the domain patent markers tested

along with their correlation to the technological improvement rates.

1.4.1. Acronyms and Terms

The outline above contains a number of acronyms that will be used throughout the thesis.

They are summarized here for easy reference.

TD = Technological Domain: The set of artifacts that fulfill a specific generic function

utilizing a particular, recognizable body of knowledge.

FPM.= Functional Performance Metric: The metric that is used to evaluate the

performance of a specific technological domain, which includes both measures of value and

measures of cost to the consumer of a technology.
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DMP = Domain Metric Pair: Specific combination of a technological domain and

functional performance metric. Because each domain can be measured by several FPMs, their

may be several domain-metric pairs for each domain, the number of DMPs for each domain is

necessarily equal to the number of FPMs that can be used to measure performance in a domain.

TIC = Technological Improvement Curve: The trend/curve of improving performance

for a particular DMP.

TIR = Technological Improvement Rate: The exponential regression coefficient derived

from the TIC. This will act as the dependent variable for the large cross-domain experiment.

PRM= Point Removal Method: A method used to test the robustness of a TIR to

missing points.

COM = Classification Overlap Method: The method that is used in this thesis to select

relevant and complete sets of patents to represent a technological domain.

MPR = Mean Precision and Recall: A measure of how closely related a particular patent

class (US or International) is to a set of search terms. This is used in the COM.

DPM = Domain Patent Markers: These are the algorithms that are applied to the patent

sets for each domain in order to better understand the characteristics of the domain. These are

the independent variables in the large cross-domain experiment.
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Chapter 2: Prior Literature

In this chapter the theories of how and why technologies change over time will be explored.

Most of the work in this area has been published since the start of the 20h century, with many of

the nost significant theories originating many decades ago. The result is an ever-evolving

narrative of how technologies change over time, with several theories being refined and re-

worded over the course of the last century.

This section will first review theories on how technologies change over time and the ways in

which this change can be measured. Next, theories regarding why technologies change and

proposed explanations to the increases in technological performance over time will be explored.

The combination of these two kinds of explanations forms the basis of the hypotheses that are

tested in the thesis.

The final portion of the literature review will delve into more recent research on tools for

studying technological change. Many of these tools are based upon patents and are enabled by

the structured organization of the patent system and the data-analysis capabilities enabled by

computers.

2.1. How Technologies Change over Time
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In order to understand what factors may cause technologies to change over time, it is

important to have an understanding of how technologies change over time. This section will

provide a review of some of the most established methods of characterizing improvements in

technology. Within each of these methods, many domains have been considered and the

technological capability (e.g. cost of energy produced) has been graphed against an independent

variable such as time, cumulative production, production rate or research and development

(R&D) spending. Ultimately, while the effort variables used measuring the improvement of

technology have varied greatly, the results been shown to be nearly equal (Nagy et al, 2013).

Additionally, regardless of the effort variable, each of the methods shows a variation in rates of

improvement between technological domains, which is the primary focus of this thesis.

2.1.1. Moore's Law and time based technological improvement

One of the most famous examples of measuring technological progress came from Moore

(1965) in his seminal paper that described improvement in the manufacturing of integrated

circuits. Moore recognized a trend in the ability to manufacture a higher number of components

on a single manufacturing die, something that he observed to double every 18 months (revised in

1975 to every 2 years). This temporal relationship has roughly held true for the last 5 decades

(Moore, 2006) as shown in figure 1.
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Figure 1: The improvements in the number of components per

semiconductor die for integrated circuits, adapted from Moore (2006)

In his 2006 paper, Moore discusses the rationale and the limitations of his temporally

related exponential improvement function. Figure 2 shows a summary of the rationale of the

factors that have contributed to the improvement in number of transistors per die.
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0
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Figure 2: Factors that have contributed to Moore's Law (Moore, 2006)

Benson 26



While Moore recognizes that his law has been widely accepted and influential in the

industry, he also takes time to point out that he believes it is dangerous to extrapolate

exponentials. In a speech he gave in 1975, Moore pointed out that the size of the wafers was

growing exponentially as well, and that this size could be expected to continue to grow. The

error of this predication was later pointed out by a colleague, who stated that the wafer size

would have been 57 inches in the year 2000; the colleague jokingly produced a digitally

manipulated picture (Figure 3) to illustrate this. Moore uses this example as a cautionary tale to

those who intend on extrapolating past performance into future expectations.

Figure 3: Digitally manipulated photograph showing a 57 inch wafer

(Moore, 2006)

While Moore popularized the time-based exponential relationship with technological

improvement, there have been many others who have found similar relationships in other

industries (Martino, 1971 ;Nordhaus, 2009). Recently, work done by Koh and Magee (2006,
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2008) has shown similar time based exponential improvements for fields such as information

transmission, information storage and energy storage. The technological improvement rates

within these fields have varied drastically from doubling every 2 years (- 35% improvement rate)

to doubling every 17 years (~4% improvement rate). These improvement rates can be modeled

by equation 1, which relates the performance of a technology P to the technological

improvement rate, k, and time, t. The variable B represents a scaling factor with the same units

as P and relatively unimportant to our efforts which focus on k with dimensions of inverse time.

The units of P are specific to each measure of technological performance and will be discussed

further in section 3.2.

P = Beb (Equation 1)

The time-based relationship has been confirmed by a number of authors (Magee and

Devezas, 2011; Seebregts et al, 2000) to include tens of technical domains including information

technology (Koh and Magee, 2006), residential lighting (Nordhaus, 1996), solar

photovoltaics (Benson and Magee, 2012) and many others (Koh and Magee, 2008; Nagy et

al, 2013).

2.1.2. Wright's Law on cumulative production related technological

improvement

Another way to describe trends in the improvements of technology is to relate the amount

of production of a technology to its performance. This method is accredited to being introduced

by Wright (1936) in his paper 'Factors Affecting the Cost of Airplanes'. In his work, Wright
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noticed that when more planes were produced, the average cost per plane went down

considerably. He compared the logarithm of the cost per plane with the logarithm of the

number of planes produced. The resulting relationship has since been named "Wright's Law" as

was graphically represented by Wright and is shown in Figure 4.
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Figure 4: Variation of Airplane Cost with Quantity Produced, adapted from

Wright (1936). This figure provides a graphical representation of the reduction in

cost associated with increasing production on a log -log plot.

One of the major insights that Wright discovered was that 'the chief gain in reducing

production costs was in the use of better tools and fixtures rather than anything inherent in the

construction.' Wright goes on to explore the hypothetical question if it would be possible to

produce a plane for $700. In order to answer this, he takes the then current price of an airplane

of $18,000 when 25 are produced, and scales this to find that even when 1,000,000 planes are

produced, the price only drops to $2,090 per plane. This relationship is captured in equation 2
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where r is the unit cost of production, B is a scaling factor (often the cost of producing the first

unit), N is the cumulative production, and x is the learning index. This effort-based relationship

is explored further in section 4.4, where x is referred to as alpha.

Y = BNx (Equation 2)

This learning index is often converted into a learning rate r, which describes the reduction

in unit cost of a technology with the doubling of the production volume. The learning rate can

be calculated from the learning index by equation 3, which is adapted from Yelle (1979). A basic

way of understanding this relationship is that a doubling in production volume will result in a

unit cost that is r0/ times the current unit cost.

X log(r)
log(2) (Equation 3)

This learning rate, was expanded upon by Yelle (1979) who provides a comprehensive

review of the work done up to that date to understand the different aspects of how technological

improvements relate to cumulative production. He describes the different mathematical

relations that have been suggested to relate cumulative production and unit cost, including the

log-linear model (Wright's Law), the plateau model, the Stanford-B model, the Dejong Model,

and the S-Model, all of which are shown in figure 5, and described in more detail by Carlson

(1973; 1976). It is important to note that Wright's original formulation is in fact a power law and

nearly all of the figures in Yelle's paper are Log-Log as well, thus it is probably more appropriate

to refer to Wright's Law as the Log-Log model. Ultimately Yelle concedes that while there are

many adaptations of the original formulation of Wright's Law that may be slightly more accurate

Benson 30



in specific situations, the wide scope of use of the original log-log formulation and the common

theoretical underpinnings of the various models allow for the sole focus of his study to remain on

Wright's original law.
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Figure 5: The different types of curves suggested for the relation between

cumulative production and unit cost (Yelle, 1979)

While much of the work that is described by Yelle and Wright is focused on a single firm

or product, the concept has since been expanded greatly to broaden the applicability to more

domains and industrial scopes (Dutton and Thomas, 1984; Muth; 1986; Auerswald et al, 2000;

Nemet, 2006; McNerney et al, 2011).
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2.1.3. Other ways of measuring technological change

While Moore's Law and Wright's Law are two of the most prevalent methods of

describing technological progress, there have been a number of other attempts at describing how

technology improves (Nagy et al, 2013), one of which will be discussed in this section.

Many of these other methods are combinations or modifications of the first two.

Goddard (1982) describes his method for understanding technological progress in the

'Opportunity Curve' and he relates technical capability to the annual rate of production for a

particular technology. The reasoning behind the opportunity curve is that the 'growth in

demand creates the opportunities and provides the funds for increased mechanization and larger

batch facilities in process dominated manufacture' and that most progress is essentially driven by

increasing economies of scale. Equation 4 describes Goddard's relationship using Y as the unit

cost, B as a scaling factor, Nt as the yearly production rate, and s is the associated rate of

improvement between annual production rate and unit cost.

Y= BNt (Equation 4)

Goddard goes on to explain how his opportunity curve relates to. the other methods that

have been mentioned above. Figure 6 shows how the U.S. production of silicon integrated

circuits can be plotted in the several different manners described above.
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Figure 6: Comparison of methods used to measure the production and cost

of U.S. Integrated Circuits, adapted from Goddard (1982)

Graph [A] in figure 6 shows Goddard's relationship between yearly production rate and

the unit price of integrated circuits, which he uses as a measure of performance. Graph [B]

shows the production rate over time, [C] shows the same data within Wright's framework and

[D] shows the logarithm of performance vs the logarithm of time. While Goddard provided a

start at comparing these different methods of measuring technical progress, the next section will

describe the different pros and cons of each method and how they relate to each other.
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21.14. A comparison of the different methods of measuring

technological improvement change

Each of the methods discussed in this chapter presents different theoretical and practical

arguments for why technical progress should be presented in that manner. Out of these many

methods of charting technological progress, the ones presented by Moore (1965) and Wright

(1936) have shown to be the most robust (Nagy et al, 2013). In this section we describe the

debate about which of the two most prevalent methods of measuring technical change should be

used. The end of this section will discuss an important paper by Nagy et al (2013) who show

empirically (following earlier theoretical work by Sahal) that there are few differences between

Moore's Law and Wright's Law and that they can both be used effectively.

McDonald and Schrattenholzer (2001) criticize Moore's Law when they compare

Moore's Law to the aging of a fine vintage wine and state that instead the accumulation of

experience (or production) is what leads to technological cost reductions.

For most products and services, however, it is not the passage of time that leads to cost reductions, but the

accumulation of experience. Unlike afine wine, a technology design that is left on the sheff does not become better the

longer it sits unused. (McDonald and Schrattenholzer, 2001)

The opposing side of the debate has been described by Nordhaus (2008) in his paper 'The

Perils of the Learning Model for Modeling Endogenous Technological Change,' in which he

states that:
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Learning has become afavorite toolfor modeling technological change in many models of the energy sector

and ofglobal warming. It is convenient because learning-by-doing is one of thefew "theories" of technological

change that is easily included in models because of its simple specfication. It is a dangerous modeling technique,

however, because the learning rates are biased and because it therefore seriously underestimates the marginal cost of

output (Nordhaus, 2008)

Nordhaus argues that there is a fundamental identification problem with the production-

based models in that they cannot reliably separate production from exogenous (non-learning)

technological improvement.

While this debate has received a good amount of attention, a recent paper by Nagy et al

(2013) shows empirically that the theories may be more similar than most people think. In this

paper they describe that production of goods tends to increase exponentially, and therefore

'A combination of an exponential decrease in cost and an exponential increase in production would make

Moore's law and Wright's law indistinguishable.' (Nagy et al, 2013)

While the paper by Nagy et al (2013) is the most recent example of comparing the

methods of measuring technical change, Sahal (1979) was the first to mathematically relate

Moore's Law and Wright's law. Sahal (1979) describes the curves that relate technological

progress to a dependent variable (time, production, etc.) as 'progress functions' and describes the

exponent of the progress functions (what we refer to as 'R' above) as the critical variable. In the

study, Sahal then relates the progress functions of Moore and Wright to each other. This
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relationships is summarized by Nagy et al (2013) as w = m/g, where w is the power law growth

parameter in Wright's Law, M is the exponential growth parameter in Moore's Law and g is the

exponential growth parameter for cumulative production. The various technical improvement

curves can be directly converted between Wright's Law and Moore's Law by using the

relationship between cumulative production and time. It is for this reason that throughout the

rest of the paper, time will be used as the dependent variable when measuring technological

change except for in section 4.4, where several different effort variables will be compared using

the results of this thesis.

Beyond relating Moore's and Wright's frameworks, Sahal was one of the first to explicitly

question what causes the variation in the exponential growth parameters.

'It should be noted that the progressfunction has many variations infonm and parameters. Nevertheless,

the exponent of thefunction is common to certain cases...In particular, operations with similar ratios of assembly to

machine work turn out to have similar progressfunction exponentials.' (Saha4 1979)

Sahal posits that the ratio of human to machine work time could be an explanatory

variable for the improvement rates of technologies. While this particular theory is not explored

further in Sahal's study or this thesis, the question of finding indicators that can help predict TIRs

is at the core of this thesis.

The next chapter will explore further some of the theoretical explanations of

technological progress that can lend credibility to the long-term usefulness and applicability of

the improvement functions mentioned in this chapter.
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2 .2 . Why Technologies Change Over Time

Section 2.1 demonstrated several ways to track technological change and provided

evidence to show that technological domains exhibit exponential improvement over time.

Section 2.2 builds upon the idea of improvement rates and describes several theories as to why

technology may changes over time. In particular, this section explores theories that attempt to

explain the underlying mechanisms that drive technological improvement. Coming to a

complete understanding of all of the mechanisms that contribute to how technology improves

over time is likely to be futile, as the problem contains a countless number of social and technical

interactions. A goal of this research is to try to discover a selection of the strongest individual

contributing factors to technological improvement, while acknowledging that these factors are

certainly not exhaustive.

Many of the theories on Why technologies improve over time are qualitative in nature and

use data sources such as interviews, surveys, and observations in their case studies. In this thesis

the theoretical underpinnings from each of these theories is synthesized into a set of hypotheses

that are tested via patent based heuristics. In this way, the qualitative information that has been

gathered in the field can be complemented by quantitative data that can be used to improve

upon current theories and better inform future qualitative theories.

This process requires an understanding of the current literature on technological change

and the resulting theories. It seems to the author that the most logical way of progressing

through the extensive literature on technological change is chronologically, and thus this section
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will begin with Shumpeter's ideas on creative destruction and technological paradigms (1939)

and end with modem day theories on why technologies change over time. While the review in

this section will contain some of the most well known theories on technological change, these are

by no means the only sources about technological change. A number of the lesser-known

theories will be discussed in the final sub-section, but they will not be discussed in great depth for

the sake of focus and brevity.

2.2.1. Schumpeter and creative destruction

Schumpeter was one of the earliest contributors to the field of technological change, and

he made a clear delineation in the difference between the terms 'invention' and 'innovation.' He

defines innovations as 'changes in production functions which cannot be decomposed into

infinitesimal steps', and follows this with the example:

'Add as many mail-coaches asyou please,you will never get a railroad by so doing.' (Schumpeter,

1935)

'Inventions', on the other hand, are experiments that do not in themselves exert any

influence on business life at all' (Schumpeter, 1935). Building upon these seminal definitions,

Schumpeter introduced the idea of creative destruction, in which he posits that economic

progress is driven by firms providing goods and services who are then displaced by new firms

who create improved goods and services, who, in turn, are displaced by the next generation and
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so on. He denotes this cyclical process of innovation and obsolescence 'creative destruction'.

Caballero andJaffe (1993) provide an excellent quote from Schumpeter about this theory:

'Thefundamental impulse that sets and keeps the capitalist engine in motion comesfrom the new

consumers'goods, the new methods of production or transportation, the new markets, the new forms of industrial

organization that capitalist enterprises creates .... [examples] ... [these examples] illustrate the same process of

industrial mutation that incessantly revolutionizes the economic structurefrom within, incessantly destroying the old

one, incessantly creating a new one. This process of Creative Destruction is the essentialfact about capitalism ...

Ljoseph Schumpeter, 1942)'

The idea that innovation can drive the economy and technology forward has proven to

stand the test of time, as his work is still cited frequently by many of the other authors cited in this

section. Relating Schumpeter's work to the question of why technology changes over time, he

describes the idea of older technologies being replaced by more recently invented ones that rely

upon new ideas, and that this will happen again. Technology improved because new ideas and

technologies are discovered that are significantly better than the technologies that are being

replaced.

2.2.2. Vannevar Bush and the linear model

Much of this sub-section is derived from the excellent review of the linear model provided

by Balconi et al (2010). To say that the linear model has been impactful in the field of
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technological development would be a massive understatement. Freeman (1996) claimed that at

one point in time it was nearly impossible to read an article related to technological change or

related policies without discussing the linear model. While some debate the origins of the linear

model, many consider Vannevar Bush's (1945) paper as the first complete publishing of the linear

model. In this paper, Bush states that

'Advances in science when put to practical use mean more jobs, higher wages, shorter hours, more abundant

crops, more leisurefor recreation, for study, for learning how to live without the deadening drudgery which has been

the burden of the common manfor ages past... But to achieve these objectives ... theflow of new scientific knowledge

must be both continuous and substantial' (Bush, 1945)

The core ideas that were introduced in this paper helped forge the foundation of the NSF

that was created in a large part by Vannevar Bush. While Bush introduced the idea that basic

science paves the way for applied research and improvements in society, several others have

added to his ideas to create the backbone of what is now considered the linear model and is

shown in figure 7.
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Figure 7: Summary of Linear Model (Godin, 2006)

Godin (2006) describes how Bush modified his connection between basic and applied

research around 1960 to include the idea of development. Finally, economists from business

schools extended the model to non-R&D activities such as diffusion of innovations. In the end
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the model is often used as a starting point for what not to do in innovation research as it is often

oversimplified and overgeneralized, but it nonetheless remains a cornerstone of many

technological improvement theories today. The linear model is the main proponent of the idea

that technological change is caused in a large part by basic scientific research.

2.2.3. Solow - Labor and Capital Growth

Solow (1957) approaches the technical change question from an economist's point of view

and attempts to estimate the technical improvement of the US as a whole by analyzing the GDP

increases between 1909 and 1949:

What I want to describe is an elementary way of segregating variations in output per head due to technical

changefrom those due to changes in the availability of capital per head (Solow, 1957)

His model attempts to explain the growth in GDP q by the increases in capital, k, labor,

I, and in technical capability, A(t), as is shown in equation 5.

q = A(t) * f(k,I) (Equation 5)

Solow's measure of technical capability is a proportional and therefore unit-less index of

technical capability that is derived from the other components of equation 5, and is pegged at 1.0

in 1909 and rises to 1.81 in 149.
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The resulting time series of technical indices for the nation allowed Solow to distinguish

between GDP increases due to capital, labor and technical improvement. First, Solow

discovered that his technology index A(t) increased at approximately 1.5% per year over the

course of the 40-year period. He later refines this when he describes the increase being ~1%

between 1909 and 1929 and 2% between 1930 and 1949. This value of broad technological

progress indicates a relatively consistent exponential improvement rate of all of technology and

even hints at an increasing rate, which would show a hyper-exponential increase of the total

technological capabilities of the nation.

Over the course of the 40-year study, Solow shows that gross output per man-hour

doubled. He then calculates that approximately 87 .5 % of this increase is due to technical change

(better tools) and only 12. 5 % is due to increased use of capital (more tools). This finding is

striking and places even more importance on to why studying technological change is important,

as it may account for nearly 90% of the increase in human productivity.

Ultimately Solow showed that while increasing labor and larger capital investments play a

role in GDP growth, technical change is also a large contributor that should not be discounted.

This is especially important when considering the idea that improvements in output come from

economies of scale or from production increase alone. Solow is quick to note, however that

technical improvement does not come without labor working on improving technologies (R&D)

and capital investments to implement the new technologies (replacing old machines with new

ones).

2.2.4. Arrow and learning by doing
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Arrow (1962) introduced his idea of learning by doing as an attempt at helping to explain

the improvement of technology over time. He begins his argument by claiming that while trends

of technological improvement can be practical and useful, they are essentially ignoring causation

in support of correlation.

'From a quantitative, empirical point of view, we are left with time as an explanatory variable. Now trend

projections, however necessary they may be in practice, are basically a confession of ignorance, and, what is worse

from a practical viewpoin, are not policy variables.' (Arrow, 1962)

Arrow refers to the work of Wright (1936) as well as several other studies that show that

the product output of a technology (output per man-hour) can rise in the absence of specific

investment in new tools or practices through non-formal learning channels. One excellent

example is the case of the Horndal Iron works in Sweden, where they experienced productivity

improvements of approximately 2% per year over the span of 15 years without any specific

investments in R&D (Lundberg, 1961), although it is almost certain that they benefitted from the

advancements from other companies within and outside of the field during this time period. It is

cases such as these that lead Arrow to introduce his theory of Learning by doing.

Arrow's model can be summarized by the following oft-cited quotation from the paper.

'technical change in general can be ascribed to experience, that it is the very activiy of production which

gives rise to problemsfor whichfavorable responses are selected over time' (Arrow, 1962)
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Arrow generalizes the idea of knowledge and says that all technical improvement comes

from experience working with a technology, and uses the cumulative production of the capital

goods as the main index of experience. Although he credits learning and producing goods as the

driving factor in technological improvement, there is a statement in the limitations of the study

that mentions that although his model attributes learning mostly to the production of goods, that

it can also take place through research at universities and other institutions.

'It has been assumed here that learning takes place only as a by-product of ordinary production. Infact,

socie y has created institutions, education and research, whose purpose it is to enable learning to take place more

rapidly. A fuller model would take account of these as additional variables.' (Arrow, 1962)

Arrow's model has often been used as a theoretical backing to the production based

technological graphing methods such as Wright's Law, but the prior statement clearly indicates

that he leaves room for the effect of non-production based learning such as R&D in universities,

national labs and private companies. Arrow's theories indicate that technologies improve over

time through the accumulation of producing the technology and studying it in a specific R&D

setting.

2.2.5. Dosi and market-pull vs technology-push

While many previous attempts at understanding how technology changes over time are

looking for overarching theories to explain progress, Dosi (1982) describes the goal of his seminal

paper as much more modest and potentially realistic.
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'This paper does not aspire to provide a 'general theoy" of technical change. It simply attempts tofocus on

questions like "Why did certain technological developments emerge instead of others?" "Are there regularities in the

process ofgeneration of new technologies and in technical progress thereafter? Is there any regulariy m thefunctional

relationship between the vast number of economic, socia, institutional, scientic factors which are likely to influence

the innovative process?" ' (Dosi, 1982)

This is an important departure from prior works, as it began a trend of looking more

closely at specific determinants of technological change in more focused studies. Dosi recognized

that the factors that contribute to the progress of technology might be numerous, varied, and

interrelated.

The origin of the latter [technological progress] stemsfrom the interplay between scientitc advances,

economicfactors, institutional variables, and unsolved dfflculties on established technological paths. (Dosi, 1982)

Beyond this very important refraining of the problem, Dosi centered his research on one

of the most popular theories of what drives technological progress: 'Demand (or Market) Pull' vs

'Technology Push'. The 'demand-pull' side of this debate centers around the idea that

technology is only developed based upon what the market needs, and thus progress is driven by

the markets 'pulling' technology forward. On the contrary, the technology push arguments states

that as technology develops, new products are capable of being produced, and thus these new or

less expensive products fill a demand. Dosi took an intermediate stance in this discussion and

claimed that the process is more complex than one side or the other.
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'One-directional explanations of the innovative process, and in particular those assuming "the market" as

the prime mover, are inadequate to explain the emergence of new technological paradigms.' (Dos, 1982)

Dosi goes on to point out particular flaws in both the demand-pull and technology push

theories.

'We will ty to show that these latter interpretations [demand-pull] present a rather crude conception of

technical change, as an essentially reactive mechanism, based on a "black box" of readily available technological

possibilities. Moreover this conception contradicts substantial pieces of empirical evidence. On the other hand,

extremeforms of technology-push approaches, allowingfor a one-way causal determination (from science to

technology to the economy)fail to take into account the intuitive importance of economicfactors in shaping the

direction of technical change.

(Dosi, 1982)

This rebuttal of both sides of the market vs technology debate allowed the debate to

widen into more complex understandings of how technology improves over time. Dosi

contributes the idea that the demand for a technology combined with its technological potential

are key factors that determine the improvement of a particular technology.

2.2.6. Christensen's Theory of Disruptive Innovations

One of the more recent theories of how technologies improve over time is from Clay

Christensen and his theories on disruptive innovations. Christensen (1997) describes the

'Innovator's Dilemma' in which new inventions and innovations begin with capabilities that are

below that of the existing products along the main metric of choice but serve a niche market and
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prove to have a higher capability in another, less regarded capability. An example of this is the

ARM processor that is used in many smartphones. The ARM processor is generally regarded to

be not as fast as the traditional x86 processors manufactured by market leader Intel, but they are

more energy efficient. Prior to the introduction of smartphones, the energy efficiency of

computer processors was far less important than the overall speed of the chip. This changed

drastically when smartphones were introduced and more energy efficient processors were needed

for the pocket-sized devices to last all day.

Christensen provides other examples of how a technological domain can be replaced by

another that is improving more rapidly when measuring a different metric. His most famous

example is that of disk drives used in computer information storage.

'For example... shipments of 5.25-inch products in the 30-100 mb range in the total marketfirst

surpassed unit shipments of 14- and 8-inch drives in 1984, when areal densiy of the new architecture was still

nearly 40% below that of 8-inch products. In the next generation, 3.5-inch unit volume surpassed all earlier

architectures in the 30- 100 mb category in 1988 and in the 100-300 mb category in 1989, even though their

densities were still substantially inferior to those achieved in the prior architectures. This is because 5.25-inch

products werefirst used in desktop computing and 3.5-inch drives in portable computing, where the metrics of

performance were very different than the simple area densig measure that had been sufficient when evaluating larger

drives used with larger computers.' (Christensen, 1992b)

He states that the improvement rates of the 5.25" disk drives are higher than that of the

8- and 14-inch drives that were replaced. This cycle happened again when the 3.5" drives

displaced many of the 5.25" drives, this time due to the improved performance in a different
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functional performance metric (FPM) - most likely a measure of efficiency related to reduced

power consumption that is more important in mobile computing than in tradition desktops.

While Christensen provides many specific case studies about the improvement of

technologies, he also created several theories to back them up. Christensen's main hypothesis

concerning why technologies improve over time is that new technologies displace old

technologies by adopting technologies that improve more rapidly in new and different functional

performance metrics that were focused on previously.

Christensen also tends to rely heavily upon the idea of technological S-curves, and uses

them to graphically show how technologies improve. Figure 8 shows how a technology (in this

case "B") can seem inferior to another technology "A" when measuring it using one FPM "as

defined in Application A", but can seem superior when considering it on another FPM "as

defined in Application B".
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Figure 8: Christensen's model of technological disruption depicted using

competing S-Curves (adapted from Christensen, 1992b)
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Relating this figure to the example of hard-disks, Technology A could represent 5.25"

hard disks, 3.5" disks are technology B, with the desktop and mobile computing markets as

applications "A" and "B" respectively. The 'S-Curves' sub-section will further explore the use of

s-curves in the technological change literature.

2.2.6.1. Properties of S-Curves

Christensen's decision to use S-curves as the foundation for his theory of disruptive

innovation makes him one of many technological change researchers who subscribe to this nearly

ubiquitous theory of how technologies change over time. Sood and Tellis (2005) claim that

'belief in this [S-Curve] premise is so strong that it has become almost a law in the strategy

literature,' however they note that there has still not been 'any single, strong, and unified theory

for the S curve,' and that 'there is scattered empirical support for the premise and limited

theoretical support for various aspects of the S-shape curve.' For the sake of discussion, Sood and

Tellis (2005) created a rough summary of the S-Curve theories:

A central premise is that performance of a new technology starts below that of an existing

technology, crosses the performance of the older technology once, and ends at a higher plateau,

thus tracing a single S-shaped curve (see Figure 9).
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Figure 9): Demonstration of the basic theory of S-Curves, adapted from

(Sood and Teilis, 2005)

Sood and Tellis claim that there are 3 main stages that make up the logic of the S-Curve:

introduction stage, growth stage, and maturity stage. The introduction stage is slow moving for a

new technology due in part to the fact that it is not well known and thus does not have significant

attention of researchers or practitioners. The growth stage then emerges when a dominant

standard or architecture is decided upon and more significant resources are devoted to the

development of the technology (Utterback, 1974). Finally, the maturity phase is reached where

the technology levels off and the improvement rate of a technology is much slower than in the

growth stage. Many reasons for the plateauing of improvement rates have been hypothesized
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over the years. Foster (1986) claims that there is a natural limit for each technology and that

there can only be a certain amount of improvement to be had before the limit is reached. Sahal

(1981) cites scaling limits as the reason for this decline - citing that when technologies reach very

large or very small scales, they become very difficult to improve upon. Regardless of the specific

conjecture, the maturity stage is often regarded as the 'limit' of the technology, and occurs when

there becomes an engineering bottleneck that is either too difficult or too expensive to solve.

2.2.6.2. Empirical Rejection of Technological Limits

While the technological literature seems to be universally accepting the idea of S-curve

limits, there have been some notable detractors to this idea including Christensen.

'An explanation of why Fujitsu and CDC perceived limits to be at such different levels is

that nobody knows what the natural, physical performance limit is in complex engineered

products, such as disk drives and their components. Since engineers do not know what they may

discover or develop in the future, since the physical laws (and the relationships between laws)

governing performance are imperfectly understood, and since possibilities for circumventing

known physical limits cannot be well foreseen, the natural or physical limits cited by scholars of

technological maturity, such as Foster (1986) and Twiss (1979), may in practice be moving targets

rather than immovable barriers. (Christensen, 1992b)

It is evident in this quote by Christensen that he is not entirely certain in the assumption

of definite technological limits, but rather technological plateaus that simply take longer to

overcome than their other counterparts. One excellent example of an industry overcoming its
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'limits' was presented by Henderson (1993) in her review of the photolithography equipment

industry. In the paper, she states that 'Unexpected changes in user needs and in the capabilities

of component and complementary technologies permitted optical photolithography to

dramatically exceed its 'natural' limits.' Figure 10 shows how the realized performance of the

resolution of optical photolithography compared with the ever-changing estimates of predicted

limits, and especially illustrative is how the performance has exceeded the 'limits' of past

predictions.
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Figure 10: Photolithography performance compared with predicted limits -

adapted from (Henderson, 1995)

The prior examples bring into question the validity of the 'maturity' stage of the S-Curve

theory.
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Another area where the S-curve has been questioned is in the general scale of the

measurement of performance and what is the appropriate independent variable (horizontal axis).

As was mentioned in previous sections in this thesis, there are often discussions in technological

literature over the correct independent variable for the measurement of technological change.

The two main theories involve comparing improvements with time and effort respectively.

In Christensen's (1992A) thorough examination of the improvement rates of the

computer disk drives, he provides an excellent comparison between the improvement in areal

density of the hard-disks with time and with cumulative industry revenues as a proxy for

engineering effort, and is shown in Figure 11

F r :g

Frvsv iue (11:t Chitsnd s cogmprarion ofyte log of ausrya dens( of disk y

of engineering effort) - adapted from Christensen (1 992A)
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The conclusion that Christensen draws from this comparison is that 'a relatively constant

rate of improvement over time in areal density appears instead to be an increasing rate of

improvement per unit of engineering effort applied.' Which appears to be correct at first glance,

but the chart of performance vs time is charted on a Log-Linear graph and the performance vs

revenue is charted on a Log-Log graph. If the effort graph is re-drawn on log-linear scale, then

the comparison looks much different, with a sharp increase in performance when revenues are

low and a leveling out to a nearly constant rate of improvement with higher revenues in the

industry, showing a very similar look to that of the performance vs time graph. If the

performance vs effort graph is redrawn on a linear-linear scale, it looks very similar in shape to a

pure exponential that is represented by the performance vs time graph. The redrawn graphs are

shown in Figure 12.
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Figure 12: Plots of disk-drive areal density vs industry revenues for 3

different log scales - adapted from Christensen (1992A)

Ultimately the lack of specificity of the scales of the axes in performance curves (of which

S-Curves are a subset) can lead to significantly different conclusions for the same set of data.

One of the final reasons why the theory of S-curves has been questioned is the relatively

small amount of quantitative data to support it. Continuing on in Christensen's study of disk-
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drives, he publishes a set of'S-Curves' for the improvement of areal density vs time for 2 different

companies in the 1970s and 1980s as shown in Figure 13.
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Figure 13: Improvement curves for 2 companies of logarithm of disk drive

areal density vs time - adapted from Christensen (1992A)

In his figure, Christensen shows a set of points that are connected by curves that resemble

multiple s-curves linked together. Another way of looking at this data would be to fit it to an

exponential regression, and see if it displays the constant rate of improvement (constant slope on
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a log-linear graph) that many other technologies demonstrate. Figure 14 shows each of those

curves fitted to an exponential along with the combination of the two fitted to one exponential

combined.
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Figure 14: Christensen's S-curves fitted to exponential regressions -

adapted from Christensen (1992A)

When the apparent s-curve data is fitted to an exponential, the fits are very strong, with

an R2 of 0.95 for the Fujitsu data, 0.93 for the Control Data Corporation data and even a

relatively strong 0.83 for the combined data. These strong fits show that while it is possible to
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loosely connect the data points into s-curves, the long term relationship between these data points

is consistent with a constant exponential.

It is reasonable at this point to wonder why so the s-curve theory is very popular when the

evidence supporting it is not particularly strong. One possible answer to this is that the s-curve

theory is simply an adaption of a diffusion curve with limited resources. S-curves curves are

common in traditional diffusion literature and have been shown to be quite accurate for the

diffusion of many different technologies (Comin and Mestieri, 2013). The s-curve's theoretical

support in diffusion is stronger as well, as there is often a limit built into the definition, for

example the percentage of a population that owns a cell phone can never go over 100%, and

thus the maturity stage is much easier to accept in the diffusion literature than in that of

technological improvement.

2.2.7. Classifying Inventions

One of the main strategies used by many technological change researchers is to explain

why technologies change over time by categorizing the improvements in different ways.

Essentially, there exists a large cohort of researchers- who claim that technology improves in leaps

and bounds due to very important inventions. There have been many names for variations on

this theory, consisting of terms such as: revolutionary, breakthrough, discontinuous, process

innovation, radical, architectural innovations, dominant design, or disruptive. Many of these

terms are 'intrinsically problematic because they define an innovation in terms of its effects rather

than its attributes,'(Sood and Tellis, 2005).
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One example of attempting to categorize specific improvements in a technological field is

Tushman and Anderson's 1986 paper on technological discontinuities. They claim to

demonstrate that 'technology evolves through periods of incremental change punctuated by

technological breakthroughs,' and that 'those firms that initiate major technological changes grow

more rapidly than other firms.' The underlying message of this theory is that technological

change is faster and more impressive with a higher number of very important inventions.

In almost all cases of innovation categorization theory, there is both a lesser and a greater

classification. For example, incremental change is slow and bit-by-bit, while radical change can

happen all at once. Similar statements can be made for component vs architecture, and

incremental vs breakthrough. Each of these qualitative description attempts to define how to

categorize an innovation, of which Tushman and Anderson provide great examples:

Major technological innovations represent technical advance so significant that no

increase in scale, efficiency, or design can make older technologies competitive with the new

technology (Mensch, 1979; Sahal, 1981). Product discontinuities are reflected in the emergence

of new product classes (e.g., airlines, automobiles, plain-paper copiers), in product substitution

(e.g., transistors vs. vacuum tubes; diesel vs. steam locomotives), or in fundamental product

improvements (e.g., jets vs. turbojets; LSI vs. VSLI semiconductor technology) (Tushman and

Anderson, 1986)

While the definitions of the greater or lower classification are often detailed, they are also

almost always subjective and open to interpretation. This means that oftentimes the decision of
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whether an invention is upper or lower class can be different based upon the researcher, which

reduces the repeatability of the theories derived from these subjective determinations. For

example, in their review of breakthrough inventions, Tushman and Anderson described the

process of selecting their innovations as easy, but have very little detail regarding their selection

process beyond that. Technological discontinuities were relatively easy to identify because a few

innovations so markedly advanced the state of the art that they clearly stand out from less

dramatic improvements (Tushman and Anderson, 1986)

The result of their simple search is Table 1 below that lists the technological

discontinuities for three technological fields.

1S.31 e .e- meleleeltlu ae e

Locus of innovation
Existing

Year Event

1872 First production of
Portland cement in
the United States.

1896 Patent for process
bumn powdered
coalas fuel.

1909 Edison patents long
kin (150 ft.).

198 Dundee Cement
installs huge kiin,
far larger then
any previous.

1924 First airline.

1936 DC3 airplane.

1969 First let airplane
in commercial use.

1969 Wlebodyetsdabut.

1956 Burroughs E-101.

1966 Digital Equipment
Corp. POP4.

1971 Data General
Supernova SC.

Importance

Discovery of proper
raw materials and
importation of
kovedge opens
newindustry.
Permits economical
use of efficient
rotary kins.
Higheroutput
with less cost.
Useof process
control permits
operation of very
efficient kiins.

Mail contracts make
transport feasible.
First large and fast
enough to carry
passengers
economically.
Speedchenges
economics of flying.
Muchgreater
capacity and efficiency.

First computer
underS60.000.
First integrated-
circuit minicomputer.

memory much faster

Type of discontinuity New firms firms Probatility

Niche opening lof 10 1 of 10

Competence-destroying 4of 5

Competence-enhancing l of 6

Competence-enhancing l of 8

Niche opening Sof 10

Competence-enhancing 0 of 4

Competence-enhancing 0 of 4

Competence-enhancing 0 of 4

Niche opening 1 of 8

Competence-destroying 3of 6

Competence-enhancing 0 of 7

lof 5

5of 6

7 of 8

1 of 10

4 of 4

4 of 4

4of4

7 of 8

3of6

.333

.0010

.000"

.0050

.006e

.0050

.019*

7 of 7 .533

Table 1: List of Technological Discontinuities for three fields - adapted

from Tushman and Anderson (1986)
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When looking at the table, there are a wide variety of inventions that are classified as

breakthrough, including the first production of commercial cement and the introduction of a

longer (150 ft) kiln for producing cement. It is possible that while these inventions received a

significant amount of attention, that they were enabled by other inventions that may have proven

to be just as important, yet less well known. This causes issues because for every Watt steam

engine that gets the majority of the credit, there is a Wilkinson boring machine that enabled the

engine to have precise and concentric cylinders, for every transistor there is a point rectifier for a

radio that demonstrated the initial principle first. The purpose of these examples is to show that

while we may remember one specific invention as being the most important, it is often one of

many inventions that together were able to create a new and successful product or product class.

Table 2 shows another example of an attempt to classify significant innovations

throughout history, with a list of important innovations throughout the last 300 years as given by

Girifalco (1991).

Innovation Year
Seed Drill 1731

Watt Engine 1776
Rifle 1824

DC Motor 1872
Airplane 1903

Methyl Methacrylate 1935
Transistor 1947

Personal Computer 1974

Table 2: Example list of innovations throughout history (Girifalco, 1991)

From examining this list, it is clear that there are issues in deciding what constitutes an

important invention. These issues stem partially from ambiguity about the level of innovation to

be considered. For example, the transistor is shown in the list and is widely considered a

breakthrough technology, at the same time so is the integrated circuit (an important way of
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utilizing and manufacturing transistors) and so has the personal computer (also shown in the list

and which depends directly on integrated circuits). It is also reasonable to consider the entire field

of information technology (which relies on personal computers and many other technologies) the

most important technological breakthrough of the latter half of the 20t century.

The ambiguity is further compounded by the fact that the described technological

improvements can be collectively combined over varying time periods. In fact, this is often done

to simplify communication about developments within a field. For example, the initial invention

of the transistor was completed in a much shorter time than all of the ensuing and continuing

changes in transistors. The same is true relative to the initial invention of the integrated circuit

and the modern computer, which is only one aspect of the development of information

technology.

It is interesting to note that many design changes designated as significant improvements

or breakthroughs appear to identify individual points of improvement. Thus, the list in Table 1

would integrate well with the widely accepted conjecture that technological breakthroughs drive

the overall improvement of a technology. The importance of breakthroughs is supported by

Kaplan (1999), who states that

'substantial growth over the long horizon requires discontinuous innovation' (Kaplan, 1999).

A similar point of view is given by Ahuja and Lampert (2001) as they state that

breakthrough inventions

'serve as the basis of new technological trajectories and paradwgms and are an important part of the process

of creative destruction in which extant techniques and approaches are replaced by new technologies and products'.

The idea that a small set of technological changes account for a large portion of the

overall improvement has been echoed many times in regards to different aspects of technology.
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It is for these reasons that their exists a need for a more quantitative and repeatable

methodology of selecting important (or un-important) inventions and evaluating their impact on

a specific technological domain. The following section will discuss how patents can be used as a

proxy for inventions and can be objectively and repeatably categorized and analyzed.

2.3. Patents as a Proxy for Inventions

Throughout the rest of this thesis, patents will be a major source of data; this section will

present a broad spectrum of literature on the use of patents as a proxy for inventions.

The chapter will begin with a short review of general information on patenting, including

the rules for patenting, information included in patents, and the difference between the United

States and International patenting practices. Next, seminal literature in the patent analysis field

will be presented and discussed. Finally, limitations of the use of patents for technological analysis

will be presented.

2.3.1. Overview of Patenting in the U.S.

This section of the chapter will give an overview of the patenting system. It will begin

with a description of the US patenting process and the United States Patent and Trademark

Office (USPTO). The types of information found in patents will be discussed next, ranging from

the metadata to the structured text found within each document. Finally, the US and

International Patent systems will be compared.
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A United States patent gives its holder 'the right to exclude others from making, using,

offering for sale or selling' the invention. In theory, this protection allows for the distribution and

dissemination of the knowledge contained in the invention in exchange for a monopoly over the

right to produce that particular invention for a limited period of time up to 20 years. There are

several different types of patents that protect different types of inventions and have different uses

and range from utility patents to patents on plants. In this thesis we are most concerned about

utility patents, which are 'Issued for the invention of a new and useful process, machine,

manufacture, or composition of matter, or a new and useful improvement thereof' (USPTO.gov,

2014).

An invention must fulfill three requirements in order to be patented, it must be novel,

non-obvious, and useful. An invention is NOT considered novel if '(a) the invention was known

or used by others in this country, or patented or described in a printed publication in this or a

foreign country, before the invention thereof by the applicant for patent, or (b) the invention was

patented or described in a printed publication in this or a foreign country or in public use or on

sale in this country more than one year prior to the application for patent in the United States.

.' (USPTO.gov, 2014). Once the invention is considered novel, the differences between the

invention and any current knowledge must be considered non-obvious by a person 'having

ordinary skill in the area of technology related to the invention' (USPTO.gov, 2014). An

example of an obvious invention is the substitution of one color for another or a change in size of

a previous invention, neither of which is patentable. The USPTO refers to the term useful as

meaning 'the condition that the subject matter has a useful purpose and also includes
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operativeness, that is, a machine which will not operate to perform the intended purpose would

not be called useful, and therefore would not be granted a patent' (USPTO.gov, 2014).

Once granted, a patent typically grants the inventor 20 years of monopoly over that

particular invention. Some patents may not last that long, as the USPTO requires maintenance

fees at shorter intervals along the way partly to ensure that inventions are being made use of

while the monopoly is in effect. Additionally, some cases allow for the extension of a patent's

monopoly for longer than 20 years (USPTO.gov, 2014).

2.3.2. Information contained in patents

Filing a patent can be an arduous process, as a considerable amount of information is

included in the application and the final granted patent. This section will discuss some of the

information that is contained within a patent. In order to do so, we will walk through reading an

example patent.

Figure 15 shows the front page of a US Utility patent. This page typically contains most

of the metadata that is associated with a patent. The patent number is listed in the upper right

hand corner and is denoted in this patent by the reference [11] (as marked on Figure 15). The

patents numbers (PN) are issued in the order that they are granted, therefore the first patent

issued was PN 0000001, and this patent, which was granted in 1980, is PN 4234352, meaning

that there were over 4 million patents issued between the founding of the USPTO and

November 18t, 1980, which is the date that the patent was issued and is denoted in the diagram

by reference point [45]. The title of the patent is reference [54], and the inventor and assignee

are self-evident.
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The next two fields [51] and [52] are the patent classification codes. These codes are

determined by the patent examiners and are a rather complicated duopoly of hierarchies that

will be explained in greater detail in Section 3.4.5when the patent searching methodology is

discussed. The most important information about the patent classifications is that they are meant

to represent particular technical domains (ex: 136 - Batteries: photoelectric and thermoelectric).

United States patent examiners assign classification codes within both the US patent

classification and the international patent classification system for each US patent issued. There

are some differences between the two classification systems as is described by Gruber et al (2013).

'Technological classfications employing the IPC s.ystem are _ypicaly based on the information contained in

the description of the technological invention as well as the examples, drawings, and claims provided in the

application document. This is a key diference between the IPC system and the U.S. Patent Office Classification

(USPOC). Whereas the USPOC classifies patents according to the claims stated within the application document

(i.e., the scope ofprotection), the IPC system considers the complete technological information contained in the

application document, and thus classifies patents with respect to the technologies associated with the invention

(OECD 1994).' (Gruber et a4 2013)

Benson 65



United States PateSt 1a
swn

('Ii mss
(453 Now., tIM

(543 THO 1OTO0VL.TAC c1V-TU

(75 Ias m i N. iwiernt , L49 Abe

(733 Aitrn , 1k etM

1211 Appl. No .- ,i

P i4 "" i. A~ on
.i la . ........................................ Mn L 3M M6

(523 U.S C ..................... ........... M OM 136
IMWU

154 "a FIu d ......... I39RT. U $1. 0 CC

154 Simm a
U.S. PATINT DOCUMENTS

3,AI.An 7A$6e7 .r .... .-..... I"
3.Me.90o 12AWN Wmak ....... .- /A

3.I9.50 3/1Ws vum ........- 13W

OTM EPJUCATCM
. D. Wedok, "Tbwm"-?howM-Vdsio largy Cow

veO." AWA May %, W *&-".
C. W. K3L * aL. "A p4-N Tb oqmpb Do,
ode." I55 Tkma Zkn Dn*@ vol. ED-M4 pp

57-463 (m).
GemedW Maos Corp, "Study ofa - 'I'm A.

mWic Ce RWi R"0,War No, DA 3M-3-
9-AWCM %Pak 19"
. J. L a d. "MmuphokmI ' Clk"
ft. npo% c d DAAD 07-72-C-4=1

heAkw y masns-AN.. Weisrnbc
Ammo Ao, ,,Jm4qmk.r sM b.A Ton

I,, AINACT
Dhmd b a - min Wonve r wbhh

banes a POWs110f am rsdbdm 1 -ewuIt per-
sAnd a s o peun h g a ruer whhh

am adim A phoovu6 S bdp Ity a
h smite sesie sheuamMas smadr aid

-asse hm imdalile he sB gi hhdes -s
landmalow wee ks havkg a Op

m s r mw uww *m md a bom intes
MW a pI N-y of i N mi P oondmedvity

sagenmd in m. A haibmndwr IsW over-
dwses boss or- d and emdvely I - ir m ,

mqoetn am dvIy type md provid a mnfo-
kw - t o wpboo thrbagh the ukb.

17 Chm, so m FW 0

RADIATM

20

22
16

26

32
28 3

36 34

42

Figure 15: Front Page of US Utility Patent showing UPC [51], IPC {52],

citations [56], Non-Patent Literature Citations [OTHER PUBLICATIONS]
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It is important to note that each patent can have more than one classification in each

system. In the example in Figure 15, the patent has one international classification code (HOlL

31/06) and three US classifications (136/253, 136/256, 136/255). The information stored in

these codes will prove to be an important point throughout this thesis, and thus more attention

will be given to the topic in Chapter 3.4.

The field of search [58] shows the fields in which the patent examiner and the inventor

searched to find prior art and/or references for the patent. The references that the patent makes

to other patents are listed below and also form a pivotal source of information for this thesis. In

addition to references to other patent documents, there is a list of'Other Publications' that are

references to non-patent literature, which in many cases are academic journal articles. The

names of the patent examiners are followed by the abstract of the patent and then the list of

figures.

Like the metadata, the text of each patent is structured and can be searched easily. The

structure of the example patent is as follows: Abstract, Background of the Invention, Summary of

the Invention, Brief Description of the Drawings, Description of the Preferred Embodiment,

Claims. The background of the invention contains information on prior art and the problem

that the invention is solving. The next three sections give a brief overview of what is novel about

the invention and discloses some of the details. The most important legal part of the patent is the

claims section, because the claims are what ultimately decide the breadth and the validity of the

patent if it is challenged or discussed in court.
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In addition to the information contained explicitly within the patent, there is also a

significant amount of information that can be extracted from the organization of the patent

system. In particular, patent citations are of great interest for this research. As is shown in

Figure 16 each patent can cite other patents (backward citations) and can be cited by other

patents (forward citations).

Backward Citations Forward Citations

cited by patent i citing patent i

cited by patent i patent citing patent d

cited by patent citing patent 1

Figure 16: Forward and Backward patent citations for patent i - adapted

from Nemet andJohnson (2012)

The citation network of patents allows for the defining of the relationship between

different patents and is used extensively throughout this research.

2.3.3. Use of patents in technological research

One of the sources of data that has been widely used for understanding

technological change in recent years is patent data. Patents are an attractive choice for analyzing

technological change because they are: generalizable, objective, quantitative and qualitative.

Benson 68



Patents include many technical fields over a long period of time, and thus allow for easier

generalization of the research. There are specific criteria for an invention to be patented, which

creates an objective standard as to what counts as an invention. Each patent is well tracked and

includes a wealth of meta-data, and thus allows for quantitative analysis. Additionally, each

patent includes a significant amount of qualitative data to support and complement the

quantitative analysis.

Campbell (1983) states that the patent database approximately records most of the

advances in technology, which enables researchers to be confident in the completeness of their

analysis. The use of patent data for economic and scientific analysis began in 1966 (Trajtenberg,

1990) and the growing capabilities of computers and data analytics tools have created a

significant increase in the ability to search the patent data and extract useful information and

insights in recent years (Joho et al, 2010). The amount of information that is easily accessible

through the patent database and a web browser is orders of magnitude higher than what was

available just 20 years ago (Michel and Bettels, 2001).

In addition to accessibility, there are other significant reasons why the patent database

provides an excellent data source for analyzing technological change over time (Hall andJaffe,

2001). Overall, patents are a set of data that contains the raw information created by the

inventors of millions of patents over hundreds of years, and additionally the underlying

information present in the organization of this massive data set that has been created by

thousands of expert patent examiners. The combination of the data and organization potentially

comprise the 'most valuable data in the world' (Atkinson, 2008). More effective use of this

powerful patent information for understanding how technology grows over time is enabled if one

can develop a robust, repeatable method for finding a relevant and complete set of patents and

developing appropriate analytical tools to evaluate the sets of patents. The following sub-sections
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will explore prior attempts to search and classify patents, as well as some of the ways that patents

have been used by researchers to develop and evaluate theories of technological change as was

called for by well-known technological change researcher Manuel Trajtenberg.

'Once their meaning has been well established, the use of patent data may offer additional

advantages in itself and over alternative data sources. First, patent data can be easily obtained all

the way to the very beginning of a product class, whereas the gathering of conventional industry

data usually starts only when a sector is well established. Thus, patent counts and citations may

play an important role in studying the very emergence of new products, which seems to be the

period when most of the important innovations occur. Second, patent data are richer, finer, and

have a wider coverage than say, R&D expenditures, and are practically continuous in time.'

(Trajtenberg, 1990)

2.3.3.1. Patent Searching

The most basic ways of searching for patents are the keyword search and the classification

search. The keyword search uses search terms and Boolean operators (AND, OR, NOT, NEAR)

to construct queries to find the most relevant patents (Larkey, 1999). The classification search

method requires that the patents already be classified (such as in the US or International Patent

classification systems), and that the patent(s) in question can be pinpointed to just one or more

patent classes (Baillie, 2002). Beyond the two most basic methods for retrieving sets from the

patent database, there have been an increasing number of approaches involving complex

information retrieval techniques and methods (D'Hondt, 2009). Table 3 shows a list of different
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approaches that have been used by patent researchers in recent years, which altogether makeup

a patent searching 'toolbox'.

