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Abstract

The microstructures of many complex fluids are typically characterized by a broad distri-
bution of internal length scales. Examples of such multiscale materials include physically
and chemically cross-linked gels, emulsions, soft colloidal glasses and concentrated suspen-
sions. Due to the complex microstructure, these materials exhibit multiscale power law
relaxation under externally imposed deformation. Compact constitutive frameworks that
can accurately describe and predict both the linear as well as the nonlinear rheology of such
complex fluids have remained elusive. Moreover, the rheological behavior of these mate-
rials under extensional deformations, which is important in applications such as spraying
and fiber spinning, is relatively poorly understood.

The primary contribution of this thesis is the development of a compact constitutive
modeling framework to quantitatively describe the rheology of multiscale complex fluids.
In the linear limit of small deformations, fractional constitutive equations in conjunction
with the concept of quasi-properties have been shown to provide accurate physical descrip-
tions of the broad power law relaxation dynamics exhibited by multiscale materials. In this
thesis we very generally show how fractional constitutive equations enable the prediction
of the rheological response of multiscale fluids under complex deformation profiles. As a
specific example, we analyze the damped inertio-elastic oscillations exhibited at early times
by viscoelastic interfacial layers upon the imposition of a constant stress, and the subsequent
long time power law creep. We also analyze the small strain lubrication flow regime of a
typical tack experiment performed on a crosslinked power law gel, where the extensional
deformation of the complex material plays an important role.

We extend these models to the large strain nonlinear regime using an integral K-BKZ
framework coupled with a strain damping function. We demonstrate in a general manner
that nonlinear rheological responses such as shear-thinning and positive first normal stress
coefficients can be predicted a priori from linear viscoelastic data and a single additional
nonlinear parameter introduced through the damping function. We also demonstrate that
well-known empirical rheological models utilized to describe nonlinear behavior such as
the Herschel-Bulkley, Cross and Carreau models can be derived using the K-BKZ frame-
work by selecting a suitable fractional relaxation kernel and an appropriate damping func-



tion. Additionally, we derive expressions for linear viscometric functions as well as the first
normal stress coefficient for materials that exhibit steady shear flow behavior predicted by
the above empirical models. Our approach also quantifies the applicability of widely known
empirical rheological rules for nonlinear rheology such as the Cox-Merz rule.

The second contribution of this thesis is in increasing the understanding of the rheo-
logical behavior of multiscale complex fluids in extensional flow fields. For this purpose we
utilize a variety of experimental extensional rheology techniques such as Capillary Breakup
Extensional Rheometry (CaBER), Filament Stretching Extensional Rheometry (FiSER)
and an Optimized Shape Cross-slot Extensional Rheometer (OSCER). Due to their ubiq-
uity in industrial applications as well as in biologically relevant complex fluids, we primarily
study aqueous polysaccharide systems (for example Mamaku gum). With the help of these
detailed experiments, we investigate and quantify the strength of hydrogen-bonding in-
teractions in this multiscale physically associated gel. We also investigate the extensional
rheology of Hyaluronic acid, which has been shown to be an important factor in proper
synovial fluid function.

The findings of this thesis are widely applicable given the widespread use of multiscale
complex fluids in industrial, and biological applications. The fractional constitutive frame-
work derived here overcomes the limitations of current modeling approaches that invoke
a large number of empirical constitutive parameters. Our simple models will be useful
for quantitative material diagnostics and quality control comparisons as well as for com-
putational simulations. Moreover, the experimental findings on the extensional rheology
of multiscale polysaccharide systems will help in the formulation of biologically relevant
complex fluids for the treatment of physiological conditions such as osteoarthritis and dys-
phagia.

Thesis Supervisor: Gareth H. McKinley
Title: Professor, Mechanical Engineering
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3.3.5 (a) Experimentally measured values of the interfacial compliance response
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5.1.1 A diagram of a typical tack experiment showing the variation of the normal

force as a function of displacement, reproduced from Ref. [196]. The tack

force is also frequently plotted as a function of the strain. We observe that at

small strains there is a peak in force, followed by a large strain flow regime,

sometimes exhibiting strain hardening. In this Chapter, we show that this

peak in the tack force arises from the lubrication flow of the polymer at

small strains. The inset plot schematically shows a tack experiment. . . . . 150

5.2.1 SAOS data of the polymer gels (symbols) shown along with the FKVM fits

(dashed lines). (a) Cole-Cole plot. (b) The same SAOS data plotted against
angular frequency o. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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upper plate of diameter 8 mm. . . . . . . . . . . . . . . . . . . . . . . . . 156
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and uo=0.13 mm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2.6 Prediction of the tack force based on equation 5.2.50. These are the same

predictions as shown in the previous figures, but plotted here on a log-log
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and sm all strains.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



5.2.7 The prediction of the SAOS response (equations 2.3.22 and 2.3.23) of the
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tions 5.2.55 and 5.2.67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.2.8 Comparison of the composite force Fcomp given by equation 5.2.69 (sym-

bols) against the full analytic solution given by equation 5.2.50 (solid line).
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peak force F, and it's temporal location tp are labeled. . . . . . . . . . . . 169

5.2.9 Prediction of the magnitude (equation 5.2.73) and location of the peak
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from the asymptotic analysis. Measured data (m) is for the low modulus gels

(a = 0.59, V = 433.50 Pa sO.59 and G = 108.27 Pa.) taken from N.B. Wy-

att, A.M. Grillet, L.G. Hughes, Macromolecules, submitted, 2012. . . . . . 170

5.2.10 Comparison of the analytically derived solution for the tack force (equa-

tion 5.2.88) and the solution from solving Q(t) (cf. 5.2.78 and 5.2.79) nu-

merically. It is observed that the analytical and numerical solutions coin-

cide exactly. a = 0.59, V = 433.50 Pa sO.59, G = 108.27 Pa, Ro = 4 mm,

uO = 0.1 mm/s and ho = 0.159 mm. . . . . . . . . . . . . . . . . . . . . . 173

5.2.11 The composite force obtained from equation 5.2.100 (solid line) compared

against the exact analytic solution for the force derived in equation 5.2.88

(symbols). Also shown are the short time (blue dashed line) and long time

asymptotes (red dashed line) determined by equations 5.2.95 and 5.2.99

respectively. The composite force is seen to approximate the exact analytic
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5.3.1 Comparison of the numerically determined value of the force given by

equations 5.3.13 and 5.3.16 (symbols) against the approximate analytical

solution given by equation 5.3.25 (line). The parameters were chosen to

be a = 0.59, 3 = 0, V = 100 Pa sa and G = 400 Pa. For the purposes of

illustration, Ro = 4 mm, uo = 0.1 mm/s and ho = 0.1 mm. . . . . . . . . . 181



5.3.2 An example of predicting the SAOS response of a fractional Maxwell-like

viscoelastic material from the asymptotic analysis of a tack experiment
performed on the material. Here, the values of the parameters used are

a = 0.59, fl = 0, V = 100 Pa sa, G = 400 Pa. For the purposes of illustra-

tion, Ro = 4 mm, uo =0.1 mm s- 1 and ho = 0.1 mm. . . . . . . . . . . . . 183
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to the exact numerical solution for the tack force as given by equation 5.3.13
(symbols). Also shown here are the short time (black dashed line) and
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and 5.3.36 respectively. Note that the approximate composite force is a
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rameters were chosen to be a = 0.59, /p = 0, V = 100 Pa sa and G = 400 Pa.

For the purposes of illustration, Ro = 4 mm, uo = 0.1 mm s- and ho = 0.1

mm. ............................................ 184
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5.3.7 Steady shear viscosity rj(g) of 2 wt.% LBG. The fluid approaches a zero-

shear plateau at low shear rates and is shear-thinning at high shear rates.

The complex modulus q*(w) agrees well with q(k) at t = k, as suggested
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pared to the corresponding analytical prediction derived in equation 5.3.40

(line). It is observed that the prediction agrees very closely with the exper-
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6.1.1 Effect of changing the salt environment of Mamaku gum solutions. (a)

Adding different concentrations of NaCl does not drastically influence the

shear viscosity of Mamaku gum solutions. (b) Varying the salt composi-
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solutions. Data from Ref. [73]. . . . . . . . . . . . . . . . . . . . . . . . . 199
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6.1.3 (a) The zero shear viscosity qo of Mamaku gum solutions as a function of

concentration showing the different power law scalings characteristic of
the dilute and semidilute regimes. In the semidilute regime, qo ~ c4.464.

(b) The shear rheology of different concentrations of Mamaku gum in the
absence of urea, reproduced with permission from Goh et al.[71] For Ma-
maku gum, c* ~ 2.2 wt. %. At some critical shear rate kp, which depends
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c > c*, followed by strong shear thinning. . . . . . . . . . . . . . . . . . . 203

6.1.4 Effect of the addition of urea on the viscosity of a 5 wt.% Mamaku gum so-
lution. Upon the addition of urea, three changes are observed, namely, the
zero shear viscosity plateau drops, the onset of shear thickening is pushed
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6.1.6 Snapshots of CaBER experiments for 2.5 wt. % (top row) and 5.0 wt. %
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6.1.8 (a) Transient extensional viscosity of different concentrations of Mamaku

gum calculated using equation 6.1.4. (b) Trouton ratio Tr = 4/Iio for the

same concentrations of Mamaku gum shown in (a). Whereas the exten-

sional viscosity increases with increasing Mamaku gum concentration c,

the Trouton ratio is nearly independent of c. . . . . . . . . . . . . . . . . 210
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calculated from CaBER experiments, where ro is the relaxation time of the
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of the peak shear viscosity with urea concentration, as well as the recipro-

cal of the critical shear rate at which the peak shear viscosity is observed,

shown here for a 5 wt.% solution of Mamaku. . . . . . . . . . . . . . . . 214

6.1.12 (a) The values of G (w) (solid symbols) and G'-(&) (hollow symbols) mea-

sured in an SAOS experiment for a 5 wt. % Mamaku gum solution with

different concentrations of added urea. The curves have been shifted along

the frequency axis using a shift factor ac to generate a master curve. (b) The
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6.1.13 A schematic figure of the FiSER device. In a FiSER experiment, a fluid

filament is set up between two parallel plates (shown in blue) and the bot-

tom plate is then pulled apart in an exponential manner, to obtain a desired

strain rate. A laser sheet (shown in red) continuously measures the mid-
plane diameter of the filament and a force transducer measures the normal

force during the stretch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
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6.1.15 Stress vs. Hencky strain ((a),(c),(e)) and modulus vs. Hencky strain ((b,)(d),(f))
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features. (b) Simplified picture of the squeeze flow in a synovial joint un-

dergoing a compressive deformation (such as occurs in the knees during
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ing squeezed outwards orthogonal to the compression axis, resulting in
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6.2.2 Flow velocity magnitudes and direction for shear-thinning power-law flu-

ids in a squeeze flow with R/h = 10. The power-law exponents are: (a)
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6.2.8 Steady shear viscosity of HA/PBS solutions measured using an AR-G2

stress-controlled cone-and-plate rheometer (closed symbols) and an m-
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How can it be that writing down a few simple and elegant formulae, like short poems governed by
strict rules such as those of the sonnet or the waka, can predict universal regularities of Nature?
Perhaps we see equations as simple because they are easily expressed in terms of mathematical

notation already invented at an earlier stage of development of the science, and thus what appears to
us as elegance of description really reflects the interconnectedness of Nature's laws at different levels.

-MURRAY GELL-MANN, From his 1969 Nobel Prize in Physics banquet speech.
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1 Introduction

1.1 Multiscale Systems in Nature

Many systems in nature contain patterns or networks with multiple length scales. For

example, the rocky faces of the great mountain ranges of the Earth exhibit cracks, fractures

and fissures that are of many different sizes [1, 2]. There are long and thick cracks that

run down the face of the mountain, from which shorter and thinner cracks branch off.

From these smaller cracks, in turn, still smaller cracks originate, and this process continues

over many different size scales (or length scales) along the mountain side. We term such

systems that possess features across multiple length scales as multiscale systems. In figure 1.1.1

we show two examples of multiscale systems found in nature: river deltas, with streams

breaking up into smaller and smaller tributaries [3] and the perimeter of rain clouds [4].

Other examples of multiscale patterns found in nature are in viscous fingering phenomena

[6], continental or island coastlines [7] and galaxy clustering in the cosmos [8].

Such multiscale systems often share the properties of self-similarity, or being invariant

under a change of scale. In other words, they look the same when inspected "from nearby or

from far" [9]. The mathematical ideal of such scale-invariant systems are fractal geometries

[1]. These geometries theoretically posses every possible length scale, and are hence truly

scale-free. Mathematicians have considered the concepts of scale-invariance and scale-free

patterns through various striking and beautiful geometrical constructions such as the Koch

snowflake, the Sierpinski Gasket, and Peano curves [10]. Many of these fractal geomet-

rical constructions contain infinitely many length scales, and are perfectly non-random.

However, physical systems do not conform to the mathematical ideal of non-random frac-

tals. Physical systems are random fractals, and only look approximately the same at different

length scales [11]. Furthermore, they only exhibit scale-free behavior over a bounded range

39
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(a) (b)

Figure 1.1.1: Examples of multiscale systems in nature. (a) A satellite image of the Lena river delta
located in the far north of eastern Siberia, Russia. We observe the river breaking up into smaller
streams which in turn break up int7o still smaller streams. Image credit: NASA/USGS EROS. (b)
Cloud formation around Guadalupe Island in the Pacific Ocean. Here too we see the signatures of
a multiscale system; the clouds consist of big whorls, that break up into smaller and smaller whorls
at the perimeter, and this process continues aross many different length scales. Also visible in this
image, is a von Karman vortex street [5] produced due to the presence of the island in the south
west corner.

of length scales, and cannot be fractal in the strictest sense.1 Therefore, we will term all

physical systems as being multiscale, rather than scale-free or fractal.

In this thesis we study in detail the rheological behavior of complex fluids with mul-

tiscale microstructures. Indeed, a single polymer chain is well modeled as a self similar

random fractal, with the fractal dimension depending on factors such as the branching of

the polymer chain or interactions between individual chains [11]. However, rather than

consisting of single component polymers, complex fluids used by Nature or in consumer

products and industrial applications are often multi-component systems with a wide distri-

bution of length and time scales. Examples of such systems include, amongst many others,

crosslinked polymer networks [13], microgel dispersions [14], foams [15], colloidal sus-

'At the lower end, length scales are bounded by either the atomic, or small aggregate scale, and at the upper
end sample size, for example.[12] Moreover, as Avnir et al. [12] caution, we need a sufficiently large range
of experimental data to be able to make any conclusion about the fractal, scale-free nature of patterns found
in nature.
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pensions [16, 17] and soft glassy materials [18]. This sort of microstructure consisting of a

broad distribution of length and time scales leads to a broad multiscale rheological response

under mechanically applied deformations. In this thesis, one of our aims is to develop com-

pact constitutive models to charactertize, describe and predict the rheological behavior of

multiscale complex fluids. But before we address this problem, we first need to address some

more fundamental questions: What is the hallmark characteristic of a multiscale complex

fluid in a rheological experiment? Indeed, what do we mean by a complex fluid, what is

rheology and why is it important?

1.2 Complex Fluids and their Rheology

Rheology is defined as the study of the flow and deformation of materials [19]. On a very

basic level, materials are classified into Hookean solids and Newtonian fluids [19]. The

shear stress -(s) (t) in a Hookean solid is given by

,(s)(t) = Goy(t) (1.2.1)

in which Go is a modulus (units: Pa) and y(t) is the shear strain, while in a Newtonian fluid,

the stress a-(d) (t) is given by

S(d) = (t) (1.2.2)

in which k(t) is the shear rate, and qo is the coefficient of viscosity (units: Pa s). These

responses of the Hookean solid and Newtonian liquid can be represented by analogous

mechanical elements, namely the spring and dashpot respectively, and this is denoted by the

superscripts s and d in Equations (1.2.1) and (1.2.2) respectively. If a shear stress is applied

on a cube of a Hookean solid, it indefinitely remembers its original cubical shape and

will return to it once the shearing stress is removed. In this sense, Hookean solids exhibit

perfect memory [20]. At the opposite end of the spectrum is a Newtonian fluid, which

has zero memory. When a shear stress is applied to a material element of a Newtonian

fluid, its previous configuration is instantly forgotten and there is continuous flow for as

long as the shear stress is applied. It is a case of scientific irony that these two opposing

material responses are associated with the names of Hooke and Newton, between whom
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perhaps one of the biggest scientific feuds in history took place 2. Gribbin provides a concise

account of the events that transpired over the many years they were active scientists and

beyond [22].
These two canonical material responses lie at opposite ends of a range of material re-

sponses that are experimentally observed. Most real materials, however, do not conform

to the definitions of 'solids' and 'fluids', and lie between these canonical idealizations. Such

complex, or non-Newtonian fluids (because they are not well-described by Equation (1.2.2))

have fading memory; they remember their previous configuration over some characteris-

tic timescale known as the relaxation time r. Due to the fading, time-varying memory,

the stress at any given instant of time depends on the entire deformation history of the

material over all past times. Such materials are known as viscoelastic, i.e., they exhibit both

viscous fluid-like response as well as elastic solid-like response, whose relative magnitudes

depend on the timescale of the applied deformation. Many everyday materials are viscoelas-

tic complex fluids, and examples include foodstuffs, pastes and slurries, polymeric melts and

solutions, gels, particulate and colloidal suspensions, biofluids and personal care products

[20]. Given the myriad uses of complex fluids, measuring and modeling their rheology is

of paramount importance.

To account for the fading memory of complex fluids, the stress o(t) at any given time

t can be written in a general manner as [19]

t

a(t ) = G(t - t') f (t') dt' (1.2.3)

in which G(t) is a relaxation modulus, and f(t) is the shear rate as before. Equation (1.2.3)
has been attributed to Ludwig Boltzmann (see Figure 1.2.1), and is hence known as the
Boltzmann superposition principle [23]. Equations (1.2.1), (1.2.2) and (1.2.3) are exam-
ples of constitutive equations, which are equations that relate the stress a(t) in a continuum

material to the deformation y(t) and/or deformation rate j(t). Whereas equations (1.2.1)

and (1.2.2) are instantaneous in time and do not depend on the deformation history of the

2This could possibly be the source of Hooke's secrecy and jealously with many of his scientific discoveries.
When he discovered his law of elasticity, he wanted to make sure it was applicable to a wide range of elastic
systems, and at the same time, establish himself as being the first to discover it. He therefore published his
law as an anagram: ceiiinosssttu which was an encryption of Ut tensio sic vis, the Latin for 'As the extension, so
the force' [21]
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Figure 1.2.1

Ludwig Eduard Boltzmann, who made a number of important

contributions to various branches of physics, including thermo-

dynamics, kinetic theory, statistical mechanics, and viscoelastic-

ity. Many current theories of viscoelasticity are generalization

of his initial linear superposition equation [24]. Markovitz notes

that he seems to be amongst the first to propose a power law re-

laxation kernel G(t) = B/t, where B is a constant [23]. Image is in

the public domain.

material, the Boltzmann superposition integral is a linear superposition integral; the total

stress contribution is a sum of past contributions over all times3 .

The relaxation modulus G(t) can be experimentally measured from a stress relaxation

experiment. We apply on the sample a step shear strain deformation of amplitude yo given

by

y(t) = yoH(t) (1.2.4)

where H(t) is the Heaviside step function [25], and we measure the resulting stress response

o-(t) as a function of time. G(t) is then calculated as

G(t) = U(t). (1.2.5)
yo

In the linear regime, the relaxation modulus G(t) is independent of the strain amplitude

(we discuss nonlinear rheological response in detail in Chapter 4), and is an example of a

materialfunction [24]. These functions enable us to characterize the rheological behavior of

a complex fluid by applying standard shearing or extensional flows. We show a list of shear

flows (linear and nonlinear) used to characterize complex fluids in Figure 1.2.2, which we

have adapted from the classic text Dynamics of Polymeric Liquids by Bird et al. [24]. Each

3 To intuit the integral in Equation (1.2.3), consider f(t') dt' to be an infinitesimal strain, G(t - t') is the

instantaneous relaxation modulus and hence the integrand is an infinitesimal stress contribution. The integral
then sums over all these small contributions to yield the total stress. We emphasize that the Boltzmann
superposition integral can only model linear deformations.
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kind of applied deformation yields a different shear material function; however it can be

shown that all the linear material functions are related [26], and the knowledge of any one

of them is sufficient to derive all others. Note that the steady shear viscosity q(y) (top-most

entry in Figure 1.2.2) is a nonlinear material function.

For some complex fluids, upon performing a step strain experiment and measuring

the relaxation modulus G(t), one may be able to identify a single or a few characteristic

relaxation times, for example semidilute worm-like micelle solutions [27]. Such fluids are

called Maxwell-like (See Chapter 2 for more details on the single mode and multi-mode

Maxwell models). However multiscale complex fluids, on account of the multiscale nature

of their microstructures, do not posses an easily discernible relaxation time. Instead, G(t)

exhibits a broad power law-like response, with G(t) ~ t-a, 0 < a < 1. In the next section,

we examine the microstructure of multiscale complex fluids in more detail, and discuss the

need for compact constitutive models for this class of materials.

1.3 Multiscale Complex Fluids

In Figures 1.3.1 and 1.3.2, we show examples of power law relaxation spectra of various

complex fluids. A brief description of the fluids is given in the corresponding figure cap-

tions. We observe that in all cases, the relaxation modulus G(t) has a power law dependence

with time, i.e., G(t) ~ t-". The figures show stress relaxation experiments performed at

various strain amplitudes. At larger strain amplitudes, the relaxation modulus decreases

progressively with increasing amplitude yo. This is a nonlinear effect, and we describe the

quantification of such nonlinear effects in Chapter 4. In this introduction, we will focus our

attention on G(t) obtained in the linear regime, where it is independent of strain amplitude.

A single power law is the simplest form of multiscale response to a step strain (given by

Equation (1.2.4)). It is often the case that more complex multiscale power law response is

experimentally observed. For example, the relaxation modulus for the organophilic silica

colloidal gel [29] shown in Figure 1.3.2(a) shows a power law of the form G(t) ~ t-P and

short times, and this transitions to a power law ofthe form G(t) ~ t-" at long times, with a >

p. We discuss in detail how to characterize and model more complex multiscale response

such as the dual power law behavior of Xanthan gum in the following chapters of the

thesis. For the purposes of this introduction, it suffices to note that the key feature of stress

relaxation in multiscale materials is one or more broad power law regions in the stress relaxation
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Figure 1.3.1: Examples of experimentally measured relaxation moduli G(t) that exhibit multiscale
power law response. In both cases, we observe broad relaxation spectra with no easily discernible
characteristic timescale. (a) Data for 0.5 wt.% Xanthan gum solutions. Each curve corresponds to a
different value of strain amplitude yo, whose value is given in the legend. (b) Data for commercial
low density polyethylene melt at 160'C. Adapted from Ref. [28]. Similar to (a), each curve corre-
sponds to a different value of strain amplitude: yo = 1 (hollow circles), yo = 3 (filled circles), yo = 5
(hollow square), yo = 7 (filled squares) and yo = 9 (hollow triangles). The decrease in G(t) with
increasing yo is a nonlinear effect which we describe in detail in Chapter 4.
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power law response. (a) Thermoreversible colloidal gel consisting of organophilic silica below the
gel temperature T = 23 *C. Adapted from Ref. [29]. Each symbol corresponds to a different strain
amplitude, and a master curve has been constructed using a damping function h(yo) (see Chapter 4
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globules occupying the pores of the matrix. Figure adapted from Ref. [30]. As in the previous
figure, the decrease in G(t) with increasing yo is a nonlinear effect.
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response, with no easily discernible characteristic timescale. A power law relaxation modulus

G(t) also implies power law behavior in other linear viscoelastic material functions such as

the creep compliance J(t) or the elastic and viscous moduli, G'(w) and G"(w) respectively,

because of the nature of the inter-relations between these material functions [26].

Such multiscale power law response can arise from different underlying microstruc-

tural physical mechanisms. For example, the polyethylene melt shown in Figure 1.3.1(b) is

highly polydisperse [28]. Each molecular weight has its own characteristic relaxation time

associated with it, and given a polymer solution with a broad and continuous distribution

of molecular weights, a unique relaxation time cannot be identified. As a first approxima-

tion, one may think about the origin of the power law response in terms of the existence

of a large number of relaxation modes, one each for a particular molecular weight in the

distribution. However, because of the polydispersity, these multiple modes are very closely

spaced. This leads to a broad, multiscale power law response in which no unique character-

istic time scale can be identified. Therefore, in the case of polydisperse polymer solutions,

the power law relaxation arises from multiple length scales existing at molecular scales.

On the other hand, power law relaxation could also arise due to multiple length scales

that exist at scales larger than molecular. For example, consider Figure 1.3.3, in which we

show the microstructure of (a) a gel obtained by coagulating milk through the addition of

rennet, (b) curds obtained by cooking the resultant gel under gentle stirring and (c) cheese

produced by aging the cooked curds for one week under mechanically applied pressure.

These figures have been reproduced from the work of Ong et al. [31]. The scale bar in the

left and right columns of figures (marked al, bi & ci, and a2, b2 & c2) is 20 pm and 10

pm respectively. We observe that in addition to length scale distributions at the molecular

level arising from the various proteins and polysaccharides present in milk and cheese, the

microstructure itself consists of a wide distribution of holes, pores and domains of fat and

protein. At these microstructural scales too, we see the signature of multiscale systems: it

looks the same when inspected from nearby or from far [9] (within reasonably physical

length scales, as discussed previously). Such a microstrutural distribution of length scales

also leads to power law stress relaxation upon the imposition of a mechanical deformation.

The rationale here is identical to the soft glassy rheology model [18, 32], which applies

to materials that consist of discrete and numerous coarse-grained blobs of material [33]
that interact with each other weakly. In such multiscale materials, if the energy landscape

around a coarse-grained blob of material is such that the distribution of energy wells around
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a blob has an exponential tail, it can be shown that this distribution of energy wells leads to

a power law distribution of relaxation timescales i.e. multiscale stress relaxation.

There are other molecular or microstructural physical mechanisms that give rise to mul-

tiscale stress relaxation, characterized by the broad power law rheological response observed

in Figures 1.3.1 and 1.3.2. For example, in crosslinked networks with dangling chain ends,

Curro and Pincus [34] have assumed that the stress contribution due to each chain end

at time t is proportional to the length of the chain 1(t) that has not relaxed at time t. By

estimating 1(t) ~ a- ln(t/ri), where a and ri are material constants, and a distribution

of polymeric chain lengths, they are able to show that such crosslinked networks exhibit

power law stress relaxation. Indeed, it has been experimentally verified that crosslinked gels

often exhibit power law stress relaxation in bulk rheological experiments [35, 36].

A more direct measurement of the multiple length scales present in power law materi-

als such as gels and soft glasses is through microrheological experiments [37, 38]. In these

experiments, a tracer particle is introduced into the bulk of the complex fluid and its ther-

mally driven motion is tracked as a function of time. As long as the particle is much larger

than the length scale of heterogeneities in the fluid, the viscoelastic spectrum 6(s) can be

calculated from the Mean Squared Displacement (MSD) (AF 2(s)) traveled by the tracer par-

ticle, where s is the Laplace domain variable. i(s) is related to the relaxation modulus G(t)

through the relationship [26, 39]

G(s) = se[G(t)] (1.3.1)

where e[G(t)] is the Laplace transform of the relaxation modulus G(t) given by

00

S[G(t)] = G(t')e~st' dt' (1.3.2)

0

We find 6(s) from the generalized Stokes-Einstein equation: [37]

-kBT

G(s) = kras(A (S)) (1.3.3)

in which kB is the Boltzmann's constant, T is the absolute temperature, a is the radius of the

tracer particle and s is the Laplace frequency. As we have discussed previously, a Newtonian

(purely viscous) fluid has no memory and hence the relaxation modulus G(t) = qo 3 (t), qo
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C1 c2

Figure 1.3.3: Cryo scanning electron microscopy images of (al,a2) a gel obtained by coagulating
milk through the addition of rennet, (bl,b2) curds obtained by cooking the resultant gel under
gentle stirring and (cl,c2) cheese produced by aging the cooked curds for one week under me-
chanically applied pressure. Column 1 has a scale bar of 20 pm and column 2 has a scale bar of 10
pm. The multiscale nature of these materials is clearly visible, and there is a broad distribution of
pore and globule sizes. Images reproduced from Ref. [31].
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being the viscosity of the fluid, and 3(t) is the Dirac-Delta function [25]. Substituting this

expression for G(t) into Equation (1.3.3) and inverting the Laplace transform to solve for

(Ar 2 (t)) we obtain

(Ar 2 (t)) = 6Dt (1.3.4)

where D = kBT/6;raqo is the coefficient of diffusion, i.e., the MSD of a thermally diffusing

spherical particle in a Newtonian fluid varies linearly with time. This is a familiar classical

result known derived by Einstein for particles diffusing through Brownian motion [40];

the motion of a diffusing particle can be modeled as a random walk.4

We consider a particle (called a walker) that takes steps of fixed length at a fixed intervals

of time. However, the direction of motion at each step is chosen at random. The important

point to note here is that each step is not correlated with the previous step. In this case, it

can be shown that the probability of finding the walker at a distance r away from the origin

is given by a Gaussian distribution. Equation (1.3.4) for the MSD can then be found from

the second moment of this Gaussian distribution [41]. In Figure 1.3.4 we show an example

of a random walk generated computationally.

However, the MSD of a diffusing tracer particle in a very large number of multiscale

complex fluids does not obey Equation (1.3.4) [42]. Instead, such materials are subdifJusive,

Figure 1.3.4

A simulated example of a 2D ran-
dom walk, with the walker taking
steps of equal length at constant in-
tervals of time in a randomly chosen
direction. The green and red dots
indicate the starting and ending lo-
cations of the walk, and the black
dots connected by blue lines rep-
resent the intermediate steps. For a
2D random walk with a large num-
ber of steps, the MSD (Ar 2 ) - t.

4Einstein's paper on Brownian motion is part of his so-called Annus Mirablis papers, published in the journal
Annalen der Physik in 1905. The other papers that he published that year include those on the photoelectric
effect, special relativity and the mass-energy equivalence, all of which have since revolutionized physics.
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and the MSD varies with time as [43, 44]

(Ar2(t)) ~ ta (1.3.5)

where 0 < a < 1. Examples of complex fluids that exhibit such anomalous subdiffusive

behavior are colloidal gels [17], cytoskeletal networks [45], semidilute polymer solutions

[37], and soft glasses [32]. This anomalous diffusion is a direct consequence of the presence

of a broad distribution of length scales in the microstructure of multiscale complex fluids.

The diffusion process in these materials is now hindered by the distribution of length scales,

and a tracer particle is liable to get trapped at certain locations [42, 46], i.e., trapped at certain

energy wells, and has to wait at that location until it can jump out of the energy well it is

trapped in. Such an intermittent jumping diffusion mechanism has been experimentally

visualized, for example in entangled F-actin networks [47]. The trapping process followed

by subsequent jumping can be modeled by a Continuous Time Random Walk (CTRW);

rather than the walker making discrete steps at fixed intervals of time, the random walk is

characterized by a waiting-time distribution t(t) [48]. For a multiscale complex fluid, an

analytical form for the waiting-time distribution f(t) that models experimentally observed

material response is given by

f(t) ()(1.3.6)

where r is a constant and 0 < a < 1. This form of f(t) captures the fact that multiscale

materials contain a broad distribution of length scales, which leads to a broad, scale-free

waiting-time distribution. It can be shown for this form of t(t) that the CTRW predicts

a MSD of the power law, subdiffusive form given in Equation (1.3.5) [42, 49]. Using

Equation (1.3.3), it is then straightforward to derive power law stress relaxation from the

power law subdiffusion predicted by a CTRW. We show the difference between the regular
random walk proposed by Einstein and a CTRW in Figure 1.3.5, adapted from Sokolov

et al. [49]. This is a 1-D random walk, with the walker restricted only to the x-dimension.
The position of the walker is plotted as a function of time as a black curve. The blue and

red curves are plots of, respectively, (Ax 2 )1/ 2 ~ t1/ 2 (regular random walk, left figure) and

(Ax 2)1/ 2 ~ t1/ 4 (CTRW with a = 1/2, right figure) [49]. We observe that a CTRW, due to

its subdiffusive nature, covers less ground than a regular random walk for the same value

of elapsed time. The filled yellow curves show the probability P(x, t) of finding the particle
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Figure 1.3.5

Comparison of a regular random
walk (left), and a Continuous Time
Random Walk (right) exhibited
by subdiffusive systems. The blue
curve and red curves indicate MSD
of the form (Ax 2)1/ 2 ~ t 1/2 and
(Ax 2)1/ 2 - t1 /4 respectively. The
yellow shaded regions plot the
probability P(x, t) of finding the
walker at location x at time t. We
observe that a CTRW covers less

ground for the same interval of
2 4 elapsed time. Figure reproduced

from Ref. [49].

-1

at position x at time t. The CTRW has a characteristic cusp [42, 49], and is a narrower
distribution, indicating that a particle starting at the origin x = 0 is likely to be nearer to
the origin after time t in the CTRW.

The preceding arguments and discussions demonstrate that there are various physical
mechanisms taking place at the molecular or microstructural level that lead to power law
behavior. Because of this diversity, a very wide range of complex fluids exhibit such a me-
chanical response under externally applied deformations. Given the ubiquity of multiscale
materials in fundamental research and industrial applications, it is of vital importance to
posses models for their material response in order to obtain an quantitative understand-
ing of the material, and perhaps more importantly, make predictions of the rheological
response of these complex fluids under arbitrary linear and nonlinear deformations. We
next discuss the approaches currently used to model multiscale materials, and discuss some
of their shortcomings.

A widely used technique to model multiscale rheological response is the so called Prony
series, in which the relaxation modulus G(t) is given by a sum of exponentials [26]:

00

G(t) = > Gie-tlri
i=O

(1.3.7)

x
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Figure 1.3.6: (a) Relaxation modulus data and multimode Maxwell fit (Prony series, Equa-
tion (1.3.7)) reproduced from Laun [51]. Eight modes were required to fit the data, whose relaxation
times r were chosen arbitrarily. The fit is shown by a solid black line and the values are shown in
(b). Note the waviness in the fit introduced by the multimode Maxwell model for 1 t 200. In
this thesis, we present models that circumvents the need to introduce a large number of modeling
parameters for broad multiscale relaxation spectra.

where Gi is the modulus and ri is the relaxation time of the i-th mode. 5 A Prony series

generalizes the idea of a single-mode exponential Maxwell-Debye response [50], which

we discuss is greater detail in the next chapter. The rationale for the form of G(t) given in

Equation (1.3.7) is that there are multiple stress relaxation processes simultaneously taking

place in the material, each taking place exponentially with its own characteristic relax-

ation time ri and modulus G1. We therefore discretize the overall relaxation spectrum as

being composed of a sum of these individual relaxation modes. In Figure 1.3.6a we show

some classic measurements for the relaxation modulus G(t) (symbols) of a Low Density

Polyethylene (LDPE) melt due to Laun [51]. The black line is a fit to the data obtained

from a Prony series (Equation (1.3.7)) consisting of 8 modes. We tabulate the fit parame-

51n practice, the number of modes N over which the fit is performed is finite. N depends on the range of
available data, and the behavior of the spectrum.

'I

*1
I
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ters in Figure 1.3.6(b). This approach seems to work in practice and we are able to obtain

a reasonably good fit over five decades of time. However, we often require to determine

a large number of fitting parameters. Furthermore, the specific values of ri were chosen

arbitrarily (in this case at every decade of time), and even after this choice, we are still left

with an eight parameter fit6 . Because of this choice, the values of the relaxation times ri

and moduli Gi are not unique [19], and it becomes meaningless to assign a physical basis

for the moduli G and relaxation times ri [33]. Perhaps more importantly, in multiscale

complex fluids such as emulsions, colloidal gels and soft glasses, assuming a discrete set of

relaxation modes is not an accurate physical description of the relaxation process taking

place in the material which are metastable, non-equilibrium systems [52]; the relaxation

process is more accurately described by the Soft Glassy Rheology model (SGR), in which

coarse-grained material domains are continuously hopping between a distribution of en-

ergy states in the system [18], and relaxation takes place when elastic energy released during

hopping between energy states is viscously dissipated. This relaxation process implies that

elasticity and viscosity, rather than being independent, are intricately connected. This has

been experimentally observed in various multiscale systems showing power law behavior,

for example in crosslinking gels at criticality [35]. Again, this indicates that the discretiza-

tion of elasticity into springs, and viscosity into dashpots-as in the Prony series given in

Equation (1.3.7)-is not a true description of the physics of the relaxation mechanism in

these multiscale complex fluids.

1.4 Aims of This Thesis

The discussions in this chapter have highlighted the ubiquity of multiscale complex fluids.

They include such diverse classes of complex fluids such as colloidal gels, soft glasses, emul-

sions, physically and chemically crosslinked gels, and viscoelastic interfaces [53, 54]. This

makes them critical materials in a multitude of industrial, biological and fundamental re-

search applications. It is thus ofvital importance to possess compact constitutive frameworks

that enable the quantitative description ofmultiscale complex fluids, and subsequently make

6Under the assumptions of the Rouse model for dilute polymer solutions [24], the relaxation time Tr of the i-th
mode is given by ri = To/i

2 and the modulus of the i-th mode is given by Gi = Gorz / Z k rk. This reduces the
number of parameters to be fit to two. However, the Rouse model is applicable to a relatively limited class of
complex fluids [20], and in general, the Prony series involves fitting a large number of material parameters.
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predictions of material response under complex and arbitrary deformation profiles.
The chief goal of this thesis is to develop compact constitutive frameworks for multiscale

complex fluids. Fractional constitutive equations have been shown to be particularly good
models to describe the rheological response of complex fluids that exhibit broad power
law responses [55-57]. The subdiffusion observed at the microscale is well modeled by the
fractional Fokker-Plank equation [49, 58]. We adopt a continuum approach, and formu-
late fractional constitutive equations by modeling the viscoelasticity of multiscale complex
fluids in terms of mechanical models. In particular, fractional constitutive equations make
use of a mechanical element known as the springpot [59], which interpolates between the
canonical responses of a spring (Equation (1.2.1)) and a dashpot (Equation (1.2.2)). We
show how these models capture the complex multiscale response exhibited by a diverse va-
riety of complex fluids using only a small number of parameters, and enable us to make
predictions of material response in both the linear and nonlinear regimes under complex
externally applied deformation profiles. Possessing the analytical expressions to make such
predictions of material response is of immense utility when direct experimental measure-
ments are likely to have artifacts, for example materials that exhibit wall slip under steady
shearing deformations [60].7

A complete description of the rheology of complex fluids involves the characterization
of their shear as well as extensional rheology. The extensional properties of a complex fluid
are often vastly different from their shear properties [61]. In extensional flows, fluid material

elements are primarily elongated, and the deformation is essentially shear-free [24]. These
flows are important in various industrial processes such as fiber spinning, extrusion, film
blowing and spraying, and in applications such as enhanced oil recovery, turbulent drag
reduction and atomization [61]. They are also critical to the function of various biologically
relevant fluids such as saliva [62] and Hyaluronic acid [63]. Moreover, due to the complex

multi-component nature of biological fluids, their microstructures posses multiple length
scales and they exhibit broad power law relaxation spectra in viscometric flows. A brief
survey of the literature indicates that the extensional rheology of multiscale complex fluids

is relatively unexplored.

7 1n Appendix A, we provide an example of the utility of possessing an analytical expression for the solution
of a physical problem. We analytically solve the problem of microchannel gas flows with Knudsen number
Kn ~ 1, where momentum transport due to self-diffusion can be a significant fraction of the total momentum
flux. The analytical expressions enable us to examine a boundary layer-like flow regime that appears under
certain conditions of inlet and outlet pressures across the microchannel.
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Therefore, in this thesis, we also experimentally characterize the extensional rheology

of multiscale complex fluids. We focus our attention on aqueous polysaccharide solutions

given their immense industrial and biological applications [64]. For example, the swallow-

ing and digestive process, as the food bolus moves from the mouth through the digestive

tract involves extensional deformations, and fluid elements are stretched or elongated [65,

66]. Patients suffering from dysphagia, which is defined as a difficulty or inabilty to swal-

low, do not posses the muscular control required for the swallowing process [67]. Thicken-

ing agents are hence added to foods to slow down the process of bolus transport, and hence

allow more time for musculature control. These thickening agents are very frequently

aqueous polysaccharides such as Xanthan gum [68], which also exhibit broad multiscale

rheological response [69]. A detailed understanding of the extensional rheology of power
law aqueous polysaccharides will therefore help in the formulation of better food thickeners

and treatments for dysphagia.

Polysaccharides are also critical in other biological fluids such as Hyaluronic acid (HA)
found in mammalian synovial fluid (SF) [70]. Synovial fluid has been identified as being a
critical component in the lubrication of mammalian joints. In everyday activities such as
running or jumping, the synovial fluid in joints can be modeled as undergoing a squeeze

flow 8 with strong extensional components [63]. It has been observed that in the joints of
patients suffering from osteoarthritis, the molecular weight of the HA in synovial fluid is
decreased, leading to decreased extensional viscosities. As a result, the lubricating ability of

SF is decreased. A characterization of the extensional rheology of HA will therefore help
in diagnostics as well as treatments for osteoarthritis.

The remainder of this thesis is organized as follows: in the next chapter, we provide
the necessary mathematical background and describe in detail the basic principles of frac-
tional constitutive equations and fractional derivatives. We develop the canonical fractional
constitutive models that we will use throughout this thesis. In Chapter 3, we demonstrate
the ability of fractional constitutive equations to quantitative describe the linear viscoelas-
tic behavior of multiscale complex fluids. We take the specific example of the viscoelastic

air-solution interfaces formed by globular protein solutions, and show how predictions of
material response can be obtained under complex externally applied deformations. Chapter

4 extends the capabilities of fractional constitutive equations to nonlinear shear deforma-

8We present a quantitative analysis for this in Chapter 6
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tions, and we show how predictions of nonlinear rheological response can be obtained

from characterizing the material in a linear viscoelastic experiment. We use the fractional

model framework to assess the performance of heuristic nonlinear rules and quantify the

systematic offsets, or shift factors, that can be observed between experimental data and the

heuristically predicted nonlinear response. In this chapter, we also demonstrate how one

can obtain various empirically proposed and widely employed nonlinear flow relationships

starting with a suitable fractional constitutive framework.

We transition to the study of the extensional rheology of multiscale power law materials

in Chapter 5. We specifically examine tack experiments performed on pressure sensitive

adhesives, which are often chemically crosslinked gels exhibiting multiscale response. We

show that combining a fractional constitutive equation with the lubrication flow kinematics

of a Newtonian fluid, we obtain accurate predictions of the tack forces generated in the

small strain limit.
Chapter 6 focuses on an experimental study of the extensional rheology of multiscale

complex fluids under large strains. Using the techniques of Capillary Breakup Extensional

Rheometry (CaBER) and Filament Stretching Extensional Rheometry (FiSER), we probe

the nature of intermolecular interactions in an aqueous polysaccharide solution known as

Mamaku gum [71-73] which has potential applications as a food thickener and as a treat-

ment for dysphagia. These interactions also lead to broad power law response in shear

rheological experiments. We also use the recently developed Optimized Shape Cross-Slot

Extensional Rheometer (OSCER) [74] to measure and characterize the extensional rhe-

ology of Hyaluronic acid solutions. Finally, we conlude in Chapter 7 and present some

avenues for future research.



2 Mathematical Background

In this chapter, we begin our discussion of fractional constitutive equations. We intro-

duce the notion of the fractional derivative as a generalization of integer order derivatives.

We then construct a mechanical element called the springpot, and then incorporate it into

continuum based mechanical models to construct fractional constitutive equations. We pay

particular attention to the Fractional Maxwell model and Fractional Kelvin-Voigt model

(FMM and FKVM respectively), both of which we frequently use throughout this the-

sis. Some of the important mathematical relationships and results given in this chapter are

tabulated in Appendix B.

2.1 Linear Viscoelasticity

2.1.1 The Linear Viscoelastic Maxwell Model

In Chapter 1, we introduced the notions of springs (Equation 1.2.1) and dashpots (Equa-

tion 1.2.2) as the most elementary constitutive equations, which are relationships that relate

stress to the state of deformation in the material. The springs are purely elastic, while dash-

pots are purely viscous. One of the simplest mechanical models that captures viscoelastic

material response is the Maxwell model, which consists of a spring and a dashpot connected

in series [26]. This model was introduced by James Clerk Maxwell (cf. Figure 2.1.1) in the

context of a theory of gases [75]. [b] We show a schematic figure of the Maxwell model in

Figure 2.1.2. The constitutive equation of the Maxwell model can be derived by consider-

ing equality of the stress in the elements (o-(t) = a(s) (t) = 0 (d)(t)) and additivity of strains

59
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Figure 2.1.1

James Clerk Maxwell, Scottish physicist who is widely considered
as one of the greatest classical physicists [22]. His most impor-
tant work was the unification of electricity and magnetism, and
proving that visible light is part of a much larger electromagnetic
spectrum. He also made important contributions in the kinetic
theory of gases and in linear viscoelasticity. His proposal of a vis-
coelastic model containing both elasticity and viscosity [75], now
referred to as the linear viscoelastic Maxwell model has led to
various linear, nonlinear and frame invariant generalized models
that can capture a wide range of rheological behavior. Exam-
ples of these models are the generalized Maxwell model (Equa-
tions 2.1.10, 2.1.11), the upper and lower convected Maxwell
models [24] and the Wagner model [76]. Image is in the public
domain.

(y(s) y(d)) and we obtain [26]

ro do(t) dy
Go dt dt

(2.1.1)

in which o-(t) is the instantaneous stress (units: Pa), y(t) is the

sionaless), Go is the modulus of the spring (units: Pa) and qo

of the dashpot (units: Pa s).

Go

720

(a)

instantaneous strain (dimen-

is the coefficient of viscosity

Go 7o

(b)

Figure 2.1.2: Schematic figures of the simplest two element mechanical models used in rheology.
(a) the linear viscoelastic Maxwell model, with a spring of modulus Go and a dashpot of viscosity

qo connected in series and (b) the linear viscoelastic Kelvin Voigt model, with the spring and the
dashpot connected in parallel. The representation of linear viscoelasticity in terms of mechanical
models with multiple elements is a useful aid to thinking.
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The advantage of an explicit constitutive relationship such as Equation 2.1.1 that relates

the stress and the strain in the material is that it is straightforward to derive the standard

linear viscoleastic shear material functions. We describe below the material functions that

we will often use in this thesis. However this is by no means exhaustive; detailed expressions

of the various material functions obtained for different constitutive equations may be found

in standard textbooks [19, 24, 77].

As described in Chapter 1, we may obtain the relaxation modulus G(t) of the Maxwell

model by imposing a shear strain of the form y(t) = yoH(t) (see Equation 1.2.4) and measur-

ing the resulting stress response as a function of time. Substituting this strain deformation

profile into Equation 2.1.1 we obtain

(t) + d(t) = qyo3(t) (2.1.2)
Go dt

where 3(t) is the Dirac Delta function [25]. Solving for G(t) = a-(t)/yo, with the initial

condition G(O) = Go, we obtain

G(t) = Goe-*t (2.1.3)

where

r = qo/Go (2.1.4)

is a relaxation time. This is the classic Maxwell-Debye response [42].

Much insight into the linear viscoelastic response of complex fluids can also be obtained

through small amplitude oscillatory shear (SAOS) deformation [77]. In this dynamic ex-

periment a sinusoidally varying deformation profile of the form

y(t) = yo sin(w) (2.1.5)

is applied to the sample, in which o is the frequency of the oscillation. Note that sub-

stituting this deformation profile into an elastic Hookean spring (Equation 1.2.1) and a

viscous Newtonian dashpot (Equation 1.2.2) we obtain a stress response that is perfectly

in-phase (phase angle 3 = 0 rad) and quarter cycle out of phase (phase angle & = )r/2 rad),

respectively, with the applied deformation. For a material that is both elastic as well as vis-
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cous (i.e. viscoelastic), the stress response is phase shifted compared to the the strain profile
(0 < S < 7r/2), and we can in general write (for linear deformations) [19]

o-(t) = G'(w)yo sin(wt) + G"(o)yo cos(ot) (2.1.6)

in which G'(w) is the elastic (or storage) modulus and G"(w) is the viscous (or loss) modulus.

G'(w) is a measure of the energy stored and G"(w) is a measure of the energy dissipated in

the material per unit volume in one cycle of deformation. The phase difference & can be

written in terms of the linear viscoelastic moduli G'(o) and G"(o) as

tan-( G"(co) (2.1.7)

If we substitute the sinusoidal deformation profile of Equation 2.1.5 into the the constitutive

equations of a spring and dashpot, Equations 1.2.1 and 1.2.2 respectively, we note that

for a spring G"(o) = 0 whereas for a dashpot G'(w) = 0, which is the expected purely

elastic and purely viscous responses respectively. The process of decomposition of stress

into a elastic and viscous components as shown in Equation 2.1.6 holds for all constitutive

equations. Taking the specific case of the Maxwell model we substitute Equation 2.1.5 into

Equation 2.1.1 to obtain

G'(w) = Go (2.1.8)
1 + (T6)2

G"(o) = Go + (2.1.9)
1 + (T(0)2

Expressions for the other linear viscoelastic material functions such as the creep compliance

J(t) can be found in textbooks [19, 24, 77].

The linear Maxwell, with a single mode exponential relaxation response (Equation 2.1.3)
is too simplistic a model for most complex fluids. To capture more complex stress relaxation

phenomena, a model that consists of a superposition of Maxwell modes can be constructed

by placing many linear Maxwell elements in parallel [24]. We show a schematic diagram of

this model in Figure 2.1.3, which is called the Generalized (or multimode) Maxwell model.

Because stresses add, when elements are placed in parallel, the relaxation modulus G(t) of

this model identical to the Prony series given in Chapter 1 (see Equation 1.3.7), with the

total modulus being simply a sum of the individual contributions from each parallel arm.
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Figure 2.1.3: A schematic figure of the generalized (multimode) Maxwell model. The model con-
sists of multiple Maxwell modes connected in parallel. Each parallel mode represents a mode of
relaxation of modulus Gi and relaxation time ri. Using this model, a broad continuous relaxation
spectrum can be modeled by approximating it as a set of discrete relaxation modes. Figure repro-
duced from Ref. [77].

The linear viscoelastic storage and loss moduli, G'(&) and G"(&) respectively, are given by

a superposition of the moduli of the individual modes [19]:

00 (rk) 2

G'(I = Gk _ 'k 6j 2 (2.1.10)k 1 + ({rkw) 2

G"(co) = Z Gk + r 2  (2.1.11)
k= 1 + (rko)2

Therefore, to describe complicated material response with broad spectra, one may add

progressively more mechanical elements in series or parallel to the initial Maxwell element

[26], and in the process provide additional modes of relaxation. We thus obtain a broad

spectrum of discrete relaxation times that characterize the material response. Most real

systems can thus be described in an ad hoc way using a sum of exponentials [35]. This has

proved to be a very successful modeling approach for the linear viscoelasticity of many

complex fluids, for example polymer solutions [78, 79].

However, we have already noted the deficiencies of such an approach in Chapter 1,

especially for multiscale complex fluids with broad relaxation spectra; it becomes difficult

to assign physical meaning to the model parameters, and the number of parameters to

be fit in order to capture the relaxation spectra can be very large, making this approach

impractical. Perhaps most importantly, grouping the elastic and viscous contributions to
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the stress into springs and dashpots, respectively are abstractions, because there are no real

springs or dashpots in the complex fluids. In soft glassy materials, in which each coarse-
grained material domain has multiscale, crowded environments, elasticity and viscosity are

intricately connected and are not independent [18, 33]. The separation of these properties

into springs and dashpots, and reducing what is in reality a continuous relaxation spectrum

into discrete modes is an approximation. To quote from the work of G. W. Scott Blair,
one of the founding fathers of modern rheology [80],

Normally, one is faced with the choice of selecting a large number of true

properties or a smaller number of quasi-properties, since it is nearly always

possible to express rheological behavior in terms of true properties provided
enough constants are fitted. It is hoped to show that the latter course is by no
means always the best.

