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Abstract

Inspired by the pattern transformation of periodic elastomeric cellular structures, the

purpose of this work is to exploit this unique ability to activate conductive via deformation-

induced instabilities. Two microstructural features, the contact nub and the conductive pathway,

are introduced to make connections within the void and between the voids upon pattern

transformation. Finite element-based micromechanical models are employed to investigate the

effects of the contact nub geometries, conductive pathway patterns and elastic properties of the

coating and substrate materials on the buckling responses of the structure. Finally, a flexible

circuit that can be switched on and off by an applied uniaxial load is fabricated based on the

finite element analysis and demonstrated the ability to activate conductive pathways in response

to an external triggering stimulus.

Thesis Supervisor: Mary C. Boyce

Title: Ford Professor of Mechanical Engineering



Acknowlidgements

First and foremost, I would like to express my deepest appreciation to my adviser,

Professor Mary C. Boyce. To think upon where I started from two years ago, and how far I have

come since then, I feel extremely grateful to have you as my mentor. Your patience, kindness

and knowledge have helped me to develop into the person I am now. I wish you all the best at

your new future at Columbia University and I will always be proud of being your student.

I would also like to thank everyone in the Boyce's lab. Thank you, Stephan for your

guidance along the way. Thank you, Hansohl for all the coffee break and late night chats. Thank

you, Narges for treating me as your little brother. Thank you, Mark for always being funny and

positive. Thank you, Erica for all the tutoring on Zwick. Thank you, Shabnam and Swati for

always being patient and answering my questions. I also like to thank Juliette, Leslie, Joan and

Una for making administrative matter much easier.

Above all, I would like to thank my friends and family for all your love and support.

Thank you, Ke, for being with me and supporting me through all the ups and downs. I am so

grateful to have you and I promise that I will do the same thing to you. Thank you, Mom and

Dad. There are really no words to describe how grateful I am and how much I love you. I know

you have scarified so much to help me to get to where I am right now. Yes, your son has got a

degree from MIT and he will keep working hard to realize his dream. But I want to tell you that

no matter where I am and no matter what I do, my love is always with you.



Table of Contents
Chapter 1 Introduction .................................... ..................................................... 1

1.1 Overview of periodic elastomeric structures and their applications ..................................... 1

1.2 Thesis objective............................................................................................................. 4

Chapter 2 Background .......................................................................................... 7

2.1 List of symbols............................................................................................................... 7

2.2 Characterization of material behavior.............................................................................. 8

2.3 Boundary conditions for infinite periodic structures........................................................ 10

2.4 Eigen analysis...................................................................................................................... 12

2.5 Post-buckling analysis.................................................................................................... 13

2.6 References ........................................................................................................................... 14

Chapter 3 Pattern transformation of periodic elastomeric structures with a square

array of circular holes .......................................................................................... 15

3.1 Infinite periodic structure, unit cell and RVE ................................................................. 15

3.2 Analysis of instability....................................................................................................... 17

3.3 Post-buckling analysis.................................................................................................... 19

3.4 Understanding the effect of void-volume fraction.......................................................... 20

3.5 Conclusions ......................................................................................................................... 24

3.6 References ........................................................................................................................... 25

Chapter 4 Micromechanical model based design of contact nubs......................26

4.1 Conceptual design ........................................................................................................... 26

4.2 Design parameters........................................................................................................... 27

4.3 Effect of nub geometries for fixed void-volume fractions.............................................. 28

I



4.4 Effect of void-volume fractions for fixed nub geometries.............................................. 32

4.5 Design of contact nubs for circular holes on a hexagonal lattice.................................... 34

4.6 References ........................................................................................................................... 36

Chapter 5 Micromechanical model based design of conductive pathways........37

5.1 Modeling rationale for thin film bonded to an elastomer substrate ................................ 37

5.2 Three dim ensional periodic structures ............................................................................ 39

5.3 Design of conductive pathways...................................................................................... 41

5.4 Discussion on the design of conductive pathways.......................................................... 49

5.5 References ........................................................................................................................... 51

Chapter 6 Experim ents........................................................................................ 53

6.1 Substrate fabrication....................................................................................................... 53

6.2 Conductive pathways printing........................................................................................ 55

6.3 Experim ents and results ................................................................................................. 58

6.4 References ........................................................................................................................... 62

Chapter 7 Conclusion and future w ork ............................................................... 63