Patent Searching Technique Reference
Boolean Baillie 2002

US Patent Classification (UPC) Baillie 2002
International Patent Classification (IPC) Takaki et al, 2004

Query Expansion Wang, 2011
Dividing into different Time Periods Wang, 2011

Probabilistic Retrieval Models Fujita, 2004
Citation Linking Fujii, 2007; Lopez and Romary, 2010

Unigram and bigram frequency analysis Magdy andJones, 2010
Knowledge representations of data Graf et al, 2010

Using Sample patent to generate keywords Xue and Croft, 2009
Semantic Analysis Gerken and Moehrle, 2012

Table 3: Patent searching techniques modified from Madhabi et al (2011)

The techniques in Table 3 are a set of methods that can be combined in different ways to

locate a specific set of patents, as demonstrated by Wang (2011). The methodology described

and tested in this paper is a novel combination of the two simplest approaches in this listing.

While there have been many advances in patent searching techniques, there has been

very little improvement in the art of broad searches such as ones that would be performed by

academics, economists, or those looking for a general overview of a technological field. Atkinson

(2008) discusses how little the methods for searching the patent database have changed in recent

times, stating that

'The Basic Way to search (mostly Boolean in logic structure, even if natural language has been used as a

nexus) has changed little since ... 25years ago)... We havefar more databases available, more beautiful and

comprehensive results display, but getting those hits still relies on set theoy and exclusion.'
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An important case in the study of technological development is the work done by

Trajtenberg (1987) in his analysis of computed tomography (CT) patents. Trajtenberg describes

the use case of his set of 456 CT patents and importantly establishes that higher cited patents

have higher value. To establish his patent set, he used his extensive case study of the CT industry

(companies, installations in hospitals, inventors, etc.) to supplement a word search to find patents.

He also read all the abstracts in his patent set to exclude inappropriate patents. Trajtenberg

describes his method as one of trial and error in which he uses a variety of different aspects of the

patent including the classification codes, assignees and regular Boolean search:

'The searchfor patents in a particular productfield or industy can be done in a variey of ways: using key

words pertaining to the product in question that may appear in the title and/or in the abstract, identiying a small

set of relevant patent classification codes, locating assignees (ypicalylflrms) that are known to operate in thefield,

etc. Needless to say, there isn't a well-defined method that would deliver with certainty all the patents in a given

field, and only those.' (Emphasis his) (Trajtenberg, 1987)

While Trajtenberg's method resulted in a patent set that is certainly more appropriate for

his purposes than any others yet demonstrated, it is not clear that it can be reproduced in other

technological domains and in fact the approach has not yet been applied anywhere else. It

requires extensive knowledge of terminology in the field as well as information about relevant

firms and he even detailed every installation of CT during his search, which was limited to 1971

to 1986. Our aim is to create a repeatable and simpler to use method in order that a user of the

HKC method can quickly and easily compare patent sets across many technical fields of interest

over a longer period of time than Trajtenberg considered. We do not anticipate any such simple
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method to reproduce what Trajtenberg retrieved, as much context he used is lost; however, a

supplemental procedure should have value nonetheless.

There is a clear need for developing a supplemental approach as was pointed to by

Atkinson (2008) when she discussed the "need for growth away from reliance on words and

language and to draw in tools having defined quantitative values such as patent classes." The

result of such an effort would then allow for an objective, repeatable methodology for selecting a

set of patents that can then be analyzed to explore theories of technological change. The next

sub-section will review several ways that patents have been analyzed for this purpose.

2.3.3.2. Patent Analysis

Analyzing patents is essentially a 'Big Data' problem that asks how can meaningful

information be extracted from exceedingly large amounts of data. This is exactly what many

researchers have been attempting to do when they develop patent based metrics. In one of

Manuel Trajtenberg's (1990) early papers, discusses some of the more basic patent measures,

starting with simple patent count (SPC):

The body of evidence that has accumulated since Schmookler (1966) indicatesfairly clearly that SPC are

closely associated with the input side of the innovative process, primarily with contemporaneous R&D expenditures

in the cross-sectional dimension (Griliches, 1984). (Trajtenberg, 1990)

Trajtenberg adds evidence from his own work that the simple patent count in a particular

technological field is a good proxy for the input variables of technological change (i.e. research
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effort or R&D). However, simple patent counts have proven to be less successful when

attempting to measure the outputs of innovative effort:

On the other hand, the few attempts to relate those counts to value indicators (e.g., the

market value of innovating firms) have been largely unsuccessful. (See, for example, Griliches et

al., 1988) ... those findings are hardly surprising, considering that patents vary enormously in

their technological and economic significance. Thus, the mere counting of patents at any level of

aggregation cannot possibly render good value indicators: simple patent counts assign a value of

one to all patents by construction, whereas their true values exhibit a very large variance.

(Trajtenberg, 1990)

While using simple patent counts as a measure for innovative outputs did not prove to be

successful, Trajtenberg was able to discover that citation-weighted patent counts did correlate

significantly with the value of an invention.

Thus... citations are more informative of the value of innovations per se, rather than of

the size of the market for the products embedding those innovations...The findings ... suggest that

patent citations may be indicative of the value of innovations and, if so, that they may hold the

key to unlock the wealth of information contained in patent data. (Trajtenberg, 1990)

This relatively simple idea that the number of citations that a patent receives is indicative

of the value of the invention is another one of the underlying theories that form the basis of the

research in this thesis. Trajtenberg mentions that part of the support for the patent citation
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relation to value can be found in literature from the Office of Technology Assessment and

Forecast, which is a part of the United States Patent and trademark Office.

During the examination process, the examiner searches the pertinent portion of the

"classified" patent file. His purpose is to identify any prior disclosures of technology... which

might anticipate the claimed invention and preclude the issuance of a patent; which might be

similar to the claimed invention and limit the scope of patent protection ... ; or which, generally,

reveal the state of the technology to which the invention is directed. If such documents are found

they are made known to the inventor and are "cited" in any patent which matures from the

application ... Thus, the number of times a patent document is cited may be a measure of its

technological significance. (Office of Technology Assessment and Forecast, 1976, p. 167)

Trajtenberg continues to add practical theoretical support behind his argument:

Moreover, there is a legal dimension to patent citations, since they represent a limitation

on the scope of the property rights established by a patent's claims, which carry weight in court.

Equally important, the process of arriving at the final list of references, which involves the

applicant and his attorney as well as the examiner, apparently does generate the right incentives

to have all relevant patents cited, and only those. (See Campbell and Nieves (1979).) The

presumption that citation counts are potentially informative of something like the technological

importance of patents is thus well grounded.

While the use of citations to define the importance of a particular invention is one of the

most fundamental theories of this analysis, there are been many other metrics that extract
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information from the patent data. One particular example that will be used in this research is a

metric that links patent data to the scientific basis of the invention as shown in Equation 6.

NPC1T ES.
SCIENCE, = NPTE (Equation 6)

NPCMTES, + NCMTEDj

The metric finds SCIENCEi, which is a measure of the reliance on basic science for a

patent, and is defined as the number of citations to non-patent literature (NPCITESi) to the total

number of non-patent and patent citations (NCITEDi). The non-patent citations are almost

always scientific journal articles, working papers or conference proceedings, thus represent basic

scientific knowledge as opposed to the technical knowledge embodied in a patent. This measure

is later supported by the fact that 'university patents do rely relatively more on non-patent (i.e.

scientific) sources than corporate patents,' (Trajtenberg et al, 1997)

An example of the many different patent-based metrics that have been created in the past

is found in the following list that includes the names of metrics for one study performed by Hall

et al (2001).

Original Variables:

1. Patent number

2. Grantyear

3. Grant date

4. Applicationyear (starting in 1967)
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5. Country offirst inventor

6. State offirst inventor (f U. S.)

7. Assignee identifer, if the patent was assigned (starting in 1969)

8. Assignee _Ope (i.e., individual, corporate, or government~foreign or domestic)

9. Main US. patent class

10. Number of claims (starting in 1975)

Constructed variables:

1. Technological category

2. Technological sub-category

3. Number of citations made

4. Number of citations received

5. Percent of citations made by this patent to patents granted since 1967

6. Measure of 'generaliv"

7. Measure of "originali"

8. Meanforward citation lag

9. Mean backwards citations lag

10. Percentage of seff-citations made -upper and lower bounds

(Hall et a4 2001)

There are many other types of patent metrics that have been developed over the years,

many of which are discussed in greater depth in Chapter 3 of this thesis.

2.3.3.3. Limitations of Patents
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While there are many reasons why patents are an attractive data source, they have

limitations that should be considered when being used. In their large patent-based study,

Trajtenberg et al (1997) provided two limitations of patents:

These data have, however, two important limitations: first, the range of patentable

innovations constitutes just a sub-set of all research outcomes and second, patenting is a strategic

decision and hence not all patentable innovations are actually patented. (Trajtenberg et al, 1997)

They mention that not all inventions can be patented by the definition of patents:

Maxwell's equations could not be patented since they do not constitute a device (ideas

cannot be patented); on the other hand, a marginally better mousetrap is not patentable either,

because the innovation has to be non-trivial. Thus, our measures would not capture purely

scientific advances devoid of immediate applicability, as well as run-of-the-mill technological

improvements that are too trite to pass for discrete, codifiable innovations. (Trajtenberg et al,

1997)

And that sometimes, it does not make economic sense to patent all inventions, even if

they fall under the patentability criteria:

The second limitation is rooted in the fact that it may be optimal for inventors not to

apply for patents even though their innovations would satisfy the criteria for patentability. For

example, until 1980 universities could not collect royalties for the use of patents derived from

federally funded research. This limitation greatly reduced the incentive to patent results from
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such research, which constitutes about 9 0 % of all university research. Firms, on the other hand,

may elect not to patent and rely instead on secrecy to protect their property rights (there is a

large variance across industries in the reliance on patents versus secrecy: see Levin et al, 1987).

Thus, patentability requirements and incentives to refrain from patenting limit the scope of

measures built on patent data. (Trajtenberg et al, 1997)

Beyond some of the basic limits of patents due to patentability criteria, there are other

factors that should be considered, such as ones having to do with the temporal nature of patents.

For some metrics, truncation can be an issue, as more recent patents will not have had enough

time to be patented, and can possibly be labeled incorrectly as unimportant. This problem was

documented by Hall et al (2001):

On the other hand one has to be mindful in that case of the truncation problem: as the

time series move closer to the last date in the data set, patent data timed according to the

application/publication date will increasingly suffer from missing observations consisting of

patents filed in recent years that have not yet been granted. (Hall et al, 2001)

Another issue that can cause issues in some of the metrics is the ever-increasing number

of patents. This issue could impact metrics that depend on the number of patents at a certain

time and thus can be corrected by normalizing for different time periods (usually decades or

years).

Ultimately, Trajtenberg et al decided that the limitations we outweighed by the

advantages in the use of patents for technological analysis.
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It is widely believed that these limitations are not too severe, but that remains an open

empirical issue. (Trajtenberg et al, 1997)

The authors of this research take the same position and believe that the overall benefits of

using patents as proxies for inventions (generalizability, objectivity, quantitative and qualitative

nature) outweigh the limitations of patents as a data source.

Benson 80



Chapter 3: Methodology

The main focus of this research can be summarized into 4 overarching goals.

1. To develop reliable technological improvement curves and the related exponential

improvement rates of many different technological domains

2. Select sets of patents that represent those technological domains for which there are

reliable technological improvement rates that can then be analyzed to better understand the

characteristics of the domains

3. Develop a methodology to unify the quantitative technological improvement trends and

the patent based characteristics of the domains

4. Analyze the results of the comparison between the quantitative technological

improvement trend and the patent based characteristics to improve our understanding of

technological change and to increase our technological prediction capabilities
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In this section, through the process of explaining the methodology for accomplishing goal #'s

1, 2 and 4, the main components of goal 3 will be introduced and detailed.

The methodology section will begin with a definition of a technological domain and how the

28 specific domains of interest were selected. This will be followed by the introduction of

functional performance metrics (FPMs) and will include a review of the appropriate independent

variables (horizontal axis) for measuring technological improvement. An in-depth examination

of manufacturing progress will follow in which new and complex FPMs are defined for

manufacturing technologies that have not been studied this way before.

The 2nd half of the methodology section will first describe the classification overlap method

(COM) that is used to select a set of patents in a repeatable and objective manner. The COM

will then be used to select patent sets for each of the 28 domains of interest. The next section will

detail all of the domain specific markers (DPMs) that were extracted from the patent data. While

lengthy, this section provides a novel set of methods that allows unification of quantitative

technological trends and patents- arguably the two most important objective data types for

technological change. A flow chart of the entire methodology is shown in figure 17. Finally, a

short case study comparing the TIRs and DPMs of renewable energy domains will provide

context for the large 28 domain experiment.
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Select Domain and Define Functional
Requirement and Scientific Phenomena

Determine Functional
Performance Metrics (FPMs)

Gather FPM data points

Compare FPM data points with
time or effort variable to find TIR

Use COM to select set of patents
that represent the domain

Read patents to ensure relevancy
of selected patent set

Perform patent analysis to find the
domain-patent markers (DPMs)

Compare DPMs with TIRs for each
domain to find correlations

Figure 17: A flow chart of the sequential steps in the methodology for the cross-

domain comparison of Technological Improvement Rates and Domain Patent

Markers

3.1. Domains

One of the least repeatable and generalizable aspects of technological change research is

the selection of the unit of analysis. Many possible levels of the units of analysis are possible for

understanding how technologies change over time and are shown on a continuum in Figure 18,

There are some studies that have examined specific inventions (or unspecified sets of inventions)

at specific times, as was demonstrated by Tushman and Anderson's (1986) list of technological
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discontinuities or Girifalco's (1991) list of innovations since the 1 8th century that were discussed in

Chapter 2.2.7. Others, such as Solow (1956), have studied all of technology in general, in an

attempt to explain economic growth that is not caused by additional labor or capital. More

commonly, researchers attempt to study specific technologies. Studying technologies at this

intermediary level eliminates the subjectivity and lack of breadth of selecting individual

inventions, while allowing for more specificity and deeper analysis than viewing technology as a

whole.

Technological
Domain 0,

(as defined in this thesis)

A Specific
$ ('Technology'

Figure 18: Range of technological unit of analysis in technological change

research and a technological domain as defined in this thesis.

Although the level of analysis has been narrowed down slightly, there is still much

flexibility in the term "a technology". While there are many attempts at answering this question,

Dosi (1982) and Arthur (2007) address this problem quite well, and are the basis for the unit of

analysis in this thesis. Arthur posited that any technology has two main components. The first

component is that any technology is 'a means to fulfill a human purpose.' Examples of purposes

are 'to power an aircraft', or 'to sequence a DNA sample,' or to 'generate electricity.' The second

component of technology is that it must take advantage of an effect or phenomenon. This effect

could be something like the conversion of light to electrons through the photoelectric effect, or
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the mathematical principles that govern radio waves; the effects do not necessarily need to be

physical, they can be scientifically, mathematically, or even socially based. Thus Arthur's

definition of a technology is:

'a technology is a means toftf ill a purpose, and it does this by exploiting some effect.' (Arthur, 2006)

Dosi (1982) presents a similar definition that incorporates the different embodiments of

knowledge that are represented by a technology.

Let us define technolog as a set ofpieces of knowledge both directly 'ractical' (related to concrete

problems and devices) and 'theoretical' (but practically applicable although no necessarily already applied) know-

how, methods, procedures, experience of successes andfailures and also of course physical devices and equipmenL

(Dos, 1982).

Dosi's definition of technology includes the practical knowledge that is related to the

domain which is often embodied as patents, theoretical knowledge that is associated, but not

necessarily used yet which can be things such as scientific articles and finally the specific artifacts

that represent the technology which are often the end products or enabling tools used to make

the products.

In determining the unit of analysis for this thesis, many of the underlying concepts behind

Dosi and Arthur's definitions are maintained, while the definition of technology is slightly

modified to fit the purpose of this research. First, due to the significant and different uses of the
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term 'technology', the term that will be used in this thesis is Technological Domain (TD),

which provides clear differentiation from the other uses of the term 'technology'.

A technological domain can be defined as: The set of artifacts that fufill a specific

generic function utilizing a particular, recognizable body of knowledge.

This definition is more specific in terms of the set of artifacts (which includes systems,

processes and algorithms as well as devices) than Arthur's use of the term 'means.' Additionally,

the term purpose is less ambiguous when it is described as a specific generic function. The

specific generic function will be a main area of focus in later sections of this paper that define

specific performance metrics for a particular technological domain. The precision in this term

provides more clarity about the relationship between a domain and their performance

characteristics and links the technological domain to its economic purpose. Finally, the term

'some effect' has been replaced by 'a particular, recognizable body of knowledge,' in an attempt

to more closely link the technological domain with the underlying knowledge that it is based

upon and reduced uncertainty about unknown effects that are not yet considered 'knowledge'

that may crosscut several technological domains.

It is also important to note the areas that the definition is intentionally non-specific. The

two terms to take notice of are the 'set of artifacts..' and '...a recognizable body of knowledge.'

These two terms allow for a technological domain to be as broad as 'semiconductors' or as

narrow as 'industrial stereolithography 3D printers'. The fact that this definition does not require

a certain level of specificity makes it more flexible and able to represent a large set of potential

technologies. Another benefit of this flexibility is that it is likely impossible to create a specific set

Benson 86



of technological domains that map the entire space of technology, and there are nearly an infinite

number of possible ways to construct a total technology map. This flexible definition of a

technological domain allows for the scale and scope of a domain to be adapted to the goals of the

specified research. The range of the technological domain as defined in this thesis is shown in

schematically figure 18.

3.1.1. 28 Technological D ains

In total, 28 technological domains (TDs) were studied in this thesis. The TDs

were selected for analysis based upon a variety of factors. The first and most limiting factor is

data availability, without data on performance or recent patents, it is impossible to perform the

analysis required for the cross-domain comparison of technological improvement rates and

patent derived characteristics. The next factor was looking for TDs that represented a broad

range of both generic functions and bodies of knowledge in order to increase the potential

generalizability of the study and allow for further cross-domain testing. For example, one

hypothesis about technological improvement posits that the differences in improvement rates

could be driven by the type of technology (electrical vs chemical vs mechanical) (Koh and Magee,

2008); studying a wide variety of domains will allow such ideas to be explored. Another factor

that contributed to the selection of these specific 28 TDs was the general scope of the fields. As

was mentioned in the previous subsection, the definition of a TD allows for a wide range of

scopes, and therefore including domains across a portion of the spectrum shown in Figure 18 is

important for generalizing the results of the study to many different technologies. A more

quantitative measure of scope will be introduced when the patents sets for each TD are defined.
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Table 4 shows the 28 domains that were selected for analysis in this thesis within their

functional performance category as is derived from Koh and Magee (2006, 2008). The first row

of the table is the operand on which the domain acts, and the first column of the table shows the

operation that the technological domain performs.

Information Energy Matter
Storage Integrated Circuit Memory Batteries

Magnetic memory Capacitors
Optical memory Flywheel

Transfer Coaxial telecom Electrical power transmission Aircraft transport
Optical telecom
Wireless telecom

Transformation Integrated Circuit Processors Combustion engines Milling machine
Electronic computation Electrical motors 3D printing

Camera sensitivity Solar PV Photolithography
MRI Wind turbines Superconductivity

CT scan Fuel cell
Genome sequencing Incandescent lighting

I__ _ LED lighting I

Table 4: The 28 domains studied in the thesis classified by functional

technological classifications with operands and operations, adapted from Koh and

Magee (2006, 2008)

The previous work done on this functional technology classification system shows that the

9 types of classifications represent a relatively complete overview of all possible technologies. The

28 domains analyzed in this thesis fall into 8 out the 9 (with matter storage being the exception)

possible operand-operation classifications and thus represent a very wide range of technological

functions.

A few of the domains were selected to allow for comparison to one another, such as solar

photovoltaic and wind turbines. Additionally the manufacturing domains were selected
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specifically due to the lack of prior research on quantitative technological trends in

manufacturing domains and their addition is an important contribution of this thesis. Details

regarding the selection of the manufacturing TDs will be covered in depth in section 3.3.

3.2. Determining Technological Improvement Rates and

Their Reliability

The next step in the methodology for the large cross-domain comparison of technological

improve and patent characteristics is to determine the technological improvement rate (TIR) that

represents the performance improvement for a specific generic function that the technological

domain is accomplishing. This is done by first constructing a functional performance metric

(FPM) that is a measure of the generic function for a TD and includes the factors that affect the

purchasing decision for the technology. Next, data points that measure the FPM are collected

over a range of time and a technological improvement rate is determined by an exponential

regression vs time, as was introduced by Moore and discussed in section 2.1 of this thesis.

Finally, the TIR is statistically analyzed to examine robustness and reliability. The TIRs contain

a significant amount of information about the past performance and future potential of a

technological domain. One of the main goals of this research is to understand why differences in

TIRs between domains exist, thus the creation and validation of the TIRs is a critical step in this

research.
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3.2.1. Constructing the Functional Performance Metric (FPM)

The functional performance metric is the measure used to assess the performance of the

TD. For example, an FPM for electrochemical batteries could be kWhr/kg - or the energy

density. This measure is tied to the purchasing decision of the specific TD; when the FPM

improves, a purchaser would pay less (in this case have a lighter energy source) for or gain more

value from the technology.

In developing FPM, it is important to consider all of the possible aspects of a technology

that the consumer may value. This includes the general value that they will receive from the

product as well as any costs to the purchaser (which encapsulate more than the purchase price).

For the case of electrochemical batteries, a consumer would be looking to access stored kWhr,

which would be the value of the technology, and a cost to the consumer would be mass (kg),

volume (L), and price ($). One way to think of an FPM is a trade-off surface that is constrained

by cost and performance and technological change and that can be defined as:

The technological change of a product with many elements of performance, whose

characteristics and prices change over time, is the change in total factor inputs required to

produce the product, holding its characteristics (performance or output) constant. (Alexander and

Mitchell, 1985).
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As shown in Figure 19 This definition then states that a technology can improve when

either (A) the cost of a technology decreases without any decrease in performance or (B) the

performance of the technology can improve without an increase in cost. There is also the option

for (C) where the performance increases and the cost decreases at the same time.

ti
t 2

I1
22

SB

Performance
Figure 19: Two Possible ways for a technology to improve (A) by decreasing

cost at a constant performance and (B) increasing performance at a constant cost -

adapted from Alexander and Mitchell (1985)

It must be reiterated that the term 'cost' in Alexander and Mitchell's definition is not one

only of monetary purchase price ($), but also represents the costs mentioned above such as

additional weight or volume. Other domains can see costs such as noise, energy consumption,

surface area, etc.
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In many cases, the purchase price, in USD, is an important variable, however it can

introduce a considerable amount of short-term (and possibly long-term due to depletion effects)

noise to the data due to exogenous effects that are not related to the technological development

such as government subsidies and changing trade patterns or depletion of natural resources.

In order to evaluate both value-creating parameters and total costs (weight, volume,

price, etc.) together, it is important to construct the functional performance metric properly to

take into account their opposing effects on consumer utility. Because of this, FPMs are

constructed so that their value increases with an increase in customer utility. When constructing

an FPM, the parameters that are positively correlated with consumer value are placed in the

numerator of the FPM and the negatively correlated parameters (such as price) in the

denominator of the FPM. Occasionally, a value-creating parameter is negatively correlated with

consumer value and should be placed in the numerator of the FPM. For example, when

considering a manufacturing technology, often times a lower precision value is actually better,

therefore the FPM should be constructed using 1/precision. In fact, the proper construction of

an FPM must include proper 'trade-offs' in order for the performance of a TD to be measured

properly. Figure 20 shows a plot for information storage with (a) the logarithm of a simple FPM

with time as a tradeoff; millions of instruction per second (MIPS) vs time and (b) a more complete

FPM, the logarithm of MIPS/$ vs time.
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Figure 20: Increase of computational power over time, as measured by (a)

logarithm of MIPS and (b) logarithm of MIPS/$ - adapted from Koh and Magee

(2008)

The inclusion of price in the functional performance metric reduces the scatter in the

trend. The simple FPM (a) shows only the maximum MIPS for a particular device, with no cost

taken into account, and it is logical to assume that a very expensive super computer would be
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able to perform many more instructions per second than a relatively inexpensive personal

computer. The inclusion of price brings the points closer together and portrays a more accurate

picture of the improvement of computation devices than the simpler FPM.

Any variables that may affect consumer value that are not included in the FPM for a TD

are considered 'omitted variables' as mentioned by Alexander and Mitchell (1985). In their

paper, Alexander and Mitchell claim that omitted variables are too significant of a problem to

allow for proper measurement of technological change. There has been much research since

that paper to show that while omitting a significant number of variables detracts from the

reliability of the technological change measurement, using FPMs to measure technological is

certainly possible. It is important to keep in mind, however, all of the aspects of a particular TD

that may be important to a purchaser.

In the ideal case there would be no omitted variables and the measure would be

considered a 'complete' FPM, however this is practically impossible as there are always unknown

consumer preferences for products, often times ones that aren't even being considered by the

designers. An example of an omitted variable for the electrochemical battery FPM that was

listed above is the maximum power output of a particular battery. While it may seem logical

then, to continue to add even the most esoteric factor that may influence the purchasing decision

for a TD, this must be balanced with the need for data points in which the FPM has been

measured. Often times the most complete FPMs will have very few data points where all of the

individual metrics are measured together.
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There are many ways to construct FPMs for each TD, therefore in many cases each TD

has a number of FPMs that can represent the improvement of the technology. This is similar to

what Christensen (1992A) discussed when mentioning the performance metric for a technology

in one market vs another. It is important to consider many different combinations of the

parameters that make up each FPM. For example, the improvement of electrochemical batteries

can be measured by the following FPMS: kWhr/kg, kWhr/L, kWhr/$, kWhr/(kg*$),

kWhr/(L*$). It is important to note that not all of these FPMs will have sufficient data to

construct a technological improvement curve (TIC).

In summary, the practice of constructing a set of FPM(s) for a TD is an exercise in

dimensional analysis with the goal of creating the most complete metric for which their exists

enough data to compare across time. After compiling the FPMs, each one should be combined

with their respective TD to create a set of domain metric pairs (DMPs) for each TD. The

complete list of DMPs for each TD is described later in section 4.1 of this thesis.

3.2.2. Constructing the Technology Improvement Curve

Finding the functional performance metric data to create a technology improvement

curve (TIC) is one of the most difficult, tedious, and time-consuming processes of this thesis and is

central to understanding how technology changes over time. In order to get a reliable

understanding of how a technology has changed, it is important to get as many data points as

possible and to cover as wide of a time-frame as possible.

Additionally, as was mentioned in the previous section, some of the FPMs include a

number of different parameters for each TD. In order to construct a reliable FPM, it is
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important to find data points that include as many different parameters as feasible. For example,

in order to evaluate manufacturing technologies, multiple parameters must be found for each

point and include: precision, cost, speed, flexibility, weight, and volume. Finding 5 or 6 different

parameters across a wide range of time can be a significant task and requires searching a wide

variety of information sources as will be discussed in the next sub-section.

Although finding the FPM data is a difficult task, there are a number of different data

sources to consider in doing so. These data sources will be covered in the following subsections

of the thesis.

3.2.2.1. Data from the Producers of the Technology

Very few producers and companies spend a significant amount of time and resources in

keeping track of the historical performance of their products, which makes finding the FPM data

difficult. Finding current data for the metrics is easier because many companies do track the

current performance of their products in an effort to benchmark those against the competition.

When speaking with representatives from a number of companies, they explained that there is

little value and significant cost to keeping a well-organized archive of product performance.

While this research is not consistent with the idea that historical performance is of little value,

there is no questioning the fact that maintaining data in an archive or museum can be expensive

and time consuming, and thus is usually only done sporadically by the largest companies.

Even in the case of some large companies who have kept this information, the data is

often poorly organized and thus requires the reading of a significant amount of information to

extract the few data points of interest. Another problem with using data from companies is that
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in some cases the data is confidential and is used as a competitive advantage. This was the case

in the wind turbine industry for a number of years, and is still the case with some of the more

specific details regarding the production of carbon nanotubes. Due to this, many of the data

points that come from companies that produce the technologies come from anonymous

interviews in which the specific data points that are given are often 'rough estimates' and are

required to be reported anonymously so as to maintain competitive advantage. Nonetheless,

information on technological performance that comes directly from companies, even if it comes

with wide error ranges, can be very useful when combined with data points from other sources

because of the immediate linkage to the producer of the technology.

3.2.2.2. Product Specifications

While collecting information from companies directly can be a difficult task that nets a

wide error range for the data points, often companies release specification sheets for their

products. These 'spec sheets' provide a significant amount of information on each product and

often contain many of the parameters that make up the FPMs, making them a good source of

information for constructing TIRs. Figure 21 shows an example spec sheet of a

stereolithography 3D Printer. In it there are many parameters regarding the performance and

technical characteristics of 3 different 3D Printers. These specifications show the net build

volume, the resolution, accuracy, machine size and weight which can be used to construct an

FPM for these machines that includes both valued traits (build volume, layer thickness) and costs

(machine volume and weight).
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Figure 21: A Product Specification sheet for an SLA 3D Printer showing the

(A) build volume, (B) layer thickness, (C) accuracy, and (D) system dimensions, all

of which can be used together to form an FPM for measuring the performance of

SLA 3D Printers - adapted from (www.3dsystems.com, 2014).
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Spec sheets such as these are released often alongside the announcement of a new

product or technology, thus many spec sheets exist over time. While some of the older spec

sheets can be difficult to find, in the age of the Internet and digital information, spec sheets can

be very useful in constructing technological improvement rates.

While spec sheets span long periods of time and contain a large amount of technical and

performance data concerning a technology, their purpose is not to track technological

improvement rates, rather they are designed as an advertising component to sell more of that

product. Given this, it is important to take the data included in the spec sheet with a grain of

salt, as sometimes the specifications are difficult to test and thus are slightly exaggerated. This

case can be often be identified in industries where a set standard of performance seems to be

nearly identical for a large number of products. An example of this is in the consumer 3D

printing market where almost all of the machines claim to have very similar layer thickness values

of 0.1mm (www.3ders.or , 2014) as shown in Figure 22.
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Figure 22: Distribution of layer thickness specifications for consumer 3D

printers

While the actual values are likely to be close to the 0.1mm, it is likely that their is more

variation than is stated by the spec sheets and that an unwritten 'standard' has been accepted for

the minimum layer thickness that a consumer will accept. Despite these flaws, spec sheets remain

an acceptable source of information for construction technological improvement rates.

3.2.2.3. Trade Magazines

One great source of finding technological specifications over time is trade magazines,

where the producers of the technologies often advertise new products and consumers of the

technology research new products. Trade magazines have similar advantages to spec sheets in

Benson 100



that they are published on a continual basis and thus long time frames of information exist.

Additionally, trade journals often include the most relevant parameters to measure the

performance of a technology, and thus are good sources to find data for constructing TIRs.

Beyond the advertisements in the trade journals, the journals often have experts (writers and

editors) who monitor the field closely and write columns on the changes in the industry and new

artifacts or processes that may be introduced. The combination of the articles and the

advertisements provides a source of qualitative and quantitative information to help construct

TIRs.

Potential downsides of trade magazines are very similar to that of spec sheets. Trade

magazines are often funded by selling advertisements and thus the information is designed to sell

products and should be recognized as so when constructing the TIR.

3.2.2.4. Scientific Literature

While data gathered from industrial sources has the advantage of close proximity to the

creator, it is not published in a peer-reviewed format. Scientific journal articles and conference

proceedings are a peer-reviewed source of information that in some cases contains FPM data.

The main benefit of scientific literature is the assumed accuracy. Additionally, in some cases one

source can contain multiple FPM data points, which can populate a significant portion of the

data required for a TIR. Scientific literature also often includes a wider range of data that can be

attributed to more than one producer, reducing the possibility that the particular producer is an

outlier in performance for a particular TD.

While the peer-reviewed aspect contributes to the validity of the data, it is often necessary

to look closer at the source(s) from which the data is taken from. In many cases, the scientific

articles have simple gathered data from the sources listed above. In some cases, the author has
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ran specific experiments to complement (or supplant) the industry given data, which is useful in

that it provides another independent source. Finally, many journal articles and conference

proceedings can be difficult to access for non-academics. Overall, peer-reviewers sources are

some of the most desirable to use when constructing a TIR.

3.2.2.5. Industry Reports

Industry reports are documents compiled on the state of an industry by either private

firms or sometimes government agencies. Like scientific literature, industry reports often include

multiple data sources in one location, significantly reducing the search time for populating a

TIR. Industry reports also generally contain aggregate data for an industry and thus give a

better average picture of the industry rather than the company-specific information contained in

some of the other sources. These reports are often compiled by skilled and well-compensated

people who work for companies with close ties to the industries that they are covering -

increasing their apparent reliability as they should eliminate unreasonable inconsistencies. Often

times a significant portion of the data used to contract a TIR may be from a set of industry

reports.

While generally a reliable and well-populated source of information, the private-firm

industry reports can be difficult to procure and often present their information with few

references. The reports that are compiled by private firms are often very expensive and difficult

to access (sometimes even for academics). Additionally, due to the proprietary nature of their

information and sources, the private-firm industry reports often do not contain any references to

their data. Thus, their reliability is not considered as high as those by public agencies.

Industry reports filed by public agencies (such as the U.S. department of energy) are often

free and easily accessibly on the internet, however they, more-so than the other sources, contain

Benson 102



data that is a large aggregation of the industry, and thus should be considered as so. In

particular, the average data is useful for constructing TIRs of complex FPMs, but can be less

reliable when attempting to chart the best performing example in a TD for a given year.

In summary, industry reports are generally a good place to start the search for FPM data

points, but often a specific DMP has not been tracked in an industry report and thus the other

data sources must populate the TIR.

3.2.3. Calculatng a TIR

After the performance data is collected, it must be compared with another independent

variable. As was discussed in Section 2.1 of the thesis, while there are a number of different ways

to evaluate technological improvement trends, the TIRs in this thesis are all based upon

comparing performance with time.

Most FPM data is connected to a corresponding year such as a product release date,

correspondence with a company, article publication date, etc. Thus, it is rather straightforward

to compare the FPM data with time. As was mentioned previously, the FPMs should be

constructed so that they increase as performance of the product improves or the cost decreases.

The most common way of plotting the FPM with time is with the FPM on the vertical axis

(dependent variable) and time on the horizontal (independent variable). When this is the case,

the technological performance trend is expected to show an increase over time as is shown in

Figure 23.
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Figure 23: Improvement of Optical Information Storage with time on a

linear-linear scale, adapted from (Koh and Magee, 2006).

When plotted in this manner, the FPM performance appears to improve exponentially

with time, which is consistent with the prior literature mentioned in section 2. Due to this

relationship, it is easier to observe the exponential improvement when the data is plotted on a

log-linear graph as shown in Figure 24.
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Figure 24: Improvement of Optical Information Storage with time on a log-

linear scale, adapted from (Koh and Magee, 2006).

The trend now appears much more linear (but not perfect) when plotted on a log-linear

graph, and thus indicates that the relationship between the FPM and time is fundamentally

exponential. How well this description works can of course be mathematically determined and is

shown by the exponential trend line in Figure 25.
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Figure 25: Improvement of Optical Information Storage with time on a log-

linear scale with an exponential trend line, adapted from (Koh and Magee, 2006).

There are a few things to note about the trend line. First, the trend line (not the data points)

appears perfectly linear on the log-linear graph, which shows the example of a perfectly

exponential improvement; the closer the FPM data points are to being perfectly linear on the log-

linear graph, the closer they are to being perfectly exponential. The next aspect to note is the

form of the exponential equation, which should resemble equation 7 where - is the FPM value,

C is a scaling factor, X is the date (in years) and k is the exponential improvement rate. It is

important to note that this equation takes the same form (yet different variable names) as

equation 2 that was discussed in section 2.1 of this thesis and is based off of Moore's Law.
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Y = ce (Equation 7)

The exponential improvement rate k is the technological improvement rate that is used

for the main analysis portion of the research in this thesis.

This value represents the constant percentage improvement of the FPM. An easy way to

think about TIR is to compare them to bank account interest rates. A bank account that offers a

higher interest rate will give you more return on your money than one that offers a lower rate.

For example, if bank account 'A' offered a 10% interest rate, without any additional deposits, the

money will double in a little over 7 years; if bank account 'B' offered a 3 0% interest rate, the

money will double in approximately 2 years and 4 months. A quick way to calculate an estimated

doubling time is the rule of 72, which states that in order to find the amount of time it would take

to double an initial balance, simply divide 72 by the interest rate as shown in Equation 8.

72
t"'' =k (Equation 8)

It is also important to take note of the R2 value of the fit of the data to the trend line.

This value shows how close the data is to being perfectly exponential. A more specific definition

of R2 (AKA the coefficient of determination) is the percentage of total variation in Y can be

described by the trend line.1 The value of R2 can vary between 0 (no fit between the data and

the trend line) and 1 (the data is perfectly consistent with the trend line and therefore perfectly

exponential). In practice the values are never as low as 0 or as high as 1, and for this research we
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strive for R2 values that are higher than 0.8 and do not accept those less than 0.6. The next sub-

section will explore more rigorous statistical testing of the TIRs.

3.2.4. TIR Reliability Measures

While most technological domains exhibit an exponential relationship with time, there is

a wide variation between the TD and even some variation between the domain-metric pairs

within a TD. While there does exist a noticeable variation in technological improvement rates

between domain-metric pairs within a TD (intra-domain) the variation between different TDs

(inter-domain) is much larger, as is shown in Appendix A of this thesis and thus most of the

statistical tools for comparing the TIRs will focus on comparison with other TDs.

In the last subsection, the R2 value was used as a simple method of determining the

reliability of each TIR. This section will introduce several statistical methods for measuring the

reliability of the TIRs as well as a method for selection of the most-complete reliable TIR, and

the most-reliable complete TIR to be used for the large cross-domain study that is one of the

main goals and innovations of this thesis. The statistical measures used to evaluate the TIRs are

discussed in the following subsections.

3.2.4.1. R-Squared

As was mentioned in the previous subsection, the R2 value is a measure the percentage of

deviation in the data points that can be explained by the exponential regression and can be

calculated using equation 9.
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R2 =1_ - 2 (Equation 9)
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The TIR is the exponential coefficient as shown in equation 7 (k) therefore the R2 is also

a measure of how well the TIR actually reflects the data that was collected. This measure is also

one that can be found in many of the other prior papers in the field of technological research and

thus is one of the most important reliability measures used to evaluate the TIRs.

3.2.4.2. Number of Data Points

As was described in the data collection sub-section earlier, more data points is generally

an indicator of a more reliable TIR. While this measures is also reflected somewhat in the R2

value, it is useful to list it separately because the R2 value can sometimes be misleading when

there are few data points. For instance when there are only 2 data points, the R2 value is 1,

because any line can be perfectly fit between only 2 points.

Along with the number of data points, it is also important to consider the sources from

which the data points were derived. More sources of data used to construct the TIR is indicative

of a higher reliability due to the fact that multiple data sources usually indicates multiple

independent observations.

Finally, the types of data sources that are consulted are also important to consider when

measuring the reliability of the TIRs. As was mentioned in a previous sub-section, all data

sources are not created equal and thus sources such as peer-reviewed scientific journal articles are

likely to be more reliable than anonymous estimates from an interview with someone working

directly for a producer of a technology.
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The combination of the number of data points, the number of data sources and the type

of the data sources provide critical quantitative and qualitative information about the reliability

of the TIRs.

3.2.4.3. Range of Time Covered

While having many data points from many different sources is important, if they are all

condensed in one small timeframe, it is less likely that the TIR is generalizable to longer

timeframes. This is especially true in some of the cases with higher noise, because although long

term exponential improvement is rather consistent, this is not true when considering very short

time frames as is shown in Figure 26.

(A)-(B)--y 5E-298e0-34"
y =1E-133e-1"" R'= 0.89944

LO- 0.7 901!,O r

11.01

(C} Dy 2E-22OeO257  D = 8E-233eO.2 71
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Figure 26: Optical Information Storage - Mbits/cc (A) 1990-1995, (B) 1996-

2000, (C) 1981-1995, (D) 1981-2004: showing that TIRs derived from very

short time frames can be unreliable and misleading.
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A reliable TIR should be able to project into the future consistently. Figure 26 (A) shows a

TIR of 16%, whereas (B) shows a TIR of 35%, yet both show acceptable R2 values and seem to

have a good number of points but yet show a significant difference, between the two short time

frames. Conversely, the entire timeframe in (C) shows a TIR of 27 %, which is consistent with

the TIR of 1981-1995 of 26%. This demonstrates that a longer time frame is consistent with

obtaining a more reliable and stable TIR.

3.2.4.4. Exponential Confidence Interval

Beyond simple metrics there are also statistical techniques to determine a confidence

interval for the TIR given a particular set of data points. This can be done relatively easily by

the LOGEST function in excel, which provides the standard error for each of the variables in the

regression in the form v= bmx, which can be converted to the familiar TIR form as shown in

equation 7 (Y= ces ) by taking the exponential of both sides with y = ev, c = eb and m= ek

which allows for the calculation of k. Additionally, the form gives the standard error for m,

which can then be converted to a standard error in the same manner: sem = es"k. This provides

an error estimate for a certain confidence interval. If the distribution of the k-values can be

assumed as normal, the standard error can be found for a 68% confidence interval ( 0) and

95 % ( 20 ) confidence interval. From these 2 values, O can be calculated using the equation

10.

Sse( t + se".)
3 (Equation 10)
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Using this value of 0 and the assumption that possible values of the TIR are normally

distributed, it is possible to find the probability that the TIR lies between a certain range of

Z=X-/i

values using z-scores ( I ) and a z-score table2. While this provides only an average

estimate of the standard deviation of the distribution of the potential values of k, this value 0

provides a measure of reliability for each TIR that can then be used in further Bayesian statistical

comparisons.

3.2.4.5. Point Removal Method

The TIRs (k-values) are at the foundation of this research and thus should be explored

both statistically and empirically. While the standard deviation of the TIR relies heavily on

common statistical practices, throughout the course of this research, a more empirical statistical

tool was developed called the point-removal-method (PRM). This method complements the

other statistical methods and provides further insight into the nature of the TIRs.

The PRM was developed to understand the empirical effects of missing data in a

technological improvement curve and also to explore cases without many data points.

Throughout prior tests, there was a noticeable effect of specific data points to some of the

quantitative technology trends especially with concentrations of points in multiple areas, thus

creating the need for a test to determine the robustness of the TIR to missing data points.

The process for evaluating a specific TIR using the PRM is as follows:

For each Technological Improvement Curve
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1. Remove Data Point i

2. Record T (k-value) and for the TIC1 which is the technological improvement curve

with point i removed

3. Add data point i back to the data set

4. Repeat steps 1-3 for each i from i= to i=n where n is the number of data point in the

technological improvement curve

5. Construct a table of all TA and A analyze the results

Figure 27 show graphically how the PRM for SLA 3D printing for the Speed/Layer

Thickness FPM.
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The first large graph in figure 27 shows the entire technological improvement curve for

SLA 3D Printing speed/layer thickness along with the data points labeled i=1 through i=6.

Each subsequent graph (TIC1-6) shows the TIC with the respect data point removed along with

the and the V. In this example, despite the relatively small number of data points, the

TIR seems relatively consistent. In order to show this quantitatively, the set of and the R?2

can be combined into a table as is shown in Table 5.

Point Removed K-value R2

None 0.306 0.9

1991a 0.319 0.899

1991b 0.285 0.892

1991c 0.31 0.887

1997 0.303 0.93

1998 0.314 0.951

2001 0.294 0.89

2006 0.32 0.828

STDEV 0.012 0.036

MEAN 0.306 0.897

MIN 0.285 0.828

MAX 0.32 0.951

Range 0.035 0.123

Table 5: PRM values for SIA 3D Printing - speed/layer thickness

The upper portion of table 5 lists the different k-value (TIRI) and the ' for each of the

points that were removed. In the lower portion of the table, some simple statistical measures

have been created for the new set of TIC. Through these statistics it is possible to develop a
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mean (0m) and a standard deviation (GTRm) that can be used alongside an assumption of normal

distribution to determine the probability that the true TIR is between certain values. In a more

conservative methodology it is possible to use the MIN and MAX value of the TIR to create a

bounds for a particular DMP.

3.2.5. The most complete and reliable TIR for Each TD

The result of many statistical tests is an understanding of the reliability of the TIR for

each DMP. For the cross-domain comparison of patent markers and TIRs, one TIR for each

domain was selected for the main analysis on the basis of several different criteria:

- Reliability (measures discussed in previous section)

- Completeness

* Dominated vs Non-Dominated Points

- Date Range

3.2.5.1. Completeness

Completeness of a technological improvement rate (TIR) is an estimate of how well the

associated functional performance metric (FPM) represents the purchasing decision of the

consumer of the artifact representing the technological domain (TD). This is often the FPM that

has the most parameters or the least number of omitted variables. For example, in the

manufacturing domains, there are sometimes 4 or more FPMs per TD, and an example of a
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complete metric would be (speed*build volume)/(layer thickness*price*machine size), which

would be preferable to the simpler metric of speed/layer thickness. In some cases where there

are multiple FPMs for a TD that have the same number of parameters, the preference is give to

the domain without the price parameter (ex: kWhr/kg would be considered more reliable even if

less complete than kWhr/$) because of the instability of price-related metrics.

3.2.5.2. Dominated vs Non-Dominated Points

When considering how technologies improve over time, there are two ways of including

the data points in a technological improvement curve. In most cases, it is desirable to only take

into account the 'record-setting' data points. In order to do this, only the non-dominated points

are considered, meaning that data points that occur at a later date and have a lower FPM value

are removed from the data set. In doing so, the TIR is measuring the improvement of the best

example of a technology over time, and does not take into account inferior cases.

While it may seem like non-dominated points should be used in every case, there are a

number of reasons why this is not always the case. In some cases, the number of non-dominated

points is very small, and thus removing the dominated points reduces the reliability of a

technological improvement curve to an unacceptable level. While lack of quality data is a poor

reason to choose one approach over the other, it is important to note the other reason for taking

into account dominated data points - omitted variables. As was mentioned previously, it is

impossible to take into account every parameter that may impact a purchasing decision for a TD,

therefore every FPM is certain to have some form of omitted variables, even if the FPM takes

into account most of the information that affects a purchasing decision. For example, while the

size, speed, fuel efficiency, safety and cost of an automobile are likely the main factors in a

purchasing decision, other factors such as the stereo system, heated seats, or other amenities are
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likely to affect consumers' choices as well. Because of these omitted variables, it is possible that

some of the dominated points in a technological improvement curve are actually non-dominated

if one were to include all of the omitted variables. This effect was shown graphically in Figure 20

in Section 3.2.1 Constructing the FPM. For this research, non-dominated points are used

whenever possible as long as the reliability of the TIR remains high.

3.2.5.3. Aligning Time Frames of the TIRs with the Patent Sets

While a long time frame is more reliable, for this research, due to the fact that a major

use of the TIRs is to examine them across domains based upon patent characteristics (which we

only obtain starting in 1976), it may be desirable to only include data for the TIRs from the

timeframe: 1970-Present. Once again there are factors to take into consideration when using

only a portion of the data. In particular, once again, data reliability is the main factor in the

decision to only use patents since 1970 or to use all of the data points. If, when the data points

are removed from the years prior to 1970, the data reliability is significantly lowered, it often

makes sense to include all of the data. While the use of pre-1970 data may not align exactly with

the patents that are evaluated, the long-term exponential improvement rates have been shown to

be relatively consistent, and thus the difference between the 1970-present and the entire data set

is rarely very large. In the case where there is a significant variation in TIR across time frames, a

deeper analysis into the causes is required. For example, as shown in Figure 28, when studying

wind turbines, most of the data points for the technological improvement curve are from

examples after 1980 where subsidies have caused much noise (Benson and Magee, 2014),

however there are two data points in the very early stages of the technology in 1947.
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Figure 28: Comparison of Technological Improvement curves for (A) 1970-

present and (B) the entire FPM data set

The difference between the TIRs is not large (2.9% vs 3 .4 %), yet the omission of the early

data points reduces the R 2 from an acceptable 0.67 to a very low 0.38. Upon further analysis,

the data from 1970-present is largely affected by factors that are exogenous to technological

change, most notable fluctuating subsidies during that time frame, resulting in short-term

fluctuations that skew the TIR and make it difficult to understand. It is for reasons such as this

that in a few cases, the entire data is used despite the fact that the patents being studied are only

from 1976-present.
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Ultimately a combination of all of these factors are taken into account to determine the

most representative TIR for a given TD, with the ideal case being a TIR that is the most reliable

and most complete. There are domains beyond the 28 used in this research that have some data

points, but do not have a TIR that is reliable and complete enough to be included in this study.

3.3. Manufacturing Performance improvement trends

While the technical performance of many technologies have been quantitatively

examined and have been found to follow exponential improvement rates over long periods

of time, almost none of these studies have been focused on a manufacturing technical

domain. One of the contributions of this thesis is to determine TIRs for four manufacturing

domains. 'Traditional' machining technologies have seen the introduction of computer

numerical control (CNC) systems, photolithography has improved to the point where

billions of transistors can be placed on a single chip, and the introduction of 3D printers has

revolutionized the product design process. Because of the importance of these qualitative

improvements, it is desirable to establish a more quantitative description of how

manufacturing processes have improved.

Most prior in-depth technological analyses of manufacturing processes focus on

exploring a specific technology at a specific time. For example, an important paper on

nano-manufacturing technologies by Liddle and Gallatin (2011) describes a 'snapshot' of

many of the most prominent manufacturing technologies that are capable of producing

features on the nano-scale. The paper provides a thorough overview of many different
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technologies, and describes capabilities of the technologies in an economically significant

manner using a comparison of resolution and areal throughput. There have been similar

studies completed for metrology (Cullinan et al, 2012) and traditional machining

(Kalpakjian and Schmid, 2010). While these studies are essential for understanding the

current state of a single technology, a more comprehensive study of several manufacturing

technologies across many years is desired in order to understand the relative rates of change

of different manufacturing domains.

Other studies have attempted to explore the change in manufacturing technologies

over a longer time period through case studies, historical analysis, qualitative analysis and

labor productivity metrics (Smith, 1994). These studies often explore the idea of

'productivity advances' as synonymous with the improvement of manufacturing as measured

by the productivity level of workers (Jorgenson and Grilliches, 1967). While these studies

are essential in understanding the aggregate production function (Solow, 1957), they are

usually too broad for analyzing particular manufacturing technological domains. This

section of the thesis provides an expansion of the quantitative understanding of changes in

manufacturing technical capabilities with time. The intent of this case study is to construct a

bridge between the level of detail of the technology specific studies with the long timelines

and high level views of the productivity studies as applied to manufacturing domains.

Four manufacturing domains were analyzed that provide breadth and depth in

technical, scale and temporal respects. The four domains are milling machines, 3D printers

(Industrial stereolithography (SLA)), photolithography machines, and the production of

carbon nanotubes.
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Determining appropriate FPMS for manufacturing technologies is a difficult task due to

the extremely varied output of the technologies. Manufacturing technologies are considered

heterogeneous technologies in that they have a variety of functions that may be weighted

differently for different customers (Alexander and Mitchell, 1985). For manufacturing, there are

four main characteristics of interest: Speed, flexibility, quality and cost. An informed buyer

would want to maximize speed and flexibility and minimize cost and dimensional non-

repeatability and thus we consider a generic manufacturing metric to be as shown in Equation

11.

SPEED * FLEXIBILITY

RESOLUTION * COST

In addition to adding to the quantitative understanding of the development of

manufacturing technologies over time, this case study will also provide an in-depth look at

the selection of domains, the creation of FPMs and the determination of TIR for the four

manufacturing domains as an example of the process that is shown for 28 TDs in the results

section of the thesis.

3.3.1. Milling Machines

Milling machines were selected to provide a baseline for how a well-established

manufacturing domain has improved over very long periods of time. Milling machines have

been commercially available since the 1 9 th century and provide an interesting comparison to
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the newer technologies that were selected. A further benefit of studying milling machines is

that their long time frame also allows for greater confidence in the results, as it will be less

prone to short term data fluctuations than some of the manufacturing domains that have

existed for much shorter amounts of time. In addition to the gathering of data for milling

machines, we also performed a smaller study into lathes, which returned less data, but

allowed for a comparison between two similar manufacturing domains.