Motivated by these arguments, in this thesis we present a generalized constitutive frame-

work to model the rheological response multiscale complex fluids. The fundamental con-

cepts in our framework are fractional derivatives, springpots and quasi-properties, which we

explore in detail next.

2.2 Fractional Derivatives and the Springpot

We have mentioned in section 1.2 that for linear viscoelastic response, Boltzmann derived

a general superposition integral that relates the stress o(t) in the material to the history of

the deformation y(t) experienced by a material, which we reproduce here for convenience:

C-(t) = G(t - t') f (t') dt' (2.2.1)
-00

For example, for the case of a Hookean spring, G(t) = Go and for a Newtonian dashpot,
G(t) = qo5(t) where 6(t) is the Dirac Delta function [25]. Substituting these into the
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Boltzmann superposition integral, we obtain, respectively

a(s)(t) = Go f(t')
-00

t

-00

dt' = Goy(t)

= Go doy(t)
dt0

dt' = qok'(t)

dy (t)
=110 dt

in which the superscripts s and d represent, respectively, the mechanical analogues of

springs and dashpots as before. For a multiscale complex fluid exhibiting power law be-

havior (for example chemically crosslinking gels at the sol-gel transition [35, 81]), we ex-

perimentally observe that G(t) = ct- where c (units: Pa sa) and 0 < a < 1 are constants.

Substituting this form of the relaxation modulus into Equation 2.2.1, we obtain

(2.2.4)c(t) = c(t - t')a f(t') dt'
-00

At this point we note that Equation 2.2.4 is mathematically identical to the operation

known as the fractional derivative. The Caputo definition of the fractional derivative is

given by [82-84]

t
daf(t) _(t - t'"-a-1t()(t') dt'

dta -(m - a) (
0

(2.2.5)

in which .m - 1 a < m, m is an integer,

entiation of the function f(t) to order m.

multiscale power law relaxation, 0 < a <

and f(m) (t) indicates an integer order differ-

In rheology, we experimentally find that for

1, and therefore m = 1. This enables us to

(2.2.2)

(2.2.3)
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simplify Equation 2.2.5 as

t

daf=(t) (t - t')-af(t') dt' (2.2.6)dta F(1 - fa
0

where the overdot indicates a derivative to order 1. Because the Caputo definition of the

fractional derivative is defined in terms of a linear integral, the operator itself is linear, and

da dtf (t) dgt
(bf(t) + g(t)) = b da + dt) (2.2.7)

dta dta +dta

where b is any scalar and f and g are appropriate function [85]. We note that we have pro-

vided only one definition of the fractional derivative, namely the Caputo derivative. How-

ever, other definitions exist, such as the Riemann-Liouville and the Grunwald-Letnikov

derivatives. The latter is a fractional generalization of the limit definition of an integer or-

der derivative, and is therefore especially useful in numerical implementations of fractional

calculus [86]. In this thesis, we will exclusively use the Caputo definition because it enables

the formulation of initial conditions in terms of integer order derivatives. For more infor-

mation on other definitions, the textbooks by Podlubny [82] and Miller and Ross [85] are

good references to consult. 1

A careful inspection of Equations 2.2.6 and 2.2.4 indicate that the latter can be written

in terms of a fractional derivative 2 , and we obtain

(sp)(t) = Vday(t) (2.2.8)
- dta

Here we have replaced c of Equation 2.2.4 by the quasiproperty V, whose meaning we

explain in more detail below. It can be shown that in the limits of a = 0 and a = 1,

'The field of fractional derivatives has a long and rich history in the mathematics literature. Mathematicians
such as Euler [87], Lagrange [88], Laplace [89], Fourier [90], Abel [91], Hardy and Weyl have all studied
and worked on these operators. Abel seems to be the first to have used fractional calculus to solve a physical
problem (the previous excursions were purely mathematical): he solved the tautochrone problem, which
involves finding the shape of the curve for which the time taken by a bead sliding down it without friction
and under the influence of gravity is independent of the location of the curve at which the bead is released.
Ross [92] provides an excellent historical account of the development of fractional calculus.

2Here we assume that the lower limit of the integral in the definition of the fractional derivative is zero i.e. for
t' < 0, f(t') = 0.
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I a= a=-0

Odashpot = aspring-pot = Vspring = G7

Figure 2.2.1: The schematic representation of a springpot as an element that interpolates between
a spring (a = 0) and a dashpot (a = 1).

Equation 2.2.8 reduces to the constitutive equations of a Hookean spring (Equation 2.2.2)
and Newtonian dashpot (Equation 2.2.3) respectively [93]. Therefore, for all other values

of 0 < a < 1, Equation 2.2.8 represents a mechanical element that interpolates between

the mechanical responses of a spring and a dashpot [80]. For this reason, Koeller [59] has

termed this element the springpot. We have schematically shown this intermediate nature

of the springpot in Figure 2.2.1.

The two parameters V and a are the only parameters required to characterize a spring-

pot. For dimensional consistency, the constant V must have the units (Pa s') where 0

a 1, and can be equated to Scott-Blair's concept of a quasi-property [80]. The quasi-

property V also reduces respectively to the limits of a modulus Go (units: Pa) or a viscosity

qo (units: [Pa s]) in the limiting cases of a = 0 and a = 1 respectively. The formulation

of fractional constitutive equations in terms of quasi-properties has fallen out of use in the

recent rheological literature. It is often preferred to write the constitutive equation of a

springpot (Equation 2.2.8) as a-(s)(t) = Go0Aa, where the modulus Go has units of [Pa]

and /10 has units of [s] (see for example [94]). While this initially seems simply to be a mat-

ter of notational convenience, the latter formulation draws attention away from the fact

that the fundamental material property that characterizes the behaviour of power law-like

materials is the unique quasi-property V = Gola, which characterizes the magnitude of the

material response in terms of a single material parameter. In fact it can be shown that it is
not possible from simple rheological tests to isolate the individual components (Go,Ao, a),

but only the product Gola.

The preferred term proposed by Blair et al. for a constitutive law exhibiting springpot
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like behaviour was the principle of intermediacy [80]. To understand the intermediate nature

of a springpot, it is instructive to think about the springpot response graphically as depicted

in figure 2.2.2. The horizontal axis represents an ideal elastic response (with S.I. units of

[Pa]), and the vertical axis represents a purely viscous response (with S.I. units of [Pa s]).

We represent each springpot on this plot as a vector with magnitude Si = V>, S 2 = G&f

and making an angle Ia or 'P with the horizontal axis (&) is the frequency in an SAOS

experiment). In such a representation, all Hookean springs and purely elastic responses (a =

0) lie on the horizontal axis, and all Newtonian dashpots and purely viscous responses (a =

1) lie on the vertical axis. A springpot, on the other hand, has projections Si. and Sly on both

the elastic axis as well as the viscous axis respectively, and hence is intermediate between a

spring and a dashpot. Such a vectorial representation emphasizes that a springpot spans the

parameter space bounded by the purely elastic and purely viscous axes, and in the process

generalizes the notions of elastic and viscous material response. For example, a typical

power-law gel or elastomeric material may be predominantly elastic in nature (with G' >>

G") but will still have some dissipative character (i.e tan 5 = G"/G' * 0), corresponding to

a nonzero value of the power law coefficient a. Figure 2.2.2 captures graphically Scott-

Blair's concept that was expressed in words as "the use of complex entities as lying a certain

Figure 2.2.2

The geometric representation of

a springpot, in which it is inter-

preted as a vector Si of magni-

tude I = wa that makes an

angle ira/2 with the horizontal

axis. Purely elastic responses lie

on the horizontal axis, and purely

viscous responses lie on the ver-
tical axis. Typical magnitudes for

different complex fluids are indi-

cated schematically on each axis.
A springpot, on the other hand
has projections on both axes and

therefore captures intermediate re-

sponses. A second springpot g 2 of

magnitude Is = Goa and making

the angle rfl/2 with the horizontal

is also shown.

I

If

co
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distance between the prototypes" [80, pp. 74]. This vectorial representation also reminds

us that the elastic nature and the viscous nature of a single springpot are interrelated and

have a constant ratio, as is experimentally observed in a number of gels [13] and soft glassy

materials [32].

Schiessel and Blumen [81, 95] have shown that a mechanical equivalent of the springpot

exists in terms of an infinite ladder model, shown schematically in Figure 2.2.3. The au-

thors show that for such an arrangement of springs and dashpots, the Laplace-transformed

stress is related to the Laplace-transformed strain through a continued fraction expression.

In the limit of infinitely many elements, this continued fraction sums to a power law, yield-

ing the constitutive equation of the springpot. Therefore, one physical way to interpret the

springpot element is in terms of an inifinite ladder model that consists of an infinite num-

ber of very closely spaced relaxation modes. We have already explained a microstructural

interpretation of the springpot in terms of substituting a power law relaxation kernel in

the Boltzmann superposition integral (Equation 2.2.4). The power law kernel itself arises

from the multiscale microstructure and the existence of multiple length scales, as explained

in Chapter 1.

It is relatively straightforward to calculate the linear viscoelastic material functions for

the springpot. To calculate the relaxation modulus G(t), we substitute a step strain defor-

mation of the form y(t) = yoH(t) (Equation 1.2.4) into the constitutive equation of the

springpot (Equation 2.2.8) to obtain

U(t) = Vyo daH(t) (2.2.9)

We now require to solve this fractional differential equation and find G(t) = U(t)/yo. In our

opinion, the easiest way to solve Equation 2.2.9 is through the Laplace transform technique.

We exploit the fact that the definition of the fractional derivative involves a linear integral

and therefore, the techniques of Laplace and Fourier transforms are applicable [85]. The

Laplace transform of the Caputo definition of the fractional derivative is given by [82, 83,

85]

ds f(s) - sa-k-1f(k)(0), n - 1 < a n (2.2.10)
k=o

in which f (s) = Y [f (t); s] is the Laplace transform of the function f (t) (defined in Equa-
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E0
-47E

E2

n-B

Figure 2.2.3

Schematic figure of an infinite ladder model adapted

from Schiessel and Blumen [81]. Setting the box B to
be a spring, and then letting n --> oo, it can be shown
that the constitutive equation of such an infinite lad-
der model is exactly that of the springpot [95]. To
intuitively see why this is the case, one may imagine

the ladder model as containing n different relaxation
modes, each with its own characteristic relaxation time
ri. Setting n -- oo decreases the spacing between these

relaxation modes and converts the discrete relaxation

spectrum of the finite ladder model to a continuous re-
laxation spectrum.

tion 1.3.2) and s is the Laplace domain variable. Note that the initial conditions enter into

Equation 2.2.10 in terms of integer order derivatives. Therefore, Laplace-transforming

Equation 2.2.9, we obtain

-(s) = Vyosa-i (2.2.11)

which upon rearrangement and inverting the transform 3, we obtain the relaxation modulus

G(t) of the single springpot as [59]

(2.2.12)G(t) = Vt-a
'(1 - a)

3We list useful identities related the to the Laplace and inverse Laplace transforms of fractional derivatives in
Appendix A.
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where F(z) is the Gamma function defined as [25]

00

F(z) = Xz-l-x dx (2.2.13)
0

A creep experiment is one in which a stress of the form

a(t) = coH(t) (2.2.14)

is applied on the material, and the resulting strain response y(t) is measured as a function

of time. We define the creep compliance J(t) as

J(t) = Y(t) (2.2.15)
0

We can also find J(t) for a single springpot using the Laplace transform technique described

above. Substituting Equation 2.2.14 into Equation 2.2.8, we obtain

coH(t) = V day(t) (2.2.16)

Again, we can solve the above equation by taking its Laplace transform, rearranging the

equation to solve for f(s) in the Laplace domain, and then inverting the transform. Per-

forming these steps, we obtain the creep compliance J(t) of a springpot as [59]

VWta/
J(t) = (2.2.17)

F(1 + a)

To find the complex shear modulus G*(w) = G'(&) + iG"(o), the most convenient tech-

nique is to use the Fourier transform method. The Fourier transform f(0) of a function

f(t) is defined by [25]

00

-00
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and for the Caputo fractional derivative, the following relationship holds [55]:

t [ af(d ]) (2.2.19)

Therefore, to find the elastic and loss moduli G'(w) and G"(6) respectively, we simply

Fourier transform the constitutive equation 2.2.8 to obtain

&(o) = V(jw)ai~)) (2.2.20)

We know that G*(c) = &(o)/f(o) [26], and hence for a single springpot G*(O) = V(iw)a.

Separating the real and imaginary parts of G*(c) we obtain the linear viscoelastic moduli

as 4

G'()= V6a cos(;ra/2) (2.2.21)

G"(6) = Voa sin(ra/2) (2.2.22)

The above demonstration of using the Laplace transform technique to solve for the

relaxation modulus G(t), and the Fourier transform to find G'((o) and G"(0) was meant to

be instructive; we have worked these out in detail here because we will repeatedly use this

technique to solve for the linear viscoelastic material functions throughout this thesis. In

fact, we show in Chapter 3, that these techniques can be used to solve more complicated

fractional differential equations.

In Equations 2.2.21 and 2.2.22, setting a = 1 yields G'(w) = 0 and G"(o) = Vo which

is the correct limit of the Newtonian dashpot. Similarly, it can be shown that for a = 0,

the equations reduce to the limit of the Hookean spring. For all other values of 0 < a < 1,

G'(w) and G"(w) are pure power laws, with a constant phase angle 5 = ;ra/2. This kind

of linear viscoelastic behavior has been measured experimentally in many gel like systems

[13, 35].

With this background, we are now ready to use these springpot elements to construct

more complex constitutive models. This approach has been discussed in some detail in

the literature, notably by Bagley and Torvik [56], Torvik and Bagley [96], Koeller [59],

41n deriving the expressions for G'(w) and G"(w), we only consider the solutions that lie on the principal
branch.
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Nonnenmacher [57], Friedrich [97], [95] Schiessel and Blumen and Heymans and Bauwens

[98]; we therefore summarize the primary results without detailed derivations.

2.3 The Canonical Fractional Models: FMM and FKVM

The two canonical models that we study in this section are the Fractional Maxwell model

(FMM) and the Fractional Kelvin-Voigt Model (FKVM). These are fractional generaliza-

tions of the linear viscoelastic Maxwell and Kelvin-Voigt models respectively, and we re-

place all the springs and dashpots by springpots. Both the FMM as well as the FKVM are

characterized by only four parameters - two power law exponents, which control the

scaling for the temporal and frequency response, and two quasi-properties, which set the

scales for magnitude of the stresses in these multiscale materials. Examples of the success-

ful application of these two canonical fractional models to describe the linear rheology of

complex multiscale materials include red blood cell membranes [99], smooth muscle cells

[100], food gums [101] and comb-shaped polymers [94].

2.3.1 The Fractional Maxwell Model (FMM)

Many multiscale materials typically exhibit a broad power law regime of stress relaxation

over many decades of timescales, but at sufficiently long times (or low frequencies) ulti-

mately transition into a sol-like flow regime. This response can be modeled by the Frac-

tional Maxwell Model (FMM), which consists of two springpot elements in series [94].

We show a schematic drawing of the FMM in Figure 2.3.1(a). The FMM compactly de-

scribes the rheological properties of multiscale materials that exhibit sol-like flow at long

timescales. In Chapter 3, we show using the example of viscoelastic interfaces formed from

globular protein solutions that the FMM can quantitatively predict the linear rheological

behavior of complex fluids under a range of different deformation conditions [93]. The

constitutive equation for the FMM can be obtained from assuming equality of the stress

(a = a1 = q2) in the springpots, and additivity of the strains (y = yi + y2) to give

V da-fio(t) day(t) (2.3.1)
G dta-fi dta
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Figure 2.3.1: Schematic figures of the (a) Fractional Maxwell Model (FMM) and (b) Fractional
Kelvin Voigt Model (FKVM). These models are generalizations of their linear counterparts (shown
in Figure 2.1.2) and the springs and dashpots are replaced by springpots.

where we take a > P without loss of generality 5 [55]. The ratio

r = (V/G)l/(a-P) (2.3.2)

is a measure of a characteristic timescale in this model. Each of the springpots in the FMM

has its own asymptotic power law behavior (depending on a and fi), and r represent a

characteristic time scale at which the power law transitions from one to the other. We

discuss the asymptotic behavior of the FMM in more detail below 6. For the case of a = 1

and fi = 0, the FMM reduces to a dashpot and a spring in series, and therefore reduces to

the linear viscoelastic Maxwell model. This can be verified by substituting these limits for

a and P in Equation 2.3.1, and noticing that it reduces to Equation 2.1.1, with V -+ ro

and G -+ Go. Friedrich [102] has shown that this model results in a nonnegative internal

work and a nonnegative rate of energy dissipation, and is hence consistent with the laws

of thermodynamics. Lion has argued more generally that a constitutive model containing

fractional elements is thermodynamically admissible only if the resulting constitutive equa-

tion represents some physically realizable combination of springs, dashpots and springpots

[103]. In other words, models that do not have mechanical analogues are thermodynami-

cally inadmissible.

5 Some authors use the notation c = a - P and d = a, and use these parameters c and d to formulate their
constitutive equations. See, for example, Ref. [94].

6Also see table 2.3.1
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As before, to find the relaxation modulus G(t), we substitute a step strain deformation

(Equation 1.2.4) in the constitutive equation of the FMM 2.3.1, and use the Laplace trans-

form technique to solve for G(t) = c(t)/yo. Performing these steps, we obtain the following

analytical expression for G(t) [55]

G(t) = Gt-fEa-P,l-P (- (2.3.3)

where Eak(z) is the two-parameter Mittag-Leffler function defined as [82]

k
Eak(z) = Z (ak + b); (a,b > 0) (2.3.4)

k=O

and the characteristic timescale r is given by equation 2.3.2. Note that in equation 2.3.3 we

have written the expression for G(t) in terms of the quasi-properties V and G of the two

springpot elements, and the power-law exponents a, P. For a = 1 and P = 0, Equation 2.3.3

reduces to the correct Maxwell-Debye relaxation pattern of the linear viscoelastic Maxwell

model (Equation 2.1.3).

The Mittag-Leffler function, named after its originator the Swedish mathematician

Gosta Mittag-Leffler, finds use in various fields of physics such as control theory, electric

circuit theory, diffusion, electrochemistry, and as we will describe in detail in this the-

sis, viscoelastic complex fluids [82]. The relaxation modulus of the FMM given in Equa-

tion 2.3.3 has the interesting property of interpolating between a stretched exponential, or

Kohlrausch-Williams-Watts [104, 105], relaxation process at short times and a power law

relaxation process [106] at long times. The stretched exponential relaxation process is of

the form

G(t) = G exp - (2.3.5)

where G is a modulus, r is a characteristic timescale, and 0 < < 1 is a stretching exponent.

This kind of stress relaxation response, exhibiting a transition from stretched exponential

behavior to power law behavior, is frequently observed in rheological experiments involv-

ing multiscale complex fluids [107-109]. In Figure 2.3.2 we show a stress relaxation exper-

iment performed on bread dough (figure adapted from Ref. [50], original data from Ref.

[110]). The dashed line is a fit of a stretched exponential of the form given in Equation 2.3.5
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Figure 2.3.2

Stress relaxation data for bread
dough reproduced from Ref. [50].
The original data is from Ref.
[110]. A stretched exponential re-
laxation function (dashed line) cap-
tures the rheological behavior at
short times, while at long times,
the dough exhibits power law-like
stress relaxation (dotted line). The
Mittag-Leffler relaxation kernel

(solid line) smoothly interpolates
between these two asymptotic ma-
terial responses.

to the data (hollow symbols) at early times. The dotted line indicates a fit of a power law

relaxation kernel at long times. The Mittag-Leffler function, which smoothly interpolates

between these two asymptotic responses, is shown by the solid black line.

To better understand this interpolatory nature of the Mittag-Leffler function, we ex-

amine the various asymptotes of the stretched exponential (KWW) relaxation kernel as

well as those of the Mittag-Leffler relaxation kernel. At short times t/r < 1, we expand

Equation 2.3.5 using a Taylor series to obtain

(2.3.6)

We also determine the asymptotic behavior of the Mittag-Leffler function at z = t/r < 1

and z = t/r >> 1 respectively [82]:

Ea,b(-Z) ~ k + O(zN+1) z «1
k=Z (ak + b)
N -kN -k + O(z-(N+1)); Z 1Eab(z) Z F(b- ak)

(2.3.7)

(2.3.8)

Using these equations, it can be shown that for the FMM the relaxation modulus G(t) of

o. "

102 -

101
101

G(t) ~ G 1-

102
.. ,



MATHEMATICAL BACKGROUND 77

the FMM has the following asymptotic behavior:

( 1 (+/___-_

G(t) Gt- + a t/) «1 (2.3.9)
f(l- ) r(1 + a - 2pl)(239

(t/r) -aG(t) ~ ; t/r >> 1 (2.3.10)
r(1 - a)

and for the special case of p = 0 (i.e. one of the elements in the FMM is a spring) we obtain,

G (t) ~G 1 - ;t,) t/1r < 1 (2.3.11)-
r(1 + a))

(t/)-aG(t) ( ; t/r >> 1 (2.3.12)

Comparing Equations 2.3.6 and 2.3.11 demonstrates that the short time behavior of the

KWW relaxation function and the Mittag-Leffler type function are identical. Equation 2.3.12

demonstrates that at long times, the Mittag-Leffler function asymptotically behaves like a

power law.

We also derive the creep compliance i(t) by substituting a step stress of the form o(t) =

coH(t) into the constitutive equation 2.3.1, and solving the resulting equation using the

Laplace transform technique described previously, we obtain [55]

y(t) 1 ta 1 t(3
J ) = O --- + -____ (2.3.13)

where r(z) is the Gamma function defined in Equation 2.2.13. In deriving Equation 2.3.13,

the necessary initial conditions are determined from the fact that the sample is initially at

rest, and we have f(0) = 0. Moreover, the state of zero strain may be fixed arbitrarily, and

we set the material strain to be y(O) = 0 at t = 0.

To find the linear viscoelastic moduli G'(w) and G" (o), we simply Fourier transform

the constitutive equation of the FMM (Equation 2.3.1) as explained previously to obtain

[55, 93]

V~oa-G(iw) 3
G*(w) = V(i&)) ()fl (2.3.14)

G(iw)a + V(ioj)f
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G'( Pa m) G"( Pa m)

Vlm o cos (2a) , if a* 1 Voa sin (ra) , if a * 0
m22-cosQ(fp) if a= 1 0 (VO) , if a=O

Gc# cos (i) , if p 1 Gwfi sin (Zp) , iffp#O

0 V),if p = 60 -a sin (2a if pi = 0

Table 2.3.1: Asymptotic behaviour of G'(6) and G"(w) in the FMM. Because 0 < / < a < 1, G'
and G" reduce identically to 0 for the cases p = 1 and a = 0 respectively, and the result holds for all
frequencies.

and separating out the real and imaginary parts to find G'(o) and G"(w) respectively, we
obtain

G'(&) = Vr-a (or)a cos(;ra/2) + (Or) 2 a-P cos(7rp/2) (2.3.15)
(,r)2(a-P) + 2(or)a-fi cos(,r(a - p3)/2) + 1

,, = r-a ((j )a sin(za/2) + (Or )2 a-P sin(zfi/2)
(,j)2(a-fl) + 2(cjr)a-P cos(;r(a - /3)/2) + 1

The asymptotic behaviours of equations 2.3.15 and 2.3.16 in the limit of low and high
frequencies are given in table 2.3.1. Several different limits can be distinguished in the spe-

cial cases corresponding to pi = 0,1 and a = 0,1 respectively. These limits reduce correctly

to those of the linear Maxwell model when a = 1 and /p = 0. When multiple Maxwell
modes are used to generate a satisfactory description of the behaviour of power-law mate-
rials, we often require a very large number of discrete relaxation times [26], something that
can be readily circumvented with the use of a fractional model such as equation 2.3.1. The
fractional calculus description captures the dynamics of the broad spectrum of relaxation
times very succinctly, by collapsing them into a single springpot [95].

The FMM is better suited to model complex fluids that exhbit sol-like flow response
at long time. Complex fluids exhibiting a gel-like plateau regime in the long time scale
limit are better modeled by the Fractional Kelvin-Voigt Model (FKVM). We examine this
model and provide the linear viscoelastic material functions for this model next.
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2.3.2 The Fractional Kelvin Voigt Model (FKVM)

This second canonical fractional constitutive equation comprises of two springpots ar-

ranged in parallel. We show a schematic diagram of the FKVM in Figure 2.3.1(b). The

linear viscometric functions G(t) and J(t) can be derived as before using the Laplace trans-

form technique, which we have described in detail for the case of the FMM. Therefore, we

will simply present the final results without derivation [55]. The constitutive equation of

the FKVM is given by

day(t) dfly(t) (..7
-(t) = V dta + G dtf (2.3.17)

The relaxation modulus of the FKVM is given by

Vt-a Gt- 
G(t) = + (2.3.18)

F(1- F(1- )

and the creep compliance J(t) is given by

ta a-fi
J(t) = Ea-p,i+a (2.3.19)V J

We may use the asymptotic forms of the Mittag-Leffler function given in Equations 2.3.7

and 2.3.8 to find the short and long time asymptotes of the creep compliance in the FKVM,

and we obtain

J(t) ~; t/r < 1 (2.3.20)
VF(1 + a)

tIJ
J(t) ~ ; t/r >> 1 (2.3.21)

GF(fl + 1)

To find the linear viscoelastic elastic and viscous moduli, G'(w) and G"(w) respectively,

we Fourier transform the constitutive equation 2.3.17 and separate the real and imaginary
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parts to obtain

G'(&)= Va cos(ira/2) + GoJ cos(prfl/2) (2.3.22)

G"(&)= W"' sin(ra/2) + Go sin(;rfi/2) (2.3.23)

In this section, we have the derived linear viscometric functions of the simplest two element
fractional models: the FMM and the FKVM. These fractional constitutive models can cap-
ture a very diverse variety of multiscale rheological response. We next show an example of
the capabilities of this model by analyzing capillary suspensions [111].

2.4 A Case Study: Capillary Suspensions

Capillary suspensions are complex fluids which consist of particles that are suspended in
a continuous fluid medium with a small amount of second immiscible liquid added [111,
112]. Due to the immiscibility of the second liquid, it preferentially occupies the pores
between the suspended particles, and in the process bridges particles to form a network.
This network can span the entire sample, leading to the increase of the yield stress of the
fluid by several orders of magnitude with just a small amount of second liquid (1 vol.%)
[113, 114]. In Figure 2.4.1 we reproduce a micrograph of a capillary suspension from Ref.
[113]. The inset figure schematically shows the nature of the bridges formed by the second
immiscible fluid in capillary suspensions, with the pores between particles occupied. The

Figure 2.4.1

A micrograph reproduced from Ref. [113]
of a capillary suspension consisting of hy-
drophobically modified glass beads (r =
9.6 pm) suspended in diisononyl phthalate.
The second immiscible liquid is 1 wt.% wa-
ter. The inset figure schematically shows the
nature of the capillary bridging, with water

(orange shading) preferentially occupying the
pores between the particles. The yellow lines
in the main figure outline water trapped be-

20 pm tween these pores. More details can be found
in Refs. [111-114].
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Figure 2.4.2

Magnitude of the complex shear

modulus IG* (to) I as a function of

frequency t obtained by Koos and

Willenbacher [111] in a small am-

plitude oscillatory shear experiment

performed on the capillary suspen-
00.% sions described in Ref. [111]. The

+0.08% legend indicates the weight % of

.0.13% added water. The lines are fits of

* 0.15% Equation 2.4.2 to the data (sym-
A 0.20% bols). With just three parameters,

we are able to capture the transition
101 102 3 of the suspensions from a sol state to

a gel-like material possessing a yield

stress.

yellow lines in the micrograph outline areas of capillary bridging [113].

In Figure 2.4.2, we replot the shear rheology data of Koos and Willenbacher [111] ob-

tained for a suspension of hydrophobically modified calcium carbonate particles in silicone

oil (volume fraction of particles # = 17.3 %). The immiscible liquid used here is water,

and each curve in Figure 2.4.2 represents a different weight percentage of water, whose

values are shown in the legend. We observe that when there is no added water, the com-

plex modulus IG*(to) displays no low frequency (or long time) plateau, indicating that at

long times the suspensions flows continuously, and therefore any stress in the suspension

ultimately relaxes. However, as the volume fraction of water is progressively increased, we

observe the appearance of a low frequency plateau modulus, whose value increases with

increasing water weight %. At higher frequencies, IG*(&o)I increases as a power law, with

IG*(to)I - &" and by inspection we see that a < 1. At a water weight percentage of 0.20 %,

the rheology becomes gel-like, with a broad multiscale spectrum response. Further details

on the experimental parameters and the rheology of these systems may be found in Refs.

[111-114].

We now seek to model these linear viscoelastic data to quantity the changes induced

upon increasing the weight percentage of water. We allow the shape of the I G*(o) I versus

co curves to guide our intuition. Observing that the curves show a low frequency plateau

I I I I I M I
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and a high frequency power law regime7 , we begin with the fractional Maxwell model
with one of the springpots set to be a spring, i.e. p = 0 and G --+ G. For this case we
calculate the complex modulus to be

= [G + V/o cos(,ra/2)]2 + [Vwa sin(;ra/2)] 2

-: G*(w) = G,1 + 2(cor)a cos(7ra/2) + (,r)2a

(2.4.1)

(2.4.2)

We fit Equation 2.4.2 to the data shown in Figure 2.4.2; these fits are shown as solid lines.
We observe that the fits are very good, and the FKVM (with only three parameters G, V and
a) is able to describe the relaxation spectrum of these capillary suspensions over nearly five
decades of frequency. We present the values of the model parameters for the different values
of the weight percentage of water in Figure 2.4.3. With increasing weight percentage of
water, V and G, which set the scale for the magnitude of stresses increase very rapidly.

wt. % a V

0 0.80 15.34 1)

0.05 0.77 14.55 0.35

0.08 0.79 22.35 2.0-1

0.13 0.85 34.7 33.19

0.15 0.63 218.41 305.66

- -- --
0
0

I I I

0.05 0.08 0.13
Weight % of Water

Figure 2.4.3

Model parameters ob-
tained by fitting the
FKVM expression for
IG*(&)I derived in Equa-
tion 2.4.2 to the SAOS
data of Koos and Wil-
lenbacher [111]. One of
the springpot elements
has been set to be a spring
(P = 0). These data and
fits are shown in Fig-
ure 2.4.2. As the amount

of water is increased, we
observe that both G and V
progressively increase.

0.15

7We encounter this kind of relaxation spectrum again in Chapter 5 in the context of chemically crosslinked
adhesive gels.

300

250

200

150

100 [
50 [
0
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However, the value of a changes over a much smaller relative amount, indicating that the

nature of the branched network structure formed on introducing the immiscible liquid

remains relatively unchanged. For the suspension with 0.20 % water (not shown here), a

single springpot with just two parameters is enough to capture the rheological spectrum,

and we find that a = 0.05 and V = 3.15 x 104 Pa s". The high value of quasi-property

and the drastic drop in a means that the material behaves nearly like a Hookean solid (for

which a = 0), indicating that there is a drastic change in the microstructure of the capillary

suspension at this weight percentage of water, possibly in the nature of the percolation

structure formed by the capillary bridges.

This case study has presented just one example of the successful application of fractional

constitutive equation to model broad multiscale rheological response. Once a material has

been characterized, i.e., the power law exponents and corresponding quasi-properties have

been determined, we may use the fractional framework to make predictions of material

response in other kinds of deformation profiles. In the next chapter we demonstrate how

fractional models can be used to make predictions of multiscale material response not just

under a standard viscometric flow, but under more complex externally applied deforma-

tions, such as a creep experiment with appreciable instrument inertia.
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3 Linear Shear Deformations

Consumer products like foods contain numerous polymeric and particulate additives that

play critical roles in maintaining their stability, quality and function. The resulting materi-

als exhibit complex bulk and interfacial rheological responses, and often display a distinctive

power-law response under standard rheometric deformations. As we have seen in the pre-

vious two chapters, these power-laws are not conveniently described using conventional

rheological models, without the introduction of a large number of relaxation modes. In

this chapter, we present a constitutive framework utilizing fractional derivatives to model

the power-law responses often observed experimentally. We revisit in greater detail the

concept of quasi-properties briefly discussed in Chapter 1 and their connection to the frac-

tional Maxwell model (FMM). Using Scott-Blair's original data, we demonstrate the ability

of the FMM to capture the power-law response of 'highly anomalous' materials. We extend

the FMM to describe the viscoelastic interfaces formed by bovine serum albumin and solu-

tions of a common food stabilizer, Acacia gum. Fractional calculus allows us to model and

compactly describe the measured frequency response of these interfaces in terms of their

quasi-properties. Finally, we demonstrate the predictive ability of the FMM to quantita-

tively capture the behaviour of complex viscoelastic interfaces by combining the measured

quasi-properties with the equation of motion for a complex fluid interface to describe the

damped inertio-elastic oscillations that are observed experimentally.

3.1 Introduction

A multitude of consumer products, especially foods, owe their structure, stability and func-

tion to the presence of interfaces. Common examples include foams and emulsions such

as milk, soups, salad dressings, mayonnaise, ice cream and butter (see Ref. [115] and the

85
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references therein). Although many of these foams and emulsions are thermodynamically

unstable, the kinetics of phase separation can be controlled with the addition of various

proteins, surfactants, gums and other stabilizing agents, which have very important im-
plications for the shelf-life of foods [116]. However, the presence of these additives often

leads to complex rheological properties and give rise to distinctive power-laws in the creep
response (i.e. the strain varies as y(t) - ta) and also in the corresponding frequency re-

sponse (i.e. the elastic modulus varies with frequency as G'(o) ~ a'). Such power-law
responses are not well described by canonical rheological models such as the Maxwell or
Kelvin-Voigt models [26]. The sensory perception of foods in terms of textural parame-
ters plays an important role in the assessment of food quality, and is strongly related to the
viscoelastic properties of the interfacial layers present [117]. New rheological tools such as
the double wall ring (DWR) interfacial rheometer [53, 118] enable us to experimentally
quantify such responses with unprecedented accuracy over a wide range of frequency and
time scales. We now seek a framework for modeling these power-law responses in a sim-
ple yet robust constitutive theory that can then be used to predict the material response in
other, more complex, flows.

The irregular nature of relaxation events in complex fluids such as foods and consumer
products leads to stress relaxation that is not exponential, and is best represented as a power
law in time. i.e. G(t) ~ tf. As we have sen in Chapter 1, non-exponential stress relaxation
in the time domain also implies power-law behaviour in the viscoelastic storage modulus,
G'(&), and loss modulus, G"(o), measured in the frequency domain using small amplitude
oscillatory shear deformations. This broad spectral response is indicative of the wide range
of distinct relaxation processes available to the microstructural elements that compose the
material, and there is no single characteristic relaxation time [106]. For power-law mate-
rials to be modeled accurately, it is often found that a very large number of corresponding
mechanical elements are required. For many complex fluids, this approach is frequently
impractical from a modeling point of view. Moreover, the values of the fitted parameters
in any model with a finite array of relaxation modes depend on the timescale of the exper-
iment over which the fit is performed. Consequently the model parameters obtained lack
physical meaning [33].

Blair [119] pioneered a framework that enabled the power-law equation proposed by
[120] to be made more general through the use of fractional calculus. With analogy to the
classical ideas of (i) the Hookean spring, in which the stress in the spring is proportional to
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the zero-th derivative of the strain and (ii) the Newtonian dashpot, in which the stress in

the dashpot is proportional to the first derivative of the strain, he proposed a constitutive

equation in terms of a fractional derivative

0-(t) = Vdt) (3.1.1)

where 0 < a < 1, effectively creating an element that interpolates between the constitutive

responses of a spring and a dashpot. Here the material property V is a quasi-property, and

d"/dta is the fractional derivative operator [85], both of which are discussed in further detail

below. Scott-Blair and co-workers used equation 3.1.1 as a constitutive equation in itself;

Koeller [59] later equated this canonical modal response to a mechanical element called the

spring-pot' and identified it as the fundamental building block from which more complex

constitutive models could be constructed.

One of the consequences of Scott-Blair and coworkers' detailed study into these so-

called fractional models is the emergence of the concept of material quasi-properties, denoted

in equation 3.1.1 by the quantity V (with SI units of Pa sa). Quasi-properties differ from

material to material in the dimensions of mass M, length L and time T, depending on the

power a. It may thus be argued that they are not true material properties because they con-

tain non-integer powers of the fundamental dimensions of space and time. However, such

quasi-properties appear to compactly describe textural parameters such as the "firmness" of

a material [122]. They are numerical measures of a dynamical process such as creep in a

material rather than of an equilibrium state. In the present chapter we show how we can

compactly represent the wide range of microstructural relaxation processes in the material

in terms of these so-called quasi-properties and the associated fractional derivatives with

only a few parameters.

Bagley and Torvik were able to demonstrate that, for long chain molecules with many

submolecules per chain, the Rouse molecular theory [124] is equivalent to a fractional con-

stitutive equation, and compactly represented the polymer contribution to the total stress

in terms of the fractional half-derivative of the strain [123]. The Fractional Maxwell Model

(FMM) and other fractional constitutive models have been considered in detail in the lit-

erature [55, 57, 59, 95, 125].

1The springpot is also sometimes referred to as the Scott Blair element [121].
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We demonstrate in this chapter that fractional stress-strain relationships are also appli-

cable to viscoelastic interfaces, and result in simple constitutive models that may be used
to quantitatively describe the power-law rheological behaviour exhibited by such inter-

faces. We first connect the fractional calculus framework to the studies of Scott-Blair and
coworkers [80, 122] and show, using Blair et al.'s 1947 original data on'highly anomalous

butyl rubber', how the use of the fractional Maxwell model to extract the quasi-properties
of this material is superior to the use of conventional spring-dashpot models that charac-

terize creep and stress-relaxation. Next, we emphasize the utility of fractional constitu-
tive models, and highlight the shortcomings of linear constitutive models for describing
complex fluid interfaces using interfacial rheology data obtained from highly viscoelastic
bovine serum albumin and Acacia gum interfaces. Finally, we present a discriminating
comparison of linear and fractional viscoelastic constitutive models using the phenomenon
of creep ringing that arises from the coupling between surface elasticity and instrument in-
ertia. We show that combining fractional constitutive models with the concept of material
quasi-properties enables the quantitative description of complex time-dependent interfacial
phenomena.

3.2 Techniques and Materials

3.2.1 Interfacial Rheology

Interfacial rheology or '2D rheology' studies the dynamics and structure of interfacial vis-

coelastic thin films or skins formed by solutions containing surface active molecules [126].
Understanding the mechanics of viscoelastic interfaces is critical to a number of applica-
tions including the use of food additives and stabilizers [116, 127], medicine, physiology
and pharmaceuticals [128, 129]. Although static surface tension measurements are sufficient
to characterize the interfacial properties of surfactant-free solutions with clean interfaces,
accurate descriptions of solutions or dispersions containing surface active molecules with
dynamically evolving interfaces necessitate correct accounting of the mass and momen-
tum transport processes occurring at the interface [130]. Interfacial rheometry probes the

microstructure and dynamics of thin layers or films or skins formed on interfaces of surfac-

tant, protein or macromolecular solutions, by measuring the response to either a compres-
sional/dilational deformation or a shear deformation [126, 127, 131-133]. In this chapter,
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we will only concern ourselves with the interfacial response of surface-active solutions to

shearing deformations, although dilatational interfacial phenomena can also be important

in other modes of deformation [134].

At equilibrium, the interface exhibits a state of tension, which is quantified in terms of

a force per unit length or surface tension, s (units: N m- 1 or Pa in). For a given solution,

the interfacial tension varies with concentration, temperature and bulk-phase pressure, and

any gradient in these parameters creates a surface tension gradient that can drive so-called

Marangoni flows at the interface as well as in bulk [126, 131]. These flows encounter addi-

tional dampening by viscous stresses generated at the interface, which can be parameterized

by an interfacial viscosity q, (units: Pa s M), characterizing the surface drag [126]. A con-

stitutive relation between the interfacial shear stress a, (Pa m), and interfacial shear rate k

(s-1), was first proposed by Boussinesq, and the Boussinesq-Scriven surface stress tensor for

Newtonian-like interfaces is given by [126, 133, 135]

O, = [(Ks - qs)Vsi,]Pst + 2iiDs (3.2.1)

where KS is the interfacial dilational viscosity, Ds is the rate of deformation tensor, V, ' is

the divergence of the interfacial velocity, and Pst is a projection tensor that transforms the

vector contributions into the component tangential to the interface. In the more general

non-Newtonian case that is expected when high molecular weight solutes such as proteins

are adsorbed on the surface, the relation between interfacial stress and interfacial deforma-

tion is nonlinear [126, 132] and the interfacial viscosity depends upon the two principal

invariants of the surface deformation tensor. In addition to an interfacial viscosity, qs, vis-

coelastic interfaces also exhibit an interfacial viscoelasticity, G,* (units Pa m). By analogy

with bulk oscillatory measurements, the linear response of the interface to an oscillatory

shear strain, y(t) = yo sin(ot) can be quantified at small amplitudes in terms of a frequency-

dependent dynamic surface elasticity, G* () = G'(o) + iG"'() where the real and imagi-

nary part correspond to the interfacial storage and loss modulus respectively. The different

methods used traditionally for measuring interfacial rheology for food proteins, surfactant-

protein mixtures and biofluids used in medical diagnostics are detailed in Refs. [126, 132,

133, 136]. Here we limit the discussion to the interplay between the interfacial and bulk

rheology of surfactant-free globular proteins.

As a result of the boundary conditions at the interface, in typical rheological measure-

ments, the deformation imposed on the interface becomes coupled with a corresponding



90 RHEOLOGY OF MULTISCALE COMPLEx FLUIDS

To rhe4meter

(a) (b)

Figure 3.2.1: Schematic figures of the Double Wall Ring (DWR) fixture used to perform the in-
terfacial rheology.

deformation or flow in the bulk phases [126, 132]. The challenge is to deconvolute the bulk

and the interfacial contributions. The contribution of surface drag relative to bulk drag for

a steady shear flow is described by the Boussinesq number, Bos, defined as

Bo, = (qVL)P - s(3.2.2)
(qV/LB)AB q4(

where V is a characteristic velocity (units: m s-1), Ls and LB are the characteristic length

scales for shear flow in the interface and bulk sub-phase respectively, Ps is the contact

perimeter between the interface and the probe (units: m) and AB is the contact area between

the geometry and the sub-phase (units: M2 ). The effects of interfacial viscosity dominate

only for Bo, >> 1 and can be maximized by choosing a geometry that maximizes the wetted

perimeter for a given contact area, or equivalently by minimizing the characteristic length

scale, is ~ AB/Ps [126].

In this thesis, we use the Double Wall Ring fixture (DWR) developed by Vandebril et

al. [118]. The DWR is an annular ring made of platinum-iridium alloy with a diamond-

shaped cross-section that sits at the air-liquid or liquid-liquid interface and undergoes in-

plane torsional displacements. We show images ofthe DWR in Figures 3.2.1(a) and 3.2.1(b).

In the DWR set-up [118], the ratio ls ~ AB/Ps = 0.7 mm, which results in a reasonably
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high Boussinesq number, even for moderate values of qs/q. Specifically, the characteristic

length scale is 48 times smaller than the corresponding value for a bi-cone geometry with

a radius of 34 mm [133], thus allowing higher values of Bo, and improved instrumental

sensitivity to interfacial effects. The corresponding expressions for the Boussinesq number

in the cone-and-plate geometry, BoCP = 2q,/qR and double-gap geometry, BoDG = qs/qL

indicate that interfacial contributions will always be much smaller than those for the DWR

fixture, because the cylinder length L in the double gap and cone radius R in the cone-

and-plate are at least an order of magnitude greater than i for the DWR fixture. However,

whether interfacial effects can be safely neglected entirely in these geometries depends in-

timately on the measured values of qs/q.

Two common examples of surface active materials are Acacia gum solutions and BSA

solutions, which form the focus of the present study. The surface characteristics of BSA

solutions at the air-water interface have been studied extensively using multiple techniques

and it is well established that these solutions form rigid viscoelastic interfaces [54, 134, 137,

138]. On the other hand, although some interfacial studies have been performed on Acacia

gum solutions [139-141], there is comparatively less literature available for these solutions.

Furthermore, there is significant variability present between Acacia gums extracted from

different sources.

To demonstrate the ability of the fractional models discussed above to describe vis-

coelastic interfaces, we performed interfacial rheological experiments on bovine serum al-

bumin (BSA) and Acacia gum solutions. The surface characteristics of BSA solutions at the

air-water interface have been studied extensively using multiple techniques and it is well

established that these solutions form rigid viscoelastic interfaces [134, 137, 138, 142]. On

the other hand, although some interfacial studies have been performed on Acacia gum solu-

tions [139-141], there is comparatively less literature available for these solutions. Further-

more, there is significant variability present between Acacia gums extracted from different

sources. Bovine serum albumin, extracted by agarose gel electrophoresis, was obtained

from Sigma-Aldrich Corp (St. Louis, MO USA) in the form of a lypophilized powder.

0.01 M phosphate buffered saline (PBS) solution (NaCl 0.138 M; KCl 0.0027 M; pH 7.4, at

25 oC.) was prepared by dissolving dry PBS powder obtained from Sigma-Aldrich Corp. A

precisely weighed quantity of BSA was dissolved in the PBS and the solution was brought

up to the required volume in a volumetric flask to finally obtain solutions with a BSA con-

centration of 50 mg ml-. The uncertainty in composition from solution preparation was
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determined to be only 0.002%. The prepared solutions were stored under refrigeration

at 4 *C and were allowed to slowly warm up to room temperature before being used for

experiments. All BSA solutions used in this study had a concentration of 50 mg ml1 unless

otherwise specified.
Acacia gum in powdered form was also obtained from Sigma-Aldrich Corp (SKU:G9752).

Using the same weighing technique described above, a known quantity of Acacia gum was

dissolved in deionized water by slow stirring for approximately 6 hours to make solutions at

a concentration of 3 wt.%. The solutions were then double-filtered using Whatman filter
paper grade #595 (pore-size: 4 - 7 pm) to remove any residual insoluble material. Prior

to rheological testing, all solutions were stored at 4*C for 24 hours to ensure biopolymer

hydration ([143]).

3.3 Results

3.3.1 Stress Relaxation and Creep without Inertia

We first consider the stress relaxation in a complex material after the imposition of a step

strain. The broad spectrum of relaxation times exhibited by power-law materials often

present challenges in modeling such experiments [144]. It has already been noted in Chap-

ter 1 that the inclusion of additional relaxation modes, which is equivalent to including
additional Maxwell or Voigt units in parallel, gives improved fits to experimental data. The
resulting expression for linear viscoelastic stress relaxation is a Prony series [20, 145]

o~) Nm
G(t) = ! - Gke rk (3.3.1)

YO k=1

where Gk and rk are fitting constants. The number of modes Nm required to fit experimental

data varies depending on the time scale over which the relaxation modulus is measured and

the degree to which the experimental data deviates from the exponential Maxwell-Debye
response. Although describing data in this manner is a well-posed exercise, it is often
cumbersome because of the large number of fitting parameters required. Tschoegl [26]
remarks presciently

If the number of Maxwell of Voigt units is increased to the minimum number
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required for a series-parallel model to represent such a [power-law] distribution

at all adequately, the simplicity of the standard models is lost and, in addition,

arbitrary decisions must be made in assigning suitable values to the model ele-

ments.

Another empirical approach often used to describe experimental observations of power-

law-like relaxation is a stretched exponential response, known as the Kohlrausch-Williams-

Watts expression (KWW) [20], given by a(t) = Gyoe-(tT)f where the characteristic relax-

ation time r, the exponent P and the modulus scale G are the fitting constants. The KWW

expression works well in practice for describing the step strain excitation; However it is in

general not possible using standard procedures to find the underlying form of the constitu-

tive model that could subsequently be used to predict the response of the material to another

mode of excitation [26]. Blair et al. [80] attempted to model measurements of anomalous

stress relaxation in a range of materials using a higher-order Nutting equation of the form

y = ofi(Atk' + Btk'1l + Ctk'-2 ... ) (3.3.2)

with A >> B, C,. . However, we show in Appendix B that this equation is not thermody-

namically admissible.

To demonstrate the ability of properly-formulated fractional constitutive models and

the resulting quasi-properties to compactly describe the complex time-dependent proper-

ties of real viscoelastic materials, we revisit Blair et al.'s original stress relaxation data and fit

the measurements with the FMM discussed in Chapter 2. In figure 3.3.1 we re-plot repre-

sentative data reported for the original stress relaxation and creep experiments performed

by Blair et al. [80]. We plot the relaxation modulus G(t) and the corresponding creep com-

pliance J(t) for compactness, instead of the original stress and strain values respectively. It
can be seen that the data collapse onto a rheological master-curve as expected for exper-

iments performed in the limit of linear deformations. We now fit equation 2.3.3 to the

measured G(t) values shown in figure 3.3.1a. We set one of the elements in the FMM to be

a spring, (i.e. p3 = 0); this accounts for the instantaneous elastic response in the stress at the

start of the experiment. The FMM fit (solid line) describes the material response extremely

well over a wide range of timescales (10 s t 400 s) in terms ofjust three material pa-

rameters a = 0.60 0.04, V = 2.7 0.7 x 10 7 Pa sO60 and G = 2.3 0.2 x 106 Pa, (with

pi = 0). The error bars in the figure and the error estimates of the individual parameters

a, V and G correspond to 95% confidence intervals for the nonlinear least square parameter
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Figure 3.3.1: Rheological data for 'highly anomalous' butyl rubber taken from [80]. The solid line

depicts the FMM fit with one of the elements set to be a spring (#8 = 0). For comparison, the fit

obtained from a linear Maxwell model is shown as a dashed line. (b) Creep data at two different

stresses for the same 'highly anomalous' butyl rubber. The solid line represents the prediction of the

FMM based on the quasi-properties determined from the stress relaxation fit.
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fits. A satisfactory fit using a sum of relaxation modes (equation 3.3.1) is obtained only if

three relaxation modes are used, leading to the use of six fitting parameters, instead of the

three required in the fractional Maxwell case.

If the values of the quasi-properties found above truly characterize the material, then we

should be able to predict the constitutive response of the material to other deformations using

the same rheological equation of state. To demonstrate this, we next consider the creep data

for the same 'highly anomalous' rubber presented by Blair et al. which has been plotted as

the creep compliance J(t) in Figure 3.3.1(b). We can use Equation 2.3.13 to predict the

creep response of the 'highly anomalous' rubber based on the power-law exponent and

quasi-properties found from fits to the relaxation modulus. Substituting these values into

Equation 2.3.13 leads to the solid curve shown in Figure 3.3.1(b). It can be seen that the

prediction of the model again agrees very well with measured data, indicating that the

FMM quantitatively describes the power-law-like behaviour observed by Scott-Blair in

these anomalous materials.

From this analysis of some previously-published data, the superiority of fractional mod-

els in compactly describing the broad power-law like response of real materials is appar-

ent. Similar power-law creep responses are commonly observed in both microrheological

experiments [17, 146] and macroscopic experiments [140, 147]. Scott-Blair's concept of

quasi-properties is intimately connected to the framework of fractional calculus models

and provides a physical material interpretation of the predictive power of these apparently

abstract constitutive models.

3.3.2 Interfacial Dynamics

For each sample, we first performed interfacial time sweep experiments at a fixed frequency

of & = 1 rad s-' and a fixed strain amplitude of yo = 1 % to monitor the time evolution of

interfacial viscoelasticity at the interface. We find that the interfacial viscoelastic storage

and loss moduli, G'(w) and G"(&.) respectively, reach equilibrium about 2.5 hours after sam-

ple loading, indicating that the interfacial structure has reached steady-state. It is observed

that G'(w) > G"() indicating that the interfacial microstructures formed is predominantly

elastic. The solid-like nature of the microstructures formed at the interface can also be

observed in the strain sweep performed at an angular frequency of 6o = 1 rad s-1 shown in

figure 3.3.2a. In the linear regime, we measure G' ~ 0.025 Pa m > G" ~ 5 x 10-3 Pa m.