7.1 Conclusions......................................................................................................................... 63

7.2 Future work ......................................................................................................................... 64

||



List of Figures
Figure 1 .1 (a) Image of an opal bracelet, a natural photonic crystal (Taken from Wikipedia) (b)

Demonstration of a photonic band gap [1] (c) Phononic band gaps for a 2D periodic structures

with a square array of circular holes at different strains (Taken from Bertoldi and Boyce 2008 [4])

Figure 1.2 Images of the progressive deformation of an elastomeric matrix comprising a square

array of circular holes (Taken from Overvelde, Shan et al. 2012 [10])

Figure 1.3 Sequence of progressively deformed shapes of a "Buckliball," a spherical elastomeric

shell patterned with a regular array of circular voids, due to the decrease of internal pressure

(Taken from Shim, Perdigou et al. 2012 [13])

Figure 2.1 (a) Acrylic mold (b) Cylindrical testing specimen with a radius of 10 mm and a height

of 6.35 mm (c) Uniaxial compression test setup

Figure 2.2 Engineering stress vs. principle stretch. Comparison between experiment and Neo-
Hookean model

Figure 2.3 A periodic structure and its corresponding unit cell and RVE

Figure 2.4 A RVE deforming under periodic boundary conditions with pi and P2 periodically
located on the RVE boundary

Figure 3.1 (a) An infinite periodic structure with circular holes (b) Corresponding unit cell (c)

Corresponding 2 x 2 RVE (d) Corresponding 3 x 3 RVE (e) Corresponding 4 x 4 RVE

Figure 3.2 Infinite periodic structures and their corresponding unit cells with void-volume

fraction $ = 30%, 50% and 60%

Figure 3.3 First and second eigenmode for 4 = 50% for p = (2,2), p = (3,3), p = (4,4), p =

(5,5) and p = (6,6)

Figure 3.4 Eigenvalue vs. RVE size for 4= 50%. $' = 30% and 4' = 60% showed similar

trends with different eigenvalues.

Figure 3.5 Nominal strain vs. nominal stress for 4' = 30%, 4' = 50% and $ = 60%

III



Figure 3.6 (a) A beam subject to compressive load (b) The first buckling mode of the beam when
the load reaches a critical value.

Figure 3.7 Dimensions of the beam

Figure 3.8 (a) Inter-void ligament slenderness of RVE with different void volume fractions (b)

relation between critical stress of the ligament and the macroscopic critical stress

Figure 3.9 normalized acr-ligament vs. d/1

Figure 4.1 The conceptual design of contact nubs

Figure 4.2 Nub design parameters

Figure 4.3 Nub shapes with B = 0.5R: 0.1R: 0.7R, and C = 0.9R: 0.1R: 1.1R while keeping

A = 0.25R fixed

Figure 4.4 First mode of the specimen with Nub shapes with A = 0.25R, B = 0.5R, C = 0.6R

Figure 4.5 Eigenvalues vs. B for different values of C for a fixed A=0.25R

Figure 4.6 Nub shapes with C=0.9R, R, 1.IR, and A=0.15R, 0.25R, 0.75R, while keep B=0.7R

fixed

Figure 4.7 eigenvalues vs A for different values of C

Figure 4.8 The 2D unit cell with qj = 20%, 50%, 70%. Nub design parameters are A =

0.25R, B = 0.5R, C = 0.9R.

Figure 4.9 Comparison of eigenvalues between structures with and without nubs

Figure 4.10 Two elastomeric porous structures with different hole arrangements buckle under

uniaxial compression (Taken from Shim, Shan et al. 2013 [2])

Figure 4.11 (a) a finite-sized sample with a 7 x 8 hexagonal array of circular holes with nubs; (b)

a RVE representing its infinite periodic counterpart.

Figure 4.12 (a) first mode of the finite-sized sample (b) first mode of the RVE

IV



Figure 5.1 (a) A film stretches with the substrate when well bonded to the substrate. (b) A film

wrinkles under compressive load when well bonded to the substrate. (Taken from Li, Suo et al.