3.3.1.1. Miling Machine FPM

There are several measures that can be used to evaluate speed and flexibility of Milling

Machines. The most fundamental approach to characterizing the speed of a milling machine is

the material removal rate, which is the volume of material removed by the machine per amount

of time. The material removal rate can be calculated in three different ways involving differing

parameters as shown in equation 12.

MRR =v ,, *w* d

MRR=f*Q*w*d (Equation 12)

P
MRR

Where vworkpi.c, is the velocity that the work-piece is moved, w is the width of a particular

cut, d is the depth of a particular cut,fis the feed rate in inches/revolution, (2 is the rotational

speed of the bit in revolutions per minute, P is the power of the machine and p, is the specific

cutting energy. Several of these parameters are very dependent on the specific cut that is being

performed using the machine. Any of the methods that depends on cut-specific parameters such

as width and depth of cut are not at all likely to be stable over time and thus not allow study of

material removal rate over time. The final method of calculating the material removal rate
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(shown after the 3 rd = sign) takes into account only the power of the machine (to the tool) and the

specific cutting energy, which is very closely related to the material properties of whatever is

being cut. It is for this reason that we use the power of a milling machine as the appropriate

measure for its speed. While power of a machine is our first choice for evaluating speed, we were

also able to compare the max rotational speed (Q) of the machines, which provides a check on

the reliability of the power data.

Measuring flexibility can be done by analyzing the size of the part that can be built or by

looking at the degrees of freedom a particular milling machine has. Due to the limited nature of

the degrees of freedom measure, it is not an appropriate metric because it is necessarily limited to

only a few values. The table size is a more appropriate metric due to its non-discrete nature.

The accuracy of a milling machine is a given metric for many machines and measures how

closely a machine can conform to the demands given by the operator (how close to the bull's-eye

it hits), and results in an improved machine when the measure decreases, which is consistent with

the general manufacturing metric template. Finally, cost can be evaluated using inflation-

adjusted dollars and the machine also improves as the measure decreases.

3.3.1.2. MiHing Machine Data Collection

One challenge in constructing a robust quantitative performance trend for milling

machines was finding samples of data from a long time period. The source we found most useful

was the trade journal Modem Machine Shop, which has been published continuously since 1928.

This magazine includes articles about improvements in machining tools, as well as

advertisements for particular machine tools that include many specifications that can be used to

compile the metrics described above. Figure 29 shows an example of an advertisement from an
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early issue of Modern Machine Shop. This advertisement contains a number of different

specifications such as spindle speed (125 to 1600 revolutions per minute), feed rates (0.004 to

0.025 in/revolution) and drill size (1/2 to 1.5 inches in diameter). A combination of these

metrics was used to construct the technical performance trend and allowed calculation of the

TIR.

M .SED

Tit MORRIS MACIN

.eism as ne p d6

A Beter Hligh sd Radial Drl

74E .anu echwevewest of 3o

miaumeeme. Fewase Whdae Tim-
.ha 'Reller Beariage. haend
br.eesbed a. beat etmfd M.*6
-. , d' aft ead opbhdl, -ulple

din dutch aud powitive-lhbrhsatm.-

Speed and eed Ch.NeeW am, kecated
in thM heed amd .beasgen mede with

* 7Um w twelve peod deibgee
6e1 fiem 125 e I tR. P.M..ad

.e hedeh m .004. S per mveh.
tha. CApeeIt y fer t q a, ".
dv ot W0 lee per edwui. ad sof-
"hst power to drive a I"*-. drll.

made iles me d " 4.a . ein.

Wote for Caemuars

NE TOOL CO., CIa m tI, Oi.W U. LA.

Figure 29: Example advertisement from Modern Machine Shop that gives

performance values in the final paragraph - adapted from (Modern Machine

Shop, 1928).

Data points from 1928 until the present day were obtained from this source. A drawback

of gathering data from Modem Machine Shop is that each advertisement or article in the

magazine does not include all of the specifications needed to form each metric. The result of this
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is a rather sparse matrix that includes many different machines from a wide time frame, each

with a different set of specifications. In order to process this data, we developed a data reduction

method that uses the yearly averages as well as the individual machine metrics for many of the

specifications.

This process, named the data averaging yearly collection (DAYC) method, involved

taking each of the metrics and finding the mean of the specification for a given year. For

example: if there were 15 milling machine data points in 1964 and some of them had power

ratings and others had accuracy specifications, we take the average of the power ratings and the

average of the accuracy specs for that particular year and create a data point that represents the

average speed/quality of milling machines for 1964. This data is then combined with the data

points from the milling machines that included both data points. Figure 30 shows an example

plot with this process applied to the max table speed of a milling machine, it shows consistency

between data obtained by the yearly averaging method and the data from individual machines.

Milling Machine Max Table Speed
10000

1000 -

I? N Yearly Average

100 * individual Machines

-Expon. (Yearly Average)

- Expon. (Indivdual Machines)

y a 2E-49e""
R= 0.74185

1 y = 2E-49e**"59

1920 1940 1960 1980 2000 2020 R= 0.80747

Year

Figure 30: Example of data averaging yearly collection (DAYC) method
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The DAYC method also provides an additional benefit of reducing the noise in the

specialty machines that are made specifically to maximize one of the constraints without concern

for the others. An example of this would be a very large and powerful milling machine that was

specifically designed for rough cuts, and therefore sacrificed accuracy for speed. These specialty

machines are an interesting showcase of the ability to stretch the measures at a certain point in

time, but are not representative of the general improvement rate of a particular technology.

We were able to find data for 100 milling machines fromJuly 1928 until August 2012,

each with various specifications relating to their speed, quality, flexibility or cost. Our highest

confidence metrics are Table Speed/Accuracy and Machine Power/Accuracy, and both were

compiled using the DAYC method.

3.3.1.3. 1illing machine technical capability curves

Two reliable technological improvement curves were completed for the milling machine

TD. Both of the metrics take the form of speed/quality. As mentioned above the most complete

metric available by the data is the comparison of machine power to represent speed with the

repeatability of the machine to represent quality. Figure 31 shows the improvement rate of

milling machines power/accuracy since 1928.
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Figure 31: Improvement rate of milling machines measured using

Power/Accuracy

The graph shows an improvement rate of 3.5% (R2 = 0.8) for the DAYC method and an

improvement rate of 6.4% (R2 = 0.6) for the sparse individual machine data. The improvement

rates differ slightly between the two data collection methods, with more confidence in the DAYC

method's results due to the larger number of data points and the higher R2 value. However, we

also note that the individual machine data points when combined with the DAYC lead to little

change to the DAYC points alone (y = 3.84 and R2 = .67)

The other metric that was collected was milling machine table speed/accuracy and is

shown in Figure 32.
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Milling Machine Table Speed/Accuracy
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Figure 32: Improvement rate of milling machines measured using Table

Speed/Accuracy

The improvement rate of this metric shows a k of 6% for the DAYC method (R2 = 0.81)

and 6.4% for the individual machines (R2 = 0.99). While this metric is not a perfect

representation as mentioned earlier, it does corroborate the improvement rate seen in the more

representative metric of machine power/accuracy. When looking to analyze milling machine

speed/quality incorporating all of the metrics, the domain improves at approximately 5 1.5%

per year. This improvement does not include cost measures for milling machines at this point,

which is an area of strong interest for future research.

3.3.2. SLA 3D Printing

There has been considerable interest in 3D printers in recent years, despite the fact

that the first commercially available 3D printer was introduced to the market nearly 20

years ago in 1987 (3D Systems SLA-1). Because the term '3D printer' has been used to
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describe a number of different technological domains, it is necessary to be more specific

about what technology is being studied. Partly for data availability and length of time on

the market, 'industrial SLA 3D printers' was selected as the domain to represent the field of

3D printing/additive manufacturing. In particular, the focus is on industrial 3D printers, as

opposed to hobbyist 3D printers because of their very different levels of maturity and the

hobbyist market is much more recent. Many of the hobbyist 3D printers carry significantly

less capability than their industrial counterparts in many of the areas that are important in

3d printing such as flexibility, and reliability of produced parts. The stereolithography

(SLA) technology was selected in particular because it has the longest time frame of

commercially available machines. Other technologies such as fused deposition modeling

(FDM), selective laser sintering (SLS) and the inkjet/powder-based technologies might also

be studied as well, but offer less time for establishing data trends.

3.3.2.1. SLA 3D Printing FPM

For 3D printing, there are also a number of different ways to evaluate each of the core

capabilities of the machines. In order to understand the particular capabilities of how the

machines perform, it is important to understand the underlying mechanisms behind the

technology being studied. In the case of stereolithography, the parts are produced when a laser

cures a pattern on a thin layer of polymer, then a new layer of polymer is added and the laser

cures another pattern on the next layer. This process is repeated many times to form an object

that is suspended in a bath of liquid resin. The part can then be removed, cleaned and post-

processed if necessary. Figure 33 shows a diagram of how the process works.
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Figure 33: Graphical Depiction of the SLA 3D printing process

In order to measure speed of an SLA printer, one must consider both the amount of time

it takes for the laser to scan one layer of resin, the time it takes to add another layer of resin, and

the post processing time. Ideally data would exist for each of these different times for each

machine, however the industry has adopted a standard of only giving the speed that the laser

moves, which can be related to the amount of time it takes to scan and cure one layer in the

SLA-produced object. In this research, the measure of speed for the industrial SLA 3D printers

used is the laser speed measured in mm/sec. The use of this measure for speed is not perfect, as

it does not take into account other speed-based considerations such as the time it takes to move

from layer to layer (which is often considerable) or the time for post-processing (which is usually
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much less than the print time), nonetheless the measure of laser-speed does provide a usable

metric for the speed of an SLA 3D printer.

Like the measure of speed, there are a number of factors that can contribute to the

quality of a 3D printed part. The list can be quite extensive, including measures such as layer

thickness, repeatability and material properties of the parts being produced. The industry

standard for determining the quality has been to give the layer thickness, which is simply a

measure of the thickness of each of the particular layer of resin that is being cured at one time.

This measure is also interesting in the fact that a smaller layer thickness will result in a longer

build time for each part, as the process will require more steps of curing and adding layers. The

selection of layer thickness as a measure of quality complements the selection of laser speed for

the rate of the manufacturing process because they are largely independent of each other.

Some of the other metrics that could be used for quality include the repeatability or

accuracy of the machines, and the material properties could be a useful measure of flexibility.

While these are important metrics for a SLA printed part, they are not widely recorded for each

of the machines and thus are not a reliable metric. It is possible that the industry trends may

change and different metrics will be tracked, allowing us the ability to understand how these

other measures of quality have changed over time, but at this time the data proves to be too

sparse for a reliable technical capability metric.

One of the main benefits of 3D printing technologies is the flexibility that the processes

provide for the engineers and designers. Measuring the flexibility of manufacturing processes has

been studied at length, and continues to be a topic of much discussion. For a 3D printer, the
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main metric that allows for measurement of flexibility is the print build volume, which is the size

of the largest part that the machine can produce. While there are other possible aspects of

flexibility of a 3D printer, including the number of different materials that can be used and the

robustness to many designs (such as items with overhangs), the overall print volume remains the

most widely reported and is a more objective and continuous metric than some of the others.

The cost of an industrial SLA 3D printer can take a number of forms. The most obvious

measure of cost for a 3D printer is the inflation-adjusted price in US dollars. This metric is used

to evaluate cost for this domain. In addition to the price of a machine, there is also a cost in the

amount of space required for the machine to be installed. This trend can be seen in the

movement from large appliance-sized 3D printers to many of the desktop 3D printers that are

seen today. The reduction in size of the machines allows for them to placed in smaller areas and

can reduce the costs of moving such a large object and thus can reduce the costs associated with

the machine.

Overall there are five measures that we can combine in different ways to form metrics to

measure the increasing technical capabilities of industrial SLA 3D printers. Equation 13 shows a

metric including all five of the measures, which can be manipulated in a number of different

ways to explore the technical dynamics of the domain.

LaserSpeed * BuildVolume
LayerThickness * Cost * MachineSize (Equation 13)
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For example, one way to manipulate these measures is to remove the cost and flexibility

metrics and simply analyze the speed/quality metric to understand how the core capabilities of

the machine have improved over time. In adding or removing measures from this metric and

seeing how the improvement rates differ, one can learn a significant amount about how the

domain has improved over time.

3.3.2.2. SLA 3D Printing Data Collection

While 3D printing has gained more attention in recent years, its roots can be traced back

to the early 1980s when ajapanese researcher published his work on an early SLA machine

(Kodama, 1981). While the first commercially available industrial SLA 3D printer was not

available until Charles Hull and 3D systems released the SLA-1 in the late 1980s. In the early

1990s, the first widely available 3D printers were released by 3D systems call the SLA-190, SLA-

250 and SLA-500. Our data combined a number of different sources, and contains data as far

back as 1991 when 3D-systems released their trio of printers. While some of the early data from

these machines comes from academic journal articles (Kruth, 1991; Waterman, 1994), most of

the data for the industrial SLA printers was gathered from a yearly review publication called the

Wohler's Report (Wohlers, 1996-2010) and the complementing specification sheets from the

manufacturers.

Compared with the data for milling machines, the data for industrial SLA 3D printers has

fewer, yet more complete points. There are 19 industrial SLA 3D printers in our collection of

data over the last 20+ years and there are 7 with a complete set of specifications for the metric

described in equation 13 and the remaining 12 are only missing one or two out of the five

measures that make up the most complete metric described above. For example, all 19 of the
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data points include cost, build volume and machine size, with 12 of those also including layer

thickness, and 7 of those also have laser speed. The completeness of this data allows for more

reliable analysis of the technical improvements of the domain. Ultimately we were able to

compile improvement curves for 4 metric-domain pairs ranging from laser speed/layer thickness

to the most complete metric described in equation 11.

3.3.2.3. SLA 3D Printing technological improvement curve

There was significant doubt among those that we spoke to about the ability to create a

technical capability curve for 3D printing. Part of the reason is because the individual measures

do not seem to follow any sort of pattern, and thus are difficult to use to find an improvement

rate for the domains in the 3D printing area. For example, one metric to consider would be the

flexibility of the industrial SLA 3D printers, which can be measured by the build volume. Figure

34 shows the change in build volumes of industrial SLA 3D printers since 1991. The data does

not indicate any sort of temporal relationship or consistent improvement in this individual

measurement.

SLA Build Volume

1. oo.oo.ooI OA"WO OO? 0

L0.ooo.0o

1D.oM.00
1M 199 1994 196 996 2000 2002 204 2006 200

YFw

Figure 34: Logarithm of SLA Build Volume over time
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While the individual measurements of industrial SLA 3D printers do not create a clear

picture about the improvement rates of the domain, the more complete FPMs discussed above

shows a more convincing relationship between the improvement of SLA 3D printers and time.

Figure 35 shows the improvement of laser speed/layer thickness for the domain.
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Figure 35: Logarithm of laser speed/layer thickness for industrial SLA 31

printers

The data shows an improvement rate of 3 4 % for the technical metric with a very strong

R2 of 0.89. Note that all of graphs for this domain show only the individual points and not the

DAYC method due to the smaller number of available points and the more complete data for

each of the points. Figure 36 shows the improvement curve of the technical metric when the

price of the machine is also taken into account.
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Figure 36: Logarithm of laser speed/ (layer thickness*cost) vs time for

industrial SLA 3D printers

When the economics are taken into account, the improvement rate of the domain is 31 %

with a healthy R2 of 0.9. Figure 37 adds in a measure of flexibility for the domain.
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Figure 37: Logarithm of (laser speed*build volume)/(layer thickness*cost)

vs time for industrial SLA 3D printers
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When the flexibility factor is taken into account, the improvement rate remains close to

the previous metrics at 3 2. 7% with a reduced R2 of 0.7. The final and most complete metric that

was mentioned in Equation 13 is shown in Figure 38.
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Figure 38: Logarithm of (laser speed*build volume) /(layer

thickness*cost*machine size) vs time for industrial SLA 3D printers

The improvement rate of the most complete metric is 37.6% with an impressive R2 of

0.92. When all of the different metrics are considered for the domain of industrial SLA 3D

printers, the improvement rate of the domain is approximately 31 3% per year and is basically

the same with cost in the metric.
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3.3.3. Photolithography

Due to the extensive literature published concerning Moore's law, an interesting

question involves understanding the underlying mechanisms contributing to the

improvement in transistor density. It is for this reason that photolithography was selected as

a third manufacturing domain. Photolithography is an essential step in the production of

microchips, and in its most advanced state is used for relatively few other purposes, making

the link between the improvement in photolithography and microchips very strong. A goal

of this research is to understand how the improvements in photolithography have compared

with Moore's Law and the improvements in microchips. Additionally, photolithography

provides a medium length time frame for analysis - as the photolithography industry has

existed for over 50 years (less than that of milling machines but more than that of 3D

printing).

3.3.3.1. Photolithography FPM

The domain of photolithography follows the same generic formula that the previous two

manufacturing domains used. The speed and quality measures are once again more complex

than the cost measure, and in photolithography we did not find a reliable metric for evaluating

the flexibility of this future-creating technology. A photolithography machine (call a stepper)

works by shining a wavelength of light (often in the UV spectrum) on a mask through a lens and

onto a wafer (usually silicon). The mask creates a pattern that can be repeated many times on

the wafer and is amplified using the lens as is shown in Figure 39.
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Figure 39: Mechanics of a photolithography stepper -adapted from

www.cnx.org.

One of the most common measures of speed for a photolithography machine is the

throughput of the machine. The main metric for speed is given as the throughput measured in

wafers/min. While this is an acceptable metric - it doesn't take into account the increasing wafer

sizes that have taken place over the years. One silicon wafer can make many microprocessors

and thus over the years the size of each silicon wafer has increased to allow for each wafer to

make more microchips. Figure 40 shows the progression of the different sizes of wafers that have

been used in the microprocessor industry over the last 50 years. The change in wafer size has

resulted in a skewed metric for throughput, as a smaller throughput value may actually produce

more microprocessors because of a larger wafer size. Thus a more appropriate metric for speed

of photolithography is the areal throughput, which is calculated by multiplying the throughput of

the stepper by the area of the wafer that is being used to give a metric of mm2/min.
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Figure 40: Different sizes of silicon wafers for use in photolithography

steppers over time

To analyze photolithography quality, there are a number of different measures to look at.

The most direct measure is the stated resolution of the photolithography stepper - which

describes how small a feature that it can produce and is often measured in microns. A closely

related measure is the feature size or the gate length of the integrated circuits that are produced

by the stepper. While these metrics are related to the product being produced and are not

necessarily specifications of the machine, they are very closely related to the stepper and thus can

reliably act a measure of the quality that a photolithography stepper can produce. The

minimum feature size and gate length of integrated circuits are also measured in microns and the

photolithography system improves as the value of all three quality measures decreases.

Ultimately we were able to use all three metrics together to provide for a very complete picture of

how the quality of photolithography has improved over time.
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Throughout our research, we did not find a consistently reliable metric for flexibility of a

photolithographic process. In some ways the flexibility of the process is related to the quality as

described above, and thus we will assume that the quality metric takes into account some

measures of flexibility as well. Finally, the cost of a photolithography stepper is measured by the

standard inflation-adjusted price of the steppers in US dollars. When these measures are

combined into a metric for photolithography as shown in equation 14, they can provide a

relatively complete picture of how the technology has changed over time.

Throughput *WaferSize
Accuracy* Cost (Equation 14)

Like the most complete metric used for 3D printing, the measures in this metric can be

combined in different ways to gain a more complete picture about how the technology has

improved over time.

3.3.3.2. Photolithography Data

There is a rather complete set of data available for photolithography, both on the specific

steppers and on the costs in the industry as a whole. The data for the individual

photolithography steppers was collected by a Harvard University thesis of Rebecca Henderson

(1988). The thesis includes 11 data points for individual photolithography steppers spanning

from 1962 until 1986. The data in these reports was very complete and included costs,

throughput, wafer sizes, and resolution.
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Gordon Moore provided the yearly average data for the semiconductor industry in his

reflective paper on Moore's law that covered the years 1960-2005 (Moore, 2006) as is discussed

in depth in section 2.1 of this thesis. His paper includes many different graphs ranging from the

cost per transistor in a computer processor to the average cost of lithography equipment for the

semiconductor industry. Additionally, Moore gives values for two different measures of quality of

the photolithography process: gate length and minimum feature size.

The two sources complement each other in that they provide both a specific stepper point

of view along with the industry average higher-level perspective. The confidence in the reliability

of these data is increased by their close correlation with each other. The result is four different

metric-domain pairs including the most complete metric as described in equation 12.

3.3.3.3. Photolithography technological improvement curve

The photolithography technical capability curves have a large amount of complete data

and therefore should be seen as more reliable than some of the other metric-domain pairs, as is

discussed in section 3.2.4 of the thesis. Due to the large amount of data we were able to make a

large number of reliable curves for individual measures as well as the more telling and more

complete metrics related to equation 12.

As was mentioned above, there were 3 measures that could be used to measure quality of

the photolithography domain. Figure 41 shows the comparison between the three different

measures of accuracy for photolithography along with their inverted exponential regressions.
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Figure 41: 3 Different ways of measuring accuracy of photolithography:

Resolution, Gate Length and Miinimum Feature size

The data shows very similar improvement rates of 10. 6 % (R2 of 0.81) for stepper

resolution, 13.5% (R2 of 0.99) for the gate length of an integrated circuit and 12.4% (R2 of 0.99)

for the minimum feature size of an integrated circuit. The similarity of these measures made it

possible to combine the measures into one accuracy measure using all of the data points. In

addition, because the technology is improved when the accuracy value decreases, we plot

1/accuracy as shown in figure 42.
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42: Logarithm Combined accuracy measure for photolithography vs

time

The aggregate improvement rate of the accuracy of photolithography steppers is 11.2%

with an R2 of 0.94. Another individual measure that was given is the photolithography tool cost.

Figure 43 shows the increase in photolithography tool costs over the last 50+ years.

Benson 145

100

Figure



Photolithography Tool Cost
1.00E+08

1.00E.07

1.00E.06

S100E+05
LOOE.0

.OOE*02

1.00E+01

1.OOE*00
1960 1965 1970 1975 1980 1985 1990 19S 2000 2005 2010

Year

Figure 43: Logarithm of Tool Price (in 2006 $) vs time for photolithography

The annual inflation-adjusted cost increase for photolithography steppers is very high at

15.4% (R2 =0.99). Figure 44 shows the technical metric that includes speed and quality of the

photolithography steppers.
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Photolithography Areal Throughput/accuracy
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Figure 44: Logarithm of photolithography areal throughput/accuracy vs

time

The improvement of areal throughput/accuracy or photolithography steppers occurs at a

rate of 24% per year with an R2 of 0.85. When the significantly increasing costs are included in

the metric, the improvement rate is lower, as is shown in Figure 45.
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Figure 45: Logarithm of photolithography areal

throughput/ (accuracy*cost) vs time

While the R2 of the most complete metric is very low (0.21), we are more confident in this

particular metric due to the high R2 of the relating measures. Areal throughput/accuracy has an

R2 of 0.85 and the cost measure has an R 2 of 0.99, and the difference between those two

improvement rates (24%-15.4% = 8 .6 %) is around the same value as this particular metric. The

combination of all of these factors indicates that the complete metric has an improvement rate of

7 1.6%.

3.3.4. Carbon Nanotube Production
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Finally, there exists a need to understand how manufacturing at the nano-scale has

improved and thus the production of carbon nanotubes (CNTs) is studied. Carbon

nanotubes are arrangements of carbon atoms with incredible large aspect ratios that create

unique materials properties such as high electrical conductivity, hydrophicity, and strength

to weight ratio. There are two types of CNTs: multi-walled, which are produced in large

quantities and are relatively less expensive and therefore are the more commonly used CNT;

and single wall CNTs, which are more expensive to produce and whose material properties

can be more precisely fine tuned to create specific material properties. As with 3D printing,

there are several technological processes (domains) used in the production of carbon

nanotubes, and while this particular domain is not a strictly manufacturing domain, it

should provide a heuristic to how the capabilities of how the combination of chemical vapor

deposition and other nano-scale technologies have improved over time. CNTs are a bulk

nanomaterial therefore representing a chemical process relevant to nanotechnology, and a raw

material that is fed into many products/processes. This domain is also interesting in that it

provides a chance to study a nascent industry that is still forming and provides a view of a

technology with a very short time frame.

3.3.4.1. Carbon Nanotube Production FPM

Finding reliable metrics for understanding how the nascent field of carbon nanotube

production has improved has proven to be a more difficult task than that of the three previous

domains discussed in this paper. The relative youth of the CNT industry makes it difficult to

gather data of commercially available nano-fabrication methods. The inherent complexity of the

processes also contrasts the unit machining operations of the other three manufacturing domains.
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Due to the fact that many of these processes are being used in scientific research labs and on non-

scaleable projects, it is difficult to find consistent data. Nonetheless we found it important to

understand how the nano-manufacturing field has advanced.

The most reliable metric that we found was the cost per kg of the creation of bulk carbon

nano-tubes. This metric allows for the study of how much the economics of producing carbon

nanotubes have improved over the last 15 years. Regrettably, this data does not include further

information on the chirality, purity, diameter or length of the carbon nanotubes being produced.

However, the metrics can be found for both the single wall carbon nano-tubes and the multi-wall

carbon nanotubes. While this metric is incomplete, it provides interesting insight into a relatively

new field that could help provide predictions for improvements in the technology for future

years. Ultimately the metric for evaluating carbon nano-tubes is the cost per kg produced in

inflation-adjusted USD.

3.3.4.2. Carbon Nanotube Production Data

The data was collected from the text of 10 different sources, nine of which were peer

reviewed journal articles. The only metric that was reported was the price per kilogram of bulk

carbon nanotubes. While it would be preferred to have more metrics to describe the

manufacturing of carbon nanotubes, the recency of the commercial availability of the substance

makes the more limited data set acceptable. Another area where better data would be desired is

in the specification of the particular types of carbon nanotubes being priced. In each of the 9

peer reviewed examples, there is no mention of purity, chirality, diameter, or length of the

Carbon Nanotubes. One bright spot in the data is that we have a large number of different

sources that corroborate each other and that we have data for both the production of single wall
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carbon nanotubes and multi-walled carbon nanotubes. The data for this domain spans from

1999 till 2013.

3.3.4.3. Carbon Nanotube Production technological improvement curve

Due to the limited amount of data available for the nano-manufacturing domain of

carbon nano-tube production, the only metric-domain pairs are cost based. Figure 46 shows the

improvement in production economics for both single and multi-walled carbon nanotubes.
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Figure 46: Logarithm of price of single and multi-wall Carbon Nanotubes vs

time with associate exponential regression lines (the blue curve is drawn in

manually due to the very low coefficient)

The improvement rate of multi-wall carbon nanotubes is 44% per year (R2 = 0.59) and

single wall carbon nanotubes improve at a rate of 24 % per year (R2 =0.6). Multi-wall carbon
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nanotubes are general produced in larger quantities and are the more economical of the two

choices, and appear to be improving at a more rapid pace than the more expensive single wall

carbon nanotubes.

There is only measured metric for this particular domain (indicating a high likelihood of

omitted variables such as length, quality, etc.), only relatively low R2 values, and most

importantly only a relatively short time frame, thus, there is low reliability in these improvement

rates. Additionally, the nature of the data collected for these improvement curves is mostly that of

laboratory uses for CNTs and not many examples of large scale commercial products. Due to the

batch-like processing methods used to create CNTs - it is possible that the improvement rate will

differ when the technology has reached consumer product levels - although this this pattern was

not seen in the development of solar PV or other materials (Benson and Magee, 2012).

Nonetheless, the wide range of sources, and the consistency of the improvement rates for the two

types of carbon nanotubes indicate that CNTs are a relatively rapidly improving technological

domain.

3.3.5. Discussion of Manufacturing TIRs

All four of the manufacturing domains showed exponential improvement of appropriate

metrics. This is an important observation in that it shows consistency of the types of

improvements across several different manufacturing domains. Another implication of this

finding is that manufacturing domains improve similarly to those of products and processes that

have been measured before, even if they are at different rates. This indicates that the

development of manufacturing technological domains can be treated similarly to other types of

technical domains. Had we not seen the exponential improvement, a case could have been made
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for exceptionalism of manufacturing domains and questions could have arisen over whether the

technologies that create other domains improve in a similar fashion to the products represented

in the other domains themselves.

While each of the domains exhibits exponential improvement of some metrics, there are

many more domain-metric pairs that are incredibly noisy and do not show any kind of

relationship between the technical metric and time. These kinds of domain-metric pairs appear

more prevalently in the domains of manufacturing due to their inherent heterogeneity of outputs.

It also indicates that the importance of selecting appropriate metrics is even more critical in the

manufacturing domains than in other more homogenous technologies such as renewable energy

generation technologies where the main output is almost always kWh. We found that in general

the metrics that did follow exponential improvement rates were of the same form as the generic

manufacturing metric shown in Equation 12, and that many of the metrics that were not

exponential did not involve a trade-off.

Within each of the domains, there were separate rate estimates made for each of the

metrics; many of the domains had very similar rates of improvement across many of the metrics.

For example, all of the milling machine metrics improved at rates between 3 .5 % and 6 .5 %

yearly. All of the exponential metrics for SLA 3D printers improved in the 30%-37.5% range.

While there is a range for each of the domains, the general notion that SLA 3D printers improve

at a more rapid rate than milling machines appears very highly likely if not certain. Although

there are some differences in the improvement rates between metrics within a domain, they are

much smaller than the differences in improvement rates between different domains and for

milling and 3D printing the differences are probably within the high confidence accuracy range
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and thus cannot be distinguished. Later in the thesis, there will be a discussion regarding the

domains where some metrics exhibit a faster rate of improvement than others in the same

domain.

Due to the smaller ranges of intra-domain than inter-domain improvement rates, we are

able to compare the relative speeds of improvement for each of the domains. The results show

that milling machines improve the slowest at ~-5% (with a range of +-1. 5 %), photolithography

improves at around 24%, and is drastically reduced to only 5 .3 % improvement when cost is

included in the metric. The fastest improvement rates were found in the production of carbon

nanotubes and SLA 3D printers, which both improved at rate of ~310% (with ranges of 10% and

4% respectively). Based upon the example presented, is interesting to note that the newer

manufacturing technologies improve at a rate that is higher than that of the older technologies.

3.4. The Classification Overlap Method

Determining appropriate TIRs for each TD provides the dependent variable for the large

cross-domain experiment. We look to understand the differences in TIRs between domains

through patent analysis. In order to do this effectively, it is important to locate a relevant and

complete set of patents that represent a particular technological field. The relevance of a patent

set resulting from a search is defined as the number of relevant patents in that set divided by the

total number of patents in the same set. Similarly, completeness is the number of relevant

patents in that set divided by the total number of relevant patents in the entire United States

patent database (a number that can never be known for sure). This section will introduce a

robust, repeatable method for selecting a set of highly relevant and complete patent sets that

represent a particular TD called the Classification Overlap Method (COM). The COM is easily
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repeatable and can be used quickly by many different types of users, including those who are not

well versed in the complexity of the patent system. This section builds off of much of the

knowledge introduced in section 2.3, and describes the intuition behind the COM patent

searching tool, how the method works, and the results of the COM in use for both some simple

and advanced cases.

Figure 47 shows a summary of the COM method to gain more complete and relevant

patent sets.
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Figure 47: Process flow of the COM: most of the method can be automated

via a computer, with only the selection of the search query and the testing of the

final results left to the user.

3.4.1. Step 1: Pre-search US issued patent titles and abstracts for the

search terms
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The first step of the COM is to pre-search for the TD of interest. The most effective way

to do this is to use a set of keywords to begin the process of finding the most representative patent

classes (in both the US and International Patent systems), which is defined in the following

section.

As one of the goals of the method is to be simple and easy to use even for someone not

fluent in the patent system, the input to the COM is simply a set of search terms that can be

entered into a text box. This works best with search queries of two words (ex: solar photovoltaic),

which suits our use case of technological development research. The pre-search was completed

by searching for the two-word query in the title or the abstract of United States Issued Patents.

Thus, the pre-search identifies a set of patents with the specific query in the title or abstract.

The pre-search was done using the patent search tool PatSnap (PatSnap 2013), which

searched all U. S. Patents fromJanuary Ist, 1976 to the present and was used as our database for

further analysis (all of the searches in this section were completed in May of 2012 unless noted

otherwise). In this paper we will give the search queries that can be used in

www.patsnap.com/patents because it is publicly available and has a faster startup time than

recreating a patent database from scratch. The search query used for the pre-search for 'solar

photovoltaic' at www.patsnap.com/patents is:

'7TL:(solar photovoltaic) OR ABST-(solarphotovoltaic) AND DOCUMENTTYPE:United States

Issued Patent'

This search returns 991 patents.

While the most common method of performing a pre-search for the TD is by using a

keyword search, the research can be done by nearly any method. Some of the other methods
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that were used to locate the patent sets for this research included searching for a set of companies

that are well known in the field, a set of known inventors, or even a seed set of patents. Examples

of these alternative pre-search methods will be given later in the thesis when the selection of all of

the patent sets is reviewed.

3.4.2. Step 2: Rank the IPC and UPC patent classes that are most

representative of the technology

The next step in the COM method is to use the set of patents resulting from the pre-

search to determine the US patent classes (UPC) and international patent classes (IPC) that are

most representative of the specific technology. The representativeness ranking for the patent

classes is accomplished by using the mean-precision-recall (MPR) value. This value was inspired

by the 'Fl' score that is common in information retrieval, but uses the arithmetic mean (instead of

the geometric mean) of the precision and recall of a returned data set (Magdy andJones, 2010).

Table 6 shows an example MPR calculation for the UPCs and IPCs in the pre-search for 'solar

photovoltaic'. In the paragraphs below we will describe the calculations to arrive at each column

in this table and will use UPC 136 as the example.

(1) Patent Class (2) Number of ~i ~(4) Total

UPC - 136 0 7489

UPC - 257327032

UPC -438 18188

UPC - 1261315 0

UPC -5266124

IPC- HOIL 59100

IPC - F24J7835

IPC - H02N4723

IPC -H021 40 10876

IPC-4 271 3209
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Table 6: Example calculation of MPR for five UPCs and five IPCs for the search

term 'solar photovoltaic'. The calculation for UPC 136 is described in the text and

is bolded in this Table. Note that the pre-search returned 991 patents.

Using the set of patents from the pre-search, we determine all of the unique patents

classes that appear in the set. For example, within the pre-search results for 'solar photovoltaic',

there are 22 unique IPCs and 10 unique UPCs. Table 6 lists the five IPCs and UPCs (column 1)

with the most patents present in the search for 'solar photovoltaic'. The number of patents

identified in the pre-search that are present is each class is shown in column two (this can also be

called the overlap of the pre-search and patent class); it is found using a search similar to the

following (using UPC 136 in this example, which returns 608 patents):

'CCL-(136) AND T1 L-(solar photovoltaic) OR ABST(solarphotovoltaic) AJD

DOCUMENT TYPE.United States Issued Patent'

Note that the sum of column two is often greater than the total number of patents in the

pre-search group due to the fact that many patents are classified in multiple UPCs or IPCs.

Next, we are interested in computing the fraction of the patents in the pre-search that fall

within each patent classification, also called the patent class Recall and shown in column 3 of

Table 6. The recall for each of the listed patent classes is calculated by dividing the number of

patents in the pre-search results that are within the patent class (column 2) by the number of

patents in the pre-search patent set (991 for the example of'solar photovoltaic'). For UPC 136,

the recall is 608/991 = 0.61.
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recall =
(Equation 15)

Next, we want to determine the total size of each of the patent classes of interest. Column

number 4 shows the total number of patents in each patent class, which is found by the following

search (using UPC 136 as the example, which returns 7489 patents):

'CCL-(136) AND DOCUMENT TYPE. United States Issued Patent'

Given the total size of the patent class, we determine the fraction of the patents in each

patent class present in the pre-search, which is called the patent class Precision (column 5). This

normalizes the weight of very large and very small patent classes that may be over or under

represented in the pre-search due to their different sizes. Calculate the precision of each patent

class within the pre-search by dividing the number of patents in both the search and the patent

class (column 2) by the total number of patents in the patent class (column 4). For UPC 136, the

precision is 608/7489 = 0.081.

precision,,.,= p~pI
p e i o".ia. " (Equation 16)

Finally, we find the mean of the precision and recall values, which gives us an estimate of

how well each patent class represents the pre-search set. The MPR of each patent class (column

6) is calculated by taking the mean of the patent-class precision (column 5) and patent class recall

(column 3). The MPR for UPC 136 is (0.68+0.081)/2=0.34.
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MPR,80wA = precision.,,,= + recall,,,
2 (Equation 17)

The MPR for each potentially representative patent class - identified by containing

patents present in the pre-search - are then ordered from highest MPR to lowest for both the IPC

and UPC patent classification systems.

3.4.3. Step 3: Select the overlap of the most representative IPC class

and UPC class

To find the final set, the patents that are contained within both the IPC and UPC classes

with the highest MPRs within the set of U.S. issued patents are retrieved. As was introduced in

section 2.3 of this thesis, our intuition for this step is founded upon the extensive US patent

examiner experience and knowledge embedded in these two classification systems: the concept is

to utilize that embedded knowledge. If a patent is listed in the most representative patent class in

both systems (particularly since the two systems are somewhat differently structured), a

reasonable hypothesis is that such dual membership results in obtaining patents of higher

relevance (Criscuolo, 2006). With patents having multiple entry systems, the completeness of the

set may at the same time not be too compromised. The results section will test this intuition but

first we complete our description of the method.

For the solar photovoltaic case, table 7 shows the top two classes for the IPC and UPC

with their corresponding MPRs as well as the size of the returned data set when the overlap of

the two classes was retrieved. For example, the number of patents simultaneously contained
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within both highest ranked classes [136 (UPC) and HO 1 L (IPC)] is 5101, whereas the overlap of

257 and F24J is only 16 patents, indicating quite low completeness. Selecting classes with high

MPRs generally results in higher completeness and relevancy percentage combinations in the

final patent set. For example, the large set (n= 136406) obtained when patents that are contained

within both HOlL and 257 consists of a very large fraction (~ 9 8%) of irrelevant patents.

Solar Photovoltaic' HOIL (MPR = .28) F24J (MPR = .05)
136 (MPR=.34) 5101 260
257 (MPR =.17) 136406 16

Table 7: Comparison of Top IPC and UPC classes for the search term 'Solar

Photovoltaic'; the 4 entries in the lower right hand boxes is the number of patents

that are simultaneously listed in both of the specified classes (the overlap of the

two classes).

We will later discuss modifications but our direct method is to select the patents that are

in both the most representative UPC and in the most representative IPC. For the solar

photovoltaic example, the patent set obtained from the overlap of the most representative classes

(136 and HOlL) is obtained by the following query at www.patsnap.com/patents:

'CCL-(136) OR ICL(HOJL) AND DOCUMENT _TPE United States Issued Patent'

3.4.4. Step 4: Test the resulting patent set for relevancy

Although in this demonstration case we tested some preliminary sets for relevance, the

basic process involves performing the relevance test (done by reading the abstracts of a random

or semi-random test set of patents) after obtaining the set from crossing the most representative

UPC class with the most representative IPC class. The relevancy sample test set size for all larger
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sets of patents should be 300 patents to ensure a 95% confidence interval with a margin of error

of 5%. The test set structure can be varied for different purposes. For example in the case of

study of technological change in a domain, we are very interested in the most highly cited

patents, therefore we took the top 100 most highly cited patents and added another 200

randomly selected patents for the test set and determined the number of relevant patents using a

methodology discussed in a previous paper (Benson and Magee, 2012). This relevancy testing

method of the combination of the top 100 most cited patents and 200 randomly selected patents

is used to evaluate the relevancy of all patent data sets in this thesis.

Depending on the use case, there may be a need for a various levels of relevance up to

100% but we consider greater than 60% of the patents being relevant acceptable for broad study

of technological change. It is also important to note the absolute size of the patent sets; we found

that this number varied considerably. In studying technological change over time in a domain,

we are more tolerant of non-relevant patents as long as we retrieve >75% of the relevant patents

(high completeness is favored over high relevance), but that may not be the case for all uses.

3.4.5. COM in Practice

The most important measure of effectiveness for the COM method is if it can provide

highly relevant and complete patent sets for the user. Table 8 compares the overall size (an

indicator of completeness) and relevancy percentage (based upon the sampling method described

above) of the returned search results of three different methods across five sample technological

domains. We compare the direct COM results with those resulting from a keyword search in the

title and abstract because searching the total patent leads to very low relevancy and searching the

Benson 162



title alone gives very poor completeness. Specifically for the comparative keyword searches in

table 8 we use:

'ttl(keyword) OR abst(keyword) AND (DOCUME NTTYPE United States Issued Patent)'

This query in fact is equivalent to our "pre-search" but for the keyword search method,

the resulting set of patents is the "final" set (we will examine the impact of differing search terms

shortly as this has significant impact on the Keyword search patent set). Table 8 also compares

the patent set that is achieved by the method of UPC classification selection. Typically, the

patent classification method involves examining the UPC classification titles and making a

subjective judgment on which class is best for the field of interest or possibly subjectively defining

several classes of potential interest. In our comparison in table 3, we wanted a stable method so

the UPC classification selected was the most representative UPC class for each field based on the

objective MPR method defined above. For example, UPC class 136 -'Batteries: thermoelectric

and photoelectric' was the class identified for the 'photovoltaic electricity' case.

Field of Interest COM Keyword Classification Selection (UPC)
Photovoltaic Electricity 5101 (85%) 1006 (75%) 7233(57%)

Wind Turbine 1346 (94%) 1843 (91%) 12893 (26%)
Electric Capacitor 6173 (846) 11026 (43%) 9472 (20/)

Electrochemical Battery 22115 (62%) 1159 (87%) 26111(62%)
Computed Tomography 3827 (910/) 1289 (98%) 10444 (69%)

Table 8: Size and relevancy (in brackets) of returned data sets for three

search methods

The results show that the COM method does not always simultaneously produce the

highest relevancy percentage and the highest estimated completeness (relevancy times size), but it
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consistently performs well for both characteristics and does not yield very poor results as often

occurs when using the keyword or classification selection methods.

The COM search for 'Photovoltaic Electricity' provides a significant improvement over

the authors' first attempt, which resulted in a set of 2484 patents with only 62% relevancy using a

non-automated but more elaborate keyword search technique (Benson and Magee, 2012). In

Table 8, it is noteworthy that the COM method starting from the same keyword search terms

results in a patent set that is five times larger and of higher relevancy than the keyword search.

The COM photovoltaic set of patents is also superior to the patent set from the third method in

Table 8 as seen by relatively lower relevance for the Classification Selection set. The results of

the keyword search for 'Wind Turbine' are marginally superior to those of the COM method, but

the keyword search produces much less complete patent sets for three of the other fields of interest.

Similarly, the classification selection method produces somewhat superior results for the

'Electrochemical Battery' query but remarkably poor relevance for capacitors. In the computed

tomography set, the COM produces a moderately large and very relevant set of patents but does

not appear to be as complete as the classification selection method.

3.4.5.1. Flexibility of Search Terms and Robustness of COM Method

The COM method requires only a 2-word search term that describes the technology of

interest and can take multiple synonymous or near-synonymous queries and will give the same

result. For example, the search queries 'solar power' and 'photovoltaic electricity' provide the

same end patent sets with COM method but very different results if one just uses a keyword

search. Table 9 shows a comparison of the robustness of the COM and keyword search methods

across different search terms.
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Field of Interest KC Keyword Classification

Photovoltaic
Electricity 5101 (85%) 1006 (750/) 7233 (570/)

Wind Turbine 1346 (940/) 1843 (910/) 12893 (260/)

Electric
Capacitor 6173 (840/) 11026 (430/) 9472 (2%)
Electrochemical
Battery 22115 (62%) 1159 (87%) 26111 (620/)
Computed
Tomography 3827 (910/) 1289 (980/) 10444 (69%)

Table 9: Results of search queries for renewable energy domains and

computed tomography using the COM, keyword and UPC searches

Table 9 indicates that the COM method has a low sensitivity to the selection of initial

search terms as only the term dielectric capacitor led to a substantially different set. On the other

hand, the same keyword differences lead to substantial differences in the keyword search method

for almost all cases. Thus, to learn more about solar photovoltaic technology, COM offers a

stable (and relatively complete and relevant) patent set using a variety of different search terms

whereas the keyword search data sets would be variable and of unknown quality. This lack of

sensitivity to specific search terms indicates that the COM is more repeatable across different

users and technical domains.

3.4.5.2. Advanced Uses of the COM

In arriving at the results in Table 9, the authors noted some further useful information

that suggests modifications of the method for specific fields. For the patent set in the 'wind

turbine' query, the 416 and 290 UPCs are almost equally representative (MPR for 416 =.45,

MPR for 290 =.36). Such close comparisons occur rather often, but it many cases most of the

similarly representative patent class is almost entirely present in the directly determined patent

set. For example, 88% of the patents in the 204/H01M overlap are present in the 429/H01M
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overlap in the search for 'electrochemical cell' (MPR for 204 = .14, MPR for 429 = .37, MPR for

HOIM =.41). In the case of the wind energy example, there is only a 30% redundancy between

the 416/FO3D overlap and the 290/FO3D overlap, but both patent sets are relevant to the wind

energy generation field. Specifically, the 416/FO3D overlap has patents that are related to the

blades of a wind turbine, while the 290/FO3D overlap contains patents primarily involved in the

gearbox and generator portion of the wind turbines. This is also indicated by the UPC titles for

the patent classes: 416 - 'Fluid reaction surfaces (i.e. impellers)' and 290 -'Prime mover dynamo

plants'. In this case, for further analysis of technological change, we recommend using both the

290/FO3D overlap and the non-redundant part of the 416/FO3D overlap, which, when

combined, result in one patent set containing 2078 patents.

This same technique was used for obtaining a computed tomography patent set where

the 378/GOlN overlap, which includes 3814 patents with 76% relevancy, is combined with the

original set of 378/A61B (3827/91%) to create a final data set with 7330 patents with 84%

relevancy The appropriate query for the computed tomography search is:

"CCL-(378) AND (ICL-(A61B) OR ICL-(G01A9) AND (DOCUMET TYPE: United States

Issued Patent)"

Another emendation suggested from the relevance test experience is further pruning of a

particular overlap after the fact. This is demonstrated clearly by the search for patents related to

energy storage batteries, which results in the cross of 429 -'Chemistry: electrical current

producing apparatus, product, and process' and HOIM -'Processes or means, e.g. batteries, for

the direct conversion of chemical energy into electrical energy'. The unaltered set -see Table 9-

results in 6 2% relevancy, which is only marginally adequate for our use case. During the
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relevancy sampling, it became clear that many of the non-relevant patents were related to fuel

cells. Therefore, in order improve the patent set, we simply removed many fuel cell patents from

the set by eliminating patents with fuel cell in the title -using the following query on

www.patsnap.com/patents:

"((CCL (429) AND ICL-(HOJM)) NOT (ThL (Fuel Cell))) AND (DOCUMFNT _TPE:United

States Issued Patent)"

The removal of the patents that had fuel cell in the title resulted in a reduction of 5649

patents, leaving a data set of 16466 patents, which, when sampled had a greatly improved 83%

relevancy. This emendation helps alleviate any issues arising from very large patent classes in

either the IPC or UPC with relatively small amounts of extra work by the user. Table 10 shows

the comparison of the effectiveness of the different search methods including the COM method

with modifications for the three fields just discussed.

ClassificationField of Interest COM COM Modified Keyword Selection
Photovoltaic
Electricity 5101 (85%) 5101 (85%) 1006 (75%) 7233 (570/)

Wind Turbine 1346 (94/) 2078 (94%) 1843 (910/) 12893 (26%)
Electric
Capacitor 6173 (84%) 6173 (84%) 11026 (430/) 9472 (20/)
Electrochemical
Battery 22115 (62%) 16466 (83%) 1157 (87%) 26111 (62%)
Computed
Tomography 3827 (910/) 7330 (840/) 1289 (980/) 10444 (69%)

Table 10: Results of the COM, the modified COM, keyword and

classification searches
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When including the emendations beyond the fully automated COM method, the method

becomes better than the other search methods across all of the queries we tested. While the

modifications to the original COM method are helpful, they are certainly not necessary if one is

interested in searching for a large number of data sets across many technical fields, as can be the

case for some research related to technological development. However, the ease of making such

modifications does enhance the usefulness of the COM method.

3.4.5.3. Comparison to an Expert Selection of Patents

While the COM method is not intended to be a replacement for an expertly selected set

of patents, it is useful to understand how the method compares with a set of patents hand selected

by an expert. Manuel Trajtenberg, who was widely referred to in section 2.3 of this thesis has

many well cited works dealing with patents and thus can definitely be considered an expert. In

order to do this, the patents from the three computed tomography searches are compared with

Trajtenberg's set, using 1973-1987 as the search years in order to match the years spanning

Trajtenberg's search. The results are shown in table 11 (Trajtenberg, 1990).

Classification
HKC HKC Modified Keyword Selection

Number of
patents 524 1373 113 3812
Overlap with
Trajtenberg 136 239 76 426

Table 11: Comparison of COM results to Trajtenberg's expert set (limited

to years 1973-1987)
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The COM set contains 524 patents, with 136 patents overlapping Trajtentberg's set of

456 patents. If we were to assume that Trajtenberg's set is the complete set of relevant patents

for the computed tomography economic domain, the COM method would have a relevancy of

26 % and a completeness of 30%. The keyword search is far worse in completeness and the

classification method is far inferior in relevance so the COM is the best of three weak

comparators in this case. While the COM method does not match up well with the Trajtenberg

set, it does manage to locate 4 of the top 5 most cited patents in the Trajtenberg set as well 3

other highly cited patents that were not in Trajtenberg's set. The results look more promising

when the adjusted COM method including the 378&GOIN data set is used, thereby locating 7 of

the top 10 most cited patents in Trajtenberg's set.

The highly cited patents in the COM results that were not found in Trajtenberg's data set

highlight the difference between searches within a technical or an economic category.

Trajtenberg aimed to:

'allow one to identi quite easily all the patents issued in predetermined economic categories, and retrieve

themforfurther analysis. '(Trajtenberg, 1987)

While his analysis is very similar to that of ours, we are primarily interested in identifying

patents in a predetermined technical category as opposed to the economic domains that Trajtenberg

focused upon. For example, the highly cited patent - number 4583242 'Apparatus for positioning

a sample in a computerized axial tomographic scanner' - describes a method for locating a core

sample from a borehole. This patent uses computed tomography outside of medical applications

for identifying samples of rock or core for the petroleum industry. However, the patent still
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represents a development within the technological field. Patents such as these are clearly outside

of Trajtenberg's intended field of study, but are within our broader field of study, as we are

concerned with including technological spillover in our studies (Benson and Magee, 2012).

Ultimately the marginal agreement of the patents found by the COM method and the

Trajtenberg set demonstrates that the COM method alone is not a replacement for an expertly

selected set of patents within an economic category, but rather a robust tool to be used in

conjunction with others to locate a set of patents relevant to a particular technical field.

3.4.6. Applying the COM to the 28 TDs

The COM provides a new tool to locate highly relevant and complete sets of patents

within a technological field. The method is easily automated and straightforward to use, only

requiring a query related to the field of interest. Moreover, our results show that the COM allows

for flexibility in the initial keywords chosen. We have shown that the patent sets obtained from

the COM method are nearly always an improvement over those obtained from the keyword or

the classification search methods. Importantly, the COM method is more robust and generally

easier to use. The method acts as a supplement, not a replacement for an expertly selected set of

patents. COM is a simple and repeatable method for selecting sets of patents relevant to a

particular technical field. The repeatability of this method should help improve consistency of

patent analysis across many fields and in particular plays an important role in selecting relevant

patent sets to be analyzed and compared with the TIRs of the 28 TDs.
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3.5. Domain Patent Markers (DPMs) based on 5 Main

Hypotheses

The main cross-domain experiment that this thesis is centered around involves searching

for patent-based explanations for the variation of the TIR across domains. Although there is no

existing theory to explain TIR differences between technological domains, there are a large

number of useful theoretical writings on technological change. This section of the thesis builds

upon this prior work to establish a foundation for explaining improvement rate differences as well

as to develop hypotheses that are testable from the patent data. Domain Patent Markers (DPMs)

are introduced that allow for the evaluation of these hypotheses using the patent sets selected by

the classification overlap method for each technological domain.

3.5.1. Hypothesis 1: Effort

Section 2.1 of this thesis lists many theories of technological change that relate improving

technology with the amount of effort that is put into a particular technology. Figure 48 shows a

graphical summary of Hypothesis 1.