The interfacial structure yields at a strain amplitude of about yo ~ 3%. In figure 3.3.2b
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we show the values of the interfacial moduli as a function of excitation frequency for the

3 wt.% Acacia gum solution. Throughout the frequency range tested, G,(w) > G,'(&) sig-

nifying that viscoelastic solid-like behaviour persists even at lower frequencies. Testing at

frequencies lower than o = 10-2 rad s-1 was avoided to prevent evaporation effects from

interfering with the measurements. Erni et al. have reported that the values of G' and G'

measured in a frequency sweep are unchanged upon changing the concentration of Acacia

gum in the subphase from 10 wt.% to 20 wt.%, which has been attributed to the saturation

of the interface by Acacia gum molecules [140].

The viscoelastic data obtained from the frequency sweep exhibits a weak power-law

behaviour, which is typical of many physical and chemical gels [13] as well as soft glassy

materials [18]. Numerous recent reports of bulk rheology in soft solids have shown ex-

amples of such power-law behaviour in small amplitude oscillatory shear deformations (for

example Refs. [33, 147, 148]). We have already demonstrated the utility of fractional mod-

els in describing bulk creep and stress relaxation experiments in the previous section. We

next examine the ability of the FMM to describe the power-law responses observed in
interfacial oscillatory deformations.

3.3.3 The FMM in Small Amplitude Oscillatory Shear (SAOS)
Deformations

The complex fluid examples discussed above, including the Acacia gum and bovine serum

albumin interfaces tested in this study exhibit broad power-law responses when subjected to

small amplitude oscillatory shear experiments. Winter and Mours have presented a model

for critical gels in which the storage and loss moduli in the bulk are described by the power
laws G'(o) = SJ(1 - n) cos(nyr/2)o" and G"(o) = SF(1 - n) sin(nr/2)o"n respectively, where
S is the gel strength parameter (units of Pa sn) [13]. It may be shown by inverse Fourier

transforming the complex modulus G*(o) = G'(&) + iG"(oj) and finding the resulting con-

stitutive equation that this is equivalent to a constitutive model consisting of a single spring-

pot and the gel strength parameter is closely related to the quasi-property of the spring-pot
V = SF(1 - n).

We may achieve a more versatile constitutive model for describing foods and other

gels and soft glasses that show power-law-like rheology by considering the FMM depicted

schematically in figure 2.3.1(a). For a viscoelastic interface the corresponding interfacial
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constitutive equation is equation

asW+Vs da-fl CS Wt)V da y(t)(3.)
G dta-fi dta

which is the same as Equation 2.3.1, expect for the subscript s on all quantities indicating

that the constitutive equation has been written out for interfacial quantities. Following the

procedure outlined by Friedrich [97], and Schiessel et al. [55], we evaluate the complex

modulus of the interface by Fourier transforming equation 3.3.3 using equation 2.2.19 to

obtain

= V(jto)a-Gsi)
Gs*(w) = (io)a + (3.3.4)

Gs(iw)" +Vs(iw)fi

and finding the real and imaginary parts of Gs* () we obtain

_ (or)a cos(;ra/2) + (C'r)2a- cos( #/2)
G'(oi) = Vsrss2 o(rl)- (3.3.5)

(Cjrs)2(a-I) + 2(WT)a-P cos(;r(a - f#)/2) + 1

Gs, - (s =r)a sin(;ra/2) + (rs)2a-pf sin(rf#/2)
sr (W)72 (a-3 ) + 2(0rS)af- cos(;r(a - fi)/2) + 1

Again, we note that Equations 3.3.4, 3.3.5 and 3.3.6 are the interfacial counterparts of

Equations 2.3.14, 2.3.15 and 2.3.16 respectively.

One limitation of the critical gel model is that the elastic and viscous moduli remain

parallel to each other over all frequencies, and the loss tangent tan & = tan(;rn/2) is inde-

pendent of frequency. In contrast, many experiments show broad power-law signatures

over some frequency range but ultimately a cross-over at low enough frequencies to a limit-

ing viscous-like material response. The existence of a characteristic timescale in the FMM

enables such a material response to be described. The crossover frequency co at which

G' = G' for the FMM is found by equating equations 3.3.5 and 3.3.6 and we then find

(G. sin Zia - cos M a

WC G 2 2 ) (3.3.7)
Vs I cos; 2-sinfl

Equation 3.3.7 makes it evident that the characteristic relaxation timescale in this model is

rS ~ Cc~ (Vs /Gs) Wf, provided the argument in square brackets is positive. However there
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is no crossover predicted by the model if 0 < f < a < 0.5 or if 0.5 < f < a < 1 (the total

model response is then predominantly elastic or viscous, respectively, at all frequencies).
For such materials no clear characteristic timescale exists.

In Figure 3.3.3 we show SAOS measurements of the interfacial viscoelasticity for 3

wt. % Acacia gum solutions and 50 mg/ml BSA solutions. The black solid lines in Fig-

ures 3.3.3(a) and 3.3.3(c) show the fit of the FMM for the elastic interfacial modulus G'(6)

(equation 3.3.5) for the 3 wt.% Acacia gum solutions and 50 mg/ml BSA solutions respec-

tively. The dashed lines show the predicted values of the interfacial loss modulus G"(&)

(equation 3.3.6). From these fits, the power-law exponents that characterize the Acacia

gum solution are determined to be a = 0.8 0.2,P = 0.124 0.003, and the corre-
sponding quasi-properties are V, = 3 2 Pa m sO. 8,G = 0.027 0.003 Pa m SO.124 (in

Appendix B, we discuss the reason for the large confidence interval estimates for V). The

material parameters of the 50 mg/ml BSA solution are a = 0.80 0.07,p3 = 0.11 0.02, Vs =

0.048 0.008 Pa m s0.80 ,Gs = 0.017 0.001 Pa m so. ". When the loss modulus is plotted

against the storage modulus in a Cole-Cole representation, we do not observe the sim-

ple semicircular response expected from a linear Maxwell material but instead power-law

materials produce Cole-Cole plots with more complicated elliptical shapes [94]. It can be

seen from the figures that the FMM captures the frequency dependence of the interfacial

material functions accurately. On the other hand, the single-mode linear Maxwell model

(indicated by broken lines in Figures 3.3.3(b) and 3.3.3(d)) is unable to capture the power-

law behaviour of these viscoelastic interfaces.

It is possible to estimate the crossover point and hence the relaxation time of the vis-

coelastic interface from the FMM fit. Calculating the value of W, using equation 3.3.7, we

find that for the Acacia gum solution oc = 7.0 x 10-4 rad s- 1 corresponding to a character-

istic time constant of te ~ 1430 s. As we have noted previously, it is challenging to measure

linear viscoelastic properties at such low frequencies and at room temperature due to the

long times it takes for test completion, which can result in solvent evaporation. In the case

of the BSA solutions the interfacial relaxation time is shorter and the crossover point can

be measured directly using the DWR fixture giving oc = 0.16 rad s- 1 (tc ~ 6.4 s). This

crossover to a viscously dominated response is also captured accurately by the FMM. Acacia

gum clearly produces a predominantly elastic interface with a very long relaxation time.

The values of the interfacial quasi-properties of the Acacia gum and BSA solutions we

have found here fully characterize the linear viscoelastic interfacial properties of the two
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3.3.4 Creep Ringing and Power-Law Responses

Inertial effects are almost always unavoidable in controlled-stress rheometry, especially in

step-stress and impulse-response experiments [149]. The angular acceleration of the fix-

ture is retarded by the moment of inertia I (units: kg m2 ) of the spindle of the torsional

rheometer, and the attached geometry. The coupling between this moment of inertia and

the fluid viscoelasticity is seen in the general equation of motion of the fluid in step-stress

experiments [150]

-= H(t)ao - -(t) (3.3.8)

Where y(t) is the strain in the sample, H(t) is the Heaviside step function, ao is the magni-

tude of the step in the applied stress and a-(t) is the retarding stress exerted by the sample on

the fixture. The double over-dot indicates the second derivative with respect to time. The

parameter b = F/1F, is a combination of geometric factors (units: m3) and is determined

by the specific instrument and geometry used. The factors F. = /Q (dimensionless) and

F, = aIT (units: m-3) are geometric parameters that convert the measured variables of an-

gular velocity Q and torque T to shear rate k and shear stress a- respectively. It can instantly

be seen from Equation 3.3.8 that due to the non-zero inertia of the system, a(t) * H(t)ro.

For a Newtonian fluid with viscosity q, a(t) = qk(t), and in the absence of inertia, the

solution to Equation 3.3.8 gives the expected linear response y(t) = (ao/q)t. However, for

non-zero inertia, the strain y(t) is given by

y(t) = q-t - 1 (1 - exp- t (3.3.9)

The characteristic time constant for this exponential response is t, = I/b1 . At long times

t > 31/bq the expected linear system response is recovered but the strain is retarded by a

factor I/bq and y(t) = (ao/q)(t - t,). For t << I/bq, the exponential term in Equation 3.3.9
can be expanded to obtain y(t) = (a-ob/2I)t2 + 0 (t3) and hence the short time response

is quadratic as expected from Newton's second law. It should be noted that this short-

time creep response is independent of the fluid rheology and is valid for all test fluids at

sufficiently early times.

When the equation of motion (Equation 3.3.8) is coupled with a viscoelastic constitu-

tive model, the presence of the inertial term leads to a damped oscillatory response during
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creep experiments. (See Refs. [150, 151] and the Results section of this chapter for the

exact form of this strain response). These oscillatory dynamics often cloud the short time

creep response and are generally considered undesirable. However, Struik and others have

described procedures from which one can extract bulk viscoelastic storage and loss mod-

uli using this 'creep-ringing' or free oscillation [151, 152]. In this chapter, we show how

this bulk analysis can also be adapted in order to use creep ringing measurements with the

DWR fixture to extract the interfacial viscoelastic properties of an adsorbed protein film.

Larsen et al. have observed creep ringing while studying the interfacial properties of a

metal oxide film [153]. However, their analysis does not include the coupling of the inertia

equation 3.3.8 with a viscoelastic model. In this paper, we adapt the bulk creep ringing

formulation outlined above to the extraction of interfacial moduli using a three-parameter

linear viscoelastic JefFreys model.

In previous work using BSA solutions exhibiting interfacial viscoelasticity [53], we have

shown that this technique of extracting interfacial properties even presents certain advan-

tages over the conventional technique of conducting frequency sweep measurements to

high frequencies. In this earlier study we also noted that solutions of BSA exhibit a power-

law creep response at long times, which could not be adequately captured with the linear

Maxwell-Jeffreys model that was considered analytically. In Appendix B, we show a creep

experiment performed on 50 mg/ml BSA solutions with significant inertial effects as well

as the best fit prediction of the Maxwell-Jeffreys model [26] with an added inertial mass.

It is evident from the figure that linear models such as this are incapable of capturing the

full viscoelastic response of the material. In the current work, we extend the creep ringing

analysis to fractional viscoelastic constitutive models for the interface; we aim to predict

the power-law creep behaviour over the entire time range of the experiment using the

material power exponents and quasi-properties determined previously in frequency sweep

experiments (Figure 3.3.3).

In figure 3.3.4 we show measurements of the interfacial creep compliance J(t) (with

units of [Pa- 1 m-1 ]) of 3 wt. % Acacia gum solutions for different values of the imposed

interfacial stress o. We observe that the interfacial compliance J (t) = y(t)/qO measured at

different stresses collapse onto a single curve indicating the measurements are in the linear

viscoelastic regime. The inset plot shows the creep compliance response at long times on

logarithmic axes, which exhibits a power-law scaling in time with Js (t) ~ tO0 3 , instead of

the slope of unity or zero expected from, respectively, a purely viscous or purely elastic
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material response.

To overcome the poor predictions achieved from single mode linear viscoelastic models,
and without resorting to the ad-hoc introduction of a large number of superposed relaxation
modes, we instead use the FMM (equation 3.3.3) coupled with the inertia of the test fixture
to describe both the ringing observed in the creep experiment at short times, as well as the
power-law behaviour seen at long times. We begin with the equation of the motion of the
spindle of the stress-controlled rheometer [150, 151],

I d 2  = H(t)o - o-s(t)b, dt2 (3.3.10)

where I is the total moment of inertia of the spindle of the rheometer and the attached
test geometry (i.e. the DWR fixture), oq(t) is the retarding interfacial stress applied by
the sample on the spindle and y(t) is the resulting strain. The factor b, = Fy/F, (units of
m2 ) is a geometric factor determined by the specific instrument and geometry used. The
quantities Fy = f/Q (dimensionless) and F, = as/T (units: m- 2 ) convert the measured
quantities of torque T and angular velocity Q into the rheologically-relevant quantities of
interfacial stress os and strain rate k respectively. Equation 3.3.10 can now be coupled with
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Equation 3.3.3 to yield the fractional differential equation

dta +A dt2+a-P = H(t)us + G dta-- H(t)o0  (3.3.11)

where we introduce A = I/bs for compactness. In the above equation we have used the com-

position rule for fractional derivatives, which states that -L = d provided f(k) (0) = 0
where k = 0,1,... ,m - 1; m < p < m + 1 [82]. The fractional differential equation 3.3.11 is

of order 2+a - f, and Heymans and Podlubny [154] have shown that a fractional differen-
tial equation of arbitrary real order k requires k* initial conditions, where k* is the lowest

integer greater than k. Because we have 0 fl a 1, we find that we need three initial

conditions. The spindle is initially at rest and hence y(0) = f(0) = 0. However the step in

stress causes an instantaneous acceleration and the third initial condition is US (0) = 0 which

is equivalent to f(0) = or,/A from equation 3.3.10.

Before we solve equation 3.3.11 for y(t), we first seek to determine its asymptotic be-

haviour in the limits of early times and long times. Evaluating the Laplace transform of

equation 3.3.11 using equation 2.2.10 and employing the three initial conditions given

above, we find that

5.sa + + sa-fi
(s) =G (3.3.12)Vssa + As2 +As2+(a-l))

It may be shown (see Appendix B) that at short times equation 3.3.12 yields

y)t2 +- (3.3.13)

This quadratic response is independent of the fractional orders of the spring-pots a and p
as expected, because the short time response in the equation of motion 3.3.10 is dictated

solely by the inertial response of the fixture; at very early times the interface has not had

time to build-up any stress and hence us(t) - 0. The solution of equation 3.3.10 under the

condition as(t) = 0 yields the quadratic expression in equation 3.3.13. Similarly, at long

times we obtain (see Appendix B for details)

y(t ( t + t13  +- (3.3.14)-Vs (a + 1) Gs I(pi + 1)1
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which is, to the leading order, the same as the inertia-free creep response derived in equa-

tion 2.3.13. This means that the effects of inertia become unimportant at long times, as

observed in the experimental measurements shown in Figure 3.3.4.

The value of A = I/b, can be calibrated once the rheometer fixture is selected and in

our case was found to be A = 1.72 x 10-4 kg. Figure 3.3.5(a) shows the asymptotic short

time response (line) given by equation 3.3.13 plotted against the measured interfacial creep

compliance of a 3 wt. % Acacia gum solution (filled symbols). It can be seen that the short

time asymptotic response agrees very well with the measured data. The inset plot also

shows the value of the long time asymptote derived in equation 3.3.14. From the fractional

Maxwell Cole-Cole fits shown in figure 3.3.3, the fit values that characterize the Acacia

gum solutions are found to be a = 0.8*0.2, P = 0.124 0.003, V, = 3 2 Pa sO. 8 ,Gs = 0.027

0.003 Pa sO.124. Because - ~ 6ta at t = 60 s, we find that the first term in equation 3.3.14 is

smaller than the second. Therefore, to a first approximation, at long times y(t)

Calculating the value of the coefficient we find it equals 39.3 Pa-1 m- 1 s-0.124.

When we fit a power-law of the form y(t) = atb directly to the measured data, where a

and b are fitting constants, we find that the measured data at long times is described by

Js(t) ~ 40.4t 013 0 Pa-1 m- 1, which is in excellent agreement with the analytically derived

asymptotic predictions for long times. This asymptotic power-law creep behaviour, shown

as the solid line in the inset plot in Figure 3.3.5, cannot be conveniently captured using

conventional spring-dashpot models.

We now proceed to predict the interfacial creep response of the Acacia gum solutions

based on the FMM fit parameters and quasi-properties found previously. To this end,

we solve equation 3.3.11 for the strain y (t) with the values of %s, Gs, a and P determined

from the fits of the FMM to the small amplitude oscillatory shear data. Equation 3.3.11 is

amenable to an analytical solution and can be found by calculating the inverse Laplace trans-

form of equation 3.3.12, in terms of the Mittag-Leffier function defined in equation 2.3.4.

However the resulting expression is cumbersome to evaluate because it contains a double

infinite sum. Instead, we circumvent this difficulty by solving equation 3.3.11 numerically

using the procedure outlined by Podlubny et al. and a modified version of a MATLAB code

freely available from the same group. We refer the reader to Ref. [86] for details of the

numerical scheme used.

The resulting numerical solution of equation 3.3.11 obtained using the quasi-properties

found from SAOS is plotted in figure 3.3.5(b) as a solid line overlaid onto the experimentally
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measured compliance data. It is observed that the prediction of J,(t) based on the previ-

ously fitted quasi-property values is in very good agreement with the measured temporal

response over the entire range of the creep experiment, indicating that the quasi-properties

of the FMM characterize the rheological response of the material over a wide range of

timescales. This fractional constitutive model can predict the response to other excitations

once the quasi-properties have been found from SAOS fits. This would not be possible

using empirical laws such as the KWVW expression, or the critical gel equation, although

these laws are able to capture power-law behaviour. It is noteworthy that the FMM con-

tains only two additional parameters (a,p) beyond a simple Kelvin or Maxwell response

and yet enables excellent predictions accounting for the damped inertio-elastic effects at

short times as well as the long time power-law response.

3.4 Conclusions

We have revisited the concept of quasi-properties for describing the rheology of complex

microstructured materials and interfaces, and demonstrated how their inclusion in frac-

tional constitutive models containing spring-pot mechanical elements leads to the natu-

ral and quantitative description-using only a few constitutive parameters-of power-law

behaviour frequently observed experimentally. Not only is this fractional constitutive ap-

proach more compact than the traditional approach of using a multi-mode Prony series, it

is also more physical; in the latter approach, the number of fitted parameters as well as their

magnitudes depend on the timescale of the experiment used for model fitting.

In the spring-pot constitutive equation, the elastic modulus, G'(o), and the loss modulus,

G"(&o), increase as a function of frequency while maintaining a constant ratio between

them. This is reminiscent of the behaviour observed in critical gels and soft glassy materials
[18]. In fact it can be shown that the soft glassy rheology (SGR) model under certain

conditions yields exactly the same constitutive relationship as a single spring-pot defined

in the Caputo sense, and the 'effective noise temperature' x in the SGR model is intimately

related to the fractional exponent a (or P). Both these aspects are discussed in Appendix B.

Not only can fractional models accurately model the complex relaxation behaviour ex-

hibited by bulk materials (as demonstrated here using Scott-Blair's (1947) original data on

'highly anomalous' butyl rubber), they can also be extended to describe complex viscoelas-

tic interfaces as well. Using small amplitude oscillatory shear experiments, we measured
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the power-law linear viscoelastic behaviour exhibited by interfaces formed from adsorbed

films of bovine serum albumin and Acacia gum. By fitting the data to the FMM, we could

extract the quasi-properties V,, G, and exponents a, P that characterize these rheologically-

complex interfaces. We then considered the transient flow generated by an interfacial

creep experiment in which inertial contributions are significant. We were able to predict

a priori the inertio-elastic creep ringing observed at short times as well as the long-time

power-law response using the values of the quasi-properties determined previously. There

is excellent agreement between the model predictions and the experimental data across a

wide range of timescales. These measurements demonstrate that once the quasi-properties

of a material have been determined from one particular excitation they characterize this

rheologically-complex interface and help determine the material response to other modes

of deformation.
Finally we note that all of the models presented here describe the linear viscoelastic limit

and cannot describe non-linear viscoelastic behaviour (for example the onset of shear thin-

ning or strain softening) exhibited by many complex fluids and interfaces at large strains. In

the next chapter we turn our attention to extending these models to the nonlinear regime

and develop a frame invariant fractional constitutive equation that involves a finite strain

measure.



4 Nonlinear Shear Deformations

We have seen that the relaxation processes of a wide variety of soft materials frequently

contain one or more broad regions of power law-like or stretched exponential relaxation

in time and frequency. Fractional constitutive equations have been shown to be excellent

models for capturing the linear viscoelastic behavior of such materials, and their relaxation

modulus can be quantitatively described very generally in terms of a Mittag-Leffler func-

tion. However, these fractional constitutive models cannot describe the non-linear behavior

of such power-law materials. In this chapter, we use the example of Xanthan gum to show

how predictions of non-linear viscometric properties such as shear-thinning in the viscosity

and in the first normal stress coefficient can be quantitatively described in terms a nonlinear

fractional constitutive model. We adopt an integral K-BKZ framework and suitably mod-

ify it for power-law materials exhibiting Mittag-Leffler type relaxation dynamics at small

strains. Only one additional parameter is needed to predict nonlinear rheology, which is

introduced through an experimentally measured damping function. Empirical rules such

as the Cox-Merz rule and Gleissle mirror relations are frequently used to estimate the non-

linear response of complex fluids from linear rheological data. We use the fractional model
framework to assess the performance of such heuristic rules and quantify the systematic
offsets, or shift factors, that can be observed between experimental data and the predicted

nonlinear response. We also demonstrate how an appropriate choice of fractional constitu-
tive model and damping function results in a nonlinear viscoelastic constitutive model that

predicts a flow curve identical to the elastic Herschel-Bulkley model. This new constitutive

equation satisfies the Rutgers-Delaware rule. that is appropriate for yielding materials. This

K-BKZ framework can be used to generate canonical three-element mechanical models

that provide nonlinear viscoelastic generalizations of other empirical inelastic models such

as the Cross model. In addition to describing nonlinear viscometric responses, we are also

able to provide accurate expressions for the linear viscoelastic behavior of complex materials
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that exhibit strongly shear-thinning Cross-type or Carreau-type flow curve. The findings

in this chapter provide a coherent and quantitative way of translating between the linear

and nonlinear rheology of multiscale materials, using a constitutive modeling approach that

involves only a few material parameters.

4.1 Introduction

Many multiscale materials typically exhibit a broad power-law regime of stress relaxation

over many decades of timescales, but at sufficiently long times (or low frequencies) ulti-

mately transition into either a sol-like flow regime or a gel-like plateau regime. Both of

these responses can be captured by appropriate two element fractional constitutive mod-

els arranged in series or parallel. The Fractional Maxwell Model (FMM) consists of two

springpot elements in series [155]. The FMM compactly describes the rheological prop-

erties of multiscale materials that exhibit sol-like flow at long timescales. In Chapter 3, we

have shown using the example of viscoelastic interfaces formed from globular protein so-

lutions that the FMM can quantitatively predict the linear rheological behavior of complex

fluids under a range of different deformation conditions [93]. The relaxation modulus in

the FMM takes the analytical form of a Mittag-Lefler function, which exhibits stretched

exponential (KWW) behavior at short times, and power-law behavior at long timescales

[106].

On the other hand, complex fluids exhibiting a gel-like response in the long timescale

limit are better modeled by the Fractional Kelvin-Voigt Model (FKVM). This second canon-

ical fractional constitutive equation comprises of two springpots arranged in parallel. Both

the FMM as well as the FKVM are characterized by only four parameters - two power-

law exponents, which control the scaling for the temporal and frequency response, and

two quasi-properties, which set the scales for magnitude of the stresses in these multi-

scale materials. However we note that while the linear viscoelastic predictions of fractional

models have now been extensively studied, there is an absence of fractional constitutive

equations that are able to predict the nonlinear rheological response of these complex ma-

terials observed at large strain. Yang et al. provide an overview of previous attempts at

developing appropriate frame invariant models utilizing fractional derivatives and also list

their shortcomings [156]. They develop an appropriate finite strain measure coupled with

the Mittag-Leffler relaxation kernel, and this leads to a frame-invariant Fractional Upper
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Convected Maxwell formulation. However, this model suffers from the same limitations

of all quasi-linear models [24] and is unable to predict shear-thinning in the viscosity, and

also predicts a constant first normal stress coefficient 'P (k) at all shear rates. This absence

of shear-thinning effects is in stark contrast to the very broad shear-thinning response ob-

served in common complex multiscale materials such as Xanthan gum.

Larson has previously shown that by using the integral form of the K-BKZ type equa-

tion with a simple power-law relaxation kernel and a suitable strain dependent damping

function, the nonlinear rheology of polydisperse polymer melts can be accurately predicted

[28]. However as we have noted above, a single power-law type relaxation kernel of the

form G(t) = ct-", in which c and 0 < a < 1 are the only material constants that character-

ize the linear response, does not adequately characterize the viscoelastic response of many

complex materials that show two or more distinct power-law regimes during relaxation.

One commonly employed experimental technique for gaining insight into nonlinear rhe-

ological properties of complex materials is through the use of empirical rules such as the

Cox-Merz rule [157], Laun's rule [158] or the Gleissle Mirror Relations [24, 159]. These

empirical rules connect the progressive shear-thinning behavior observed in many complex

multiscale materials to the very broad relaxation spectra observed in linear viscoelastic tests

such as small amplitude oscillatory shear flow ([24, 160]). Booij and Leblans have shown

that irrespective of the particular form of the relaxation spectrum, viscoelastic materials will

obey the Cox-Merz rule when the shear component of the nonlinear strain measureS1(ks)
satisfies [161]

fs

S12 (fs) = Jo(v) dv (4.1.1)

0

in which Jo(v) is the zeroth order Bessel function of the first kind and is is the total shear

strain accumulated in the time interval s. However, Renardy [162] notes that this relation

is not plausible; he demonstrates that under the assumption of a very broad spectrum of

relaxation modes such that the same modes participate in linear as well as nonlinear re-

sponse, along with the simplest possible strain-dependent damping function, materials do

indeed obey rules like the Cox-Merz rule to within a constantfactor. This assumption of a

broad spectrum of relaxation times holds true for a power-law material and we should thus

expect that a suitable nonlinear generalization of fractional viscoelastic models can be used
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to understand the predictive capabilities of these empirical rheological rules.

In this chapter, we use the K-BKZ framework together with Scott Blair's ideas of quasi
properties and the fractional calculus to quantify the magnitude of this offset factor in the
Cox-Merz rule and interpret its existence in terms of the accumulated damage in a multi-
scale material arising from the nonlinear response to the applied deformation. In Fig. 4.1.1
we present a flowchart of the various pathways discussed in this paper to predict nonlinear
material response, including the application of the empirically based Cox-Merz rule and
the Gleissle mirror relations. We discuss these relationships in more detail in Section 4.3.3.
We also demonstrate using our K-BKZ model how one may quantify the systematic off-
set that is commonly observed between these empirical relationships and experimentally
measured data.

We begin with the Fractional Maxwell Model [93] and extend Larson's K-BKZ ap-
proach to include relaxation kernels of Mittag-Leffler type. Incorporating Renardy's ar-
guments for broad relaxation spectra, we show that by using an appropriate damping func-
tion that accurately captures the transition to nonlinear shear-thinning behavior, one can
make accurate predictions of both steady shear viscosity q(k) as well as first normal stress
coefficient 'P (k) as a function of shear rate. To demonstrate the quantitative capabilities of
the model, we compare our predictions with nonlinear rheological data obtained for Xan-
than gum, a complex semi-rigid, branched and physically associated polysaccharide that
shows a very broad relaxation spectrum. Empirical rules such as the Cox-Merz rule and
the Gleissle Mirror relations (see Fig. 4.1.1) have been reported to over-predict the non-
linear material functions in the case of polysaccharide gums [163, 164] and we show that
this over-prediction is connected directly to the power-law exponents that characterize the
shape of the material's relaxation spectrum.

Another rule relating steady shear flow and oscillatory flow, referred to by Krieger
[165] as the Rutgers-Delaware rule, has been proposed by Doraiswamy et al. for materials
in which the timescale of the applied deformation is much shorter than a characteristic
structural recovery time [166]. This is often the case with complex materials that yield

upon the application of a small deformation. These materials appear gel-like or solid-like at
rest and yield or flow at large strains. We use the Fractional Kelvin Voigt Model (FKVM)
that characterize the linear viscoelastic properties of solid-like power-law gels, along with a
damping function proposed by Tanner and Simmons [167] to derive the Herschel-Bulkley
equation for flow of a yielding material under steady shear. For this nonlinear fractional
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Predict J(t)

Cox-Merz rule

Predict r(1)

I Predict G(t)

SAOS measurements: G'(w), G"(w)

Parameters determined: a, 3, V, G

Measure Damping
Function

Gleissle relations K- BKZ Model

Predict r/ ( ) and IF(,

Figure 4.1.1: Flowchart showing the pathways described in this paper to arrive at viscometric ma-
terial functions for multiscale materials. Beginning with a simple linear viscoelastic experiment such
as Small Amplitude Oscillatory Shear (SAOS), and characterizing the power-law responses of mate-
rial using a fractional constitutive model, we can make accurate predictions of other linear material
functions such as the creep compliance i(t) and the relaxation modulus G(t). We also show in this
paper that by measuring the damping function h(y) and using a K-BKZ framework in conjunction
with the previously determined quasi-properties, nonlinear material functions such as the steady
shear viscosity q(k) and the first normal stress coefficient P1 (k) can be evaluated accurately.

gel, we also demonstrate that we can recreate exactly the Rutgers-Delaware rule proposed

by Doraiswamy et al.

The remainder of this chapter is organized as follows: in the next section we present

details of the preparation of the Xanthan gum solutions used in this study as prototypical

power-law materials. The linear viscoelastic properties of these gums can be well charac-

terized in compact form using the concept of quasi-properties and fractional constitutive

equations We also discuss in this section the experimental protocol and instrumentation

employed for rheometric measurements. In the third section, we briefly review some of
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the mathematical preliminaries of fractional calculus and springpots. The fourth section

presents our experimental results and theoretical insights from the K-BKZ framework, the

quantification of the shift factors that exist in the predictions of empirical relationships such

as the Cox-Merz rule and the development of the Herschel-Bulkley model for yielding

multiscale materials. We also derive exactly the Rutgers-Delaware rule for such materials.

We next discuss the Fractional Zener Model (FZM) and show how this leads to a prediction

of the flow curves of materials that are well described by the familiar inelastic Cross and

Carreau models. The advantage of our approach is that in addition to the correct nonlin-

ear flow curves, we are also able to obtain expressions for the linear viscoelastic response

of materials described by the Herschel-Bulkley and Cross models. Furthermore, we also

obtain predictions for the first normal stress coefficient 'hi(k) for such materials.

4.2 Materials and Methods

Xanthan is a highly branched high molecular weight polysaccharide produced by the Xan-

thomonas campestris bacterium [64, 168]. Both the molecular structure as well as the rhe-

ology of Xanthan gum has been extensively characterized in previous studies [169-173],
amongst others. Xanthan gum finds applicability in various biological, pharmaceutical and

industrial applications. In Figure 4.2.1 we present a summary of the various applications

of Xanthan gum (table adapted from Ref. [68].) Due to the wide applicability of Xanthan

gum, and the fact that it shows broad power-law rheological response [164], we use it as a

model fluid in this chapter.

The Xanthan gum used in this study was sourced from Sigma-Aldrich (SKU: G1253)
in powder form. To prepare the solutions, the specified amount of the powder was weighed

using a Mettler-Toledo weighing scale (resolution 0-4 g) and added to deionized water at

25*C to prepare a stock solution of 1 wt.% Xanthan gum solution. The mixture was then

stirred using a magnetic stirrer for 24 hours at 300 rpm. To enable complete biopolymer

hydration, the solution was stored at 4*C for at least another 12 hours before being used for

rheological testing ([143]). Additional solutions of 0.5 wt.% and 0.25 wt.% were prepared

by careful dilution ofthe 1 wt.% stock solution immediately after the initial 24 hour stirring,

and were also allowed to hydrate at 4*C for 12 hours.

The rheometry performed in this study was carried out using a stress controlled DHR-

3 rheometer (TA Instruments, Newcastle, DE) with a 6 cm diameter 20 cone-and-plate
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Application Concentration (% w/w) Functionality

Salad dressings 0.1-0.5 Emulsion stabilizer; suspending agent, dispersant
Dry mixes 0.05-0.2 Eases dispersion in hot or cold water
Syrups, toppings, relishes, sauces 0.05-0.2 Thickener; heat stability and uniform viscosity
Beverages 0.05-0.2 Stabilizer

(frnit and non-fat dry milk)
Dairy products 0.5-0.2 Stabilizer; viscosity control of mix
Baked goods 0.1 -0A Stabilizer; facilitates pumping
Frozen foods 0.05-0.2 Improves freeze-thaw stability
Pharmaceuticals 0.1-1 Emulsion stabilizer; uniformity in

(creams and suspensions) dosage formulations
Cosmetic (denture cleaners, 0.2-1 Thickener and stabilizer

shampoos, lotions)
Agriculture (additive in animal 0.03-0.4 Suspension stabilizer; improved sprayability,

feed and pesticide reduced drift, inoreased cling and permanence
formulations)

Textile printing and dyeing 0.2-0.5 Control of rheological properties of paste;
preventing dye migration

Ceramic glazcs 0.3-0.5 Prevents agglomeration during grinding
Slurry explosives 0.3-1.0 Thickens formulations; improves heat

stability (in combination with guar gum)
Petroleum production 0.1-0.4 Lubricant or friction reduction in drill-hole
Enhanced oil recovay 0.05-0.2 Reduces water mobility by irereasing

viscosity and decreasing permeability

Figure 4.2.1: The various industrial applications of Xanthan gum. Reproduced from Ref. [68].

fixture. Care was taken to prevent evaporation by saturating the environment around

the test fluid using a solvent trap. All experiments were performed on a Peltier plate at a

constant temperature of 25*C.

4.3 Results and Discussion

4.3.1 Linear Viscoelasticity

In Fig. 4.3.1 we show the results of a frequency sweep experiment using small amplitude

oscillatory shear (SAOS) on 0.25 wt.% and 0.5 wt.% Xanthan gum. The strain amplitude

chosen was yo = 1%, and this amplitude was chosen from an independently performed

strain amplitude sweep (not shown) to ensure tests are in the linear regime . We note that

there are two distinct power-law regimes visible at low and high frequencies respectively,

and there is a gradual transition from one asymptote to the other. The solid and dashed lines
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Figure 4.3.1

Small Amplitude Oscillatory Shear

(SAOS) experiments performed on

different concentrations of Xan-

than gum. Data are shown by filled

symbols (storage modulus) and hol-

low symbols (loss modulus) ,while

the solid lines are fits to the stor-

age modulus G'(o) (Eq.2.3.15) and
the dashed lines are fits to the loss

modulus G"(w) (Eq.2.3.16). The
parameter values determined for

each fluid are given in Table 1.
101 102

represent fits of the data to the predictions for G'(&) and G"(&) (Eqs. (2.3.15) and (2.3.16)

respectively) obtained from the FMM. We also performed additional SAOS experiments

on a 1 wt.% Xanthan gum solution (not shown in Fig. 4.3.1 for clarity) which are equally

well described by the FMM. The values of the exponents a, P and the quasi-properties V, G

obtained from these fits are tabulated in Tab. 4.3.1.

As the concentration of Xanthan gum is increased, the values of a and # progressively

decrease, indicating transition to more gel-like behavior, with an increasingly broad spec-

trum of relaxation times. At the same time, an increase in Xanthan concentration leads to

an increase in the quasi-properties V and G, implying that the magnitude of the stress in-

creases. These constitutive parameters completely characterize the linear rheology of these

viscoelastic Xanthan gum solutions and will be used to make predictions of the material

response in other deformations. There exists a characteristic frequency at which the two

power-law regimes transition from one to the other, and this is determined by the fre-

quency &, at which G'(o) and G"(&) intersect. This can be found by equating Eqs. (2.3.15)

and (2.3.16) and solving for the crossover frequency:

(G sin(ira/2) - cos(ra/2) "-)

V cos(7r/p/2) - sin(7/3/2)
(4.3.1)

In Eq. (4.3.1), real solutions to o, exist only if 0 P < 0.5 < a < 1 [93]. if these constraints

are not satisfied, it means that there is no crossover between the storage and loss moduli.

101

100

10- 1

10-2 [
10- 3
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Figure 4.3.2

Creep experiments performed on
00 different concentrations of Xan-

than gum (symbols) and the corre-

sponding predictions of the linear

viscoelastic creep compliance J(t)

(Eq. (2.3.13)). The applied stress
is -o = 0.5 Pa. The values of the

constitutive parameters a, ,%V and

G used to make the prediction are

0.25 wt. % obtained directly from the SAOS
1.0 wt. % experiments (Table 1). The initial

------- 'quadratic response at short times is
102 103  104  given by i(t) = (b/21)t2 and occurs

due to the coupling of the instru-

ment inertia with viscoelasticity,

and is shown as a black dashed line.

Once the linear viscoelasticity of the solutions have been characterized in this manner,

we may now make predictions of the rheological response of the Xanthan gum solutions

in other linear experiments.

In Fig. 4.3.2 we show the measured creep compliance data (symbols) for 0.25 wt.%

and 1 wt.% Xanthan gum solutions. The lines are a priori predictions obtained from

the FMM by substituting the corresponding model values (taken from Table 4.3.1) into

Eq.(FMMCompliance). At short times the compliance increases as J(t) - t 3 whereas at

long times the rate of creep increases, and J(t) - t". The crossover between these regimes

is gradual and depends on the values of V, G, a and P. Our prediction closely agrees with

the measured data, and both of these power-law regimes are visible. At very short times

t 6 1 s, the measured creep compliance grows quadratically and overdamped periodic oscil-

lations are observed. These oscillations, frequently referred to as creep ringing, arises from

Table 4.3.1: Values of the model parameters a, P,V and G of the FMM for different concentrations
of Xanthan Gum.

Conc. [wt. %] a p V [Pa sa] G [Pa sfl] a) [rad s-1] r [s]

0.25 0.76 0.24 7.02 1.82 7.46 x 10-3 13.41
0.50 0.64 0.19 71.65 7.82 1.34 x 10-3 748.74
1.0 0.60 0.14 208.54 22.46 5.4 x 10-4 1846.05

103

102

101

100

10-1

10-2

10- 3

-4A
102

117



118 RHEOLOGY OF MULTISCALE COMPLEx FLUIDS

the coupling of instrument inertia with sample viscoelasticity [150]. The initial quadratic

response in the compliance arises purely due to the inertia of the measurement system and

is given by J(t) = (b/21)t2 , in which b is a geometry dependent measurement system factor

and I is the total inertia of the spindle and the attached fixture. Because the initial quadratic

response is material independent and is only a function of the attached fixture and system

inertia, the short time response of both fluids coincide. However, the crossover from the

short time inertia dominated response to the power-law response of the fluid occurs when

1 b (t*)/ 21/b 1/(2-)
-- (t)2 => * ~(4.3.2)

21 G(1+#) Gr(1+#)

In a similar fashion, predictions of the relaxation modulus G(t) and other linear vis-

coelastic material functions such as the transient viscosity r (t) observed during start up of

steady shear flow [24] can be made; we only require the parameter set (a, #3, V and G) that

characterize the material. However, in each case, the material response will be indepen-

dent of the magnitude of the imposed stress or strain amplitude. By contrast, experimental
measurements on complex viscoelastic materials such as Xanthan gum solutions show a

transition to strongly shear-rate dependent material properties [164], and we now seek to

characterize this transition by generalizing the FMM to enable it to describe the rheological
response to nonlinear deformations.

4.3.2 Nonlinear Viscoelasticity and the K-BKZ Model

When large nonlinear deformations are applied to complex fluids such as Xanthan gum,

there is progressive loss of internal structure or damage to the equilibrium network in
the material due to accumulated strain [174]. The material functions measured upon the
application of a nonlinear strain are bounded by a linear viscoelastic envelope, and nonlinear

material functions lie below this envelope. This damage or loss of internal structure is

quantified by a monotonically decreasing damping function h(y), which we define below.

We note that there are some polysaccharide systems that show thickening and hardening

effects upon large strain deformations [71, 175]. Such systems are beyond the scope of this

work, but can be described by more complex functional forms of h(y). In the present study
we focus on responses that are bounded by a linear viscoelastic envelope.

For the case of a steady shearing deformation, we may first evaluate this envelope by
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substituting into the constitutive equation for the FMM (Eq. 2.3.1) the functional form of

the deformation imposed during steady shear:

t(t) = foH(t), (4.3.3)

where fo is the steady shear rate applied at time t = 0 and H(t) is the Heaviside step function.

We therefore arrive at

U(t) + V da-fla(t) da-1 H(t) (434)
G dta-P = dta-1

Taking the Laplace transform [82] of Equation 4.3.4 we obtain

&(s) = a(4.3.5)
1 + (V/G)sa-#

In deriving the Laplace transformed stress &(s) above, we have assumed initial conditions

of y(O) = 0 and f(0) = 0. We invert the transformed stress using known identities [82,
176] to obtain

q+(t) = = Gt1 -Ea-lp, 2-p - t"- (4.3.6)

We note two things here: first, that the steady shear viscosity is independent of the shear

rate, as expected for a linear model and second, that the shear viscosity grows as a function

of time and never reaches steady state, unless a = 1. The Mittag-Leffler function asymp-

totically decays as t-(a-fi) (see Eq. 4.3.17) for large arguments and hence q+(t) - ti-a. This

means that for the case of a dashpot with a = 1, q*(t) -+ V(= q) at long times.

To be able to capture experimental observation of the shear rate dependence of the

viscosity, and to be able to obtain an equilibrium steady state viscosity, we need to incor-

porate into our model a frame invariant finite strain measure. We follow the approach of

Larson [28] who argued that the nonlinear rheology of complex multiscale materials such

as polydisperse polymer melts can be described by using a separable equation of the integral
K-BKZ type [24]. While Larson selected a single power-law relaxation kernel, we extend

the analysis to relaxation kernels of the Mittag Leffler kind. By assuming that the temporal

response and strain response are separable or factorizable, so that the stress tensor cr(t) can
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be written as ([24, 177])

t

o(t) = m(t - t') 2 C-1 - 2 0C dt' (4.3.7)

-00

in which

m(t - t') = OG(t-t') (4.3.8)

is the memory function of the material, U U(I1,,2) is a potential function that is related

to the strain energy function of the material and C- 1 = (F1 ')T -F is the Finger tensor [24].

For a steady shear flow, it can be shown that the Finger tensor C- 1 can be written as [19]

1 + y2 y 0'

C-1 = y 1 0 (4.3.9)

0 0 1,

If we neglect the second term in brackets, i.e. the potential function have no dependence

on the second invariant 12 [76], then for the specific kinematics of a shear deformation, the

expression for the shear stress can be written as [177]

t

o(t) = m(t - t')h(y)y(t,t') dt' (4.3.10)
-00

in which y(t, t') = y(t') - y(t) is the relative strain accumulated between times t and t' and

h(y) is a damping function defined as

h(y) = G(t, y) (4.3.11)
G (t )

Many polymer kinetic theories can be rewritten in the form of the separable K-BKZ inte-

gral equations defined above, including the Rouse-Zimm theory and the Lodge network

theory [24]. The challenge lies in determining a molecular basis for the memory function

m(t - t'). In what follows we select the Mittag-Leffler relaxation kernel as the appropriate



NONLINEAR SHEAR DEFORMATIONS 121

Figure 4.3.3
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memory function for our biopolymer solutions, i.e., we set

m(t - t') aG(t - t1) (4.3.12)
at

= -G(t - t'--Gap- (t _ t')a . (4.3.13)

where we have used G(t) from Eq. 2.3.3. Although our choice of the memory function

is motivated by experimental data, and the large number of publications that have shown

that complex multiscale materials exhibit relaxation of the Mittag-Leffler kind, a micro-

molecular basis for this kind of relaxation process in polymeric materials has been recently

proposed by Sharma and Cherayil [178].

In order to calculate the steady shear viscosity from Eq. 4.3.10, we need to determine

the damping function h(y) for our Xanthan gum solutions. For this we performed a series

of stress relaxation experiments with increasing step strain, and the results for a 0.5 wt.%

solution are shown in Fig. 4.3.3. Note that here too we can detect the signature of two

distinct limiting power-law regimes during relaxation, with a gradual cross over from one

to the other occurring at times of order r - (V/G)1(a-f). At small strain amplitudes (Yo <

0.3), the step strain experiments yield a relaxation modulus that is independent of strain

amplitude, indicating a linear viscoelastic response. However, upon increasing the strain

amplitude, we observe a progressive decrease in the relaxation modulus G(t, y). We may

collapse these curves generated at different strain amplitudes onto a single master curve,
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Measured values of the damping
function h(y) = G(t,y)/G(t) for
different concentrations of Xanthan
Gum. The damping function is
independent of concentration and is
well described by a function of the
form h(y) = 1/(1 + 0.3y 2 ).

101

and in the process experimentally determine the damping function h(y), which is given
by Eq. 4.3.11. We show the measured value of the damping function h(y) as a function
of strain amplitude y for 0.25, 0.5 and 1.0 wt.% Xanthan gum solutions in Fig. 4.3.4. The
damping functions for all concentrations of Xanthan gum tested in this study overlap on
each other and fall on the same master curve. The damping function is independent of
strain for small values of applied step strain; however at strains of y ~ 30%, h(y) drops
sharply and approaches a power-law function of the applied strain for large y. We have
independently verified that non-linearity appears at yo = 30% using a strain amplitude
sweep under SAOS deformations. The black line in Fig. 4.3.4 indicates a fit to this master
curve with a function of the form

1h(y) = . (1 + ay2

and we find that a = 0.3 describes our data well. [174] have recently reviewed the various
kinds of damping functions that arise in rheology and their role in describing non-linear
rheological behavior. A damping function of the form h(y) = 1/(1 + ayb) where a and b
are constants has been commonly observed in a number of other polymeric systems [179].

We now have all the elements required to find the steady shear viscosity q() using
Eq. 4.3.10. We substitute Eq. 4.3.13 and Eq. 4.3.14 into Eq. 4.3.10 and also note that
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y(t, t') = y(t') - y(t) = f x (t - t') for steady shearing flow to arrive at

=-(t)

Y
00

= -G fu Ea-pfi ) Ua-fi du (4.3.15)
f (- 1 +0.3(fU)2

0

in which we have made the variable transformation u = t - t'. The above integral for q(k)

is evaluated numerically and can be shown to converge for all values of k. We note that to

evaluate this integral for each fluid no additional fitting parameters are required, and we

use the corresponding values of a, f,V and G from Tab. 4.3.1, which were obtained using

SAOS experiments.

In Fig. 4.3.5a we show measured data (symbols) for the steady shear viscosity q(j) as

a function of the steady shear rate k for different concentrations of Xanthan gum in solu-

tion. For all concentrations tested, q(k) displays either one (1 wt. %) or two (0.25 wt.%

and 0.5 wt.%) distinct power-law regions. Moreover there is no appearance of a zero shear

viscosity plateau even at shear rates as low as k = 10-3 s-1, with q(k) continuing to grow as

a weak power-law function of k as the shear rate is progressively decreased. This asymp-

totic power-law behavior with the absence of a well-defined zero-shear plateau has been

documented previously for Xanthan gum solutions [163, 164] as well as for other complex

fluids such as liquid crystalline polymers [180] and associative polymer solutions [181]. We

also show in Fig. 4.3.5a the predictions of q(k) obtained from the K-BKZ model described

above (Eq. 4.3.15). The predicted material response captures the behavior of the Xanthan

gum solutions very closely.

We may gain additional analytical insight into the asymptotic behavior of the flow

curve by approximating the integral in Eq. 4.3.15. We begin by noting that the Mittag-

Leffler function has well-defined small argument and large argument asymptotes, which

we discussed in Chapter 2. We reproduce them below for convenience:

1
Eab (z) ~ ; z < 1 (4.3.16)

F(b)

Eab(Z) ~ ; Z >> 1 (4.3.17)
r(b - a)

We make use of these asymptotes to evaluate Eq. 4.3.15 by approximating the Mittag-
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Figure 4.3.5: Predictions of nonlinear material functions using the K-BKZ type model (lines)
compared with measured data (symbols); (a) steady shear viscosity q(k), and (b) first normal stress
coefficient T iQ). The model parameters for each fluid are determined from linear viscoelasticity and
are given in Tab. I. The dashed lines in (a) show the viscosity given by the asymptotic simplification
in Eq.4.3.22.
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Leffler function in Eq. 4.3.15 as being a piecewise continuous function of the form

Ea-,- " ;(-fi) u <U

U u > u* (4.3.18)
F(-a)

where u* is the location of the cross over from one asymptote to the other. We assume this

crossover occurs when the argument of the Mittag-Leffler function z* = (V/G)1/(a-fi)u*

1, i.e., u* = (W/G)1/(a-fi) = r. Therefore we now approximate Eq. 4.3.15 as

[____*_____ o ((V/G)~afl- ,yi-a) ]
Wtf) - Gk Lf i 1 + dy + y- ( -a) dy 1 . (4.3.19)

f r(-P) 1+ 0.3y2 )Y* r(-a)

In deriving the above, we have made the variable substitution fu = y for steady shear flow,

and consequently y* = (V/G)1/(a-f-) = ri'. Note that y* is a product of a timescale r and a

shear rate k and hence y* = T- may be interpreted as a critical shear strain during start up

of steady shear at a rate k, or as a Weissenberg number Wi that gives a measure of the flow

strength. Upon simplifying Eq. 4.3.19 we arrive at

f)G - Y Y_2 dy+ fa-1 a W y dy (4.3.20)
( -p Jo 1 + 0.3y2 F(1 - a) J* 1 + 0.3y(

where we have used the identity F(n +1) = nF(n). Both the integrals obtained above can be

written in terms of the hypergeometric function 2F1 (a, b; c; x) defined as [25]

2 F1 (a, b; c; z) = (c) 0 F(a + k)I(b + k) zk (4.3.21)
F(a)1'(b) kE F(c + k) k!

and we finally obtain

/( ) ~ GfF-i 2 F1 1, ; - -0.3(y*)2 +
r(1-fp) 1-f 2 2

V a )- 2 F1 1 , -3+a 1 (4.3.22)
(1 - a) (0.3)(1 + a) 2 2 '0.3(y*)2

We show the predictions of this approximate analytic expression for q(f) as dashed
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lines in Fig. 4.3.5a. It is observed that this analytical solution agrees very closely with

the full numerical solution and hence one may avoid calculating a numerical solution to

Eq. 4.3.15. For values of a ~ 1 or f ~ 0, this approximate solution is less accurate; in

Appendix C we derive an expression for q(f) to arbitrary order, and one may retain as

many terms as required in the expansion depending on the accuracy needed. The utility

of the analytical solution Eq. 4.3.22 is that it enables us to calculate the asymptotic behavior

of ri(f) as Wi < 1 and Wi >> 1; in fact, it can be shown using appropriate Taylor series

expansions of the hypergeometric functions that at low shear rate

lim rj) ~(0.3)(a-1)/2 (ra/2) sec(;ra/2) a-1 (4.3.23)
i/ ) F(1 - a)

and at high shear rate

lim ( (0.3)(P~1)/2(7p/2) sec(pfi/2) Gfi (4.3.24)
>)1/r R( - #)

From Eq. 4.3.23, it is apparent that the existence of a constant bounded viscosity in the limit

of zero shear rate thus only exists for materials in which a = 1. The shear stress however

tends to zero for all a because a = rk- a for all a. This slow asymptotic divergence in

the viscosity at low shear rates agrees with the experimentally observed behavior of many

complex multiscale materials, some of which have been cited above.