2005[1]) (c) A film detaches from the substrate and ruptures under tensile load. (d) A film

detaches from the substrate under compressive load. (Taken from Huang, et al. 2012)

Figure 5.2 Specimen dimensions

Figure 5.3 First four eigenmodes and eigenvalues of the 2D structure (plane strain) and the same

structure with different thicknesses t/R (t = 1/8, 1/4, 1/2, 5/4)

Figure 5.4 Nominal strain vs. nominal stress for 2D structure and 3D structures with thickness

t/R = 1/8 and t/R = 1/4

Figure 5.5 Transformative patterned elastomeric materials in undeformed and deformed states

Figure 5.6 Potential conductive pathways on the deformed patterned structure

Figure 5.7 a 2 x 2 RVE with nubs and thin film coating to realize the conductive pathway

depicted in Figure 5.6(a)

Figure 5.8 First buckling mode and eigenvalue of Specimen 1,2,3 and 2D strucutre (from left to

right)

Figure 5.9 First buckling mode and eigenvalue of Specimen 4, 5 and 6 (from left to right)

Figure 5.10 First buckling mode and eigenvalue of Specimen 7, 8 and 9 (from left to right)

Figure 5.11 Nominal strain vs. nominal stress for specimen 3 and 7

Figure 5.12 Strain levels within the film

Figure 5.13 RVEs with conductive line width d/R = 1/40, d/R = 3/40 and d/R = 3/20

Figure 5.14 Specimen 3 with conductive line width d/R = 1/40, d/R = 3/40 and d/R = 3/20

Figure 5.15 Specimen 7 with conductive line width d/R = 1/40, d/R = 3/40 and d/R = 3/20

Figure 6.1 (a) Acrylic base with microstructures made by laser cutter. (b) Pillars made using 3D
printer were inserted into the base.

V



Figure 6.2 (a) Final substrate (b) Zoomed-in image of the RVE with four unit cells (top view) (c)
Zoomed-in image of one circular void with four contact nubs (top view)

Figure 6.3 (a) 3D printer (b) printed conductive lines and nozzle (c) a printed circuit (Taken from
Russo, Ahn et al. 2011 [4])

Figure 6.4 Schematics of designed conductive pathways (a) disconnected circuit in an
undeformed configuration (b) connected circuit in a deformed configuration

Figure 6.5 Printing setup

Figure 6.6 Printed conductive pathways

Figure 6.7 Experimental and numerical images of the specimen at different strains

Figure 6.8 Nominal stress vs. nominal strain curve showing experimental and numerical results

Figure 6.9 Demonstration circuit layout

Figure 6.10 Images of progressive deformation of the demonstration circuit. (a) undeformed
circuit; conductive pathways disconnected (b) deforming circuit (c) deformed circuit; conductive
pathways connected to light up the LED

Figure 6.11 Zoomed in images of the completion of the demonstration circuit.

VI



Chapter 1
Introduction

Periodic microstructures abound in nature and demonstrate numerous interesting and

unique mechanical, photonic and hydrophobic properties.

In recent years, a number of research groups have focused on periodic elastomeric

structures because of their unique ability to switch between two very different configurations due

to instability in response to an external triggering stimulus. These structures offer exciting

opportunities to design lightweight responsive and reconfigurable devices that have a wide range

of applications in sensors, bioengineering, microfluidics and photonics. For example, photonic

switches could be created to filter waves if the periodic pattern length scales are in the order of

the wavelength of light.

In this chapter, an overview of state-of-the-art research on periodic elastomeric structures

is presented, and the objective of this study is proposed at the end.

1.1 Overview of periodic elastomeric structures and their applications

1.1.1 Phononic and photonic crystals

Phononic and photonic crystals are periodic structures that are capable of controlling the

propagation of waves through band gaps: a range in frequency where wave propagation is barred

[1]. Phononic crystals have exciting applications such as sound filters, acoustic wave guides, and

vibration isolators; Photonic crystals avenues to control light waves such as tuning colors and

directing light. Figure 1.1(a) shows an image of an opal bracelet. It is essentially a natural

photonic crystal with periodic microstructures that give rise to its iridescent color. Figure 1.1(b)

illustrates the concept of a phononic band gap. The yellow region in the picture represents a

frequency range where sound wave propagation is forbidden [1].