Revenue

this thesis
Figure 48: Graphical Summary of Hypothesis 1 - Effort
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There are several aspects of technological evolution where the demand or usage

could play an important role in the relative rate of improvement in a technological domain as are

shown in figure 48 by the gray arrows and annotated letters. The theoretical basis for each of

these relationships is introduced and the culmination of these relationships will be a hypothesis

that can be tested using DPMs.

Annotation [A] in figure 48 represents the link between effort and technological

improvement. As was mentioned previously in section 2.1.2, Wright's (1936) important paper

strongly related the production (and therefore revenue) of a product with decreasing prices and

contributes much of this to improvements in the related technology. This sentiment was echoed

by Arrow in 1962 in his paper 'The Economic Implications of Learning by Doing' where he

stated that more highly used technologies would enable more opportunity to 'learn by doing' in

production as is discussed in section 2.2.4.

The relationships between the amount of revenue and the quantity of R&D spending for

a technology is depicted in [B] in figure 48. As companies make more money by selling a certain

product, they are likely to reinvest in that product with the hopes of making further profits from

the technology. This relationship was shown by Bound et al (1982) when they confirmed a very

strong correlation between the R&D efforts of a firm and their respective profits in a hundreds of

firms across many industries and scales.

The direct relationship between R&D output and technical improvement is designated by

[C] in figure 48 and was discussed by Christensen (1992) when he related the purely technical

improvement of areal density of hard disks to the increase in engineering effort as was mentioned
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in section 2.2.6. The intuitive relationship between R&D effort and the number of patents

produced by a particular firm is shown in [D] in figure 48 and such a relationship is supported in

the work of (Margolis and Kammen, 1999). Trajtenberg's support for this idea is stated in

section 2.3.

Thus, our study uses patents to test the theory that more inventive effort, as can be

measured by demand, production, or R&D spending, results in better technological performance

improvements. Thus the first hypothesis is:

Hypothesis 1: The performance improvement or cost reduction rate in a

technological domain should increase with the number of patents within each

technological domain

3.5.1.1. DPMs to Measure Effort

Hypothesis 1 can be evaluated by simply counting the number of patents in a domain, or

comparing the yearly average patenting rate for each of the domains. The DPMs used to

evaluate Hypothesis 1 are listed in this section.

Simple Patent Count

This is the total number of patents within a technological domain. In this research, this

includes patents that were published betweenjanuary 1st, 1976 andJuly 1st, 2013. This measure

is calculated using Equation 18 where SPC is the simple patent count, t is the date, and Pt is the

set of patents issued on that particular date, and COUNTO returns the total number of elements

in a set.
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7/112013

SPC = Y COUNT(P,)
t=1/1/1976 (Equation 18)

3.5.2. Hypothesis 2: Breakthroughs

Hypothesis two involves the impact of very important inventions on technological

improvement. Figure 49 shows a graphical summary of the Hypothesis 2.

Impo)rtan
yInventions

Effort A --

k ncrementa
lefltixn this thesis

Figure 49: Graphical Summary of Hypothesis 2 - Breakthroughs

Section 2.2.7 discusses two type of inventions, one with a select few very important

inventions and one with many inventions of lesser importance. This variation in outcome of

inventive effort is depicted as [A] in figure 49. Thus, it might be reasonable to suspect that

technological domains with enhanced radical invention would improve in performance faster

than those with less of such breakthroughs as depicted in [B] in figure 49. This theory is

supported by Tushman and Andersen (1986) who claim that the bulk of the performance
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improvement in a technology is driven by a few rare inventions. While it is difficult to determine

objectively what qualifies as a very important invention, several studies introduced in section 2.3

show that the number of forward citations that a patent receives is likely to correlate with their

importance as depicted in [C] in figure 49.

Thus, hypothesis two is as follows:

Hypothesis 2: Technological domains with more highly cited patents

should have higher rates of improvement of performance or cost reduction.

3.5.2.1. DPMs to Measure Breakthroughs

The DPMs used to tests Hypothesis 2 are directly related to the future inventions that are

based upon the inventions with a TD. These theories are measures of importance and impact

that a field has on future inventions.

Average Number of Forward Citations per Patent

This is the average number of Forward citations for the patents in a technological

domain. This measure is calculated using Equation 19 where SPC is the simple patent count,

and ', is the number of Forward citations for patent i. Please note that 1-1 Jn is the just the

sum of the total count of Forward citations for all of the patents in the TD (without duplicates

removed).
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i-1 j-l

SPC (Equation 19)

Total Number of Patents with more than 20 Forward Citations

This is the number of patents in a technological domain that have received more than 20

citations. This measure is calculated using equation 20 where SPC is the simple patent count,

PC1 is the number of Forward citations for patent i, and the function IF(arg) only counts the values

if the argument is satisfied. In this situation, IF(FC > 20) will only be counted if patent i has

more than 20 forward citations. The specific cutoff of 20 citations is based off of the work done

by Schoenmakers and Duysters (2010).

IF(FC, > 20)
m (Equation 21)

3.5.3. Hypothesis 3: Science

Hypothesis 3 centers around the idea -derived from versions of the linear model

discussed in section 2.2.2 that scientific progress is the basis of technological improvement and

thus domains that have more reliance on basic science should improve at a faster rate than

domains that are not as dependent upon science. Figure 50 shows a graphical summary of

Hypothesis 3.
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Figure 50: Graphical Summary of Hypothesis 3 - Science

As was discussed in section 2.3, the use of the citations in a patent that are to non-patent

literature (NPL) - usually scientific journals - are available, the NPL citation fraction has been

used to ascertain the scientific connection of specific patents as is shown in [C] in 50 and was

demonstrated by Trajtenberg et al (1997) and others (Hall andJaffe, 2001; Valentini, 2012)

For understanding differences in rates between domains, this theory suggests that domains

whose patents cite more scientific articles will improve more rapidly than those who cite less such

articles; the resulting hypothesis is:

Hypothesis 3: Technological domains with a higher frequency of

citations to the scientific literature should have higher rates of improvement in

performance.

3.5.3.1. DPMs to Measure Scientific Reliance

The DPMs used to test Hypothesis 3 are based upon the non-patent literature citations

that link the patents to scientific literature.
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Non-Patent Literature Citation Ratio

This is the average number of patent classes to which each patent belongs in a

technological domain. This measure is calculated using Equation 22 where SPC is the simple

patent count, NP4 is the number non-patent literature citations for each patent i, and BC' is

the number of backward citations for each patent i.

NPI

PNP + BC,
SPC (Equation 22)

Number of Patents with >0 NPL Citation

This is the total number of patents within a domain that have at least 1 non-patent

literature reference. This measure is calculated using Equation 23 where SPC is the simple

patent count, NPL is the number non-patent literature citations for each patent i, and IF is the

operator that only count patents that have satisfied the condition - in this case of having at least 1

NPL citation.

IF(NP, > 0)
(Equation 23)

Ratio of Patents with >0 NPL Citation

This is the ratio of patents within a domain that have at least 1 non-patent literature

reference. This measure is calculated using Equation 24 where SPC is the simple patent count,

NPL, is the number non-patent literature citations for each patent i, and IF is the operator that

only count patents that have satisfied the condition - in this case of having at least 1 NPL citation.
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SPC

XIF(NPL, >0)

SPC (Equation 24)

3.5.4. Hypothesis 4: Recency

The ideas that more rapidly improving domains are newer and are based upon more

recent knowledge (and the resulting feedback loop) forms the basic intuition for Hypothesis 4.

More specifically, we examine whether domains that are newer or rely upon more recent

knowledge improve at a more rapid pace than their older counterparts. Figure 51 shows a

graphical summary of Hypothesis 4.

wportant 7
P atEnts
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Figure 51: Graphical Summary of Hypothesis 4 - Recency

While not specifically related to technological improvement, the relationship between

more recent science and more rapidly improving scientific fields as depicted in [A] in figure 51

provides a promising analogy for the recency of patents and technological improvement. The

connection between recency of science and higher scientific improvement rates was studied in

depth by Price (1965), who showed that fast improving scientific fields follow a 'research front'
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from that relies mainly on very recently published papers. Schoenmakers and Duysters (2010)

showed that more important inventions Aended to rely upon newer technologies as depicted in

[B] in figure 51. This relationship would indicate that recent inventions act a root cause of

technological improvement. Another explanation of these relationships is that recent knowledge

could act as an instrumental variable and cause both technological improvement and the

creation of important inventions as depicted in [C] in figure 51. Such a relationship was shown

by Nerkar (2003) in his study of path-dependency in inventions.

The logic then follows that if more recent patents are the most important ones to current

patents, acceleration of performance is more likely than for a field that is still relying on older

foundations; the resulting hypothesis is:

Hypothesis 4: Technological domains whose patents cite more recent

patents should have higher rates of improvement in performance.

3.5.4.1. Recency DPMs

Hypothesis 4 is evaluated using DPMs that are directly related to the dates of publication

of the TD patent sets and its related citations. These metrics provide an overview of age-related

characteristics for each TD.

Average Publication Year

This is the average year of publication for the patents within a technological domain. In

this research, this includes patents that were published betweenJanuary 1st, 1976 andJuly 1st,
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2013. This measure is calculated using Equation 25 where SPC is the simple patent count and

is the publication year of patent i.

sPc (Equation 25)

Price Index (3 years)

This is the average number of forward citations that each patent received within 3 years

of publication for patents in a technological domain divided by the average total number of

forward citations per patent. This measure is calculated using Equation 26 where SPC is the

simple patent count, j is the number of Forward citations for patent i, 'm is the publication

year of patent i, t is the publication date of forward citationj of patent i, and the function

IF(arg) only counts the values if the argument is satisfied.

VCi I

14 jW!
SPC (Equation 26)

The next two DPMs are a combination of hypothesis 2 and hypothesis 4, as they are measures of how many

citations a patent receives soon afer publication.

Average number of Forward Citations within 3 years of publication per patent
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This DPM is simply the numerator of the price index (3 years) listed above. This is the,

average number of forward citations that each patent received within 3 years of publication for

patents in a technological domain. This measure is calculated using Equation 27 where SPC is

the simple patent count, F, is the number of Forward citations for patent i, i s the publication

t
year of patent i, is the publication date of forward citationj of patent i, and the function

IF(arg) only counts the values if the argument is satisfied.

SMPC

-- IF(t -t P 3)
1.1 J-1 (Equation 27)

Average Age of Backward Citations

This is the average age of publication of the backward citations for patents within a

technological domain. This measure is calculated using Equation 28 where SPC is the simple

patent count, 6' is the number of backward citations for patent i, - is the year of publication

of backward citationj of patent i and t is the publication year of patent i. Note that this

equation is the average publication date - the average publication date of backward citations.

PC

"WI JSl (Equation 28)
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3.5.5. Hypothesis 5: Breadth of Knowledge

The intuition behind hypothesis 5 is that domains that rely upon knowledge from a

broader knowledge base are likely to improve more quickly and are discussed in depth in section

2.2 of this thesis. Figure 52 shows a graphical summary of the Hypothesis 5.

Figure 52: Graphical Summary of Hypothesis 5 - Breadth of Knowledge

The theories regarding breadth of knowledge are often related to the combining of

knowledge from different domains, stating that the use of information from very different sources

is likely to result in improved technological outcomes as is shown by [A] in figure 52. Rosenberg

(1982) showed that technological spillover greatly impacted the quantity and quality of

technological change in the United States in the 2 0 th century. A recent paper by Nemet and

Johnson (2012) reviews the studies that link the flow of knowledge between inventions to citation

flows as shown by [B] in figure 52.

Many studies havefound that citationsfrom one patent to another provide a meansfor measuring theflows

of knowledge (Trajtenberg, 1990; Jaffe et al., 1998, 2000). Detailed technology case studies of citation networks

generally find that cited prior does include precursor inventions (Mina et al., 2007; Fontana et al., 2009;

Barbera-Tomas et al., 2011). (Nemet and Johnson, 2012)
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This link between citations and flows of knowledge is crucial to several of the domain patent

markers that are used to test these hypotheses. Nemet andJohnson(2012) find that their results

do NOT support the theory that important inventions involve the transfer of new knowledge

from one technological domain to the other through patents. Thus hypothesis 5 is:

Hypothesis 5: Technological domains that cite higher internal

fractions of patents from their own domain will have higher rates of

improvement.

3.5.5.1. DPMs to Measure Breadth of Knowledge

The DPMs that are used to evaluate Hypothesis 5 are related to the knowledge base on

which a TD is built. These theories are intended to find the roots of the information that was

used to create the inventions in the TD.

Percentage of Backward Citations to Own Domain

This is the percentage of backward citations from the entire patent set that are to patents

within the patent set. This measure is calculated using Equation 29 where SPC is the simple

patent count, and X is the set of backward citations for patent P, is the total set of patents

within the TD and U is the union of two sets,n is the intersection between two sets and

COUNTO counts the number of elements in a set.

COUNT(UPl U BC,)
*at 1"1 (Equation 29)
SPC

Benson 184



3.5.6. Other Domain Patent Markers

While most of the DPMs in this study were developed specifically to test the 5 main

hypotheses, several other DPMs were used as additional tests for correlation with TIRs of the

TDs. This subsection contains DPMs that are directly related to the biographical data of a

patent and the TD patent set. Some of the DPMs in this category can act as controls as they are

not supported by any particular theory. Some additional technological change theories that can

be evaluated using these metrics are as follows:

- A wider variety of human input for a technology (more inventors or assignees) can lead to

better inventions and a higher TIR

- Inventions that have multiple forms (many family members) are likely to lead to more

innovation and thus a higher TIR

- Patents with longer descriptors (title, abstract claim) are more detailed and thus are more

focused, and this focus leads to a higher TIR

- Conversely patents with shorter descriptions are more general and thus enable more

inventions and a higher TIR

Average Number of Inventors per Patent

This is the average number of inventors that are listed on each patent within a

technological domain. This measure is calculated using Equation 30 where SPC is the simple

patent count and inventor; is the count of the number of inventors for each patent i.
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inventor,

SPC (Equation 30)

Average Number of Assignees per Patent

This is the average number of assignees that are listed on each patent within a

technological domain. This measure is calculated using Equation 31 where SPC is the simple

patent count and assignee is the count of the number of assignees for each patent i.

Sc
Sassignee,

ini
SPC (Equation 31)

Average Number of INPADOC Family Members Per Patent

This is the average number of INPADOC family members that are listed on each patent

within a technological domain. INPADOC refers to the database that is being used to populate

the information and has a definition of patent 'family members' that refers to documents that are

all linked through a common priority filing document.3 This measure is calculated using

Equation 32 where SPC is the simple patent count and is the count of the number

INPADOC family members for each patent i.

I INPADOC,

SPC (Equation 32)
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The next three DPMs are preliminary attempts at textual analysis. Full-scale semantic or

textual analysis is beyond the scope of this thesis, but is certainly an opportunity for future

research that is discussed in the end of the thesis.

Average Length (in characters) of the Title per Patent

This is the average number of characters (including spaces) of the title of each patent

within a technological domain. This measure is calculated using Equation 33 where SPC is the

simple patent count and Length(fitle), is the count of the number of characters in the title for

each patent i.

sPC
YLength(tte),

SPC (Equation 33)

Average Length (in characters) of the Abstract per Patent

This is the average number of characters (including spaces) of the abstract of each patent

within a technological domain. This measure is calculated using Equation 34 where SPC is the

simple patent count and Length(abstrac' is the count of the number of characters in the

abstract for each patent i.

SLength(abstract),

SPC (Equation 34)
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Average Length (in characters) of the First Claim of each Patent

This is the average number of characters (including spaces) of the first claim of each

patent within a technological domain. This measure is calculated using Equation 35 where SPC

is the simple patent count and Length(abstract)' is the count of the number of characters in the

first claim for each patent i.

PC
Length(abstract),

SPC (Equation 35)

3.6. Renewable Energy Case Study

This section summarizes a recent publication (Benson and Magee, 2014) based upon this

thesis that presents four renewable energy technologies as a short demonstration to show how the

TIRs can be related to the DPMs. Only one DPM from each hypothesis is be used to

demonstrate the overall concept.

Two pairs of renewable energy technologies were analyzed. Importantly, the annual

improvement rate of cost/investment is quite different for the four technological domains:

namely, solar photovoltaics (PV) (9.5% per year), wind turbines (9.2%), batteries (7.0%) and

capacitors (14.6%). While examining these TIRs for individual domains is important, this paper

addresses the relative rate of cost reduction in groups of competing technologies. Among

competitive approaches, those improving faster than the alternatives that are available are likely

to be most economically viable and thus most highly used in the longer term. There are

significant differences in rates between the selected sets of technologies, and if indicative of the
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future could determine which domains end up dominating their respective function (energy

generation, energy storage). For the chief purpose of this section the large differences between the

improvement rates sufficiently differentiates the four domains to empirically examine the

hypotheses that were discussed in section 3.5 of this thesis. Table 12 shows the summary of the

results for the applicable measure for each hypothesis.

Domain Solar PV Wind Capacitors Batteries

Improvement Rate 9.5% 9.2% 14.0% 7.0%

H1 - Simple Patent Count 5203 2498 5944 16122
H2 - % of patents cited over 20 times 26% .19% 17.5% 15.6%

H3 - NPL Citation % 22% 10% 11% 18%

H4 - Average age of cited patents (years) 10.6 17.3 10.2 10.45
H5 - % of cites to own domains 8.3% 6.3% 9.4% 10.1%

Table 12: Short case study of TIR-DPM comparison for 4 Renewable

Energy Domains

It is informative to compare the results by looking at the four domains as two independent

sets (one for energy generation and one for energy storage). There are only two hypotheses that

are consistent with the empirical results for both pairs in this type of comparison. The proportion

of highly cited patents is higher for the two technologies with higher improvement rates (solar PV

and capacitors) in accord with Hypothesis 2. This may lend credence to the idea that radical or

breakthrough inventions tend to move technologies forward, although the difference between

batteries and capacitors is very small for this metric, which weakens the argument since the

battery domain progresses much more slowly than the capacitor domain. Another signal in this

comparison is that from the average ages of cited patents which is smaller for solar and capacitors

as suggested by hypothesis 4. These results support the idea that domains that rely on more

recent technology tend to develop more quickly.

In order to analyze the four data points as a whole, we performed a correlation analysis

on this data. Not surprisingly, the limited number of data points in the publication case study
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(four) assures that there were no statistically significant correlations. In fact, the qualitative review

agrees with the statistical test in showing no reliable explanation for the difference in rates; this

review provides very weak support for Hypothesis 2 - Breakthroughs and Hypothesis 4 -

Recency. The lack of statistical significance in such a small sample requires the analysis of a

large number of domains, hence the broad application to 28 TDs reported in this thesis.

3.7. Statistical Comparison of TIRs and DPMs

The structure of the large cross-domain experiment attempts to explain the variation

in TIRs (the dependent variable) with the variation in the various DPMs (independent

variables). The objective is to determine which of the DPMs correlate significantly with the

TIRs. A DPM that correlates positively and significantly with the TIR is support for the

related hypothesis.

Due to the large number of independent variables (DPMs) it is possible that even a

statistically significant correlation could be a false positive. In an attempt to ameliorate this

risk, several robustness tests were performed. Most of the hypotheses have more than one

DPM that is used to evaluate the hypothesis, thus a single positive (or negative) indication

will not be the sole determinant of support (or lack thereof) of the hypothesis. Additionally,

domain-based and time-based robustness tests have been used to validate the results and

reduce the likelihood of results that are based purely on the particular domains or the

associated time frame that are used in the test.
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The DPMs that are most strongly correlated with TIR and prove robust to time and

domain-sensitivity are then combined into predictive models of TIR using linear regression.

The statistical tests associated with these models provide evidence to support or deny their

predictive applicability. In addition to the primary regressions that contain the strongest

DPMs, a number of additional regression models were tested using the other DPMs to

ensure that the strongest DPM-based predictive model was located.
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Chapter 4: Results

This section of the thesis gives the results of the cross-domain comparison of the domain

patent markers and the technological improvement rates. Before giving these key findings, the

results for technological improvement rates and patents that are essential to the cross-domain

comparison are shown. Following the methodology outlined in Chapter 3, this section will begin

with a discussion of the technological improvement rate for each of the domain-metric-pairs,

including the selection of relevant functional performance metric and the statistical robustness

tests for the technological improvement rates. Next, the patent sets for each of the TDs that were

selected using the COM will be discussed, along with the initial pre-searches and some of the

emendations of the COM that were used to find highly relevant and precise patents sets. Next,

the results of applying the domain patent marker to each of the TDs will be shown, including the

range of each. Finally, the domain patent markers will be related to the technological

improvement rates through a set of correlation tables and statistical regressions, including

robustness tests of random sets of TDs and time sensitivity analysis to understand the potential

predictive capability of the measures. This Chapter will intentionally avoid deep interpretation

of the results, as that topic will be covered in Chapter 5 of the thesis.
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4.1. Overview of Technological Improvement Rates

In total, 28 TDs resulted in 88 domain metric pairs when accounting for all of the

different potential metrics for each technology. Data was collected for each of the domain metric

pairs and a technological improvement rate was then derived from these data sets as was

described in section 3.2.1. This subsection will describe each of the TDs along with their

corresponding domain metric pairs and technological improvement rates. Finally, the results of

statistical tests introduced in section 3.2.4 for each of the technological improvement rates will be

discussed along with the selection of the final technological improvement rates for each of the 28

TDs that are compared with the domain patent markers to determine the final correlation of the

rates.

4.1.1. Domains and Functional Performance Metrics (FPMs)

The 28 TDs were analyzed and a resulting in a total of 88 domain metric pairs were

derived from FPMs that should represent an aspect of the consumers purchasing decision. The

following sub-section will explain each of the domains along with their resulting FPMs. This sub-

section should read slightly like a list of all of the domains along with their relevant FPMs. Each

of the FPMs listed in this section will correspond to a domain metric pair and technological

improvement rate in the next sub-section. The units of each FPM along with their derivation are

also listed and although many are variations on SI units, some of the FPMs are kept in units that

are common to that particular industry.

The TDs are listed in alphabetical order and each of the FPMs is listed in approximate

order of increasing completeness for each TD. Additional explanation is given for FPMs that are
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particularly uncommon or very domain-specific (e. g., Computed Tomography). While it is ideal

to find the most complete FPM for each domain, often times the very complete FPMs are limited

by data availability and thus the combination of the less complete FPMs resulted in an unreliable

TIR. Finally, when necessary, potentially important omitted variables for a technological,

domain will be mentioned after the description of the FPMs.

3D-Printing (industrial stereolithography)

speedmm
see ) = -- - The simplest measure of SLA 3D printing is how fast the laser

layerdickness(mm) sec
moves when curing the resin while maintaining a specific layer thickness. It must be noted that
in some cases, such as this one the individual metrics can be coupled. For example, with fixed
laser power, one would maximize layer thickness by increasing speed and decreasing layer
thickness (because the laser would spend less time curing each unit of resin as it moves faster).

speed(-)
_ ec*$ - Another measure of SLA 3D printing is how fast the

layerhickness(mm)* cost($)
laser moves when curing the resin while maintaining a specific layer thickness at a certain cost to
the consumer.

speed( )*buidvoLume(m )
ec- sec*-$ The more complete measure of SLA

layerthickness(mm)* machinesize(mm3)*Cost($)
3D printing takes into account the build volume size, which allows for the production of larger
parts and also the size of the machine, for which space can be at a premium in labs or production
centers.

Aircraft Transport

passenger *miks(m)
hour(hr) passenger *mPh - Aircraft transport has a commonly used metric that

takes into account the speed of an aircraft along with the number of passengers an aircraft is
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capable of transporting. This is basically a measure of the productivity of an aircraft for a
purchasing airline (Martino, 1971).

Camera Sensitivity

saturation _output(mV) mV

pixelsize(um 2 ) /Ll 2 .- The measurement for camera sensitivity involves the saturation
output measured in mV per square area of a pixel.

Combustion Engines

power(W) W

cost($) $ - A measure of the performance of a combustion engine is the amount of power
it produces per cost of the engine.

power(W) W
volume(L) L - Another measure of the performance of a combustion engine is the amount of

power it produces divided by the overall volume of the engine.

power(W) W
mass(kg) kg - Another measure of the performance of a combustion engine is the amount of

power it produces divided by the overall mass of the engine.

Within the combustion engine TD, the data collected could be split into several sub-

domains. TIRs were collected for each of the following sub-TDs:

Aircraft Piston combustion engine

Aircraft Turbine combustion engine
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Automobile Piston combustion engine

The final TIRs that were used in the comparison with the domain patent marker were a

combination of all of the metrics.

Computed Tomography (CT)

distinct detai 1

image.depth(mm)*scan -ime(sec) MM*SWC - The metrics used in CT scanning are slightly

more domain-specific than most, and Peterschmitt (2007) gives a good summary of how a CT

scanner is measured.

The main purpose of medical imaging is to provide access to a reliable diagnosis method to a large set of

people. An efficient medical imaging device can ideally help diagnose quickly and accurately cancers (for instance) to

attempt to have an impact on care quality:

- The image provided by the imaging device has to show sufficiently small and distinct details. Intuitively,

the spatial resolution of an imaging system can be defined in tenms of the smallest spacing between two objects that

can be imaged clearly. Resolution is therefore an adapted criterion. The number of distinct detail per unit length can

altematively be chosen to show an improvement in technology.

- The studied technique should be convenientfor the patient: a short examinationfree of undesirable side

effects is a second qualiy criterion. Evaluating such a characteristic is not obvious and many newly developed

medical imaging techniques brought about long exposure time and induced important radiation absorbed dosefor

patients and radiologists. Indeed, those long exposure to ionizing radiation beams cause tissue damage. Hence, the

time needed to produce a single image is also an adapted criterion. Inversely, thefrequency with which images are
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processed matters. The two criteria can be linked in a single FPM: the number of distinct detail per millimeter per

second. (Peterschmitt, 2007)

Capacitor Energy Storage

energy(kWhr) kWhr

cost($) $ - A measure of the performance of a capacitor used for energy storage is
the amount of energy it can store per unit cost.

energy(kWhr) - kWhr
volume(L) L - Another measure of the performance of a capacitor used for energy

storage is the amount of energy it can store per unit volume.

energy(kWhr) kWhr

mass(kg) kg - Another measure of the performance of a capacitor is the amount of
power it produces divided by the overall mass.

Other FPMS could include the combination of all of these variables, resulting in a

energy(kWhr)

variable such as volume(L)* mass(kg) * cost($) , however data availability made the TIR for

that very complete FPM unreliable and there is additional issues with variables that are near

equals such as volume and mass (which should improve together with constant density).

Potential omitted variables that may also influence the purchasing decision of a capacitor are the

ability to charge and discharge rapidly, which can be measured by power (W).

Electric Motors
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power(W) _ W
volume(L) L -'A measure of the performance of an electric motor is the amount of power it

produces divided by the overall volume.

power(W) W

mass(kg) kg - Another measure of the performance of an electric motor is the amount of
power it produces divided by the overall mass.

Electrical Energy Transmission

power(W) *distance(km)= W *km - Electrical energy transmission can be measured by the
amount of power transmitted over a distance.

power(W)* distance(km) W *km

cost($) $ - Electrical energy transmission can be measured by the
amount of power transmitted over a certain distance divided by the cost. A consumer of
electrical energy transmission technologies will want to transmit a large amount of power over a
long distance at a small cost.

These same FPMs can be used to measure AC and DC energy transmission, and the

FPM used in the TIR/DPM comparison uses the union of the two data sets.

Electrical Information Transmission

information(kB) kB

dme(sec) SOC - Transmitting information over electrical (coaxial) cables can be
measured by the amount of information transmitted per unit time.
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information(kB) _kB

dme(s )*cost($) sec*$ - Another measure for the transmission of information over electrical
(coaxial) cables is the amount of information transmitted per unit time per unit cost.

Electrochemical Battery Energy Storage

energy(Whr) Whr

cost($) $ - A measure of the performance of an electrochemical battery used for
energy storage is the amount of energy it can store per unit cost.

energy(Whr) Whr
volume(L) L - Another measure of the performance of an electrochemical battery used

for energy storage is the amount of energy it can store per unit volume.

energy(Whr) =Whr

mass(kg) kg - Another measure of the performance of an electrochemical battery is the
amount of power it produces divided by the overall mass.

Electronic Computation

computations 1

tme(se) = - Electronic computations can be measured by their speed, which is
calculated by the number of computations per second.

computations

time(SWC)*cost($) SC* $ - Another FPM includes cost in the calculation for a more complete
metric.

Potential omitted variables include energy used, this metric has become especially

important in recent years with the increased prevalence of mobile computing.
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Flywheel Energy Storage

energy(kWhr) _ kWhr
mass(kg) kg - Using the same metric as batteries and capacitors, energy storage can

be measured by the amount of energy stored by the total mass of the flywheel. Sufficient data
was not available for the other two FPMs used for batteries and capacitors (cost and volume) and
therefore were not included in the TIRs for flywheel energy storage.

Fuel Cell Energy Production

peakpower(kW ) kW

cost($) $ - Fuel cells can be measured by the maximum amount of power
produced divided by the cost of the fuel cell system.

Potential omitted variables include measures of system size include mass (kg) and volume

(L).

Genome Sequencing

basepairs 1

cost($) $ - Sequencing of genomes can be measured by the number of base-pairs that can
be decoded per $. A potential omitted variable that may be included is also the time in which it
takes to decode the base pairs, which at this point has very few available data points and was not
included in this thesis.

Incandescent Artificial Illumination
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1000 *lumens(lm)*time(hr) 1000* lm* hr

EL(Afklp) - A measure of illumination for incandescent light
bulbs is the brightness of a bulb measured in lumens by the length of time it lasts (hrs) divided by
the cost, in this case, the FPMs is measured in thousands of lumen-hours per dollar.

Integrated Circuit Information Storage

transistors
die 0 - The measurement of integrated circuit technologies ultimately evolves from

Moore's law and thus the measurement of integrated circuit memory chips uses the same metric
of the number of transistors per die.

Integrated Circuit Processors

transistors
die 0 - The measurement of integrated circuit technologies ultimately evolves from

Moore's law and thus the measurement of integrated circuit processors uses the same metric of
the number of transistors per die.

LED Artificial Illumination

Iumens(Lm)

lamp/bulb.
Im - LED lights can be measured by the amount of light that is produced by one

lumens(lm) im

cost($) $ - LED lights can be measured by the amount of light that they produce by the
cost of the light.

Magnetic Resonance Imaging (MRI
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distinct _detail 1
image depth(mm) *scan jime(sec) Mm*sec - The metrics used in MRI machines are

similar to that of CT scanners and are a measure of detail of the scan along with the scan time.
See the CT scanner FPM description for a more detailed description of the metric give by
Peterschmitt (2007).

distinct _detail 1

imagedeth(mm)*scanj-ime(sec)*cost($) Mm*sc*$- The metrics used in MRI
machines are similar to that of CT scanners with the inclusion of cost in the denominator. See
the CT scanner FPM description for a more detailed description of the metric give by
Peterschmitt (2007).

Magnetic Information Storage

megabits(Mb) _ Mb
cost($) $ - Magnetic information storage can be measured by the amount of

information stored (measured in bits) per unit cost. Please note that 1 bit = 8 bytes.

mbits(Mb) Mb
volwne(cm3) cm3 - Magnetic information storage is measured by the amount of information

stored (measured in bits) per unit volume (cm 3 ). Please note that 1 bit = 8 bytes.

As in some of the other TD, magnetic information storage can be broken down into

smaller sub-domains. Magnetic information has been stored on magnetic tape and magnetic

hard disks, the TIR used in the TIR/DPM comparison is the combination of both metrics.

Milling Machines

Benson 202



power(hp) h
accuracy(mm) MM - Milling machine capability can be measured by the power of a machine

at a certain accuracy. The power of the machine is in this case a measure for speed as was

explained in more depth in the methodology section case study of manufacturing technologies. It

is important to note that this is the domain that used the less reliable yearly average and the

DAYC methods in constructing the TIRs.

Optical Information Storage

megabits(Mb) _ Mb
cost($) $ - Optical information storage can be measured by the amount of

information stored (measured in bits) per unit cost. Please note that 1 bit = 8 bytes.

mbits(Mb) _Mb
volume(cm 3) CM 3 - Optical information storage is measured by the amount of information

stored (measured in bits) per unit volume (Cm 3 ). Please note that 1 bit = 8 bytes.

Optical Information Transmission

kilobits(Kbits) _Kis

dme(sc) SW- Optical information transmission can be measured by the bandwidth,
which is measured in the amount of information transmitted per unit time. Please note that 1 bit
= 8 bytes.

kilobits(Kbits) Kbits

s)* cable .eength( k)*cost($) sCc*km*$ - A more thorough measure is one that
calculates the bandwidth per distance of cable and at a certain cost. Please note that 1 bit = 8
bytes.
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Photolithography

1 1

accwracy(p)* cost(s) p*$ - A measure of performance for photolithography is the
accuracy of the process (1/nm) per unit cost. The measure of accuracy is described in detail in
section 3.4 of the thesis. Of particular note is that the cost is the tool cost and does not take into
account other costs such as the mask and energy.

n2

areal _hroughput( ) 2

cost($) hr*um*$ - Another measure of photolithography takes into account
the speed at which the process operates called areal throughput divided by the cost. The areal
throughput parameter is a modification of the industry-accepted metric of wafers/hr multiplies
by the area of the wafer.

.2in
areal hroughput(-) 2hr i

accuracy(pm) hr * JUM - Another measure of photolithography takes into account
the speed at which the process operates called areal throughput divided by the accuracy. The
areal throughput parameter is a modification of the industry-accepted metric of wafers/hr
multiplies by the area of the wafer.

.2

areal throughput(-) .2

accuracy(pM )* cost($) hr *pm *$ - The most complete measure for photolithography takes
into account the speed of producing wafers, the accuracy at which they are created and the cost
of doing so.

Solar Photovoltaic Enerev Generation
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average _energy _ produced(kWhr) _ kWhr

cost($) $ - A measure of the average energy output of solar
PV panels per unit cost also takes into account such factors as placement, tracking of the sun, and
other factors that are often combined into one measure called the 'fill factor'.

peakpower(W ) W

cost($) $

peak power per unit cost.
- A measure of the device performance of a solar PV module is the

Superconductivity

temperature&l.(K)= K -The measure of superconductivity is the critical temperature which is
the temperature at which the resistance falls to zero - thus as new ways are found to achieve
higher critical temperatures, superconductivity is relatively easier to achieve.

Wind Turbine Energy Generation

peakpower(W ) W

cost($) $ - A measure of the device performance of a wind turbine is the
peak power per unit cost. Note that factors that may affect actual energy output such as wind
turbine placement are not included in this metric.

Wireless Information Transmission

kilobits(Kbits) Kbits

tme(sec) sw - Wireless information transmission can be measured by the
bandwidth/throughput, which is measured in the amount of information transmitted per unit
time. Please note that 1 bit = 8 bytes.
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information(bits) bits
time(sec) * spectr (Hz) sec* Hz - Wireless information transmission can also be measured by
the spectral efficiency, which is a measure of the throughput of the information per wavelength
used. Please note that 1 bit = 8 bytes.

information(bits) bits
time(sc) * area(m 2) SeC* m 2 - Wireless information transmission can also be measured by the

coverage density, which is a measure of the throughput of the information per area covered.
Please note that 1 bit = 8.bytes.

Amaya (2008) provides a useful overview of the three wireless information transmission

metrics:

We now proceed to elaborate on the importance that these three aspects of wireless information

transportation havefor the analysis performed in the present paper. The basic function being studied is transport of

information. The FPMs of importance consider the performance relative to some key resource and thus explore

engineering tradeoffs over time (ref 1 and 2). In this sense, in thefirst instance, throughput is of critical relevancefor

assessing wireless technological progress as time is always a relevant resource. Moreover, the air interface has been

generally regarded as a very hostile meanfor wireless data transmission. In this way, the possibiliv of

accomplishing high rates ofprogress in throughput despite the hostiliv of the transmission environment would

provide strong evidence of the capaciy of technology to overcome these adverse environmental conditions, made

possible through the usage of science in the development of increasingly advanced technologies. This would also

represent a clear sign of the new business opportunities that may emerge resultingfrom such technological progress.

Secondly, the transportation effciency in wireless provides an excellent perspective on the abili_ of the technology to

make better usage of the limited resources contained in the radio spectrum. Radio spectrum is the single scarcest

resource in the wireless telecommunications industry and it is therefore particularly relevant to explore the

technological abili_0 to transport increasingly larger amounts of information over this limited resource. For the
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remainder of the present paper, this aspect will be called spectral eficiency, which is the name most commonly

utilized in the industry. And thirdly, using a measurement of coverage provides an appropriate indication of the

ability of the technology to transport large amounts of information to an increasingly higher number ofpeople living

in increasingly distributed areas. (Amaya, 2008)

4.1.2. Technological Improvement Rates (TIRs)

As was detailed in section 3.2 of the thesis, the TIRs for each of the DMP's illustrate the

improvement of the respective FPM over time. Each of the performance metrics from the

preceding sub-section was analyzed and a TIR was extracted for each one of them. For each of

the DMPs, the data set was analyzed 4 times to extract TIR for dominated vs non-dominated

data points and for the entire date range and just points since 1970 - the summary of the 4

different sub-sets for each DMP is shown in table 13.

AI Data Points Non-Dominated
-An Year Ranges AtAi A eND

1970+ 1970A1 1970ND

Table 13: Four different subsets of data points for each domain metric pair

that were used to calculate the technological improvement rates

Therefore, including the 4 different subsets of data for the 72 domain-metric-pairs, 274

TIRs were calculated. There were 14 TIRs that were not calculated because when the sub-sets

were created 0 data points were left, all but one of which were in the Combustion Engine,

Electrical Energy Transmission and Incandescent Illumination domains.
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One aspect to note is that the variation within the technological domains is less than the

variation between the TDs. This was noticed with the manufacturing domains in section 3.3 and is

shown again in figure 53 where the blue bars represent the average TIR for a particular TD and

the smaller error bars represent the standard deviation of the TIR for the ALLND data sets.

This fact is important to note, that even in a TD with many different FPMs, a single metric of the

TIR can be used to represent the technological improvement of the domain.
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It is important to note that in some cases (such as 3D printing, very few data points

existed before 1970 and thus the ALL and 1970+ data sets are identical. Other sets, such as

electrical information storage, show a large variation in the all and post-1970 data sets. While

this is important to note, this is often a case of a significant reduction in the number of data

points and thus the values are not reliable. Finally, the difference between the dominated (all data

point) sets and the non-dominated sets also shows very little variation. The next sub-section will

explore the statistical tests for each of the TIRs.

4.1.2.1. Statistical Overview of the Improvement Rates

Each of the 274 TIRs was subjected to the set of statistical tests described in section 3.2.4

in order to understand the reliability of the data. This section will describe the results of these

statistical tests.

The first test that was run is to simply count the number of data points in each of the data

sets. In general a higher number of data points indicates the potential for a more reliable metric,

although the reliability of a data set is determined also using the other statistical measures in this

section. Figure 54 shows the distribution of number of data points for each of the TIRs.
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Figure 54: Distribution of the number of data points for each of the 274

TIRs for the 72 DMPs (5 TIRs with more than 66 data points were removed)

The number of data points varies significantly from 127 points for the AllA Combustion

Engine (W/L) (not shown) DMP to 2 data points for 15 TIRs. The mean of the long tailed

distribution is 15.8 data points with a median of 12.

While the number of data points is a useful measure to get a general idea of the reliability

of a TIR, the most common method of evaluating the fit of an exponential regression is the R2

value. Figure 55 shows the distribution of R2 values for each of the 274 TIRs.
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Figure 55: Distribution of R2 values for the 274 TIRs

The results in Figure 54 show a large portion (8 2%) of R2 values above the 0.6 threshold

with a mean R2 value of 0.78.

There are some TIR that fall quite short and do not show decent R2 values, even some

with a very large number of points, such as the Combustion Engines (W/L) AllAH, which

contains 127 data points, yet has only a 0.05 R2. Another examples of a particularly low R2 is

Photolithography areal throughput per dollar (70ALL), the low R2 of 0.01 is likely due to the low

number of data points present in the data (n=4) as well as it low slope. It is important to note

that there are 30 examples of R2 values equal to 1, these are due to a very low number of data

points and rounding, for example, any TIR with only 2 data points will necessarily have an R2 of

1.
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Another statistical parameter that can be used to evaluate the reliability of the TIR is the

standard deviation of the regression - which was explained section 3.2.4.4 of this thesis. Figure

56 shows the variation of the regression standard deviations for the TIRs.
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Figure 56: Distribution of Regression Standard Deviation values for the 274

TIRs

Most of the regression standard deviations are very small in value with a mean of 1.7%,

which is consistent with the R2 data shown above. There are 11 TIRs with very high standard

speed(.-)
sec

deviations including the 3D Printing metric for layerthickness(mm) for the non-dominated

points that shows a standard deviation of nearly 40% (higher than the TIR). This is likely once

again to be due to a limited number of data points (n=3 in this case). The other example to the

right in the figure is Optical Information Storage (Mb/$), which only has 4 data points.
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As a further test of robustness, each of the data points was systematically removed from

each of the TIRs one at a time using the PRM and the resulting TIRs were calculated along with

the PRM Standard Deviation (see section 3.2.4.5 for details). This particular metric is used to

simulate the effect of adding or subtracting data points to a data set; in general a lower PRM

Standard Deviation indicates a more reliable metric. Figure 57 shows the summary of the PRM

standard deviations for the TIRs.

25

20

' 10

0.1% 0.6% 1.1% 1.6% 2.1% 2.6% 3.1% 3.6% 4.1% 4.6% 5.1% 5.6% 6.1% 66% 71% 7.6% 8.1% 8.6% 9.1% 9.6% >10%

PIN Stnw DvbrWad

Figure 57: Distribution of Point Removal Method Standard Deviation

values for the 274 TIRs

The PRM standard deviation values show a low mean of 1. 8 % with 16 TIRs over 10%.

Many of the same unreliable TIRs that were shown using the regression standard deviation are

also shown to be unreliable using the PRM. However, there are a few other TIRs that should be

analyzed more deeply due to this analysis. The Electronic Computation (1 /sec) 70ND data set as
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well as the MRI (1 /mm*sec*$) data sets (all 4!) have a relatively large PRM standard deviation.

Once again the cause of this unreliability is likely small amounts of data, but TIRs such as these

are removed from the TIR/DPM comparison when possible due their increased sensitivity to the

addition and removal of data points. The following section will discuss the selection of the final

TIRs for each TD to be used in the cross-domain comparison of the TIRs and the DPMs.

4.1.2.2. Selection of Final TIRs for Each Domain

After all of the analysis, 72 DMIP were created and 274 TIR were created (4 sub-sets for

each DMP that could be calculated), the intra-domain rates vary considerably less than the inter-

domain rates as was demonstrated for manufacturing alone in section 3.3 of this thesis, therefore

a Prime TIR is selected to represent each TD in the comparison with the DPMs that are derived

for each TD. This sub-section will show the results of this down-selection process using the

reliability data gathered in the prior sub-section and the completeness of the metric as was

described previously in the thesis.

The main process behind the down-selection is to select the most complete metric that is

also reliable. Therefore the process involved selecting the most reliable TIR from the set of 288

and then selecting the most complete TIR for each domain from that set.

As was introduced in section 3.2.4 and shown in the last section, there are a number of

ways to locate unreliable data sets, when a domain did not show a high R2, or showed a very low

regression-standard deviation or PRM-standard deviation they were considered unreliable and

removed. In the same spirit, the TIR that included many data points and had relatively high R2
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and low standard deviations (regression and PRM) were considered to be highly reliable data

sets. Table 14 shows the down-selection to the 43 most reliable TIRs.

Domain Name
3D-Printing (industrial stereolithography) (1/sec*$)
3D-Printing (industrial stereolithography)

(1/sec*$(including build volume/machine size)))
Aircraft Transport (passeuger*mph)
Camera Sensitivity (mV/micron2)

Capacitor Energy Storage (W*hr/$)
Capacitor Energy Storage (W*hr/kg)

Combustion Engines - Aircraft (W/kg)
Combustion Engines -Aircraft Piston (W/kg)

Combustion Engines -Aircraft Turbine (W/kg)
Combustion Engines - Automobile (W/$)
Combustion Engines - Automobile (W/kg)

Combustion Engines (W/kg)
Computed Tomography (CT) (1/mm*sec)

Electric Motors (W/kg)
Electrical Energy Transmission - AC (W*km)

Electrical Energy Transmission (W*km)
Electrical Energy Transmission (W*km/$)

Electrical Information Transmission (kB/sec*$)
Electrochemical Battery Energy Storage (W*hr/$)

Electrochemical Battery Energy Storage (W*hr/kg)
Electronic Computatin (1/sec)

Electronic Computation (1 /sec*$)
Flywheel Energy Storage (kWhr/kg)
Fuel Cell Energy Production (kW/$)

Genome Sequencing (1/$)
Incandescent Artificial Illumination (1000*lm*hr/$)

Integrated Circuit Information Storage (transistors/die)
Integrated Circuit Processors (transistors/die)

LED Artificial Illumination (Im)
LED Artificial Illumination (Im/$)

Magnet Resonance Imaging (MRI) (1/mm*sec*$)
Magnetic Information Storage - Hard Disk (megabits/cc)

Magnetic Information Storage - Tape (megabits/cc)
Magnetic Information Storage (megabits/cc)

Milling Machines (hp/mm)
Optical Information Storage (Mb/cc)

Optical Information Transmission (Kb/sec*km*$)
Photolithography (in2/hr*micron)

Solar Photovoltaic Energy Generation (W/$)
Superconductivity (1/K)

Wind Turbine Energy Generation (W/$)
Wireless Information Transmission (kb/sec)

Table 14: The 42 most reliable

Prime K Set N R2 Stdev PRMstdev
27.30% 70ND 4 0.97 0.049 0.045

37.60% 70AI1 5 0.92 0.067

12.20%
15.60%
21.10%
14.60%
3.10%
6.80%
1.70%
7.90%
5.60%
5.70%

36.70%
3.10%
14.90%
14.90%
3.60%

14.30%
5.70%
7.00%

33.00%
49.10%
9.00%
14.40%
29.30%
4.50%

43.20%
36.30%
24.40%
36.20%
47.50%
36.10%
29.60%
31.90%
3.40%
27.10%
65.10%
24.00%

9%
9.50%
9.20%
50.40%

MIND
70ND
70ND
70ND
AUAkU
AIIAJI
70ND
AUND
AUND
MIND
70ND

AUIND
AJIND
AUND
AND
AIND
70ND
70ND
AND
70ND
70ND
70ND
70ND
AND
AMND
AND
70ND
70ND
70ND
70ND
70ND
70ND
AND
70ND
70ND
AIM
AUMI
70ND
70ND
70ND

0.98
0.99
0.97
0.97
0.85
0.8
0.98
0.79
0.85
0.82
0.78
0.84
0.92
0.97
0.71
0.9
0.91
0.95
0.9
0.93
0.92
0.99
0.91
0.93
0.98
0.97
0.98
0.97
0.88
0.94
0.9

0.88
0.96
0.95
0.93
0.85
0.94
0.73
0.93
0.86

0.006
0.005
0.02
0.01
0.002
0.008
0.001
0.01
0.006
0.006
0.045
0.005
0.025
0.009
0.012
0.017
0.008
0.005
0.02
0.021
0.014
0.009
0.038
0.005
0.009
0.016
0.80%
1.20%
0.074
0.017
0.032
0.02

0.004
0.015
0.03
0.03
0.04

2.90%
1.10%
0.037

0.063

0.002
0.002
0.013
0.004

0
0.002

0
0.01
0.003
0.002
0.018
0.002
0.02

0.004
0.006
0.009
0.004
0.001
0.007
0.011
0.011
0.006
0.038
0.003
0.003
0.007
0.30%
0.60%
0.113
0.007
0.009
0.008
0.036
0.007
0.021
0.008
0.01

1.40%
0.50%
0.009

domain-metric-pairs with TIRs

accompanying reliability metrics with final 28 TIRs in BOLD
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Once the set of most reliable data sets were selected, the most complete FPMs for each

TD was selected as the representative of for the TIR/DPM correlation comparison. The

completeness rankings are shown in the ordering of the DMPs and are shown in a previous

subsection 'Domains and FPMs.' When possible, the FPMs selected did not include price

parameters due to the fact that their are many outside factors that influence cost in each of these

domains and the main focus of this research is on the technical improvement rather than the

effects of any government intervention. Sometimes (as in the case of Wind Turbines and solar

PV), this was not possible, but this fact has been stated several times throughout the thesis and it

is important to continue to be aware of.

In some of the cases, there are multiple sub-domains represented (Combustion Engine,

Electric Energy Transmission). In these cases, the highest level domain was selected that would

include all of the sub-sets. For example, the Combustion Engine data includes all of the

combustion engine data points from automobiles and aircraft.

The end result of selection the most complete, reliable TIR is shown in figure 58 for each

of the 28 domains.
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Electric Motors
Milling Machines

incandescent Artificial Illumination
Combustion Engines

Electrochemical Battery Energy Storage
Flywneel Energy Storage

Wind Turbine Energy Generation
Solar Piotovoltaic Energy Generation

Superconductivity
Aircraft Transport

Electrical Information Transmission
Fuel Cell Energy Production

Capacitor Energy Storage
Electrical Energy Transrnission

Camera Sensitivity
Photolithography

Optical Information Storage
Genome Sequencing

Magnetic Information Storage
Electronic Computation

LED Artificial Illumination
Integrated Circuit Processors
Computed Tomography (CT)

3D-Printing (industrial stereolithography)
Integrated Circuit Information Storage

Magnet Resonance Imaging (MRI)
Wireless Information Transmission
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1101 3.40%
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~-7.qO%
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9.20%
9.50%
9.50%

01WM Ma 12.20%
14.301

14.60*
__ _ 14.90

15.60%
24.00%

27110%
2930%

WO 31.90%
e 33.00%(

36.90%
36.$0%
36.70%

37.60%
43.20%

41.50%
50.40%

Optical Information Transmission

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%
Tecvological Improvement Rate

610%

Figure 58: The most complete and reliable TIR for each of the 28 Domains

The next section will describe the process of finding the patent sets that represent each of

the TDs.

4.2. Patent Set Selection: Broad Applicability of the COM

In order to complete the experiment as described, it is necessary to locate relatively

complete and relevant patents sets for the 28 different technological domains. This was

accomplished by use of the COM, which was thereby shown to be applicable across a wide

variety of different technical areas and hierarchy levels; the COM is described in detail in section

3.4. Appropriate patent sets were found for one half of the 28 domains by the direct COM using

the overlap of the highest precision and recall UPC and IPC classes. Patent sets for another 8
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domains were located with the COM but using the overlap between multiple UPC and IPC

classification codes. Finally, 6 of the domains used more intricate variations of the COM to

locate the final patent sets.

In this thesis, 28 domains were identified using the COM, there are certainly many more

domains that could be classified using this methodology. The total number of patents (including

some duplicated) in all of the TDs studied in this thesis is 511,247 and the number of cited

patents analyzed was 2,619,355, which is a non-trivial portion of the 4,666,574 patents that were

issued between 1976 and 2013 (uspto.gov, 2014). This places an upper limit of 10.9% on the

percentage of patents that have been categorized into TDs, and 56.10% on the percentage of cited

patents that have been analyzed. Therefore it is likely that less than 10% of the technological

domains have been categorized and unlike other categorization methods, the COM allows

repeats, which could potentially allow for an incredibly large number of potential TDs that vary

in size and scope. Realistically, the number of technological domains that would comprise nearly

all of the patents could be in the range of 300-1000 TDs based upon the number of patents and

domains that were analyzed in this study.

Another way of examining the total number of domains is to look at where the knowledge

comes from, which can be measured by the backward citations of the patents. Using this

method, nearly half of the knowledge base since 1976 has been used by the patents in the 28

domains in this thesis. This indicates that although only 10% of the total domains have been

analyzed, nearly half of the knowledge base was covered in this experiment, demonstrating the

breadth of the experiment. In all likelihood, our TDs cover between 10% and 56% of the total

knowledge base in the patent system.
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4.2.1. Pre-Search Variables

As was mentioned in section 3.4.1, in order to locate the patent set for each TD, a set of

search terms was developed that represented the domain and to find a starting patent set that was

then used as the input for the COM. These terms were selected based upon prior knowledge of

the domain, through talking with experts in the field, and through literature searches including

Wikipedia where a number of synonyms are often listed for each domain. For example, the

search terms used for LED lighting are as follows: LED, light emitting diode, semiconductor

light, electroluminescent, diode lamp, solid state light, solid state illumination. The list of the pre-

search keywords for each domain is shown in appendix B of this thesis. Most of the TD's have a

significant number of keyword searches; this is done intentionally to provide a wide search

breadth initially to help ensure that the most complete and most precise patent set is selected.