The K-BKZ approach also enables us to make predictions of the first normal stress

coefficient ' 1 (k). Again, we begin with the K-BKZ framework (Eq. 4.3.7), and neglect the

second term for uncrosslinked materials. We select the correct components of the Finger

tensor C-1 (Equation 4.3.9) to calculate the normal stress difference N1 = xx - ayy = y 2

and we obtain [182]

t

Ni(t) = m(t - t')h(y)y2 (t,t') dt' (4.3.25)
-00

and consequently, substituting the Mittag-Leffler relaxation modulus we obtain

00

S j -G ul-E -p (G ua-P 1 du (4.3.26)
2 ' V 1 + 0.3(fU)2

0
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In Fig. 4.3.5b we show measurements of the first normal stress coefficient ' 1 (k) (symbols)

for three different concentrations of Xanthan gum in solution. The solid lines show the

numerical prediction of T,(k) evaluated using Eq. 4.3.26 and the parameters in Tab. 4.3.1.

In this case too we observe that the agreement between measured data and the prediction

of our model is good with no additional fitting parameters required. Similar to the approx-

imation made above for q(k), an analytical approximation for Pi (k) may be found, and is

given by

i (y*)2- (2-fp 4 - 2
T1(f) ~ Gfr#~2 ) -f 2F1 1, ; ; -0.3(y*) +

F(1-p) 2-fp 2 2

Vk-2F~ aa (0.*)-(a) a. 2 +a. 1__y-( 2 F1 
1  2 03(*)2 (4.3.27)

F(1 -a) (.3)(a) \2'2 .3y)

As before, y* = (V/G)1/(ai)k = rt' is a measure of the flow strength. This approximate

analytical solution is nearly identical to the full numerical solution of Eq. 4.3.26, and the

numerical and analytical curves overlap; therefore, we do not show the approximate solu-

tion as dashed lines for the sake of clarity. Again, with the help of the analytical solution

we are able to determine the behavior of P, (k) for Wi < 1 given by

lim 1( ~ (0.3)(a-2)/2 (ra/2)cosec(7a/2) V a-2 (4.3.28)
k < I1/r (1-a)

and for y* >> 1

lim T, (k) ~(0. 3) (f-2)/2 (7rp/2)cosec(.vp/2) _-2 (4.3.29)
k>>1/r M( - P) I

i.e. Ti(k) ~ a- 2 for y* < 1 and Ti(') ~fi-2 for y* >> 1. We note in particular that the

asymptotic behavior of '1 (k) at low shear rates obtained above agrees with the asymptote

calculated from a second order fluid expansion [24]

lim '1 (k) = lim 2G'(&) (4.3.30)
f<1/r ><1/T 0 2

which we can calculate with the help of Eq. 2.3.15.

In this section we have presented a theoretical constitutive framework to make pre-

dictions of the nonlinear rheological response of power-law complex fluids with broad
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relaxation spectra that exhibit liquid-like behavior at long timescales. Although we discuss
the examples of q(k) and '1 (k) in this thesis, these arguments can be extended to other
nonlinear deformations such as uniaxial extensional flows and LAOS. We next discuss the
performance of empirical rules such as the Cox-Merz rule and the Gleissle Mirror relations

that also make predictions of a material's nonlinear response (from knowledge of the linear
rheology alone), and show how the very broad range of relaxation timescales that are em-
bodied by the Mittag-Leffler function influences the validity of these approximations. We
will also put these empirical rules in context by using our model to quantify the systematic
deviations that these predictions can exhibit from measured data.

4.3.3 Empirical Relationships for Nonlinear Viscoelasticity

One widely known relationship that enables the prediction of the nonlinear viscometric
response for complex materials from linear response is the Cox-Merz rule which states that
([24])

~)a q*(CO)L (4.3.31)

where q*(w) is the complex viscosity given by

q(x) = G 2  (4.3.32)

For the FMM, in which G'(&)) and G"(w) are given by Eq. 2.3.15 and Eq. 2.3.16 respectively,

we calculate q*(c) to be

VGoa+fi-l
V*a G6) (4.3.33)

2+ (G 3)2 + 2Vwa - Gwof cos 2

and consequently from 4.3.31 we have

W VGk (4.3.34)
(Vfa)2 + (Gfl)2 + 2Va Gzfi cos 2
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There also exists a less widely used empirical framework to predict nonlinear behavior

from linear rheology, collectively known as the Gleissle mirror relations which state that

[24, 183]

r;(0) a r(4.3.35)

V1(t) ag T1( W~/ (4.3.36)
lt=k/y

00

-2f [8 -X - dx (4.3.37)

tkk

Here q (t) is the transient shear viscosity upon the start-up of steady shear measured in

the linear viscoelastic regime and T'(t) is the transient first normal stress coefficient upon

the start-up of steady shear, and 2 < k < 3 is a fitting constant. Evidently, these Gleissle

mirror relations allow estimation of the nonlinear material functions q(f) and P 1 (k) from
their quasilinear counterparts q(t) and V'P(t). The third relation Eq. 4.3.37 allows a direct
calculation of'P, (k) from q(f. For the FMM, we have already determined q(t) in Eq. 4.3.6,

because in deriving that expression we set k = foH(t), which is the imposed deformation

in a start-up of steady shear flow experiment. Therefore Eq. 4.3.6 and Eq. 4.3.35 yield

r (; G ) Ea-fl,2-fl _ (,) (4.3.38)

in which Ea,b (z) is the Mittag-Leffler function defined in Eq. 2.3.4. The argument z = -

in Eq. 4.3.38 can also be written as z = -()f-. It can be shown using the asymptotic

forms of the Mittag-Leffler function given in Eq. 4.3.16 and Eq. 4.3.17 that Eq. 4.3.38
exhibits power-law regimes at low as well as high k. At low shear rates we obtain

lim q(f) ~Vf"-//r(2 - a), (4.3.39)
y<

1
/T

and at high rates we find

lim ;() Gf' 1 '/r(2 - pi). (4.3.40)
k>>1/'r

129
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These asymptotes are identical in form to those we obtained from the K-BKZ model de-

rived above (cf. Eqs. 4.3.23 and 4.3.24) and only differ in the pre-multiplying factor.

We may now use this expression for q(j) in Eq. 4.3.37 to find 'Pi(k). Making this

substitution we have

00 (

'P(f) = -2 G E!,-f1,2-p dx (4.3.41)

tkk

Making the variable transformation 1 /x = u and then integrating by parts we obtain

'i(f) = 2G ( 2 f Ea-P2fi ( )) - Ea-,3-fl (- (k )) (4.3.42)

As in the case of q(j), it can be shown that the low and high shear rate asymptotes are

both power-laws, and are given by 'i(T ) ~ ka-2 and P 1 (k) ~ kf-2 respectively. These

asymptotic power-laws agree with those of the K-BKZ model derived in Eq. 4.3.28 and

Eq. 4.3.29.

In Fig. 4.3.6 we show a comparison of the prediction of q(k) from the Cox-Merz rule

(Eq. 4.3.34) with the prediction of the Gleissle mirror relation (Eq. 4.3.38) for the special

case ofa = 0.64, / = 0.19, V = 71.65 Pa sa and G = 7.82 Pa sf, corresponding to a 0.5 wt.%

Xanthan gum solution. The two predictions agree very closely over 6 orders of magnitude

in the deformation rate. We have verified for various other values of a, fl, V and G that

the two predictions are nearly equal at all shear rates. Therefore we may use either the

Cox-Merz rule or the Gleissle mirror relations to arrive at an empirical prediction of the

nonlinear material properties q(Q) and ' 1 (f) for a multiscale material with linear viscoelastic

properties described by the Fractional Maxwell Model.

In Fig. 4.3.7 we show as symbols the same steady shear data measured for two different

concentrations of Xanthan gum already presented in Fig. 4.3.5. The lines in Fig. 4.3.7

depict the predictions obtained from the Gleissle mirror relations (Eqs. 4.3.38 and 4.3.42).
Note that although we do not show it in Fig. 4.3.7 for the sake of clarity, applying the Cox-

Merz rule (Eq. 4.3.31) would give us identical predictions as the Gleissle mirror relation as

explained above. We choose to show the predictions of the Gleissle mirror relations because

this also provides an analytical expression for I, (k), however all of the conclusions in the

following section apply to the Cox-Merz rule as well.
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Figure 4.3.6

Comparison of the agreement be-

tween the Cox-Merz rule and the

Gleissle mirror relations for the

FMM. The predicted values of the

steady shear viscosity from the two

different rules virtually overlap.

a = 0.64, P = 0.19, / = 71.65 Pa sa,

G= 7.82 Pa s0.
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We observe in Fig. 4.3.7 that the predictions of the Gleissle mirror relations correctly

capture the functional form of the experimental data but exhibit a systematic offset from

the measurements in both q(f) (Fig. 4.3.7a) as well as 'I1(f) (Fig. 4.3.7b). The predictions

are systematically higher than the measured data. This offset between measured data and

the predictions of empirical rules such as the Cox-Merz rule or Gleissle mirror relations

has been observed previously in various complex fluids, especially in polysaccharide sys-

tems where it has been reported that ,*()L= > q(k). For Xanthan gum solutions this

offset has been shown to increase with increasing Xanthan concentration [164]. Using

Xanthan gum and Schizophyllum solutions with varying amounts of urea [172] or DMSO

[163] respectively, this offset has been shown to arise from the presence of intermolecu-

lar interactions such as hydrogen bonds. These weak physical interactions give rise to the

broad power-law like characteristics we observe in the linear relaxation modulus, but are

disrupted at the large strain deformations applied in steady shear.

In our K-BKZ model, we capture this structural damage accumulated during large

shear deformations using the damping function. With this K-BKZ framework, it is also

relatively straightforward to quantify the magnitude of this offset between the measured

steady shear viscosity and the predictions of the Cox-Merz rule or Gleissle mirror relations.

We define the offset factor f as

f = (4.3.43)
q*(&) l=k
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1 02
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1 00
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Figure 4.3.7: Predictions of the Gleissle mirror relations for the FMM (lines) compared to measured
data for Xanthan gum(symbols); (a) steady shear viscosity r;(g) prediction (Eq.4.3.38) and (b) first
normal stress co-efficient 'P1(f) prediction (Eq.4.3.42). There is a consistent offset between the
prediction and measured data, which increases with increasing concentration. Values of a, p3, W and
G used to make the model predictions were taken from Table 4.3.1.
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Figure 4.3.8

The offset factor f (Eq. 4.3.43) as a
function of the shear rate k for dif-
ferent values of the damping func-
tion parameter a. 0 < f < 1 indi-
cating that the steady shear viscosity
is lower than the complex viscosity.
This arises from damage accumu-

------ - lated at the large strains imposed

during a steady shear experiment.
The values of the FMM parameters
are a = 0.60, P = 0.14, V = 208.54

'- Pa sa and G = 22.46 Pa sP corre-
10 103  sponding to the 1 wt.% Xanthan

gum solution with characteristic
timescale r = (V/G)la-) = 1846

s.

where q(f) and q*(o) * are given by Eqs. 4.3.15 and 4.3.34) respectively. We could also

replace q*(&)L by q(Q) obtained from the Gleissle mirror relationship (Eq. 4.3.38) because

both empirical relations give nearly identical predictions of the steady shear viscosity (cf.

Fig. 4.3.6). Note that as long as 0 < f < 1, the smaller the value of f, the larger is the devia-

tion between q(Q) and q*(o). We show the value off as a function of shear rate k for various

values of the strain damping coefficient a in Fig. 4.3.8. We do not compare this plot of the

offset with our measured data because that would mean plotting the ratio of two measured

quantities on the y-axis. Moreover, the y-axis only ranges from 0 to 1; it can be calculated

that even a 5-6% error in both q(Q) and q*(w), which is a reasonable assumption to make

in bulk rheology, can lead to as much as a 25% error in the calculated offset. Nevertheless,

from Fig. 4.3.8 we can discern various qualitative features: the introduction of the damping

function leads to a systematic offset of magnitude 0.3 f 0.9 between the Cox-Merz

prediction and the full nonlinear model. Similar offsets were found experimentally for all

the Xanthan gum concentrations tested in this study. The offset factor f also monotonically

decreases as a function of k. We see from Fig. 4.3.7(a) that this is true for the 1 wt.%, and

0.5 wt.% (not shown for clarity); however, the trend seems to be reversed for the 0.25 wt.%

solution, which we ascribe to experimental variability. The magnitude of this offset also

plateaus at both low and high k. These plateaus indicate that approximations to the steady

shear viscosity obtained from these empirical relationships will exhibit asymptotic behavior

1
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(to within a constant factor) that is identical to the full K-BKZ model, which compares well
with experimental measurements. In fact, using our analytical solution, we can show this
exactly; the plateau values of the offset may be calculated from the asymptotic values of r;(k)

from the K-BKZ model (Eqs. 4.3.23 and 4.3.24) and those of the Gleissle mirror relations

(Eqs. 4.3.39 and 4.3.40). Finally, we note that increasing the damping function parameter

a decreases the magnitude of the offset factor f (i.e. it increases the disparity between r;(k)

and r;*(co)I ). From 4.3.23 and 4.3.24, we observe that the plateau value of f depends

on the damping function parameter a in a power-law manner, and the low shear and high
shear plateau scale as f - a(a-1)/2 and f ~ a(#)/2 respectively. Renardy has shown that the

Cox-Merz rule is valid for materials with a broad spectrum of relaxation times to within a

constant factor [162]. We have shown in this section that for complex multiscale materials

with a relaxation modulus that can be well described by the Mittag-Leffler function, these

constant factors can be quantified, and vary gradually with shear rate.

4.3.4 The Delaware-Rutgers Rulefor Power-Law Materials

For other classes of complex fluids such as concentrated suspensions which exhibit a yield

stress, the Cox-Merz rule is known to fail. Instead, observations show that there exists a

new relationship for yield-like materials that relates dynamic and steady-shear measure-

ments, which Krieger has suggested be called the Rutgers-Delaware rule. Doraiswamy

et al. have developed a nonlinear model for such materials, and the existence of this rule

is rigorously proved [166]. The rule states that dynamic measurements performed at fre-

quency w and shear strain amplitude yo are equivalent to steady shear response performed

at shear rate k when yo6) = k. The starting point of their model is an empirically introduced

elastic Herschel-Bulkley type relationship for stress and strain. A critical strain parameter

Yc is introduced, at which transition from elastic to inelastic behavior takes place. In what

follows, we show that an appropriate choice of fractional constitutive model, along with

a suitable damping function can give rise to not only a constitutive equation of Herschel-

Bulkley type in steady shear but also a linear viscoelastic material response and agreement

with the Rutgers-Delaware rule.

We consider a model of Fractional Kelvin-Voigt type (FKVM) with a Hookean spring

in parallel with a springpot such that the total stress a is given by

a 7S+as (4.3.44)
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with as being the stress in the spring and asP the stress in the springpot. The elastic spring,

however, is nonlinear and plastically yields at a critical strain y, = o/G so that the consti-

tutive response is

CS = GyS, lysi Yc (4.3.45)

= Gyc, IysI > Yc (4.3.46)

where G is the linear elastic modulus of the unyielded element and yc is a critical strain

amplitude. We are now interested in determining the response of such a FKVM constitutive

model under a steady shear rate k. To find the steady state response for the springpot, we

use a K-BKZ approach as before, along with a damping function h(y) given by [167]

h(y) = 1, 1y1 Yc (4.3.47)

= 0, y1 > y

The choice of this damping function is motivated by the fact that materials such as concen-

trated suspensions yield catastrophically [184, 185], and the elastic modulus of the material

decreases sharply upon yield. We obtain from Eq. 2.2.12 and Eq. 4.3.10 and expression for

the stress in the springpot asP that is given by

t

as - f = jVj) (t - t')-"~lh(y) k dt' (4.3.48)
f (l - a)

-00

Making the variable substitution y =(t - t') and noting that k is constant, we obtain

00

PVa
=s~k ia j a (1 - ah(y) dy (4.3.49)

f (1 - a)
0

and substituting for the damping function h(y) from Eq. 4.3.45 and solving the integral,
we finally obtain

) =-y -aa (4.3.50)
The W F(2 - ss +a

The total stress a = as + sP in steady fiow is now calculated using Eq. 4.3.46 and Eq. 4.3.50
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as being

G y, + y -afa (4.3.51)
G (2 - a)

or equivalently the steady shear viscosity is given by

f )/) = Gy + Va 1-a a-1 (4.3.52)
y y r(2)- a)

Note that Eq. 4.3.52 is identical to the Herschel-Bulkley type stress-strain relationship pro-

posed by Doraiswamy et al. [166]. It is immediately seen that at low shear rates

) (4.3.53)
Y y

and at high shear rates

)~ Wat = Kf"-1 (4.3.54)
r(2 - ot)

The presence of the quasi-properties V and the power-law exponent a in the expression

for the steady shear viscosity, which are independently determined from linear viscoelastic

measurements, indicate that the linear and nonlinear rheology are interconnected through

the damping function and the parameter yc at which the material suddenly yields.

To derive the response of this elastoviscoplastic FKVM model in oscillatory flow, we

assume that a deformation profile of the form y = yo sin(w) is applied, in which yo is the

strain amplitude. Similar to Doraiswamy et al., we also assume that the material yields

upon an infinitesimally small deformation (i.e. although we are interested in small ampli-

tude oscillations and yo is small, we assume the critical strain yc < yo.) This means that

the nonlinear spring saturates and yields before the oscillating strain reaches its maximum

amplitude.

Because we use a FKVM type model with elements in parallel, the stresses in each ele-

ment are additive and hence

G'(w) = G'(s)(W) + G'(sP)(o) (4.3.55)

G"(6) = G"'(s)(o) + G"(1P)(o) (4.3.56)
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where the superscripts s and sp stand for spring and springpot respectively, as before. We

know from linear viscoelasticity theory that [19]

G'(s) (a)) = f G(s) sin(ws) ds (4.3.57)

0

G11(s) (6j) =j f G(s) cos(wos) ds (4.3.58)
0

Although the limits of the integral run from 0 to oo, we have noted that the spring yields

when the strain reaches y, in the first quarter cycle. This happens at time t, given by

1
t ( -sin- (4.3.59)

Therefore, in Eqs. 4.3.57 and 4.3.58, G(s) = G for s tc and G(s) = 0 for s > tc. Conse-

quently, the limits of the integrals in Eq. 4.3.57 and Eq. 4.3.58 span from 0 to tc. Evaluating

these integrals, we find that

G'(s)(w) = G(1 - cos wtc) ~ - (4.3.60)

G"(s)(W) = G sin otc = G E (4.3.61)

In Eq. 4.3.60 we have used the fact that yc < yo to approximate the cosine term using a

Taylor series expansion.

To find G'(sP) (w) and G"(sP) (o), we use the K-BKZ equation with the Tanner-Simmons

damping function given in Eq. 4.3.47. Therefore in this case Eq. 4.3.10 becomes

t
(sP)(t) - J(t - t')-(a+1)h[y(t,t')][y(t') - y(t)] dt' (4.3.62)

I'(1-a)
-00
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Figure 4.3.9

The irreversibility assumption. The

green line shows Iy(t)l = yo Isin cto.
the blue dashed line is the damping

I function without the irreversibil-
ity assumption, and there is instant

> microstructural recovery of accu-
mulated damage in the material

1 - - - -when y < yc. The red circles denote
the damping function we use in

0 o Equation 4.3.63, which accounts for
irreversibility and assumes zero re-

0 7 27 37 47 covery after the strain first exceeds
wt[-] the critical strain yc

and making the variable transformation u = t - t' we obtain

a -() = %la u"(a+)h[y(t,t')][y(t) - y(t - u)] du (4.3.63)
F(1 - a) f

0

In Fig. 4.3.9 we show as a green line the absolute value of an applied deformation of the

form y(t) = yo sin(ot) for two complete cycles. The blue dashed line is a plot of h(y)

defined in Eq. 4.3.47. Because h(y) depends only on the instantaneous value of the strain,

whenever ly(t) ye, h(y) = 1, as seen in the figure. This means that any structural damage

induced in the material at strains larger than yc is instantly undone when the strain drops

below yc. This instantaneous recovery of material structure, however, is unphysical; in real

materials there is typically a recovery time for the reversal of structural damage induced

at large strains. In other words, any damage accumulated in the initial increasing portion

of the sinusoidally oscillating strain will not be reversed instantaneously in the decreasing

portion of the strain cycle. Wagner and Stephenson call this the irreversibility assumption,

and show that for a LDPE melt, constitutive predictions of the rheological response in

reversing flows are much improved by accounting for irreversibility [186]. In line with

this assumption, we modify our damping function and assume that there is zero recovery

upon the strain reaching the critical value yc in the first cycle. Therefore, once h(y) = 0, it

remains zero for all subsequent times. This damping function is shown by the red circles

in Fig. 4.3.9, and this is the function we use in our model, given by Eq. 4.3.63.
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Substituting this damping function into Eq. 4.3.63 and noting that y(t) = yo sin (t, we

obtain

uc

a(SP) Vayj U-(a+1) [sin ot - (sin ot cos ou - cos cot sin ou)] du (4.3.64)
F(1 -a) f

0

in which uc is given by

uc= sin- (4.3.65)
Co \yo &OYo

because yc < yo. Upon simplifying and separating the in-phase and out of phase compo-

nents of the stress o-(SP)(t) with respect to the applied strain y(t) we obtain the storage and

loss moduli G'(sP) (&) and G'(sP) (o) respectively as

G(sP) - u(a+)(1 - cos ou) du (4.3.66)
(1-a) f

0
uc

G"I(sP)(&) -( u-(a+) sin ou du (4.3.67)
F(1 - a) f

0

To analytically solve these integrals, we note that 0 u uc < 1, and we approximate 1 -
cos(&ju) = (wu) 2/2 and sin(ou) ~ou, from appropriate Taylor series expansions. Therefore

we finally obtain

_ _ _ _ _ (c )2-a
G/(sP) (&j) 2(2 - a)T(1 - a) yo (4.3.68)

G (sP)(&A) ~ ad' (4.3.69)
F(2 -a) yo

We now use Eqs. 4.3.60, 4.3.61, 4.3.68 and 4.3.69 to find the overall elastic and loss moduli
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predicted by the model, and these are given by

G )2 V wa a2-a
G'(co) = - + (4.3.70)

2 yo 2(2 - a)F(1 - a)

Va&)a -a
G"(a) = G- - + _ 1-a (4.3.71)

yo T(2 -a) yo

with q*(oj) given by Eq. 4.3.32 as before. From Eqs. 4.3.70 and 4.3.71, we see that

G (w) -Yc< 1 (4.3.72)
G"(w) Yo

and therefore

SG"o(6)V1 + (G'(w)/G"(w ))2  G"(w) (4.3.73)
r6() =(43.)

and consequently

GYc + Va Y-a 3o-1 (4.3.74)
GYoo r(2 - a) (

Comparing this result with Eq. 4.3.52, we find that

r*(() = r(f) (4.3.75)

This result is identical to the Rutgers-Delaware rule. Krieger has noted in a brief cor-

respondence that the Rutgers-Delaware rule is of a fundamentally different form to the

Cox-Merz rule, and not merely an alternate form or extension of it [165]. The Rutgers-

Delaware rule applies to materials that are inherently nonlinear, and for which the period

of oscillation is much shorter than the structural recovery time of the material. We incor-

porate both these properties of the material using our choice of Tanner-Simmons damping

function, detailed in Fig. 4.3.9. The inherent nonlinearity is accounted for by assuming

Yc/Yo < 1; i.e. the elastoplastic material always yields and flows during the imposed oscilla-

tory deformation. The long timescale typically associated with structural recovery in such

materials is captured using our damping function by assuming zero recovery after the first

yielding event, as shown in Fig. 4.3.9.

We have shown above that with an appropriate choice of a fractional constitutive model,
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not only can we develop a nonlinearly-elastic constitutive formulation of the familiar Her-

schel Bulkley model, but the resulting theoretical framework naturally gives rise to rela-

tionships such as the Rutgers-Delaware rule that relates oscillatory and steady shear rhe-

ology. We emphasize that the advantage of using a fractional constitutive model together

with the K-BKZ framework is that we also obtain the linear viscoelastic response of mul-

tiscale yielding materials that exhibit a nonlinear rheological response of Herschel-Bulkley

type; the linear and nonlinear properties are naturally related through the damping func-

tion.

In addition to the Herschel-Bulkley model discussed above, there are other empirical

inelastic power-law models which can also be derived from first principles by an appropriate

choice of fractional constitutive equation. We illustrate this process below by deriving the

Cross and Carreau models starting with a Fractional Zener Model (FZM) and coupling it

with a damping function using the K-BKZ framework.

4.3.5 Fractional Zener Model (FZM) and Carreau-Type Flow

Curves

The FZM consists, in most general form, of a fractional Maxwell model branch in parallel

with a single springpot [55], resulting in three mechanical elements and six model param-

eters (a quasi-property and a power-law exponent for each springpot). Various forms of

power-law response can be obtained from this model depending on the specific values of

the power-law exponents and the corresponding quasi-properties of each of the spring-

pots. In this paper, we will consider one special case of the FZM, as shown schematically in

Fig. 4.3.10, in which two of the springpots are reduced to Newtonian dashpots. We show

below that this four parameter model is well suited for describing concentrated polymer

solutions and other shear-thinning multiscale systems.

The dashpot in the left-hand branch of the FZM has viscosity q, and accounts for the

background solvent viscosity. One of the springpots on the FMM branch (right-hand side

of the FZM) is set to be a Newtonian dashpot with viscosity % = q, and a = 1. This

dashpot accounts for the polymer contribution to the steady shear viscosity, and the shear

viscosity is bounded by qo = + q, as y -* 0. This FZM has a characteristic relaxation time

given by r = (q,/G)1I-P) . The third springpot has a power-law exponent pi and a quasi-

property G. Therefore, this model has a total of four parameters. We call this special case
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Solvent PolymerI rqp

Figure 4.3.10: A special case of the Fractional Zener Model (FZM) which we refer to as the Frac-
tional Viscoelastic Cross Model (FVCM).

of the FZM the Fractional Viscoelastic Cross Model (FVCM) and we explain this choice of

nomenclature below.

The constitutive equation of the FVCM can be written as [55]

a+ _p d- dy(t) qpqs d2-fly(t)
a(t) + i d-E e(t' = (rp+qS) + G dt2 -l (4.3.76)

Gdt G dt-f

Using the Laplace and Fourier transform techniques outlined in Chapter 2, the linear

viscometric functions may be determined as follows:

r2 j 0 f+2 cos(irfp/2)
G'(co) = 5(4.3.77)

() p)2 +(Gwf) 2 + 2qrpGcwf 1 sin(zf1/2)

G2r1 po2p+l + rGwI+ 2 sin(,p/2)
G"(w) = rlso + (4.3.78)

(rPO)2+ (Gcofl) 2 + 2qrpGof+ 1 sin(;r/p/2)

G(t) = qS(t) + Gt-fE1_p,p- (- t i-) (4.3.79)

Because we have an expression for the relaxation modulus G(t) we can use this in the K-

BKZ framework as before (Eq. 4.3.7) to compute the model predictions in large straining

deformations. To evaluate the integral we need to specify the form of the damping function.

Here we take the same simple form as Eq. 4.3.14 which adequately describes many systems

and introduces one additional model parameter.



NONLINEAR SHEAR DEFORMATIONS 143

We present simulations ofthe steady shear viscosity predicted by the FVCM in Fig. 4.3.11.

The values of qS and qp were chosen to be qs = 1 Pa s and qp = 100 Pa s. We choose to plot

the predictions on dimensionless axes, with the steady shear viscosity q(k) suitably scaled by

q, and qS and the x axis is a Weissenberg number Wi = rk, with r being the characteristic

relaxation time given above. Fig. 4.3.11(a) shows the effect of changing the exponent P of

the springpot, holding all other parameters constant. Increasing P decreases the slope of

the shear-thinning region; in fact, because the shear-thinning region is controlled by the

Maxwell arm of the FZM (the solvent term dictates the high shear rate viscosity plateau

qs), Eq. 4.3.24 is applicable and q(j) ~ kf-1. We also show the effect of changing the
strain damping parameter a in Fig. 4.3.11(b). We observe that for a = 0, the damping

function h(y) = 1, and there is no shear-thinning because there is no microstructural dam-

age accumulated in the material upon imposing large strains. For all non-zero values of a,

shear-thinning is observed; as a is increased, it can be seen that at the same value of Weis-

senberg number Wi, the scaled viscosity is lower as expected. In this manner, the damping

parameter a simply offsets each predicted curve from the next, when all other parameters

are held constant.

When we consider the role of the five model parameters in this form of the FVCM,

we find that the model has all the capabilities of the Cross model [19], which proposes the

following expression to capture the flow curves of polymer melts:

q) -+ (4.3.80) 1 + (f /f*)(1-n

where q(k) is the steady shear viscosity. The parameters qp and qS control the zero shear and

infinite shear plateau viscosities respectively, n dictates the slope of the power-law region

between the two plateau regions and k* is a characteristic shear rate that determines the

point of transition between the zero-shear plateau and the asymptotic power-law region.

In Fig. 4.3.12 we show as a solid line the predicted steady shear viscosity q(k) obtained for

the FVCM. The dashed line in the figure is the prediction of the Cross model. The model

parameters used to obtain these simulations are given in the figure caption, and it is clear

that the agreement between the FVCM and the Cross model is excellent.

The advantage of using the FVCM over the Cross model is three-fold: first, our ap-
proach also enables the determination of the linear viscoelastic material functions such as

G'(&) and G"(o) (Eqs. 4.3.77 and 4.3.78 respectively) for materials that exhibit a flow curve
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Figure 4.3.11: Simulations of the viscosity predicted by the FVCM model plotted in dimensionless
form as a function of the Weissenberg number Wi = r4. (a) Effect of varying the value of the
springpot exponent P, which controls the slope of the shear-thinning region. (b) Effect of varying
the damping function parameter a. For a = 0, no shear-thinning is observed.



NONLINEAR SHEAR DEFORMATIONS 145

Figure 4.3.12
102 -- FVCM: Cross

--- Cross Model Simulations of the the steady shear

. Cox Merz viscosity q(f) as a function of shear

...... FVCM: Carreau rate k obtained from the FVCM
4% model. For all curves, qp = 100

.. 1 Pa s and q, = 1 Pa s. The FCVM
101 \(Cross) prediction was obtained us-

ing a damping function of the form

h(y) = 1/(1 + 0.1y2 ) and a springpot
withp = 0.3 and G = 10 Pa sf,

and r = (qp/G)1(1-f) = 26.83

100 s. To generate the Cross model
' ' ' simulation, the same values of

10- 3 10-2 10- 100 101 102 10 3  _- = 26.83 s and n = 0.3 were

' [s-,] chosen.

that is captured by the Cross model. The inelastic Cross model does not have a linear vis-

coelastic limit at all. For example, if the shear rate ' were stepped up from k, to k2 > k1,

the shear stress in the Cross model responds instantaneously. Second, the linear viscoelastic

parameters play a role in nonlinear behavior and their relative contribution is weighted by

the damping function. We illustrate this point in Fig. 4.3.12 by showing the magnitude of

the complex viscosity Iq*(&)I at w = ', i.e., the prediction of the steady shear viscosity ob-

tained from the application of the Cox-Merz rule (Eq. 4.3.31) to the FVCM. Here too, we

see that the magnitude of shear-thinning obtained from the linear viscoelastic properties

agrees closely with the full nonlinear prediction as well as with the empirical Cross model.

We also note in passing that the small offset between q(Q) and q*(&o) __ can be quantified

in terms of the damping function parameter a, as discussed previously. The third advan-

tage of our fractional constitutive modeling approach to the Cross model is that the FVCM

model also yields a prediction of the first normal stress coefficient P1 (i) for materials such as

concentrated polymer solutions that exhibit a Cross-like flow curve under steady shearing

flow.

To generate the simulations of the FVCM in Fig. 4.3.12, note that we chose a damping

function of the form h(y) = 1/(1 + ay2 ). In their review, Rol6n-Garrido and Wagner

discuss more complicated forms of the damping function [174]. Conceivably, depending

on the microstructural properties of the material, the form of the damping function could

be different from the one we have chosen above. We show as a dotted line in Fig. 4.3.12

the simulation of the steady shear viscosity q(k) obtained from Eq. 4.3.7 with the relaxation
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kernel given by Eq. 4.3.79 and a damping function of the form h(y) = 1 -. We

observe that the transition from the zero shear viscosity plateau to the power-law shear-
thinning region is now'sharper', displaying behavior of the kind exhibited by the empirical
Carreau model [24, 187]. Hence, by controlling the damping function, we can reproduce
a wide variety of steady flow curves (as commonly observed experimentally); these four
linear viscoelastic parameters in the model remain unchanged and are determined from
independent linear deformation histories such as SAOS.

4.4 Conclusions

There is a wealth of rheological data available in the literature on complex fluids that exhibit
broad power law-like behavior in their linear viscoelastic material properties. It has been
shown in previous studies that fractional constitutive equations provide an excellent frame-
work to quantitatively describe the linear rheological properties of multiscale materials.
However, there was no mechanism for extending these models to nonlinear deformations.
Using the concept of quasi-properties [80], it is possible to compactly describe the lin-
ear rheology of power-law materials using an appropriate choice of fractional constitutive
model. These models can be visualized as consisting of springs, dashpots and springpots in
series or parallel. The resulting constitutive equations of these models are linear ODEs and
can also be written in terms of linear convolution integrals with a relaxation modulus that is
of Mittag-Leffler form. We have extended these linear viscoelastic models to make predic-
tions of the nonlinear behavior of power-law materials using the K-BKZ framework. To
evaluate the resulting integrals, we are required to determine the appropriate form of the
material's damping function, for which we use a series of step strain experiments with in-
creasing strain amplitude. This introduces just one additional model parameter, and results
in a nonlinear integral equation given by Eq. 4.3.7. We use this model to make accu-
rate predictions of both q(k) and ' 1 (k) for Xanthan gum solutions and provide analytical
approximations for both material functions.

Evaluating empirical rules such as the Cox-Merz relationship and the Gleissle mir-
ror relations using this constitutive framework show that a shift factor exists, and that

q*(>)I . > q(f). This is because the small amplitude deformations upon which these
empirical rules are based on do not account for the structural damage that is accumulated
during a nonlinear deformation. Using our integral formulation, we quantify this shift fac-
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tor (or offset) in terms of the linear viscoelastic as well as damping function parameters. In

the limit of an exponential relaxation kernel of Maxwell-Debye form the offset is zero, but

systematically increases for relaxation kernels of Mittag-Leffler form that more accurately

capture the broad relaxation dynamics of complex materials such as Xanthan gum.

We also address a semi-empirical relationship that is fundamentally different from the

Cox-Merz rule, but also relates steady shear and oscillatory experiments, known as the

Rutgers-Delaware rule [166]. This rule applies to viscoelastoplastic materials such as con-

centrated suspensions exhibiting yield-like behavior beyond a critical strain. Starting with

a Fractional Kelvin Voigt representation we derive from first principles a viscoelastic gen-

eralization of the elastic Herschel-Bulkley equation, which correctly follows the Rutgers-

Delaware rule. Finally, we have also shown how to derive a nonlinear viscoelastic model to

quantify the nonlinear rheology of shear-thinning viscoelastic materials such as concen-

trated polymer solutions exhibiting Cross or Carreau-type behavior in steady shear flow.

In this chapter, we have presented a framework that helps translate between the linear

and nonlinear rheology of power-law multiscale materials. There are only two compo-

nents that need to be determined within this framework: the fractional relaxation dynamics

(specifically the memory kernel which describes the linear viscoelastic response), and the

strain-dependent damping function. The extension of the fractional constitutive frame-

work to the Cross or Carreau model detailed here opens up the possibility of accurately

describing the rheological response of a large class of complex fluids in a general manner,

using only a few model parameters. The resulting constitutive models provide a compact

but accurate description of the linear and nonlinear viscoelastic properties of complex liq-

uids and soft solids which should be useful for quantitative materials diagnostics, and quality

control comparisons as well as for computational simulations. For geometries in which the

flow field contains streamlines with complicated shapes, the stress and strain-rate fields can

be calculated in the entire domain by considering the coupled system of the K-BKZ consti-

tutive equation and the Cauchy momentum equations and solving the system as a Volterra

integrals for every mesh point.

Thus far in this thesis, we have only studied shear deformations. However, as we have

noted in the Introduction, extensional deformations or of immense importance in various

industrial and biological applications of complex fluids. Moreover, the extensional proper-

ties of a complex fluid can be very different from its behavior in shear [61]. The next two

chapters, we focus our attention on the extensional rheology of complex fluids.
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5 Small Strain Extensional Deformations:

Tacky Polymer Gels

In the preceding chapters, we have focused on the linear and nonlinear shear rheology of

power law complex fluids. In this chapter we begin our analysis of extensional deformations

by analyzing the behavior of crosslinked polymer gels under small strains. These materi-

als display the broad power law response that is typical of multiscale complex fluids [36].

The mechanical properties of Pressure Sensitive Adhesives (PSA) - which are very often

crosslinked polymeric systems [188, 189] - are measured using a 'tack' experiment and the

resultant forces are measured as a function of strain. We show how a simple three element

fractional constitutive model coupled with the kinematics of a tack experiment performed

on a Newtonian fluid leads to the accurate predictions of tack forces in the small strain limit.

We show how our predictive model gives accurate results for the measured normal force in

a tack experiment using the material parameters determined from SAOS. We next exam-

ine the inverse problem; we show how one may determine the linear viscoelastic response

of the polymer gels using their tack responses alone. We establish how one may analyti-

cally derive accurate approximations for both the magnitude and temporal location of the

peak force in a tack experiment. For complex fluids that flow at long timescales, we have

noted that the FMM is a more appropriate constitutive model than the FKVM. Therefore

we also present a complete analysis of the FMM and predict the tack response of fractional

Maxwell-like materials under conditions of constant velocity as well as constant strain rate

applied deformations. We derive analytic solutions for the tack force that approximate the

exact numerical solution very closely. We compare our predictions with experimentally

obtained tack forces for Locust Bean Gum (LBG). Finally, analogous to the FKVM case,

we describe how one may achieve accurate closed-form expressions for the tack force by a

careful analysis of asymptotic behaviors.

149
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5.1 Introduction

Pressure sensitive adhesives (PSAs) are a class of adhesives that bond to a surface upon the

application of even a light amount of pressure without leaving any residue on the substrate

when peeled off [188, 190] i.e. the bonding does not arise from chemical or covalent inter-

actions. We encounter them in everyday life in products such as Post-It Notes®, stickers,
packaging labels and in specialized applications such as bioelectrodes [191]. These adhesives

are very often composed of chemically crosslinked polymers [192, 193] and therefore their

viscoelastic properties play a major role in their tack response [189]. In a tack experiment, a

probe is brought towards the surface of the adhesive and a specified contact force is applied

for a specified amount of time (known as the dwell time) [194, 195]. The probe is then

peeled away either at a constant velocity or constant strain rate (exponentially increasing

velocity) and the resulting force vs. strain curve is measured. An example of such a curve

for a typical tack experiment is shown in Figure 5.1.1. From the tack force vs. displace-

ment curve shown,we observe two important features of a tack experiment. There exists a

peak in force at small displacements (or equivalently small strains) followed by a large strain

displacement (separation) W

Figure 5.1.1

A diagram of a typical tack exper-
iment showing the variation of the
normal force as a function of dis-
placement, reproduced from Ref.
[196]. The tack force is also fre-
quently plotted as a function of
the strain. We observe that at small
strains there is a peak in force, fol-
lowed by a large strain flow regime,
sometimes exhibiting strain hard-
ening. In this Chapter, we show
that this peak in the tack force arises
from the lubrication flow of the
polymer at small strains. The in-
set plot schematically shows a tack
experiment.

adhesive
layer

..

0
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flow regime. In this figure the tack force exhibits a plateau as a function of displacement;

however in many tack experiments, nonlinear effects such as strain hardening is visible

[189].

In this Chapter, we demonstrate how the peak in force in a tack experiment arises from

the lubrication flow of the polymeric material at small strains. Because the value of this peak

force determines the strength of the adhesive, an a priori prediction of the force based on

the rheological characterization of the material would greatly aid in the design of pressure

sensitive adhesives. We perform our analysis using data obtained by Wyatt and Grillet for

a crosslinked flurosilicone polymeric gel [36]. We first show that a Fractional Kelvin Voigt

Model (FKVM) characterizes the shear rheology over nearly five decades of frequency using

just three parameters. We then couple the stress-strain relationship of the FKVM with the

lubrication flow solution of a Newtonian fluid, and demonstrate that this leads to accurate

predictions of the small strain tack force. Finally, we extend the analysis to sol-like materials

that flow at long times, for which the FMM is a more accurate constitutive model.

5.2 The Fractional Kelvin-Voigt Model

5.2.1 SAOS Fitting and Parameter Determination

In the analysis that follows, we will work with data from the low modulus gels reported in

[36]. We first begin with the analysis of the SAOS data for these gels and fit these data to

the FKVM model (equations 2.3.22 and 2.3.23). In figure 5.2.1a we show the Cole-Cole

plot of the SAOS data from the low modulus gels, and figure 5.2.1b shows the same data

plotted as a function of frequency. G'(w) shows a plateau at low frequencies indicating that

one of the elements may be set to a spring (,6 = 0).

The dashed lines show the corresponding fits of the FKVM. It is seen that the fit is

excellent; the low frequency plateau modulus is captured by the spring, while the high

frequency power-law response (which is dominated by the rheology of the viscous polymer

sol) is closely modeled by the springpot. Note that with just three parameters G, V and

a, we can capture the entire dynamic range of the material response of the gels. From

these fits, we obtain the values of the parameters in the FKVM that characterize the gels as

a = 0.59,fp = 0,V = 433.50 Pa sO.59 and G = 108.27 Pa. We also calculate the relaxation

time trel = 1/c of the polymer gel using 3.3.7 to obtain trel = 0.63s. We show next how
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Figure 5.2.1: SAOS data of the polymer gels (symbols) shown along with the FKVM fits (dashed
lines). (a) Cole-Cole plot. (b) The same SAOS data plotted against angular frequency >.
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the normal force in a tack test may be predicted using just these three material parameters.

5.2.2 Determination of the Normal Force for a Probe Tack Test:

Constant Velocity Applied Deformation

In this chapter, we are interesting in examining the tack response of viscoelastic polymer

gels. The tack response of such materials are conventionally measured using a probe tack

test [189, 196, 197]. The geometry of the tack test is schematically shown in figure 5.2.2.

The upper plate is pulled apart according to a specific displacement profile - notably (1)

constant velocity, or (2) exponentially; the latter leads to the imposition of a constant nomi-

nal strain rate on the material being tested. The force exerted on the plates by the deforming

viscoelastic material is measured as a function of time to probe both the linear and non-

linear tack response of the material. We define the instantaneous aspect ratio A = Ro/h(t),

in which Ro is the radius of the plates, and h(t) is the separation between the bottom and

top plates as a function of time.

The definition of the axes used in what follows is shown in figure 5.2.2, with gray rep-

resenting the upper plate, and blue representing the deforming polymer gel. We begin the

analysis with the application of the lubrication approximation to the Cauchy momentum

equations retaining only the viscous and pressure terms to obtain

O- = -7r (5.2.1)
or oz
(9p = 7zz (5.2.2)
8z 9z

rzr and rzz are given by the constitutive equation of the fractional Kelvin-Voigt model, (i.e)

zr = V aYzr + G dYzr (5.2.3)
dta dtfi

T dzz = V daYzz + GdYzz (5.2.4)
dta dtfl

The use of the lubrication approximation is justified because of the large initial aspect ratio

AO = Ro/ho (with ho being the intiial separation between the plates) imposed in the exper-

iment. Due to the relatively slow withdrawal speed of the upper plate (uo = 0.1 mm/s),

the aspect ratio A remains large enough to justify the use of the lubrication approximation



Figure 5.2.2

The definition of the axes used in
this document. The upper plate (di-
ameter 8 mm) is shown in gray, and
the polymer gel is shown in blue.
The initial aspect ratio depicted
here is to scale.

across nearly three orders of magnitudes of experimental time-range. Substituting 5.2.3

and 5.2.4 into 5.2.1 and 5.2.2 respectively, we obtain

V daYzr
( dzdtz

(Vdta
G dfl

G dfi

(5.2.5)

(5.2.6)

We first reformulate Equation 5.2.5 as

d' aYzr
dta az
da- 1 ak
dta-1 a

+G da 8 Yzr
dta az

z+G df- 1 afzr
dtfl-1 az

= r + G r
dta-1 az2 dtfl-1 z2

where we have used the fact that kzr = "r (as will become evident, v = 0).

the equation into Laplace space we get

a2 vr (t)

49z 2ar ]+ Gs #-Y a2vr(t)
49Z2 I

Transforming

(5.2.10)

(5.2.11)[a2vr(t)] G V i= 2 Vz2 W G + V
anz2 c e g1fe S-a

and converting back into real space we get

ap
a~r

Vt-a Gt-#
)+

(F(1 -a) F(1 -/#))
a2vr (t)

az2
(5.2.12)
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tz
r

'ap
(9a

a9p _ a
az az

ar
(5.2.7)

(5.2.8)

(5.2.9)
a- 9V(t') dfl-1 a2 (p')
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Notice that the product in Laplace space is converted into a convolution in real space, de-

noted here by the symbol *. Moreover, the first term in the RHS of 5.2.12 is nothing but

the relaxation modulus of the fractional Kelvin-Voigt model (equation 2.3.18). Therefore,

we arrive at an integral akin to the Boltzmann superposition integral, except that instead

of convolving the relaxation modulus with the strain rate, we now convolve it with the
a2 Vr(t)

quantity 2, i.e the pressure field is determined by the integral

Op = ((t - t')-a G(t - t')-P a2vr(t'
Or = ) + W- dt' (5.2.13)

0

Using an identical procedure involving 5.2.2 and kz = 2 , we also have

t
9p V(t - t')-a G(t - t')- O a2 Vz(t')-Z =2 +( - ) W dt' (5.2.14)

0

To find vr(t) and vz(t), we assume that the imposed deformation on the filament is

determined by the kinematics of the conditions of the tack test. The underlying motivation

in this assumption is that the flow field determines the strain field and hence-through the

constitutive equation-the stress field in the deforming filament. The pressure field is then

found from the stress field using the Cauchy momentum equations derived above. Once

the pressure field is determined, the force exerted on the plate by the deforming filament

may be determined by integrating the pressure field over a cross section of the filament

parallel to the surface of the plate. The FKVM yields a temporal response to various applied

deformations; however, because the model is linear and the stresses are determined by linear

convolution integrals, shear-thinning is absent in this model. Therefore, we may utilize the

same flow field that would be realized from the result of performing a tack test on a constant

viscosity Newtonian fluid and we have [198]

vr(r,z,t) = -3r (t) 1 h() (5.2.15)
h (t) ) h Z Z

vz(z, t) = h(t) ( (3 - (5.2.16)
h(t ) h(t )

where the origin is located at the center of the bottom plate (see figure 5.2.2). We will
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Figure 5.2.3

The profiles of the deforming fila-
ment of polymer gel at different in-

(c) stances of time during a tack exper-
iment for contact force F, = 300g.
(a) t = 0 (b) t = 5tp and (c) t = 20tp.

(b) Here t, ~ 1 s was determined based

(a on the observation of the exper-
imental data. This diagram is to
scale, with the upper plate of diam-

eter 8 mm.

henceforth denote h(t) and h(t) simply by h and h respectively for clarity of notation. For

the value of h = uo = 0.1 mm/s used in these experiments, a diagram to scale of the profiles

of the filament at different instances of time are given in figure 5.2.3. The profiles were

calculated by integrating the velocity field given by equations 5.2.15 and 5.2.16 forward in

time to track the location of Lagrangian particles of fixed identity that were located on the

surface at t = 0 [198]. The quantity t, shown in the figure is the temporal location at which

the peak in force is observed. These values of t, may be obtained from the experimental

data.

From 5.2.15, we obtain

a
2 Vr(t) _ 6rh _ 6ruo

az2  h (ho+ uot)3

= 6r 1

u 2 (ho/uo+ t)3

(5.2.17)

(5.2.18)

Substituting 5.2.18 into 5.2.13 we have

Op 6r
Or u2

(i.e) or = Ir ) W
9 r u0

SV(t - t')-a G(t - t1)-f 1 ,+ ,.dt'

F(1 - a) F(1 - /) (ho/uo + ')3
0

where I3(t) is a definite integral that has been defined and determined in Appendix D.
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(5.2.19)

(5.2.20)
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Because I3 (t) is a function of time only, we have

3r2

p(r,z) = 2 I3(t) + f(z) + C(t) (5.2.21)
0

To determine f(z), we first take the partial derivative of 5.2.14 with respect to z, and then

substitute for p from 5.2.21. From observation of the expression in 5.2.16 we see that O9
3

is independent of z and is a function of time alone. We take this additional partial derivative

to eliminate the variable z from the integral. This is because we are interested in the material

response of the fluid element located at z = h(t)/2, which is a function of time. We would

like to eliminate this function while carrying out the convolution integral. Therefore we

substitute equation 5.2.21 into the equation

t
_2p = 2 ('V(t - t')-a G(t - t')-f a3vz(t')

= 
22  r(-)+ dt' (5.2.22)

az2 f (1 - a) W( - #i) 19z3
0

From 5.2.16 we have

a3 vzWt) h
v( = -12- (5.2.23)

8z3 h

Substituting this into 5.2.22 we have

It (VC - t)-" G(t - t')-l -12h

f"(z) = 2 ( + I. dt' (5.2.24)
jf (1 - a) F(1 - fi) h(t') 3

0

24 V(t-t')-a G(t - t')- 1
S + dt' (5.2.25)

u J r(1( -a) (h0/u0 +t')3
0

24
= 2 13 (t) (5.2.26)

U 0

1 2z2

= f(z) = 2 I3 (t) + C1 z (5.2.27)
U 2
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where f'(z) = df(z) Therefore, from substituting f(z) into 5.2.21, we have

3r2  12z 2

p(r,z) = 3-I3(t) - 2 3 (t) + CIz + C(t) (5.2.28)

The additional partial derivative in 5.2.22 introduces an extra constant C1, which we may

find using a suitable boundary condition. We know that rzz vanishes at the rigid surface of

the plates [199]. Furthermore, we know that the pressure field variation in the z direction is

symmetric. These two observations give us the boundary condition (a detailed derivation

is found in Appendix D)

arzz = 0 (5.2.29)
1z lz=h/2

Equations 5.2.2, 5.2.27 and 5.2.29 implies

C1 = 2h3(t) (5.2.30)
0

Substituting this value of C1 into 5.2.28, we obtain

p(r,z) = 3r2  ) + 12z(h -z) + C'W (5.2.31)
U2 U2

0 0

C(t) can be determined by specifying the stress boundary condition at the disk edge. We

use the boundary condition [199-203].

ozz = 0 at r = Ro,z = 0,h (5.2.32)

(i.e.) p = rzz at r = Ro,z = 0,h (5.2.33)

where azz = -p + rzz is the total axial component of the stress. Note that we may use the

boundary condition either at z = 0 or z = h to arrive at

3R2
C(t) = - 3(t) (5.2.34)

U0
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Substituting C(t) back into 5.2.31 we obtain the pressure field in the deforming filament as

3(r2 - R)
p(r,z) = 2 I3(t)

0

+ 12z(L - z)
+ 2 3 (t)

0

We can now find the force to be exerted on the plate to balance that arising from the

total stress at the midplane

R

F f - + Tzz) Iz=hI2 - 2;rr dr

0

(5.2.36)

where R = R(t) is the radius of the mid-plane of the filament as

rzz, we substitute 5.2.35 into 5.2.2 and solve for rzz to obtain

=zz f(z) = 12z(L - z)13

a function of time. To find

(5.2.37)

Therefore,

3(R - r2 )
-p + Tzz = 2 13 (t)

U0

and we have

3(R - r2)
2 I3(t) 2r dr

U0

R\4 13 (t)
k0)

(5.2.35)

(5.2.38)

R

F =f

0
_67r (

U2

31rR4
0

U2U0

J 13 (t)

2R 2
0

2

R)2 1

(5.2.39)

(5.2.40)

(5.2.41)
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We now use the result of Spiegelberg et al. [198] that relates R and h:

Rio
= h 3/4

=o = A3/4
R

where the stretch ratio A is defined as

A _ h _ ho +uot 1 + jot
ho ho

Here io = uo/ho is the nominal strain rate applied. Substituting 5.2.43 into 5.2.41 we obtain

37rR4/i

F = u \3/2
(5.2.45)

We may find the value of 13(t) by setting n = 2 in D.1.12; this results in an incomplete Beta
function. Therefore, we ultimately arrive at an analytical expression for the force F applied

by the deforming filament on the plate as

( 1 1~ [V f(U0)aA3/2 -2/3 [(1- a) \ho) 1a+2 -1/a(1 - a, -2) +
(2A.

F(j - fl) -/a( -p-2

From figure 5.2.1, we see that p = 0 for our data. Therefore, upon setting p = 0 in

equation 5.2.46, the second term in the brackets simplifies to

1
1+ a -i/a(l -fp,-2) = -2)

1-1/A

Sf v(1 V)-3 dv

0

2 2

Substituting the equation above into 5.2.46 we obtain the force expression for the fl = 0

(5.2.42)

(5.2.43)

(5.2.44)

3=rR4

F 2
0

G
I'(1 - i) (ho)

(5.2.47)

(5.2.48)

(5.2.49)

13
2A3 ()
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' ' I ' ' I ' 'Figure 5.2.4
Analytic solution Comparison of the analytically de-

6 o Numerical solution rived solution for the tack force
(equation 5.2.50 with a numeri-
cal solution obtained from solving

4 1I 3 (t) in 5.2.45 numerically. The
numerical and analytical solutions
coincide exactly. a = 0.59, = 0,
V = 433.50 Pa sa, G = 108.27
Pa, RO = 4 mm, ho = 0.159 mm,

uo = 0.1 mm s-1.

0
0 2 4 6 8 10

Time [s]

case:

3 4 a u
F = ) [ ( - + a )11/A( - a, 2) (5.2.50)

h2 A3/2 2/13 2 A2 F(1 - a) (ho Aa+2

To check the analytical solution in equation 5.2.50, in figure 5.2.4 we plot the analytical

solution (line) against the numerical solution to 5.2.50 (symbols), (i.e.), I3(t) is numerically

determined as a function of time. We observe that the solutions are exactly identical, and

our analytical formulation is correct. We now plot 5.2.50 after substituting in the exper-

imental values of RO, uO and ho, and the values of a, V and G determined from the SAOS

experiments. Note that there are no tunable fitting parameters or degrees of freedom in the

force prediction. These results are shown in figures 5.2.5a and 5.2.5b respectively. How-

ever, we observe that are predictions are more accurate if the value of uO used in the force

expression is uO = 0.13 mm/s instead of uo = 0.10 mm/s. We do not capture the non-

linear strain hardening implied by the upturn in the force-extension curves at very long

times because the fractional Kelvin Voigt model is a linear viscoelastic model which can-

not predict strain-hardening. Replacing the Hookean spring term G in our model with a

neo-Hookean spring (to capture the strain-hardening resulting from large extensions of

the rubbery cross-linked network) will help us to capture even better the full tack response

of the material as well as the total work of adhesion measured for these soft gels.
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6 1
F, [gmf]

5 o 30g
o 100g

40 o 300g
o 500g

0-0 1000g

3

2

0
0 2 4 6 8 10

Time [s]

(a) Early times t 20 s.

6
F, [gmf]

5 o 30g
0 100g
4 300g
o 500g
0 1000g

3 -

1

0 0

0 20 40 60 80 100
Time [s]

(b) Long times t > 20 s.

Figure 5.2.5: Predictions of the tack force based on 5.2.50, with each contact force value repre-
sented by a different color. Predictions are lines and measured data are symbols. The value of ho for
each contact force was obtained from measurements as the value of h when the force on the plate
changes sign, and u0=0.13 mm/s.
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Figure 5.2.6: Prediction of the tack force based on equation 5.2.50. These are the same predictions
as shown in the previous figures, but plotted here on a log-log scale to exemplify the goodness of
the prediction for short times t 20 s and small strains.
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Closed form analytical solution through asymptotic analysis.

The analytical expression for the final force given in 5.2.46 readily lends itself to an asymp-

totic analysis, and it is possible to derive analytical expressions for the early times and long

time regimes. We will show using these asymptotes how one may determine the SAOS
response of the polymer gels using a tack test.

Early times

For x < 1, the incomplete beta function Rx(a, b) may be approximated as [204]

Rx(a,b) ~ + ... (5.2.51)
a

Let the stretch ratio A = 1 + E +..., e < 1. Therefore 5.2.50 now becomes

3;rR 1 
F =h2 (1 +e) 3 /2  2(1+6)3

G (uo~fi 1 1-1/(l+e)(1 - f, -2) + (5.2.52)
[(1- fl) \ho/ (1 + -)+2

(1 - a) (1 +E)a+2 1-1/(1+E)(1 - a, -2)

Using the binomial expansion (1 + ) = 1 + ne for e < 1, and using the approximation for

ax(a, b) given in 5.2.51, the expression for the force simplifies to

3;rR4 G uof [1 - (P+ 2)e]evi
F = h h -+

2h0 (1-p)\hJ 1-fp (5.2.53)( u0 a [1 - (a + 2)E]El-a 2 )
1(1 -a) ho 1 - a

3;rR4 _0 " .1-a G i
F ~ - - + fl(5.2.54)

2h2  -(1 -a) ho)1 - a 1(1-f) ho 1 -( 5
0
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Furthermore, A = 1+ !O t 1 + e, and we have e = (uo/ho)t. Thus 5.2.54 reduces to

3;rRoito V iG tl-f
=Fe ~[+ for Ot < 1 (5.2.55)

2h2 (1-a)1-a r(1-fp)l1- p

Therefore, with the knowledge of the experimentally imposed values of uo and ho, and the
value of Ro based on the fixture used for the tack experiment, one may, in principle, fit an
equation of the form F = At' to the early times regime of the force response in a tack test
to determine the material quasi-property V and the power-law exponent a from the fitted
co-efficients A and b respectively.

It can be shown that the short time asymptote given in 5.2.55 reduces to the correct
Newtonian limit (a = 1). To see this, we calculate

31rR4  V I o ti-a
lim 0 (5.2.56)
a->1 2h (-a) ho 1-a]

3xR4 V
=lim 0R [ (5.2.57)

a->1 2h2 (1 - a)I(1 - a)

We know that

lim =lim= 1 (5.2.58)
a->1 (1 - a)F(1 - a) a->1 f(2 - a)

Therefore, we have

FNewtonianll 2=2R 22o (5.2.59)
0

where the quasi-property V is nothing but the viscosity q when a = 1. This is the correct

Newtonian limit for the initial force during a tack test [198].

Long times

We can also determine the long time asymptotic response of the force expression derived

in 5.2.46, for the case A >> 1. We first consider 5.2.46 which we write not in terms of the

incomplete beta function a.,(a, b) but in terms of the definite integral (cf. equations 5.2.20
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and 5.2.45)

3F=R( 1 1 V(t - t') + G(t - t') 1 ,
U2 =13/2  223 F(1 - a) + (1 -/#) (ho/uo + t')3

0 0

We use the notation in the appendix to write this as

3;rR4 1 VG
F -In + - Inp (5.2.61)

U2 3/2 2 ) J(1 - Ia 1(1 - #)U0

where

t

Ia = (t - tl) dt' (5.2.62)
naJ(ho/uo+ t')3

and Infi is determined from Ina using the transformations a -> /3, V -> G. The term (ho/uo +

t'- 3 becomes small for large values of t' and the contribution of the integrand to the total

integral becomes smaller as the dummy variable t' increases. Therefore, we expand the

term (t - t')-a using a Taylor series and retain only the C(t'0 ) term. This approximation is

similar to the Laplace's Method discussed in [205]. We now have (t - t')-" t-a + 5(t')

and Ina simplifies to

t

ft-d (5.2.63)
I (ho/uo + t')3

0

(O2 1 t-a =(O2 (1 t-a (..4=-1- 1(5.2.64)

To (1 + tot)2 2 ho 2 2

where A = 1 + tot is the stretch ratio. In an identical fashion, we obtain

Inf ( - (5.2.65)
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Substituting 5.2.64 and 5.2.65 into 5.2.61, we obtain

F RO 1  1 V + GF - t23a t-) 1((5.2.66)22 A3/2 2A ( ) ( )2

which upon further simplification yields

F 3rR + for A >> 1 (5.2.67)
2h2 13/2 r(1- a) +(1 - p)

0

Similar to the early time asymptote case, because we know Ro,uo and ho, we may de-
termine the material parameter G from the tack test (f8 = 0). We note that the 'long time'

asymptotic analysis only applies to the regime of the experiment where no non-linear strain

hardening is present. [206].

We have shown in this subsection that on simply performing a tack test, and sub-

sequently fitting 5.2.55 and 5.2.67 to early times and long times (non-strain hardening

regime) we can determine the material parameters a, V and G that characterize the poly-

mer gel. We can then use these parameters to predict the behavior of the gel to other linear

deformations, for example SAOS. We substitute the values of a, V and G found from the

tack response asymptotes into equations 2.3.22 and 2.3.23 to determine G'(w) and G"(6)

respectively. For example, we show in figure 5.2.7 the prediction for the SAOS response

(lines) of the polymer gel based on extracting a, V and G from the tack response under a

contact force of F, = 300g. The measured SAOS response is shown as symbols, and it is

seen the prediction quantitatively follows the measured data.

Maximum force location and magnitude

In the preceding two subsections, we have determined the early and long time asymptotes

Fe (equation 5.2.55) and F (equation 5.2.67) respectively. We now seek to find the location

and the magnitude of the peak force in the tack experiment. We will make use of the

asymptotes determined above as follows.

We first approximate the analytically derived force F in a tack test (equation 5.2.50) by

constructing a composite force Fcomp that has a similar asymptotic form as the exact analytic
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: Figure 5.2.7
G'(w) The prediction of the SAOS re-

r 4i0 G"(w) 'csponse (equations 2.3.22 and 2.3.23)
G'() predicted of the low modulus polymer gel

- - - G"(w) predicted based on the values of a,V and G
determined from the short and long

t 103 time asymptotes of the tack experi-
ment (equations 5.2.55 and 5.2.67).

S 102

10-2 10-1 100 101 102 103

w [rad s- 1]

solution (given by equation 5.2.50):

1 - + 1 (5.2.68)
Fcomp Fe Fi

This choice is motivated by the fact that the above equation reduces to the right limits

at early and long times, namely, Fcomp = Fe and Fcomp = F for t/t, < 1 and t/tp >> 1

respectively, with tp being the time at which the maximum force Fp occurs. Fcomp represents

the step responses of the (linearly independent) spring and spring-pot terms as acting in

parallel. Substituting 5.2.55 and 5.2.67 into 5.2.68 we get

1 (003)2 (1 - a)T(1 - a)t"-i
Fop= rG + H O(5.2.69)

Fcomp - fG 1h/eio

where I = 3;rR4/2h2 is a constant geometric factor for tack tests, and to = uo/ho. We

now wish to maximize Fcomp, or equivalently, minimize 1/Fcomp. Therefore, we seek to

determine the value of tp such that

- = 0 (5.2.70)
dt Fcomp t=tp
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10-1 100

Time [s]

101

Figure 5.2.8

Comparison of the composite force

Fcomp given by equation 5.2.69
(symbols) against the full analytic
solution given by equation 5.2.50

(solid line). The short and long
time asymptotes are represented as
dashed lines. The peak force F, and

it's temporal location tp are labeled.

102

Substituting 5.2.69 in 5.2.70 and evaluating gives

2 WO t2 = (1 - a)2 GF(1 - aft2

= (2(1 - a)2 GF(1 - a) 2/(2-2a)

0

Substituting the value of t, into 5.2.69 and solving for Fcomp we determine the peak force

F, as

2(1-a)

3fJ-'WO (2(1 - a)2 GF(1 - a) 5-2

(1 - a)(3 - 2a)F(1 - a) 3W 5/2
0

(5.2.73)

To aid in understanding the short and long time asymptotes and the resulting composite

function, in figure 5.2.8 we compare these quantities to the full analytical solution for the

force F in a tack test (equation 5.2.50) performed with a contact force of F, = 300g. The

short and long time asymptotes are shown as red and blue dashed lines respectively. The

composite function (symbols) is compared against these asymptotes. Also shown is the full

analytical solution obtained from 5.2.50 (orange lines).

In figures 5.2.9a and 5.2.9b, we show the predictions of the peak force (equation 5.2.73)

io 3

102

Q

0

101

100

10-1

10-2

io-3
10

s 

3/

Peak 7Force
_ -Full analytic prediction
--- Short time asymptote
---Long time asymptote
SComposite force Fcomp
... -- d . . I 7. 1 . I, 1 1 .1 . j

-2

(5.2.71)

(5.2.72)
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Figure 5.2.9: Prediction of the magnitude (equation 5.2.73) and location of the peak force (equa-
tion 5.2.72) as determined by the composite function constructed from the asymptotic analysis.
Measured data (m) is for the low modulus gels (a = 0.59, V = 433.50 Pa SO.59 and G = 108.27 Pa.)
taken from N.B. Wyatt, A.M. Grillet, L.G. Hughes, Macromolecules, submitted, 2012.

and the stretch ratio Ap at which the peak occurs respectively, where Ap = 1 + U t,, with

t, given by equation 5.2.72. It can be seen that the predicted magnitude of the peak force
and its location are very close to the experimentally determined values.

In summary, using the framework of the fractional Kelvin-Voigt model, not only can
we predict the tack response of the polymeric gel, as shown in figure 5.2.5, but we can also

predict the SAOS response of the gel once a tack test has been performed by employing the

asymptotic analysis described above. The ability of the framework to describe the rheology

of polymer gel and make predictions of the gel response upon the imposition of other linear

deformations strongly emphasizes the suitability of the FKVM to model these tacky weakly
cross-linked gels.

5.2.3 Determination of the normal force for a constant strain rate

applied deformation

In this section, we examine the response of a material characterized by the FKVM described

above under the conditions of a displacement imposing a constant strain rate. It is straight-

forward to prove that such a displacement profile is of the form h(t) = hoeeOt, where o is
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the nominal strain rate. The lubrication model still holds and equations 5.2.13 and 5.2.14
describe the evolution of stresses in the deforming filament. However, the term 02 ,,)

in 5.2.13 is now given by

82 V,(t') 6rh(*t') toe-2ot'

z2 h3(t') (5.2.74)

and hence from 5.2.13

t
(p G(t - t')-P V(t - t')-a eoe-2iot'

- = 6r 1(1- + - dt' (5.2.75)
0 (

= = r (t) (5.2.76)
ar= 6r-h2Q,

in which

t (G(t - t')-# V(t - a
Q(t) = + e 2eot' dt' (5.2.77)

f (1-# ( a)
0

Note that 5.2.76 and 5.2.20 are of the same form, with ioQ(t)/h2 in 5.2.76 replacing 3(t)/u
in 5.2.20. Therefore, the derivation of the final force expression follows an identical se-
quence of steps as those in equations 5.2.21 to 5.2.45, and the force F exerted by the de-
forming fractional Kelvin Voigt material under constant strain rate conditions is given by

3rt 4 1\
F = 2 1 2 QaR(t)R+ QP (t) (5.2.78)

h2 A)3/2 2 3Lat f~)0

in which

t

Qa(t) I (t - t')-a - e-2Eot' dt' (5.2.79)1(1 -a)J
0

and Qfl(t) may be found from Qa(t) by making the transformations a -> # and V -> G.

To find an analytic closed-form for Qa(t), we Laplace transform both sides of equa-
tion 5.2.79. This is motivated by the observation that the Qa(t) is nothing but the con-
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volution of the functions t-a and exp(-2iot). This convolution transforms to a product in

Laplace space and therefore we obtain

7[Qa(t)] = e[ra x S[e-2 o] (5.2.80)
F(1- a) 1 (5.2.81)

si-a s + 2(
a-i

= f(1 - a) - sa-.(5.2.82)s + 2eo

Note that we have used the identity [t] = R(a + 1)/sa*. We know that [82]

-1 [k!sa- b = tak+b-E(k) (-pta) (5.2.83)
1(sa + pj) ab

where Eak(t) is the Mittag-Leffler function defined as [82]

00 k 
(..4Eab (Z) = I(ak + b) (5.2.84)

k=O

in which r(x) is the Gamma function defined in the usual manner [25], and the notation

(k) denotes the derivative to the k-th order. Inspecting 5.2.82 and 5.2.83 simultaneously,

we set in 5.2.83 a -4 1, b -> 2 - a, p - 2to and k = 0 to obtain

2- 1 [(1 -a) s A = (1 - a-E,2-a(-2ot) (5.2.85)

and hence we have

Qa(t) = Vt1-aE1,2-a(-2 0 t) (5.2.86)

and similarly

Qp(t) = GtO~fE1,2-f(-2iot) (5.2.87)
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Figure 5.2.10

Comparison of the analytically de-
rived solution for the tack force
(equation 5.2.88) and the solu-
tion from solving Q(t) (cf. 5.2.78
and 5.2.79) numerically. It is ob-
served that the analytical and nu-
merical solutions coincide exactly.
a = 0.59, V = 433.50 Pa s0 .59,
G = 108.27 Pa, RO = 4 mm,
uo = 0.1 mm/s and ho = 0.159
mm.

8 10

Substituting 5.2.86 and 5.2.87 into 5.2.78, we finally obtain

F= 3rR 0 (1 1 ')r+-i(~~ - .
,3/ 2 2 3 2 [GtI#E,2-fl(-2 ot) + Vtl- E1, 2-a(-2 ot)j (5.2.88)

For the viscoelastic materials of interest in this study, we have p = 0; we therefore substitute

f = 0 in equation 5.2.88 and we have

F = h2 ~

= h2
0

1 1 \
3/2 

-2A3 GtlE1,2(-2ot) + Vt-"Ej,2-a(-2 0 t)

_3/2 2G3) [e (1 --20t) + Vt1-aE,2-a(-2 Ot)]

In figure 5.2.10 we compare the analytical solution 5.2.88 to the solution arrived at by

solving equation 5.2.78 numerically ((i.e) we solve Q(t) numerically). It can be seen that

the analytical solution coincides exactly with the numerical solution.

0 Numerical solution

Full analytic solution

3
3 -

0

C)

0

(5.2.89)

(5.2.90)
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Closed-form analytic solution through the analysis of asymptotes

We first examine the short time asymptote of equation 5.2.88. In this limit, e2 o t, 1 in

Qa(t) (cf. equation 5.2.79) and therefore we have

t

Qa Wt) ~ (t - t')-cl dt' (5.2.91)
0

v1t-a
=Qa(t) ~ ( 1-a (5.2.92)

(1- a) I - a

and

Qp(t) (5.2.93)

Substituting this expression for the early time approximation for Qa(t) and Qp(t) into equa-

tion 5.2.78 we obtain

3;rRoo 1 1 G tl-fl V t1-a
Fe(t) = + (5.2.94)h 2 3/2 23 ) - 1-a)1-a

We also show in section 5.2.2 that (A 3/2 - (1/2)A- 3 ~ 1/2) for early times. Therefore

the expression for the early time asymptote for the tack force Fe(t) exerted by a fractional
Kelvin-Voigt material under a constant strain rate displacement is given by

3 Ro 0o V ti-a G ti-
Fe(t) = 3ry -a)1G I 3-) for tot < 1 (5.2.95)

2h 2 ((1 -a) 1- a r(1 - p)1-flp

Note that this asymptote for the tack force at early times is exactly identical to the

asymptote obtained for the constant velocity displacement introduced earlier. This is not

surprising because at early times ho exp( ot) ~ ho(1 + iot), with io = uo/ho. Therefore, the

applied deformation profiles are identical.

We now derive the asymptote for the tack force at long times. Consider again equa-
tion 5.2.8 8. We show in the appendix that at long times,

1 Vt-a
Vti-aEj,2-a(-2iOt) ~z o 1 - (5.2.96)

2io r(1 - a)
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and hence-in this limit- equation 5.2.88 reduces to

3,vR4 (1 1 2[1 VFt-a 1 Gt(.9
F1 = o -- /3/ -- -_ + --(5.2.97)

ho 23/223 2o (1r - a) 2o ( -p

Which upon simplification yields

3;rR4 1 1 Vt-a Gt-f
F71= 20 + ] (5.2.98)

2h2 ( 3/2 2A3 r(1 - a) r(1 p

In our case, we have p = 0. We also observe that at long times r 3 /2 - (1/2)2- ~ 2

exp[-(3/2) ot]. Therefore we obtain for the tack force F exerted by a fractional Kelvin-

Voigt material undergoing a constant strain rate deformation (with p = 0)

F R = e(3/2) (G + t-a for iot >> 1 (5.2.99)
2h2  F(1 - )

As before, we may substitute 5.2.95 and 5.2.99 into 5.2.68 to arrive at an analytic closed-

form approximate solution for the tack force, whose expression does not contain the Mittag-

Leffler function. Making these substitutions, and after some algebra we get

3= V(1 %) (otl-a[GF(1 - a) + Vt-a]Fc = -201(5.2.100)
2ho (l - a) (1 - a)[GF(1 - a) + Vt-a] + e(3/2 )totIoVtl-a

We now compare in figure 5.2.11 the exact analytical solution for the tack force (equa-

tion 5.2.88) with the approximate composite force expression derived above (equation 5.2.100).
It can be seen that the composite force obtained from the asymptotic analysis is a very good

approximate to the exact analytical solution.
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10-2 10-1 100

Time [s]

101

Figure 5.2.11

The composite force obtained from
equation 5.2.100 (solid line) com-
pared against the exact analytic
solution for the force derived in
equation 5.2.88 (symbols). Also
shown are the short time (blue
dashed line) and long time asymp-
totes (red dashed line) determined
by equations 5.2.95 and 5.2.99 re-
spectively. The composite force is
seen to approximate the exact ana-
lytic solution excellently. a = 0.59,
V = 433.50 Pa sO.59, G = 108.27 Pa,
Ro = 4 mm, uo = 0.1 mm/s and
ho= 0.159 mm.

5.3 The Fractional Maxwell Model

5.3.1 Determination of the normal force for a constant strain rate

applied deformation

Consider the rearranged form of the Laplace transform of the constitutive equation 2.3.1

(5.3.1)
VSa-1 zr

i(s) =_
1 + Ysa-#

G

Coupling 5.3.1 with the Laplace transform of 5.2.2 have

rp [
Or oz

VSa-1
1 + ~SL- -Yzr1+ sa-# aZzr (5.3.2)

1o
4

102

100
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Q

0
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and upon taking the inverse Laplace transform and invoking the fact that i2zr = we

finally arrive at

-p = 0-1 2 - (5.3.3)
tr 1 + Ysa-P az2

in which the symbol * stands for Laplace convolution as before, defined as

f(t) * g(t) = f (t - t')g(t') dt' = f(t')g(t - t') dt' (5.3.4)

0 0

where f(t) and g(t) are arbitrary functions. It is trivially demonstrated by substituting

y(t) = yoH(t) (with H(t) denoting the Heaviside step function) in the constitutive equa-

tion 2.3.1 that the term in brackets in 5.3.3 is nothing but the Laplace transform of the

relaxation modulus G(t) for the fractional Maxwell model. Therefore, we write out the

convolution integral explicitly after substituting 2.3.3 into 5.3.3 to obtain

t
ap _ IG \8 2 Vr(t')

- f G(t - t')-fEf,1-p G (t - t')a-) . 2 dt'. (5.3.5)
0

We know from 5.2.17 that

2 Vr(t') _ 6rh(t) (5.3.6)
az2 h(t)

Therefore, we have

= 6rGJ(t) (5.3.7)

where

J(t) = (t - t')~fEa-A,-lf - (t - t)a-fl h() dt' (5.3.8)
J ' / (5p.8
0
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Integrating 5.3.7 with respect to r we obtain

p(r, z) = 3r2J(t) + f(z) + C(t) (5.3.9)

To find f(z), we follow an identical procedure as presented for the FKVM and we arrive

at (cf. equations 5.2.21 - 5.2.31)

p(r,z) = 3r2GJ(t) + 12GJ(t)z(h - z) + C(t). (5.3.10)

We apply the same boundary condition as in the FKVM case and C(t) is determined to be

(cf. equation 5.2.33)

C(t) = -3R2GJ(t) (5.3.11)

and we finally have for the pressure p(r, z) on the plate

p(r,z) = 3(r2 - R2)GJ(t) + 12GJ(t)z(h - z) (5.3.12)

and integrating as before the total stress -p + zzz at the mid-plane over the entire area of

the mid-plane filament we arrive at the total force on the plate during a tack test for the

fractional Maxwell model

F=3rR 4G -1~ t (5.3.13)

To determine the full expression for the force, we will need to calculate the integral J(t).

An examination of it's definition in 5.3.8 informs us that we need to know the exact dis-

placement profile applied during the tack test to determine J(t). In what follows, we will

examine two cases: (1) constant strain rate displacement, and (2) constant velocity displace-

ment.

To achieve a constant strain rate we apply a displacement profile of the form h(t) =
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ho exp[ot]. Therefore, J(t) now becomes

ht'
J(t) = (t - t')-flE-fl,1-p - (t - t'-f dt' (5.3.14)

0

- (t - t')-#Ea-l,l-fi ( - t')a-l) h0e o dt' (5.3.15)0 G-t- y f hotoecot'

- f J(t) (t -t)-Ea-,- - ( - t')a-) 2eot' dt' (5.3.16)
000

An exact closed-form analytic solution to this integral 5.3.16 is not readily available and we

seek to find an approximate analytic solution. Consider

ji(t') = (t - t')-fEa-p,1-p - (t - t')a-fl e-2tot' (5.3.17)

= 2(t')e-2 0 t' (5.3.18)

in which

j2 (t') = (t - t')-fEa-p,1-p G (t - t')a-) (5.3.19)

The constribution of the integrand to the total integral is negligible for large enough values

of the dummy variable t', because the exp[-2 ot'] term becomes very small. Observing that

the dominant contribution to the integral comes from around the point t' = 0, we expand

j2(t') using its Taylor series to obtain

j2(t') = j2(0) + O(t) (5.3.20)

Thus we have

j2(t') ~ t~flEa-l,1-fi - ta-P (5.3.21)
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Substituting this result into 5.3.16 we obtain

A1( W =1 t-fE a-p,1-p -t"-f e-2tot' dt' (5.3.22)
0 0

= t -Ea-,l-f G ta-P (1 _ e-20) (5.3.23)

We now replace J(t) with J1 (t) in 5.3.13 to obtain

4G 1 (..4
F = 3;rR G /- 2 Ji(t) (5.3.24)

3;rR4G G1 1 / -2tt
=> F = 2h2 \A 3/2  2A3 - (1- (5.3.25)

0

In figure 5.3.1, we show the exact numerical solution for the force (equation 5.3.13)
which we obtain by solving J(t) (given by equation 5.3.16) numerically at select instances of

time (symbols). We compare this numerical solution to the approximate analytical solution

derived in equation 5.3.25, obtained by retaining only 0(t'0) terms. For the purposes of

illustration, we choose a = 0.59,/p = 0, V = 100 Pa sa and G = 400 Pa. It can be seen

that the approximate agrees very well with the exact solution involving the Mittag-Leffler

function; we hence achieve a good compromise between accuracy and simplicity through

the use of this method. Even better approximations could be achieved if 0 (t') and higher

terms are retained in the Taylor series.

Closed-form analytic solution through the analysis of asymptotes

We first seek to derive the early time asymptote for the force. Consider again 5.3.16

t

J(t) = 0 -f (t - t'fEa- t')a- e-2tot' dt' (5.3.26)
00
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Figure 5.3.1

Comparison of the numerically de-
termined value of the force given
by equations 5.3.13 and 5.3.16
(symbols) against the approximate
analytical solution given by equa-
tion 5.3.25 (line). The parameters
were chosen to be a = 0.59, fi = 0,
V = 100 Pasa andG = 400Pa. For
the purposes of illustration, Ro = 4
mm, uO = 0.1 mm/s and ho = 0.1
mm.

100 101

Setting t - t' = u we have

0 

W = E -2 t

0 I
0

- (t
kV

- t')-fi) e2 ou du (5.3.27)

For small t (and hence small u), from equation 5.2.84

Ea-f-P ( (t - t')afi -
an hc t - P)

and hence the integral above can be simplified as

11 (t) ~ e-2eot U f-e 29o" du
h (1 - fl) J

0

(5.3.28)

(5.3.29)

Furthermore, we observe that exp[2iou] ~ 1 for small values of t. Therefore, we find that
at early times

T |t = 0 1 t- -53.0
JWle h2 r1_g

10-

0
Q

0

-

o Exact numerical solution

- ((to) approximation

' " " ' I '

I

181

U-flEa-P-P

+ 0 ((t - t')-l)

(5.3.30)
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and the expression for the force at early times reduces to

Fe = 31rR 32 2D3 /h2 (-) 1 (5.3.31)

1 1We show in section 5.2.2 that T3 - 3 -> 1/2 as A -> 1. This simplification gives us
the final expression for the early time asymptote for the force in a tack test of a fractional
Maxwell material undergoing constant rate deformation as

3;rR4 G t1-P
Fe = 0 (--fforgot< 1 (5.3.32)

2h2 T(1 - ) 1-f#

We now seek to find the expression for the long time asymptote of the force. We begin
with J, (t) reproduced here for clarity (cf. equation 5.3.23):

J1 (t) = 12 t -Ea-fl,1-fl ( ta-P (1 _ e-2tot) (5.3.33)

In the Appendix, it is proved that for long times

t-fEa-fi,1-fl -- ta-f) V - ) (5.3.34)
V G F(1 - a)

Therefore,

1 w t-a
J1 (t) (1 - e260 t) (5.3.35)11 2h2 G F(1 - a)

Consequently, the force at long times is given by

3F R( 1 1 Vt-a
F1 ~ h~A! A 3 J1( (1 - A-2 ) (5.3.36)2h /2 2 13 r( 1 - a)

where A = exp(tot).

As before, one may determine the model parameters a,#,V and G by fitting a power

law equation of the form F = Atb to the short and long time asymptotes respectively; the

short time asymptote yields the values of P and G, while the long time asymptote yields

the values of a and V. These parameters can then be substituted into equations 2.3.15
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Figure 5.3.2

An example of predicting the SAOS
response of a fractional Maxwell-
like viscoelastic material from the
asymptotic analysis of a tack exper-
iment performed on the material.
Here, the values of the parame-
ters used are a = 0.59, P = 0,
V = 100 Pa s", G = 400 Pa. For the
purposes of illustration, Ro = 4 mm,
uo = 0.1 mm s-1 and ho = 0.1 mm.

102

w [rad s- 1 ]

and 2.3.16 to find G'(&) and G"(&) respectively. In this manner we can make a prediction

of the SAOS response of the material purely from the analysis of a tack experiment. We

present an example of such a prediction in figure 5.3.2.

The composite force Fcomp is defined by 5.2.68 and we have from equations 5.3.32

and 5.3.36

1 2h [ F(2 - pl) A3/2 - a)t-a

Fcomp 31R 4 otl-tGt-fl V
(5.3.37)

and upon some algebra and simplification we obtain

3;rR4 tl__________________

Fcom = -
mp 2h2 [r(2 - pl) + I A3/2 0F(1 - a)ta-f+l

0 _ I (5.3.38)

In figure 5.3.3 we plot the exact value of the tack force F(t) as symbols-determined by
numerically solving 5.3.13-and compare it to Fcomp constructed in equation 5.3.38. The

individual short and long time asymptotes are shown as dashed lines. It is observed that

Fcomp very closely approximates the exact numerical solution.
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(a) Linear scale.
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0 Exact solution
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Figure 5.3.3: The composite force determined in equation 5.3.38 (solid line) compared to the

exact numerical solution for the tack force as given by equation 5.3.13 (symbols). Also shown here

are the short time (black dashed line) and long time (blue dashed line) asymptotes, determined

in equations 5.3.32 and 5.3.36 respectively. Note that the approximate composite force is a good

approximation to the exact numerically determined solution. The parameters were chosen to be

a = 0.59, p = 0, V = 100 Pa sa and G = 400 Pa. For the purposes of illustration, Ro = 4 mm,

uo = 0.1 mm s-1 and ho = 0.1 mm.

S I I
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- - - Short time asymptote

- - - Long time asymptote
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5.3.2 Determination of the normalforcefor a constant velocity ap-

plied deformation

For the case of the top plate withdrawn at constant velocity, the height h(t) of the fluid

sample in the gap between the plates is given by h(t) = ho +uot, in which ho is the initial gap

height, and uo is the velocity of pull off. Substituting this displacement profile into 5.3.8

we obtain

t

K(t) = (t - t')-Ea-p,j1i-p ( (t - t')a-f uo dt' (5.3.39)
J V / (ho + uot') 3

0

The kinematic arguments of the preceding section still hold and the tack force is given by

F = 3rRG A3/2  
2 3 K(t) (5.3.40)0( 1 / 213

To find an approximate analytic solution we expand the relaxation modulus term in the

integrand using a Taylor series and approximate it by retaining only the 9 (t'0 ) determined

in equation 5.3.21 and define

t

K1(t) = t-fEa-f,1-i ( ta-fi F u dt' (5.3.41)
\-V// J (ho + uot')3

0

1 /
= -t -Ea-Pi-P ta-i 1 - (5.3.42)

2h2 (1 +

Replacing K(t) with K1 (t) in equation 5.3.40 we obtain the approximate analytic solution

to the tack force for a fractional Maxwell-like material undergoing a constant velocity

deformation as

3;rR G 1 1 _ G 1 1
F= 2h2 ) 23 tEa-fi.1-p -g ta 1 (5.3.43)

In figure 5.3.4 we show the exact numerical value of the force determined as a func-

tion of time (cf. equations 5.3.39 and 5.3.40) and compare it to the approximate analytic

solution derived in equation 5.3.43. It can be seen that the analytical solution is a good
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Figure 5.3.4

Comparison of the numerically de-
termined value of the force given
by equation 5.3.40 (symbols) against
the approximate analytic solution
determined in equation 5.3.43
(line). The analytical solution is
a good approximation to the ex-
act numerically determined force.
a = 0.59, fl = 0, V = 100 Pa s" and
G = 400 Pa.

101 102

approximation to the exact numerically determined solution. Again, the accuracy of the
analytical solution may be increased by retaining 0 (t') and higher terms.

Closed-form analytic solution through the analysis of asymptotes

We begin the asymptotic analysis with the consideration of equation 5.3.39. For small t,
we use equation 5.3.28 to write K(t) as

1 1
K(t) ~ -- 1

F(1 - p) u2
0 I

0

(t - '-
(ho/uo + t')3 (5.3.44)

From equation D.1.9 of the Appendix, we know that

dt' = P+2
(ho) Aa+2

and therefore
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(5.3.46)
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This expression is identical to one found in section 5.2.2 and we follow the procedure there

to arrive at

37rR4 o G t i
Fe ~for Rot << 1 (5.3.47)

2h2 F(1 - p) 1 - p

where to = uo/ho is the nominal strain rate.

To find the long time asymptote, we consider again equation 5.3.43 and use the result

given in 5.3.34 and we have

3;rR4 1 Vt-a
F h0 13 /2 1(-a) A-(5.3.48)F1=2h 23/ ( )

0

We construct the composite force using 5.2.68 so that it has the right asymptotic limits

and we have

1 2hO ((2 - fl) + (1 - a)7/2

Fcomp 37rRk toGO-fl Vt-a(A 2 - 1)

which, after some algebra, reduces to

3R_ _(A2 1)
Fcomp = 2  5.3.50)

2h 1 (1 - a) iOA7/2 ta + Iar(2 - pl)(A2 - 1) tf- 10 F2 Gt3-

We show in figure 5.3.5 the values of the exact numerically determined force (equa-

tion 5.3.40) and compare it to the force constructed from the asymptotic analysis (equa-

tion 5.3.50). We observe that the expression obtained from the asymptotic analysis is ex-

cellent. As this expression for the tack force does not contain the Mittag-Leffler function,

it is easier to work with.

5.3.3 Experimental verification of analytical results

In order to verify the theoretical predictions derived above, in this section we present ex-

perimental results of tack experiments performed on a 2 wt.% sample of Locust Bean Gum

(LBG). LBG is widely used as a thickening additive in the food industry. While its shear

rheology has been reported in the literature [207, 208], the extensional properties of galac-
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Figure 5.3.5: The composite force determined by equation 5.3.50 (solid line) compared to the
numerically determined exact solution for the tack force given in equation 5.3.40 (symbols). Also
shown here are the short time (red dashed line) and long time (blue dashed line) asymptotes derived
in equations 5.3.47 and 5.3.48 respectively. It is observed that the composite force is a very good

approximation to the exact value of the tack force. The parameters were chosen to be a = 0.59,
P = 0, V = 100 Pa sa and G = 400 Pa, with Ro = 4 mm, uo = 0.1 mm s - 1, and ho = 0.1 mm for

purposes of illustration.
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tomannan solutions is still relatively poorly understood [209]. Employing tack tests to

study extensional properties of these solutions is an accurate and convenient technique. In
this section we present an application of the analysis derived above to determine the tack
response of LBG from the material parameters obtained from shear rheology experiments.

In figure 5.3.6a we show the results of a small amplitude oscillatory shear experiment
performed on a 2 wt.% LBG sample. It is observed that the LBG sample responds linearly
at least up till a strain amplitude of 10%. In fact, the material begins to yield only at around
a strain amplitude of 100% (not shown in this figure). A strain amplitude of 5% was chosen
for frequency sweep experiments.

The frequency sweep response of LBG is shown in figure 5.3.6b. From the figure, it
can be observed that the material exhibits power-law behavior. To model this power-law
behavior, we employ the fractional Maxwell model framework discussed previously and
fit equations 2.3.15 and 2.3.16 to the measured G'(&) and G"(&) data respectively. These
fits are shown as lines in the figure. It can be observed that the fits are excellent and the
power-law behavior of the material can be captured adequately using just four parameters
a = 0.85, f = 0.22, V = 11.15 Pa s", G = 72.81 Pa s#. We also determine the crossover
frequency oc using equation 3.3.7 to be &c = 0.68 rad s-1.

In figure 5.3.7 we show the flow curve of LBG to examine its non-linear rheology. It
can be seen that LBG is shear-thinning at high shear rates, and the flow curve approaches
a zero-shear plateau at low shear rates. We also superimpose on the steady shear data the
complex viscosity q* plotted as a function of the excitation frequency w. In accordance
with the empirical Cox-Merz rule, which states that [24]

V) = 1q*(0)=k (5.3.51)

there is good overlap between the curves; however we note that at higher , q(k) > ).
This is typical of systems where hydrogen bonding interactions play an important role in
its rheology [210]. This suggests that hydrogen bonding interactions might be present in
this system.

With the shear rheology established, and the parameters a, p8, V and G that characterize
the material having been determined, we now invoke the tack analysis above to make
predictions of the tack response of LBG. In figure 5.3.8, snapshots of a tack experiment
performed on 2 wt.% LBG solutions is presented as a time series. The horizontal green
line represents the edge of the top plate, whose radius is Ro = 4 mm. We scale the time of
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Figure 5.3.8: A time-sequence of snapshots of a tack experiment performed on 2 wt.% LBG solu-
tions using a plate of radius RO = 4 mm. The profile of the fluid filament close to breakup indicates
the existence of an elasto-capillary balance of forces. Image analysis of the video gives us the true
velocity of the upper plate uoltue = 0.539 mm s-1, and the mid-plane radius Rmid as a function of
time. uOlimposed = 0.5 mm s-1, ho = 0.5 mm, tb = 7.9 s.

the snapshot by the breakup time tb to define a dimensionless time = t/tOb. tb is determined

from image analysis to be tb ~ 7.9 s.

A number of important observations can be made from this sequence of snapshots.

Firstly, we may experimentally verify our assumption that the kinematics of a tack ex-

periment performed on viscoelastic fluids is the same as a tack experiment performed on

a purely viscous fluid, (i.e.) equations 5.2.15 and 5.2.16 apply for the viscoelastic case. In

figure 5.3.9 we plot the radius of the mid-plane of the fluid filament Rmid against the stretch

ratio A. We also show the equation of our assumption (equation 5.2.43) about the kinematics

on this plot.

It can be seen that the experimentally measured radius profile agrees very well with our
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assumption about the kinematics, except very close to the breakup of the filament. This may

be attributed to the fact that elastic effects play a much stronger role near breakup, and the

breakup may be modeled as a balance between elastic forces and capillary forces [211].

The appearance of this so-called elasto-capillary balance is clearly seen in figure 5.3.8d by

the uniform cylindrical liquid bridge. This force balance may be exploited to measure the

extensional viscosity of the fluid in a Capillary Breakup Extensional Rheometry (CaBER)
experiment [209].

A further measurement we perform from the videos of the tack test is a direct calculation

of the velocity of the top plate. Although we impose uo = 0.5 mm s-1 while setting up the

experiment, the actual velocity of the plate was measured to be uo = 0.539 mm s-1.

The force exerted on the top plate as a function of time during a tack experiment is

shown in figure 5.3.10 as symbols, and the prediction obtained from equation 5.3.40 is

shown as a solid line. It is observed that the prediction agrees very well with the mea-

sured data. Note that this prediction has been achieved by using the parameters a,pfi,V and

G determined from an independent SAOS experiment (cf. figure 5.3.6b)-we do not fit

equation 5.3.40 to the data. The small deviation of the measured force from the predic-

tion towards the end of the experiment may be attributed to the additional elastic stresses

present in the filament which retards the breakup, and our assumptions about Newtonian

kinematics breaks down.
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Figure 5.3.10

The measured tack force exerted by
a 2 wt.% LBG solution (symbols)
compared to the corresponding an-
alytical prediction derived in equa-
tion 5.3.40 (line). It is observed that
the prediction agrees very closely
with the experimental data. The de-
viation of the measured force from
the data close to breakup is due to
additional elastic stresses retarding
the breakup leading to a change in
the kinematics of the flow.

5.4 Conclusions

In this Chapter, we have analyzed the tack response of a chemically crosslinked flurosili-

cone gel. These materials are frequently used as pressure sensitive adhesives, which have

immense industrial and practical importance. We have demonstrated that beginning with

a characterization of the gel, by performing a linear rheological experiment such as SAOS

and subsequently fitting an appropriate fractional constitutive model, we obtain accurate

predictions of the normal force generated upon performing a tack experiment on these

gels. Our approach involves applying the lubrication approximation to the Cauchy mo-

mentum equations (which is justified because we are interested in the small extensional

strain limit), and subsequently coupling them with an appropriate fractional constitutive

equation (either FMM or FKVM, depending on the nature of the material). To calculate

the strain and strain rate fields, we use the result obtained for a tack experiment performed

on a Newtonian fluid. As shown in this chapter, FCEs are able to predict the rheological

response of multiscale power-law complex fluids under small extensional deformations. We

next focus on the more challenging problem of large extensional deformations applied to

such complex materials.
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6 Large Strain Extensional Deformations:

Polysaccharide Systems

In this chapter, we experimentally determine the extensional rheology of two polysaccha-
ride systems that exhibit power law rheology, namely Mamaku gum [71] and Hyaluronic

acid [212, 213]. The former is a plant extract that exhibits shear thickening behavior, and
hence has potential applications as a food thickener and as a treatment for dysphagia. On
the other hand, Hyaluronic acid (HA) is known to be an important component of synovial
fluid [70], which is the chief component of the lubricant in healthy mammalian joints.
In this chapter, we measure and characterize the extensional rheology of these fluids in
detail using various extensional rheometry devices such as the Capillary Breakup Exten-
sional Rheometer (CaBER), the filament stretching extensional rheometer (FiSER) and an

Optimized Shape Cross-slot Extensional Rheometry (OSCER) device.

6.1 Mamaku Gum

Mamaku gum is a polysaccharide extracted from the fronds of the black tree fern found in
New Zealand. The cooked pith has traditionally been used for various medicinal purposes
and as a food source by the native tribes of New Zealand. It has potential applications as
a thickener in the food industry and as a palliative for patients with dysphagia. Studies on
the shear rheology of Mamaku gum have revealed that the gum exhibits shear thickening
at a critical shear rate due to a transition from intra- to inter-molecular chain interactions
upon shear induced chain elongation. In this paper we demonstrate that these interactions
are primarily due to hydrogen bonding. We perform extensional rheology on mixtures
of Mamaku gum and urea (a known disruptor of hydrogen bonds) to quantify the nature
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of these interactions. Capillary Breakup Extensional Rheometry (CaBER) performed on

the pure Mamaku gum solutions yield plateau values of the Trouton ratio as high as - 104,
showing that the viscoelasticity of the gum in uniaxial elongation is much higher than

in shear. For all Mamaku concentrations tested, the extensional viscosity decreases upon

increasing urea concentration. Furthermore, the relaxation time decreases exponentially

with increasing urea concentration. This exponential relationship is independent of the

Mamaku concentration, and is identical to the relationships between urea concentration

and characteristic timescales measured in nonlinear shear rheology. We show using the

sticky reptation model for polymers with multiple sticker groups along the backbone how

such a relationship is consistent with a linear decrease in the free energy for hydrogen bond

dissociation. We then demonstrate that a time-concentration superposition principle can

be used to collapse the viscoelastic properties of the Mamaku-gum urea mixtures.

6.1.1 Introduction

Polysaccharides play critical roles in a number of industrial and biological applications [64].

They provide structural reinforcement in plants and animals [214-216], are the chief com-

ponent of the lubricating synovial fluid found in mammalian joints [63, 217], are the main

source of energy in foods [218], and are found in various biological slimes and mucus [219,

220]. Furthermore, the widespread availability, biocompatibility, biodegradability and the

ability of polysaccharides to form swollen gels has stimulated much research in using them

in controlled drug release systems [221, 222]. Perhaps one of the most important applica-

tions of polysaccharides is in the foods industry. Precise control of the organoleptic char-

acteristics of foodstuffs such as texture, thickness, chewiness, tackiness and mouth-feel is

crucial for the shelf-life, consumer perception and overall quality of the food [64]. Polysac-

charides such as Xanthan gum, Guar gum and Locust Bean gum have enjoyed particular

success in this area [164].
Recently, a new plant polysaccharide called Mamaku gum, obtained from the fronds of

the black tree fern, has been discovered and its shear rheology has been characterized [71,

72]. The Maori tribes of New Zealand have used Mamaku gum for treating boils, burns,

wounds, rashes and diarrhea [73]. A large number of plant mucins and gums exhibit such

healing and curative properties [223]. Plant gums such as Mamaku also control the rate

of flow of food through the digestive tract due to their ability to swell and retain water.

This leads to longer transit times in the digestive tract, higher nutrient uptake [64] and also
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provides bulk to ingested foods, thus helping in smoother peristalsis and healthier bowel

movements [224]. In Table 6.1.1, we list various natural and synthetic polysaccharides

currently used as additives to food products for thickening and other purposes. Given these

myriad uses of polysaccharide containing mixtures, and indeed polysaccharides themselves,

an extensive rheological study of Mamaku gum and the understanding of the nature of

inter- and intra-molecular interactions will aid in promoting commercial scale applications

of Mamaku gum in food thickeners and as a digestive emollient.

It has been shown in previous viscometric studies [71] that in steady simple shear flow,

Mamaku gum exhibits shear-thickening behavior, i.e., the steady shear viscosity q(k) in-

creases as a function of shear rate k for a certain range of shear rates. This is an exceptional

occurrence for polysaccharide solutions [64], which very frequently display shear-thinning,

i.e., q(f) decreases as a function of shear rate j. This shear-thickening behavior arises from

the appearance of increased inter-molecular interactions at a critical shear rate. Matia-

Merino et al. have shown that the shear thickening behavior of Mamaku gum exhibits

very low sensitivity to changes in salt composition as well as salt concentration [73]. In

Figures 6.1.1a and 6.1.1b, we re-plot the data from Ref. [73] demonstrating the relative

insensitivity of Mamaku gum solutions to changes in the concentration of salt in the so-

lution. The rheology of Mamaku gum is also unchanged over a wide range of pH values;

from Figure 6.1.2 we see that the zero shear viscosity qo of the Mamaku gum solutions re-

mains nearly constant for a wide range of pH values (pH 2-9). At very alkaline pH values,

the change observed in the shear viscosity could possibly arise from structural changes in

the polysaccharide induced in highly alkaline environments [73].

The rheology of Xanthan gum, which is currently one of the most widely used food

thickeners, is sensitive to both salt content as well as pH [226]. This presents the possibility

of using Mamaku gum as a rheology modifier for foods with low pH in which other fre-

quently used modifiers are ineffective. Moreover, the unique shear-thickening behavior of

the gum (as opposed to a majority of other food thickeners which are shear-thinning) may

itself have potential applications. For example, thickening agents are added to foods as a

treatment for dysphagia [227, 228]; this retards the process of bolus swallowing and hence

provides more time for muscular control of the swallowing process [67]. With this applica-

tion in mind, it is important to understand the rheology and the nature of the supramolec-

ular interactions present in Mamaku gum that lead to the shear-thickening behavior. The

peristaltic swallowing and digestive processes involves extensional deformations [65], and
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Polysaccharide Applications

Agar

Alginates

Carrageenan

Cellulose Derivatives

Gelatin

Gellan Gum

Gum Tragacanth

Inulin

Pullulan

Starch

Xanthan Gum

Ice creams, milk shakes, cakes, cookies, jams, processed
cheese.

Puddings, mousse, tomato ketchup, soups, mayonnaise,
juice.

Cheese, desserts, whipped cream, pet foods, syrups,
salad dressings, milk thickening applications.

Beverages, meat analogues, breads and other baked
foods. Also used in encapsulation and coating film ap-
plications, to prevent food oxidation.

Beverages, yogurt, low-fat spreads, canned meat prod-
ucts

Drinking jellies such as in sports drinks, jams, fruit yo-
gurts.

Emulsifier-especially in the presence of gum Arabic,
thickener for beverages, used in parmaceuticals such as
creams and lotions.

Provides improved mouthfeel in fate-free products: acts
as a fat replacement, foam stabilizer.

Confectionaries, processed meat, instant beverages,
forms films and is used as an oxygen barrier, binding
agent due to its strong adhesive properties

Thickening and gelling agent for soups and sauces

One of the most widely employed thickeners in the
food industry. Used in dressings and sauces, baked
products and instant beverages. Exhibits synergistic ef-
fects with other polysaccharides and forms strong gels,
for example with guar gum and locust bean gum.

Table 6.1.1: The various uses of polysaccharides in the food industry. Most frequently they are
used as thickeners and gelling agents. Thickening is important not only to provide better texture
and mouthfeel to foods, but also to help patients suffering from dysphagia. More information on
molecular structure and applications of polysaccharides in foods can be found in Ref. [225].
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Figure 6.1.1: Effect of changing the salt environment of Mamaku gum solutions. (a) Adding dif-
ferent concentrations of NaCl does not drastically influence the shear viscosity of Mamaku gum
solutions. (b) Varying the salt composition only minimally influences the steady shear viscosity of
Mamaku gum solutions. Data from Ref. [73].

Figure 6.1.2

4 7 wt.% Mamaku Zero shear viscosity qo of a 7 wt. %
Mamaku gum solution as a function
of pH. Changing the pH leaves qo
relatively unchanged, except at very

2 alkaline pH. This could be due to
structural changes induced in the
polysaccharide chains at very alka-
line pH. Data from Ref. [73].
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fluid elements are intermittently stretched or elongated as the food bolus moves from the

mouth and through the digestive tract. Moreover, the stress response of complex fluids to

extensional flows is a more sensitive probe of the composition, morphology and structure

of the fluid [61, 229, 230], than a shearing deformation of comparable strength. Therefore,

use of polysaccharides such as Mamaku gum as a digestive emollient requires a characteriza-

tion of their viscoelastic response under extensional deformation. However, a brief review

of the literature indicates that such data is relatively sparse for polysaccharide solutions and
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self-associating polymeric fluids in general.