Following the COM process, each of the terms was used to search in the title or abstract

of all US issued patents since 1976 and a primary UPC and IPC for each search term were

designated based upon their calculated MPR scores. The MPR scores, which are covered in

section 4.2.2 below are a measure of how closely related the UPC or IPC is with a particular

search term, and thus higher MPRs are better. Additionally, the overall size of the pre-search

using the search term is included for each of the domains to help assess completeness of the

patent sets eventually selected.

Nearly all of the domains were narrowed down this way, with the few exceptions that will

be mentioned at the end of this section. The distribution of the MPR values of all of the keyword

pre-searches for the 28 TDs is shown in Figure 59.
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Figure 59: Distribution of mean-precision-recall values for Patent Class-

Search Term Pairs

The distribution is skewed towards lower numbers and has a mean value of 0.217 and a

standard deviation of 0.117, showing a rather high variability. Very high MPRs are nonexistent

which lends support to our earlier observation (Benson and Magee, 2013) that the IPCs and

UPCs do not on their own correlate well with specific keyword search terms.

4.2.2. Direct COM

As was mentioned earlier, patent sets for 14 of the 28 TD were located using the simple

overlap between one IPC and one UPC. This result shows the surprising ease of which highly

relevant and complete data sets can be located using the COM. All of the patent sets that were
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located using the direct COM had relevancy higher that 80%. Table 15 shows a summary of the

patent sets selected for the 14 TD using the direct COM method, and more in depth information

about the selection of each of the direct COM patent sets can be found in Appendix B. 1.

TD

Camera Sensitivity

Capacitor Energy Storage

Electric Motors

Electrical Energy Transmission

Electrical Information Transmission

Electronic Computation

Integrated Circuit Information Storage

Integrated Circuit Processors

LED Artificial Illumination

Magnetic Information Storage

Milling Machines

Optical Information Storage

Solar Photovoltaic Energy Generation

Superconductivity

Table 15: Patent Sets for the 14

Size Relevancy Patent Class Overlap

1744 86% 257 AND H04N

5944 84% 361 AND H01G

17869 86% 310 AND H02K

10375 86% 363 AND HO2M

44910 67% 439 AND HO1R

13204 97% 712 AND G06F

49018 81% 365 AND G11C

149491 81% 257 AND HOIL

3792 85% 313 AND HO1L

33576 93% 360 AND G11B

2315 93% 409 AND B23C

23543 82% 369 AND GlIB

5203 85% 136 AND HOIL

1776 85% 505 AND HO1L

domains that were found using the Direct

COM including the UPC and IPC class used in the overlap

4.2.3. Multiple UPC or IPC classes used in the COM Overlap

As was discussed briefly in section 4.2.3, the COM can be adapted to use the overlap of

more than two patent classifications as long as there is at least one UPC and one IPC (i.e. the

overlap between 3 UPCs would not work). Out of the 28 TDs, 8 of the patent sets were located

by using the overlaps of 3 or more classifications. The specific details of pre-searches and
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preliminary patent set relevancy percentages can be found in appendix B.2 of the thesis. The

patent sets found using 3 or more classification and the COM are given in table 16.

TD Size Relevancy Patent Class Overlap

Combustion Engines 19094 96% 123 AND (FOIL OR F02B)

Computed Tomography (CT) 6817 88% 378 AND (A6IB OR GO IN)

Incandescent Artificial Illumination 642 89% (313 AND HO1K) AND NOT (HO lJ OR F21V)

Magnet Resonance Imaging (MRI) 1778 86% (324 AND A61B) OR (600 AND GOIR)

Optical Information Transmission 36494 82% (398 AND H04B) OR (385 AND G02B)

Photolithography 14975 87% (430 OR 355) AND G03F

Wind Turbine Energy Generation 2498 94% (416 OR 290) AND F03D

Wireless Information Transmission 39675 94% 455 AND (HO1L OR HO4B)

Table 16: Summary of Patent Sets for the 8 Patent Sets that were found

using the COM with overlap of 3+ Patent Classifications including the

classifications used in the overlap

4.2.4. COM Modifications

While many of the TDs were relatively easy to find using the COM, there were a few that

required deeper searching and more sophisticated applications of the COM. Such methods were

described in the methodology section, using the solar PV, wind turbine, batteries and capacitors

as the examples, therefore these domains will not be covered. However, there were a few other

unique uses of the COM that were utilized in order to locate sets of patents to represent some of

the TDs.

The summary of the 6 TDs in which the COM modifications were used is shown in table

17. Further details on the selection of the patent sets can be found in appendix B.3 of this thesis.
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TD Size Relevancy Patent Class Overlap

3D-Printing (industrial 251 93% 264/401 AND B29C35/08
stereolithography)

Aircraft Transport 8629 79/o 244 AND (B64D OR B64C) AND NOT ('canopy' OR 'parachute' or
'helicopter')

Electrochemical Battery Energy 16122 83% (429 AND HO iM) AND NOT 'fuel cell'
Storage

Flywheel Energy Storage 154 70% 74/572 AND (F16F15 OR H02K7)

Fuel Cell Energy Production 7368 97% (429 AND HOlM) AND 'fuel cell'

Genome Sequencing 3990 74% (435/6.11 OR 435/6.12) AND C12Q

Table 17: Patent Sets for the 6 Patent Sets that were found using the COM

with Modifications. The classes are also given now, but usually deeper in the

patent classification hierarchy.

4.2.4.1. Lower level Hierarchy Classifications

The COM was designed to work at the primary level of the UPC (before the /) and the 4

digit level of the IPC (HO IL). Finding highly relevant patent sets by overlaps of high MPR IPC

and UPC classes also works at lower level hierarchy classifications. An example of this is 3D

printing, where the primary UPC located is 264 (Plastic and nonmetallic article shaping or

treating: processes), however the more appropriate patent class for SLA 3D Printing is 264/401

(STEREOLITHOGRAPHIC SHAPING FROM LIQUID PRECURSOR). This same

approach can be applied to the IPCs in SLA 3D printing with the primary IPC being B29C

(SHAPING ORJOINING OF PLASTICS; SHAPING OF SUBSTANCES IN A PLASTIC

STATE, IN GENERAL; AFTER- TREATMENT OF THE SHAPED PRODUCTS, e.g.

REPAIRING) and the appropriate IPC being B29C35/08 (Heating, cooling or curing, e.g.

crosslinking, vulcanising; Apparatus therefor... by wave energy or particle radiation). These

lower level hierarchy classifications are overlapped in the same way to find the appropriate

patent sets.
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4.2.4.2. Pre-Searching Using Known Company Names

The pre-search using keywords works very well for most of the domains, and when

additional knowledge is known about a particular domain, that knowledge is used to help locate

the patent classifications of interest. In particular searching for the patents that are assigned to

companies that are known to work in a particular TD can act as a useful supplement to the initial

keyword search. This technique was used in selecting the patents for the Genome Sequencing

TD, as there were a few well-known organizations that worked on Genome Sequencing (eg.

Affymetrix, Oxford Nanopore Sciences, Sequenom, Ilumina, Knome, Broad Institute) and thus

helped located the final patent classification codes. It should be noted that using only the

company names as a pre-search may result in the selection of a patent classification that is more

associated with a particular company than a TD.

4.2.4.3. Keyword Cleaning

In the pursuit of very complete and relevant patent sets, in some domains, it is

advantageous to remove or add to the final classification overlap patent set by using keywords.

This approach, while it can improve the relevance/completeness of a particular patent set,

should not be used broadly as it can make the repeatability of locating a patent set more difficult.

Three of the 28 TDs used some keyword cleaning by removing patents that are not related to the

TD of interest (i.e. Aircraft. Transport where 'parachute', 'canopy' and 'helicopter' were removed).

An important case is that batteries and fuel cells were actually in the same set of patents (429

AND HO IM) but were easily separated by final key word editing (using the keywords 'fuel cells')
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4.2.5. Selecting the 100 most important patents

Along with the selection of a patent set to represent each TD, the patents were rank

ordered by number of forward citations and the top 150 patents were all read and non-relevant

patents removed to form a 100% relevant set of the 100 most cited patents within each TD as

was discussed in section 3.4.4. The reading of the top 150 patents was also included in the

relevancy percentage, therefore the relevancy rankings are weighted towards the more highly

cited patents within a domain. Figure 60 shows the overview of how the relevancy scores were

determined.

'Clean' Set
of 100 Patents

200 Random
Patents

AJI Patents in a
Domain

Figure 60: Graphical Representation of how the Relevancy Rankings and

Top 100 Clean Patents were determined

4.2.6. Final Data Sets and Relevancy Scores
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Ultimately, patent sets and clean 'Top 100' patents for all 28 technological domains were

located and relevancy scores were determined. The summary of the patent data sets is shown in

figure 61 on a logarithmic scale.

3D-Printing (industrial stereolilaography)
Aircraft Transport

Camera Sensitivity
Capacitor Energy Storage

Combustion Engines
Computed Tomography (CT)

Electric Motors
Electrical Energy Transmission

Electrical Information Transmission
Electrochernical Battery Energy Storage

Electronic Computation
FWy'wee Energy Storage

Fuel Cell Energy Production
Genome Sequencing

incandescent Artificial llurrination
Integrated Circuit Information Storage

Integrated Circuit Processors
LED Artificial lurniination,

Magnet Resonance Imaging (MRI)
Magnetic Information Storage

Milling Machines
Optical Information Storage

Optical information Transmission
Photolithography

Solar Photovoltaic Energy Generation
Superconductivity

Wind Turbine Energy Generation
Wireless Information Transmission
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Figure 61: Size (on log scale) and Relevancy (in color) of Patent Sets for all

28 technological domains

Nearly all of the patent sets have relevancy percentages higher than 80%, with 3 showing

relevancies between 60 and 8 0%. The overall size of the patent sets ranges from 154 (Flywheel

Energy Storage) to 149491 (Integrated Circuit Processors). Each of these patent sets is used to

represent their respective TD in the comparison with the TIRs. In addition, the clean top 100

will also be used in some of the comparisons.
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4.2.7. Most Closely Related Patent Sets

One of the results of locating these patents was the ability to see the overlap between the

patents. Because each patent can be multiply listed in a number of different UPCs and IPCs,

some patents will be present in multiple patent sets in the patents selected to represent the 28

TDs examined for this research.

In order to quantify the overlap between the patents, each patent set was compared with

each of the other 27 domains in order to find the percentage overlap between the patent sets.

This ratio is shown in equation 36, with the patent set of interest represented by Pi and each the

other 27 patent sets represented by Pj.

(Equation 36)

For example, there are only three patents that are present in both the Electrochemical

Battery Energy Storage TD and the Aircraft Transport TD, and there are 8629 patents in the

Batteries TD, therefore the overlap of Aircraft with Batteries is 0.000347 as is shown below.
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'batteriesn Fl aircraft 3
=_ =0.000347

Pbae,, 8629

This very small overlap is not surprising but neither is the fact that many of the patent sets

had a significant overlap with Integrated Circuit Processors due to its large size and the relative

ubiquity of integrated circuits. Figure 62 shows the overlap of the other domains with Integrated

Circuit Processors (the 12 domains with less than 0.0 1% overlap are not shown).

Solar Photovoltaic Energy Generation 1 ,49%

LED Artificial lllumination 0 1.19%
Integrated Circuit Information Storage w- ino 0.97%

Camera Sensitivity - 0.57%
Superconductivity 0 0.44%

Photolithography 0.28fk
Capacitor Energy Storage 0.19%

Optical Information Transmission mumamwii 0.19%
Electrical Information Transmission mda 0.10%

Magnetic Information Storage mapo 0.00%
Electrical Energy Transmission R 0.02%

Electric Motors R 0.02%
Electrochemical Battery Energy Storage 6 0.02%

Wind Turbine Energy Generation 0 0.02%
Optical Information Storage 0 0,01%

0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60%
Percentage of Integrated Circuit Processor Patents in Domain j

Figure 62: Overlap of Integrated Circuit Processors Patents with patents in

other domains (12 domains with less than 0.01% overlap are not shown).

There are a number of semiconductor-related TDs that are closely related to IC

processors and while the amount of overlap with the large IC class is not significant with the

denominator being this large class, this changes when the opposite ratio is formed. For example,
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while only 1. 49% of the IC Processor patents overlap with Solar PV, this number of doubly listed

patents is nearly half of the Solar PV patents as is shown in figure 63.

Integrated Circuit Processors
Electrochemical Battery Energy Storage 00 1.27%

LED Artificial Illumination s 0.86%
Optical Information Transmission 0 0.27%

Electrical Information Transmission 1 0.15%
Electrical Energy Transmission 0.15%

Superconductivity 0.13%
Fuel Cell Energy Production 0.10%

Magnetic Information Storage 0.04%
Electric Motors 0.04%

Capacitor Energy Storage 0.04%
Aircraft Transport 0.04%

Wind Turbine Energy Generation 0.02%
Wind Turbine Energy Generation 0.02%

Integrated Circuit Information Storage 0.02%
Photolithography '0.02%

Combustion Engines 0.02%
Camera Sensitivity 0.02%

0.00% 5.00%

42.71%

10.00% 15.00% 20.00% 25.00% 30.00% 35 00% 40.00% 45.00%
Percentage of Solar PV Patents in Domain j

Figure 63: Overlap of Solar PV patents with patents in other domains (8

domains with less than 0.1% overlap are not shown).

Using these overlap percentages, we found the patent sets that are most closely related to

each other through direct overlap. Table 18 shows the TD (j) with the highest overlap for that

particular TD (i) for all 28 domains.

Patent Sets (i)

Camera Sensitivity

LED Artificial Illumination

Solar Photovoltaic Energy Generation

Superconductivity

Flywheel Energy Storage

Fuel Cell Energy Production

Optical Information Storage

Magnetic Information Storage

3D-Printing (industrial stereolithography)

Maximum Overlapping Patent Set U) Percent Overlap

Integrated Circuit Processors 48.5%

Integrated Circuit Processors 47.0%

Integrated Circuit Processors 42.7%

Integrated Circuit Processors 37.0%

Electric Motors 26.0%

Electrochemical Battery Energy Storage 14.9%

Magnetic Information Storage 13.5%

Optical Information Storage 9.5%

Photolithography 7.6%
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Electrochemical Battery Energy Storage

Capacitor Energy Storage

Integrated Circuit Information Storage

Photolithography

Magnet Resonance Imaging (MRI)

Integrated Circuit Processors

Incandescent Artificial Illumination

Electric Motors

Wind Turbine Energy Generation

Optical Information Transmission

Wireless Information Transmission

Computed Tomography (CT)

Electrical Energy Transmission

Electronic Computation

Electrical Information Transmission

Milling Machines

Aircraft Transport

Genome Sequencing

Combustion Engines

Fuel Cell Energy Production

Integrated Circuit Processors

Integrated Circuit Processors

Integrated Circuit Processors

Computed Tomography (CT)

Solar Photovoltaic Energy Generation

Electrical Information Transmission

Magnetic Information Storage

Electric Motors

Wireless Information Transmission

Optical Information Transmission

Magnet Resonance Imaging (MRI)

Integrated Circuit Processors

Integrated Circuit Information Storage

Integrated Circuit Processors

Electric Motors

Wind Turbine Energy Generation

Integrated Circuit Processors

Electric Motors

Table 18: Most Closely Related Pairs of Patent Sets showing overlapping

patent percentage

Ten of the TD are most closely related to Integrated Circuit processors, including the 4

highest overlapping sets. There are a few patent sets that are nearly 5 0% overlapped with

another TD, 21 out of the 28 patent sets have less than 10% overlap. This is a very nice

quantitative demonstration of the reality of the status of ICs as a general-purpose technology

(GPT) (Bresnahan and Trajtenberg, 1995) and even support for the idea of IC's being the most

important GPT ever (Brynjollfosson and McAfee, 2011).

4.3. Relating Domain Patent Markers to the TIRs

Following the 5 hypotheses described in section 3.5, the domain patent markers are used

to test hypotheses derived from theories of technological change. In this section, each of the
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hypotheses is briefly restated and the relevant DPMs are correlated with the TIRs in order to

determine whether the hypotheses are supported by the data. Each DPM is plotted against the

TIR and a Pearson correlation coefficient is given along with the result of the test of the rejection

of the null hypothesis at a 5% confidence level. If the null hypothesis is accepted, the correlation

is likely to be simply a result of the random scattering of the data, whereas if it is rejected, the

correlation is likely due to true variation in the parameters being measures. The minimum and

maximum values are also given alongside a short analysis of the results as needed. More in depth

discussions of the results of the DPM and TIR comparison are included in the Chapter 5 of the

thesis.

4.3.1. Hypothesis 1: Effort

Hypothesis 1 states that a higher number of patents should relate to the technological

improvement rate of a domain as shown diagrammatically in Figure 64.

Revenue R&D m
Figure 64: Graphical Summary of Hypothesis 1 - Effort

4.3.1.1. Simple Patent Count

The measure used to test this is the simple patent count, which is the number of patents

in a particular TD betweenJanuary 1, 1976 andJuly 1, 2013. Figure 65 shows the relationship

between TIR and simple patent count.
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Figure 65: Technological Improvement Rates vs Simple Patent Count; the

Pearson correlation coefficient (c,), the null hypothesis acceptance and the values

of the independent variable for the domains having maximum and minimum

values are shown in the upper right for this graph and the following results plots

through section 4.3.6.

The Pearson correlation coefficient between the two variables is 0.33, however the null

hypothesis that the correlation could be do to the random variation in the data was accepted as is

shown above. The combination of the statistical tests and the lack of any discernible trend in

figure 65 indicate that there is not a strong relationship between the number of patents in a

technological domain and the associated TIR. Thus, in this form H 1 is not supported by the

data.
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4.3.2. Hypothesis 2: Breakthroughs

Hypothesis 2 states that only very highly cited patents contribute to the improvement of a

TD and therefore a TD with a higher number of highly cited patents should have a higher TIR.

This relationship is diagrammed in Figure 66.

Important

Inventions

Invention this thesis
Figure 66: Graphical Summary of Hypothesis 2 - Breakthroughs

4.3.2.1. Average Number of Forward Citations

One of the measures used to test hypothesis 2 is the average number of forward citations

received by the patents in a TD. Figure 67 shows the relationship between TIR and the average

number of forward citations.
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Figure 67: TIR vs Average Number of Forward Citations

The Pearson correlation coefficient between the two variables is 0.48, and the null

hypothesis is rejected, indicating that the correlation is unlikely due to random scattering of the

data. The combination of the statistical tests and the slight visual trend in figure 66 indicate that

there is a potential relationship between the average number of forward citations per patent in a

technological domain and the associated TIR.

It is interesting to note that the highest number of forward citations (3D Printing) and the

lowest (Genome Sequencing) are both relatively rapidly improving domains and the fastest

improving domain (Optical Telecom) is near the median of the 28 domains showing overall that

the correlation is not at all infallible.
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4.3.2.2. Ratio of Patents with more than 20 Forward Citations

Another measure used to test hypothesis 2 is the percentage of patents in a TD that

receive a large number (over 20) of forward citations, which is based off of the work of

Schoenmakers and Duysters (2010). Figure 68 shows the relationship between TIR and the

percentage of patents in a TD with more than 20 forward citations.

70.00%
Cp = 0.39
null rejected

60.00% min = 0.076 (genome sequencing)
max = 0.36 (3D Printing)

0 50.00%
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30.00%

20.00%

10.

0.c

* *

%

0 0.05 0.1 0.15 0.2 0.25 0.3
% Patents with >20 Forward Citations

Figure 68: TIR vs % of Patents with more than 20 Forward

0.35

Citations

0.4

The Pearson correlation coefficient between the two variables is 0.39, and the null

hypothesis is rejected, indicating that the correlation is unlikely due to random scattering of the

data. The combination of the statistical tests and the slight trend in figure 68 indicate that there
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is a potential relationship between the average number of forward citations per patent in a

technological domain and the associated TIR.

The distribution of the domains using this metric is very similar to that of the average

number of forward citations, and this close relationship is further supported by the fact that the

cross-correlation between the two metrics is a very high 0.96 (rejected null hypothesis). This

extremely high correlation indicates that the two measures are quite similar. Overall, the tests

indicate empirical support for Hypothesis 2.

4.3.3. Hypothesis 3: Science

Hypothesis 3 is based upon the idea that basic science is one of the main drivers of the

improvement of technology. The Hypothesis states that domains with higher average non-patent

citations will have higher TIR, as is diagrammed in Figure 69.

Effort
J Important

Inventions

Science _

this thesis
Figure 69: Graphical Summary of Hypothesis 3 - NPL
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Figure 70 shows the relationship between TIR and the average non-patent literature

citation ratio for the patents in a TD.

M.00%

5000%

5000%

40.00%

130.00%
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0.00%
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Figure 70: TIR vs

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Non-Patewn Lierature

Average Non-Patent Literature Citation Ratio

The Pearson correlation coefficient between the two variables is 0.20, and the null

hypothesis is accepted, indicating that the slight correlation could be due to random scattering of

the data. The combination of the statistical tests and no obvious trend in figure 70 indicate that

there is not a strong relationship between the average NPL citation ratio in a technological

domain and the associated TIR.

The very large value of the NPL ratio for genome sequencing is of note, in that nearly all

of the citations that come from genome sequencing patents are to scientific literature, nearly

double the 2 nd highest TD (superconductivity NPL=0.44). Both of those TDs are very large
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outliers, and in fact, when they are removed, the Pearson correlation coefficient increase to 0.51

(rejected null hypothesis) as is shown in figure 71.
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Figure 71:
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TRvs Average Non-Patent Literature Citation Ratio (2 outliers

While the relationship between TIR and NPL seems stronger with the outliers removed,

the subtraction of two of the most scientifically relevant TDs does not support the reliability of

this particular relationship. Despite the signal shown in figure 70, it is unlikely that the TIR and

NPL ratio are strongly related. This conclusion is further supported by the fact that the other

DPMs that are related to the NPL also showed no significant correlation with the TIRs as is

shown in figure 72 which shows the relationship between the ratio of the number of patents in a

domain with at least 1 NPL citation to the overall size of the domain.
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Figure 72: TIR vs Ratio of Patents with NPL Citations > 0.

This alternative measure of NPL also shows a very weak Pearson correlation coefficient

with an accepted null hypothesis, which is consistent with the notion that NPL is not significantly

correlated with technological improvement rates.

4.3.3.1. Top 100 NPL Ratio

As was discussed in section 4.2.5, each of the DPM is applied to the 28 patent sets and to

the 28 clean top 100 most cited patents. Another way to measure the NPL citation ratio is the

Top 100 average NPL citation ratio. Figure 73 shows the relationship between TIR and the

average NPL ratio for the Top 100 clean most cited patents in each domain alongside the NPL

citation ratio for the 28 complete patent sets.
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Figure 73: TIR vs Average NPL Ratio and Top 100 Average NPL Ratio

The Pearson correlation coefficient between the two variables is -0.033, and the null

hypothesis is accepted, indicating that the very small negative correlation could be due to

random scattering of the data. The combination of the statistical tests and the lack of a trend in

figure 73 indicate that it is likely that there is not a relationship between the Top 100 NPL ratio

in a technological domain and the associated TIR.

One of the more surprising results of this comparison is that every one of the 28 TDs

showed a lower value for the Top 100 average NPL ratio than the average ratio for the entire

patent set. The NPL ratios for each of the 28 TDs (both top 100 and entire patent set) are shown

more clearly in figure 74. This is surprising since others (not working within defined domains as

this work does) have found some correlation with forward citations and NPL whereas the top 100

patents in each domain have significantly smaller NPL (usually by more than a factor of 2). This

will be discussed further in section 5.2.1.3.
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Figure 74: Comparison of Average NPL Ratio and Top 100 Average NPL

Ratio

4.3.4. Hypothesis 4: Recency

Hypothesis 4 states that TDs that rely upon the most recent knowledge should improve

more rapidly. The test for this is a comparison between the recency of the patents and the TIR,

as is diagrammed in Figure 75.
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Figure 75: Graphical Summary of Hypothesis 4 - Recency

4.3.4.1. Average Date of Publication

One of the measures used to test hypothesis 4 is the average date of publication of the

patents in a TD. Figure 76 shows the relationship between TIR and the average date of

publication.

7000% Op = 0.54
flUB fejected
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Average Date of Publication

Figure 76: TIR vs Average Date of Publication
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The Pearson correlation coefficient between the two variables is 0.54, and the null

hypothesis is rejected, indicating that the correlation is unlikely due to random scattering of the

data. The combination of the statistical tests and the slight trend in figure 76 indicate that there

is a potential relationship between the average date of publication of the patents in a

technological domain and the associated TIR.

The earliest average publication date is that of incandescent lighting and the most recent

is genome sequencing, which tends to make qualitative sense when thinking about the times

when those particular domains were being patented heavily. Two domains that contain many

recently published patents that do not have very high improvement rates are wind turbines (TIR

= 9.2% AvePub = 2002.8) and Fuel Cells (TIR = 14.4% and AvePub 2005.2). These two cases

are indicative of the spread of the domains increasing over time - in general, the domains with

earlier starts have a lower variation of TIRs, whereas the more recent TDs have a much wider

spread of TIRs.

4.3.4.2. Average Age of Backward Citations

Another measure used to test hypothesis 4 is the average age of backward citations cited

by the patents in a TD as shown in figure 77.

Benson 243



70.00%

Cp = -0.59
nu rejected
min = 6.6 (Camera Sensitivity)
max = 18.3 (Electric Motors)

1W000%

130.00%
'20.00%

10.00%'

0,00%
0 2 4 6 8 10 12 14 16 18 20

Average Age d Backward Citation

Figure 77: TIR vs Average Age of Backward Citations

The Pearson correlation coefficient between the two variables is -0.59, and the null

hypothesis is rejected, indicating that the correlation is unlikely due to random scattering of the

data. The combination of the statistical tests and the slight visible trend in figure 77 indicate that

there is a potential relationship between the average age of backward citations per patent in a

technological domain and the associated TIR. The correlation coefficient is strongly negative in

this case, which is consistent with H4 that more recent knowledge correlates with higher TIRs.

The apparent "lower limit" on age of backward citations at -6.5 years is interesting and it would

be speculation to say it simply reflects publication timing realities.
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4.3.4.3. 3-Year Price Index

Another measure used to test hypothesis 4 is the Price Index applied to patents as shown

in Figure 78.
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Figure 78: TIR vs Price Index (3-Year)

0.35 0.4

The Pearson correlation coefficient between the two variables is 0.39, and the null

hypothesis is rejected, indicating that the correlation is unlikely due to random scattering of the

data. The combination of the statistical tests and the slight trend in figure 78 indicate that there

is a potential relationship between the average price index of the patents in a technological

domain and the associated TIR.
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While both are fast improving technical domains, Genome Sequencing and 3D printing

represent the max and the min of the average price index per TD respectively. Also, the TD

with the highest TIR (Optical Telecom) has a mid-range value of the Price Index of 0.27.

The 5-year price index was also tested and correlated nearly perfectly with the 3-year

price ratio (Cp = 0.99, null hypothesis rejected), due to the extreme similarity between the

metrics, only the 3-year price ratio is used throughout the thesis.

4.3.4.4. Average Number of Forward Citations within 3 years of publication

A measure used to test both hypothesis 4 and hypothesis 2 is the average number of

forward citations received within 3 years of publication. The results are shown in Figure 79.
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Cp = 0.76
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Figure 79: TIR vs Average Number of Forward Citations Received within 3

Years of Publication
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The Pearson correlation coefficient between the two variables is 0.76, and the null

hypothesis is rejected, indicating that the correlation is unlikely due to random scattering of the

data. The combination of the statistical tests and the strong trend in figure 79 indicate that there

is likely a strong relationship between the average number of forward citations received within 3

years of publication in a technological domain and the associated TIR.

This metric is the numerator of the 3-year Price index and is a combination of the

importance hypothesis (H2) and the recency hypothesis H4), in this respect it is something of a

hybrid metric. The number of citations within 3 years is the strongest correlation between the

TIR and a DPM that was discovered in the entire experiment and forms the base of the

prediction algorithms that will be developed later in the results section. In addition to the

number of citations within 3 years after publication, the same number can be calculated for

citations within 5 years of publication, and also shows a high correlation coefficient of 0.73. The

high cross-correlation between the 3 and 5-year measures indicate that they are measuring

similar aspects of the inventive system and thus only the 3-year domain-patent marker is

included.

4.3.5. Hypothesis 5: Breadth of Knowledge

Hypothesis 5 is based upon the idea that TDs that rely upon the knowledge from other

domains, sometimes referred to as spillover, should improve more quickly. The hypothesis states

that domains that have a broader knowledge base for its patents will have a higher TIR, as

diagrammed in Figure 80.
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this thesis
Figure 80: Graphical Summary of Hypothesis 5 - Spillover

4.3.5.1. Ratio of Backward Citations to Own Domain

One measure used to test this hypothesis is the ratio of citations to the other patents in the

domain, which is the complement of the ratio of citations to other domains. Figure 81 shows the

relationship between the TIR and the ratio of cites to the own domain.
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Figure 81: TIR vs Ratio of Cites to Own DomaIn
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The Pearson correlation coefficient between the two variables is 0.11 and the null

hypothesis that the correlation could be do to the random variation in the data was accepted.

The combination of the statistical tests and the lack of any discernible trend in figure 81 indicate

that there is not a strong relationship between the ratio of backward citations to the own domain

in a technological domain and the associated TIR.

The fact that typically only about 10% of backward citations are to patents in the domain

indicates the great importance of spillover. However, this DPM is one of the weaker markers that

were tested, and does not seem to show any correlation between cites to the own domain the

TIR. Thus, despite the importance of spillover, it does not apparently account for differences in

TIR's among domains.

4.3.5.2. TIR Weighted Backward Citations

While the DPM comparing the number of cites to the own domain did not show any

correlation with TIR, more elaborate methods were tested to evaluate if citing other specific TDs

was correlated with the TIR. In a similar manner to the way that the overlaps of the patent sets

were found, the backward citations of a particular TD were compared with the other patents sets

to determine where the citations from each domain were located. This overlap ratio is calculated

using equation 37, where the backward citations for the patent set of interest are denoted by Citesi

and the 28 patent domains are represented by Pj.

CiteslPj

CitO, (Equation 37)
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As an example, figure 82 shows the overlap percentages between the backward citations

of the Camera Sensitivity TD with the other 27 TDs. The largest amount of overlap was 16%

with IC processors, which while less than the 48.5% overlap of the patent sets as described earlier

in the COM results section is still consistent in showing a strong relationship between these two

domains. Only 6% of the citations are back to the camera sensitivity domain, which is the DPM

described in the previous subsection.
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Figure 82: Camera Sensitivity Backward Citation Overlaps

Ultimately, very few of the patent sets are cited significantly by the camera sensitivity

patents and only ~25% of the citations cite any of the 28 TD that were located for this study.
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Another hypothesis was developed after the experiment had been run. Basically, it states

that the TIR of a domain depends upon the TIR's of the domains cited by the domain. To test

this, the values of the backward citation overlaps were multiplied by the TIR of the TD as shown

in equation 38 to find the individual TIR weighted patent citation overlap ratio for domain i to

domain j.

Citesif P,
BKWDwghtTIRi = ______* TIR.

Cites1
(Equation 38)

This value was then determined for all of the 28 domains that are classified in this study

to find the total TIR weighted patent citation overlap ratio for domain i as shown in equation 39.

8Cites n P
BKWDwghtTIRj = I _ * TIRj

j, Citesi
(Equation 39)

As an example, the steps for calculating the camera sensitivity TIR weighted patent

citation overlap ratio are shown in table 19.

Domainj

3D-Printing (industrial stereolithography)
Aircraft Transport

Electrochemical Battery Energy Storage
Camera Sensitivity

Capacitor Energy Storage
Combustion Engines

Computed Tomography (CT)
Electrical Energy Transmission

Electric Motors
Electrical Information Transmission

Electronic Computation
Flywheel Energy Storage

Fuel Cell Energy Production
Genome Sequencing

Incandescent Artificial Illumination
LED Artificial Illumination

Magnetic Information Storage
Milling Machines

Magnet Resonance Imaging (MRI)

Camera Sensitivity
Citation Overlap

0.00%
0.00%
0.01%
5.80%
0.01%
0.00%
0.12%
0.02%
0.02%
0.09%
0.02%
0.00%
0.00%
0.00%
0.00%
0.23%
0.03%
0.00%
0.00%

TIR for Domain j

37.60%
12.20%
7.00%

15.60%
14.60%
5.70%
36.70%
14.90%
3.10%

14.30%
33.00%
9.00%
14.40%
29.30%
4.50%
36.20%
31.90%
3.40%

47.50%

TIR Weighted Backward
Citations

0.000/
0.00%
0.00%
0.90%
0.00%
0.00%
0.04%
0.00%
0.00/a
0.01%
0.00%
0.00%
0.00%
0.00%
0.000/
0.08% .
0.01%
0.00%
0.00%
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Optical Information Storage 0.12% 27.10% 0.03%
Optical Information Transmission 0.32% 65.10% 0.21%

Photolithography 0.30% 24.00% 0.07%
Integrated Circuit Information Storage 0.67% 43.20% 0.29%
Solar Photovoltaic Energy Generation 0.16% 9.50% 0.01%

Superconductivity 0.01% 9.50% 0.00%
Wind Turbine Energy Generation 0.00% 9.20% 0.00%

Integrated Circuit Processors 15.98% 36.30% 5.80%
Wireless Information Transmission 0.59% 50.40% 0.30%

24.5% 7.8%
Table 19: Breakdown of Camera Sensitivity TIR Weighted Overlap Citation

Ratio showing how the overall value (7.8%) is calculated

This value is calculated from equation 39 for each of the 28 TDs and is used as an

additional DPM that is compared with the TIR for correlations as is shown in Figure 83.
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Figure 83: TIR vs TIR Weighted Backward Citation Ratio

12.0%

This DPM has a correlation coefficient of 0.66 with the TIR and a rejected null

hypothesis. The high correlation along with the visible trend indicates that higher weighted

backward citations of a patent set indicates more rapid technological improvement.
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It is important to note that it is an incomplete measure because it only incorporates 28

TDs out of the entire patent database. If all of the patents ever published were put into domains

the sum of the overlap percentages would likely be higher than 100% (due to multiple listings)

and thus the validity of this measure even with 100% coverage of patents is not certain. The

research reported here neither proves nor disproves that TIR's can be calculated as a weighted

sum of all their backward citations weighted by the TIR of the cited domain. This interesting

possibility will be discussed further in section 5.2.1.5.

Additionally, this measure includes a bit of circular reasoning in that it includes

multiplying by the self-citations of a domain by the TIR of the domain. Due to the limited

coverage of our selection of patents into technological domains, a majority of the backward

citations that can be binned into a technology are to the own domain (i.e. solar PV backward

citations are mostly categorized as solar PV patents - while still only making up 10% of the

total number of backward citations). This suspicion is confirmed by removing the self-citation

data and re-calculating Equation 39, which results in a lower Pearson correlation coefficient of

0.042 with the null hypothesis accepted. This potential for circular reasoning does not

immediately eliminate the usefulness in understanding reliance on backward citations, however

may be less reliable if used to predict the TIRs of other technological domains as is discussed in

section 4.3.7.3.
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4.3.6. Other DPMs

Most of the DPMs represent specific hypotheses, additional DPMs were tested as

mentioned in section 3.5.6. Of the extra DPMs, the only strong positive correlation with the

TIRs came from the length of title (in number of characters) as shown in figure 84.

70.00%

Cp =0.76
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Figure 84: Length of Title (in number of characters) vs TIR

While the relationship between the average length of tide of the patents in a domain and

the TIR may seem unusual, there is some theoretical support behind this relationship from

Lucio-Arias and Leydesdorff (2009). When a domain is moving more rapidly, additional context

may be necessary when publishing a patent to make it's specific use more clear. In fact, this

metric has a high correlation with CIT3 (Cp = 0.57), which is consistent with more early citations

to a paper in a field requiring more context for differentiation and clarity.

4.3.7. Predictive Capabilities
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Over 40 different DPMs were tested for correlation against the TIRs and are listed in

appendix C. Through testing of the 5 hypotheses, several strong correlations were discovered.

In this section these correlations will be subjected to robustness tests based upon the domains

used in the study and the length time of the study. Finally, a combination of the DPM will be

combined in a number of ways to predict TIR rates using regressions.

4.3.7.1. Random Selection of Half of the Domains

In order to ensure that the correlations between the DPMs and the TIRs were not simply

a result of the specific set of 28 domains selected for this study, a stringent domain-based

robustness test was applied to the DPMs. In order to complete this test, the set of 28 domains

was randomly separated into 2 sets of 14 domains (with no TDs repeated twice) and the

correlation coefficients were re-calculated using only 14 TDs each time. This trial was then

completed 10 times for a total of 20 different sets of 14 TDs and corresponding correlation

coefficients. An example using the TIR Weighted Backward Citation Overlaps is shown in table

20.

Random Random Random Random Random Random Random Random Random Random
TrialI Trial2 Tial3 Trial4 Trial5 Trial6 Trial7 Trial8 Trial9 Trial10

14
Tms 0.704 0.820 0.596 0.747 0.658 0.519 0.471 0.545 0.692 0.833

Other
14 0.636 0.512 0.748 0.641 0.694 0.819 0.814 0.806 0.721 0.705

TDs

Table 20: Random Domain Robustness Testing of the TIR Weighted Backward

Citation Overlap Ratio Correlation with TIR
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The mean and standard deviation of the values were taken to determine the robustness,

with the lower standard deviation values indicating higher robustness to the selection of different

domains. Table 21 shows the summary of the domain robustness for the 6 DPM of most interest.

Patent Specific Metrics Average Correlation Standard Deviation

Average Cited by within 3 years 0.765 0.067

Average publication year 0.544 0.092

Average Length (in characters) of 0.604 0.110
Title

TIR Weighted Backward Citations 0.684 0,112

Average number of forward citations 0.476 0.183

Price Index (3 years) 0.405 0.150

% of patents with cited by over 20 0.351 0.245

Table 21: Summary of Domain Robustness Analysis for the most highly

correlated 7 Domain Patent Markers

Given the severity of the test in removing /2 of the domains, there is quite good

consistency in almost all of the effects of the metrics on the rate of improvement. In particular,

the DPM of average forward citations within 3 years of publication is remarkably consistent

across 20 different correlation values, indicating that the strength of that signal is not due to the

selection of these specific 28 TDs. The least consistent metric was found to be the % of patents

with over 20 forward citations which shows much more variation under this robustness test (it has

a much higher standard deviation) and thus it is more likely that it is affected by the selection of

specific data.
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4.3.7.2. Time Dependence of the DPMs

A second robustness test also tests the predictive capability of the correlations by testing

how sensitive the DPM correlations were to variations in time. In order to do this, the DPMs

were analyzed for only patents from a variety of time frames that were less than the total time

frame. The time frames were analyzed to see how far back from 2013 they could be and still find

similar correlations as the DPMs show during the entire time frame (1976-2013). The results of

these time based tests for the two strong signals that also show high robustness as shown in table

22.

All Data 2001 1991 1981

(387year1) (26 years) (16 years) (6 years)

CiedbyWihi 3YersCp = 0.76 0.72 0.52 0.3Cited by Within 3 Years C ect.76 re'eted rec d cepdrejcte rJece rejected accepted

Average Publication Year Cp = 0.54 0 .53 -0.07 -0.18
rejected rejected accepted accepted

Title Length Cp = 0.76 0.42 0.24 0.11
rejected rejected accepted accepted

Table 22: Time Robustness Analysis for 2 DPMs showing Pearson correlation and

hypothesis acceptance/rejection at 95% confidence

The three DPMs show very similar correlation values for 1976-2001 than they do for the

entire data set of 1976-2013, indicating that the metrics have predictive capabilities of 12 years

into the future. When the DPM were analyzed for patents before 1991, the correlation value of

the cited by within 3 years DPM shows a slight drop-off (from 0.72 to 0.52) and the average

publication year and average title length DPMs show a significant drop-off and has an accepted

null hypothesis which renders the signal void. The decrease in reliability of this data in 1991 is at

least partly due to the fact that many of the domains were very young at that point in time and

thus would have very few patents to analyze. The data from the 1976-1981 timeframe shows
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that all three DPMs are non-signals for the short 6-years timeframe. Ultimately the two strongest

and most robust DPMs are robust to time up to 12 years prior to the experiment, showing a

promising amount of predictive capability.

4.3.7.3. Regression Models

The strongest DPMs can be used to construct regressions to predict the TIR using only

the patent data. Linear regressions were performed on the strongest DPMs in order to create

predictive models. Models using other significantly correlated DPMs were constructed as well

and none showed as strong of predictive power as the three shown in this section. The other

models and their statistics are shown in appendix D.

Predictive Model 1 is the most basic model and uses only the average number of forward

citations within 3 years as the sole predictive variable and is shown in equation 40.

TIR = -0.2562 + 0.1643* FwdCit3  (Equation 40)

The R2 for this model is 0.58, which shows a significant amount of predictive power for

using only one variable, which speaks to the strength of the FwdCit3 DPM as a predictor of the

TIR.

Each of the coefficients that make up the predictive equations also have p-values that give

an indication of how reliable they are, the lower the p-levels are the more likely they are to be
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reliable in conjunction with the other coefficients, in general p-levels lower than 0.05 are better.

Table 23 shows the confidence levels for each of the coefficients in model 1.

Value p-level
Intercept -0.2562 1-0.00253

Average Cited by Within 3 Years 0.1643 0

Table 23: Coefficient p-levels of Predictive Model 1

The p-values for both the intercept and the FwdCit3 variable are far below the 0.05

acceptance level.

Predictive Model 2 takes into account the average number of forward citations within 3

years and adds the average publication year of the patents and is shown in equation 41.

TDR = -31.12+0.141*FwdCit3 +0.015 *PubYear (Equation 41)

The R2 for this model is 0.64, which is slightly stronger than model 1, and uses an

additional variable. Table 24 shows the confidence levels for each of the coefficients in model 2.

Value p-level
Intercept -31.12 0.0468

Average Cited by Within 3 Years 0.141 0
Average Publication Year 0.015 0.0485

Table 24: Coefficient p-levels of Predictive Model 2
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The p-values for both intercept and the PubYear variable are slightly below the 0.05

confidence value and thus are reliable, but not as reliable as the coefficients in model 1.

Predictive Model 3 takes into account three of the most highly correlated DPMs.

Predictive model 3 includes the DPMs in model 2 and adds the TIR weighted backward citation

ratio, as is show in equation 42.

TiR=-34.60+0.912*FwdCit,+O.Ol7*PubYear+2.11*BwdCiiOurl (Equation 42)

The R2 for this model is 0.72, which is slightly stronger than model 2, and uses three total

variables. Table 25 shows the confidence levels for each of the coefficients in model 3.

Value P-__ve_
Intercept -34.60 0.017

Average Cited by Within 3 Years 0.912 0.008
Average Publication Year 0.017 0.017

TIR-weighted Backward Cites 2.11 0.015

Table 25: Coefficient p-levels of Predictive Model 3

The p-values for the intercept and all three variables are much below the 0.05 confidence

value and thus can be considered reliable.

Ultimately Model 3 shows the highest prediction capability with a very strong R2 of 0.72.

The model involves three variables that take into account importance, recency and source of

knowledge. While Model 3 provides the best prediction power, it should be noted that Model 1

is astonishingly accurate for only using one DPM for its prediction. Additionally, the average
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cited by with 3 years DPM shows the most robustness to varying domains and timeframes, and

even alone can be considered a strong indicator of technological improvement. As was

mentioned in section 4.3.5.2, there may be some circular reasoning in the use of TIR-weighted

backward citations because of the use of the self-citations multiplied by the TIR of the domain.

When this variable is used in predicting the TIR of other domains, the values for TIR-weighted

backward cites are likely to be much lower because the self-citations are not multiplied by any

value because there exists no empirical evidence. It is for this reason that for predicting technical

improvement rates for new domains based solely on patents that Model 2 is likely to be the most

useful.

4.4. Various Forms of Trends in Technical Performance

Increases

While most of the comparison of the domain patent markers was done to discover more

about the causes of different technological improvement rates between technological domains,

the creation of 28 mostly relevant and complete patent sets that represent specific TD's allowed

for the testing of how a technology may improve within one TD. Specifically, while the number

of patents within a TD did not correlate highly with the varying TIRs, one might be able to

replace time as a dependent variable and use patent counts when tracking the performance of a

technology over time. This is similar to the extensive literature that uses production as a

replacement for time in tracking progress as is discussed in section 2.1 of this thesis. In this
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section, several different types of effort variables for tracking the performance of Integrated

Circuit Processors will be explored and compared.

4.4.1. Demand

This subsection will explore the relationship between the number of units produced in the

semiconductor industry with time and technology performance.
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Figure 85:
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Log IC Production vs Time - adapted from (Moore, 2006)

The R2 of the exponential fit is a very high 0.986 and the increase rate of the production

is 58.01 % per year, which is much larger than the revenue or patent growth rates.
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The FPM are plotted on a log-log plot (after Wright) against cumulative industry

shipments per year and is shown in figure 86.
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Figure 86: Log transistors per die vs Log Cumulative Industry Production

In a similar relationship to that of the two previous effort variable, the industry

production vs FPM also exhibits a power law relationship with an exponent of 0.62 and an R2 of

0.96. The exponent of the power law is the same as the variable x in equation 2 (Wright's law).

4.4.2. Revenue
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Another effort variable that can be used to track the performance of a technology is the

revenue of a particular industry, which is often seen a proxy for R&D spending. The increase in

revenue of the IC industry is shown in figure 87.
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Figure 87: Log Cumulative IC Revenues vs Time - adapted from (Moore,

2006)

The R2 of the exponential fit is 0.912 and the rate of the revenue increase is 9.48% per

year.

Again following Wright (1936), the FPM can be plotted on a log-log plot against industry

revenue per year as is shown in figure 88.
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In a similar relationship to that of the cumulative patents vs FPM, the industry revenues

vs FPM also exhibits a power law relationship with an exponent of 3.4 and an R2 of 0.88.

4.4.3. Patents

While the DPM of simple patent count treated the number of patents in a domain as a

simple number, in all cases the number of patents per year varied with time. In a number of

cases, the number of annual patents in a technological domain increases exponentially over time.

Figure 89 shows the cumulative number of patents published in the IC processor domain since
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1980. The first few years (1976-1979) are not included as they are unreliable because 1976 was

the first year of the data set.
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Figure 89: Log Cumulative IC Processor Patents vs Time (patent data

starting in 1980, the first data point includes patents issued from 1976-1980)

The R 2 of the exponential fit is very high at 0.98 and the cumulative patents increase

approximately 1 3% per year.

Following Wright and the extensive work using cumulative production as the

independent variable, the FPM is plotted on a log-log plot against the number of cumulative

patents per year can as is shown in figure 90.
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Figure 90: Log Transistors per die vs Log Cumulative IC Processor Patents

Because the increase in cumulative patents vs time is exponential and the increase of

FPM vs time is also exponential, the relationship between the FPM of IC Processors and the

cumulative patents is a power law relationship (Sahal, 1979). The R2 of the power law

regression is 0.91 with a power law coefficient of 2.57.

4.4.4. Sahal's Relationship

Each of the effort variables shows a different improvement rate over time and a different

power law exponent when compared with the FPM of integrated circuits. As is discussed in more

depth in section 2.1 of this thesis, Sahal (1979) showed that these effort variables can be equated

by multiplying the exponential increase rate over time (Beta) by the power law exponent (alpha)

with the resulting value equaling the TIR of the technology as shown in equation 43.
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TIR = alpha* beta (Equation 43)

This relationship can be tested by multiplying the alpha (exponential improvement over

time) and the beta (power law exponent with FPM) values that were collected for each of the

three effort variables. Table 26 shows the results of the empirical tests of Sahal's relationship

using patents, revenue, and production as the effort variables.

alpha beta alpha*beta

Patents 2.57 0.13 0.33

Revenue 3.4 0.095 0.32

Production/Demand 0.6 0.59 0.35

Table 26: Empirical test of Sahal's Relationship; Alpha x beta should equal

k which empirically is .36 for this domain-metric pair in good agreement with the

estimates from Sahal.

The values of alpha*beta are all very near the TIR of IC Processors (0.36) despite the fact

that the respective alpha and beta variables vary considerably. This empirical test provides

empirical support for Sahal's relationship and lends further credibility to the theory that

technological performance can be tracked against a number of different variables which are

equal when compared to each other as was strongly stated by Nagy et al (2013).

4.4.5 Alpha and Beta for all 28 Domains

While the patent increase rate (Beta) and the power laws relationship between patents

and performance (alpha) fit well for the integrated circuit processors domain, this was not
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universally the case. Figure 91 shows the R2 values for the Alpha, Beta and TIR for each of the

28 TDs.
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Figure 91: R2 for TIR, Alpha and Beta for Patents for all 28 TDs

The TIR is consistently the most reliable measurement of technological improvement

with an average R2 of 0.9125. The Alpha power-law relationship is often similar in reliability to

the TIR, however is dragged down by five cases that could not be computed (and thus have R2

of 0) due to declining patent increase rates leaving the mean R2 value of alpha at 0.612. The

exponential increase of patents over time has a mean R2 of 0.54.

Thus, while the patent based measure of effort for tracking technological change is

possible and is accurate for some domains, it is far less broadly applicable over a wide variety of

technical domains.
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4.5. Summary of Results

The approach of this research is to analyze technological improvement rates over many

different technological domains and compare those values with markers derived from patents.

The results of the study provided 28 patents sets and corresponding technological improvement

rates for a wide variety of technologies, insight into why those different TDs may improve at

different rates, an algorithm to estimate TIRs based upon patent analysis and empirical support

for the theory that several different measures of effort are nearly transformations of each other

based upon Sahal's relationship. This final sub-section of the results will provide a short

summary of all of the major findings of this research.

First, the TIRs for each of the 28 domains was subjected to a number of reliability filters

to determine the most complete and reliable TIRs for each TD as are shown in figure 58 in

section 4.1.2.2. Next, the classification overlap method was used to select 28 patent sets to

represent each TD that were relatively complete and relevant as is shown in figure 61 in section

4.2.6. The domain patent markers were then correlated with the TIRs in order to better

understand the variation of TIRs between TDs.

Correlation with TIR Null Hypothesis

Hypothesis 1: Effort

Simple Patent Count 0.33 accepted

Hypothesis 2: Breakthroughs

Average Number of Forward Citations 0.48 rejected

% of Patents with More than 20 Forward Citations 0.39

Hypothesis 3: Science

NPL Ratio 0.2 accepted

Hypothesis 4: Recency

Average Date of Publication 0.54 rejected

Average Age of Backward Citations -0.59 rejected
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Price Index (3-year) 0.39 rejected

Average Number of Forward Citations within 3 Years of Publication 0.76 rejected

HypothesiU 5: Spiliover

% of Backward Citations to Own Domain 0.11 accepted

TIR Weighted Backward Citation Ratio 0.66 rejected

Table 27: Hypothesis derived domain patent markers Correlations with

technological improvement rates along with null hypothesis acceptance or

rejection

The DPMs with the strongest correlation values were tested for robustness against varying

domains and timeframes and then were combined into a model that can be used to estimate TIR

values for a TD based upon the patent data. Three models were created and showed promising

consistency with the observed TIRs and Model 2 is likely to be the most reliable for prediction

purposes.

TIR =-0.2562+0.1643* FwdCt3 (R2 = 0.58)
TIR =-31.12+0.141* FwdCit3 +0.015* PubYear (R2 = 0.64)

TIR = -34.60+0912 * FwdCit,+0.017* PubYear+2.11* BwdCitOverlapnRwagw(R2 = 0.72)

Finally, the patent data was used to support the concept that technological performance

can be measured against a number of different effort variables in an equal manner. The IC

processors domain was used to compare 3 different effort variables, which were related using

Sahal's relationship and shown to be nearly equal to the TIR of IC Processors which is 0.36 as

was shown in table 26 in section 4.4.4.
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Chapter 5: Discussion and Contributions

This section of the thesis will discuss the results of the inter-domain patent analysis as

compared with the technological improvement rates of the 28 domains. The results of the study

will be discussed with respect to their context within overall theories of technological change and

the contributions that this research has provided to the field. Finally, several practical

implications of this research will be described.