In this paper, we use a combination of nonlinear shear rheology, and Capillary Breakup

Extensional Rheometry (CaBER) [231] to probe the nature of the intermolecular interac-

tions in Mamaku gum. We validate the hypothesis that hydrogen bonding interactions

lead to the unusual viscoelastic response of Mamaku gum, using mixtures of Mamaku gum

and urea. The remainder of the paper is organized as follows. The next section details the

extraction and preparation of the fluids and describes the various experimental techniques

used. In the third section we describe and interpret the experimental results. We compre-

hensively characterize the extensional rheology of Mamaku gum using CaBER measure-

ments and extract relaxation times and extensional viscosities of both pure Mamaku gum

solutions as well as Mamaku-urea mixtures. Urea is known to be an effective disrupter of

hydrogen bonding in proteins [30] and polysaccharides [232]. We document the rheolog-

ical changes induced upon the addition of urea ot Mamaku gum, and demonstrate that the

source of the unusual nonlinear rheology of the solution arises from intra-molecular hy-

drogen bonds. We demonstrate the existence of a quantitative 'concentration-temperature

superposition' and interpret the underlying physics of this superposition principle in terms

of the lifetime of hydrogen bond formation and the changes induced in the activation en-

ergy landscape upon the addition of urea.

6.1.2 Experimental

Materials

The freeze-dried aqueous extract of Mamaku gum was obtained from the stem pith of

the fronds of the New Zealand black tree fern (Cyathea medullaris) in Palmerston North,

New Zealand, in August 2011 according to the procedure outlined by Goh et al. [71] The

freeze-dried extract was prepared by hydrating in deionized water overnight under gentle

stirring at 25*C. Solutions that were not used immediately were stored under refrigeration

at 4*C. In all cases, experiments were performed with solutions less than 72 hours old.

Methods

The shear rheology presented in this paper was performed using a TA Instruments (New

Castle, DE, USA) stress-controlled ARG2 rheometer using a 40 mm, 2' cone-and-plate

fixture. For all experiments, the temperature was held fixed at 25*C using a Peltier plate.
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Extensional rheology was performed using a Capillary Breakup Extensional Rheometer

(CaBER). The CaBER device consists of two parallel plates of diameter Do separated by
an initial gap of length Lo. The test fluid is loaded between this gap and the top plate is
pulled apart rapidly (topen ~ 50) ms) using a stepper motor to a final gap Lf to impose an
extensional deformation on the fluid sample and form a liquid bridge between the plates.
The resultant filament then thins under the action of viscous, elastic and capillary forces,
and the mid-plane diameter of the fluid Dmid(t) varies as a function of time [231]. In our

CaBER setup, this diameter is measured using a laser micrometer (resolution 5 pm), and is
also independently monitored using a macro lens with a focal length of 100 mm attached
to a DSLR camera. For sufficiently viscous Newtonian fluids, in the absence of inertial or
gravitational effects, the mid-plane diameter D(t) decays linearly with time until eventual
breakup [233]. However, in the present study, there is a point in the thinning process of
the filament at which the capillary pressure arising from surface tension is balanced purely
by the stress arising from fluid elasticity. Such a balance of stresses is known as an elasto-
capillary balance [211].

The Hencky strain e(t) experienced by the fluid element at the mid-plane of the thin-
ning filament is given by

e(t) = 2In Do (6.1.1)
(D(t)

Under the conditions of elasto-capillary balance, Entov and Hinch[211] have shown that
the mid-plane diameter D(t) decays exponentially, and is given by

D(t) _ GDo 1/
) = ( ) exp[-t/(3 )] (6.1.2)

in which G and r are the modulus and relaxation time, respectively, of the longest relaxation
mode of the fluid, and o is the surface tension. Therefore, the CaBER experiment yields
a measure of the characteristic relaxation time r of the fluid in elongation. Note that the
strain rate imposed on the fluid filament in a CaBER device is chosen by the fluid according
to the balance of elastic and capillary forces, and cannot be independently controlled in
the experiment. The strain rate i(t) in the elasto-capillary regime can be calculated from
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equations 6.1.1 and 6.1.2 and is given by

t(t) = - (6.1.3)
3r

which is a constant. In our experiments, Do = 6 mm, Lo = 2 mm and Lf = 7 mm, and

the step from Lo to Lf is performed over a controlled time step of 50 ms. The transient

extensional viscosity may then be calculated as [231]

+= - () (6.1.4)E dgmid(0d

Note that in a CaBER measurement, we do not independently measure the tensile stress

difference; instead, we obtain it from balancing the elastic stress difference and the cap-

illary pressure arising from surface tension in the thinning filament. The surface tension

of the fluids was measured independently with a platinum Wilhelmy plate (Kruss K-10

tensiometer).

6.1.3 Results and Discussion

Shear Rheology

We begin with a discussion of the shear rheology of the Mamaku gum solutions. In fig-

ure 6.1.3a we show the zero shear rate viscosity of Mamaku gum as a function of con-

centration, which has been replotted from Goh et al. [71]. The dilute and the semidilute

regimes are clearly demarcated by the two different power-laws (qo ~ c1.2s and qo ~ C4.64

respectively). The concentration at which the two power-laws intersect gives us a coil

overlap concentration c* ~ 2.2 wt.%. The two distinct power-laws observed in the scaling

of zero shear viscosity with concentration has also been widely observed in a number of

synthetic polymers [20]. The change in the scaling occurs from increased interactions be-

tween polymer molecules upon coil overlap. However, in the semidilute regime, instead of

q0 ~ c3.4 expected from scaling arguments [234], we observe a higher power law exponent

of qo ~ c4.64. This exponent is also higher than what has been observed in the majority

of polysaccharide solutions with the notable exception of Xanthan gum [169] - in this

case the semidilute regime exhbits a scaling of qo c4 2. This anomalous scaling has been

attributed to the presence of intermolecular interactions in addition to those arising due to
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Figure 6.1.3: (a) The zero shear viscosity qo of Mamaku gum solutions as a function of concentra-
tion showing the different power law scalings characteristic of the dilute and semidilute regimes. In
the semidilute regime, qo - c 4 464 . (b) The shear rheology of different concentrations of Mamaku
gum in the absence of urea, reproduced with permission from Goh et al.[71] For Mamaku gum,
c* ~ 2.2 wt. %. At some critical shear rate g,, which depends on the Mamaku gum concentration,
a shear thickening regime appears for c > c*, followed by strong shear thinning.

physical entanglements of overlapping coils [235, 236]. In this paper, it is our goal to ex-

plore the nature of these additional intermolecular interactions in Mamaku gum solutions,

using the amplified molecular deformation resulting from extensional flow.

These intermolecular interactions are even more dramatically visible at higher shear

rates. In Figure 6.1.3(b), we replot the nonlinear shear rheology results of Goh et al. [71].

For all concentrations larger than c* ~ 2.2 wt.%, pronounced shear thickening is present in

the flow curve over a certain range of shear rates k. Such shear thickening has been observed

in many associative polymer solutions, suspensions and worm-like micelles [237], but has

rarely been observed in polysaccharide biopolymers [175, 238]. The proposed mecha-

nism of shear thickening in Mamaku gum is the conversion of intra-molecular interactions

to inter-molecular interactions; upon the imposition of high shear rates (compared to the

characteristic relaxation time of the polymer), the polymer chains are partially elongated

due to the extensional component of the shear deformation which exposes additional un-

ravel 'sticker' groups that locally interact between different molecules [71]. These physical

crosslinks thus formed lead to increase in the effective hydrodynamic size of the polymer

chains, thus leading to an increase in viscosity [239]. The strong shear-thinning observed
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at higher shear rates occurs when the stress in the fluid exceeds the value needed to break
the intermolecular associations, and the associated chains are then pulled apart. This is ef-
fectively a constant stress process, and this can be validated by plotting the shear stress -(f)
as a function of shear rate k (see supporting information). Previous studies have eliminated
the possibility that the interactions that lead to the shear-thickening behavior arise from
electrostatic or hydrophobic effects [73]. Intra- and intermolecular hydrogen bonding is
present in many polysaccharide systems [173, 240] making it a likely candidate for the
origin of the observed physical entanglements.

To test this hypothesis we measure the rheology of Mamaku gum solutions with dif-
ferent concentrations of urea added. Urea is known to be a strong disruptor of macro-
molecular hydrogen bonds [241], in the sense that it competes for the hydrogen bonding
sites, and prevents Mamaku-Mamaku intermolecular hydrogen bonding. In figure 6.1.4,
we show the effect that the addition of urea has on the shear rheology of Mamaku gum.
There are three changes induced in the shear rheology of the solutions upon the progres-
sive increase in urea concentration: (1) The zero-shear viscosity qo drops, (2) the shear rate
fp at which the peak viscosity is observed is shifted out to larger shear rates and (3) the
peak viscosity qp drops. This shows that the intermolecular interactions in Mamaku gum
are strongly decreased in the presence of urea, and it is hydrogen bonding that leads to
the shear-thickening behavior seen in these solutions. Defining a time constant rp = 1/fp
yields a characteristic timescale for the lifetimes of the hydrogen bond associations between

101 Figure 6.1.4

5 wt.% Mamaku + Urea --- 0 M Effect of the addition of urea on
- 1 M the viscosity of a 5 wt.% Mamaku

2 M gum solution. Upon the addition of
100 - 3 M urea, three changes are observed,

4 M namely, the zero shear viscosity
5 M plateau drops, the onset of shear

thickening is pushed to higher shear

10-1 rates, and the extent of shear thick-
ening also drops.

10-2bl
100 101 102 10

[ Is-1]
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Mamaku gum molecules in solution. In figure 6.1.5 we plot the value of 'r as a function of

the urea concentration c on a log-linear scale. We observe that the characteristic timescale

,r decreases exponentially with urea concentration as rp - exp(-mc) where m is a constant.

Linear regression gives us

Tp = 40e-c/1.25 (6.1.5)

where c is the molar concentration of urea (Mo = 60.06 g/mol) and r0 is the characteristic

timescale for the onset of shear-thickening with no urea addition.

Moreover, when we plot the peak shear viscosity qp as a function of urea concentration

c (also shown in Figure 6.1.5), we observe that qp varies with c in an identical exponential
fashion, i.e. qp = qge-c/. 2 . The stress up at which this peak viscosity occurs is given by

cyp = kp
= 0 -c/1.25 . 0c/1.2 5  0.0y - yi e 5Yp

(6.1.6)

(6.1.7)

in which q0 and k,, are the peak viscosity and the value of the shear rate at which the peak

viscosity is attained for the Mamaku gum solution with zero added urea (c = 0). This

quantity o, is independent of urea concentration, indicating that shear thinning appears at
a constant value of stress.

Our measurements give u, ~ 28 Pa. These observations suggest that the addition ofurea
does not change the average number of association junctions per chain, or the strength of
each hydrogen bond, but only modifies the average lifetimes of the associations. We explore

0 1 2 3 4

Urea concentration c [M]

5

101

100

10-1

10-2

10-3

Figure 6.1.5

Dependence of the characteristic
timescale rp (squares) and the peak
vicsosity qP (circles) on the concen-
tration of added urea for a 5 wt. %
Mamaku gum solution. An identical
exponential dependence (differing
only by a constant pre-factor) is ob-
served in the variation of qp as well
as r, with urea concentration. We
measure the same exponential sensi-
tivities for 2.5 wt. % and 5.0 wt. %
Mamaku gum solutions.
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this hypothesis further with the help of the extensional rheology experiments described

below.

Capillary Breakup Extensional Rheometry

Because shear thickening behavior can arise from the partial extension of polymer chains

leading to increased intermolecular interactions [71, 239], we directly study the behavior

of Mamaku gum solutions in extensional flow. We use the CaBER device to quantita-

tively measure the changes in the extensional rheology of Mamaku gum upon increasing

the urea concentration. Although limited in number, CaBER experiments performed on

other polysaccharide systems, such as cellulose/ionic liquid solutions [242], Sundew plant

mucilage [243] and Schizophyllan solutions [244], have revealed that capillary breakup

rheometry is an accurate technique for quantifying the elongational properties of these

fluids. Moreover, the potential application of Mamaku gum solutions as a food thickener

necessitates an understanding of its elongational properties; the biomechanics of swallow-

ing is such that a food bolus encounters a squeeze flow [245], whose kinematics has elon-

gational deformation components.

In figure 6.1.6, we show images of CaBER experiments as a function of time for both

2.5 wt.% (top row) and 5 wt.% (bottom row) Mamaku gum solutions. We have scaled

time by the breakup time tb of the fluid filament for each concentration (the values of t/tb

are given in the figure caption). The shape of the liquid bridge helps us determine the

onset of the elasto-capillary regime, in which equations 6.1.2 - 6.1.4 hold. At very early

times tltb < 1, the liquid bridge has just been formed and inertial stresses generated during

the step deformation are dominant. Immediately following this inertial regime there is a

viscocapillary regime, where capillary forces are balanced by the viscosity of the fluid. In

this regime, the midplane diameter of the fluid filament decreases linearly with time and is

given by [233]

D(t) = Do - 2x - 1 t (6.1.8)
6 qo

where x = 0.7127 for the viscocapillary similarity solution [233]. The linear viscous thin-

ning regime is followed by an exponential elasto-capillary regime in which the filament

diameter decays as D - exp(-t/3r). Because the fluid filament formed after the step de-

formation in a CaBER device experiences the deformation kinematics of a uniaxial elon-
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(a) t/tb < 0 (b) t/tb = 0 (c) t/tb = 0.15 (d) t/tb = 0.45 (e) t/tb = 0.75 (f) tltb = 1

(g) t/tb < 0 (h) t/tb = 0 (i) tltb = 0.15 (j) t/tb = 0.45 (k) t/tb = 0.75 (1) t/tb = 1

Figure 6.1.6: Snapshots of CaBER experiments for 2.5 wt. % (top row) and 5.0 wt. % (bottom

row) Mamaku gum solutions. In both cases, it can be seen that the onset of the elasto-capillary

regime, characterized by a uniform cylindrical fluid filament, occurs at around t/tb 0.15. For the

2.5 wt.% solution, the break-up time tb = 0.80 s, while for the 5 wt.% solution, tb = 55.30 s. The

initial gap is Lo = 2 mm, the final gap Lf = 8 mm, and the plate diameter Do = 6 mm. This yields

an initial aspect ratio of A0 = 0.33 and a final aspect ratio of Af = 1.33.

gational flow, the polymeric chains of Mamaku gum are constantly accumulating strain,

and elastic stresses in the filament increase with time. At one particular instant of time,

the elastic stress contribution exceeds that of the viscous stresses, and the capillary forces

are predominantly balanced by the elastic stresses [231]; the breakup dynamics now enters

the elasto-capillary regime which is characterized by the formation of a uniform cylindrical

liquid bridge of constant diameter between two filament 'feet' attached at each endplate. In

this regime, the evolution of the diameter as a function of time is given by equation 6.1.2.

From figure 6.1.6, we see that for both the 2.5 wt% and 5 wt. % solutions, the elasto-

capillary regime is established for t/tb ;,; 0.15. Anna and McKinley[231] have discussed

that during a CaBER experiment, the diameter evolution as a function of time can gener-
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ally be fit by a function of the form

D(t) = ae-bt - ct + d (6.1.9)

where a, b, c and d are constants, and this functional form captures both the early time
viscous regime as well as the subsequent elasto-capillary regime. The coefficient b is related
to the relaxation time of the fluid, and the value of c is related to the steady state extensional
viscosity plateau at large Hencky strains.

We show the midplane diameter of the liquid bridge Dmid(t) as a function of time for 2.5
wt.%, 5.0 wt.% and 7.0 wt.% Mamaku gum solutions respectively. As the Mamaku gum
concentration is increased, breakup of the fluid filament occurs at larger times; we measure
the breakup time tb as being 0.80 s, 55.3 s and 89.2 s for the 2.5 wt.%, 5.0 wt.% and 7.0
wt.% solutions respectively. From the Dmid(t) vs. t data, we can now use equation 6.1.2 in
the elasto-capillary regime of the experiment to determine the relaxation time of the fluids,
and these are r = 0.16 s, r = 4.55 s and r = 6.28 s for the 2.5 wt.%, 5.0 wt.% and 7.0 wt.%
solutions respectively. We can also use the Dmid(t) vs. t data to calculate the transient exten-
sional viscosities q' of the Mamaku gum solutions using equation 6.1.4. In figure 6.1.8a,
we show the variation of q+ as a function of the Hencky strain at the filament midplane
EH(t); the latter was calculated using equation 6.1.1. To find the derivative of the midplane
diameter dD(t)/dt, rather than fitting a function of the form given in equation 6.1.9, we

A

SwT T 6.2 8

r=0.16 s

.5 wt. %
T =4.55 s

s_

E 5.0 wt. o
A 7.0 wt. %

10-1 100

Time [s]

101
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Figure 6.1.7

Diameter of the fluid filament as a
function of time for CaBER exper-
iments performed on different con-
centrations of Mamaku gum. The
relaxation times shown in the fig-
ure is determined by fitting equa-
tion 6.1.2 to the elasto-capillary
regime of the experiment. The re-
laxation time r increases with in-
creasing Mamaku concentration.
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directly differentiate the measured data for the diameter (shown in figure 6.1.7) and apply

a minimal amount of smoothing (3 point moving average). The surface tensions for the

2.5 wt. %, 5.0 wt.% and 7.0 wt.% was measured to be o = 44.6 mN m, o = 33.7 mN m

and a = 33.5 mN m respectively. We observe that at large values of Hencky strain EH, the

transient extensional viscosity q+ for the 5.0 wt.% and 7.0 wt.% solutions are both of the

order (103 Pa s).

For the semidilute Mamaku gum solutions used in this study, the coil overlap parame-

ter ranges between 1.27 < c/c* < 3.18, based on the value of c* = 2.2 wt. % determined

by Goh et al.[71] The measured value of the steady extensional viscosity are an order of

magnitude higher than the steady state extensional viscosities of other polysaccharide sys-

tems with the same values of c/c* used in this study, for example, hydroxypropyl guar gum

solutions[246] and sodium hyaluronate[213]. This indicates that intermolecular interac-

tions during extension are significantly higher for Mamaku gum as compared to many

other polysaccharide systems. We have already noted from Figure 6.1.3 that the shear vis-

cosities of the Mamaku gum solutions increase as the concentration is increased. In the

elasto-capillary regime, the flow field in the CaBER device is well described by uniaxial

elongational kinematics and hence is shear-free. Therefore, to separate out the effect of in-

creasing shear viscosity with concentration (cf. Figure 6.1.3), we define the Trouton ratio

Tr as

Tr = -E (6.1.10)
'O

in which q' is the transient extensional viscosity of the fluid, and qo is the zero shear vis-

cosity. For a Newtonian fluid[177], the Trouton ratio is a constant, and Tr = 3. We

show the values of the Trouton ratio Tr for Mamaku gum solutions in Figure 6.1.8b. We

observe that the Trouton ratio remains relatively unchanged upon changing the Mamaku

gum concentration, indicating that increasing the concentration of Mamaku gum affects

the shear properties of the gum more than the form of the extensional response.

Having characterized the extensional rheology of urea-free Mamaku gum solutions, we

next study the changes induced in the rheological response of Mamaku gum solutions when

hydrogen bonding interactions are suppressed, by studying Mamaku-Urea mixtures in the

CaBER device. In figure 6.1.9a we show the transient extensional viscosity q' of 2.5 wt.

% Mamaku gum solutions with various molar concentrations of urea added. Figure 6.1.9b
shows the corresponding values of q+ for 5 wt.% Mamaku gum solution with added urea of
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varying molar concentrations. We observe the expected trend of a decrease in qaE and Tr

with increasing urea concentration in both cases, indicating that once again the addition

of urea interferes with the intermolecular hydrogen bonds formed by Mamaku gum in

solution.

102
2.5 wt.% Mamaku + Urea

DO 10'

~- 10~

-80 M +0.5 M
A M 2 M
S3M 5 M

10-1
2 3 4 5 6

EH

(a)
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e 102

e 101

100
-U-0 M -- 0.5 M

A 1- M -*2M
3M 5M

I I

2 3 4 5 6
E H

(b)

Figure 6.1.9: The transient extensional viscosity q of 2.5 wt. % (a) and 5.0 wt. % (b) Mamaku
gum solutions measured in a CaBER device. In both solutions, qE drops by nearly two orders of
magnitude when the urea concentration is increased from 0 M to 5 M.

.
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The breakup dynamics of the Mamaku gum solutions in the presence of urea can be

directly observed by studying the evolution of the midplane diameter D(t) as a function

of time t. We show these curves for 2.5 wt. % and 5 wt. % solutions with varying con-
centrations of added urea in Figures 6.1.1Oa and 6.1.1Gb respectively. We immediately ob-
serve that for both concentrations of Mamaku gum solutions, the breakup time tb strongly
decreases with increasing urea concentration. This indicates that the elastic stresses gen-

erated in the fluid filament formed upon imposition of the step extensional deformation

are greatly reduced in comparison to the capillary stresses. This is again a consequence of

the Mamaku macromolecules in solution preferentially forming hydrogen bonds with urea

molecules rather than intermolecular Mamaku-Mamaku hydrogen bonds. The data also

allows us to conjecture that a concentration of 0.5 M of added urea is enough to disrupt all

the hydrogen bonding sites along the chain when it is coiled, but not as it stretches out;

there is an upturn in the transient extensional viscosity q for EH > 4. This possibly arises

from new sites for hydrogen bonding that are exposed during the unraveling process.

From the curves showing the evolution in midplane diameter with time, we can also

calculate the characteristic relaxation time for each specific Mamaku-Urea mixture from

the midplane diameter vs. time curves by fitting an exponential of the form given by
equation 6.1.2 in the elasto-capillary regime. We show the values of the relaxation times
thus extracted on a log-linear scale in Figure 6.1.11 as a function of the urea concentra-
tion in the mixture. Although we do not show the individual time traces in this paper,

we have also performed CaBER experiments on 7.0 wt.% Mamaku gum solutions with

the same concentrations of urea added as in the 2.5 wt.% and 5.0 wt.% solutions. The

relaxation times of these solutions are also shown in Figure 6.1.11. Note that the re-
laxation time is a function of the concentrations of two different components present in
the mixture: the Mamaku gum concentration as well as the urea concentration present
in the mixture, i.e., r =r(Camaku,Curea). In figure 6.1.11 the relaxation time of each

Mamaku-urea mixture has been non-dimensionalized by the value of the relaxation time
TO = r(CMamaku,0) obtained for the Mamaku gum solution of concentration CMamaku with

zero added urea (curea = 0). We denote this non-dimensionalized relaxation time by the no-

tation F = r(CMamaku, Curea)/ro. Moreover, we scale the horizontal axis by 5 M, which is the

maximum urea concentration used in the mixtures, and hence, the lower and upper bounds
of the abscissa are 0 and 1 respectively. We find that for all the Mamaku concentrations

tested in this study (2.5, 5.0 and 7.0 wt.%), the relaxation time varies exponentially with
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Figure 6.1.10: The diameter D(t) as a function of time t of 2.5 wt. % (a) and 5.0 wt. % (b) Mamaku

gum solutions measured during CaBER experiments, plotted on a log-linear scale. Increasing the

urea concentration leads to earlier breakup and a drop in viscoelasticity. The magnitude of the slope

of the D(t) vs. t curves is inversely related to the relaxation time r; for both Mamaku concentrations,

the relaxation time decreases upon increasing urea concentration.
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(a) The normalized relaxation time f = r/rO
for Mamaku/urea mixtures calculated from
CaBER experiments, where ro is the relax-
ation time of the pure Mamaku solution (0 M
urea). The relaxation times fall onto a master
curve given by r = exp(-0.8c), independent
of the Mamaku concentration. (b) An iden-
tical exponential dependence is observed in
the variation of the peak shear viscosity with
urea concentration, as well as the reciprocal of
the critical shear rate at which the peak shear
viscosity is observed, shown here for a 5 wt.%
solution of Mamaku.

increasing Mamaku concentration (i.e. we observe linear decay on a log-linear scale), and
f = exp[-0.8c]. Comparing this result with what we obtain from figure 6.1.5, we find that
this exponential form is identical to that obtained for the dependence of the characteristic
shear thickening timescale i-p on the concentration of urea. Equation 6.1.5). The presence
of the identical exponential forms across Mamaku gum concentrations in both shear and
extensional rheology experiments suggests a common origin which can be rationalized by
examining the influence that the addition of urea has on the lifetime of the intermolecular
hydrogen bond associations present in Mamaku gum.

The rheological response and strong shear-thickening behavior of Mamaku gum is
reminiscent of other physically crosslinked networks that form temporary, reversible as-
sociations [20]. These associations may arise from a number of physical mechanisms, for
example hydrophobic interactions [247], ion complexation [239] and, most relevant to this
study, hydrogen bonding [248]. Leibler et al. have a developed a theory for soft reversible
networks called sticky reptation [249], which applies to networks formed by linear chains
with multiple temporary cross-links along the chain (For example the modified polybuta-
dienes studied by Freitas and Stadler [250]). The relaxation time of a system that relaxes
through sticky reptation is given by [20, 249]

2S 2 Id

1 - 9/p + 12/p2 (6.1.11)

in which N is the number of monomers per chain, N is the number of monomers in an
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entanglement segment, S is the number of stickers per chain and p is the average fraction of

stickers that are associated at any given time. The timescale rd is the average time a sticker

spends in the associated state, and is given by [20, 251]

rd = Wa-leAG/kBT (6.1.12)

in which AG is the free energy barrier for disassociation, kB is Boltzmann's constant, T is the

absolute temperature and to is a vibration frequency that determines the average number

of times per second the sticker tries to climb the energy barrier for dissociation as a result of

thermal fluctuations [251]. Substituting Equation 6.1.12 into Equation 6.1.11, we obtain

-1 -NeAG/kBT(61.13) W 0 Ne 1 - 9 /p + 12/p2

It is evident from the above equation that the relaxation timescale r of a particular system
depends exponentially on the free energy for disassociation AG, all other parameters being

held constant. Our experimental observations in Figure 6.1.11 show that the relaxation

time r decreases exponentially with increasing concentration of urea. This is only possible

if adding urea to the Mamaku gum solutions modifies the free energy AG in such a way
that

AG = AGO - mc (6.1.14)

Here AGO is the free energy for disassociation in the absence of any urea, c is the concentra-
tion of urea added and m is a constant. Substituting Equation 6.1.14 into Equation 6.1.13
we obtain

T = rOe -mc/kBT (6.1.15)

where rO is the relaxation time of the hydrogen bonded temporary network in the absence
of urea and is given by

O ._ -1 (N 2S2 AG0 /kBT (6.1.16)
\ Ne rg - 9/p + 12/p2

The linear dependence of the free energy AG on the urea concentration c given in Equa-

2t5
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tion 6.1.14 has been experimentally observed in the context of protein solutions. Greene

and Pace have observed that adding denaturants such as urea or guanidine hydrochloride

(GmHCl) to various protein solutions results in a linear decrease of the free energy for

denaturation with denaturant concentration [252]. Similar observations have been made

by many other studies of protein denaturation [253-255]. In fact, the denaturation en-

ergies AGO for protein solutions are routinely found by linearly interpolating the AG vs c

curve to zero denaturant concentration [256]. Our results show that this linear relationship

holds at least for the Mamaku gum polysaccharide, and possibly for other polysaccharide

systems as well. From our experimental result of r = roe-O.8c, we calculate a value of

m = 471.9 cal/mol -M (m = 1982 J/mol -M), where units of M stand for molarity of

urea in Molar. The m value quantifies the strength of the interaction of a hydrogen bond-

disruptor such as urea with the Mamaku gum polysaccharide; the larger the m value, the

stronger the interaction between the bond-breaker and the polysaccharide, and the more

pronounced is the ability of the bond-disruptor to decrease the free energy barrier for dis-

association. The value of m will vary not only with the specific chemical used, but also

the polysaccharide system[253]. Myers et al. have listed the m values of various proteins-

denaturant combinations, and the m values for urea range from 250 cal/mol -M to as high

as 7800 cal/mol -M [253].

Note that our experimental observation of an exponential dependence of T on urea

concentration c indicates that the addition of urea does not modify the other network pa-

rameters such as the number of stickers per chain S or the average fraction of stickers that

are associated at any given time p; it is only the dissociation lifetime rd that is modified

through the variation in the free energy barrier for disassociation. This implies that there

are no fundamental structural changes induced in the Mamaku gum polysaccharide upon

the addition of urea, such as in the number of stickers per chain S of the average fraction

p of stickers that are associated at any given moment. This presents the possibility of a

time-concentration superposition principle. Time-temperature superposition is widely used

in rheology to measure the relaxation spectra of polymeric systems at frequencies that are

experimentally inaccessible [257]. It has been observed that for complex fluids that obey

time-temperature superposition, small amplitude oscillatory shear experiments may be per-

formed at different temperatures and then shifted along the frequency axis using a shift fac-

tor aT to obtain a master curve of the relaxation spectrum of the fluid over many decades

of frequency. Such fluids are said to be thermorheologically simple, and time-temperature
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superposition holds for polymeric systems that do not undergo structural changes upon

a change in temperature [257]. As discussed above, we observe no structural changes in

Mamaku gum polysaccharide molecules upon the addition of urea, and we expect a time-

concentration superposition principle to exist in this case.

In figure 6.1.12(a) we show the values of the reduced storage and loss moduli, G'(o)

and G','(t) respectively, of a 5 wt. % Mamaku gum solution with a range of different molar

concentrations of added urea. We have shifted these curves along the frequency axis using

a shift factor ac to construct a reduced frequency or = aco. The subscript c denotes that

this shift factor is a function of the urea concentration c. We note that the values of G'(W)

for each of the different Mamaku gum-urea mixtures fall on a master curve over nearly

three decades of frequency. Again, this confirms the fact that there are no major structural

changes introduced upon the addition of urea, and it is only the timescale of hydrogen

bond association and dissociation that is altered. Figure 6.1.12(b) shows the values of the

shift factors ac used to construct the master curve as a function of the urea concentration c.

The concentration shift factor ac varies exponentially, with ac ~ e-0cC. The co-efficient 0.4

in the exponential yields a urea sensitivity of m = 235.9 cal/mol -M (m = 991 J/mol -M).

This value is lower than the value m = 471.9 cal/mol -M we obtained previously from

nonlinear shear and extensional rheology experiments. The latter is shown as black squares

in Figure 6.1.12.

The differing urea sensitivities between linear and and nonlinear deformations (which

we quantify in terms of the magnitude of the shift factors) indicates that the Mamaku gum

solutions are urheologically complex. The complexity can be explained in terms of the in-

creased chain extension of Mamaku gum solutions under a nonlinear flow. In the case of

proteins, the sensitivity to denaturants has been found to be larger for proteins that are in

more extended or unfolded conformations[253], and this effect has been studied by con-

trolling the amount of unfolding of the protein molecule by varying the pH[258, 259].

Previous rheological studies have shown that Mamaku gum solutions are relatively insen-

sitive to change in pH [73]. However a steady shear flow at high shear rates or extensional

flows such as that produced in the CaBER device can elongate the Mamaku gum polysac-

charide chains and this appears to lead to much larger required shifts as compared to those

found from a linear viscoelastic experiment. Upon the imposition of a nonlinear deforma-

tion (say steady shearing flow at a shear rate k ~' ,), the elongated chain now has additional

exposed sites for hydrogen bonding (i.e.) the value of S in Equation 6.1.13 is modified. The
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Figure 6.1.12: (a) The values of G'.(&) (solid symbols) and G''(&) (hollow symbols) measured in an

SAOS experiment for a 5 wt. % Mamaku gum solution with different concentrations of added urea.

The curves have been shifted along the frequency axis using a shift factor ac to generate a master

curve. (b) The values of the shift factor ac as a function of urea concentration required to generate

the master curves of G'(&) and G''(w). There is an exponential relationship between acand urea

concentration c. However, the dependence of the shift factor on urea concentration is stronger in

the nonlinear experiments (black squares) as compared to the linear SAOS experiments.
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hydrogen bonding at these additional exposed sites are also influenced by the addition of

urea. In fact, the shift factor obtained from nonlinear rheology is almost exactly a factor

of 2 larger than linear rheology. This suggests that nonlinear effects arise from pairwise

interactions. Detailed investigation of the microstructural origins of the different sensitivi-

ties in weak and strong flows requires further experimental and computational studies, for

example, kinetic theory simulations.

6.1.4 Filament Stretching Extensional Rheometry

One drawback of the CaBER device is that over the duration of the experiment, not only
does the Hencky strain eH imposed on the fluid sample increase as a function of time, but the
strain rate imposed on the fluid sample also varies with time. The latter is a consequence
of the thinning fluid filament choosing its own breakup dynamics according to the balance
of viscous, elastic and capillary forces in a CaBER experiment ([260]).

In a FiSER experiment, a test fluid is place between two parallel plates of diameter Do
initially separated by a gap Lo [61]. The plates are then pulled apart from each other to yield
a time-varying gap L(t). The strain rate i at the midplane of the resultant fluid filament is
given by

2 dD(t) 1 dL(t)
D(t) dt L(t) dt

From Equation 6.1.17, it can be shown that in order to obtain a constant strain rate, the gap
L(t) should be varied in an exponential fashion, i.e. L(t) = Lo exp(tt) (by contrast, the gap in
a CaBER experiment is varied instantaneously, closely approximated by a step-function).

As L(t) is varied, the midplane diameter D(t) as well as the normal force F(t) exerted by the
stretching fluid filament are continuously measured. These quantities can subsequently be
used to calculate the extensional modulus G (EH, t) which is given by

G (EH, 0) = U11 - 022 _ F(t) (6.1.18)EH R2 (t) CH

where R(t) = D(t)/2 is the instantaneous midplane radius, and o and 022 are the axial and

radial components, respectively, of the stress tensor. We show a schematic figure of our

FiSER device in Figure 6.1.13

In Figure 6.1.14, we show snapshots of FiSER experiments performed on two Mamaku-
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Figure 6.1.13: A schematic figure of the FiSER device. In a FiSER experiment, a fluid filament
is set up between two parallel plates (shown in blue) and the bottom plate is then pulled apart in
an exponential manner, to obtain a desired strain rate. A laser sheet (shown in red) continuously
measures the midplane diameter of the filament and a force transducer measures the normal force
during the stretch.

urea mixtures (5 wt.% Mamaku gum with OM urea and 3M urea). Each row corresponds

to a single Mamaku-urea mixture, and each column corresponds to a fixed value of Hencky

strain EH at the midplane of the fluid filament, whose values are given as column headers.

The scalebar is the same length as the diameter of the plates (Do = 6 mm). We observe that
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at a fixed value of Hencky strain cH, the stretch ratio A = L(t)/LO is much smaller in the

case of the solution with 3M added area as opposed to the urea-free solution. This indicates

that the breakup of the filament occurs much earlier in the 3M urea solution. This is direct

consequence of the decreased elasticity of the Mamaku gum solution upon the addition of

urea; the higher elasticity of the pure Mamaku gum solution retards filament breakup and

hence we are able to reach much larger stretch ratios A before breakup in this case.

To study the viscoelasticity of the Mamaku gum solutions as a function of strain rate

in a quantitative manner, we perform FiSER experiments at various values of Weissenberg

number Wi = Ae for the three different Mamaku-urea mixtures. The results of these ex-

periments are shown in Figure 6.1.15. Figures 6.1.15(a),(c) and (e) show the normal stress

difference o-l - O22 as a function of Hencky strain EH imposed on the fluid filament for the

different Mamaku-urea mixture (the particular composition of the mixture is given in each

graph). In all cases, the fluid is strain-hardening, and the normal stress difference increases

CH = 0.5 1.0 2.0 3.0 4.0 5.0

*M urU 

6 mm

3M Ureaz

Figure 6.1.14: Snapshots of the fluid filament during a FiSER experiment. The top row of images
is of a 5 wt. % Mamaku gum solution, while the bottom row corresponds to a 5 wt. % Mamau gum
solution with urea added at a concentration of 3 M. The Hencky strains EH at which the images
were taken are given at the top of the figure. Upon the addition of urea, the viscoelasticity of the
polysaccharide gum is dramatically decreased, and the breakup of the fluid filament occurs at much
smaller stretch ratios compared to the urea-free solutions.
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Figure 6.1.15: Stress vs. Hencky strain ((a),(c),(e)) and modulus vs. Hencky strain ((b,)(d),(f))
obtained from filament stretching experiments for different Mamaku/urea mixtures. In all cases, the

Mamaku/urea mixtures are strain hardening. The stress is strain-rate independent for small strains,

and shows rate dependency as the Hencky strain increases. The stress (and correspondingly the

modulus) increase with increasing nominal strain rate for the 0 M urea and 1 M urea mixtures.

However, no clear trend is observed for the 3 M urea mixture. This is because the relaxation time

of the 3 M urea solutions is so low (A = 0.31 s.) that the maximum experimentally imposable

Weissenberg number is not high enough to exhibit any rate dependence.
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with increasing Hencky strain. However, it is evident from the figures that upon increas-

ing the urea concentration, the amount of strain hardening is decreased. We only observe

a weak dependence of the first normal stress on the strain rate i.

In Figures 6.1.15(b), (d) and (f), we show the modulus GE as a function of Hencky

strain eH. In these figures, the changes induced in the viscoelasticity of the Mamaku gum

solutions upon the addition of urea are clearly apparent; comparing Figures 6.1.15(b) and

(f), we observe that the modulus GE' decreases by nearly an order of magnitude with in-

creasing urea, again indicating that the interactions in Mamaku gum predominantly arise

from hydrogen bonding. Whereas we note that there is some strain rate dependence of the

modulus GE from the solutions with no added urea, GE is practically independent of strain

rate for the mixtures with 3 M urea.

The FiSER results presented in this section complement the results obtain from the

CaBER device presented in the main manuscript. The addition of urea to Mamaku gum

dramatically decreases the viscoelasticity of the gum solutions, demonstrating that the in-

termolecular associations are predominantly arise from hydrogen bonding.

6.1.5 Conlusions

The steady shear flow curves ofMamaku gum solutions exhibit a pronounced shear-thickening

response, which is very unusual for polysaccharide systems [64]. At a critical shear rate f,

the shear-thickening ceases and there is an onset of extreme shear-thinning, which oc-

curs at an approximately constant shear stress ap for all experimentally imposed shear-rates

k > kp. In this paper, we have explored the origin and consequence of this shear thickening

behavior; through a combination of shear and extensional rheology experiments performed

on Mamaku gum-urea mixtures, we have determined the source of the shear-thickening

to be intermolecular hydrogen bonding.

Nonlinear steady shear experiments reveal that increasing the amount of urea in the

mixture (while holding the Mamaku gum concentration a constant), both the zero shear

viscosity qo as well as the peak viscosity in the shear-thickening regime qp progressively

decrease. The reciprocal of the shear rate k, at which the peak viscosity appears, provides a

characteristic timescale of the fluid in nonlinear deformation, also become smaller; in fact

both rip and r, = k, 1 decrease exponentially with increasing urea concentration.

Transient extensional rheometry performed using a CaBER device demonstrate that

the relaxation time in extension also follows an exponentially decreasing relationship with
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increasing urea concentration. Moreover, this exponential dependence on relaxation time

with urea concentration is identical to that obtained from nonlinear shear experiments. We

interpret this in terms of the modification of the free-energy barrier for hydrogen bond

dissociation, leading to an exponential relationship between the dissociation timescale of

hydrogen bonds with urea concentration. Our experiments are consistent with the ex-

pected relaxation dynamics of Mamaku gum-urea mixtures predicted by the sticky repta-

tion theory for reversible networks of polymers with multiple associative groups along the
backbone. We show that this leads to the concept of a time-concentration superposition
principle, akin to the more familiar time-temperature superposition used for concentrated
polymer solutions or polymer melts. However we find that the linear and nonlinear rheol-
ogy of the Mamaku gum-urea mixtures shift by different extents upon addition of urea. By

analogy with other polymeric systems which are described as thermorheologically com-
plex, we may refer to Mamaku gum solutions as urheologically complex.

This rheological study improves our understanding ofMamaku gum solutions in partic-
ular and shear thickening polysaccharides in general. Mamaku gum has traditionally been
used as a food source by the native Maori tribes of New Zealand [71]. The shear thick-
ening properties and the pH insensitivity make it an excellent potential food thickener to
aid patients with dysphagia. The ability to independently control the linear and nonlinear
rheological characteristics via the different sensitivities to hydrogen bond disruptors offers
an additional level of formulation control. Additional controlled trials on the safety and the
efficacy of Mamaku gum, as well as the behavior of the gum in mammalian digestive tracts
would greatly help towards realizing this possibility.

6.2 Hyaluronic Acid

We utilize a recently developed microfluidic device, the Optimized Shape Crossslot Ex-
tensional Rheometer (OSCER), to study the elongational flow behavior and rheological

properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found

in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar

extensional flow with a homogenous extension rate over a significant length of the inlet and

outlet channel axes. Due to the compressive nature of the flow generated along the inlet
channels, and the planar elongational flow along the outlet channels, the flow field in the
OSCER device can also be considered as representative of the flow field that arises between
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compressing articular cartilage layers of the knee joints during running or jumping move-

ments. We show this by modeling the flow field in ajoint as a squeeze flow of a power law

fluid, and analyze the resulting kinematics in detail. Full-field birefringence microscopy

measurements demonstrate a high degree of localized macromolecular orientation along

streamlines passing close to the stagnation point of the OSCER device, while micro-particle

image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used

to assess the local extensional viscosity in the elongating fluid elements as a function of the

measured deformation rate. The large limiting values of the dimensionless Trouton ratio,

Tr ~0(50), demonstrate that these fluids are highly extensional-thickening, providing a

clear mechanism for the load-dampening properties of SF. The results also indicate the po-

tential for utilizing the OSCER in screening of physiological SF samples, which will lead

to improved understanding of, and therapies for, disease progression in arthritis sufferers.

6.2.1 Introduction

Hyaluronic acid (HA) is a naturally occurring linear polysaccharide composed of D-glucuronic

acid and N-acetyl-D-glucosamine disaccharide units linked by alternating /p 1 -> 3 and

/ 1 -- 4 glycosidic bonds [217, 261].

Hyaluronic acid is found abundantly in many biological systems and occurs in partic-

ularly high concentrations in the vitreous humour of the eyes, umbilical cord, cockerel

comb, and the synovial fluid (SF) of the joints [70]. In healthy human synovial fluid, a

broad range of values for the concentration of HA has been measured, ranging generally

between around 0.05 and 0.4 wt. %, with 0.3 wt. % being typical [262-264]. The molec-

ular weight of HA in healthy SF can be extremely high and has been reported as reaching

more than 7 MDa [265]. The high concentration and molecular weight of the HA in SF
confer strong viscoelastic properties to the fluid [266, 267]. Synovial fluid is highly viscous

(on the order of 10's to 100's of Pa s) and is strongly shear thinning [213, 268]; a property

which contributes to the highly effective lubrication of joints undergoing flexion. Syn-

ovial fluid is also highly elastic and it has been suggested that this may be the key to the

shock-absorbing properties of SF that protects joints from sudden high-load impacts [269,
270].

Compression of the synovial fluid in the joint cavities (e.g., between the femur and tibia

in the knee, when running or landing after ajump) can be considered (in a simplified sense)

essentially as a squeeze flow between two compressing disks or plates (see Figure 6.2.1).
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(a) (b) Figure 6.2.1

bone I(a) Schematic drawing of a synovial
joint highlighting the important

ligament anatomic features. (b) Simplified
membrane M picture of the squeeze flow in a syn-

cartilage ovial joint undergoing a compres-
synovial fluid sive deformation (such as occurs in

the knees during locomotion). The
black arrows indicate the flow of
the synovial fluid being squeezed
outwards orthogonal to the com-
pression axis, resulting in a biaxial
extensional flow at the mid-plane
between joint surfaces and a stagna-
tion point at the center of symmetry
(marked by the red 'x').

In general, with a no-slip boundary condition at the plates, squeezing flows generate a

complex time-varying and inhomogeneous flow field composed of strong shear near the

surfaces of the plates and a biaxial extensional flow with a stagnation point at the mid-plane

between the plates [203, 271]. At the stagnation point, the fluid velocity is zero, so the res-

idence time of material elements in the flow can be (in principle) infinite. Under such

circumstances, flexible macromolecules are expected to unravel and stretch to a consider-

able fraction of their contour length provided the extension rate t exceeds the reciprocal

of the longest macromolecular relaxation time 1/r. This condition defines a critical value

for the dimensionless flow strength or Weissenberg number, Wi = r ~ 1, above which

macromolecules will stretch [272]. This behavior has been demonstrated experimentally

in many systems including direct observations of chain unraveling in fluorescently labeled

DNA [273, 274] and measurements of flow-induced birefringence in synthetic and bio-

logical polymer solutions [62, 275]. Simulations of squeezing flows using a Finitely Exten-

sible Non-linear Elastic (FENE) dumbbell-type model predict significant macromolecular

stretching between the compressing plates for "fast squeezing"; i.e., when the timescale

for the squeezing is much less than the relaxation time of the dumbbell or macromolecule

[276].

If perfect slip is allowed at the solid surfaces of the plates, the squeezing flow gener-

ates a homogeneous biaxial extensional flow field with no contribution from shear [203].

Slip can be introduced into experimental squeeze flow apparatus through the introduc-
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tion of thin layers of an immiscible low-viscosity lubricant at the plates, such that (ideally)

shearing deformation is confined within the lubricating layer while the bulk fluid con-

tained between the plates undergoes an homogeneous biaxial extension. Such lubricated

squeezing devices have been demonstrated as effective biaxial extensional rheometers for

relatively high-viscosity fluid samples such as polymer melts [277, 278]. For the flow of

shear-thinning fluids in squeeze flows, shear localization at the plate surfaces has a similar

effect to partial slip at the surfaces. Effectively the fluid self-lubricates, resulting in a more

plug-like flow in the bulk and an increased dominance of extensional effects over shearing

contributions to the flow in the region of the mid-plane between the plates. In the next

section, we describe the kinematics of a power-law fluid undergoing a squeeze flow and

quantify the extensional component of the deformation using a flow-type parameter.

We note that in a realjoint the bounding surfaces (i.e., the cartilage) are in fact charged,

porous and compressible [279, 280] and several mechanisms ofjoint lubrication have been

suggested based on these physical properties of cartilage and their interaction with the syn-

ovial fluid. These include squeeze-film lubrication [279], weeping lubrication [281-283],

boundary lubrication mediated by surface adsorbed lubricin proteins [284], and electro-

static binding of an HA network to the cartilage [280]. While our simple picture of the

compressing joint (as illustrated in Figure 6.2.1 and explored in further detail in the next

section) does not incorporate any of these additional complexities, we believe the basic

squeeze flow description nevertheless captures many of the characteristics of the mixed ex-

tensional and shearing kinematics. Lubrication analysis of squeeze flow using a power-law

constitutive model to represent the shear-thinning SF, clearly shows that for typical values

of the geometric aspect ratio and shear-thinning exponent the flow field contains a sig-

nificant region of extension-dominated flow. Based on this simplified scenario, we argue

that injoints undergoing compressive deformations, shear-thinning of the synovial fluid at

small gaps actually augments the importance of the extensional flow field between the two

approaching cartilage surfaces.

Due to the very small gaps (- 0(100 p)m) between the articular cartilage layers and

the short time scales involved in suddenjoint impacts, only small deformations are required

to generate high values of the extensional strain rate t, which is estimated to range be-

tween 1 and 1000 s 1 in the knee [285]. On the other hand, the high molecular weight of

HA and the high viscosity of synovial fluid means the relaxation time r of the HA in SF

can be very long (0.1 r 1) s [213]. Hence, it is highly likely that biologically rele-
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vant deformation rates generated withinjoints can result in high Weissenberg numbers for
the HA macromolecules contained in the synovial fluid, and therefore induce significant
stretching of the HA [269, 270]. The stretching of macromolecules in solution can result

in orders of magnitude increases in elastic stresses and the corresponding measure of the

transient extensional viscosity [286-288]. This provides a possible mechanism for energy

dissipation during shock loading and the prevention of contact between cartilage layers in

compressing joints [270].

In patients with osteo- and rheumatoid arthritis, the properties of synovial fluid become

degraded, with both the concentration and molecular weight of the HA being significantly

altered [262, 264, 265, 289-291] and the viscoelasticity significantly reduced. Monitoring

the concentration and molecular weight of HA in SF (or alternatively the co-related vis-

coelastic properties of SF) therefore has potential as a marker for diagnosis of such joint

diseases [289]. An important application of commercially produced HA (normally isolated

from cockerel combs or produced by bacterial fermentation) is in visco-supplementation

of arthritic joints in order to enhance the properties of the diseased and degraded SF [70,
292, 293]. A full characterization and understanding of the rheological properties of HA
in solution is therefore vital for the optimization of the fluids used for this form of therapy.
While such rheological studies are numerous for simple shearing flows that are relevant to

joint flexion [213, 294-297], detailed studies of extensional flows of HA solutions that could
be relevant to SF function during joint compression remain scarce [213, 269, 270, 298].

In a recent study, Bing6l et al. [213] performed comprehensive experiments on HA
solutions in a physiological phosphate buffered saline (PBS) using both steady shear in a

cone-and-plate rheometer and uniaxial extensional flow in a capillary thinning (CaBER)

device. Hyaluronic acid solutions of two molecular weights (1.7 and 4.6 MDa) and a range
of concentrations spanning 0.09wt. % c 0.88wt. % were tested, along with "mode"
synovial fluid systems consisting of HA mixtures with bovine serum albumin (BSA) and
c-globulin. It has been suggested that complexes formed between HA and the proteins
present in SF could play an important role in influencing SF rheological properties [299].
However, Bing5l et al. found no significant differences between the shear and extensional
rheological properties of HA solutions with and without the proteins present, and con-
cluded that it is the HA alone that is predominantly responsible for the functional properties
of SF. In addition to HA solutions, Bing6l et al. also examined samples of real human SF in
shear and extensional flow. They found that a 4.6 MDa HA at a concentration of c = 0.3
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wt. % in PBS had shear and extensional rheological properties that compared well with the

physiological SF samples.

A potential limitation of the work of Bing6l et al. is the use of a capillary thinning

rheometer to study the extensional properties of HA solutions. In the CaBER device it

is not possible to impose a controlled deformation rate to a fluid sample; the fluid simply

drains, necks down, and eventually breaks up according to its own timescale, determined

by a balance between viscous, capillary and elastic stresses [211]. Also, since the CaBER is

a free-surface instrument, hydrophobic molecules can be drawn to the air-liquid interface

in the device, modifying the interfacial rheology and potentially affecting measurements

by stabilizing the eventual breakup of the fluid filament [54, 300].

Recently, Haward et al. presented a novel microfluidic device for performing exten-

sional rheometry of polymer solutions [74]. The Optimized Shape Cross-slot Extensional

Rheometer (or OSCER) is similar to a cross-slot device, but has a shape that has been nu-

merically optimized in order to generate a large region of homogenous planar extensional

flow. This device allows fluid extensional rheological properties to be measured as a func-

tion of the flow strength in a clean and enclosed environment, with no additional compli-

cating effects resulting from the presence of a free surface and while using small volumes

of fluid (CD(10 ml)). In this chapter, we examine viscoelastic fluids consisting of semidi-

lute, shear-thinning solutions of semiflexible HA macromolecules and also of HA/protein

mixtures similar to those studied by Bing6l et al. [213]. The OSCER device enables us

to determine fluid relaxation times and planar extensional viscosity behavior as a function

of the deformation rate, which is not possible in the CaBER device employed by Bing6l

et al. Our aim is to characterize the extensional properties of HA in solution and to assess

whether or not the stretching of HA in synovial fluid can play a significant role in joint

protection. This type of study may lead to improved formulation of prosthetic fluids with

properties better matched to real SF. If we can demonstrate a direct connection between

HA concentration and molecular weight and the extensional flow behavior of a given fluid,

then our methods may also offer a technique for tracking changes in the synovial fluid HA

characteristics during the progression ofjoint disease and thus potentially to a novel disease

diagnostic technique.
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6.2.2 Modeling the Squeezeflow of HA inJoints

In this subsection, we discuss the changes in the kinematics of a shear-thinning fluid during

squeeze flow between parallel circular plates of radius R and gap separation h(t). The flow

field in squeezing flow of a Newtonian fluid has a stagnation point on the axis of symmetry
and is characterized by a biaxial extension in the midplane between the plates, however the

majority of the volume of fluid contained between the plates is predominantly subjected

to shear. We show that the presence of shear-thinning in the fluid rheological properties
modifies the kinematics of squeezing flow and thus changes the relative balance of the

extensional components to the shearing components in the flow field. We consider the
simplified case of a power-law fluid (i.e. a fluid with no zero-shear-rate viscosity plateau at
low shear rates and no normal stresses in a shear flow), and quantify the relative importance
of extension with respect to shear using a flow type parameter. The flow of the lubricating
synovial fluid in mammalian joints under applied deformations such as running or jumping

is well modeled as a squeeze flow. Real synovial fluid is significantly shear-thinning and
hence knowledge of the extensional viscosity of these fluids as well as an understanding
of its behavior under squeezing deformations are important in analyzing the function and
efficacy of synovial fluid in mammalian joints.