5.1. Contributions of the thesis to the Study of Technological

Change

As was foreshadowed in section 1.3 with Popper's thoughts on falsifiability, the main

result of this research is not any single domain patent marker correlation with the TIR or even

the predictive model that allows for the estimation of TIRs. The structure of the experiment and

its implications to future technological research are possibly the most useful components of this

study. This thesis is the first experiment to explain variation in TIRs for multiple domains using

characteristics of the domains derived from patent data. Several statistically significant results

were gathered from this research and can be used to objectively discuss theories of technological

change, something that has rarely been done before in such depth. Furthermore, the 28 domains

studied provide extensive breadth and should allow for an excellent base of knowledge for further

objective development of technological change theories. However, to achieve this, such theories

have to have a quantitative predictive framework which most do not.
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5.1.1. Repeatability and Objectivity of performance improvement and

patent sets in domains

In order to compare the TIRs and the DPMs, care was needed in order to ensure that the

results were objective and repeatable. Many of the techniques used in this research were created

specifically to ensure robustness of the final results.

While there have been many studies of TIRs in the past, few have tested the reliability of

the TIRs as fully as in this thesis. While the R2 value is a great indicator of how well the data fits

a particular regression, it falls short on capturing the true reliability of a particular exponential

growth rate of a technology. This study incorporated the confidence interval standard deviation

as well as the point removal method to test for confidence of the fit and robustness to the removal

or addition of certain points. The PRM is a statistical test that is designed specifically to be used

on TIRs as there is never 100% completeness of the TIR data and therefore the robustness to

added or removed points should be evaluated whenever measuring a TIR. A great amount of

effort was put into testing the reliability of the TIRs in this study, and the reliability of TIRs

should be emphasized more than it has been previously, potentially using the methods described

in this thesis.

Locating and testing a set of patents for 28 greatly varied technological domains is

another main contribution of this thesis. The COM was designed to be repeatable and robust to

user input so as it can be used in a large number of different scenarios, even ones beyond the

fields of technological change. In previous studies of technological change and patent analysis
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many of the tests were completed on a small number of highly relevant patents within one

domain, or patents felt to represent a domain but without consistent relevance testing or a large

number of mostly anonymous patents across many unidentified technological fields. This thesis

applied those patents metrics to a large, varied set of specifically identified sets of patents as well

as clean sets of the top 100 most cited patents in each TD. The surprisingly broad applicability

of the COM and its usefulness in this study should not be understated, as it could provide a basis

of selecting patents for study within and outside of the technological change field.

5.1.2. Combining Quantitative and Qualitative Results

The results of the experiment are intentionally and largely quantitative in nature so that

they can provide objective measures necessary for prediction of technological change. This

quantitative information is supported by large amounts of qualitative information about each TD

and each DPM that can also be used in interpretations of the results of the experiment.

The significant attention paid to robustness of the TIRs, relevance of patent sets and the

robustness of the experimental results from comparison of the TIR's and patents are the

foundation upon which the objective findings are built. Five hypotheses derived from prevailing

theories of technological change were used to arrive at reliable quantitative understanding of the

cross-domain patent TIR comparisons. Due to the quantitative nature, it was possible to show

whether the results were significant or potentially due to data sampling issues. The ability to test

multiple theories of technological change at a statistically significant level across 28 different TDs

is a significant contribution to the study of technological change. However, many of the existing

theories of technological change are stated in narrative and other non-falsifiable forms. Thus,

failing these quantitative tests do not entirely eliminate the theory but do indicate a need for
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further objective development. Further studies building from this thesis research should be able

to test more theories across more domains resulting in even higher reliability quantitative data

and hopefully resulting in reliable falsifiable theories of technological change.

Quantitative data provides the objective information to evaluate theories of technological

change, it is important that it is used in conjunction with qualitative information available to not

only test the results, but to understand them. Each of the TD patent sets contains a wealth of

qualitative information contained in the text of the patents. In particular the clean sets of top

100 most cited patents in each technological domain provide a more concise means for

understanding what the most important inventions were at different times that contributed to the

development of the technology. The list of mostly highly overlapped patent sets provides

quantitative grounding for the qualitative concept of how closely related certain TDs are to one

another.

The DPMs were mostly used for the correlations between the patent sets and the TIRs;

however, the specific values of some of the DPMs for each TD give a qualitative sense for how

specific TDs developed. For example, it was interesting to note that the Genome Sequencing

TD relied almost entirely on scientific literature for its citations, something that aligns with our

intuition about the field. Another example is that incandescent lighting has the oldest average

date of publication, a fact that aligns well with the US government's attempts at discouraging

incandescent light bulbs over the last few decades.

This methodology places significant emphasis on objective and quantitative methods to

test theories of technological change, however it also provides a significant amount of

complementary subjective and qualitative evidence that are useful in conjunction with the main

findings of the thesis.
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5.2. Contributions to Technological Change Theory

One of the main contributions of this thesis is the quantitative empirical data that can be

used to support (or not support) theories of technological change. Five main hypotheses were

tested using a number of different DPMs across the 28 TDs. In this section, the results of these

tests are individually synthesized and interpreted within the context of theories of technological

change. The second sub-section will describe an analogy-based concept that is consistent with

the main findings of this thesis called the 'Rising Sea Metaphor'.

5.2.1. Direct Implication of the Results

It is important to begin this sub-section with a clear distinction between correlation and

causation. Indeed, many of the results of this research are based upon the correlation of the

DPMs and TIRs of the 28 different domains, yet at this point in time there is insufficient

evidence to purport that the DPMs can be causally linked to the improvements of technological

domains. Even if casual links were potentially derived from a theoretical basis, in many cases the

direction of causality can be questioned as well (i.e. Do highly cited new patents cause an increase

in technological performance or do TDs that improve rapidly cause patents to cite more recent

patents highly?). Despite the lack of casual relationship between the DPMs and the TIRs, the

relationship is still useful for understanding technical change and for estimating TIRs using the

predictive model.
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5.2.1.1. Effort

The number of patents in a technological domain shows almost no correlation with the

TIRs. This very weak signal may be partially due to the fact that the patent sets are not 100%

complete, however considering the large number of domains evaluated in this thesis, it is unlikely

that even with perfectly complete patent sets (which would be impossible to select), that the

number of patents in a TD would correlate strongly with the TIRs. This result indicates that the

number of patents is a poor indicator of inventive impact and is consistent with a number of

previous studies, that citations rather the number of patents in a particular TD is a much better

indicator of the economic impact of inventive effort.

The patent based effort metrics for the IC Processors domain proved to be consistent with Sahal's

relationship between the cumulative number of patents published in the TD and the FPM.

Likewise, the other two effort variables (revenue and production) also followed Sahal's

relationship as introduced in section 4.4.4. While these 3 effort variables proved to be nearly

equivalent to the time based TIR for IC Processors, many of the other domains did not have

reliable cumulative patent improvement rates and the correlation of FPM's with cumulative effort

was not very reliable in almost 1/2 of the TD's which supports the theories that the various effort

variables are nearly equal as mentioned in section 2.1.4. Not only does this make it not possible

to test Sahal's relationship, but effort based analysis is not capable of assessing technological

progress in these TD's. Importantly, when constructing the effort-based technological

improvement curves, time was used as an intermediary variable (FPM vs time and patents vs

time) and all of the TIR results based upon direct correlation of FPM and time were reliable

enough to assess all 28 domains.
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Qualitatively, it appears that Moore's law is more fundamental than experience curves for

technological progress in the 28 domains. Since progress as we measure it is due to new artifacts

(new designs/inventions), this result has logical appeal. In particular, it is important to note that a

very small portion of the backward citations from each TD were to other patents in that

particular TD. Thus, ongoing development in a particular TD is influenced significantly by

improvements in other technologies so it is not logical that the specific number of patents or

revenue or demand in one individual TD can sufficiently explain its performance improvement.

It is for these reasons that it is likely that the most stable method of measuring the performance of

a technology (where progress involves new designs/inventions) is to use time as the dependent

variable. Nonetheless, in cases where the effort variables improve exponentially experience

curves provide different yet equal methods of assessing technical performance improvement.

5.2.1.2. Importance: Citation Frequency and networks of patents

There are several DPMs that are related to citation frequency that correlate highly with

TIRs. Thus the ideas that citation count correlates with importance and that TDs with more

important inventions improve more rapidly are supported by this research. The exact

mechanisms in which the more important inventions influence the improvement rate are less

clear. The results of this study show that the average number of forward citations correlate more

strongly with TIRs that the percentage of patents with more than 20 citations as was introduced

in section 2.2. This could indicate that domains are less propelled by a set of vey important

inventions and it is more likely that TDs in which the patents tend to be used more often improve

more rapidly.
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One of the main issues with measuring importance that is reflected in the difference

between very important patents and a set of more important inventions on average is the unit of

analysis of importance. In this experiment, patents are used as proxies for inventions and

forward citations are used as a heuristic for impact; both assumptions are based on prior

literature discussed in section 2.3. Many of the other theories of technological change listed in

section 2.2.7 attempt to assign qualitative labels to inventions such as breakthrough or radical and it

is sometimes unclear or very subjective to what should be labeled as breakthrough or radical. Many

of the prior examples of these qualitatively selected very important inventions are represented by

a large set of patents in this thesis, which could help explain the slight variation between the

average forward citation and the percentage of patents with more than 20 forward citations.

Together, these inter-related or networked sets of patents are likely capable of causing significant

disruptions or forming entirely new architectures for artifacts within a TD. While these groups of

inventions are often labeled as coming from a single innovation after the fact, it is often the case

that they are the accumulation of a great number of inventions to create the, radical,

breakthrough, "new paradigm" or "punctuated equilibrium" innovation. In fact, it is such

networks of patents that cause ongoing rapid improvement suggesting that the many terms used

are not in fact time bound but occur throughout time in a TD and often leverage key

improvements from other domains.

The issue of correlation vs causation is especially salient when considering our strongest

DPM signal- the number of forward citations within three years of publication- as it is very

difficult to distinguish between the two possible causal directions: one where the inventions in a

TD are used quickly and significantly after they are invented and thus the domain improves

rapidly or where a domain is improving so rapidly that the information that is important is only

valid for a few years after publication. This lack of casual proof applies to all of the importance
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related DPMs. Despite this and following the precedent set by Solow and shown in section 2.23,

the correlation between highly cited inventions and TIRs is statistically significant across three

importance related DPMs, providing a strong indication that TDs that improve more quickly

have inventions that are used more often and particularly that the more recent inventions are

used more often. Given that most of the citations from a domain are to other TDs, it is

important to note that the inventions within a domain need not be used by inventions in that

domain for the TD to be improving quickly suggesting that the signal is not causation. This fact

lends credence to the idea that domains that are improving more quickly lead to patents that are

cited more frequently by other domains than patents in a slowly improving domain.

5.2.1.3. Science: NPL as an indicator

The NPL citation ratio is the main heuristic used to represent scientific reliance of a

patent as was discussed in section 2.3, and the average NPL citation ratio does not correlate with

the TIRs of the TDs (neither did any of the variants measuring NPL citations). Additionally, one

of the most surprising results of the research was that the top 100 most cited patents had a lower

NPL citation ratio than the total patent sets for every one of the 28 TDs. These observations do

not mean that science does not contribute to the increase in technological performance, as there

is far too much evidence to the contrary to seriously consider this option. One explanation is that

the NPL is simply a poor measure of scientific reliance, and that unlike prior patents, the patent

applicants and examiners are not highly motivated to ensure that all NPL is included in the

citations. While there have been a number of studies that have used NPL ratio as a measure of

science, perhaps the measure is not as reliable as previously thought.
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A related explanation for the results is that the relationship between the basic science and

the most important patents and the improvement in a domain are more complex than the NPL

ratio tests. For example, the patents that rely very heavily on science may themselves not be

incredibly impactful, but could lead to future patents (one or two citation generations later) that

are very impactful. This case may be similar to the case of patents where the number of NPL

citations is a poor measure of scientific impact, but rather a measure of scientific input and thus a

measure that is more closely linked to the impact of a particular piece of non-patent literature

may be more appropriate.

Another explanation for this could be that some aspect of the domain makes it easier or

more difficult to assimilate science-based knowledge and thus the amount of NPL citations would

not account for traits that are internal to the TD. Fleming and Sorenson (2004) explore the idea

that technological development is influenced by science only when the technologies are very

complex.

'Science alters inventors' search processes, by leading dem more directly to useful combinations, eliminating

fruitless paths of research, and motivating hem to continue even in theface of negativefeedback' (Fleming and

Sorenson, 2004)

They results utilize patents and indicate that science is most useful when a technological

domain involves many coupled components. They explain this relationship by saying that if the

components of a technology are easily separated, then science offers less advantage, it is only

when tightly coupled components cause significant challenges that the "map" provided by

science is able to provide a significant benefit to the inventor.

Ultimately while this experiment does not show a significant relationship between NPL

ratio and TIRs, it is unlikely that science does not play a role at all in technological development
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but rather that the NPL is an imperfect metric and/or that the connection between basic science

and technological improvement is rather complex.

5.2.1.4. Recency: Citation age, patent age when cited and patent age

There are several strong links between the recency based DPMs and the TIRs, including

DPMs that measure the publication date of the patents, the number of forward citations within 3

years of publication and the age of the backward citations. The three signals measure recency

looking forward, backward and absolutely, and thus it is very likely that the recency of a

technology is a strong explanatory factor in the variation of TIR's among the set of TD's. The

idea that newer technologies improve more rapidly is consistent with many intuitive

understandings about the progression of technology (the absolute measure); however, that the

backward citation age and citations in the early years of a patent signal more rapid improvement

has not been noted before.

A potential explanation for the correlation between the publication date the and TIRs is

Darwinian in that the new TDs that do not improve more rapidly than the existing technologies

never develop into anything important and thus are not seen in studies like this. If there are a

large number of potential TDs being developed at all times, it is likely that only the TDs that

improve more rapidly than the current state of the art will be developed further, and thus

patented, diffused and studied by technological change researchers. This interpretation is also

supported by the data that shows a wider spread of fast improving TIRs in more recent years

than in the past, while there are some new domains that are improving very rapidly, there are

also some slower-improving domains that have recent average publication dates.
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The correlation between the age of the backward citations and TIRs indicates that

domains that improve more rapidly rely upon more recent patents. This could be due to the fact

that fast improving domains make other knowledge obsolete more quickly, in that a technology is

improving so rapidly that older components or knowledge are no longer useful to the domain of

interest soon after they are created. Conversely, the knowledge that fast moving domains rely

upon could be improving rapidly and thus the older knowledge and components become

obsolete more quickly. The casual relationships are not clear from the citation-age correlation,

but the fact that TIR-weighted backward citations are strongly correlated with TIRs may

indicate that casual direction is from the fast moving components and not from the fast moving

domain.

This is consistent with the forward citation based recency measure (CIT3) that states that

in fast moving domains, patents are generally used significantly within 3 years after their

publication. This measure is related to the patents within the domain (as opposed to the

backward recency measure that is based mostly upon patents outside of the domain), it more

clearly supports the casual direction of the base of knowledge from other domains becoming

obsolete, in that when new knowledge is created it is used quickly and significantly often by other

TD domains because the domain of interest is moving very quickly. In summary, if a domain is

moving quickly, it is likely that the patents in that domain will be used within the first 3 years by

other domains, after which the other domains will begin to rely more upon the next generation of

patents. The casual relationship here is that the recency based measures are caused by the rapid

improvement in the technological domain.

It is also possible that citations do not reflect usage but instead just competitive action, but

this is not consistent with the fact that patent examiners force citations as a means of limiting

claims and it is also not consistent with the evidence that citations do in fact relate to impact of a
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patent (Trajtenberg, 1990; Hall et al, 2001). We also note that the correlation of TIR with age of

citations is independent of the date of emergence of the technology as shown by the forecast

stability established in section 4.3.7. So even relatively "old" technologies like IC processors have

maintained a high CIT3 throughout their life cycle. Nonetheless, there is a tendency for new

domains to be advancing more rapidly. Therefore, the effect of recency is likely due to a

combination of these theories but nonetheless is a powerful explanatory factor of TIRs.

5.2.1.5. Spillover: Knowledge Base Breadth and Vitality

The relationship between the breadth of knowledge based DPMs and TIRs was

somewhat of a mixed signal, which is actually consistent with the prior literature in section 2.2.

The results indicate that the use of knowledge that is external to the TD of interest is high in all

domains and does not correlate highly with TIR. However, when weighted for the improvement

rate of the cited TDs, the correlation with external knowledge use is quite high with the caveat

that it may be less useful for future prediction rather than past understanding of technological

improvement rates. This combination supports the idea that TDs that rely upon other TDs that

are improving more rapidly are more likely to improve quickly themselves. This theory is

intuitively consistent; if a domain is relying upon a slowly improving domain for certain

components and those components are not improving rapidly, the improvement must come from

more clever ways of integrating the same components and intuitively will be slower than another

domain reliant upon rapidly improving components. For example, if an electric vehicle maker is

relying upon electrochemical battery technology, then they are unlikely to improve very rapidly

as the electrochemical battery TD has a relatively low TIR. On the contrary, if a domain is

relying upon other technologies that are rapidly improving, such as integrated circuit processors,
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the improvement rate of the domain of interest is likely to improve even if very little is changed

within the domain simply because the IC components that are used in the newer iterations are

significantly better than past versions.

The correlation between citing fast improving domains and TIR is consistent with the

recency casual links as mentioned in the previous section. A possible casual explanation is the

domains that rely upon knowledge or components from fast moving domains will likely improve

quickly themselves for the reasons mentioned above, and thus the knowledge derived from the

fast moving domains will become obsolete more quickly as the cited domain is improving rapidly.

A casual link in the other direction seems less likely, that fast moving domains will cause the other

components that they are relying upon to improve more rapidly. While there is some theoretical

support for this in that the enabling technologies will have to improve more rapidly to 'keep up'

with the fast moving domain (Rycroft, 2006), this is not consistent with the wide variability of

improvement rates of the domains that fast improving domains rely upon - that is: Why are some

of the cited domain improving very rapidly and others improving very slowly even if they are

both cited heavily by the fast improving domain?

The hypothesis about TIR weighted citation frequency is intuitive but it nonetheless is

also apparently new. The theory that technological domains improve as a weighted sum of the

improvements made in their knowledge base is logically appealing. The hypothesis that the rate

of improvement of this knowledge base can be measured by a TIR-weighted sum of the domains

they cite also has some logical basis. While the strong correlation of the TIR weighted backward

citations with TIR supports this new theory, it must be noted that this measure is the most

incomplete of all of the DPMs because a stringent test of this theory relies on knowing the TIRs

of all of the TDs that are cited by a technology. As this study has only categorized 28 TDs that

makeup ~10% of the patent database, it is possible that with the inclusion of all TDs that the
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theory would not be confirmed but it is also possible that it would be in this hypothetical case. If

all of the patents were categorized and TIRs for each of the domains were determined (a

probably impossible task since new domains constantly emerge), the TIR weighted backward

citations could be even more reliable of a measure, but would still be incomplete due to the fact

that both the patent sets and TIRs are subject to experimental error. Even with only 28 domains

covered, it is likely that TDs that rely on knowledge from more rapidly improving TDs improve

more quickly themselves, given the caveat that with a limited number of domains covered that a

large portion of that value will come in the form of self-citations and relying on inventions within

the domain.

5.2.1.6. Domain Specific Technical Factors

While this research has approached the study of technological change from a socio-

technical system point of view, there are a number of theories that point to domain specific

technical factors as reasons for differing improvement rates.

One of the theories is that technological domains are highly sensitive to scaling effects and

when a technology improves as it becomes smaller it is more likely to be rapidly improving than a

TD that improves as it gets larger (i.e. integrated circuits vs combustion engines (Funk and

Magee, 2014; Funk, 2011). Another theory is that improvement rates are largely determined by

the number of interactions within a system, which is essentially a measure of complexity that is

related to the number of components of a system that are affected when one is improved or

changed (McNerney et al, 2011; Koh and Magee, 2008). If a large percentage of the system is

affected whenever a single component is changed, it requires more work to integrate any new

components in the system and thus the domain would improve more slowly. A third theory is
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that inventions can be classified into different hierarchy levels of change such as materials

improvement (very low hierarchy level) or system operation change (very high hierarchy level)

and that the distribution of these inventions is related to the improvement rate of a technology

(Benson and Magee, 2012, 2014; Magee, 2012). Other ideas -that are not on the face consistent

with the data -exist; for example that chemical based technologies are slower than purely

electrical systems, in addition, it may be possible to develop other ideas based on technical

differences among the domains for explaining the variation in rate of improvement.

It is quite likely that, while such domain specific technical factors were not explicitly

discussed in this thesis, information about each specific TD might be extracted from the patents

sets that have been collected for this research. This could be done using textual analysis and or

more subjective interpretations of the particular domain. For example, if one was looking to

evaluate the complexity of a TD, one could search the full text of the patent sets collected here

for words such as 'tradeoff or 'however', these types of experiments have been run at a first order

level (Basnet, 2013) and are potential pathways forward for determining technology specific

factors that may influence TIRs.

The improvement rates of technological domains are likely determined by a combination

of system-level theories as were tested in this thesis and domain-specific factors that can be tested

by further analysis of the patent sets.

5.2.1.7. Summary of Direct Contributions of the Results of this Thesis

The results of this thesis provide a number of contributions to technological change

theory, which are summarized in figure 92 below. The strongest link between TIRs and

inventions are the frequency of recent and important inventions. There is a link between extra
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domain knowledge and TIRs that is applicable as long as it is weighted by the TIRs of the cited

domains. There seems to be a negative relationship between non-patent-literature and the most

important inventions. Finally the relationship between demand, revenue and patents has been

shown to be nearly equal when measured against TIR using Sahal's relationship. The limitations

of this technique as opposed to simply using the direct time variable have also been shown.
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Figure 92: Thesis Contributions to the Theoretical Foundations of the field

of Technological Change

5.2.2. Rising Sea Metaphor

As just discussed, the results of this research provide insight into a number of specific links

in the complex web of technological change. There are many other links that were not explored

in this research, but are consistent with the results that are shown here. An analogy that can be

used to explain the complex interactions between the many different components of the highly

complex socio-technical system of technological change is the 'Rising Sea Metaphor".
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The Rising Sea metaphor is framed starting with a sea of knowledge which represents the

body of knowledge from which all of technology is derived and represents pieces of knowledge

such as patents, scientific journal articles and non-tracked knowledge (such as the knowledge that

comes from a worker manufacturing a technology). Within this sea, each TD is represented by a

region, these regions are not separated by clear distinct boundaries and overlap with many other

regions in the same way that the patent sets in this study are overlapped with many other

domains.

This sea is filled in two ways, one is by a well of science at the bottom of this sea which

pumps water that represents scientific knowledge indiscriminately to all of the domains and

represents an ever increasing source of knowledge from which future TDs can draw from and

although it does not make any differentiated contributions to the improvement rates of specific

TD's, it is ultimately the basis of progress in all domains. The other way that the sea of

knowledge is filled is by the addition of patents or inventive knowledge that is selectively and

intentionally poured onto the top of the sea by individuals, private companies and governments

that are publishing patents regarding each particular TD.

Value can be extracted from this sea of knowledge by domain specific pumps far above

the surface of the sea, and the TIR (improvement rate) of a TD is determined by the amount of

"water" that can be extracted from the sea of knowledge. There are two main factors that impact

the amount of water that can be extracted by a TD (and thus that impact the TIR): the level of

the water in the sea that the pump is drawing from and the domain specific capability of the

pump. In this analogy the level of the water represents the base of knowledge, which is being

drawn from, and a higher level is better, while the capability of the pump represents the domain-

specific technical factors that were not studied in great length in this thesis.
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Attempts to adjust the water level that each TD draws by pouring more water into that

region (represented by the addition of more patents and inventive effort in a particular TD) are

not likely to be effective based on the metaphor since the water levels will quickly return to an

equilibrium as the water level (base of knowledge) is ~90% determined by the patents (and thus

inventive effort) in other technological domains plus generally available scientific knowledge

pushing the % well beyond 9 0%. In this analogy, the addition of a large amount of additional

domain-specific inventive effort does not significantly impact the TIR of a domain in the long

term. While the addition of significantly more effort to one domain is not very impactful, the

general distribution of inventive effort back into the sea of knowledge is approximately equal to

the societal gains (revenue or profits) that can be extracted from the TIRs, this is to say that

profits and demand are good indicators of where inventive effort is placed, but not necessarily the

improvement rates of a technology.

Technological domains generally rely upon knowledge from outside their TD, and in this

analogy the fast improving domains generally pull water from other knowledge bases that have

high water levels and high TIRs.

Another way that this analogy fits with the results of this experiment are that the most

recent inventions tend to be on the top of the sea because they were added most recently, and the

fast improving domains are able to extract that recent knowledge more easily either due to where

they are drawing their information (water) from or a better pump to extract the new information.

One explanatory theory for why newer technologies tend to be more rapidly improving is that all

technologies are linked together in a complex way and the exponential growth of each of these

technologies creates a 'rising tide' that raises all boats at an exponential rate. This can be thought

of like a single TIR for all of technology, and as newer TDs are discovered and utilized, they tend
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to be more rapidly improving because they are relying on general technology that is better than it

was in the past due to the overall advancement of technology in general.

The sea in this analogy is continually rising at an accelerating rate due to the additions of

science and patents into the sea proportional to the current sea level; this represents the general

exponential improvement of technology as a whole. While the sea is rising, more and more

pumps are continually being added to the pool in the hopes to find a new combination of

knowledge from which to draw from and hopefully be able to extract large amounts of

knowledge and economic/human value. The pumps that are less effective than the current

pumps are unable to gather enough water to be as economically useful as a more effectively

pumped domain - these represent the countless failed or surpassed technologies over the years.

Figure 93 shows a first order example of some of the characteristics of the Rising Sea

analogy of technological change.
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Figure 93: First Order Illustration of Rising Sea Analogy

5.3. Practical Implications

While the research adds to the academic theories of technological change, there are also

immediate practical applications of the results of this study resulting from the models that can be

used to predict the TIRs and the methodology for finding the correct set of patents to make the

prediction. This section will discuss how the predictive models can be used to reduce

technological uncertainty using only patent analysis. The section will also identify several groups

of people who could benefit from use of the tools and understanding generated in this thesis.
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5.3.1. Can Technological Improvement Rates be predicted?

The TIR of a domain can be very useful in understanding the potential of a certain

technology particularly if one compares it to the TIR of competitive and complementary TDs.

In short, TIRs essentially can help forecast the future of technology and entire industries. While

this potential is very powerful, determining the TIR of even one domain can be very difficult,

tedious and time consuming, and is often not possible depending on the availability of data.

These issues are the main reason why TIRs have been found for only a small percentage of

possible domains.

The results of the comparison of the DPM and TIRs revealed several markers with very

strong correlations with the TIR. Additionally, these correlations were shown to be robust to the

domains analyzed and consistent for 12 years into the future (2001-2013). As was mentioned

previously the correlations do not provide good indications of casual direction, but nonetheless

can be used for the forecasting of TIRs. It is likely that as the understanding of the relationship

between the DPMs, the TIRs and the forecasted TIRs increases, the casual relationship will

increase in turn. Nonetheless the DPMs are useful in forecasting even if they are not causes for

the faster rates-they still statistically (in a robust way) reflect what is likely to happen -or at least

what is happening now in performance trends. Thus the DPMs were combined into predictive

models that allow for the estimation of TIRs given only a technological domain. The process of

estimating a TIR given a domain works as follows:
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1. Select a TD of interest

2. Use the COM to select a set of patents that represent the TD

3. Calculate the Cit3, AvepubYear of the patent set

4. Use the predictive model to estimate the TIR

TIR = -31.1968 + 0.1406 * Cit3 + 0.0155 * AvePubYear

The R2 of the most accurate predictive model is 0.64, which states that 64% of the

variation in the TIR can be explained by the variation in the DPMs included. This actually is a

positive sign for the model, as it is unlikely that all of the variation of the TIRs can be explained

by the socio-technical system theories of technological change that were tested in this thesis. It is

very likely that much of the rest of the variation in the TIRs is due to technology-specific factors

(such as scaling or complexity) or to random variations (it is almost certainly impossible to explain

100% of the variation in TIRs).

These models could provide estimations for nearly any technological domain without the

need of deep technical expertise and several man-months worth of effort. This predictive

capability essentially opens up the capability for prediction of future technological capabilities to

nearly any technological domain of interest.

5.3.2. Practical Benefit of Reduced Technological Uncertainty

There are many industries that would benefit from the reduction in technological

uncertainty. Examples from several industries were given in section 1.1 of this thesis and will be

discussed more here.
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One of the main contributions of this thesis is the COM, and while it was designed to be

used primarily for academic research, the method and its principles certainly have application

elsewhere. The ability to quickly and easily select a set of patent related to a particular TD is

useful for patent examiners, technology licensing offices at universities, patent attorneys, and

individual inventors. The COM requires very little prior knowledge about the patent

classification system to be used at a first-order level, and thus the inclusion of this method in

patent searching tools could help make the patent system more accessible to a broad array of

people. There are a number of other areas where specific documents or pieces of information

are categorized using multiple classification systems such as legal documents, healthcare records,

and government reports that could potentially be located using the same general classification

overlap principles that are used in the COM.

The contributions of this thesis can be used by technological strategists for organizations

that are interested in long-term planning of their technical capabilities. For example, a

manufacturing company may be very interested in the relative improvement rates of traditional

milling machines and that of SLA 3D printing. While 3D printing may not be a viable option for

mass manufacturing of certain items at this point (although the author has used 3D printing as a

production technique for a company that produces RFID-based rings), it is possible that it will

become so in the future. The TIR of SLA 3D Printing can then provide a forecast of what the

capabilities of 3D Printing technology will be in the future, potentially increasing to a point

where a manufacturer would be interested in converting. Additionally, more in-depth analysis

of the connectivity of component technologies to the improvement rate could also be used to
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guide the strategy of firms that want to advance component technologies, e.g., lasers or

photopolymers for SLA 3D printing.

If the same manufacturer were more interested in metal-based 3D printing, the

contributions of this thesis would still be helpful even though that particular domain was not

studied. Using the predictive models and the COM, it would be possible for the TIRs to be

estimated for a number of metal-based 3D printing technologies such as selective laser sintering

or direct metal deposition. We believe that this ability to predict TIR using only patent

information is an incredibly powerful tool that will allow for inexpensive estimation of TIR for a

wide variety of domains that have not been studied before.

The reduction of technological uncertainty brought about by the TIRs and the predictive

models are also useful for many other groups, most notably investors. Because manufacturing

based TIRs may impact a great number of products that investors would consider, they are likely

to be more valuable than the more product focused TIRs in the past. Additionally, the ability to

quickly estimate a TIR for a new technology could provide a significant information advantage

for an investor who is focused on technology-based companies. For example, an investor who

was interested in a new type of 3D printing could first find the set of patents easily using the

COM and then use the predictive models to estimate the TIR, which, if high, could spur an early

investment in a rapidly improving industry.

The practical benefits of the newly created TIRs for manufacturing and energy

technologies and the predict models for firms are relatively straightforward, there are important

use cases for policy contributions as well. There are a number of government agencies (DOD,
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DOE) and private entities that attempt to spur the increase in capability of specific technologies.

The approaches that are taken to do this vary widely but are generally based upon theories of

technological change (Kazmerski, 2009). Such organizations should take note of the 'Rising Sea

Metaphor' and understand the ways in which technologies interact with each other and how they

change over time. In particular, we have shown that it is unlikely that the production function is

the fundamental cause of technological change. In fact, we see that time is the more fundamental

variable that technological progress should be measured against, which itself is not a very

appealing answer. However, the hypotheses tested in this thesis and the theoretical contribution

derived therefrom should provide indicators as to how specific technologies over time. Thus,

while demand enhancement policies (subsidies, sales at non-market prices, etc...) are likely to

prove ineffective at significantly increasing technological improvement rates for a particular

domain, subsidizing R&D broadly does make great sense. Using solar PV as an example and

returning to the 'Rising Sea Metaphor', the idea that a more effective 'pump' for PV progress

would be achieved because of Silicon valley interest and significant increases in production of PV

seems to have been an error and an avoidable one - to those who understand/believe that

domain-specific technical factors and cumulative production are the root of causation for fast

technical performance improvement.
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Chapter 6: Conclusions

This thesis was the first comparison between metrics that were derived from patent sets that

represent a set technological domains (TD) and the performance improvement rates of those

domains. This was done both to initiate predictive theory development and in order to

quantitatively test hypotheses derived from existing qualitative theories of technological change.

A novel method for selecting sets of patents that represents a technological domain called the

classification overlap method (COM) was used to select highly complete and relevant patents sets

for each of the 28 TDs studied. A representative sampling of patents from each set were read to

ensure the relevancy to the TDs, additionally a set of the top 100 most cited patents that were all

related to the specific TD were collected.

Technological improvement rates were located for each of the 28 technological domains.

Several of the TDs were measured using different FPMs resulting in a total of 72 domain-metric

pairs for which TIRs were collected. Included in these 72 TIRs were the first examples of

tracking the performance of manufacturing technological domains such as SLA 3D printing,

milling machines and photolithography. A battery of statistical measures was developed to test

the reliability of the TIRs, resulting in 42 reliable TIRs.
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The most complete and reliable TIR for each TD was selected and compared with a set of

domain-patent-markers that represented five hypotheses developed from theories of technologies

change. There were weak or non-existent correlations with TIRs for the number of patents in a

domain and the amount of non-patent literature cited by the patents in a domain. Stronger

correlations with TIRs were shown for patent sets with a higher number of average forward

citations and a more recent average publication date. The strongest correlations with TIR were

the average number of forward citations within 3 years and the TIR weighted backward citation

ratio, which measured the sources of information that a domain relies upon. The DPMs with the

strongest correlation with TIR were tested for temporal and domain robustness and were then

used to construct predictive models that are capable of explaining 6 4 % of the variation in TIRs

through measures derived from the patents.

The main theoretical findings of the thesis are in support of the theory that the number of

patents is an indicator of inventive effort rather than inventive impact. Patents, revenue, and

production can all be used as effort variables when compared with technological performance

and have been shown to be equivalent for one domain according to Sahal's relationship, the

results indicate however, that the most fundamental metric to compare with technological

performance is time due to the large amount of influence a domain receives from other domains.

The findings also suggest that the impact of very important singular inventions is overstated. The

work does not support the simple theory that basic science is strongly linked to performance

improvement in a specific technological domain. It was found that the use of more recent

knowledge is in fact correlated with improved technology. Finally the research does not support

the theory that more external spillover results in faster-improving technology, but rather that

reliance specifically upon rapidly improving domains is important in achieving higher rates of
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technological improvement. These theoretical implications have been synthesized into one

overarching analogy of technological change called the 'Rising Sea' metaphor.

6.1. Limitations and Future Work

The main limitations of this research are due to the use of patents as a proxy for

inventions. These limitations were discussed at length in the prior art section of the thesis and

still hold true for this research. Additionally, while we believe that the patent sets provided in this

research represent some of the most complete and relevant sets ever constructed to represent

such a wide variety of technological domains, there are undoubtedly missing patents from each

TD and the relevancy of all of the sets are below 100%. The TIRs were also subjected to many

different reliability tests, but it is still certain that each technological improvement curve is

missing data points and there are omitted variables in each of the FPMs constructed to measure

the performance of each TD. Finally, many of the results of this study are based upon

correlations, which are not intended to represent casual links and thus care must be taken when

interpreting the correlation values. The prediction models do provide good evidence of what

change is currently happening and meaningful forecasts of the future within the specified robust

time frame of 12 years, however past results are not always indicative of future returns and the

estimations of the TIRs are subject to the same disclaimer.
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The main goal of this research is to encourage the trend of creating falsifiable tests for

theories of technological change in order to create a truly cumulative field of work where the

average technological change paper is cited very heavily within the first 3 years of its publication.

With this in mind, future work that builds upon this thesis should at all times continue to keep in

mind the scientific principles of repeatability and the ability to falsify. The addition of more

domains should be included in any future study, while 28 domains represents a significant start,

there are still many more technical areas that should be added and analyzed using the same tools

shown in this thesis. Additionally, while over 100 FPMs were used in evaluating the five

hypotheses, there are certainly more that can be developed and tested - although it must be

noted that additional complexity often times comes at the result of ease of understanding, which

should be at the core of any heuristic used to test a hypothesis. Furthermore, as 'big data' tools

continue to be developed and refined it may one day be possible to perform far more rigorous

tests of the patents by using natural language processing, machine learning and crowdsourcing to

locate and analyze large sets of patents to better understand how and why technology changes

over time. Finally, as more time passes and more TDs are analyzed using tests such as the ones

presented in this thesis, the results of the thesis should be checked for accuracy in the future.
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Appendices

Appendix A: TIR Reliability Measures

This appendix displays the statistical reliability measures for each of the 72 DMPs split up

into the 4 different subsets. Each table displays the DMP in the first column, followed by the

TIR (k-value) the number of data points (n), the R2 value, the confidence interval Standard

Deviation (stdev) and the Point Removal Method standard deviation (stdevPRM) in the 6th and

final column. Table table A. 1 shows the values for all data points and all years.

DMP AUAJ1 k AJAIM N AIA R2 AIIMi stdev AllAI stdevPRM

3D-Printing (industrial 33% 5 0.7 14% 15%
stereolithography) (mm3/sec*$)
3D-Printing (industrial
stereolithography) (1 /sec*$ 37.60% 5 0.92 6.70% 6.30%
(including build volume/machine
size))
3D-Printing (industrial 30.60% 7 0.9 4.20% 1.30%
stereolithography) (1/sec*$)
3D-Printing (industrial 34.20% 6 0.89 5.70% 3.60%
stereolithography) (1/sec)
Aircraft Transport (passenger*mph) 12.20% 12 0.98 0.60% 0.20%
Camera Sensitivity (mV/micron2) 15.60% 11 0.99 0.50% 0.20%

Capacitor Energy Storage (W*hr/$) 18.30% 7 0.82 4.10% 1.800/0
Capacitor Energy Storage 14.10% 12 0.96 0.90% 0.40%
(W*hr/kg)
Capacitor Energy Storage (W*hr/L) 14.40% 14 0.73 2.40% 1.10%
Combustion Engines (W/$) 2.40% 79 0.18 0.60% 0.10%

Combustion Engines (W/kg) 3.60% 99 0.49 0.40% 0.00%
Combustion Engines (W/L) 0.80% 127 0.05 0.30% 0.00%

Combustion Engines - Aircraft 0.60% 23 0.07 0.50% 0.10%
(W/$)
Combustion Engines - Aircraft 3.10% 42 0.85 0.20% 0.00%
(W/kg)
Combustion Engines - Aircraft 2.10% 67 0.32 0.40% 0.00%
(W/L)
Combustion Engines - Aircraft 2.70% 13 0.2 1.70% 1.30%
Piston (W/$)
Combustion Engines - Aircraft 6.80% 21 0.8 0.80% 0.20%
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Piston (W/kg)
Combustion Engines - Aircraft 5.20% 45 0.43 0.90% 0.10%
Piston (W/L)
Combustion Engines - Aircraft 2.30% 10 0.27 1.50% 0.60%
Turbine (W/$)
Combustion Engines - Aircraft 0.70% 21 0.18 0.40% 0.10%
Turbine (W/kg)
Combustion Engines - Aircraft 4.00% 22 0.59 0.80% 0.20%
Turbine (W/L)
Combustion Engines - Automobile 3.60% 56 0.57 0.40% 0.40%
(W/$)
Combustion Engines - Automobile 3.20% 57 0.74 0.30% 0.100/a
(W/kg)
Combustion Engines - Automobile 1.10% 61 0.47 0.10% 0.00%
(W/L)
Computed Tomography (CT) 36.70% 13 0.78 4.50% 1.800/a
(1 /mm*sec)
Electric Motors (W/kg) 2.90% 13 0.83 0.40% 0.20%

Electric Motors (W/L) 2.60% 16 0.95 0.20% 0.10%
Electrical Energy Transmission 2.10% 29 0.36 0.50% 0.10%
(W*km/$)
Electrical Energy Transmission 12.60% 33 0.88 0.800/a 0.20%
(W*km)
Electrical Energy Transmission - AC 1.30% 9 0.14 1.50% 0.50%
(W*km/$)
Electrical Energy Transmission - AC 12.60% 10 0.86 1.80% 0.600/a
(W*km)
Electrical Energy Transmission - DC -2.10% 20 0.08 1.80% 0.30%
(W*km/$)
Electrical Energy Transmission - DC 0.30% 23 0 2.90% 0.700/a
(W*km)
Electrical Information Transmission 14.30% 10 0.9 1.70% 0.90%
(kB/sec*$)
Electrical Information Transmission 13.500/a 12 0.9 1.30% 0.50%
(kB/sec)
Electrochemical Battery Energy -3.30% 31 0.13 1.70% 0.40%
Storage (W*hr/$)
Electrochemical Battery Energy 2.40% 64 0.62 0.20% 0.000/
Storage (W*hr/kg)
Electrochemical Battery Energy 3.30% 47 0.77 0.30% 0.00%
Storage (W*hr/L)
Electronic Computation (1 /sec) 33.90% 29 0.91 1.50% 0.40%
Electronic Computation (1 /sec*$) 40.40% 80 0.93 0.90% 0.20%
Electronic Computation (1/sec) 34.40% 92 0.67 1.800/a 0.30%
Flywheel Energy Storage (kWhr/kg) 9.30% 8 0.9 1.40% 0.90%
Fuel Cell Energy Production (kW/$) 14.70% 9 1 0.30% 0.200/a
Genome Sequencing (1/$) 29.80% 8 0.96 2.10% 1.00%

Incandescent Artificial Illumination 2.70% 11 0.6 0.80% 0.40%
(1000*1m*hr/$)
Integrated Circuit Information 43.20% 20 0.98 0.90% 0.30%
Storage (transistors/die)
Integrated Circuit Processors 36.30% 12 0.97 1.60% 0.70%
(transistors/die)
LED Artificial Illumination (1m/$) 24.40% 13 0.98 0.80% 0.30%
LED Artificial Illumination (Im) 35.800/a 17 0.98 0.90% 0.400/a
Magnet Resonance Imaging (MRI) 47.50% 6 0.88 7.40% 11.30%
(1 /mm*sec*$)
Magnet Resonance Imaging (MRI) 21.30% 11 0.86 2.70% 0.90%
(1/mm*sec)
Magnetic Information Storage 27.50% 33 0.87 1.50% 0.40%
(megabits/$)
Magnetic Information Storage 27.00% 38 0.89 1.20% 0.40%
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(rmegabits/cc)
Magnetic Information Storage -
Hard Disk (megabits/$)
Magnetic Information Storage -
Hard Disk (megabits/cc)
Magnetic Information Storage -
Tape (megabits/$)
Magnetic Information Storage -
Tape (megabits/cc)
Milling Machines (hp/mm)
Optical Information Storage (Mb/$)
Optical Information Storage
(Mb/cc)
Optical Information Transmission
(Kb/sec*km*$)
Optical Information Transmission
(Kb/sec)
Photolithography (1 /micron*$)
Photolithography (in2/hr*micron*$)
Photolithography (in2/hr*micron)
Photolithography (in2/hr*$)
Solar Photovoltaic Energy
Generation (kWhr/$)
Solar Photovoltaic Energy
Generation (W/$)
Superconductivity (I/K)
Wind Turbine Energy Generation

(W/$)
Wireless Information Transmission
(bits/sec*m2)
Wireless Information Transmission
(bits/sec*Hz)
Wireless Information Transmission
(kb/sec)

31.80%

32.70%

24.60%

23.80%

3.50%
34.40%

27.20%

63.00%

66.40%

-5.60%
5.30%
24.00%
-3.60%

10.80%

9.0%

3.80%

2.90%

31.300/a

14.40%

17.100/

19 0.89

24 0.96

14 0.84

14 0.92

8
4

0.79
0.7

16 0.95

17 0.92

17 0.88

10
6
11
6

0.59
0.21
0.85
0.19

34 0.98

9.8% 8.6%

15 0.87

23 0.67

19 0.77

42 0.92

49 0.64

Table A. 1: Statistical Measures for the Technological Improvement Rates of

the 72 Domain-Metrics Pairs

Table A.2 shows the statistical measures for just the non-dominated data points.

DMP
3D-Printing (industrial
stereolithography) (mm3/sec*$)
3D-Printing (industrial
stereolithography) (1 /sec*$
(including build volume/machine
size))
3D-Printing (industrial
stereolithography) (1 /sec*$)
3D-Printing (industrial
stereolithography) (1 /sec)
Aircraft Transport (passenger*mph)
Camera Sensitivity (mV/micron2)
Capacitor Energy Storage
(W*hr/$)

AliND k

37%

37.30%

27.30%

28.50%

12.20%
15.60%

21.10%

AND N AND R2 AND stdev

3

4

4

4

12
11

6

95%

0.93

0.97

0.92

0.98
0.99

0.97

39%

9.70%

4.90%

8.80%

0.60%
0.50%

2.00%

AIND stdevPRM

15%

6.40%

4.50%

4.00%

0.20%
0.20%

1.30%
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2.00%

1.00%

2.70%

1.70%

0.90%
24.00%

1.40%

2.700/

3.60%

2.00%
6.50%
3.00%
-1.457

0.30%

9%

0.40%

0.50%

3.20%

0.60%

1.60%

0.70%

0.30%

1.00%

0.60%

3.90%
19.20%

0.60%

1.70%

2.20%

0.90%
3.30%
0.80%
1.20%

0.10%

35

0.100/a

0.10%

0.60%

0.10%

0.60%



Capacitor Energy Storage 15.00% 11 0.98 0.60% 0.30%
(W*hr/kg)
Capacitor Energy Storage 16.50% 7 0.72 4.90% 2.70%
(W*hr/L)
Combustion Engines (W/$) 7.90% 18 0.79 1.00% 0.50%
Combustion Engines (W/kg) 5.700/ 24 0.82 0.60% 0.20%
Combustion Engines (W/L) 3.50% 14 0.56 1.00% 0.90%
Combustion Engines - Aircraft 1.900/ 6 0.64 0.900/0 0.30%
(W/$)
Combustion Engines - Aircraft 3.40% 18 0.9 0.30% 0.10%
(W/kg)
Combustion Engines - Aircraft 3.50% 14 0.56 1.000/ 0.90%
(W/L)
Combustion Engines - Aircraft 10.20% 4 0.93 3.50% 3.00%
Piston (W/$)
Combustion Engines - Aircraft 6.40% 8 0.8 1.500/a 1.00%
Piston (W/kg)
Combustion Engines - Aircraft 6.50% 13 0.79 1.00% 0.40%
Piston (W/L)
Combustion Engines - Aircraft 2.90% 7 0.79 0.80% 0.30%
Turbine (W/$)
Combustion Engines - Aircraft 1.90% 10 0.98 0.10% 0.00%
Turbine (W/kg)
Combustion Engines - Aircraft 5.40% 12 0.69 1.20% 0.80%
Turbine (WI L)
Combustion Engines - Automobile 7.90% 18 0.79 1.00% 1.00%
(W/$)
Combustion Engines - Automobile 5.60% 17 0.85 0.60% 0.30%
(W/kg)
Combustion Engines - Automobile 1.40% 27 0.88 0.10% 0.00%
(W/L)
Computed Tomography (CT) 36.70% 13 0.78 4.50% 1.80%
(1 /mm*sec)
Electric Motors (W/kg) 3.10% 11 0.84 0.50% 0.20%
Electric Motors (W/L) 2.60% 15 0.94 0.200/a 0.100/a
Electrical Energy Transmission 3.60% 7 0.71 1.20% 0.60%
(W*km/$)
Electrical Energy Transmission 14.90% 10 0.97 0.90% 0.400/
(W*km)
Electrical Energy Transmission - 5.80% 4 0.53 7.10% 10.70%
AC (W*km/$)
Electrical Energy Transmission - 14.900/a 6 0.92 2.50% 2.000/aAC (W*km)
Electrical Energy Transmission - 6.20% 5 0.92 1.50% 0.70%
DC (W*km/$)
Electrical Energy Transmission - 7.90% 5 0.74 3.70% 3.900%
DC (W*km)
Electrical Information 14.30% 10 0.9 1.70% 0.90%
Transmission (kB/sec*$)
Electrical Information 13.70% 11 0.9 1.40% 0.60%
Transmission (kB/sec)
Electrochemical Battery Energy 3.10% 11 0.77 0.60% 0.50%
Storage (W*hr/$)
Electrochemical Battery Energy 2.800/a 21 0.92 0.20% 0.000/
Storage (W*hr/kg)
Electrochemical Battery Energy 3.60% 21 0.91 0.30% 0.10%
Storage (W*hr/L)
Electronic Computation (1 /sec) 33.00% 19 0.9 2.000/a 0.70%
Electronic Computation (1 /sec*$) 37.80% 23 0.96 1.30% 0.40%
Electronic Computation (1 /sec) 41.40% 22 0.98 0.900/ 0.300/a
Flywheel Energy Storage 9.00% 7 0.92 1.40% 1.10%(kWhr/kg)
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Fuel Cell Energy Production
(kW/$)
Genome Sequencing (1/$)
Incandescent Artificial Illumination
(1000*1m*hr/$)
Integrated Circuit Information
Storage (transistors/die)
Integrated Circuit Processors
(transistors/die)
LED Artificial Illumination (lm/$)
LED Artificial Illumination (1m)
Magnet Resonance Imaging (MRI)
(1 /mm*sec*$)
Magnet Resonance Imaging (MRI)
(I/mm*sec)
Magnetic Information Storage
(megabits/$)
Magnetic Information Storage.
(megabits/cc)
Magnetic Information Storage -
Hard Disk (megabits/$)
Magnetic Information Storage -
Hard Disk (megabits/cc)
Magnetic Information Storage -
Tape (megabits/$)
Magnetic Information Storage -
Tape (megabits/cc)
Milling Machines (hp/mm)
Optical Information Storage
(Mb/$)
Optical Information Storage
(Mb/cc)
Optical Information Transmission
(Kb/se*km*$)
Optical Information Transmission
(Kb/sec)
Photolithography (1/micron*$)
Photolithography
(in2/hr*micron*$)
Photolithography (in2/hr*micron)
Photolithography (in2/hr*$)
Solar Photovoltaic Energy
Generation (kWhr/$)
Solar Photovoltaic Energy
Generation (W/$)
Superconductivity (1/K)
Wind Turbine Energy Generation
(W/$)
Wireless Information Transmission
(bits/sec*m2)
Wireless Information Transmission
(bits/sec*Hz)
Wireless Information Transmission
(kb/sec)

14.70%

29.80%

4.50%

43.20%

36.30%

24.40%
35.80%

47.50%

21.00%

26.60%

24.00%

31.90%

32.700/

24.60%

23.80%

3.40%

34.40%

27.10%

65.10%

68.40%

0.00%

9.10%

25.20%
2.90%

10.80%

9.20%

3.70%

3.70%

35.00%

15.40%

18.10%

1

0.96

0.93

0.98

0.97

0.98
0.98

0.88

0.84

0.85

0.89

0.89

0.96

0.83

0.92

0.96

0.7

0.95

0.93

0.9

1

0.97

0.98

29

0.86

0.68

0.92

0.96

0.67

0.30%

2.10%

0.500/

0.90%

1.60%,

0.80%
0.90%

7.40%

3.00%

2.10%

1.30%

2.20%

1.000/

3.10%

1.70%

0.40%

24.00%

1.50%

3.00%

4.00%

#NUM!

0.20%

1.00%

0.30%

0.30%

0.70%

0.30%
0.40%

11.30%

1.10%

0.70%

0.30%

0.80%

0.300/a

1.10%

0.60%

3.60%

19.20%

0.70%

2.10%

2.90%

#VALUE!

#NUM! 0.00%

2.00% 1.30%
#NUM! 0.00%

0.300/a

0.94

0.50%

1.10%

2.90%

0.70%

2.80%

0.10%

0.95

0.10%

1.90%

1.40%

0.30%

2.90%

Table A.2: Statistical Measures for the Non-Dominated Technological

Improvement Rates of the 72 Domain-Metrics Pairs
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Table A.3 shows the statistical measures for all of the data points since 1970.

DMP
3D-Printing (industrial
stereolithography) (mm3/sec*$)
3D-Printing (industrial
stereolithography) (1 /sec*$
(including build volume/machine
size))
3D-Printing (industrial
stereolithography) (1/sec*$)
3D-Printing (industrial
stereolithography) (1 /sec)
Aircraft Transport
(passenger*mph)
Camera Sensitivity (mV/micron2)
Capacitor Energy Storage
(W*hr/$)
Capacitor Energy Storage
(W*hr/kg)
Capacitor Energy Storage
(W*hr/L)
Combustion Engines (W/$)
Combustion Engines (W/kg)
Combustion Engines (W/L)
Combustion Engines - Aircraft
(W/$)
Combustion Engines - Aircraft
(W/kg)
Combustion Engines - Aircraft
(W/L)
Combustion Engines - Aircraft
Piston (W/$)
Combustion Engines - Aircraft
Piston (W/kg)
Combustion Engines - Aircraft
Piston (W/L)
Combustion Engines - Aircraft
Turbine (W/$)
Combustion Engines - Aircraft
Turbine (W/kg)
Combustion Engines - Aircraft
Turbine (W/L)
Combustion Engines - Automobile
(W/k)
Combustion Engines - Automobile
(WV/kg)
Combustion Engines - Automobile

(W/L)
Computed Tomography (CT)
(1/mm*sec)
Electric Motors (W/kg)
Electric Motors (W/L)
Electrical Energy Transmission
(W*km/$)
Electrical Energy Transmission
(W*km)
Electrical Energy Transmission -
AC (W*km/$)

70All k

33%

37.60%

30.60%

34.20%

8.40%

15.60%

18.30%

13.40%

17.90%

-4.40%
3.50%
1.70%

2.50%

0.30%

1.90%

#VALUE!

#VALUE!

#VALUE!

2.50%

0.30%

1.90%

0.70%

1.50%

2.70%

36.70%

6.10%
0.000/a

-3.40%

-4.10%

0.00%

70AI N 70A1 R2

5 0.7

5 0.92

0.9

0.89

1

0.99

0.82

0.92

0.58

0.11
0.07
0.03

0.15

0.02

0.28

#VALUE!

#VALUE!

#VALUE!

0.15

0.02

0.28

0.03

0.21

0.57

0.78

0.88
1

0.08

0.05

1

70A1 stdev

14%

6.70%

4.20%

5.70%

#NUM!

0.50%

4.10%

1.40%

5.60%

2.90%
2.10%
1.50%

3.30%

0.50%

0.90%

0.00%

0.000/a

0.00%

3.30%

0.50%

0.900/a

1.00%

0.70%

0.50%

4.50%

2.90%
0.00%

3.20%

4.60%

#NUM!

70A1 stdevPRM

15%

6.30%

1.30%

3.60%

0.00%

0.20%

1.80%

0.50%

4.40%

0.70%
0.30%
0.20%

1.40%

0.20%

0.20%

0.00%

0.00%

0.00%

1.40%

0.20%

0.20%

1.00%

0.20%

0.10%

1.800/

1.40%
0.00%

0.60%

0.80%

#VALUE!
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Electrical Energy Transmission -
AC (W*km)
Electrical Energy Transmission -
DC (W*km/$)
Electrical Energy Transmission -
DC (W*km)
Electrical Information
Transmission (kB/sec*$)
Electrical Information
Transmission (kB/sec)
Electrochemical Battery Energy
Storage (W*hr/$)
Electrochemical Battery Energy
Storage (W*hr/kg)
Electrochemical Battery Energy
Storage (W*hr/L)
Electronic Computation (1 /sec)
Electronic Computation (1 /sec*$)
Electronic Computation (1/sec)
Flywheel Energy Storage
(kWhr/kg)
Fuel Cell Energy Production
(kW/$)
Genome Sequencing (1/$)
Incandescent Artificial
Illumination (1000*hn*hr/$)
Integrated Circuit Information
Storage (transistors/die)
Integrated Circuit Processors
(transistors/die)
LED Artificial Illumination (lm/$)
LED Artificial Illumination (m)
Magnet Resonance Imaging (MRI)
(1 /mm*sec*$)
Magnet Resonance Imaging (MRI)
(1/mm*sec)
Magnetic Information Storage
(megabits/$)
Magnetic Information Storage
(megabits/cc)
Magnetic Information Storage -
Hard Disk (megabits/$)
Magnetic Information Storage -
Hard Disk (megabits/cc)
Magnetic Information Storage -
Tape (megabits/$)
Magnetic Information Storage -
Tape (megabits/cc)
Milling Machines (hp/mm)
Optical Information Storage
(Mb/$)
Optical Information Storage
(Mb/cc)
Optical Information Transmission
(Kb/sec*km*$)
Optical Information Transmission
(Kb/sec)
Photolithography (I/micron*$)
Photolithography
(in2/hr*micron*$)
Photolithography (in2/hr*micron)
Photolithography (in2/hr*$)

0.00%

-3.90%

-5.00/0

52.90%

46.00%

-5.90%

6.00%

7.10%

40.50%
51.30%
53.10%

9.30%

14.40%

29.30%

-2.90%

37.20%

36.30%

24.40%
36.20%

47.50%

45.70%

38.20%

32.30%

39.20%

36.10%

36.60%

29.60%

4.40%

34.40%

27.20%

63.00%

66.40%

-3.50%

11.60%

28.50%
-3.20%

0 1

18 0.13

21 0.09

2

2

#NUM! 0.00%

#NUM! 0.00%1

29 0.2

53 0.5

37 0.53

17
53
65

8

5

7

2

0.76
0.92
0.65

0.9

0.99

0.91

1 #NUM! 0.00%

14 1

12 0.97

13
15

6

7

0.98
0.97

0.88

0.85

26 0.85

28 0.9

17 0.86

19 0.94

9

9

4

4

0.85

0.9

0.87

0.7

16 0.95

17 0.92

17 0.88

9

5

9
5

0.43

0.44

0.78
0.07
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#NUM! #VALUE!

2.70%

4.100/

0.50%

0.80%

2.50%

0.80%

1.10%

4.20%
1.30%
3.00%

1.40%

0.900/0

3.80%

0.40%

0.10%

0.20%

1.70%
0.40%
0.70%

0.90%

0.60%

3.80%

0.60%

1.60%

0.80%
1.20%

7.40%

6.80%

2.30%

1.60%

3.00%

1.70%

4.80%

3.20%

2.20%

24.00%

1.40%

2.70%

3.60%

1.900/0

10.30%

5.10%
-3.24

0.20%

0.70%

0.30%
0.60%

11.30%

12.10%

0.90%

0.50%

3.50%

0.70%

2.20%

0.90%

5.80%

19.20%

0.60%

1.70%

2.20%

0.70%

6.70%

2.10%
5.70%

I



Solar Photovoltaic Energy 10.80%
Generation (kWhr/$)
Solar Photovoltaic Energy 0.93
Generation (W/$)
Superconductivity (1/K) 9.10%
Wind Turbine Energy Generation 3.40%
(W/$)
Wireless Information Transmission 47.30%
(bits/sec*1 m2)
Wireless Information Transmission 14.10%
(bits/sec*Hz)
Wireless Information Transmission 40
(kb/sec)

34 0.98

0.94

8

0.4%

0.74

21 0.38

16 0.42

39 0.67

45 0.69

Table A.3: Statistical Measures for the Technological Improvement Rates of

the 72 Domain-Metrics Pairs Since 1970

Finally, Table A.4 shows the statistical measures for the non-dominated data points since

1970.

DMP
3D-Printing (industrial
stereolithography) (mm3/sec*$)
3D-Printing (industrial
stereolithography) (1 /sec*$
(including build volume/machine
size))
3D-Printing (industrial
stereolithography) (1/sec*$)
3D-Printing (industrial
stereolithography) (1 /sec)
Aircraft Transport
(passenger*mph)
Camera Sensitivity (mV/micron2)
Capacitor Energy Storage
(W*hr/$)
Capacitor Energy Storage
(W*hr/kg)
Capacitor Energy Storage
(W*hr/L)
Combustion Engines (W/$)
Combustion Engines (W/kg)
Combustion Engines (W/L)
Combustion Engines - Aircraft
(W/$)
Combustion Engines - Aircraft
(W/kg)
Combustion Engines - Aircraft
(W/L)
Combustion Engines - Aircraft
Piston (W/$)
Combustion Engines - Aircraft
Piston (W/kg)

70ND k

37%

37.30%

27.30%

28.50%

8.40%

15.60%

21.10%

14.60%

23.20%

0.00%
3.70%
4.10%

5.40%

1.70%

2.30%

70ND N 70ND R2

3

4

4

4

2

11

6

9

5

0
10
8

6

8

7

#VALUE! 0

#VALUE! 0

0.95

0.93

0.97

0.92

1

0.99

0.97

0.97

0.68

1
0.37
0.45

0.93

0.98

0.8

70ND stdev

39%

9.70%

4.90%

8.80%

70ND stdevPRM

150/

6.40%

4.50%

4.00%

#NUM! 0.00%

0.50%

2.00%

1.00%

11.00%

#NUM!
1.90%
2.10%

1.00%

0.10%

0.60%

#VALUE! 0.00%

#VALUE! 0.00%

0.20%

1.30%

0.40%

10.000/a

#VALUE!
0.80%
1.70%

0.30%

0.00%

0.60%

0.00%

0.00%
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0.30%

0.4%

2.40%

1.00%

10.100/a

1.40%

2.80%

0.10%

0.4%

0.70%

0.30%

3.00%

0.30%

0.50%



Combustion Engines - Aircraft
Piston (W/L)
Combustion Engines - Aircraft
Turbine (W/$)
Combustion Engines - Aircraft
Turbine (W/kg)
Combustion Engines - Aircraft
Turbine (W/L)
Combustion Engines -
Automobile (W/$)
Combustion Engines -
Automobile (W/kg)
Combustion Engines -
Automobile (WV/L)
Computed Tomography (CT)
(1/mm*sec)
Electric Motors (W/kg)
Electric Motors (W/L)
Electrical Energy Transmission
(W*km/$)
Electrical Energy Transmission
(W*km)
Electrical Energy Transmission -
AC (W*km/$)
Electrical Energy Transmission -
AC (W*km)
Electrical Energy Transmission -
DC (W*km/$)
Electrical Energy Transmission -
DC (W*kmn)
Electrical Information
Transmission (kB/sec*$)
Electrical Information
Transmission (kB/sec)
Electrochemical Battery Energy
Storage (W*hr/$)
Electrochemical Battery Energy
Storage (W*hr/kg)
Electrochemical Battery Energy
Storage (W*hr/L)
Electronic Computation (1 /sec)
Electronic Computation (1 /sec*$)
Electronic Computation (1 /sec)
Flywheel Energy Storage
(kWhr/kg)
Fuel Cell Energy Production
(kW/$)
Genome Sequencing (1/$)
Incandescent Artificial
Illumination (1 000*lm*hr/$)
Integrated Circuit Information
Storage (transistors/die)
Integrated Circuit Processors
(transistors/die)
LED Artificial Illumination (lm/$)
LED Artificial Illumination (1m)
Magnet Resonance Imaging
(MRI) (1 /mm*sec*$)
Magnet Resonance Imaging
(MRI) (1 /mm*sec)
Magnetic Information Storage
(megabits/$)

#VALUE! 0

5.40%

1.70%

2.30%

0.00%

0.000/a

0.70%

36.70%

6.10%
0.000/a

1.80%

3.00%

0.00%

0.00%

1.80%

3.00%

52.90%

46.00%

5.70%

7.00%

9.30%

42.60%
49.10%
55.70%

9.00%

14.40%

29.30%

0.000/a

37.20%

36.30%

24.40%
36.20%

47.50%

45.60%

39.20%

6

8

7

0

0

7

#VALUE! 0.00%

0.93

0.98

0.8

1.00%

0.10%

0.60%

#NUM!

#NUM!
1

0.81

13 0.78

4
5

3

4

0

0

3

4

2

2

9

14

13

11
18
15

7

5

7

0

14

12

13
15

6

6

17

0.88
1

0.43

0.20%

4.50%

2.90%
0.00%

0.60%

4.60%

0.00%

0.30%

0.00%

0.60%

#NUM!

#VALUE!

0.70%

1.80%

1.40%
0.000/a

1.10%

6.90%

#NUM!

#NUM
1

0.43

0.60%

4.60%

#VALUE!

#VALUE!

1.10%

6.90%

#NUM! 0.00%

#NUM! 0.00%
1

0.91

0.95

0.84

0.61
0.93
0.96

0.92

0.99

0.91

1

1

0.97

0.98
0.97

0.88

0.85

0.88

0.80%

0.500/a

1.20%

8.40%
2.10%
1.900/a

1.40%

0.900/

3.80%

#NUM!

0.60%

1.60%

0.80%
1.20%

7.40%

8.30%

2.70%

0.40%

0.100/

0.40%

14.20%
1.10%
1.60%

1.10%

0.60%

3.80%

#VALUE!

0.20%

0.70%

0.30%
0.60%

11.30%

13.50%

1.80%
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Magnetic Information Storage
(megabits/cc)
Magnetic Information Storage -
Hard Disk (megabits/$)
Magnetic Information Storage -
Hard Disk (megabits/cc)
Magnetic Information Storage -
Tape (megabits/$)
Magnetic Information Storage -
Tape (megabits/cc)
Milling Machines (hp/mm)
Optical Information Storage
(Mb/$)
Optical Information Storage
(Mb/cc)
Optical Information Transmission
(Kb/sec*km*$)
Optical Information Transmission
(Kb/sec)
Photolithography (1 /micron*$)
Photolithography
(in2/hirnmicron*$)
Photolithography (in2/hr 0micron)
Photolithography (in2/hr*$)
Solar Photovoltaic Energy
Generation (kWhr/$)
Solar Photovoltaic Energy
Generation (W/$)
Superconductivity (1/K)
Wind Turbine Energy Generation
(W/$)
Wireless Information
Transmission (bits/sec*m2)
Wireless Information
Transmission (bits/sec*Hz)
Wireless Information
Transmission (kb/sec)

31.90%

39.80%

36.10%

36.60%

29.60%

3.90%

34.40%

27.10%

65.10%

68.40%

7.70%

24.70%

25.90%
8.10%

10.80%

0.4%

9.50%

9.20%

57.700/

17.30%

50.40%

23

15

19

9

9

3

4

15

13

12

2

2

5
2

34

0.1%

7

8

7

16

0.88

0.85

0.94

0.85

0.9

1

0.7

0.95

0.93

0.9

1

10.93

0.98

0.1%

0.73

0.93

0.8

0.84

15 0.86

2.00%

3.30%

1.70%

4.80%

3.20%

0.60%

24.00%

1.50%

3.00%

4.00%

0.80%

4.40%

0.70%

2.20%

0.90%

4.10%

19.20%

0.70%

2.10%

2.90%

#NUM! 0.000/a

#NUM! 0.00%

4.60% 4.10%
#NUM! 0.00%

0.30%

0.1%

2.90%

1.10%

9.100/a

1.80%

3.70%

0.10%

0.1%

1.40%

0.50%

6.90%

0.80%

0.900/a

Table A.4: Statistical Measures for the Non-Dominated Technological

Improvement Rates of the 72 Domain-Metrics Pairs Since 1970
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Appendix B: COM Details for All 28 Domains

This section will explain how each of the patent data sets was located using the COM.

The domains are grouped by the method that was used to identify the patent set and starts with

the direct COM and ends with more complex adaptations.

Appendix B.1: Direct COM

There were 14 domains that were located using the COM and required no further

reading or development of patent sets. In these cases, the most basic version of the COM worked

exactly as it was designed, and no extra patent sets were present that required further testing.

Capacitor Energy Storage

Initial Search Terms and MPR scores:

Search Term

electric capacitor

Size of Pre-
search

10972

IPC

HOIG (CAPACITORS;
CAPACITORS, RECTIFIERS,
DETECTORS, SWITCHING
DEVICES, LIGHT-SENSITIVE
OR TEMPERATURE-
SENSITIVE DEVICES OF THE
ELECTROLYTIC TYPE)

MPR for IPC

0.21

UPC

361 (Electricity:
electrical systems
and devices)

From this search, and in particular the titles of the patent classes, it was apparent that

HOIG and 361 were the two most appropriate patent classes for the TD. The patent set was

downloaded and read for relevancy and was chosen to be the final patent set.
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WR for
UPC

0.105



(CCL:(361) AND ICL:(HO1G)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 5944

Relevancy: 0.84

Integrated Circuit Processors

Initial Search Terms and MPR scores:

Search Term

Integrated circuits

semiconductors

transistors

Size of Pre-
search

67274

152741

77792

IPC

HOIL (SEMICONDUCTOR
DEVICES; ELECTRIC SOLID
STATE DEVICES NOT
OTHERWISE PROVIDED
FOR

HOIL (SEMICONDUCTOR
DEVICES; ELECTRIC SOLID
STATE DEVICES NOT
OTHERWISE PROVIDED
FOR

HOlL (SEMICONDUCTOR
DEVICES; ELECTRIC SOLID
STATE DEVICES NOT
OTHERWISE PROVIDED
FOR

From these searches, it was apparent that HOIL and 257 were the two most appropriate

patent classes for the TD. The patent set was downloaded and read for relevancy and was

chosen to be the final patent set.

(CCL:(257) AND ICL:(HO1L)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent
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MPR for
IPC

0.192,

0.53

0.26

UPC

257 (Active
solid-state
devices (e.g.,
transistors,
solid-state
diodes
257 (Active
solid-state
devices (e.g.,
transistors,
solid-state
diodes)
257 (Active
solid-state
devices (e.g.,
transistors,
solid-state
diodes

MPR for
UPC

0.21

0.53

0.28



N= 149491

Relevancy: 0.805

Milling Machines

Initial Search Terms and MPR scores:

Search Term

milling machine

Size of Pre-
search

607

IPC

B23C (MILLING
(broaching B23D; broach-
milling in making gears
B2 3F; arrangements for
copying or controlling
B23Q))

MPR for IPC

0.18

UPC

409 (Gear cutting,
milling, or
planing)

MPR for UPC

0.16

From this search, it was apparent that B23C and 409 were the two most appropriate

patent classes for the TD. The patent set was downloaded and read for relevancy and was

chosen to be the final patent set.

(CCL:(409) AND ICL:(B23C)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 2315

Relevancy: 0.925
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Optical Information Storage

Initial Search Terms and MPR scores:

Search Term

optical disc

optical disk

optical storage

Size of Pre-
search

6293

7659

5145

optical information 1525
storage

compact disc

compact disk

2043

1269

IPC

GI1B (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G11B (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
GlIB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G11B (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G IB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G 1 IB (INFORMATION

MPR for
IPC

0.38

0.39

0.19

0.24

0.15

0.19

UPC

369 (Dynamic
information storage
or retrieval

369 (Dynamic
information storage 0.387
or retrieval

369 (Dynamic
information storage 0.1857
or retrieval

369 (Dynamic
information storage 0.23
or retrieval

206 (Special
receptacle or

package

369 (Dynamic

0.095

0.13
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MPR for
UPC

0.37



STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
GIIB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G1 B (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G06F (ELECTRIC DIGITAL
DATA PROCESSING
(computers in which a part of the
computation is effected
hydraulically or pneumatically
Gl IB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
GlIB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
GIiB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer

information storage
or retrieval

optical data storage 2223
369 (Dynamic
information storage
or retrieval

0.22

369 (Dynamic
information storage 0.18
or retrieval

711 (Electrical
computers and
digital processing
systems: memory

0.16

0.24

0.15

0.224

0.13

0.11

0.16

optical data

memory storage

optical memory
storage

optical memory

CD storage

18881

21182

546

3898

647
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365 (Static
information storage 0.09
and retrieval)

369 (Dynamic
information storage 0.11
or retrieval

206 (Special
receptacle or
package

0.08



From these searches, it was apparent that GIB and 369 were the two most appropriate

patent classes for the TD. The patent set was downloaded and read for relevancy and was

chosen to be the final patent set.

(CCL:(369) AND ICL:(G 11B)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 23543

Relevancy: 0.815

Solar Photovoltaic Energy Generation

Initial Search Terms and MPR scores:

Search Term

solar photovoltaic

Size of
Pre-search

991

'PC

HOlL (SEMICONDUCTOR
DEVICES; ELECTRIC SOLID
STATE DEVICES NOT
OTHERWISE PROVIDED FOR)

MPR for
IPC

0.28

UPC

136 (Batteries:
thermoelectric and
photoelectric)

From this search and the previous work done on the renewable energy case study, it was

apparent that HO 1 L and 136 were the two most appropriate patent classes for the TD. The

patent set was downloaded and read for relevancy and was chosen to be the final patent set.

(CCL:(136) AND ICL:(HO1L)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent
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MPR for
UPC

0.34



N= 5203

Relevancy: 0.85

Superconductivity

Initial Search Terms and MPR scores:

Search Term

superconductivty

high temperature
superconductivity

Size of
Pre-
search

5068

EPC

HOlL (SEMICONDUCTOR
DEVICES; ELECTRIC SOLID
STATE DEVICES NOT
OTHERWISE PROVIDED
FOR
HO L (SEMICONDUCTOR
DEVICES; ELECTRIC SOLID

733 STATE DEVICES NOT
OTHERWISE PROVIDED
FOR

MPR for
IPC

0.164

0.196

UPC

505 (Superconductor
technology: apparatus,
material, process)

505 (Superconductor
technology: apparatus,
material, process

From this search and the previous work done on the renewable energy case study, it was

apparent that HOlL and 505 were the two most appropriate patent classes for the TD. The

patent set was downloaded and read for relevancy and was chosen to be the final patent set.

(CCL:(505) AND ICL:(HOlL)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 1776

Relevancy: 0.845
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MPR for
UPC

0.604

0.43



While some domains revealed the two primary patent classes within the first search, other

TDs contained multiple options for the patent overlap data sets which were tested for relevancy

and completeness to decide the best patent overlap set. Each of the TDs in this sub-section

revealed many potential patent class overlaps, and ended with only one class-overlap as the final

patent set.

Camera Sensitivity

Initial Search Terms and MPR scores:

157 H04N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

5285 HO4N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

3

image sensor

CCD

CMOS

charge couple device

complementary
metal oxide
semiconductor

camera modules

digital photo

G03B (APPARATUS OR
ARRANGEMENTS FOR TAKING
PHOTOGRAPHS OR FOR PROJECTING
OR VIEWING THEM; APPARATUS OR
ARRANGEMENTS EMPLOYING
ANALOGOUS TECHNIQUES USING
WAVES OTHER THAN OPTICAL
WAVES; ACCESSORIES THEREFOR

18861 is HO4N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

4947

8789

4263

HO4N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

HOIL (SEMICONDUCTOR DEVICES;
ELECTRIC SOLID STATE DEVICES NOT
OTHERWISE PROVIDED FOR

HOIL (SEMICONDUCTOR DEVICES;
ELECTRIC SOLID STATE DEVICES NOT
OTHERWISE PROVIDED FOR

HO1L (SEMICONDUCTOR DEVICES;
740 ELECTRIC SOLID STATE DEVICES NOT

OTHERWISE PROVIDED FOR

1909 H04N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

771 HO4N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

MPR
for
IPC

0.233

0.28

UPC

348 (Television

348 (Television

0.333 396 (Photography

0.195

0.21

0.233

0.11

0.25

0.22

0.13

348 (Television

257 (Active solid-
state devices (e.g.,
transistors, solid-state
diodes))
257 (Active solid-

MPR
for
UPC

0.245

0.301

0.333

0.19

0.1

state devices (e.g., 0.23
transistors, solid-state
diodes))
257 (Active solid-
state devices (eg., 0.13
transistors, solid-state
diodes
257 (Active solid-
state devices (e.g.,
transistors, solid-state
diodes

348 (Television

0.24

0.25

250 (Radiant energy 0.09
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Size of
Pre-
search

Search Term

digital photography

digital camera

IPC

dslr



digital photonics

digital video camera

camera sensor

photo sensor

G01T (MEASUREMENT OF NUCLEAR
199 OR X-RADIATION

1286 H04N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

3576 H04N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

1787
HOIL (SEMICONDUCTOR DEVICES;
ELECTRIC SOLID STATE DEVICES NOT
OTHERWISE PROVIDED FOR

0.07 250 (Radiant energy

0.288

0.222

0.11

348 (Television

348 (Television

250 (Radiant energy

The patent set was downloaded and read for relevancy and was chosen to be the final

patent set.

(CCL:(257) AND ICL:(HO4N)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 1843

Relevancy: 0.855

Electric Motors

Initial Search Terms and MPR scores:

H02K (DYNAMO-ELECTRIC
MACHINES

H02K (DYNAMO-ELECTRIC
MACHINES

H02K (DYNAMO-ELECTRIC
MACHINES

B23H (WORKING OF METAL BY
THE ACTION OF A HIGH
CONCENTRATION OF
ELECTRIC CURRENT ON A
WORKPIECE USING AN
ELECTRODE WHICH TAKES
THE PLACE OF A TOOL; SUCH
WORKING COMBINED WITH
OTHER FORMS OF WORKING
OF METAL

G06F (ELECTRIC DIGITAL
DATA PROCESSING

H02P (CONTROL OR
REGULATION OF ELECTRIC

MPR for IPC

0.15

0.37

0.26

0.2

0.17

0.075

UPC
310 (Electrical generator 0.12
or motor structure

310 (Electrical generator 0.322
or motor structure

310 (Electrical generator 0.2
or motor structure

310 (Electrical generator 0.14
or motor structure

365 (Static information
storage and retrieval

290 (Prime-mover
dynamo plants

0.1

0.16
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0.21

0.3

0.263

0.15

Size of Pre-search IPCSearch Term

electric motor

stator

rotor

electric machine

generator

electric generator

MPR for UPC

37459

20019

44367

14098

591838

62238



winding currents

brushless motor

electromagnetic coil

electric primary mover

motor

rotary motor

electric windings

mechanical commutator

electric commutator

squirrel cage motor

wound rotor

10188

2137

7087

25

152382

8163

10795

319

1677

238

1605

permanent magnet motor 3688

brushless AC

induction motor

115

3126

MOTORS, GENERATORS, OR
DYNAMO-ELECTRIC
CONVERTERS; CONTROLLING
TRANSFORMERS, REACTORS
OR CHOKE COILS

H02P (CONTROL OR
REGULATION OF ELECTRIC
MOTORS, GENERATORS, OR
DYNAMO-ELECTRIC
CONVERTERS; CONTROLLING
TRANSFORMERS, REACTORS
OR CHOKE COILS

HO2K (DYNAMO-ELECTRIC
MACHINES

HOIF (MAGNETS;
INDUCTANCES;
TRANSFORMERS; SELECTION
OF MATERIALS FOR THEIR
MAGNETIC PROPERTIES

H02P (CONTROL OR
REGULATION OF ELECTRIC
MOTORS, GENERATORS, OR
DYNAMO-ELECTRIC
CONVERTERS; CONTROLLING
TRANSFORMERS, REACTORS
OR CHOKE COILS

H02P (CONTROL OR
REGULATION OF ELECTRIC
MOTORS, GENERATORS, OR
DYNAMO-ELECTRIC
CONVERTERS; CONTROLLING
TRANSFORMERS, REACTORS
OR CHOKE COILS

H02K (DYNAMO-ELECTRIC
MACHINES

H02K (DYNAMO-ELECTRIC
MACHINES

H02K (DYNAMO-ELECTRIC
MACHINES

H02K (DYNAMO-ELECTRIC
MACHINES

H02K (DYNAMO-ELECTRIC
MACHINES

H02K (DYNAMO-ELECTRIC
MACHINES

HO2K (DYNAMO-ELECTRIC
MACHINES

H02P (CONTROL OR
REGULATION OF ELECTRIC
MOTORS, GENERATORS, OR
DYNAMO-ELECTRIC
CONVERTERS; CONTROLLING
TRANSFORMERS, REACTORS
OR CHOKE COILS

H02P (CONTROL OR
REGULATION OF ELECTRIC
MOTORS, GENERATORS, OR
DYNAMO-ELECTRIC
CONVERTERS; CONTROLLING
TRANSFORMERS, REACTORS
OR CHOKE COILS

0.14
318 (Electricity: motive
power systems

318 (Electricity: motive
power systems

335 (Electricity:
magnetically operated
switches, magnets, and
electromagnets

290 (Prime-mover
dynamo plants

318 (Electricity: motive
power systems)

0.244

0.07

0.16

0.296

0.06

0.178

0.196

0.25

0.23

0.3456

0.333

0.236

0.13

0.294

0.12

0.123

0.28

310 (Electrical generator 0.06
or motor structure

310 (Electrical generator 0.153
or motor structure

310 (Electrical generator 0.189
or motor structure

310 (Electrical generator 0.26
or motor structure

310 (Electrical generator 0.236
or motor structure

310 (Electrical generator 0.34
or motor structure

310 (Electrical generator 0.312
or motor structure

318 (Electricity: motive
power systems

318 (Electricity: motive
power systems0.232

0.222

0.272

Several of the most promising patent class overlaps were downloaded and read for

relevancy.
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Patent Class Overlap Set

(CCL:(290) AND ICL:(HO2K)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENT _TYPE:United States Issued Patent
(CCL:(318) AND ICL:(HO2K)) AND (APD:[ 976l-1 TO 2013-7-1]) AND
DOCUMENT TYPE:United States Issued Patent
(CCL:(310) AND ICL:(HO2K)) AND (APDt1976-1-1 TO 2013-7-1]) AND
DOCUMENTJIYPE:United States Issued Patent

Number of
Patents

768

2754

18575

Relevancy

0.16

0.55

0.855

After reading the sets, it was clear that the most relevant and complete patent set for the

TD is:

(CCL:(310) AND ICL:(HO2K)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENT_TYPE:United States Issued Patent

N= 18575

Relevancy: 0.855

Electrical Energy Transmission

Initial Search Terms and MPR scores:

Size of
Pre-
search

IPC

HO4M (TELEPHONIC COMMUNICATION

power lines 26491 (circuits for controlling other apparatus via a
telephone cable and not involving telephone
switching apparatus
HOIR (ELECTRICALLY-CONDUCTIVE
CONNECTIONS; STRUCTURAL

power cables 7822 ASSOCIATIONS OF A PLURALITY OF
MUTUALLY-INSULATED ELECTRICAL
CONNECTING ELEMENTS; COUPLING
DEVICES; CURRENT COLLECTORS

transmission
line

H01P (WAVEGUIDES; RESONATORS, LINES
21163 OR OTHER DEVICES OF THE WAVEGUIDE

TYPE (operating at optical frequencies

MPR
for
IPC

0.07

0.06

0.13

UPC

365 (Static information
storage and retrieval

174 (Electricity: conductors
and insulators

333 (Wave transmission
lines and networks
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Search
Term

MPR
for
UPC

0.07

0.07

0.12



electrical
transmission

electrical
transmission
line
losless
transmission
line

electrical
transmission

electric
power
transmission

B60K (ARRANGEMENT OR MOUNTING OF
PROPULSION UNITS OR OF
TRANSMISSIONS IN VEHICLES;
ARRANGEMENT OR MOUNTING OF
PLURAL DIVERSE PRIME-MOVERS;

14146 AUXILIARY DRIVES; INSTRUMENTATION
OR DASHBOARDS FOR VEHICLES;
ARRANGEMENTS IN CONNECTION WITH
COOLING, AIR INTAKE, GAS EXHAUST, OR
FUEL SUPPLY, OF PROPULSION UNITS, IN
VEHICLES
H01P (WAVEGUIDES; RESONATORS, LINES

3294 OR OTHER DEVICES OF THE WAVEGUIDE
TYPE (operating at optical frequencies
HOIP (WAVEGUIDES; RESONATORS, LINES

15 OR OTHER DEVICES OF THE WAVEGUIDE
TYPE (operating at optical frequencies
B60K (ARRANGEMENT OR MOUNTING OF
PROPULSION UNITS OR OF
TRANSMISSIONS IN VEHICLES;
ARRANGEMENT OR MOUNTING OF
PLURAL DIVERSE PRIME-MOVERS;

14146 AUXILIARY DRIVES; INSTRUMENTATION
OR DASHBOARDS FOR VEHICLES;
ARRANGEMENTS IN CONNECTION WITH
COOLING, AIR INTAKE, GAS EXHAUST, OR
FUEL SUPPLY, OF PROPULSION UNITS, IN
VEHICLES
B60K (ARRANGEMENT OR MOUNTING OF
PROPULSION UNITS OR OF
TRANSMISSIONS IN VEHICLES;
ARRANGEMENT OR MOUNTING OF
PLURAL DIVERSE PRIME-MOVERS;

3915 AUXILIARY DRIVES; INSTRUMENTATION
OR DASHBOARDS FOR VEHICLES;
ARRANGEMENTS IN CONNECTION WITH
COOLING, AIR INTAKE, GAS EXHAUST, OR
FUEL SUPPLY, OF PROPULSION UNITS, IN
VEHICLES
B60K (ARRANGEMENT OR MOUNTING OF
PROPULSION UNITS OR OF
TRANSMISSIONS IN VEHICLES;
ARRANGEMENT OR MOUNTING OF
PLURAL DIVERSE PRIME-MOVERS;

power plant 144 AUXILIARY DRIVES; INSTRUMENTATION
transmission OR DASHBOARDS FOR VEHICLES;

ARRANGEMENTS IN CONNECTION WITH
COOLING, AIR INTAKE, GAS EXHAUST, OR
FUEL SUPPLY, OF PROPULSION UNITS, IN
VEHICLES
HO2J (CIRCUIT ARRANGEMENTS OR
SYSTEMS FOR SUPPLYING OR
DISTRIBUTING ELECTRIC POWER;

power grid 1895 SYSTEMS FOR STORING ELECTRIC
ENERGY (power supply circuits for apparatus for
measuring X-radiation, gamma radiation,
corpuscular radiation or cosmic radiation
HOIL (SEMICONDUCTOR DEVICES;

electric grid 3194 ELECTRIC SOLID STATE DEVICES NOT
OTHERWISE PROVIDED FOR

electric H02H (EMERGENCY PROTECTIVE CIRCUIT
substations 184 ARRANGEMENTS (indicating or signalling

0.052

0.088

0.166

903 (Hybrid electric vehicles
(hevs

333 (Wave transmission
lines and networks

333 (Wave transmission
lines and networks

0.112

0.267

0.052 903 (Hybrid electric vehicles 0.106
(hevs

0.06

0.062

0.0711

180 (Motor vehicles

180 (Motor vehicles

290 (Prime-mover dynamo
plants

257 (Active solid-state
0.1 devices (e.g., transistors,

solid-state diodes))

0.0879
361 (Electricity: electrical
systems and devices

0.06

0.08

0.08

0.1

0.17
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1466

1 7M3

undesired working conditions

GOIR (MEASURING ELECTRIC VARIABLES;
MEASURING MAGNETIC VARIABLES

H03K (PULSE TECHNIQUE (measuring pulse

electric
current
transmission
high voltage

transmission

HVDC

high voltage
direct current

0.042 324 (Electricity: measuring
and testing

0.063 363 (Electric power
conversion systems

0.21 363 (Electric power
conversion systems

characteristics
H02J (CIRCUIT ARRANGEMENTS OR
SYSTEMS FOR SUPPLYING OR
DISTRIBUTING ELECTRIC POWER;

63 SYSTEMS FOR STORING ELECTRIC
ENERGY (power supply circuits for apparatus for
measuring X-radiation, gamma radiation,
corpuscular radiation or cosmic radiation
HO2M (APPARATUS FOR CONVERSION
BETWEEN AC AND AC, BETWEEN AC AND
DC, OR BETWEEN DC AND DC, AND FOR

2075 USE WITH MAINS OR SIMILAR POWER
SUPPLY SYSTEMS; CONVERSION OF DC
OR AC INPUT POWER INTO SURGE
OUTPUT POWER; CONTROL OR
REGULATION THEREOF

363 (Electric power
conversion systems)

Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set

(CCL:(333) AND ICL:(HOIR)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent
(CCL:(361) AND ICL:(HOlP)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent
(CCL:(363) AND ICL:(H02m)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENT_TYPE:United States Issued Patent

Number of
Patents

378

234

10787

Relevancy

0.48

<1% (only 50 read)

0.855

After reading the sets, it was clear that the most relevant and complete patent set for the

TD is:

(CCL:(363) AND ICL:(HO2M)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 10787

Relevancy: 0.855
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0.059

0.054

0.0382

0.25

0.078



Electrical Information Transmission

Initial Search Terms and MPR scores:

Search Term

coaxial cable

single cable

shielded cable

radio frequency
cable
telecommunication
cable

data transmission

information
transmission

telegraph

Size of
Pre-
search

IPC

HOIR (ELECTRICALLY-CONDUCTIVE
CONNECTIONS; STRUCTURAL

4561 ASSOCIATIONS OF A PLURALITY OF
MUTUALLY-INSULATED ELECTRICAL
CONNECTING ELEMENTS; COUPLING
DEVICES; CURRENT COLLECTORS

3590 G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS

HOIR (ELECTRICALLY-CONDUCTIVE
CONNECTIONS; STRUCTURAL

3143 ASSOCIATIONS OF A PLURALITY OF
MUTUALLY-INSULATED ELECTRICAL
CONNECTING ELEMENTS; COUPLING
DEVICES; CURRENT COLLECTORS

660 HO4B (TRANSMISSION

822 G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS
HO4L (TRANSMISSION OF DIGITAL

36050 INFORMATION, e.g. TELEGRAPHIC
COMMUNICATION
H04L (IRANSMISSION OF DIGITAL

19541 INFORMATION, e.g. TELEGRAPHIC
COMMUNICATION
HO4L (TRANSMISSION OF DIGITAL

161 INFORMATION, e.g. TELEGRAPHIC
COMMUNICATION

MPR
for
IPC

0.18

UPC

439 (Electrical
connectors

174 (Electricity:
0.043 conductors and

insulators

0.22
439 (Electrical
connectors

0.11 (5a(Telecommunications

0.1234

0.175

0.128

385 (Optical
waveguides

370 (Multiplex
communications

370 (Multiplex
communications

0.236 178 (Telegraphy

0.18

0.053

0.22

0.12

0.124

0.236

0.19

0.157

Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set

(CCL:(333) AND ICL:(H01P)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENT_TYPE:United States Issued Patent
(CCL:(439) AND ICL:(HO1R)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent

Number of Relevancy
Patents

7774

46701

<% (only 50
read)

0.6675
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After reading the sets, it was clear that the most relevant and complete patent set for the

TD is:

(CCL:(439) AND ICL:(HOIR)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENT_TYPE:United States Issued Patent

N= 46701

Relevancy: 0.6675

Electronic Computation

Initial Search Terms and MPR scores:

Search Term

CPU

computer

central

procesing unit

electronic
computer

micro computer

micro processor

microprocessor

minicomputer

mini computure

Size of
Pre-
search

IPC

G06F (ELECTRIC DIGITAL
DATA PROCESSING (computers

12334 in which a part of the computation is
effected hydraulically or
pneumatically

G06F (ELECTRIC DIGITAL
164410 DATA PROCESSING

6650 G06F (ELECTRIC DIGITAL
DATA PROCESSING

11381 G06F (ELECTRIC DIGITAL
DATA PROCESSING

862

724

G06F (ELECTRIC DIGITAL
DATA PROCESSING

G06F (ELECTRIC DIGITAL
DATA PROCESSING

18704 G06F (ELECTRIC DIGITAL
DATA PROCESSING

106 G06F (ELECTRIC DIGITAL
DATA PROCESSING

174 G06F (ELECTRIC DIGITAL
DATA PROCESSING

MPR
for
IPC

0.266

UPC

710 (Electrical computers and digital
data processing systems: input/output)

709 (Electrical computers and digital
0.36 processing systems: multicomputer data

transferring

0.2567 710 (Electrical computers and digital
data processing systems: input/output

705 (Data processing: financial, business
0.21 practice, management, or cost/price

determination

710 (Electrical computers and digital
0.173 data processing systems: input/output

712 (Electrical computers and digital

0.21 processing systems: processing
architectures and instruction processing
(e.g., processors))
712 (Electrical computers and digital

0.164 processing systems: processing
architectures and instruction processing
(e.g., processors

0.23 370 (Multiplex communications

0.193 369 (Dynamic information storage or
retrieval
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MPR
for
UPC

0.094

0.182

0.08

0.083

0.04

0.09

0.083

0.038

0.0375



G06F (ELECTRIC DIGITAL
8352 DATA PROCESSING

42 G06F (ELECTRIC DIGITAL
DATA PROCESSING

631 G06F (ELECTRIC DIGITAL
DATA PROCESSING

G06F (ELECTRIC DIGITAL
1021 DATA PROCESSING

709 (Electrical computers and digital
0.222 processing systems: multicomputer data

transferring

705 (Data processing: financial, business
0.262 practice, management, or cost/price

determination

0.225
361 (Electricity: electrical systems and
devices
709 (Electrical computers and digital

personal
computer

electronic
mainframe

mainframe

computer
workstation

Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set Number of RelevancyPatents
(CCL:(709) AND ICL:(GO6F)) AND APDYEARMONTHDAY:[19760101 TO 57492 0.02
20130701] AND DOCUMENTTYPE:USB
((CCL:(708) AND ICL:(GO6F)) AND APDYEARMONTHDAY:[19760101 TO 10563 0.635
20130701] AND DOCUMENTTYPE:USB)
((CCL:(712) AND ICL:(GO6F)) AND APDYEARMONTHDAY:[19760101 TO 14606 0.965
20130701] AND DOCUMENTTYPE:USB)

After reading the sets, it was clear that the most relevant and complete patent set for the

TD is:

(CCL:(712) AND ICL:(GO6F)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 14606

Relevancy: 0.965

LED Artificial Iliumination

Initial Search Terms and MPR scores:
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0.275 processing systems: multicomputer data
transferring

0.058

0.09

0.082

0.11



Search Term

LED

light emitting diode

semiconductor light

electroluminescent

diode lamp

solid state light

solid state
illumination

Size of
Pre-
search

IPC

F21V (FUNCTIONAL FEATURES OR
DETAILS OF LIGHTING DEVICES OR
SYSTEMS THEREOF; STRUCTURAL
COMBINATIONS OF LIGHTING
DEVICES WITH OTHER ARTICLES,
NOT OTHERWISE PROVIDED FOR)
H01L (SEMICONDUCTOR DEVICES;

11543 ELECTRIC SOLID STATE DEVICES NOT
OTHERWISE PROVIDED FOR

14672
HOlL (SEMICONDUCTOR DEVICES;
ELECTRIC SOLID STATE DEVICES NOT
OTHERWISE PROVIDED FOR
HOLL (SEMICONDUCTOR DEVICES;

4753 ELECTRIC SOLID STATE DEVICES NOT
OTHERWISE PROVIDED FOR
H05B (ELECTRIC HEATING; ELECTRIC

1249 LIGHTING NOT OTHERWISE
PROVIDED FOR
H01L (SEMICONDUCTOR DEVICES;

3395 ELECTRIC SOLID STATE DEVICES NOT
OTHERWISE PROVIDED FOR

468 HE4N (PICTORIAL COMMUNICATION,
e.g. TELEVISION

MPR
for
IPC

UPC

0.13 362 (Illumination

0.132

0.2744

0.18

0.18

0.132

0.08

257 (Active solid-state
devices (e.g., transistors,
solid-state diodes))
257 (Active solid-state
devices (e.g., transistors,
solid-state diodes))

313 (Electric lamp and
discharge devices

315 (Electric lamp and
discharge devices: systems

257 (Active solid-state
devices (e.g., transistors,
solid-state diodes))

362 (Ilumnination

Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set

(CCL:(362) AND ICL:(F21V)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENT_TYPE:United States Issued Patent
(CCL:(362) AND ICL:(HO1L)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent

(CCL:(315) AND ICL:(HO1L)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent
(CCL:(313) AND ICL:(HO1L)) AND (APD:[1976-1-1 TO 2013-7-1]) ANT)
DOCUMENTTYPE:United States Issued Patent

Number of
Patents

18191

663

576

4043

Relevancy

0.066

0.14

0.51

0.85

After reading the sets, it was clear that the most relevant and complete patent set for the

TD is:

(CCL:(313) AND ICL:(HOIL)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent
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MPR
for
UPC

0.17

0.1357

0.28

0.3

0.22

0.145

0.123



N= 4043

Relevancy: 0.85

The next two cases could be found using the direct COM, as they resulted in a single

patent class overlap set. These two data sets are interesting in that they were located by

searching only for magnetic information storage. In this case, the search terms for magnetic

information storage also led to the identification of the IPC and UPC for integrated circuit

information storage.

Magnetic Information Storage

The initial search terms for magnetic information storage were as follows:

Search Term

magnetic tape

tape storage

magnetic
information

magnetic disk

Size of Pre-
search

8437

2285

7382

7525

IPC

G11B (INFORMATION
STORAGg BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G11B (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
GIB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
GIB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD

MPR for IPC UPC

0.37

0.18

0.24

0.366

360 (Dynamic
magnetic
information storage
or retrieval

360 (Dynamic
magnetic
information storage
or retrieval

0.36

0.15

360 (Dynamic
magnetic0.
information storage 0.2
or retrieval

360 (Dynamic
magnetic 0.33
information storage
or retrieval
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magenetic data
storage

magnetic data

memory storage

magnetic memory
storage

magnetic memory

cassette tape

magnetic cassette

1933

9637

21182

823

4530

4110

1969

CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
GlIB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND,
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G 1 B (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
G06F (ELECTRIC DIGITAL
DATA PROCESSING
(computers in which a part of
the computation is effected
hydraulically or pneumatically
G IIC (STATIC STORES
(information storage based on
relative movement between
record carrier and transducer
G 11C (STATIC STORES
(information storage based on
relative movement between
record carrier and transducer
GIB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer
GIB (INFORMATION
STORAGE BASED ON
RELATIVE MOVEMENT
BETWEEN RECORD
CARRIER AND
TRANSDUCER (recording
measured values in a way that
does not require playback
through a transducer

360 (Dynamic
magnetic
information storage
or retrieval

360 (Dynamic
magnetic
information storage
or retrieval

711 (Electrical
computers and
digital processing
systems: memory)

365 (Static
information storage
and retrieval

365 (Static
information storage
and retrieval

0.272

0.233

0.22

0.2

0.22

0.36

0.38

0.25

0.234

0.16

0.21

0.23

360 (Dynamic
magnetic 0.323
information storage
or retrieval

360 (Dynamic
magnetic
information storage
or retrieval

0.34

The resulting patent classes that were tested had the following results:
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Patent Class Overlap Set Numer of Relevancy
Patents

((CCL:(365) AND ICL:(G11C)) OR ((CCL:(360) AND ICL:(G1 IB)))) AND
APD_YEARMONTHDAY:[19760101 TO 20130701] AND 78908 N/A
DOCUMENTTYPE:USB)
((CCL:(365) AND ICL:(G1 1C)) AND APDYEARMONTHDAY:[19760101 49018 N/A
TO 20130701] AND DOCUMENTTYPE:USB)
((CCL:(360) AND ICL:(GI 1B)) AND AP YEARMONTHDAY:[19760101 33576 0.93
TO 20130701] AND DOCUMENT_TYPE:USB)

After reading the patent sets, it was clear that the 360&G 11 B patent class overlap set was

relevant enough to represent magnetic information storage and both of the other two sets were

ruled out for relevancy within the first 50 patents read. However, when reading the 365&G 11 C

patent class overlap sets, the reviewer saw many integrated circuit information storage patents,

and thus decided to re-read the patent set for relevance to integrated circuit information storage.

The final patent set for Magnetic Information Storage is as follows:

(CCL:(360) AND ICL:(G 11B)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 33576

Relevancy: 0.93

Integrated Circuit Information Storage

When the 365&G1 IC patent set was re-read for relevancy for Integrated Circuit memory

devices, the relevancy was much higher at 0.81.
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Patent Class Overlap Set Number of
Patents

((CCL:(365) AND ICL:(G1 1C)) AND APDYEARMONTHDAY:[19760101 49018
TO 20130701] AND DOCUMENTTYPE:USB)

Relevancy

0.81

The final patent set for Integrated Circuit Information Storage is as follows:

(CCL:(365) AND ICL:(G1 IC)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 49018

Relevancy: 0.81

Appendix B.2: Combining Multiple Class Overlaps

Other TDs revealed several potential patent class overlaps and the final patent set

involved a combination of these patent sets. In some cases, patent class overlaps were combined

together, and in other cases, patent classes were removed from an overlap. This sub-section will

provide the specific details for each of the TDs that are made up of multiple patent classes.

Combustion Engines

Search
Term

Initial Search Terms and MPR scores:

Size of
Pre-

MPR
for

MPR
for
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engine

combustion
engine

search

124720 F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

49026
F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

heat engine 10383 F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

internal
combustion
engine

turbine

gas turbine

rotary
engine

diesel engine

piston

piston
engine

two stroke
engine

four stroke
engine

F02B (INTERNAL-COMBUSTION PISTON ENGINES;
41374 COMBUSTION ENGINES IN GENERAL

F02C (GAS-TURBINE PLANTS; AIR INTAKES FOR JET-
27837 PROPULSION PLANTS; CONTROLLING FUEL SUPPLY

IN AIR-BREATHINGJET-PROPULSION PLANTS
F02C (GAS-TURBINE PLANTS; AIR INTAKES FORJET-

13715 PROPULSION PLANTS; CONTROLLING FUEL SUPPLY
IN AIR-BREATHINGJET-PROPULSION PLANTS

4001 F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

4246
F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

59496 F04B (POSITIVE-DISPLACEMENT MACHINES FOR
LIQUIDS; PUMPS

F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

1522 F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

688 F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

miller cycle 11 FOIL (CYCLICALLY OPERATING VALVES FOR
MACHINES OR ENGINES

otto cycle 111 F02B (INTERNAL-COMBUSTION PISTON ENGINES;
COMBUSTION ENGINES IN GENERAL

wankel 76 F)2B (INTERNAL-COMBUSTION PISTON ENGINES;
engine COMBUSTION ENGINES IN GENERAL

jet engine 2754 F02K (JET-PROPULSION PLANTS

turbojet 470 F02K (JET-PROPULSION PLANTS

turbofan 529 F02K (JET-PROPULSION PLANTS

ramjet 205 F02K (JET-PROPULSION PLANTS

rocket 2585 F02K (JET-PROPULSION PLANTS

123 (Internal-
0.3744 combustion

engines
123 (Internal-

0.324 combustion
engines
123 (Internal-

0.091 combustion
engines
123 (Internal-

0.277 combustion
engines

0.391 60 (Power
plants

0.412 60 (Power
plants

123 (Internal-
0.206 combustion

engines
123 (Internal-

0.142 combustion
engines
123 (Internal-

0.14 combustion
engines
123 (Internal-

0.266 combustion
engines
123 (Internal-

0.312 combustion
engines
123 (Internal-

0.3 combustion
engines
123 (Internal-

0.273 combustion
engines
123 (Internal-

0.31 combustion
engines
418 (Rotary

0.178 expansible
chamber
devices

0.15 60(Powerplants,

0.222 60 (Power
022 plantsI

0.273 60 (Power
plants

0.32 60 (Power
0.32 plants

0.2 60 (Power
0.2 plants
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IPC UPC

0.461

0.4867

0.21

0.475

0.212

0.284

0.257

0.27

0.112

0.38

0.416

0.447

0.454

0.433

0.2

0.16

0.313

0.323

0.4

0.183



Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set

(CCL:(123) AND ICL:(F02B)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTYPE:United States Issued Patent
(CCL:(123) ANDi ICL:(FOLL)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent
(CCL:(123) AND (ICL:(F01L) OR ICL:(FO2B))) AND (APD:[1976-1-1 TO 2013-7-1])
AND DOCUMENT_TYPE:United States Issued Patent

Number of
Patents

13431

Relevancy

0.95

0.9856719

19640 0.96167072

After reading the sets, it was the overlap of several of the patent classes that provided the

most relevant and complete patent set for the TD:

(CCL:(123) AND (ICL:(FOIL) OR ICL:(FO2B))) AND (APD:[1976-1-1 TO 2013-7-1])

AND DOCUMENTTYPE:United States Issued Patent

N= 19640

Relevancy: 0.962 (this relevancy score was derived from the weighted average of the two

overlaps that were combined to create it)

Computed Tomography (CT)

Initial search term and MPR score:

Search Term

computed
tomography

Size of IPC
Pre-search

1360

MPR for UPC
IPC

A61B (DIAGNOSIS;
SURGERY;
IDENTIFICATION

0.232
378 (X-ray or gamma ray
systems or devices
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MPR for
UPC

0.37 -



There was only one search term necessary for the computed tomography pre-search, as

the TD has already been studied in depth in the development of the COM, which can be found

in the methodology section.