Background

Consider a power-law fluid in which the shear viscosity q is given by

q = Mk "-1 (6.2.1)

where k is the shear rate, m is a constant referred to as the consistency index and n is a
positive constant known as the power-law index. For n = 1, Equation 6.2.1 represents a
non- shear-thinning Newtonian fluid. For 0 < n < 1 the power-law index describes the
extent of shear-thinning in the fluid viscosity; as n -> 0 shear-thinning becomes increas-
ingly important. For n > 1 the fluid is shear-thickening. Bird et al. [24] give expressions
for the velocity field of such a power-law fluid under squeezing flow, which we present
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here in a suitably non-dimensional form:

Vr .[ 2n+1 1-11+1/n)
Or = ( 

2(n -+1) 1

Oz = - 2n+ n (1jI2+1/n) - iii1
_h n+1 12n+1I

(6.2.2)

(6.2.3)

in which Vr and vZ are the radial and axial components of the velocity vector, respectively

and z = z/h and r = r/h. Here r is the radial coordinate measured from the symmetry axis,

z is the axial coordinate measured from the mid plane, h is the distance from the mid plane

to either plate, and h is the velocity of the top plate (relative velocity between the plates is

2h). The radial coordinate varies between 0 and R, where R is the radius of both the top

and the bottom plates.

With these calculated velocity profiles, we now determine the rate of deformation ten-

sor D and the vorticity tensor 0, defined respectively as

D = (VV+ Vef)

0=1 (Vi - V6T)

(6.2.4)

(6.2.5)

h 2n+1

h 2(n + 1)

D= 0

h 2n + 1|n"
h 4n

0

- 2n+1 ( - iiil*l/"
h2(n + 1)

0

h2n+ 1
h 4n

0

h2n+ 1(G - ii1+l/n

h n+1

and

0

0
h2n+1ii u1n.
h 4n

h2n+1 I
h 4n

0 0

0 0

to obtain

(6.2.6)

(6.2.7)
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To describe the nature of the flow field, in terms of shear and extensional contributions,
we define the flow type parameter as [301]

if(, ) = IDI - |QI
|DI +|1I

(6.2.8)

where ID I and 1 I represent the magnitudes of the rate of deformation and vorticity tensors
respectively, defined by

DI = (D D T )

S= ( :T)

It is straightforward to show that f =

which the flow is pure rotation, simple
kinematics, we find that

2Zii

= D2

=Z ii

-1,0, 1, respectively corresponding to the
shear or pure extension. Calculating t for

F2i12/n + 12 n 1 (1 - 2i+l/n)2 - ili/n
f(F,;z) = V12 + 1 2

F2i2/n+ 12 : ) (1 - I1+1/n)2 +FlillF\n +1/

(6.2.9)

(6.2.10)

(6.2.11)

limits in

our flow

(6.2.12)

Results

In Figures 6.2.2 and 6.2.3 we show the velocity field as a function of spatial location between

the plates for various values of the power-law exponent n. In Figure 6.2.2 the ratio of

plate diameter to the total gap between the plates is given by R/h = 10 . In Figure 6.2.3

R/h = 100, which is thought to be a physiologically relevant ratio of length scales [285]. In

all cases we observe a stagnation point on the midpoint of the compression axis (i.e. r = 0,

z = 0) and fluid accelerates continuously along the radial direction generating a biaxial

extensional flow.

We observe that the velocity field for shear-thinning fluids in squeeze flows becomes
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Figure 6.2.2: Flow velocity magnitudes and direction for shear-thinning power-law fluids in a
squeeze flow with R/h = 10. The power-law exponents are: (a) n = 1, (b) n = 0.5, (c) n = 0.2, and

(d) n -> 0.

increasingly plug-like with increasing shear-thinning (i.e. decreasing n). In fact, the flow

reduces to one of pure biaxial extension for n = 0. This is also clearly seen from Figures 6.2.4

and 6.2.5, where we show line plots of Vr at fixed values of r at different values of n. It

can be seen that the width of the plug-like region increases with decreasing n , eventually

leading to a plug-like velocity profile everywhere for n = 0.

We plot the value of the flow type parameter i as a function of the spatial position for

different values of n in Figures 6.2.6 and 6.2.6. It can be seen that even for a Newtonian

fluid (n = 1, Figure 6.2.6(a)), the compression axis (i.e. the r = 0 axis) and, more impor-

tantly, the midplane between the compressing plates (i.e. the z = 0 plane) are dominated
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Figure 6.2.3: Flow velocity magnitudes and direction for shear-thinning power-law fluids in a
squeeze flow with R/h = 100. The power-law exponents are: (a) n = 1, (b) n = 0.5, (c) n = 0.2, and
(d) n -- 0.

by a shear-free biaxial extensional flow. Decreasing the value of n (Figure 6.2.6(b-d)), i.e.
increasing the extent of shear-thinning, results in a significantly enlarged region of pure
biaxial extension centered on the midplane. For a fluid with power-law exponent n -+ 0,
the entire gap between the plates is characterized by homogeneous biaxial extension, with
no component of simple shear (Figure 6.2.6(d)).

Increasing the aspect ratio of the geometry from R/h = 10 (Figure 6.2.6) to R/h = 100
(Fig 6.2.7), the result remains qualitatively similar, though for a given value of n the width
of the central, extension-dominated region becomes slightly reduced. Nevertheless, at this
physiologically relevant aspect ratio and at physiologically relevant values of n = 0.5 and
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Figure 6.2.4: Velocity as a function of non-dimensional height in the channel z at fixed values of
radius r and for R/h = 10. The power-law exponent is: (a) n = 1, (b) n =0.5, (c) n = 0.2, and (d)
n --- 0.

n = 0.2 [213], we can observe a significant region of pure biaxial extensional flow between

the plates.

We have shown here that the presence of shear-thinning can significantly alter the flow

kinematics of the squeeze flow problem. Upon calculating the flow type parameter, we find

that shear-thinning locally enhances the dominance of extensional deformations near the

midplane between two compressing plates. Paradoxically, as the power-law exponent n is

decreased, shear-thinning becomes less important and the flow field as a whole becomes

increasingly dominated by extension. This demonstrates that the shear-thinning of syn-

ovial fluid in mammalian joints, may in fact enhance the importance of the extensional flow

generated during when joints are suddenly compressed (such as occurs in the knees dur-

ing running and jumping, for example). We note also that any slip that may occur at the

surfaces during squeeze flow will also further increase the relative dominance of the exten-

sional components in the flow field [302]. In the joints we speculate that partial slip could

occur due to"weeping" of low viscosity fluid from the porous cartilage matrix [281, 282].

Thus we believe that characterizing and understanding the extensional rheology proper-

ties of synovial fluid may be an invaluable component in finally elucidating its full range
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Figure 6.2.5: Velocity as a function of non-dimensional height in the channel z at fixed values of
radius r and for R/h = 100. The power-law exponent is: (a) n = 1, (b) n = 0.5, (c) n = 0.2, and
(d) n -* 0. As n decreases the velocity field becomes increasingly independent of z and approaches
plug-like flow.

of physiological functions. We next describe our model tests fluids and determine their

shear rheology. We then proceed to measurements of their extensional rheology using a

microfluidic cross-slot device.
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6.2.3 Test Fluids and their Rheological Characterization

The high molecular weight (MW = 1.6 MDa, as specified by the supplier) HA sample

used in this study was obtained from Sigma Aldrich and was produced by fermentation of

Streptococcus equi. For convenience we refer to it as HA1.6 in the remainder of the thesis.

HA solutions were prepared at concentrations of 0.1 wt. % and 0.3 wt. % in a physiological

phosphate buffered saline (PBS, 0.01 M, pH 7.4, obtained from Sigma Aldrich). We also

prepared a model synovial fluid formed from a solution of 0.3 wt. % HA combined with

1.1 wt. % BSA, and 0.7 wt. % c-globulin [299]. Light scattering experiments indicate an

overlap concentration of c* = 0.05wt. % for this HA molecule in PBS solution, suggesting

that our solutions are in the semidilute regime [296, 303].

All of the test solutions were prepared by weighing the HA and protein powders into a

glass container and adding the appropriate volume of PBS solution. In order to avoid me-

chanical degradation of the HA during dissolution, magnetic stirring was avoided; instead

occasional gentle manual agitation was applied to the containing vessel until the solution

appeared completely transparent and homogenous. This typically took around 36 h. Fol-

lowing complete dissolution of the sample in the PBS, the fluid was tested without delay

(i.e., within the subsequent 12 h) to determine the rheological and extensional flow prop-

erties.

Test solutions were characterized by steady shear experiments in an AR-G2 stress-

controlled rheometer with a 40mm diameter 2' cone-and-plate fixture. To access higher

shear rates (100 s- 1 < k < 10000s- 1) a microfluidic shear rheometer was used (m-VROC,

Rheosense Inc, CA) [304]. The results of the experiments are presented in Figure 6.2.8.

In the absence of added protein, the steady shear rheology presented in Figure 6.2.8 is

highly comparable with that of previous authors using microbial HA solutions of compa-

rable molecular weight and concentration under equivalent solvent conditions [213, 295,
296]. For example, Krause et al. [295] report that a solution with 0.3 wt. % of a hyaluronic

acid of MW = 1.5 MDa has a zero shear-rate viscosity of qo ~ 0.07 Pa s, which commences

to shear thin at a characteristic shear rate of k* ~ 50 s-1 and to reach a viscosity of q ; 0.01
Pa s at a shear rate of k ~ 1000 s-1. The fluids used in the present work also display a

zero-shear-rate viscosity plateau and are shear-thinning. Increasing the HA concentration

from 0.1 wt. % to 0.3 wt. % results in a significant increase in qo and in a more pronounced

shear-thinning behavior. At 0.3 wt. %, the viscosity drops by almost an order of magni-

tude over two decades in shear rate. Addition of 1.1 wt. % BSA and 0.7 wt. % y-globulin
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Figure 6.2.8

Steady shear viscosity of HA/PBS

solutions measured using an AR-

G2 stress-controlled cone-and-plate

rheometer (closed symbols) and an

m-VROC microfluidic rheome-

ter (open symbols). The viscosity

is well-described by a Carreau-

Yasuda model (solid lines), except

for the fluid containing BSA and

y-globulin at low shear rates.

103 10

to the 0.3 wt. % HA solution, appears to have little effect on the fluid rheology except

at low shear rates, where an additional region of strong shear-thinning is observed. Such

behavior was also reported by Oates et al. [305] using a concentric cylinder geometry and

was attributed to complexation between the HA and protein resulting in the formation of

a weak gel. However, Bing6l et al. observed no such phenomenon in a 60mm diameter 1'

cone-and-plate geometry. The fact that the observation of this phenomenon depends on

the flow geometry employed suggests that it may be due to an interfacial, as opposed to

a bulk, property of the fluid [54, 306]. In general, the fluid steady shear viscosity is well

described by the Carreau-Yasuda model [24]

00= co + [0 + q00
[1 + (f /f*)a](1-n)/a

(6.2.13)

where q,, is the infinite-shear-rate viscosity, qo is the zero-shear-rate viscosity, f* is the

characteristic shear rate for the onset of shear-thinning, n is the "power-law exponent", and

a is a dimensionless fitting parameter that influences the sharpness of the transition from

a constant shear viscosity at low shear rates to the power-law region. The values of these

parameters determined for all the test fluids are provided in Table 6.2.1.

We have discussed in Chapter 4 how it is possible to derive the Carreau-like steady shear

behavior given in Equation 6.2.13 starting from fractional constitutive model. The param-

eters f* and n can be directly mapped to quasiproperties and power law exponents of the

AL

W"

102
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Table 6.2.1: Parameters used to fit the Carreau-Yasuda model to the steady shear rheology data.

HA1.6 conc. (wt. %) qo [Pa s] q. [Pa s] f* [s-1] n a

0.1 0.0073 0.001 200 0.68 0.60
0.3 0.082 0.002 50 0.45 0.75
0.3 + BSA + y-globulin 0.097 0.0021 45 0.42 0.72

FVCM. By measuring the linear viscoelastic spectrum of the HA solutions, followed by a

measurement ofthe Damping function in nonlinear step-strain experiments, we can predict

the nonlinear steady shear behavior of the HA and HA simulant solutions. Furthermore,

the value of n is directly related to the springpot exponent P used in the fractional model.

However, inthis chapter we are interested in the extensional rheology of HA; therefore,

we simply perform a fit to the empirical Carreau model.

The power-law exponents n shown in Table 6.2.1 indicate the highly shear-thinning

nature of the HA-based test fluids at shear rates k > f*. However, it should be noted that

the steady shear rheology of fluids, with higher HA concentrations or MW, and also of

real synovial fluid, can be significantly more shear-thinning than this, with n ~ 0.2 or 0.3

(and sometimes even less) [213].

6.2.4 Extensional Flow Apparatus

We refer to the microfluidic device used to generate the extensional flow field as the Op-

timized Shape Cross-slot Extensional Rheometer (OSCER). The OSCER geometry op-

erates on principles similar to traditional cross-slots (i.e., with opposed inlets and outlets

to generate a free stagnation point [62, 273]) but has an optimized shape that achieves a

homogeneous strain rate along a significant portion of the inlet and outlet channel axes

[74, 307]. A 3D drawing and a photograph of the actual flow geometry are provided in

Figure 6.2.9.

The OSCER geometry is precision micro-machined in stainless steel using the tech-

nique of wire electrical discharge machining (EDM). It has initially parallel channels far

upstream and far downstream of the stagnation point, with a characteristic dimension of

H = 100 pm, and a uniform depth of d = 2100 pm, providing a high aspect ratio of a = 10.5

and hence a good approximation to a 2D flow. The geometry is optimized over the central

3 mm (30H) section of the device, i.e., 15H either side of the stagnation point in both the
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(a)

Figure 6.2.9: (a) 3D view of the OSCER geometry showing the upstream and downstream charac-
teristic channel dimension H and the uniform depth d. (b) Light micrograph of the actual OSCER
geometry. The inflow is along the y- and the outflow along the x-direction. At the center of the
geometry there is a stagnation point, here marked as the origin of coordinates. The superimposed
green line represents the prescribed profile determined from numerical optimization.

x- and y directions. The extensional deformation rate (or strain rate, ) has been shown to

be nominally constant over this optimized region in both Newtonian fluids and viscoelastic

polymer solutions [74].

Experiments are conducted at controlled total volume flow rates, Q, using a Harvard

PHD-Ultra syringe pump to drive the flow from a single syringe into both opposing in-

lets of the OSCER device. We define the superficial flow velocity U as the average flow

velocity in the upstream and downstream parallel sections of channel: U = QI(4Hd). The

homogenous strain rate on the flow axes depends on the imposed flow velocity and is

measured experimentally using micro-particle image velocimetry (p-PIV). For details on

the techniques used for streakline visualization and strain rate measurement through P-PIV,

see Ref. [63].

6.2.5 Flow Induced Birefringence Measurement

The spatial distribution of flow-induced birefringence in the central region of the OSCER

device is measured using an ABRIO birefringence imaging system (CRi Inc., MA). Briefly,

the cross-slot flow cell is placed on the imaging stage of an inverted microscope (Nikon

Eclipse TE 2000-S) and the mid-plane of the flow cell is brought into focus using a 4 x

0.13 NA objective lens. Circularly polarized monochromatic light (wavelength 546 nm) is
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passed first through the sample, then through a liquid crystal compensator optic and finally

onto a CCD array. The CCD camera records five individual frames with the liquid crystal

compensator configured in a specific polarization state for each frame. Data processing

algorithms described by Shribak and Oldenbourg [308] combine the five individual frames

into a single full-field map of retardation and orientation angle. The system can measure the

retardation (R) to a nominal resolution of approximately 0.02 nm and has an excellent spatial

resolution (projected pixel size approximately 2 pm with a 4x objective lens). Assuming

2D flow, the relationship between retardation and birefringence is given by

R = dAn (6.2.14)

where d is the depth of the flow cell and An is the birefringence.

The birefringence intensity measured along the stagnation point streamline of the OSCER

device is used to determine the local extensional viscosity of the fluid qE using the stress-

optical rule (SOR). The SOR states that, for a range of microstructural deformations, the

magnitude of the birefringence An is directly proportional to the principal stress difference

in the fluid Aa =ai - o-y, i.e.,

An = Cau (6.2.15)

where the constant of proportionality C is called the stress-optical coefficient. For solutions

of 1.5 MDa HA in PBS over a concentration range of 0.22wt. % c 0.88wt. %, the

stress-optical coefficient has been determined rheo-optically to be C = 1.82 x 10-8 Pa-1

[296]. The apparent extensional viscosity follows directly from

/E - -. - .(6.2.16)
r CU

6.2.6 Results and Discussion

In Figure 6.2.10, we show streak imaging performed with a Newtonian fluid consisting

of 66 wt. % glycerol in water. The fluid viscosity is approximately 13 mPa s and the

volume flow rate is Q = 0.5 ml min-1 , equivalent to U = 0.01 ms- 1. Superimposed in

color on the streak image is a family of hyperbolic streamlines (defined by y = k/x, for

a range of k values) expected for an ideal homogeneous extensional flow, and it is clear
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Figure 6.2.10

Streak imaging showing the na-
ture of the flow field in the OSCER
with a Newtonian fluid at U = 0.01
m s-1, with superimposed colored
hyperbolae for comparison. The

superimposed white lines indicate
the symmetry axes of the geome-

try, which coincide at the stagna-
tion point. Flow enters through the

top and bottom channels and exits

through the left- and right-hand

500 pm' 
channels.

that in the central region of the device the experimental streamlines broadly follow these

hyperbolae. Superimposed in white are the x and y axes of symmetry, which clearly bisect

at the hyperbolic singularity (the stagnation point) at the center of the OSCER geometry.

In Figure 6.2.11 we show the measured value of flow induced birefringence in the

cross-slot device for HA1.6 and synovial fluid simulants. We observe the formation of a

localized birefringent strand along the outflowing stagnation point streamline. The pro-

gressive development and strengthening of this strand with increasing values of the flow

rate through the OSCER device is visible in Figure 6.2.11. At the flow rates (or strain rates)

at which the birefringence first becomes measurable, the birefringence microscopy images

in Figure 6.2.11 indicate that significant macromolecular stretching and orientation takes

place only along streamlines that pass close to the stagnation point, where the residence

times in the high velocity gradient are maximal. The intensity of the birefringence along

the x-axis can be seen to be almost constant, which is a result of the homogenous strain rate

along the x-axis and provides a clear visual demonstration of the strong extensional flow

field generated in the OSCER device. The intensities of the birefringent strands shown

in Figure 6.2.11 increase as the imposed strain rate are incrementally increased. The flu-

ids with the higher concentration of HA (Figures 6.2.11(b) and 6.2.11(c)) are significantly

more birefringent than the low concentration fluid (Figure 6.2.11(a)), as expected. Addi-

tionally, for a given strain rate, we observe little qualitative difference between the behavior

of the two 0.3 wt. % HA1.6 fluids with and without added protein.

In addition, as the flow rate is incremented, not only the extensional strain rate in the
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(0) (b (Vir

Figure 6.2.11: Flow induced birefringence measured over a range of extension rates in solutions
of HA1.6: (a) 0.1 wt. %, (b) 0.3 wt. %, (c) 0.3 wt. % + BSA + y-globulin. The color scale bar
represents retardation in the range of R = 0 - 10 nm.
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OSCER device but also the shear rate near the curved non-slip walls of the device is in-

creased. Here, the flow field is not purely extensional in character, and shear stresses as

well as the first normal stress difference contribute to the total principal stress difference

in the fluid. As this occurs, the more concentrated HA solutions (Figures 6.2.11(b) and

Figure 6.2.11(c)) display a clear increase in the birefringence (or equivalently the principal

stress difference) along the walls of the flow geometry. However, it should be noted that the

magnitude of the stress difference along the channel walls is never as great as that observed

along the channel center-plane. Note that at higher flow rates the more dilute HA solution

(Figure 6.2.11(a)) also displays such stress boundary layers at the channel walls, however,

in this case, the intensity of the birefringence is very low indeed and is difficult to observe.

By measuring the birefringence on the x-axis (averaging along sections of strands close

to the stagnation point), we obtain the birefringence An as a function of the strain rate

for the three HA1.6 solutions, as shown in Figure 6.2.12(a). In the two 0.3 wt. % HA1.6
fluids, with and without added protein, we observe an initial increase in the birefringence

at a strain rate of i ~ 10 s-1, up to similar plateau values of An ~ 5 x 10-6 at strain rates of

i - 370 s 1 . In the 0.1 wt. % HA1.6 solution the initial increase in An occurs at a higher

value of i t 80 s-1, and we are not able to reach a plateau value of birefringence due to the

onset of an inertio-elastic instability that distorts the birefringent strand (as shown by the

inset birefringence field image in Figure 6.2.12(a) captured at t ~ 334s-1).

Using the stress-optical rule to convert from birefringence to an extensional viscosity
(Equations 6.2.15 and 6.2.16), we obtain the extensional viscosity versus strain rate curves

shown in Figure 6.2.12(b). In the 0.1 wt. % HA1.6 solution, the extensional viscosity

increases at a strain rate of approximately 50 s-1 and rises to a plateau value of around

0.2 Pa s. In the more concentrated HA1.6 solutions, the extensional viscosity begins to

increase even from the lowest applied strain rates and rises very rapidly to a maximum

value of lE ~ 1.2 Pa s for i ~ 120 s-1, before gradually thinning with further increases in

the strain rate.

In this section, we have demonstrated the application of a recently developed numeri-

cally optimized microfluidic cross-slot (OSCER) device to test the extensional response of

biologically-relevant hyaluronic acid solutions. Analogous formulations of fluids are used

for visco-supplementation of the degraded synovial fluid in patients with joint disease, es-

pecially in the articular cavity of the knees. Our microfluidic device provides a good model

of the flow field within the knee joint as it undergoes compressional and extensional de-
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Figure 6.2.12: (a) Measured birefringence An as a function of the strain rate for HA1.6 solutions
in the OSCER. In the 0.1 wt. % solution the experiment is curtailed at lower i due to the onset of
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formations (e.g., during running and jumping activities), in which the synovial fluid is

squeezed at high deformation rates (and thus at Wi >> 1). Our analysis demonstrates that

for a highly shear-thinning fluid such as HA, the kinematics of a squeeze flow involved large

extensional components. Our birefringence observations and measurements with semidi-

lute HA solutions clearly demonstrate that these high molecular weight polysaccharides
stretch significantly under such conditions of high flow strength, resulting in a significant
increase in the extensional viscosity and in the corresponding dimensionless Trouton ratio.
This is likely to represent an important functional aspect of synovial fluid, which allows it to
resist compression under high loading rates at short time scales, thus preventing damaging
contact from occurring between articular cartilage layers.



7 Conclusions

A diverse range of complex fluids exhibit relaxation spectra that contain broad power laws,

including physically and chemically cross-linked gels, soft glasses, emulsions, colloidal dis-

persions, polymer solutions and melts. The physical origin of the multiple timescale (or

multiscale) power law behavior depends on the specific class of material. For example, a

polymer melt may exhibit multiscale relaxation due to high polydispersity. On the other

hand, a chemically crosslinked gel with dangling chain ends exhibits multiscale power law

behavior due to the nature of the retraction of these dangling ends during the relaxation

process. We have discussed these and some of the other major physical origins of mul-

tiscale rheological response in Chapter 1. Due to the diverse classes of materials encom-

passed by multiscale complex fluids, they are frequently encountered in industrial, bio-

logical, pharmaceutical and engineering applications. It is therefore important to possess

modeling frameworks to predict the rheological response of these materials.

The fractional constitutive equations presented in this thesis overcome the difficulties

associated with modeling a broad spectrum using a sum of exponentials, or Prony series,

which introduces a large number of material parameters. Depending on the nature of

spectrum, it may also be necessary to make arbitrary choices to determine the modal pa-

rameters. This is a fact that has been noted by other researchers, such as Tschogel and Scott

Blair. There have been many subsequent studies that have successfully fit fractional linear

viscoelastic models to the broad power law spectra exhibited by multiscale materials.

In Chapter 3, we have provided further evidence that fractional models are compact and

accurate frameworks to quantitatively describe the broad relaxation spectra of multiscale

materials. Furthermore, we have demonstrated that once a material has been characterized,

the constitutive framework can be used to make predictions of material response under

complex applied kinematics. We take the example of a viscoelastic air-solution interface

formed by a globular protein solution (BSA), and analyze the case of a creep experiment
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in which there is appreciable inertia contributed by the instrument. We show that we can

predict the short time inertio-elastic oscillations arising from the coupling between inertia

and viscoelasticity, as well as the long time power law creep response. Making such a

prediction using a Prony series would not be possible without the introduction of a large

number of material parameters, and would be cumbersome and impractical.

The literature on modeling the rheology ofmultiscale complex fluids shows that models

for predicting the nonlinear behavior of these fluids is relatively scare. However, nonlinear

effects such as shear thinning in the viscosity can be very important in industrial and bio-

logical applications of multiscale complex fluids. In Chapter 4 we extended the fractional

constitutive framework to nonlinear deformations using a K-BKZ type integral constitu-

tive model, which includes the proper frame-invariant strain measure (the Finger tensor).

We demonstrate that by characterizing the power law relaxation spectrum of the fluids in

a linear experiment (say SAOS) and determining a damping function from a single set of

nonlinear step-strain experiments, we are able to make accurate predictions of nonlinear

response such as shear thinning and positive first normal stress coefficients. In particular,

we demonstrate the following:

- The power law exponents and quasi-properties suggest a direct relationship between

linear and nonlinear rheology. We demonstrate this by deriving analytical expres-

sions for predictions of steady shear viscosity and first normal stress coefficients and

analyzing the resulting asymptotic behavior,

- We quantified offsets that exist between measured data and empirical rules employed

for nonlinear rheology, such as the Cox-Merz rule. For materials that yield upon on

infinitesimally small deformation, we derived the exact result ofthe so-called Rutgers-
Delaware rule,

- Many empirical proposed models such as the power law fluid model, the Herschel-
Bulkley model, and the Cross and Carreau models can be derived from a fractional
rheological model containing at most four parameters and an appropriate fluid de-

pendent damping function,

- We have derived expressions for the linear viscoelastic behavior of complex fluids that

exhibit Herschel-Bulkley, Cross and Carreau like behavior under a steady shear flow.

In addition, we also derive expressions for the first normal stress coefficients for these

complex fluids. Such explicit expressions do not currently exist in the literature.
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In Chapter 5, we demonstrated using a chemically crosslinked polymeric gel that frac-

tional constitutive equations can make predictions of material response in small strain ex-

tensional deformations. The tack response of pressure sensitive adhesives, which are often

formulated from chemically crosslinked polymeric gels, is an important design parameter;

we demonstrated that by coupling the appropriate fractional constitutive equation with the

Newtonian (non-shear-thinning) kinematics of a tack experiment, accurate predictions of

the tack force in the small strain lubrication limit can be obtained. We have also derived

expressions for the tack response of complex fluids displaying sol-like material response.

The large strain extensional rheology of complex fluids is important in various indus-

trial applications, such as fiber spinning and spin coating, as well as in biologically rel-

evant fluids such as saliva and lubricating synovial fluid. Many physiologically relevant

complex fluids are complex polysaccharides. Their microstructure possesses interactions

arising from hydrogen bonding or ionic effects, which results in the broad power law re-

laxation spectra characteristic of multiscale materials. Given the industrial and biological

importance of polysaccharide solutions, and the need for an understanding of their exten-

sional rheology for these applications, in Chapter 6 we have explored the extensional rhe-

ology of two polysaccharide solutions: the shear-thickening Mamaku gum, and the shear-

thinning Hyaluronic Acid (HA). For this purpose, we employed experimental techniques

such as CaBER, FiSER and OSCER. We demonstrated that for Mamaku gum, whose shear-

thickening behavior is a rare occurrence for polysaccharides, the interactions arise from

hydrogen bonding, and their rheology can be finely tuned with a hydrogen bond breaker

such as urea. Furthermore, we demonstrated the existence of a time-concentration super-
position principle that arises from the nature of interactions between urea and the lifetimes
of hydrogen bond dissociation. This detailed understanding of the microstructural relax-
ation process that exist in Mamaku gum could potentially lead to new formulations of food
thickeners and treatments for dysphagia. Additionally, the extensional rheology measure-
ments of HA solutions on the optimized microfluidic cross-slot device could also lead to
potential diagnostic techniques for patients with osteo-arthritis.

In this thesis we have examined in detail the modeling of broad power law spectra ex-

hibited by multiscale complex fluid under shear deformations in both the linear and non-
linear regime. However, for the case of extensional deformations we only model the small

strain behavior, and a majority of our results in the large strain extensional deformation

case are experimentally determined. One important area of future work would be to ex-
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tend the fractional constitutive framework here to large strain extensional deformation.

We have shown in this thesis that the Finger tensor is an excellent finite strain measure in

large strain shear deformations. We hypothesize that the only modification required in the

framework to predict rheological response under large extensional strains is to suitably cal-

culate the Finger tensor in the model for large applied elongational kinematics. However,

we note that large strain extensional deformations could introduce new physics in the prob-

lem (such as finite extensibility effects) and it may require us to make suitable modifications

to the underlying general K-KBKZ framework (the damping function that is measured in

extension is different from the shear damping function [28]).

Yet another potential area of research is to develop the framework for shear-thickening

fluids, for example the Mamaku gum solutions described in this thesis. In our K-BKZ

framework, the damping function h(y) is derived from a more general strain energy func-

tion W, which quantifies the change in internal energy of the complex fluid as a function

of applied deformation. We may imagine experimentally determining a thickening func-

tion for shear-thickening fluids, i.e. these complex fluids do not possess a linear viscoelastic

envelope. We may then use the K-BKZ approach to predict the steady shear viscosity of

such fluids, leading to a prediction of the shear thickening behavior.

In this thesis, we have demonstrated that for some experimentally measured power-law

rheological responses-for example that of a soft glass, or a cross-linked network with dan-

gling chain ends-the quasi-properties and power-law exponents can be directly linked to

physical parameters that have a microstructural origin. In general, however, mapping an

observed power-law rheological response to microstructural parameters is still not well un-

derstood, and is an active area of current research [146, 309]. The difficulty arises due to

the many-to-one nature of power-law rheology. As we discuss in Chapter 1, there are

various physical mechanisms that can lead to broad, scale-free rheological response, each

mechanism with its own microstructural basis. It is also possible that in complex environ-

ments such as cells, there are multiple physical origins of power law behavior. Recently
Kim et al. [310] have studied a model system of actin filaments and actin crosslinking pro-

teins (ACPs). Using a Brownian dynamics approach, they showed that in this same system,

there are different underlying microstructural properties that lead to power-law behav-

ior depending on the applied pre-strain. These properties include the bending stiffness of

the ACPs and actin filaments at low and moderate pre-strain, and the extensional stiffness

of the ACPs and actin filaments at large strains. They find that at very low pre-strains
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(and no ACP) transverse thermal fluctuations of the actin filaments lead to a power-law

dependence of the linear viscoelastic moduli on frequency (G' - to 75). However, upon

the addition of ACPs, the power-law dependence of the viscoelastic moduli on frequency

is much weaker. Such a weak dependence of G'(&) and G"(w) on & has been observed

in other rheological studies of cells and cell-like environments [311, 312] and has been

attributed to a crowded glassy environment existing within the cytoskeleton. Kroy and

Glaser [313] have successfully modeled these power-law responses from a microstructural

standpoint by proposing the so-called glassy wormlike chain model, which begins with

the wormlike chain model and 'stretches' the relaxation spectrum in an exponential fash-

ion [314]. In this model, the power-law exponent is dependent on an interaction strength e

which is ultimately phenomenological, and difficult to predict from first-principles [315].
This is akin to the SGR model, which also predicts power-law spectrum response through

the introduction of a phenomenological athermal noise temperature x, whose origin re-

mains poorly understood. The above discussion shows that a general microstructural basis

connecting power-law exponents and the corresponding quasi-properties remains elusive.

The development of such theories, along with the fractional constitutive equations pre-

sented in this thesis, will be a powerful framework that is not only predictive, but also

provides microstructural insight from bulk rheology.

This thesis has demonstrated how a wide variety of theoretically and empirically pro-

posed rheological models can be derived from a fractional constitutive framework. In this

sense, our framework resembles a universal or 'umbrella' framework, which, in the ap-

propriate limits of the model parameters, reduces to more familiar rheological constitutive

equations used for power law behavior. The proposals outlined above to extend the frame-

work to shear-thickening fluids and large strain extensional deformations would further

establish the conclusions of this thesis, and expand the applicability of these compact mod-

els for multiscale complex fluids, that we have already shown to be very versatile.
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A List of Useful Formulas Related to the

Fractional Calculus

In this Appendix, we list important and useful mathematical definitions and results relating
to the fractional calculus and fractional constitutive equations. More details may be found
in Refs. [82, 83, 85, 176].

A.1 Definitions and Properties of Fractional Derivatives

In this section we list the different definitions of the fractional derivative. We predomi-
nantly use the Caputo derivative in this thesis, which we also denote by the notation da/dta.

Caputo Derivative

Daf(t) = daf (t) n 1 ) (t - t)n-a-lf(n)(t')dt'; n - 1 a < n and n e Z

a

(A.1.1)

Riemann-Liouville Derivative

t
RL af (t) - 1 n f(t _t-a1f()d; n - 1 :5 a < n and n E~ - a)dn A.1.2)
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Grinwald-Letnikov Derivative

GLDaf(t) = lir
h--aO

nh=t-a

= h-a 2(1)r

r=O

a(a - 1)(a - 2) ... (a - k + 1)
k(k - 1)(k - 2) ... 1

are the binomial coefficients.

Properties of Caputo Derivatives

* Linearity:

d"[af(t) + g(t)] =
dta

where a is a constant.

* Leibniz's rule (Product rule):

da I (
dta z i

- Composition rule: If 0 m < a < m

conditions

adaf(t)
dta

a

r

dag(t)
dta

(A.1.5)

(A.1.6)(r)(t)d"-rf(t)
dta-r

+ 1 and 0 n < / < n + 1 and f(t) satisfies the

f(k)(0) = 0, k = 0,1,...,r - 1

where r = max(n, m) then

da+flf(t)

dta+#
(A.1.8)

df daf(t) da dtf)
dt-f dta -dta (dtfl

where

( a f(t - rh) (A.1.3)

( (A.1.4)

(A.1.7)
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A.2 Frequently Encountered Special Functions

Dirac Delta Function

&(t) =
00, if x = 0
0, if x # 0

and f &(x) dx = 1
-00

(A.2.1)

Heaviside Step Function

H(t) =
1,
0,

if x < 0

if x < 0
(A.2.2)

Gamma Function

00

r(z) = f
0

tz- 1 e-tdt (A.2.3)

Mittag-Leffler Function

- Definition:

k00 k
Ea,b(Z) = Z(ak + b)

k=0

- Special cases of the Mittag-Leffler Function:

E1,1(z) = ez

E2,1 (z) = cosh(z)

2) sinh(z)E2,2(z -z

(A.2.4)

(A.2.5)

(A.2.6)

(A.2.7)
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- Derivatives of the Mittag-Leffler function:

an
[Eaj,(t)] = nt nEaan+1 (t)

a [tak+b-1E((Ata)] = tak+bn1E ( ta)

* Asymptotic expansions of the Mittag-Leffler function:

Eab (- Z)

Eab (-Z)

N

k=0
N

k=1

zk + O(z N+)z<<

r(ak + b)

z-k
b- _k + O(z-(N+1));Z >

F(b - ak)

Hypergeometric Function

r(c)
2F1 (a, b; c; z) = (a)r(a)r(b)

ft r(a+k)T(b+k)zk
f(c + k) ki!

A.3 Laplace and Fourier Transforms of Fractional

Definition of the Laplace transform:

S1f(t)} = f(s) = J'f(t)e-st dt

0

Derivatives

(A.3.1)

* Definition of the Fourier transform:

9(01) = f(o) =

(A.2.8)

(A.2.9)

(A.2. 10)

(A.2.1 1)

(A.2.12)

-00 (A.3.2)
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- Properties:

S daft)} = saf(s) - s a-k-1(k)(),n - 1 <a n

0=

(A.3.3)

(A.3.4)u f La tran m ra()

*A useful Laplace transform result:

Ye1 k!sa- }
(sa -g Igk+1

= tak+b-1 dk
d( Ata)k

[Ea,b ( Ata)]

A.4 Constitutive Equations and

ric Functions

Hookean Solid Model

" Constitutive equation:

- Relaxation modulus:

o(t) = Goy(t)

G(t) = GoH(t)

- Creep compliance:

J(t) = - H(t)
Go

(A.3.5)

their Linear Viscomet-

(A.4.1)

(A.4.2)

(A.4.3)
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* Storage and loss moduli:

Newtonian Liquid Model

" Constitutive equation:

- Relaxation modulus:

- Creep compliance:

- Storage and loss moduli:

G'(j) = Go

G"(w) = 0

0(t) = qok(t)

G(t) = qo&(t)

t
J(t) = -

q0

G'(o) = 0

G"(o) = 1o)

Linear Maxwell Model

- Constitutive equation:

- Relaxation modulus:

) o dc(t)
(t) + dt

dy(t)
dt

(A.4.1 1)

G(t) = qoe-tl

(A.4.4)

(A.4.5)

(A.4.6)

(A.4.7)

(A.4.8)

(A.4.9)

(A.4.10)

(A.4.12)
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- Creep compliance:

- Storage and loss moduli:

G

G

where r = rOI/Go is the relaxation time.

Linear Kelvin- Voigt Model

- Constitutive equation:

0-(t

- Relaxation modulus:

G(

- Creep compliance:

* Storage and loss moduli:

1 t
J(t) =- + -

Go rqo

'( c( ,= ) 2
1 +

= Go
1 + (rW)2

dy(t)
)=Goy(t)+rlo dt

t) = GoH(t) + qo(t)

1
(t) = - (1 - e- )

Go

G'(&o) = Go

(6) = rO60

(A.4.13)

(A.4.14)

(A.4.15)

(A.4.16)

(A.4.17)

(A.4.18)

(A.4.19)

(A.4.20)
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Springpot Model

- Constitutive equation:

* Relaxation modulus:

- Creep compliance:

da y(t)
o(t) =V dta

G(t) =
Vt-a

1(1 - a)

1 ta

V F(1 + a)

* Storage and loss moduli:

Fractional Maxwell Model

- Constitutive equation:

G'(w) = Voa cos(;ra/2)

G"() = Voa sin(;ra/2)

V da-fic(t)
-(t ) + G dta-fi

- Relaxation modulus:

G(t) = Gt- Ea-p,-p (-

- Creep compliance:

+ t +
J~t) (~rlt~G ((14+2p)

(A.4.21)

(A.4.22)

J(t) (A.4.23)

(A.4.24)

(A.4.25)

day(t)
dta

(A.4.26)

(t )a-1 (A.4.27)

(A.4.28)JWt = -(1ta
V A(l + a)



- Storage and loss moduli:

G'(o) = Vr-" (r)' cos(ma/2) + (Or) 2a-fi cos(;rp/2)
(&,)2(a-J) + 2(6or)"-P cos(;r(a - fl)/2) + 1

G"(6>) = Vr-a (orT)a sin(;ra/2) + (,),)2 a-P sin(;fl/2)
(,,r,)2(a-P) + 2(&wr)a-P cos(;r(a - P)/2) + 1

where r = (V/G)1/(a-f) is a characteristic timescale.

Fractional Kelvin- Voigt Model

- Constitutive equation:

day(t)
a(t) = V dta

dfiy(t)
dtfl

- Relaxation modulus:

G(t) = - )
F(l - a)

Gt-P
+

f(1 -- )

- Creep compliance:

J(t) = VEa-p,+a -

* Storage and loss moduli:

G'(j) = Vwja cos(;ra/2) + Gco cos(izp/2)

G"(o>) = V> sin(;ra/2) + G&>3 sin(irfp/2)

where r = (V/G)l/(a-f) is a characteristic timescale.
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(A.4.29)

(A.4.30)

(A.4.31)

(A.4.32)

(A.4.33)

(A.4.34)

(A.4.35)
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Fractional Viscoelastic Cross Model

Constitutive equation:

(t) + qp d-fl
t)=(r,+rqS) =

* Relaxation modulus:

G(t) = rs,(t) + Gt PE,_Pi-p

* Creep compliance:

J(t) = Efi -p,-p -

Storage and loss moduli:

t
-E -p2

GOp + rS) t
Jt17

G'(w) =

G"(w) = rwo +

i 2GWfl+ 2 cos(;rfl/2)

(rpoj)2 + (Gw#)2 + 2qpGof+1 sin(prfi/2)

G 2rypw2f++ rp2Gwi+ 2 sin(;rp/2)

(rqp&)2 + (GW) 2 + 2rqpGwfl 1 sin(prfl/2)

+ qp1s d2-fly(t)
G dt213 (A.4.36)

(G
(A.4.37)

G(qp + rs)

17pqs
(A.4.38)

(A.4.39)

(A.4.40)

~#i +



B Supplementary Information to Chapter 3

In this Appendix we provide arguments on the thermodynamic inconsistency of Scott-
Blair's higher-order Nutting equation, additional details of the short and long time creep
response of the fractional Maxwell model when the moment of inertia of the device is
included (see Equation 4.8 of the main text.). We also provide a vectorial interpretation of
the concept of quasi-properties promulgated by Blair et al. [80], and show an equivalence
to the SGR model of Sollich et al. [32] for a special choice of the density distribution of
energy states in the model.

B.1 Thermodynamic inconsistency of the higher-order
Nutting equation

[80] attempted to model measurements of anomalous stress relaxation in a range of materials
using a higher-order Nutting equation of the form

y = oU(Atk' + Btk1l + Ctkt-2 ... ) (B.1.1)

with A >> B, C,. The same study presents extensive experiments on materials that exhibit
complex relaxation dynamics, such as'highly anomalous' butyl rubber and Scott-Blair notes
that most materials tested in their study are modeled well by the use of a single term or in
some cases two terms. The unmodified one term Nutting equation, with B = c ... = 0
is equivalent to a constitutive model involving a single spring-pot. Again it is difficult to
use an empirical expression of this form to describe the material response to predict other
modes of deformation except in special cases.
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For example, in a creep experiment we impose a step stress u(t) given by

a(t) = ooH(t) (B.1.2)

where H(t) is the Heaviside step function and co is the magnitude of the step in stress. Sub-

stituting this into equation B. 1.1, rearranging the terms and Laplace inverting the resulting

expression, it can be shown that Scott-Blair's higher order Nutting equation is equivalent

to a constitutive equation of the form

dk'y(t) +bdci(t) d2o'(t)= a(t) + b + c + . . .(B.1.3)
dtk' dt dt2

where a, b,c ... are material constants. The terms containing higher order derivatives of

stress, which Nutting [120] proposed on an empirical basis render the model thermody-

namically inconsistent: In Refs. [55, 316] and [102] we find general arguments from ra-

tional mechanics showing that the order of the derivative operator on the stress must be

smaller than the order of the derivative operator on the strain for thermodynamic admis-

sibility, and this condition is violated in equation B.1.3. This difficulty arises because the

addition of extra terms in equation B.1.1 is ad hoc and the resulting constitutive model lacks

a corresponding mechanical analogue.

B.2 Confidence interval estimate discussion

An interesting observation upon the calculation of the confidence intervals is that for the

acacia gum solutions, we find that a = 0.8 0.2,p3 = 0.124 0.003,V = 3 2Pa s 0.8,G =

0.027 0.003Pa so.124. Hence, for the parameters a and V the 95% confidence interval half-

width is comparable to the mean value, while for the parameters p and G the error estimate

is relatively small. This result can be rationalized as follows. A close observation of the

frequency sweep data for the acacia gum solution reveals that G'(w) and G"(o) nearly have

a constant slope with changing frequency on a log-log plot, for the range of frequencies

measured in this experiment (cf. figure 4a of the main paper). This data would be well fit

by a single spring-pot (or equivalently, Winter's gel equation). However, the 'flattening

out' of G"(w) at lower frequencies and the corresponding downturn in G'(w) warrants the

use of another spring-pot. Table 1 of the paper shows that the spring-pot with the larger
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exponent, i.e. a, determines the limit of the low frequency response. However the long

durations required to complete measurements at such low frequencies, and the consequent

solvent evaporation, mean that it is very challenging to measure data at frequencies lower

than o = 0.01 rad/s. Therefore there is a corresponding large uncertainty in the value of

the exponent a and the corresponding quasi-property V, because the fit was performed

over a range of experimental frequencies not very sensitive to a and V. However, this

does not influence the fit to the data at the frequencies measured in the experiment and the

uncertainty in fi and G is relatively low. The mean values of a and V were subsequently used

to predict the oscillatory creep-ringing profile (Figure 6(b) in the paper). The excellent

prediction obtained is encouraging, and although the 95% confidence interval on these

parameters is large, the measured material response is accurately predicted.

B.3 Asymptotic analysis of the interfacial creep compli-

ance Js(t)

B.3.1 Small t limit

We first investigate the compliance at early times. Laplace transforming equation (4.14) of
the main paper, we have

O. 1 + Vsa-P
f(s) = -a (B.3.1)s VS+ As 2 + ALIs2+(a-)

V, /s a-fl-i

VSs S + Gs (B.3.2)
Va + As2 +As2+(a-P) VSsa + As2 +A s2+(a-P)

=> f (s) = fi(s) + ?2(s) (B.3.3)
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We first direct our attention to the first term j (s). The early times limits corresponds to

the large s limit, and therefore, we factor out the highest power of s to obtain

0
ii(s) = - 1(B.3.4)

[%, + As2-a + A-sLP

0.0

AL5s3+a-fl 1 + S+A2a

G, ~ AV's2-fi

We expand the above equation using the binomial theorem to get

O0 k0 Us + As2-a
f (s) = A Vs3+a Yl(-1) ALS2-P (B.3.6)

As- k=0 A 2

The term between parentheses in equation B.3.6 can also be expanded using the binomial

theorem as follows.

V,+A2-a) k )k (1 + A s2-a k
Vs +As2- = (Gs + \ (B.3.7)

Aks s2-fl A s2-f

= (G)k (s2p)k (1 + Vs)- (B.3.8)

k (S2 pi)k V 2-a 39

Gs ( k (s1~ k (k ) (.2-a)j (B.3.9)

Substituting equation B.3.9 into B.3.6, we get the double sum

fi = A() +a- sk (2)k) k s ( 2-a (B.3.10)
" s k=0 j=O ~ j\ .. O

(B '~ '~A
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which can be simplified to yield

1AVs O -1)k
Gsk

A) ( k

j J A

We can now invert this expression term by term to obtain

y1(t) = Gs (- )k (G s )k

1) A ) ( k

J )(A)' taGj+1)-fl(k+1)-2j+2k+2

F(a(j+ 1) - fl(k + 1) - 2j+ 2k + 3)

(B.3.12)

We follow a very similar procedure for the second term of equation B.3.3, which is shown

below for clarity:

f2(S) =

As3 1

(B.3.13)
%s Ua-pl-1

+sa + A s2+(-fl)

-s

(B.3.14)

+ Vss +A

A Ls2+(r-fl)

(B.3.15)a= ( 
Z ( )kt C ~+ Z k s, 00

1
Sa(1+j)-fl(k+1)+3+2k-2j

(B.3.11)
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The term between parentheses in equation B.3.15 can be expanded using a similar proce-

dure:

CVsa +As2 ( s _ a + As2 \k

A s2+a-p A \ s2+a-P

= k( 5 a+ 4 2 k

k 

(G Sk i+ S)

() s2+a-fl

kA Sk(2-pl) 1 +

)k sk(2-f) k

Combining equations B.3.15 and B.3.19, we obtain

0
As3

)k k
sk(2-fl)

(A)

k

i

(

)

k

i

s 2-a 
)k

AS2-a
52Sa

(B.3.16)

(B.3.17)

(B.3.18)

(B.3.19)

S 2-a (B.3.20)

which upon simplification results in

Y2(S) = a (-)k

k=O

Gs k k

j=0 ( k

i Ii J

Vs

1

saj fik+2(k-j)+3

Laplace inverting the above term-by-term, we arrive at

Gs k

_A )

0 00

f2(t) = - j (-1)k ( k

I JA (j ta-pk+2(k-j)+2s!(aj - fk + 2(k - j) + 3)

(B.3.21)

(B.3.22)
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Adding equations B.3.12 and B.3.22 and after some algebra and simplification, we obtain

the strain response of the FMM for early times following the imposition of a step stress as

y(t) = a( (1)k( k+1 ( ) [ + 1) + 1 )(B.3.23)

where

p = 2+a - P+ k(2 - P) -j(2 - a) (B.3.24)

q = p - (a - P) (B.3.25)

The leading order term is obtained by setting k = j = 0 in equation B.3.23. Moreover,

a > P and hence p > q Therefore, we can ignore the tq term obtained from setting k = j = 0
for early times and we finally have

y~t ~ = 2 (S t2 (B.3.26)

The strain response at short times is thus quadratic, as one would expect from the equation

of motion, and is consistent with it.

B.3.2 Large t limit

We now consider the creep response at long times. Consider again the Laplace transformed

constitutive equation (equation B.3.3) which we write as k(s) = k1(s) + ?2(s). Let us first
direct our attention to the quantity k (s). We have

ki (S) =-S (B.3.27)
V's1+a (1 + S2-a + As2-P

0 0

= s 1 k ___2-a + s2-p (B.3.28)
k=0
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Factoring out the term s2-a)k from the term between parentheses, we obtain

k=0
(1+ S a-fi

We also know that

(1 +
k

j=O ( k

j ) 5 j(a-fi)

Combining equation B.3.29 and B.3.30, we arrive at

f1(s) = l 1)k As 2 - a)
0 ( k

i ) 5j(a-fl)
Gs(S)

S00

= s (-1)k
k=O

(Ak

( A )
k

j=0 I:ki ) 1

Gs Jsa+1-k(2-a)-j(a-fi) (B.3.32)

Using a procedure identical to that described above, it may be shown that

A k k

j=0

0 00
2(S) -

S2 _1)k Gsk=0 ( k

i
1

S1+filk(2-a)-(a-fi)
(B.3.33)

Adding equations B.3.32 and B.3.33 and Laplace inverting the resulting expression term

by term, we obtain

00

y(t) = O-a 2 Z(_1)k
k=0

( A )k
~vS Ck

i ) V5 ), + 1 tu

u =a -k(2 - a) -j(a -p)

v = u - (a - fi)

(B.3.29)

(B.3.30)

(B.3.31)

where

s(v + 1)]
(B.3.34)

(B.3.35)

(B.3.36)

,)k

Gs

-1)k A S2-a
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To leading order, the behavior of the stress response will correspond to the term in the

expansion obtained upon setting k = j = 0. Therefore,

y(t -* oo) = -O (ta '+ t13  (B.3.37)
VsF(a + 1) GsF(fi + 1)1

It may also be shown that for a = 1 and f = 0, the expression in equation B.3.34 exactly

reduces to

t(A1)
s W)= 2 (B.3.38)

where V = s and G = Gs for the case a = 1, fl = 0. This is the correct limit in the linear

Maxwell model.