CCL:(378) AND (ICL:(A61B) OR ICL:(GO1N)) AND (APD:[1976-1-1 TO 2013-7-1])

AND (DOCUMENTTYPE: United States Issued Patent)

N= 7234

Relevancy: 0.88

Incandescent Artificial Illumination

Initial Search Terms and MPR scores:

Size of
Pre-
search

IPC
MPR
for
IPC

1132 H05B (ELECTRIC HEATING; ELECTRIC LIGHTING
NOT OTHERWISE PROVIDED FOR

1404
HO1K (ELECTRIC INCANDESCENT LAMPS (details or
apparatus or processes for manufacture applicable to both
discharge devices and incandescent lamps

F21V (FUNCTIONAL FEATURES OR DETAILS OF
LIGHTING DEVICES OR SYSTEMS THEREOF;

507 STRUCTURAL COMBINATIONS OF LIGHTING
DEVICES WITH OTHER ARTICLES, NOT OTHERWISE
PROVIDED FOR
F2 IV (FUNCTIONAL FEATURES OR DETAILS OF
LIGHTING DEVICES OR SYSTEMS THEREOF;

15 STRUCTURAL COMBINATIONS OF LIGHTING
DEVICES WITH OTHER ARTICLES, NOT OTHERWISE
PROVIDED FOR

UPC

3620.08 (Illumination

313 (Electric

0.174 lamp anddischarge
devices

0.12 362
(Illumination

3620.133 (Illumination
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Search
Term

incandescent
light

incandescent
lamp

incandescent
bulb

incandescent
globe

MPR
for
UPC

0.21

0.21

0.23

0.3



HO IK (ELECTRIC INCANDESCENT LAMPS (details or
incandescent 2121 apparatus or processes for manufacture applicable to both

discharge devices and incandescent lamps

filament wire 1173 HO J (ELECTRIC DISCHARGE TUBES OR DISCHARGE
LAMPS

filament
D02G (CRIMPING OR CURLING FIBRES, FILAMENTS,14793 YARNS, OR THREADS; YARNS OR THREADS

halogen lamp 943 HO J (ELECTRIC DISCHARGE TUBES OR DISCHARGE
LAMPS

313 (Electric

0.14 lamp and
discharge
devices
313 (Electric

0.09 lamp and
discharge
devices
428 (Stock

0.15 material or
miscellaneous
articles
313 (Electric

0.16 lamp and
discharge
devices

Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set

(CCL:(313) AND ICL:(H0lK)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent
(CCL:(362) AND ICL:(H0IK)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent

(CCL:(313) AND ICL:(HOlK) AND (NOT (ICL:(H01Jl) OR ICL:(F21V)))) AND
(APD:[1976-1-1 TO 2013-7-1]) AND DOCUMENTTYPE:United States Issued Patent

Number of
Patents

952

186

646

Relevancy

0.58

0.395

0.89

After reading the sets, it was an overlap of the 313 and HO 1K patent classes that provided

the most relevant patent set, although it was cleaned with the removal of HO J 1 (Details of

electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof,

common to two or more basic types of discharge tubes or lamps) and F2 1V because they have

very little to do with incandescent lighting. The final set is:

(CCL:(313) AND ICL:(HOlK) AND (NOT (ICL:(HOlJl) OR ICL:(F21V)))) AND

(APD:[1976-1-1 TO 2013-7-1]) AND DOCUMENTTYPE:United States Issued Patent

N= 646

Benson 336

0.154

0.1122

0.09

0.24



Relevancy: 0.89

Magnet Resonance Imaging (MRI)

Initial Search Terms and MPR scores:

Search Term

MRI

magnetic
resonance
imaging

nuclear
magnetic
resonance
imaging
magnetic

resonance
tomography
medical

imaging

radiology

nuclear
magnetic
resonance

Size of
Pre-
search

IPC

GOlV (GEOPHYSICS; GRAVITATIONAL
2220 MEASUREMENTS; DETECTING MASSES OR

OBJECTS; TAGS
GO 1V (GEOPHYSICS; GRAVITATIONAL
MEASUREMENTS; DETECTING MASSES OR

3610 OBJECTS; TAGS (means for indicating the
location of accidentally buried, e.g. snow-buried,
persons
GOIR (MEASURING ELECTRIC VARIABLES;

594 MEASURING MAGNETIC VARIABLES
(measuring physical variables of any kind by
conversion into electric variables

363 A61B (DIAGNOSIS; SURGERY;
IDENTIFICATION (analysing biological material

A61B (DIAGNOSIS; SURGERY;
IDENTIFICATION (analysing biological material

654 A61B (DIAGNOSIS; SURGERY;
IDENTIFICATION (analysing biological materi
GOlR (MEASURING ELECTRIC VARIABLES;
MEASURING MAGNETIC VARIABLES

1568 (measuring physical variables of any kind by
conversion into electric variables,

MPR
for
IPC

0.22

UPC

324 (Electricity:
measuring and testing

0.25 324 (Electricity:
measuring and testing

0.225 324 (Electricity:
measuring and testing

0.14 324 (Electricity:
measuring and testing

0.2 600 (Surgery

0.093 378 (X-ray or gamma
ray systems or devices

0.23 324 (Electricity:
measuring and testing

Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set

(((CCL:(324) AND ICL:(A61B)) AND APDYEARMONTHDAY:[19760101 TO 20130701]
AND DOCUMENTTYPE:USB))
(((CCL:(324) AND ICL:(A61B)) OR ((CCL:(600) AND ICL:(GOIR)))) AND
APDYEARMONTHDAY:[19760101 TO 20130701] AND DOCUMENTTYPE:USB)

Number
of Patents

1464

1977

Relevancy

<I% (read
only 50)

0.855

Benson 337

MPR
for
UPC

0.29

0.36

0.41

0.284

0.193

0.19

0.42



After reading the sets, it was the overlap of several of the patent classes that provided the

most relevant and complete patent set for the TD:

(((CCL:(324) AND ICL:(A61B)) OR ((CCL:(600) AND ICL:(GO1R)))) AND

APDYEARMONTHDAY:[19760101 TO 20130701] AND DOCUMENTTYPE:USB) AND

(DOCUMENTTYPE:USA OR DOCUMENTTYPE:USB)

N= 1977

Relevancy: 0.855

Optical Information Transmission

Initial Search Terms and MPR scores:

Size of
Pre-
search

IPC
MPR
for
IPC

fiberoptic 501 A61B (DIAGNOSIS; SURGERY; IDENTIFICATION

97y G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS

2151 H04B (TRANSMISSION

6408 G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS

4997 G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS

32984 G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS

32984 G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS

96 G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS

UPC

0.143 385 (Optical
waveguides

385 (Optical
0.1 waveguides

0.18 398 (Optical
1 

comunications
0.31 385 (Optical

waveguides

0.33 385 (Optical
waveguides

0.35 385 (Optical
waveguides

0.348 385 (Optical
waveguides

0.266 385 (Optical
wavegides
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Search
Term

fiberoptic
cable
optical data
transmission

optical cables

optical fiber
cable

fiber optic

optical fiber

fibre-optic
cable

MPR
for
UPC

0.16

0.222

0.26

0.336

0.36

0.389

0.489

0.26



Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set Number of Relevancy

((CCL:(398) AND ICL:(HO4B)) AND APDYEARMONTHDAY:[19760101 TO 9153 0.92
20130701] AND DOCUMENTTYPE:USB)
(CCL:(385) AND ICL:(GO2B)) AND (APD:[1976-1-1 TO 2013-7-1]) AND 30937 0.815
DOCUMENTTYPE:United States Issued Patent
((CCL:(398) AND ICL:(HO4B)) OR (CCL:(385) AND ICL:(GO2B))) AND
APDYEARMONTHDAY:[19760101 TO 20130701] AND DOCUMENTTYPE:USB 36494 0.839

After reading the sets, it was the overlap of several of the patent classes that provided the

most relevant and complete patent set for the TD:

((CCL:(398) AND ICL:(HO4B)) OR (CCL:(385) AND ICL:(GO2B))) AND

APDYEARMONTHDAY:[19760101 TO 20130701] AND DOCUMENTTYPE:USB

N= 36494

Relevancy: 0.839 (this relevancy score was derived from the weighted average of the two

overlaps that were combined to create it)

Photolithography

Initial Search Terms and MPR scores:

Size of
Search Term Pre-

search

opticalp
lithography

photlithography

IPC

G03F (PHOTOMECHANICAL PRODUCTION

1054 OF TEXTURED OR PATTERNED SURFACES,
e.g. FOR PRINTING, FOR PROCESSING OF
SEMICONDUCTOR DEVICES)

3077

G03F (PHOTOMECHANICAL PRODUCTION
OF TEXTURED OR PATTERNED SURFACES,
e.g. FOR PRINTING, FOR PROCESSING OF
SEMICONDUCTOR DEVICES)

MPR
for
IPC

UPC

0.147 355 (Photocopying)

0.154

430 (Radiation imagery
chemistry: process,
composition, or product
thereof)
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MPR
for
UPC

0.11

0.15



Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set Number of Relevancy
Patents

(CCL:(430) AND ICL:(GO3F)) AND (APD: [1976-1-1 TO 2013-7-1]) AND 14785 0.865
DOCUMENT-TYPE:United States Issued Patent
(CCL:(355) AND ICL:(GO3F)) AND (APD:[1976-1-1 TO 2013-7-1]) AND 1722 0.88
DOCUMENTTYPE:United States Issued Patent
((CCL:(430) OR CCL:(355)) AND ICL:(G03F)) AND (APD:[1976-1-1 TO 2013-7-1]) 15948 0.866564791
AND DOCUMENTTYPE:United States Issued Patent

After reading the sets, it was the overlap of several of the patent classes that provided the

most relevant and complete patent set for the TD:

((CCL:(430) OR CCL:(355)) AND ICL:(GO3F)) AND (APD:[1976-1-1 TO 2013-7-1])

AND DOCUMENTTYPE:United States Issued Patent

N= 15948

Relevancy: 0.8665 (this relevancy score was derived from the weighted average of the

two overlaps that were combined to create it)

Wireless Information Transmission

Initial Search Terms and MPR scores:

Search Term

wireless
communication

Size of Pre- IPCsearch IP
HO4B

23498 (TRANSMISSION
(transmission systems for
measured values, control

MPR for IPC

0.176

UPC MPR for UPC

455 (Telecommunications 0.324
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radio transmission

radio data
transmission

radio wave
transmission

radio wave

cell phone

cell phone tower

radio frequency

RF transmitter

radio emitter

radio trasmitter

wireless networking

telemetry

7667

2768

724

3258

1197

16

19726

2201

237

5070

14312

1716

or similar signals
H04B
(TRANSMISSION
(transmission systems for
measured values, control
or similar signals
H04B
(TRANSMISSION
(transmission systems for
measured values, control
or similar signals
HO4B
(TRANSMISSION
(transmission systems for
measured values, control
or similar signals
H04B
(TRANSMISSION
(transmission systems for
measured values, control
or similar signals
H04M (TELEPHONIC
COMMUNICATION
(circuits for controlling
other apparatus via a
telephone cable and not
involving telephone
switching apparatus
H04M (TELEPHONIC
COMMUNICATION
(circuits for controlling
other apparatus via a
telephone cable and not

involving telephone
switching apparatus
HO4M (TELEPHONIC
COMMUNICATION
(circuits for controlling
other apparatus via a

telephone cable and not
involving telephone
switching apparatus
H04M (TELEPHONIC
COMMUNICATION
(circuits for controlling
other apparatus via a
telephone cable and not
involving telephone
switching apparatus
H03F (AMPLIFIERS
H04B
(TRANSMISSION
HO4L
(TRANSMISSION OF
DIGITAL
INFORMATION, e.g.
TELEGRAPHIC
COMMUNICATION
A61N
(ELECTROTHERAPY;
MAGNETOTHERAPY;
RADIATION

0.21

0.18

455 (Telecommunications

370 (Multiplex
communications

455 (Telecommunications0.169

0.124

0.115

0.18

0.24

0.21

455 (Telecommunications 0.16

455 (Telecommunications 0.212

0.156

0.163

0.188

0.076

0.178

0.126

0.113

455 (Telecommunications 0.28

455 (Telecommunications 0.196

455 (Telecommunications 0.21

455 (Telecommunications

455 (Telecommunications

0.14

0.219

455 (Telecommunications 0.32

340 (Communications:
electrical

0.152
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microwave
communication

electromagnetic
information

wireless data

wireless data
transfer

719

1691

12801

1002

THERAPY;
ULTRASOUND
THERAPY
H04B
(TRANSMISSION
G01 (RADIO
DIRECTION-
FINDING; RADIO
NAVIGATION;
DETERMINING
DISTANCE OR
VELOCITY BY USE
OF RADIO WAVES;
LOCATING OR
PRESENCE-
DETECTING BY USE
OF THE
REFLECTION OR
RERADIATION OF
RADIO WAVES;
ANALOGOUS
ARRANGEMENTS
USING OTHER
WAVES
H04B
(TRANSMISSION
H04L
(TRANSMISSION OF
DIGITAL
INFORMATION, e.g.
TELEGRAPHIC
COMMUNICATION

0.099

0.036

0.14

0.103

219 (Electric heating

340 (Communications:
electrical

455 (Telecommunications

455 (Telecommunications

Several of the most promising patent class overlaps were downloaded and read for

relevancy.

Patent Class Overlap Set
(CCL:(455) AND ICL:(H04B)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENT_TYPE:United States Issued Patent
((CCL:(455) AND ICL:(HO4L)) AND
APDYEARMONTHDAY:[19760101 TO 20130701] AND
DOCUMENTTYPE:USB) AND (DOCUMENTTYPE:USA OR
DOCUMENTTYPE:USB)

Number of Patents Relevancy

37367

9029

0.945

0.905

After reading the sets, it was the overlap of several of the patent classes that provided the

most relevant and complete patent set for the TD:

(CCL:(455) AND (ICL:(HO4L) OR ICL:(HO4B))) AND (APD:[1976-1-1 TO 2013-7-1])

AND DOCUMENTTYPE:United States Issued Patent
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0.087

0.244
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N= 39675

Relevancy: 0.94 (this relevancy score was derived from the weighted average of the two

overlaps that were combined to create it)

Wind Turbines

The process of selecting the Wind Turbine patent set is described in the methodology

section. The final patent set is as follows:

CCL:(378) AND (ICL:(A61B) OR ICL:(GO1N)) AND (APD:[1976-1-1 TO 2013-7-1])

AND (DOCUMENTTYPE: United States Issued Patent)

N= 2498

Relevancy: 0.94

Appendix B.3: Lower Level Hierarchy Classifications and Keyword

Modifications

Finally, there were some TDs that required even more sophisticated uses of the COM. In

some cases more precise patent classes were used (5 digit IPCs instead of the usual 4 digit). In

other cases, the initial search keywords were supplemented with company names. There were

also cases in which multiple domains were found in areas that
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There were two cases where the hierarchy level of the patent classes that is generally used

in the COM was not sufficient to locate an appropriate set of patents for a TD. These two cases

required using more specific patent classes in the IPC and the UPC systems.

3D-Printing (industrial stereolithography)

Search

The initial search term for the TD was only 'stereolithography'.

Term Size of Pre- IPC PR for
search P

stereolithography 234

B29C (SHAPING OR
JOINING OF
PLASTICS; SHAPING
OF SUBSTANCES IN A
PLASTIC STATE, IN
GENERAL; AFTER-
TREATMENT OF THE
SHAPED PRODUCTS,
e.g. REPAIRING)

0.33

2
n
s
p

JPC

64 (Plastic and
orunetallic article
iaping or treating:
rocesses)

The results of the COM looked promising, however, the resulting set contained a very

large number of patents with very little relevancy.

Patent Class Overlap Set Number of
Patents

((CCL:(264) AND ICL:(B29C)) AND APDYEARMONTHDAY:[19760I1 16721
TO 20130701] AND DOCUMENT_TYPE:USB)

Relevancy

0.085

The very high MPRs and the very low relevancy score provided an indication that this

case should be explored further. The large disparity in sizes between the keyword search and the

resulting patent set is another indicator of a need for emendations to the direct COM.

In order to look further, the patent sets were analyzed and the structure surrounding the

IPC and UPCs that were selected was explored and some of the main companies that are

associated with SLA 3D Printing were searched (ex: 3D Systems) and their patents were
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analyzed for the prevailing patent classifications (at the lower hierarchy level). After looking

deeper into the patent classes from the prior patent class overlap and the relevant companies'

patents, it became apparent that only one sub-class of 264 was very related to the search term -

264/401 (STEREOLITHOGRAPHIC SHAPING FROM LIQUID PRECURSOR). This

subclass provided one portion of the issue, however when the 264/401 UPC was overlapped with

the B29C IPC, there were still a number of patents that were not related to 3D printing along

with a majority that were relevant. In order to only keep the relevant patents, the IPC was

narrowed down further to B29C35/08 (Heating, cooling or curing, e.g. crosslinking, vulcanising;

Apparatus therefor - by wave energy or particle radiation). Once again the complementary

nature of the classification systems (form and function) provides an overlapping patent set for the

TD. Finally, due to the very small size of the patent sets, further patents were added by including

the keyword stereolithography in the final data set.

((CCL:(264/401) AND ICL:(B29C35/08)) AND (APD:[1976-1-1 TO 2013-7-1]) OR

TTL:(stereolithography) AND ((APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent)

N= 251

Relevancy: 0.93

Flywheel Energy Storage
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The initial search terms for the TD included a number of different options that described

mechanical energy storage using flywheels:

Size of
Pre-search :

flywheel 3525

mechanical 720
flywheel

mechanical energy 696
storage

kinetic energy
storage

rotational energy

rotational energy
storage

195

7700

523

MPR for
IPCSearch Term

F16D (COUPLINGS FOR
TRANSMITTING ROTATION

Fl6D (COUPLINGS FOR
TRANSMITTING

B60K (ARRANGEMENT OR
MOUNTING OF PROPULSION
UNITS OR OF TRANSMISSIONS
IN VEHICLES; ARRANGEMENT
OR MOUNTING OF PLURAL
DIVERSE PRIME-MOVERS;
AUXILIARY DRIVES;
INSTRUMENTATION OR
DASHBOARDS FOR VEHICLES;
ARRANGEMENTS IN
CONNECTION WITH COOLING,
AIR INTAKE, GAS EXHAUST, OR
FUEL SUPPLY, OF PROPULSION
UNITS, IN VEHICLES
B60K (ARRANGEMENT OR
MOUNTING OF PROPULSION
UNITS OR OF TRANSMISSIONS
IN VEHICLES; ARRANGEMENT
OR MOUNTING OF PLURAL
DIVERSE PRIME-MOVERS;
AUXILIARY DRIVES;
INSTRUMENTATION OR
DASHBOARDS FOR VEHICLES;
ARRANGEMENTS IN
CONNECTION WITH COOLING,
AIR INTAKE, GAS EXHAUST, OR
FUEL SUPPLY, OF PROPULSION
UNITS, IN VEHICLES

F03D (WIND MOTORS

H02K (DYNAMO-ELECTRIC
MACHINES

0.105

0.088

0.034

0.093

0.063

0.07

The result of this showed that International Patent Class Fl 6D was a potentially relevant

patent class, and 74 appeared to be the most related US patent class.

Patent Class Overlap Set
((CCL:(74) AND ICL:(FI6D)) AND
APD_ YEARMONTHDAY:[19760101 TO 20130701] AND
DOCUMENTTYPE:USB)
((CCL:(74.572) AND (ICL:(F16F15) OR ICL:(H02K7)) AND
APDYEARMONTHDAY:[19760101 TO 20130701] AND
DOCUMENT_TYPE:USB)

Number of Patents

2162

270
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UPC

74 (Machine
element or
mechanism
192 (192 clutches
and power-stop
control

60 (Power plants,

180 (Motor
vehicles

290 (Prime-mover
dynamo plants
290 (Prime-mover
dynamo plants

MPR for
UPC

0.12

0.11

0.0655

0.09

0.068

0.07

Relevancy

0.06

0.434782609



After reading the simple COM overlaps of 74 and F16D, the relevancy scores were very

low, therefore a deeper level hierarchy of the US and international patent classification systems

was used to gain a more precise set of patents. The next step involved including the overlap of

the 74.572 (Power Generating Flywheel) patent class and the F16F15 (Suppression of Vibrations

in Systems) and H02K7 (Arrangements for handling mechanical energy structurally associated

with the machine). These particular patent classes were chosen by reading through the patents

that were found in the initial overlap of 74 and Fl 6D. Even with the overlapping of lower level

hierarchy classifications, there were still some non-relevant patents in the set, which greatly

impacted the relevancy percentages due to the small size of the patent set. These patents were

removed by searching through their tides and abstracts and removing the keywords of patents

that were not related to flywheel energy storage. The resulting search term is as follows:

((CCL:(74.572) AND (ICL:(Fl6DF15) OR ICL:(H02K7)) NOT ((TTL:(engine) OR

TTL:(balance) OR TTL:(damp)) OR (ABST:(engine) OR ABST:(balance) OR ABST:(damp)))

AND APDYEARMONTHDAY:[19760101 TO 20130701] AND DOCUMENTTYPE:USB)

N= 159

Relevancy: 0.70

Genome Sequencing

Due to the fact that Genome Sequencing is a rather complex field where IP is important

(and thus it is more likely that many different keywords are used when patenting), there were 18

pre-search terms for genome sequencing:
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Search Term
Size of Pre- IPC
search

genome sequencing 1848

whole genome
sequencing

complete genome
sequencing

entire genome
sequencing

human genome
sequencing

DNA sequencing

DNA assay

DNA

DNA analysis

SNP genotyping

DNA genotyping

genotyping

assay

38

76

63

506

7973

1201

16703

718

41

132

746

11265

C12N (MICRO-ORGANISMS
OR ENZYMES;
COMPOSITIONS THEREOF
C07H (SUGARS;
DERIVATIVES THEREOF;
NUCLEOSIDES;
NUCLEOTIDES; NUCLEIC
ACIDS
Cl2N (MICRO-ORGANISMS
OR ENZYMES;
COMPOSITIONS THEREOF
C12Q(MEASURING OR
TESTING PROCESSES
INVOLVING ENZYMES OR
MICRO-ORGANISMS
C12N (MICRO-ORGANISMS
OR ENZYMES;
COMPOSITIONS THEREOF
C 12N (MICRO-ORGANISMS
OR ENZYMES;
COMPOSITIONS THEREOF
C12Q(MEASURING OR
TESTING PROCESSES
INVOLVING ENZYMES OR
MICRO-ORGANISMS
C 12N (MICRO-ORGANISMS
OR ENZYMES;
COMPOSITIONS THEREOF
(biocides, pest repellants or
attractants, or plant growth
regulators containing micro-
organisms, viruses, microbial
fungi, enzymes, fermentates, or
substances produced by, or
extracted from, micro-organisms
or animal material
C12Q(MEASURING OR
TESTING PROCESSES
INVOLVING ENZYMES OR
MICRO-ORGANISMS
C12Q(MEASURING OR
TESTING PROCESSES
INVOLVING ENZYMES OR
MICRO-ORGANISMS

C12Q(MEASURING OR
TESTING PROCESSES
INVOLVING ENZYMES OR
MICRO-ORGANISMS
GOIN iNYESTIGATING OR
ANALYSING MATERIALS BY
DETERMINING THEIR
CHEMICAL OR PHYSICAL
PROPERTIES (separating
components of materials in
general

MPR for
IPC

0.323

0.25

0.25

0.27

0.33

0.344

0.262

0.366

0.31

0.42

0.34

0.27

0.277

UPC MPR for
UPC

435 (Chemistry:
molecular biology and 0.44
microbiology

435 (Chemistry:
molecular biology and 0.434
microbiology

435 (Chemistry:
molecular biology and 0.38
microbiology

435 (Chemistry:
molecular biology and 0.43
microbiology

435 (Chemistry:
molecular biology and 0.422
microbiology
435 (Chemistry:
molecular biology and 0.465
microbiology

435 (Chemistry:
molecular biology and 0.45
microbiology

435 (Chemistry:
molecular biology and 0.4744
microbiology

435 (Chemistry:
molecular biology and
microbiology

435 (Chemistry:
molecular biology and
microbiology

435 (Chemistry:
molecular biology and
microbiology

435 (Chemistry:
molecular biology and
microbiology

0.4

0.451

0.45

0.386

435 (Chemistry:
molecular biology and 0.401
microbiology

Benson 348



DNA profiling

genome

high throughput
sequencing

genetic analysis

genetic

123

3349

175

274

7903

C07H (SUGARS;
DERIVATIVES THEREOF;
NUCLEOISIDES;
NUCLEOTIDES; NUCLEIC
ACIDS (derivatives of aldonic or
saccharic acids
C12N (MICRO-ORGANISMS
OR ENZYMES;
COMPOSITIONS THEREOF
(biocides, pest repellants or
attractants, or plant growth
regulators containing micro-
organisms, viruses, microbial
fimgi, enzymes, fermentates, or
substances produced by, or
extracted from, micro-organisms
or animal material
C12Q(MEASURING OR
TESTING PROCESSES
INVOLVING ENZYMES OR
MICRO-ORGANISMS
CI2Q(MEASURING OR
TESTING PROCESSES
INVOLVING ENZYMES OR
MICRO-ORGANISMS
C12N (MICRO-ORGANISMS
OR ENZYMES;
COMPOSITIONS THEREOF
(biocides, pest repellants or
attractants, or plant growth
regulators containing micro-
organisms, viruses, microbial
fungi, enzymes, fermentates, or
substances produced by, or
extracted from, micro-organisms
or animal material

0.17

0.32

0.178

0.27

0.36

435 (Chemistry:
molecular biology and
microbiology

435 (Chemistry:
molecular biology and
microbiology

435 (Chemistry:
molecular biology and
microbiology

435 (Chemistry:
molecular biology and
microbiology

435 (Chemistry:
molecular biology and
microbiology)

The result of this showed that clearly the US patent class 435 was the most related UPC,

and that the IPC could be a number of options including C12N, G07H, and GO1N. All of the

IPCs were tested for relevancy and none of the direct COM overlaps resulted in a highly relevant

set.

Patent Class Overlap Set Number of Relevancy
Patents

(CCL:(435) AND ICL:(Cl2N)) AND (APD:[1976-1-1 TO 2013-7-1]) AND 56588 0.12
DOCUMENTTYPE:United States Issued Patent
((CCL:(435) AND ICL:(CO7H)) AND APDYEARMONTHDAY:[19760101 TO
20130701] AND DOCUMENTTYPE:USB) AND (DOCUMENTTYPE:USA OR 20535 0.26
DOCUMENTTYPE:USB)
(CCL:(435) AND ICL:(GOlN)) AND (APD:[1976-1-1 TO 2013-7-1]) AND 22324 0.22
DOCUMENT_TYPE:United States Issued Patent
((CCL:(435/6.1 1)) AND ICL:(C12Q)) AND (APD:[1976-1-1 TO 2013-7-1]) AND 2458 0.755
DOCUMENTTYPE:United States Issued Patent
((CCL:(435/6.12)) AND ICL:(C12Q)) AND (APD:[1976-1-1 TO 2013-7-1]) AND 2974 0.735
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DOCUMENT_TYPE:United States Issued Patent

The next step was to look closer into the lower level hierarchy patent classification codes

by searching for patents from companies that were known to be working in this space:

(AN:(Affymetrix) OR AN:(Oxford Nanopore Sciences) OR AN:(Sequenom) OR AN:(454

Life Sciences) OR AN:(Illumina) OR AN:(Knome) OR AN:(Complete Genomics) OR

AN:(Broad Institute)) AND (abst:(sequencing) OR ttl:(sequencing))

This search results revealed lower level UPCs such as 435/6.11 (Nucleic acid based assay

involving a hybridization step with a nucleic acid probe, involving a single nucleotide

polymorphism (SNP), involving pharmacogenetics, involving genotyping, involving haplotyping,

or involving detection of DNA methylation gene expression) or 435/6.12 (With significant

amplification step (e.g., polymerase chain reaction (PCR), etc.)). These more specific UPCs were

combined with the international patent class Cl 2Qfor the final data set.

((CCL:(435/6.1 1) OR CCL:(435/6.12)) AND ICL:(C12Q) AND (APD:[1976-1-1 TO

2013-7-1]) AND DOCUMENTTYPE:United States Issued Patent

N= 4861

Relevancy: 0.74

Aircraft Transport
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For this TD, 8 search terms were used to located the international and US patent classes

of interest:

Search Size of
erc Pre- IPC

search

airplane 2091 B64C (AEROPLANES; HELICOPTERS (air-
cushion vehides B60V))
A63H (TOYS, e.g. TOPS, DOLLS, HOOPS,

aeroplane 84 BUILDING BLOCKS)
B64D (EQUIPMENT FOR FITTING IN OR TO
AIRCRAFT; FLYING SUITS; PARACHUTES;

aircraft 19694 ARRANGEMENTS OR MOUNTING OF
POWER PLANTS OR PROPULSION
TRANSMISSIONS)
B41J (TYPEWRITERS; SELECTIVE PRINTING
MECHANISMS, i.e. MECHANISMS PRINTING

jet plane 891 OTHERWISE THAN FROM A FORME;
CORRECTION OF TYPOGRAPHICAL
ERRORS

jet

plane

fixed wing

fixed wing
aircraft

B41J (TYPEWRITERS; SELECTIVE PRINTING
MECHANISMS, i.e. MECHANISMS PRINTING

32182 OTHERWISE THAN FROM A FORME;
CORRECTION OF TYPOGRAPHICAL
ERRORS

108823 G02B (OPTICAL ELEMENTS, SYSTEMS, OR
APPARATUS

1088
B64C (AEROPLANES; HELICOPTERS (air-
cushion vehicles B60V))

302 B64C (AEROPLANES; HELICOPTERS (air-
cushion vehicles B60V))

MPR
for
IPC

S14 i

UPC

244 (Aeronautics and
Iastronautics)

0.053 239 (Fluid spriniding,
spraying, and diffusing)

0.237
244 (Aeronautics and
astronautics)

MPR
for
UPC

0.175

0.0119

0.32

0.1 3 Incremental printing of 0.120.1 symbolic information)

02 347 (Incremental printing of 0.28
02 symbolic information)

0.07 343 (Communications:
radio wave antennas)

0.134

0.32

244 (Aeronautics and
astronautics)
244 (Aeronautics and
astronautics)

5

0.08

0.16

0.39

The result of this showed that UPC 244 was likely the most related US patent class and

that either B64C or B64D were the most related IPCs.

Patent Class Overlap Set

(CCL:(244) AND ICL:(B64D)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent
(CCL:(244) AND ICL:(B64C)) AND (APD:[1976-1-1 TO 2013-7-1]) AND
DOCUMENTTYPE:United States Issued Patent

Number of
Patents

3962

6225

Relevancy

0.665

0.8

Ultimately the combination of the both of those overlaps was the final patent set for the

Aircraft Transportation TD. Along with combining the two previous sets, a number of the non-
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relevant patents (related to parachutes and canopies) were removed by keyword selection in the

title and abstract. The final search term is as follows:

(CCL:(244) AND (ICL:(B64D) OR ICL:(b64c))) AND (NOT ttl:(canopy))AND (NOT

ttl:(parachute)) AND (NOT ttl:(helicopter)) AND (APD:[1976-1-1 TO 2013-7-1]) AND

DOCUMENTTYPE:United States Issued Patent

N= 8946

Relevancy: 0.785

Batteries/Fuel Cells

Another special case involved two TDs who returned the same patent class overlap sets.

Recall from the methodology section that the electrochemical battery energy storage TD

involved a patent class overlap set with a set of search terms removed. Predictably, when the fuel

cell TD was being searched, the same IPC and UPC were selected as the most relevant patent

classes. The 2 TDs were then filtered within the patent class by the keyword terms so that the

fuel cell patent set included all of the patents that included the terms 'fuel cell' in the title or

abstract, and the battery patents were the patents that did NOT include that term. This example

illustrates the possibility of two TDs comprising one patent class overlap and how that can be

dealt with through keyword splicing.

Electrochemical Battery Energy Storage
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As this TD had been studied previously in the renewable energy study, there was only

one search term:

Search Term

electrochemical cell

Size of Pre-
search

5331

IPC

HOiM (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL

MPR for
'PC

0.41

UPC

429 (Chemistry:
electrical current
producing
apparatus, product,
and process

The resulting patent class overlap showed marginal reliability

Patent Class Overlap Set

((CCL:(429) AND ICL:(HO1M)) AND APDYEARMONTHDAY:[19760101
TO 20130701] AND DOCUMENTTYPE:USB)

Number of
Patents

221 15

Relevancy

0.62

However, this data set could be improved by removing the fuel cell patents, and the

resulting final patent set is as follows:

((CCL:(429) AND ICL:(H0lM)) NOT (TTL:(Fuel Cell))) AND (APD:[1976-1-1 TO

2013-7-1]) AND (DOCUMENTTYPE:United States Issued Patent)

N= 16122

Relevancy: 0.83

Fuel Cell Energy Production

The initial search terms for fuel cells were as follows:

Size of Pre- IPC
search

10668

MPR for IPC

H01M (PROCESSES OR
MEANS, e.g. BATTERIES,

0.477

UPC

429 (Chemistry:
electrical current
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0.37

Search Term

Fuel cells

MPR for
UPC

0.483



hydrogren fuel cell

methani fuel cell

anode cathode

ion exchange

proton exchange
membrane

phosphoric acid fuel
cell

solid oxide fuel cells

molten carbonate
fuel cells

alkaline fuel cell

1833

429

16505

6521

346

84

815

190

122

FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL
HOIM (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL
ENERGY
H01M (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL
ENERGY
H01M (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL
ENERGY
B01D (SEPARATION
(separating solids from solids
by wet methods
HOIM (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL
ENERGY
H01M (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL
ENERGY
HO IM (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL
ENERGY
H01M (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL
ENERGY
HOIM (PROCESSES OR
MEANS, e.g. BATTERIES,
FOR THE DIRECT
CONVERSION OF
CHEMICAL ENERGY
INTO ELECTRICAL

0.362

0.3987

0.16

0.094

0.35

0.43

0.434

0.434

0.36

producing
apparatus, product,
and process

429 (Chemistry:
electrical current
producing
apparatus, product,
and process

429 (Chemistry:
electrical current
producing
apparatus, product,
and process

204 (Chemistry:
electrical and wave
energy)

210 (Liquid
purification or
separation

429 (Chemistry:
electrical current
producing
apparatus, product,
and process

429 (Chemistry:
electrical current
producing
apparatus, product,
and process

429 (Chemistry:
electrical current
producing
apparatus, product,
and process

429 (Chemistry:
electrical current
producing
apparatus, product,
and process

429 (Chemistry:
electrical current
producing
apparatus, product,
and process
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0.396
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0.38

0.453

0.44
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ENERGY

Once it had been established that the search terms did not add any new significant patent

classes, it was clear that the fuel cell patent set is the set of patents that had been removed from

the battery patent class using the keywords.

(CCL:(429) AND ICL:(HOlM)) AND (TTL:(fuel cell) OR ABST:(fuel cell)) AND

(APD:[1976-1-1 TO 2013-7-1]) AND DOCUMENTTYPE:United States Issued Patent

N= 7368

Relevancy: 0.97
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Appendix C: All Doman Metric Pairs tests

A total of 44 DPMs were applied to each of the 28 patent sets and while many of them

were discussed in section 3.5, others are listed below. Additionally, table 33 shown below

contains the correlation values for all 44 DPMS is shown are shown below.

Hypothesis 1: Effort

The following DPMs are relevant to hypothesis 1.

Yearly Average Patenting Rate

This is the average yearly number of patents within a technological domain. In this

research, this includes patents that were published betweenjanuary 1st, 1976 andJuly 1st, 2013.

This measure is calculated using Equation C. 1 where SPC is the simple patent count and At

date range in years, in most cases At=3 7 (2013-1976).

SPC
At (Equation C. 1)

Hypothesis 2: Importance

The following DPMs are relevant to hypothesis 2.

Total Number of Forward Citations (duplicates removed)

This is the average number of Forward citations for the patents in a technological domain

with the duplicates removed. This measure is calculated using Equation C.2 where SPC is the

simple patent count, and FC is the number of Forward citations for patent i and U is the
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union of two sets and COUNTO counts the number of elements in a set. Please note that

sPC FC

UFC d sf -1
-1l differs from SPC in that the duplicates have been removed.

COUNT(U FC,)
i-i (Equation C.2)

Total Number of U.S. Patent Classes in Citing Patents (duplicates removed)

This is the total number of US patent classes to which the forward citations belong for the

patents in a technological domain. This measure is calculated using Equation C.3 where SPC is

the simple patent count, F' is the number of forward citations for patent 4, # is the set of

US Patent classification codes for each forward citationj of patent 4, and U
sets and COUNTO counts the number of elements in a set.

COUNT(U(JUPC')
1-1 14.

is the union of two

(Equation C.3)

Total Number of International Patent Classes in Citing Patents (duplicates removed)

This is the total number of international patent classes to which the forward citations

belong for the patents in a technological domain. This measure is calculated using Equation C.4

where SPC is the simple patent count, m' is the number of forward citations for patent , # is
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the set of International Patent classification codes for each forward citationj of patent 4 and

U is the union of two sets and COUNTO counts the number of elements in a set.

COUNT(U(UJPC)
''- Jinx (Equation C.4)

Average Number of U.S. Patent Classes in the Forward Citations Per Patent

This is the average number of US patent classes to which the forward citations belong for

each patent in a technological domain. This measure is calculated using Equation C.5 where

SPC is the simple patent count, Fc is the number of forward citations for patent , UPC # is the

set of US Patent classification codes for each forward citationj of patent i.

I:IUPC#

SPC (Equation C.5)

Average Number of International Patent Classes in the Forward Citations Per Patent

This is the average number of International patent classes to which the forward citations

belong for each patent in a technological domain. This measure is calculated using Equation C.6

where SPC is the simple patent count, FC, is the number of forward citations for patent i is

the set of International Patent classification codes for each forward citationj of patent i.

SPPC
a:Itpcu

SPC (Equation C.6)
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Ratio of Patents with more than 20 Forward Citations

This is the ratio of patents in a technological domain that have received more than 20

citations. This measure is calculated using Equation C.7 where SPC is the simple patent count,

M is the number of Forward citations for patent i, and the function IF(arg) only counts the values

if the argument is satisfied. In this situation, IF(FC > 20) will only be counted if patent i has

more than 20 forward citations.

X IF(FC, > 20)

SPC (Equation C.7)

Hypothesis 3: Science

All of the DPMs that were used to test hypothesis 3 were discussed in section 3.5.3 of the

methodology chapter of the thesis.

Hypothesis 4. Recency

The following DPMs are relevant to hypothesis 4.

Average Application Year

This is the average year of application for the patents within a technological domain. In

this research, this includes patents that were published betweenjanuary 1s, 1976 andJuly 1s,

2013. This measure is calculated using Equation C.8 where SPC is the simple patent count and

tw is the application year of patent i.
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SPC (Equation C.8)

Average Processing Time per Patent

This is the average time it takes from when a patent is applied for until it is published for

the patents within a technological domain. This measure is calculated using Equation C.9

where SPC is the simple patent count, t is the application year and t is the publication year

of patent i.

-ti. 1ui

SPC (Equation C.9)

Average number of Forward Citations within 5 years of publication per patent

This is the average number of forward citations that each patent received within 5 years

of publication for patents in a technological domain. This measure is calculated using Equation

C.10 where SPC is the simple patent count, " is the number of Forward citations for patent i,

is the publication year of patent i, t * is the publication date of forward citationj of patent i,

and the function IF(arg) only counts the values if the argument is satisfied.

SXCFC
SIF(tu - t 5)

'w >1 (Equation C.10)

Patents in the 1970s

This is the number of patents published during the 1970s within a technological domain.

In this research, this includes patents that were published betweenjanuary l't, 1976 andJuly Pt,
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2013. This measure is calculated using Equation C. 11 where t is the date, and Pt is the count of

the set of patents issued on that particular date.

=1/1/1976 (Equation C.11)

Patents in the 1980s

This is the number of patents published during the 1980s within a technological domain.

In this research, these include patents that were published betweenjanuary 1st, 1976 andJuly 1st,

2013. This measure is calculated using Equation C. 12 where t is the date, and Pt is the count of

the set of patents issued on that particular date.

tu1in6 (Equation C. 12)

Patents in the 1990s

This is the number of patents published during the 1990s within a technological domain.

In this research, this includes patents that were published betweenJanuary 1st, 1976 andJuly 1St,

2013. This measure is calculated using Equation C. 13 where t is the date, and Pt is the count of

the set of patents issued on that particular date.

IinlM (Equation C. 13)

Benson 361



Patents since the year 2000

This is the number of patents published since the year 2000 within a technological

domain. In this research, this includes patents that were published betweenjanuary Ist, 1976 and

July 1St, 2013. This measure is calculated using Equation C.14 where t is the date, and Pt is the

count of the set of patents issued on that particular date.

711/213

t-111/2DOO (Equation C.14)

Average Range of Backward Citation Publication Years

This is the average number of years between when a patents oldest backward citation was

published and its most recent backward citation was published within a technological domain.

This measure is calculated using Equation C.15 where SPC is the simple patent count, Xt is the

number of backward citations for patent i, ti* is the year of publication of backward citationj of

patent i and the function MAX, finds the maximum value for a certain patent i and the function

MIN finds the minimum value for a certain patent i. Please note that - J-1 is the just the sum

of the total count of backward citations for all of the patents in the TD (without duplicates

removed).

MAX,(t )-MIN,(tp)
t1 C-I

i-1 J-1(Equation C. 15)
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Average Date of Backward Citation Publication

This is the average date of publication of the backward citations for patents within a

technological domain. This measure is calculated using Equation C. 16 where SPC is the simple

patent count, KP is the number of backward citations for patent i, i* s the year of publication

SPC D

of backward citationj of patent i. Please note that J- 1 is the just the sum of the total count

of backward citations for all of the patents in the TD (without duplicates removed).

11I J-1 (Equation C. 16)

Average Date of Forward Citation Publication

This is the average date of the patents within a technological domain's Forward citations.

This measure is calculated using Equation C. 17 where SPC is the simple patent count, M, is the

ti
number of Forward citations for patent i, f- is the year of publication of Forward citationj of

SPC FC

1
patent i . Please note that 1- J1 is the just the sum of the total count of Forward citations for

all of the patents in the TD (without duplicates removed).

1 1M

(Equation C. 17)

Average Range of Forward Citation Publication Years
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This is the average number of years between when a patents oldest Forward citation was

published and its most recent Forward citation was published within a technological domain.

This measure is calculated using Equation C. 18 where SPC is the simple patent count, "c is the

number of Forward citations for patent z, t# is the year of publication of Forward citationj of

patent i and the function finds the maximum value for a certain patent i and the function

sWcWc
x1

MINI finds the minimum value for a certain patent i. Please note that M- J-1 is the just the sum

of the total count of Forward citations for all of the patents in the TD (without duplicates

removed).

pc ac
-MAX (tj )- M[N (tj')

SJ-1 (Equation C.18)

Hypothesis 5: Breadth of Knowledge

The following DPMs are relevant to hypothesis 5.

Average Number of Backward Citations per Patent

This is the average number of backward citations for the patents in a technological

domain. This measure is calculated using Equation C. 19 where SPC is the simple patent count,

Speac

and Oct is the number of backward citations for patent i. Please note that 1-1 Pal is the just the

sum of the total count of backward citations for all of the patents in the TD (without duplicates

removed).
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SPC (Equation C. 19)

Total Number of Backward Citations (duplicates removed)

This is the average number of backward citations for the patents in a technological

domain with the duplicates removed. This measure is calculated using Equation C.20 where

SPC is the simple patent count, and 8c is the number of backward citations for patent i and U
is the union of two sets and COUNTQ counts the number of elements in a set. Please note that

UBC S I
-l differs from 1-1 I in that the duplicates have been removed.

COUNT(U BC,)
i-i (Equation C.20)

Total Number of U.S. Patent Classes Cited (duplicates removed)

This is the total number of US patent classes to which the backward citations belong for

the patents in a technological domain. This measure is calculated using Equation C.21 where

SPC is the simple patent count, Oct is the number of backward citations for patent , UPC is the

set of US Patent classification codes for each backward citationj of patent , and U is the union

of two sets and COUNT counts the number of elements in a set.
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SWC8,

COUNT(U(UUPCd)
W j.1 (Equation C.21)

Total Number of International Patent Classes Cited (duplicates removed)

This is the total number of international patent classes to which the backward citations

belong for the patents in a technological domain. This measure is calculated using Equation

C.22 where SPC is the simple patent count, O is the number of backward citations for patent i,

IPCV is the set of International Patent classification codes for each backward citationj of patent

, and U is the union of two sets and COUNTO counts the number of elements in a set.

SPC fic

COUNT(U( IPCV)
-li-i (Equation C.22)

Average Number of U.S. Patent Classes Cited Per Patent

This is the average number of US patent classes to which the backward citations belong

for each patent in a technological domain. This measure is calculated using Equation C.23

where SPC is the simple patent count, - is the number of backward citations for patent i,

UPCI is the set of US Patent classification codes for each backward citationj of patent i

sUPC

SPC (Equation C.23)
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Average Number of International Patent Classes Cited Per Patent

This is the average number of International patent classes to which the backward

citations belong for each patent in a technological domain. This measure is calculated using

Equation C.24 where SPC is the simple patent count, B' is the number of backward citations for

patent I, 9 is the set of International Patent classification codes for each backward citationj

of patent i.

I 1PC,

SPC (Equation C.24)

Average Number of US Patent Classes Per Patent

This is the average number of US patent classes to which each patent belongs in a

technological domain. This measure is calculated using Equation C.25 where SPC is the simple

patent count, UPi' is the set of US Patent classification codes for each patent i.

XUPCI
Ii

SPC (Equation C.25)

Average Number of International Patent Classes Per Patent

This is the average number of international patent classes to which each patent belongs in

a technological domain. This measure is calculated using Equation C.26 where SPC is the

simple patent count, IPC is the set of International Patent classification codes for each patent i.
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SPC

xIPCi
1=1

SPC (Equation C.26)

Column 1 of Table C. 1 shows the list of all of the domain patent markers that were tested

in this thesis. Each of the DPMs applies to an entire set of patents that represent a TD.

Column 2 shows the Pearson correlation coefficient with the TIR for each domain. Column 3

indicates whether the null hypothesis has been accepted or rejected at the 2% level. A statistically

significant result should reject the null hypothesis. Column 4 shows the hypothesis that the DPM

is most closely related to.

DPM

Simple Patent Count
Average Number of Patents
per Year
Average Number of
Forward Citations per
Patent
Total Number of Forward
Citations (duplicates
removed)
Total Number of U.S.
Patent Classes in Forward
Citations (duplicates
removed)
Total Number of
International Patent Classes
in Forward Citations
(duplicates removed)
Average Number of US
Patent Classes in the
Forward Citations per
Patent
Average Number of
International Patent Classes
in the Forward Citations
per Patent
Ratio of Patents with more
than 20 forward citations
Total Number of Patents
with More than 20 Forward
Citations
Average number of
Forward citations within 3
years of publication per
patent
Average number of
Forward citations within 5
years of publication per

Pearson Correlation
Coefficient
0.33

0.34

0.48

0.44

0.10

0.20

-0.07

-0.02

0.38

0.37

0.76

0.73

HO (2%)

accepted

accepted

rejected

rejected

accepted

accepted

accepted

accepted

accepted

accepted

rejected

rejected

Hypothesis

1: Effort

1: Effort

2: Breakthroughs

2: Breakthroughs

2: Breakthroughs

2: Breakthroughs

2: Breakthroughs

2: Breakthroughs

2: Breakthroughs

2: Breakthroughs

2: Breakthroughs

2: Breakthroughs
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patent
Price Ratio (3 years)
NPL Ratio
Number of patents with >0
Citaitons
Ratio of patents with >0
Citaitons
Average Application Year
Average publication year
Average Processing Time
Per Patent
Patents in the 1970s
Patents in the 1980s
Patents in the 1990s
Patent since the year 2000
Average Range of
Backward Citation
Publication Years per
patent
Average date of backward
citation publication
Average date of forward
citation publication
Average Range of Forward
Citation Publication Years
per Patent
Average Age of Citations
Average number of
Backward Citations per
patent
Total number of backward
citations (duplicates
removed)
Percentage of backward
citations to own domain
TIR-Weight Backward
Citations
Average number of US
patent classes cited per
patent
Average number of
International patent classes
cited per patent
Total number of US patent
classes cited (duplicates
removed)
Total number of
international patent classes
cited (duplicates removed)
Average number of US
Patent Classes per Patent
Average number of
International Patent Classes
per Patent
Average Number of
Inventors Per Patent
Average Number of
Assignees per Patent
Average number of
INPADOC family
members per patent

0.39
0.20

0.39

0.39

0.53
0.54

0.34

0.08
0.20
0.32
0.34

-0.39

0.54

0.54

-0.30

-0.59

0.24

0.39

0.11

0.66

-0.14

-0.04

0.14

0.06

0.15

-0.02

0.27

0.12

0.17

accepted
acccpted

accepted

accepted

rejected
rejected

accepted

accepted
accepted
accepted
accepted

accepted

rejected

rejected

accepted

rejected

accepted

accepted

accepted

rejected

accepted

accepted

accepted

accepted

accepted

accepted

accepted

accepted

accepted

2:
3:

3:

Breakthroughs
Science

Science

3: Science

4: Recency
4: Recency

4: Recency

4: Recency
4: Recency
4: Recency
4: Recency

4: Recency

4: Recency

4: Recency

4: Recency

4: Recency

5: Breadth of Knowledge

5: Breadth of Knowledge

5: Breadth of Knowledge

5: Breadth of Knowledge

5: Breadth of Knowledge

5: Breadth of Knowledge

5: Breadth of Knowledge

5: Breadth of Knowledge

5: Breadth of Knowledge

5: Breadth of Knowledge

Other

Other

Other
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Average Length (in
characters) of the Title per 0.59 rejected Other
Patent
Average Length (in
characters) of the abstract 0.25 accepted Other
per Patent
Average Length (in
characters) of the first claim 0.03 accepted Other
per Patent

Table C.1: Correlations for All 44 Domain Patent Markers and their related

hypotheses
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Appendix D: All Regression Models Tested

A number of DPMs showed a significant correlation with the TIRs and thus provided a

large number of options for variables that could be included in the regression models for

predicting the TIR. The models discussed in section 4.3.7.3 proved to be the most accurate,

many other predictive regression models were tested. The results of those tests are shown in

figure D.1.

R2 Interce

e pt

0.58 -0.26

0.01

0.64 -31.13

0.05

0.72 -34.61

0.02

0.72 -34.88

0.02

0.59 -0.34

0.02

0.64 -41.63

0.01

0.64 -0.21

0.02

0.66 -0.4

0.07

0.58 -0.19

0.37

0.6 -0.23

0.01

0.6 -0.25
0.01

Averag
Average Average Cited b

publicatio Age of Cited by
n year Citation yitri

years

0.16

0

0.02 0.14

0.05 0

0.02 0.09

0.02 0.01

0.02 0.09

0.02 0.02

0.02

0.01

Mode
I

A
A p-
value

S
B

B p-
value

z
C

value
a
D

D p-
value

8
E

E p-
value

5

F
F p-

value
s
G

G p-
value

5

Hp-
value

S

I
Ip-

value
5

j P
value

5
K

Kp-

0.12

0

0.14

0

0.15

0

0.2

0

0.19
0
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Average
number

of
forward
citations

% of
patents

with
cited by
over 20

Price
Index

(3
years)

TIR
Weighted
Backward
Citations

Length (in
characters

of Title

0

0.95

0

0.43

0

0.27

0.01

0.32

0

0.7

2.11

0.02

2.12

0.02

0.14

0

3.06

3.72

1.9

0.04

2.54

0.03

-0.01

0.23

-0.47
0.3



value
S

L 0.6 0.39 -0.03 0.44
L p-

value 0.12 0.01 0.52
S

Figure D.1: Statistical Fits for Many Regressions for Predicting the TIR

The models discussed in section 4.3.7.3 are represented by model A, B and C in figure

D. 1. These models show the highest R2 for a given number of variables. Model D includes the

length of characters in the tide that was shown to be highly correlated with TIR, the inclusion of

this variable does not add significantly to the predictive capability. In Model E the length of tide

was combined with the TIR-Weighted backward citations and additionally with average

publication date in Model F, the results do not show an increase in predictive capability over

models B and C. Models G through K use the strongest signal of Forward Citations with 3 years

of publication as the basis of prediction and attempt to add other potentially relevant

combinations of variables, most of the additional variables provide a very small improvement in

predictive capability over the Cit3 variable alone. Model L incorporates the Price Index and

Average age of citation and does not show an improvement over Model B.

While many of the variables did not add a significant amount of predictive capability to

the models, the overall predictive power of the models tested was impressive, with all R2 above

0.5 and most 0.6 or higher. The strength of these models while using a wide range of DPMs is a

strong indicator in support of the related hypotheses, most notably Hypotheses 2 and 4.
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