B.4 Fractional calculus and the Soft Glassy Rheology

(SGR) model

We now examine the soft glassy rheology (SGR) model and search for a relationship be-
tween the SGR model and the spring-pot. The motivation behind this exploration is the
observation that both these models are extremely well suited to capturing power-law-like
rheological behaviour.

The state of a macroscopic sample is characterized by a probability distribution P(l, E; t)
whose evolution as a function of time is given by [32]

aP = 8 P - Fo exp (E - 1kl2)Ix P + F(t)p(E)3(l) (B.4.1)Ot [91 2"]

where k is the macroscopic strain rate, 1 is the local strain variable in a representative meso-
scopic region, k is an elastic constant, E is the maximal yield energy of each mesoscopic
region, p(E) is the prior distribution of yield energy (density of states), x is the effective
"noise temperature", Fo is an "attempt frequency", and F(t) = ro(exp[-(E - kl2 )/X])p de-
scribes the relaxation of regions to new local equilibrium positions after yielding. [18] then
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considers the functions

Go(z) = f dE Po(E) exp(-ze-E/x) (B.4.2)

Gp(z) = f dE p(E) exp(-ze-E/x) (B.4.3)

which describe the purely noise-induced decay of the stress. Furthermore, he takes p(E)

to be of the form p(E) = exp{-E[1 + f(E)]} with f(E) -- 0 for E -+ oo. In what follows,

f = 0, but all power-laws reported below are valid for any f(E) (i.e. general p(E)) up

to 'sub-power-law factors' such as logarithms; see Appendix B of Ref. [18] for details.

Substituting this form for p(E) into equation B.4.3, we obtain a Laplace integral which we

expand asymptotically to obtain [205]

Gp(z) = V2 (x)x} z-x (B.4.4)

Now, [18] assumes Po(E) = Peq(E) = Feq exp(E/x)p(E) and correspondingly, Go(z) = Geq(z)
and it is observed that Gp(z) = -F-'G'q(z). This gives us

Geq(z) = eqX z-( 1) (B.4.5)2( -1)2

In the linear regime, the constitutive equation of the SGR model reduces to

c(t) = dt' t(t') Geq(t - t') (B.4.6)

0

Substituting equation B.4.5 into equation B.4.6 and inspecting the result we obtain

a(t) = 1)! (a +1) (a 1 a+1 day(t)
()=req (a - 2a2  e t

day(t)
= Feq(a) dta

= V dyt)(.47
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where a = x - 1,

ra + 1 a+ (B.".81(a) = (a - (B.4.8)

and V = eq(a). Therefore, in the limit of large z (or long times compared to the reciprocal
of the attempt frequency 1/ro), the constitutive equation of the SGR model reduces to
that of a single spring-pot with the fractional exponent a related to the effective noise

temperature x through a = x - 1 and the quasi-property V related to the equilibrium
attempt frequency req through V = Feql(a) for general p(E) up to sub-power-law factors.

B.5 Creep ringing and the linear Jeffreys model

In figure B.5.1 we show a creep experiment performed on 50 mg/ml BSA solutions with
significant inertial effects as well as the best fit prediction of the Maxwell-Jeffreys model [26]
with an added inertial mass. The damped oscillatory ringing arising from the interaction of
the fluid viscoelasticity with instrument inertial effects can be observed at short times, and
power-law creep behaviour is seen in the experimental data at long times. The solid black
line shows the best fit to a linear Jeffreys model performed on the full temporal span of the
creep data (0.02 t 60 s). Although the long time (t > 1 s) fit is acceptable, the fit to the
inertio-elastic ringing regime is poor. Moreover, the best fit increasingly deviates at longer
times. On the other hand, a fit performed only to the creep-ringing regime (0 t 1 s),
shown by the black dashed line, predicts the material response poorly at long times.
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10 2

10-4

0.1 1 10 100

t [S]

Figure B.5.1: Interfacial creep data obtained with a 50 mg/ml BSA solution. A viscously damped
inertio-elastic ringing is present at early times and a power-law behaviour is exhibited at long times.
The solid line shows the linear Maxwell fit to the entire time range of the experiment, and the dashed
line shows the linear Maxwell fit only to the ringing regime. Neither fit performs adequately at
capturing both the ringing phenomenon as well as the long-time power-law behaviour.

3 Measured data
- Linear Jeffreys model fit to full range
- - Linear Jeffreys model fit only to ringing regime



C Supplementary Information to Chapter 4

In Chapter 4, we provide analytical expressions for q(k) and P 1 (k) (Eqs. 4.3.22 and 4.3.27

respectively). However, the solution presented is the lowest order term of a more general

higher order solution. For most experimental values of the exponents a and pi, including

for the fluids discussed in the main manuscript, a single term expansion is fine. But for

a -> 1 and/or /3 -> 0, higher order descriptions are needed.In this appendix we provide

the derivation of the full analytical solution. However for the particular values of a = 1

and p3 = 0, the Mittag-Leffler kernel reduces to an exponential, and hence does not have a

power-law asymptote at long times. In this case, the integral must be solved explicitly with

an exponential relaxation kernel. For all other values of 0 < P < a < 1, the analysis below

holds.

We begin with the expression for the steady shear viscosity q(k) given by Eq. 4.3.15 as

follows:

00

= -G U-OEa-fi,_fi (GUa-P 1 du (C.0.1)
f V +a(fU)2

0

Note that in Eq. 4.3.15 we set the damping function constant a = 0.3 on account of this

being the appropriate experimentally measured value for our Xanthan gum solutions, but

in Eq. C.0.1 we keep it general. Setting y = fu, we obtain

= Gfi 1 2 Ea-,-fi ( l-Paya-P dy (C.0.2)
0

As before, we split the integral with limits that range from 0 to co into two different integrals
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as follows:

ft
0

y*
+l a 200

1+ ay2 >1

(G
+ 00

f 1 + ay2 k T(-k(
Y*k=

P-aya-f k1

((k - 1)(a-1)-f) dy

k 
-

dy

in which y* = (V/G)a-xfi = rk. The decomposition exploits

Leffler function has well defined asymptotes for both small and
the following expansions [82]

(C.o.3)

the fact that the Mittag-

large arguments, and has

N k-1
Ea,b (Z) = 2] kl _ I 0N+1\ « 1 <

kE ) F(a(k - 1) + b) +OkZ+1

N -k

Ea0 (z) = - - _ + C (z-(N+1) ) , z >> 1
k=1 I(b - ak)k=1

(C.o.4)

(C.o.5)

The Mittag-Leffler function smoothly transitions between its small argument power law (~
zO) to its large argument power law (- z- 1). By separating the integrals into two domains,

we assume that the Mittag-Leffler function is piecewise continuous, and transitions from
the power law asymptote for z < 1 to the asymptote for z >> 1 at the discrete point y = y*.

We can solve for the integrals in Eq. C.O.3 in terms of hypergeometric function defined
in Eq. 4.3.21 and we obtain

P 

(y*)Pk F ; )

= - G )k-1

f-k q-2 (y*)-qk 2, -1
G V ) I(-qk +1) aqk \ 2 2 _a(y*)2

(C.o.6)
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in which we have introduced the parameters

pk = a(k - 1) - kf + 1 (C.O.7)

qk = ak - (k - 1)3 + 1 (C.O.8)

for ease of notation, we obtain

An analytical expression for the first normal stress coefficient P1 (k), given by 4.3.26,

can be derived in an identical fashion, and we obtain

N [ G k-1 k-Pk (y*)Pk+l (Pk+ 1 pk + 3

k=E V Pk -1) Pk + 1  2  2
k=1 ~

2Fqk-2 (y*)lqk X2_1, , ; (C..9)
V r(-qk + 1) a(qk - 1) 2 2 a(y*)2

Eq. C.O.6 and C.O.9 reduce to Eqs. 4.3.22 and 4.3.27, respectively, by retaining only

the lowest order term, i.e. the k = 1 term and neglecting all higher order terms.

We note that Eq. C.O.5 is strictly valid only in the limit of z >> 1. However, for the

purposes of our analytical approximation, we apply this asymptotic limit for z > 1 (cf. the

second integral in Eq. C.O.3; the limits of the argument of the Mittag-Leffler function

range from 1 to oo). In this second integral, as the value of k is increased, the term 1/r(-p -

k(a - pl)) begins to increase rapidly in magnitude and alternate in sign. This is easily

seen by plotting the value of 1/r(x) for x 0 (not shown here). Therefore, we in fact

obtain poorer approximations for higher orders, beyond a certain value of k. Note that this

counter-intuitive result would not have arisen if we had used a larger value of the lower

limit in the second integral in Eq. C.0.3, say y* - 10y*, because the z-k term, being large,

would damp put these oscillations in the Gamma function. In this case, we could find the

approximate solution up to large k, without diminishing accuracy.

However, we note that in practice, we rarely require large k; to check the accuracy and

convergence of our approximation, we compared the exact numerical solution to Eq. C.0.2

with the approximate solution given in Eq. C.0.3 with various randomly generated values

of 0 < / < a < 1 and V, G. We find that in all cases, we require at most k = 3 to get very

close agreement between the approximate result and the exact numerical solution, and the

1/F(-pi - k(a - /3)) is well behaved.
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D Supplementary Information to Chapter 5

D.1 Determination of In(t )

We begin with the evaluation of the integral In(t) defined as

In(t) f

0
t

0

( - t')-a G(t - 1/) +') dt'
rl- a) + 1(l) (ho/uo + t)

V(t - t')-a +

F(1 - a)(ho/uo + t')n J
0

G(t - t')- _ dt'
r(1 - p)(ho/uo + t')n

(1 -a)Ina + G I nf

(D.1.1)

(D.1.2)

(D.1.3)

Note that Ina is identical to Infi in that simply replacing a by P in Ina yields Inp. Therefore,
we only determine one of the integrals here, say Ina:

t

(t - t')-a
Inat W = (/ dtn f/ (hO/uO + t')n t

0

(D.1.4)
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Let t - t' = u. It can be shown that the integral above reduces to

t
Ina Wu-a

Ina(t) = rdu
J (ho/uo + t -u)d
0

t (ho/uo + t)-a U
ho/uo + t du

o (ho/uo +t)n (1 - holuo+t)

We now let u/(ho/uo + t) = v to obtain

Ina(t)
(ho/uo + t)a+n-1 SV-a( _ v)~" dv

0

Defining the stretch ratio A as

ho + uot -_

ho ho

we can write equation D.1.7 as

a+n-1

Ina~t W h(O) 1a+ni1-1/A(l - a,1 - n)

where R.x (a, b) is the incomplete beta function defined as [204]

fUa-1( _ u)b-1 du

0

; a > 0 and x 5 1 (D. 1.10)

Replacing a by P in equation D.1.9 we get

1
l _ / 1nSo)+n-1Ini (W =

(D.1.5)

(D.1.6)

(D.1.7)

(D.1.8)

(D.1.9)

x (a, b) =

- pi,1 - n) (D. 1. 11)
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Substituting D.1.9 and D.1.11 into D.1.3, and letting n -> n+1 for compactness of notation,

we arrive at

V
In+(t) (F(1 -a)

a+n
UO .(h 0 A " R 1"1/ A 1 - a , - n ) +

(D.1.12)
G uo 13 "

r(1 -hp) E 1+ -i-/A(l -3, -n)

We simply set n = 2 above to determine the value of 13 (t) appearing in equation 5.2.45.

D.2 Boundary conditionfor determining C1 .

From symmetry arguments, we know that

rzz(h/2 - Az) = rz(h/2 - Az) (D.2.1)

In other words, we observe that the stress in the axial direction is symmetric about the mid

plane of the fluid filament. This implies

rzz(h/2+ Az) - rzz(h/2 - Az) = 0

'zz(h/2+ Az) - rzz(h/2 - Az)
(h/2 + Az) - (h/2 - Az)

=>lim
Az-4O0

rzz(h/2 + Az) - rzz(h/2 - Az)
2Az

=0

=0

(D.2.2)

(D.2.3)

(D.2.4)

(D.2.5)

from which we obtain the boundary condition

a9zz = 0
9Z \z=h/2

(D.2.6)
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E An analytical solution to the extended Navier-

Stokes equations using the Lambert W

function.

Microchannel gas flows are of importance in a wide range of MEMS devices. In these

flows, the mean free path of the gas can be comparable to the characteristic length of the

microchannel, leading to strong diffusion-enhanced transport of momentum. Numerical

solutions to the Extended Navier Stokes Equations (ENSE) have successfully modeled such

microchannel flows. In this paper, we derive analytical solutions to the ENSE for the pres-

sure and velocity field using the Lambert W function. We find that diffusive contributions

to the total transport are only dominant for low average pressures and low pressure drops

across the microchannel. For large inlet pressures, we show that the expressions involving

the Lambert W function predict steep gradients in the pressure and velocity localized near

the channel exit. We extract a characteristic length for this boundary layer. Our analytical

results are validated by numerical and experimental results available in the literature.

E.1 Introduction

Micro channel gas flows have elicited much research interest in recent years [317]. Such

flows are frequently encountered in Micro Electro Mechanical Systems (MEMS) such as

in thermal cooling systems for electronic devices [318], air damping of MEMS resonators

[319, 320], gas chromatograph analyzers [321] and other applications. Theoretical under-

standing of macroscale fluid flows, where the continuum approximation holds, has existed

for many decades and phenomena appearing at these length scales are well understood and

described in classic textbooks [5, 322]. Micro channel flows, however, exhibit many sig-
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nificant deviations from the predictions of the Classical Navier-Stokes Equations (CNSE)
used to analyze macroscale flows. It has been known from the time of Maxwell [323] that

the no-slip boundary condition can be violated in rarefied gas flows. Other deviations
from classical macroscale flows include observations of higher mass flow rates through the
channel [324] and nonlinear pressure drop along the channel [325]. In a comprehensive
overview of the first fifty years of Transport Phenomena [326], Bird highlights as some
of the present day challenges: "(e) What boundary and interfacial conditions in transport
phenomena need to be clarified by use of molecular dynamics?" and "(h) What is the cor-
rect velocity boundary condition at the tube wall when a homogeneous mixture is flowing
through the tube?".

Deviations from the classical results arise from rarefaction of the gas or the shrinking
of the characteristic length scales of the flow geometry so that the mean free path A of the
gas becomes comparable to the characteristic length of the flow channel h [327]. Another
important source of the deviation of micro scale flows from CNSE predictions is the relative
importance of wall effects. The shrinking characteristic length scales of the channel lead
to increasing surface to volume ratios, and hence the nature of interaction of the wall with
the gas can strongly influence the flow properties. This is essentially a breakdown of the
continuum approximation; to be able to neglect microscopic statistical fluctuations, we need
a sampling volume with a characteristic length much bigger than the length scale h of the
micro channel.

We quantify the deviation from the continuum approximation with the help of the
Knudsen number Kn defined as

Kn = (E.1.1)
h

where h is the characteristic length of the channel, and A is the mean free path of the gas
defined as [328]

_ 7rRT (E.1.2)
P 2

Here p is the viscosity of the gas, P is the pressure, R is the gas constant and T is the
absolute temperature. In order of increasing Kn, the flow characteristics may be classified
as a classical continuum flow, slip flow, transition flow or a free molecular flow [327]. Some
typical values of Kn corresponding to these regimes are shown in Figure E.1.1, which has
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been adapted from Dongari et al. [329].

Kn=&.0001 0.001 0.01 0.1 1 10 100

V1'A VZI V177

Continuum Regime Transiio Regime

Slip Flow Regime Molecular Regime

Figure E. 1. 1: The different regime classifications of micro channel flows based on Knudsen number
Kn. Figure is reproduced from [329].

Some of the earliest attempts to account for wall effects and to model the effects of slip
in rarefied gas flows were due to Maxwell [323], who modeled the wall surfaces as being
intermediate between perfectly reflecting and perfectly absorbing. Due to the roughness

of the wall, a fraction a of the gas molecules impacting it are absorbed by the wall, and

subsequently re-emitted in a diffuse manner with a velocity distribution corresponding to

a quiescent gas at that particular temperature. The remaining fraction 1 - a is reflected

specularly. With this assumption, Maxwell showed that the tangential slip velocity at the

wall is given by

Uslip _"2 -A- o (E.1.3)

I I B

where au/ay is the velocity gradient normal to the flow direction. For high Knudsen num-

ber flows, deviations from a first-order derivative model are observed, and hence higher

order derivatives are frequently used to model slip in micro channel flows [327, 328, 330,

331]. Extensive reviews on the topic of wall slip and rarefied gas flows in micro channels

are available [332].

It has been argued that using the CNSE together with the Maxwell slip velocity formu-
lation is largely an empirical approach to modeling micro channel gafl s s [333]. Further-

more, it does not account for local gradients in density which can create local fluxes due
to self diffusion [334, 335]. A new apr h a elo i n series of publications
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by Durst and co-workers (see for example [329, 335-337]). The underlying assumption
in this theory is that the pressure gradient in the direction of the compressible flow pro-
vides an additional diffusive mode of mass transport, which is accounted for analytically by
adding an extra term to the CNSE. One therefore eliminates the need to include, in an ad
hoc manner, the Maxwell slip velocity [329].

A treatment for the self diffusion of gases has been discussed in the landmark transport
phenomena text by Hirschfelder, Curtiss and Bird. [338]. They note that in addition to
the familiar sources of momentum and mass diffusion that arise from concentration gradi-
ents in a multi-component system, there is another contribution to the diffusive flux that
arises from the pressure gradient itself. The coefficients of self diffusion can be experimen-
tally measured using, for example, the diffusion of one isotope of a gas into another, if
the molecules are sufficiently heavy (see the discussion by Slattery and Bird [339]). These
additional modes of transport are accounted for using a rigorous kinetic theory approach,
making the mass flux expression significantly more complicated (see, for example, Pg. 516
ofHirschfelder et al. [338]). These additional contributions cannot be neglected when large
pressure gradients exist in a rarefied gas flow field. The Extended Navier Stokes Equations
(ENSE) proposed by Durst et al. [336] account for this mass and momentum transport due
to self diffusion by replacing the velocity in the CNSE with a total velocity, that is a sum
of convective and diffusive velocity terms.

The problem of pressure driven flow in of a compressible viscous gas through a tube
is posed as a detailed exercise (2B.9) in R.B. Bird's second edition of Transport Phenomena

[322]. Here it is suggested that there is additional contribution to the mass flux along the
channel that arises from slip at the wall of the channel. It is suggested (based on empirical
evidence) that the slip varies inversely with the pressure in the gas (consistent with equa-
tions E.1.2 and E.1.3). The general form of the mass flux variation with pressure is sketched
in a figure (Figure 2B.9 of reference [322]), and the insightful student might ask why the
sketch shows not just an augmentation in the total flow rate through the channel but also
a non-monotonic variation. To quantify and understand such observations it is necessary
to have an analytic expression for the mass flux which describes the underlying transport
phenomena.

In this paper, we provide for the first time analytical results obtained for micro channel
gas flows modeled using the ENSE under the assumptions of the lubrication approximation;
currently only semi-analytical or numerical solutions are typically reported. Our presen-
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tation is intended to be didactic; we first provide a brief overview of the formulation of

the model and the relevant equations. We then present the new analytical expression for

the relationship between the total mass flux and the applied pressure difference, and dis-

cuss the inherent non-monotonicities and non-linearities that arise. We also compare the

results with experimental data to test their predictive ability. The utility of an analytic de-

scription of the flow field is demonstrated by using this new formulation to understand the

boundary layer structure that can develop near the microchannel exit for sufficiently large

inlet pressures. Finally, we use this detailed analytical understanding of this canonical fluid

mechanics problem to construct a new flow state map for channel flows of a rarefied gas.

E.2 The Extended Navier Stokes Equations (ENSE)

At steady state and in the absence of any temperature gradients, the system of equations

referred to for compactness as the ENSE for a single species are given by [340]

(puT) 0 (E.2.1)
xi 0

(puf ui) = Ti - _6ijrlk U (E.2.2)

ouc + ujc 2 uC
5 =-p ' +-p k (E2."0 8x ( oj0xi 3 Pi oxk

along with the ideal gas equation of state

_P

P = - (E.2.4)RT

It is assumed that the total mass transport in the extended model consists of a linear sum of

convective and diffusive terms. The superscripts C,D and T in the above equations refer to

convective, diffusive and total quantities respectively. The total velocity component in the

i direction is given by uf = U+ uf. The subscripts i,j,k refer to orthogonal coordinate

directions and take the values 1,2 or 3. The other symbols in the above equations are the

local density p(s), the local velocity u(s), the local pressure P(i), the local dynamic viscosity

p and the self diffusive mass flux in the k direction rhD = puf. The Kronecker delta function
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is denoted by S9. The self diffusive velocity in the i direction is given by the expression

UD_ (E.2.5)
U 7pP axi

This diffusive velocity uD is driven by gradients in the pressure and accounts for the Maxwellian
slip-like velocity in a natural way, rather than introducing tunable parameters such as the
parameter o in equation E.1.3.

In this paper we consider a rectangular micro channel of length L, width w and height

h, with h < w < L. The lubrication approximation holds under these limits [5] and,

assuming steady state flow, the ENSE simplify to [337]

(pu ) + + (PVT) = 0 (E.2.6)

2UT 1 - (E.2.7)
4y 2  P 4x

along with the empirical boundary conditions

UT = (E.2.8)
y= h pP ax

where the walls of the micro channel are located at y = h. These boundary conditions

arise from the assumption that the no-slip boundary condition applies to the convective

velocity uc at the wall surfaces (uc = 0) so that only a diffusive flux is present locally. It

is important to note within the lubrication approximation the mass and momentum equa-

tions are not satisfied exactly. We ignore terms of order O(h/L)2 and higher. This is a good

approximation given the dimensions of the microchannel, and that h < w < L.

Solving equation E.2.7 for uT and employing the boundary condition E.2.8, Adachi et

al. [337] show that

iic - pr -n (h 2 _ Y2 dP mdP (E.2.9)2p dx P dx

where rhT is the local mass flux per unit area and the total mass flow rate MTr through any
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cross section of the channel is given by

h

fT = w f pUT dy (E.2.10)

-h (- h P +p dP
-2hw + - - (E.2.11)

3pRT P dx

We now proceed to find analytical expressions for the pressure field and the mass flow

rate as well as the velocity field u(x, y) in the channel. Whereas an expression for the total

mass flux through the channel may be found by solving equation implicitly [337], previous

approaches have solved for the explicit local pressure and velocity fields numerically.

E.3 Results and Discussion

Consider the expression for the total mass flow rate MT derived in equation E.2.11. Because

the mass flow rate remains constant through any arbitrary cross-section of the channel, we

have dMT/dx = 0 and we can write this expression in the form

( h2P p dP - (E.3.1)
3pRT P dx

where C' = KT/2hw is a constant of integration. This equation can be solved for P im-

plicitly, and we determine C' from the boundary conditions at the inlet and outlet of the

channel P(0) = Pi and P(L) = P0 to obtain

1 h2 (pp2+3p2RT pl
C =0(L - 2  ln - (E.3.2)

6RT L 'h2 p2

We now non-dimensionalize equation E.3.1 using x = x/L and P = P/P, where L is the

length of the micro channel and P, is a characteristic pressure for an ideal gas given by

P, = pj3R/h. As the pressure is increased to P,, the mean free path given by equa-

tion E.1.2 decreases to give a characteristic mean-free path A, or, equivalently, a charac-

teristic Knudsen number given by Kn, = Ar/h = VT76 which characterizes the transition

region in figure E.1.1. Substituting these scalings into Equation E.3.1 and E.3.2 results in
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the simpler expression

-

1) d (E.3.3)

P dx

where C = (L/p)C' is dimensionless. Solving this equation for the dimensionless pressure
distribution along the channel P(3) with P = Pi = P at i = 0 and P = P/P, = P, at i = 1

we obtain the implicit expression

? _ p2 + In = - P2 +ln J - (E.3.4)

At this point expression E.3.4 can be evaluated using a suitable nonlinear equation solver
or root finding algorithm; however additional insight can be gained by seeking an analytic
expression for P(). This equation admits itself to an exact closed form analytical solution
given by

P(x/L) 5 - P 2 -nP2]
C) W exp + +In 11 5 + Pi l (E.3.5)

PC IF _ P

where W(x) is the Lambert W function defined to be the function W(x) that satisfies the
equation

W(x) exp[W(x)] = x (E.3.6)

Although it may not be widely known, the Lambert W function is ubiquitous in nature
and appears in the solution of a number of mathematical as well as physical problems such as
electrostatics, population growth, enzyme kinetics and quantum mechanics. It is similar to
the trigonometric functions in the sense that it has no explicit closed form, but a very large
number of physical problems are solved with relative ease by employing it in the solution
[341]. Furthermore, almost all popular physical computing packages such as Mathematica,

Matlab and Maple include full support for the Lambert W function, and utilize efficient

algorithms to calculate its value at any point in its domain. Corless et al. [342] provide an
excellent summary of the history and applications of W(x).

We may now find explicit solutions for the total mass flow rate MT and the velocity
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profile uT by substituting equation E.3.5 into equations E.2.11 and E.2.9 respectively to

obtain

M - P 2+In 2E37

L~i PO) . E
u T (5,) hVFiT P() ( -2 P 2 +n--n -f 2 + 2)(E.3.8)

4L [1 +P2(x)] 0 P Y 3p2(X)

where y = y/h. To find uT(.), we were required to find an analytical expression for the

pressure drop dP/dz (cf. equation E.2.9). We give an explicit expression for the pressure

drop later; here we simply note that to find uT(i), we have used the fact that the derivative

W'(x) of the Lambert function given in equation E.3.6 is given by [342]

W'(x) = W(x) x # 0. (E.3.9)
x(1 + W(x))

We can now also find the individual contributions to the total mass flux that arise from the

diffusive velocity field uD(X) and the convective velocity field uc(5, ) from equation E.2.5:

D -2hiN V3-Tl2 -1 + (1/p2) In '921
uD(i) = 0 (E.3.10)

0 6L PW)(1 + P2n(())

4 1h -3 P(X) 1 2) (E.3.1 1)3c _) =2 - 2 _ 1 + (1/2 In p2 _ P2 - i3xo4L 1 + p2 (3) 3 p2(

For a long narrow channel with h < w, the pressure gradient is unidirectional (along the

channel) and the diffusive contribution does not vary across the channel. The total velocity

field in the micro channel is given by u T(i, Y) = uC( , Y) + uD (i).

Having derived the solution for the pressure field (i) (which in turn determines the

density field p(z)) we now seek to determine the quality of the lubrication approximation

used to derive these solutions. To this end, we substitute the density field p(x) = P(x)/RT

and the velocity field uT(x, y) using equations (19) and (22) respectively, into the continuity

equation (9) to solve for the transverse component of the velocity field, and we obtain

pT=-,RThA PGz)
p 2 P( 3(E.3.12)
Pc4L [ PQ]
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where

A= I_ -P2 + In L
0

Equation (10) was obtained from (5) and (6) by neglecting terms of order (h/L) 2. We now

estimate the magnitude of these neglected terms a posteriori by using the obtained solutions

for P(x), u(x, y) and v(x, y). We first write out the x component of the momentum equation

without neglecting terms of 0((h/L)2):

OP
0=

O9x
192VT

+ + ) (E.3.14)

Because h < L, 2'49X2 < 2and hence we can rewrite the above equation as

OP
O= x

p a2vT

3 Ox-y
g2 uT

+y2

Because we have analytical solutions for both uT(x, y) as well

the terms 1 and pu as

O2 uT
p =a2 

p 2RT (3
12L3PC

as vT(x, y) we can calculate

1(i)

2(1 + P2(G))

- 3 (5P2()) _A13 p- )

( 2 (1 + P2 (:F)) 5

(E.3.16)

(E.3.17)

To find the relative magnitude of the neglected term in the momentum equation, we divide
(31) by (30) and obtain

P a2 vT
3 0xcy

P O2 36
(h\2

kL
(32 - 1)A2 (5i2 5) _ 1)

((1 + P2(i))4I
(E.3.18)

In the next section, we compare our analytic expression with experiments by Maurer et
al[343]. In these experiments, h = 0.6 pm and L = 10 cm, leading to (h/L)2 ~ 0(10-11).

(E.3.13)

(E.3.15)

and

p O2 VT

3 Oxoy

+p_{ o2UT

+3 \9x2

g92uT
+ /I
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Moreover, for all experimentally accessible parameters, the factor

A 2  - 1011 (E.3.19)
(1 + P2 (i) 4

For example, for typical experimental values of Pi/P0 = 30 and A = 10 used by Maurer et

al., the magnitude of this term is about 103 < 1011. Therefore we are justified in employing

the lubrication approximation for typical microchannel geometries over a wide range of

magnitudes of the dimensionless pressure field. This conclusion is further supported in the

next section by comparing the predictions of our results with experimental data.

E.3.1 Comparison with Data

Equipped with these analytical solutions for the mass flow rate, the pressure field as well

as the local velocity field, we next examine the behavior of these expressions under vari-

ous conditions of inlet and outlet pressures and also compare the analytic expressions with

experimental data. In figure E.3.1, we show the scaled pressure AP, = (P - P0)/(Pi - P,)

calculated using equation E.3.5 as a function of position along the channel X. The curves

correspond to different values of the inlet pressure P for a fixed (small) value of the outlet

pressure PO. It is observed that the nature of the scaled pressure drop AP, strongly depends

on the relative values of inlet and outlet pressures. We know that in the classical case the

scaled pressure along the channel varies as AP, = 1 - 5, and this linear result is indepen-

.... Figure E.3.1

P = 0.25 Evolution in the non-dimensional

0.8 pressure Pi(i) = P(i)/P, as a func-
tion of non-dimensional position

06 -x = x/L along the micro chan-
p -'... nel analytically determined from

-0.3 equation E.3.5. We observe that the
A i 0.4 10 pressure is a non-monotonic func-..... L 1.0 -

-.. 0. tion of P, and saturates for high......3.0 - - .
0.2 - _._.....'... inlet pressures Pi. Furthermore, an

- 30 inflection point is present in the

0 ' ', curves, some of which are not read-

0 0.2 0.4 0.6 0.8 1 ily apparent in the plots above on
account of being very close to the
exit.
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dent of the inlet and outlet pressures P and P. Accounting for diffusive terms makes the
pressure drop highly nonlinear, and it is now a function of both A and Po. Moreover, for
a fixed value of z, say x = 0.5, can be noted that the value of the scaled pressure varies
non-monotonically at small values of A and saturates at high values of P.

In this Appendix, although we obtain the pressure profiles presented in figure E.3.1 us-
ing a lubrication approximation solution to the simplified ENSE, there are other techniques
to arrive at an approximate analytic solution for microchannel gas flows. One widely used
approach that has led to much success is to obtain a solution for the full Navier-Stokes equa-
tions for a compressible fluid using a regular perturbation method[344]. Notably, Venerus
and Bugajsky[345] derive expressions for stream-wise as well as transverse pressure and ve-
locity fields for microchannel flows of compressible fluids, and their analytical results agree
well with previously published experimental data. However the authors note explicitly that
they assume flow conditions such that Kn 10-3 (as opposed to Kn - 1 in the present
work) and any slip effects are negligible. Qin et al.[346] also present a perturbation solu-
tion to the compressible Navier Stokes equations, including the case Kn - 1 for both short
and long channels. The perturbation solution of Arkilic and Schmidt[347] which applies to
long channels ((h/L)2 < Kn) is retrieved by Qin et al. in the appropriate limit. Our analyt-
ically derived pressure profiles obtained by utilizing the lubrication approximation (figure
2) also agree with those derived using the perturbation solution in these cited works[346,
347] in the correct limit. However, Qin et al. introduce two additional material constants
corresponding to slip boundary conditions (slip coefficients), which are obtained from the
literature. Moreover, it is apparent from their results that there is an approach to a boundary
layer like region near the channel exit. No detailed comments or analysis are presented for
this boundary layer structure. We discuss boundary layer like flow in the results section.

This non-linear evolution of the pressure profile predicted by the ENSE is more readily
evident in the pressure gradient profiles. A closer examination of the curves in figure E.3.1
shows the existence of an inflection point along the profile, i.e. although the pressure gra-
dient along the channel is always negative, its magnitude may vary non-monotonically.
We can easily determine the pressure gradient along the channel by differentiating equa-
tion E.3.5 with respect to 5 to obtain

(( L

dP() - _ T P2 +ln - (E.3.20)
d 2(1+P 2 (T)) 0 p2
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Plotting equation E.3.20 in Figure E.3.2 for different values of the dimensionaless inlet

pressure A, the non-monotonicity in the pressure gradient is readily apparent. In fact, we

analytically find the location of this inflection point -i using equation E.3.20 by setting

d2 P/dx2 = 0 to be

.i P? + lnP? - 1

Pi - 0P +I in(P OS
(E.3.21)

and the minimum (most negative) pressure gradient in the micro channel dP/d-1j 1i, which

occurs at the inflection point, is given by

- dP
P'. = -

mm i -1
- P 0 ( )
4 ' PO

(E.3.22)

where the prime denotes differentiation with respect to X-.

Deviations from the classical solution for the mass flow rate of a fluid through a micro

channel is a fact that has been experimentally established [317, 325, 343, 347, 348]. The

mass flow rate is observed to be higher than that predicted by the CNSE with the no-slip

boundary condition. This occurs due to the appearance of the additional 'slip-like' velocity

contribution near the boundaries of the micro channel. This slip-like flow is modeled in

the ENSE with the additional diffusive term without the need for introducing any fitting

parameters or additional material constants, and hence this model should be able to predict

0

-5'

-1 0

-15

0 0.2 0.4 0.6 0.8

Figure E.3.2

Analytically determined pressure

gradient dP/dx as a function of k
(equation E.3.20) for a fixed value

of the outlet pressure. There exists
a point in the channel where the

pressure gradient is most favorable

(most negative), and the magnitude
of the favorable pressure gradient

increases with Pi. The location k

at which this occurs is also shifted

towards x = 1 as the pressure is

increased (cf. equation E.3.21).
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the higher mass flow rate observed experimentally. Indeed, this is the case; in figure E.3.3
we compare experimental measurements of the mass flow rate from Maurer et al. [343]
with the predictions of the ENSE presented in this paper (equation E.3.7). The values of
channel dimensions and other experimental parameters used in this prediction are the same
as those in the work of Maurer et al., and are summarized in the figure caption. We note
that the the prediction is very good over a wide range of driving pressure differences, and
the analytical solutions presented here captures the essential non-linearities and apparent
slip phenomena observed in micro channel flows at moderate Knudsen number.

E.3.2 The Conductance

A useful way of representing the overall transport efficiency of the system is in terms of a
conductance K (i.e. the inverse of a flow channel hydrodynamic resistance). For gas flow
through a rectangular slit the ENSE predict that the conductance is given by

MT L2phw I -
K - = - 1 -P2+ln2 -- i

AP LP P-P0 I
(E.3.23)

The quantity P2 -P 2 appears commonly in such problems (for example equation E.3.23 and
the abscissa of figure E.3.3). Additional insight can be obtained if we rewrite this expression
in terms of an average pressure (P) = (Pi + PO)/2 and a pressure difference AP = Pi - P such

10-10
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10-12

10-13

107 108 109

0.5(P? -

1010 1011 1012

P2) [Pa2 ]

Figure E.3.3

Prediction of the analytically de-
rived solution to the ENSE com-
pared to the experimental mea-
surements taken directly from the
values reported by Maurer et al.
[343]. The agreement between the
prediction and the data is good.
The parameters used here are from
Maurer et al. p = 19.9 x 10-6 Pa s,
h = 0.6 pm, w = 200 pm, L = 10
cm, T = 293 K. The outlet pressure
was held constant at P0 = 12 kPa.
The black dashed line shows the
CNSE solution for the mass flux.

" " "
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thatp P2 = (P +P0 )(P -) = 1(P) AP

Using these identities we rewrite the conductance in terms of the average pressure (P)

of the gas to obtain

phw 2(P) 1 2(P) - PO (E.3.24)
L PC, (P) - PO PO

Furthermore, using equation E.1.2, we can define a Knudsen number (Kn) based on the

average inlet pressure as

(Kn) = (E.3.25)
2 4 (P)

In Figure E.3.4a, we plot the conductance K as a function of the average dimensionless

pressure (P) in the micro channel. Whereas in the CNSE, the conductance monotoni-

cally increases with (P) (because of the increasing density of the fluid), a distinct non-

monotonicity is apparent in the case of ENSE: the conductance of the channel initially

decreases with increasing average pressure and then increases to become indistinguishable

from the classical limit. This non-monotonicity occurs due to the added diffusion transport

mechanism. At low pressure differences, diffusive contributions of the flow resulting from

the density gradient along the channel are vastly more efficient at transporting mass and

momentum through the micro channel compared to classical convective terms. It can be

seen from figure E.3.4(a) that the location of the minimum conductance (indicated by the

symbols) is a function of the outlet pressure P0 .

In Figure E.3.4(b) we plot the value of(Kn) at that value of the outlet pressure for which

the conductance is a minimum. Note that we are not able to find a simple analytical solution

for the value of (P) at minimum conductance due to the non-linearity in equation E.3.24.

We therefore determine (Kn) as a function of the dimensionless outlet pressure Po numer-

ically. Here we notice another non-monotonicity, and the Knudsen number (Kn)min de-

fined using the average pressure at which minimum conductance is obtained first increases

with increasing outlet pressure and subsequently decreases as (Kn)min ~ P 1 . For larger

values of PO (and hence larger (P)), the variation of conductance K approaches the classical

Navier-Stokes case, and K increases monotonically with increasing (P). In this limit the

average pressure at minimum conductance equals (P) ~ Pi ~ P0 .

We can also compare the conductance defined by equation E.3.23 with experimen-
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Figure E.3.4: (a) The conductance K ofthe micro channel as a function of the average pressure in the
channel. In contrast to the prediction in the classical case in which the conductance increases linearly
with average pressure, the CNSE predicts that the conductance varies non-monotonically with (P).
(b) The Knudsen number at minimum conductance calculated using the average pressure as a func-
tion of outlet pressure. The Knudsen number at minimum conductance varies non-monotonically
with the imposed pressure.
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tal measurements of the mass flux through a micro channel as a function of P 0 -P2. In

figure E.3.5 we plot the experimental measurements of Maurer et al. with the analytic ex-

pression in equation E.3.23. There are no adjustable parameters in this expression if the inlet

and outlet pressures are specified in addition to the channel geometry. It is clear that the

ENSE provide an excellent description of the conductance of a rarefied gas through a micro

channel, including the appearance of a minimum in the conductance at a specified value of

the average pressure (P) = (1/2)(Pi + P0) and the pressure driving force AP = Pi - PO. Also

shown on this plot is the CNSE solution (black dashed line), in which K increases linearly

with Po.

E.3.3 Velocity Field in the Channel

We now turn to the velocity field uT(x, y) given by equation E.3.8. In figure E.3.6, we show

the non-dimensional total velocity fJ(p) = at different values ofi, for two different

conditions: (a)Pi = 1 and (b) Pi = 10, keeping the outlet pressure fixed at PO = 0.25. We

observe in Figure E.3.6(a) that the velocity is non-zero at the channel walls, and this slip-like

velocity arises from accounting for self-diffusion due to local gradients in pressure. In fact,

for these values of P and PO, the diffusive velocity contribution (given by equation E.3.10)

is a significant proportion of the total velocity.

This picture changes when the pressure ratio, which we define as 9 = Pi/Po, is in-

100 101

Figure E.3.5

Comparison of the prediction of the

analytical expression obtained in the

present work for the conductance of

a micro channel (equation E.3.24)
against experimental data obtained

by Maurer et al. [343]. The outlet

pressure as well as fluid properties

and micro channel geometry is the

same as that in [343]. The predic-

tion is very good and closely agrees

with the experimental data. The

black dashed line shows the CNSE
solution.
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Figure E.3.6: Velocity profiles in the micro channel at different locations X. (a) P = 1 and P = 0.25
(9 = 4). The contribution of the diffusive velocity terms is a significant proportion of the total
velocity and increases along the channel. (b) Pi = 10 and P, = 0.25 (9 = 40). In this case, there is
still slip at the walls, but its contribution to the total mass flux is negligibly small.
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creased. In figure E.3.6(b), we show the same quantity FjT(p) with p = 10 and P = 0.25,
corresponding to 91 = 40. It is immediately observed that in this case, the convective terms
in the velocity largely outweigh the diffusive terms. In this regime the slip-like velocity is
relatively unimportant; this fact has been noted by other researchers, for example Adachi
et al. [337]. The diffusive contribution to the mass flow rate is only important if it is of
the same order of magnitude as the convective contribution. For this we require both of
the (independently variable) dimensionless pressures A and P to be small. With increasing

A, the wall boundary condition begins to approach that of no-slip and the velocity profile
becomes parabolic. This is reassuring because in the limit of high pressure, the Knudsen
number is small (Kn < 1; cf. equation E.1.2), and microscale corrections should become
relatively unimportant. However, we also note that because of the compressibility of the
gas, there is still a steady increase in the local velocity down the channel in this case as
shown in Figure E.3.6(b). Moreover, the pressure profile along the micro channel is still
highly non-linear and differs considerably from the CNSE solution, as can be seen from
figure E.3.1. As we show later, to approach the classical result AP = 1 - x, we require both
9 -> 1 and P, >> P.

To better visualize the evolution in the velocity field along the channel, we consider the
quantity 'U (z, ), which we call the scaled velocity, defined as

uT (i,) - uT.
U(, = T m" (E.3.26)

Uma- Um

where uT and UTa are the minimum and maximum velocities in the micro channel. It
is clear from figures E.3.6(a) and E.3.6(b) that the minimum and maximum velocities lie
somewhere along the g = 1 and 9 = 0 lines respectively. This is also readily seen from
equation E.3.8; If we isolate the terms in equation E.3.8 that depend on i and rewrite it as

u = 1 +()2 + 2 (E.3.27)
1 + p2(i) ( 3p2 (i)

where 1 > 0 and 2 > 0 are coefficients independent of5, and P(i) is given in terms of the
Lambert W function. We can show that uT is a strictly increasing function ofz (because the
pressure P(i) is a strictly decreasing function of i.). Therefore, the minimum velocity in
the channel is at (5 = 0, = 1) while the maximum in the velocity occurs at (i = 1,g = 0),

which can now easily be found for any choice of Pi and P.
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Figures E.3.7(a)-(d) show shaded plots of the scaled velocity W (3, Y) as a function of the
dimensionless channel coordinates. Each panel corresponds to a different value of A and
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Figure E.3.7: Magnitude of the scaled velocity W in the micro channel as a function of spatial
position for different values of inlet pressure: (a) Pi = 0.3, (b)Pi = 1.0, (c)Pi = 5.0, (d)Pj = 10 at fixed
outlet pressure P, = 0.25. For larger values of PA, the fluid undergoes a sudden increase in velocity
in the vicinity of i=1. Color scale bar shows values of t ranging from 0 to 1.

the value of the outlet pressure was held to be constant at P, = 0.25. We observe that as the
driving pressure difference is increased, the scaled velocity increases much more steeply in
the vicinity of i~ 1.

This behavior can be rationalized from the pressure gradient profiles presented in fig-
ure E.3.2; as P is increased, the magnitude of the pressure gradient along the channel

increases rapidly. In addition, equation E.3.21 shows that in the limit of large pressure

ratios 9P = A/A,, the location of the maximum favorable pressure gradient tends towards

xi -+ 1. This leads to the rapid increase of the gas velocity in the vicinity of5 = 1 for large

9P. To better visualize this sudden change in the velocity near the outlet, in figure E.3.8
we present line scans of the scaled centerline velocity W at different values of A. The steep

1.0

1.

0.

is 0.

-0.

-1
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increase in the scaled velocity is clearly visible. This behavior stands in stark contrast to

the classical incompressible solution, where the pressure gradient and the corresponding

centerline velocity is constant throughout the channel.

E.3.4 Boundary Layer Analysis

The rapid variation in the velocity field close to 3 ~ 1 suggests a boundary layer analysis is

appropriate when 9P >> 1. Through such an analysis we can extract a characteristic length

scale for this boundary layer as well as the asymptotic behavior of pressure and velocity for

different limits of Pi and P.

We begin by a consideration of equation E.3.4 which we reproduce here for clarity,

with the pressure ratio 9 explicitly indicated:

-2

i - P(-)2 +n _5 I- = (2_1+N 2 2 E.28P2(X)

Differentiating this equation with respect to 3 we obtain

1 P2
-)+ _ =2 -1 + (1/P2) ln 9 2) (E.3.29)

1 ..... ... .. Figure E.3.8

Pi 0.3 = 0.25 Scaled profiles of the centerline ve-
0.A = 1.0 . locity along the micro channel for

0.8=..- different values of P. Increasing
. ....... i =5- Pi leads to a steep increase in the

0.6 -scaled velocity close to 3c = 1. The
red dashed line shows the bound-
ary layer approximation given in

0.4 1 Table E.3.1 forPN = 10 >> 1,
PO = 0.25 < 1.

0.2

0 '
0 0.2 0.4 0.6 0.8 1
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We now perform the variable transformation ( = 1 - i and let POs) = P(1 - ) = W).

Therefore equation E.3.29 now becomes

+ - = ( 2 1 + (1/j)ln92 (E.3.30)
Sd 20

Note that at i = 0 we have ( = 1 and f(1) = Pi. Similarly, f(O) = Po. If desired a full

matched asymptotic analysis of this equation can be carried out. Here we are primarily
interested in the behavior of the pressure field in the vicinity of the exit of the channel

( < 1), i.e the inner expansion where t( ) ~ Po. We can consider two limits of this

nonlinear equation: Po < 1 and P0 >> 1 depending on how large the outlet pressure at the

end of micro channel is compared to the characteristic pressure scale Pc = p/3RT/h. In the

former case, equation E.3.30 simplifies to

2~ _ 1+(/jn 2) (E.3.31)
Sd 2

while for.Po >> 1 we obtain

( 2 
- 1 + (1/i) 2 (E.3.32)

These differential equations can be easily solved to find the limiting behavior of the pressure

field close to i = 1. These results are presented in tables E.3.1 and E.3.2.

We can apply a similar approximation of the governing differential equation in the

vicinity of the channel exit for the velocity field uT. First we rewrite equation E.2.9 in non-

P, r 1, 9 1 1 < 1, ~ 1

P(T) Po exp[(1/2)(P2(_P 2 - 1) +1na2)(1 - )] ioexp[(1/2)(a 2 
- 1)(1 - TC)

UT(s) h/3RT P2 ( 2 - 1) +1n 9 2  - 1) +lnP 2 )(1 - T) h] p 2  1)(1 _ y] u~, 6L 6L P30 ex[( -1(

Table E.3.1: Limiting expressions for pressure i(i) and velocity uT(T) for the case P0 < 1. The
expressions in the second column, in which 91 -> 1, is obtained by expanding the logarithm for

~ 1. Equation numbers are given within parentheses.
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P" >> 1, 9 >> 1 PO >> 1, 9 ~ 1

P~z) No 2 -1 ( ln9 1-z o 2 - 1 ) (1 -j) + 1P(i) PJ(a2j+_IlnP2) (1-i+ P

-(j2 1 + In a2

T h ) hh3RT \ __________R___2__ _

4L (a_+ ) -4L 4L p (9~2..- 1)(1 - z)+ 1
P2- 2 +- In 2 )(1 - X-) +1

Table E.3.2: Limiting expressions for pressure P(z) and velocity uT(X) for the case PO >> 1. Al-
though there is no exponential behavior in this case, when P >> 1, the functional dependence of
the expressions for pressure and velocity are such that steep gradients occur near the channel exit.
As before, the expressions in the second column, in which 9 -> 1, is obtained by expanding the
logarithm for P ~ 1. Equation numbers are given within parentheses.

dimensional form and apply the same variable transformations described above to obtain

T2L
2L

[+ _ 1 d
3 2 d

which in the limits Po < 1 and Po >> 1 simplify, respectively, to

T hV3Y 1 di
3L 2d

and

(E.3.34)

(E.3.35)Lh F d
2L d

We may now substitute into these equations the asymptotic

tables E.3.1 and E.3.2, according to the relevant magnitude

expressions for the velocity field in the boundary layer near
also summarized in tables E.3.1 and E.3.2.

form of the pressure from

of A5, to find the limiting

the exit. These results are

The exponential dependence of both the pressure field as well as the total velocity field

on 3 for low outlet pressures O < 1 immediately suggests a characteristic length scale &

(E.3.33)
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for the boundary layer region given by

& 1 3p 2 RT (E.3.36)
L P2p2+lnp2 h2 P2 + 3p2RT ln(P /PO2)

For a fixed value of the outlet pressure Po, the boundary layer thickness decreases with

increasing values of the inlet pressure Pi and this explains the form of the velocity pro-

files seen in figure E.3.8. Equivalently, decreasing Po also decreases the boundary layer

thickness, although more slowly than increasing Pi.

A different structure for the boundary layer at the exit is observed when the outlet

pressure is high (Po >> 1). The compressibility ofthe gas can still be important and there can

still be a rapid decrease in the pressure near the exit. In this case, the pressure and velocity

profiles have a square root and an inverse square root dependence on the distance from the

exit, respectively. However the length scale of the boundary layer remains the same as that

of Equation E.3.36. The detailed expressions for this case are given in table E.3.2.

E.4 Conclusion

In this paper we present for the first time analytical solutions to the Extended Navier-Stokes

equations and obtain expressions for the pressure field, mass flow rate and velocity field for

flow through a rectangular micro channel. The ENSE approach models the apparent slip-

like flow ofrarefied gases in micro channel geometries by accounting for mass transport due

to local pressure gradients. Using the analytical expressions derived here using the Lambert

W function, the nonlinear behavior of the pressure field and the resulting velocity field was

examined in detail. The analytical expressions derived here are able to successfully capture

the anomalous mass flow rate increases observed experimentally.
The ability to obtain an analytic expression for the pressure profile P(i) along the chan-

nel E.3.5 in terms of the Lambert W function also helps us construct a more detailed version

of the regime map that was shown schematically in Figure E.1.1. This new two dimen-

sional map is best represented in terms of the pressure ratio 91 = Pi/Po = Pi/o that is

driving the flow and either the average pressure (P) = (1/2)(Pi + PO) in the channel or the

scaled outlet pressure Po = Po/Pe, each of which characterizes the thermodynamic state of

the gas and the Knudsen number in the channel. We use the latter representation to con-

struct Figure E.4.1. The two dimensional velocity profile and the pressure profile along the
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101 
Figure E.4.1

The different flow regimes for mi-

cro channel gas flows. Of note is

the boundary layer flow regime, in
which steep gradients in the pres-

sure field as well as velocity field
are localized in the vicinity of the

channel exit.
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100 1
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channel are described by equations E.3.5 and E.3.8 for this entire space. For large outlet

pressures (P, >> P,) and small pressure drops (9 ~ 1), the ENSE for compressible viscous

flow at moderate Knudsen numbers collapse to the classical Navier-Stokes equations. For

low average pressures (corresponding to high Knudsen number) and small pressure dif-

ferences, the flow approaches the Knudsen regime in which ballistic transport dominates.

To describe this regime requires the solution of the Boltzmann equation using appropriate

numerical techniques which depend on the Knudsen number range of interest [328].

As the pressure drop along the channel increases (9 >> 1), the flow develops a boundary

layer structure in which the largest velocity changes occur in a thin region of width 3 near

the channel exit. The specific form of the pressure profile or centerline velocity profile in

this boundary layer regime depends on the magnitude of the outlet pressure P (compared

to the characteristic value P,). The results for both Po >> Pc and P0 < P, are given in

Tables E.3.1 and E.3.2 respectively. For extremely high pressure ratios, additional effects

such as inertial acceleration and viscous heating may further modify the velocity field near

the exit. The framework and methodology for dealing with such transport effects have

been outlined by Bird and colleagues in numerous publications (see for example [322, 326,

338]) but are beyond the scope of this work.
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