It is desirable to design tunable photonic and phononic band gap systems because most

photonic and phononic crystals only operate at a fixed frequency range. Great advances have
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been made towards this goal using methods such as altering out-of-plane modes with

piezoelectric effects [2] and directly physically changing the positioning of the periodic structure

[3]. The dramatic shape change of periodic patterned elastomeric structures due to instability also

provides one potential alternative: to use deformation and other stimulus as an external means to

control band gaps in photonic and phononic crystals [4]. Figure 1.1(c) demonstrates this idea. It

shows the different band gaps of a 2D periodic elastomeric structure with a square array of

circular voids at different strain levels.
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Figure 1.1 (a) Image of an opal bracelet, a natural photonic crystal (Taken from Wikipedia) (b)

Demonstration of a photonic band gap [1] (c) Phononic band gaps for a 2D periodic structures

with a square array of circular holes at different strains (Taken from Bertoldi and Boyce 2008 [4])
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1.1.2 Auxetic materials

Mechanical instability of periodic patterned elastomeric structures can also be used to

design 3D metamaterials with switchable Poisson's ratio. The Poisson's ratio is defined as the

ratio between the transverse and axial strain when subjected to uniaxial stresses [5]. When

compressed, most materials expand outwards in the directions orthogonal to the applied load

resulting in a positive Poisson's ratio. However, the pattern transforming material of Mullins,

Boyce et al. [6] was demonstrated to have a Possion's ratio that transforms from a positive

Possion's ratio to a negative Possion's ratio after the deformation-induced pattern transformation

[7], [8].

Figure 1.2 shows a periodic patterned structure with a square array of circular holes.

When the structure is uniaxially compressed, a structural transformation induced by instabilities

occurs [8], [9] and the initial circular holes transform into elongated, almost closed ellipses,

giving rise to the shrinkage of the entire structure. Moreover, a significant lateral contraction is

observed and is further accentuated with the increase of applied strain. This material behavior

offers great potential for designing energy absorbing devices.

Figure 1.2 Images of the progressive deformation of an elastomeric matrix comprising a square

array of circular holes (Taken from Overvelde, Shan et al. 2012 [10])

1.1.3 Soft origami-like structure

The attractive characteristics of periodic elastomeric structures also provide routes for the

fabrication of foldable and origami-like structures that have a wide range of applications such as

drug delivery capsules [11], material synthesis agents and soft-material robots [12].
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One interesting example of a 3D origami-like structure is shown in Figure 1.3. It was

developed by Professor Pedro Reis's group at MIT and Professor Katia Bertoldi's group at

Harvard and is based on the pattern transforming structure of Mullins et al. [6] The structure is

named the "Buckliball" because the shape change is a result of local buckling of ligaments in the

structure. The "Buckliball" comprises a spherical elastomeric shell patterned with 24 carefully

spaced dimples. The inner pressure is controlled by a motorized syringe pump. When air is

sucked out of the ball, the thin ligaments between the dimples buckle, inducing a "cooperative

buckling cascade" of the skeleton of the ball in the same manner as the planar cases of Mullins et

al. [6], [13]. As a result, the circular dimples turn into ellipses that are almost closed and the ball

volume is reduced by up to 54%. Moreover, the structure remains spherical throughout the

process. Figure 1.3 shows the progressive images of the deformation.

A big advantage of the buckling-induced folding mechanism of the elastomeric structures

is that it is fully reversible and can be achieved without moving parts. This opens the possibility

for reversible encapsulation over a wide range of length scales.

Figure 1.3 Sequence of progressively deformed shapes of a "Buckliball," a spherical elastomeric

shell patterned with a regular array of circular voids, due to the decrease of internal pressure

(Taken from Shim, Perdigou et al. 2012 [13])

1.2 Thesis objective

Great advances have been made to take advantage of the reversible and dramatic pattern

transformation of periodic elastomeric structures, such as the tunable phononic crystals and the

Buckliball for encapsulation. Moreover, while there have been extensive works on the effect of

topology on the behaviors of periodic elastomeric structures [7], [10], [14], [15] as well as the
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stretchability of thin films on elastomeric substrates [16], [17], little has been investigated on the

overall buckling and postbuckling behavior of the elastomer when it is periodically patterned

with another material.

In this thesis, a flexible circuit with switchable conductive pathways that can be

controlled by deformation-induced instabilities is designed based on finite element analysis. Also,

3D printed electronics techniques are exploited to fabricate a working demonstration circuit.

A major challenge of the design is to make connections between the voids of the

continuous porous structure as it undertakes a dramatic shape change induced by instabilities.

Here, we first introduce two novel design concepts of contact nubs and conduction pathways. We

then choose an optimal geometry of those features based on finite element analysis and confirm

our design with experiments. Finally, we present a robust flexible circuit harnessing the

optimized elastomeric substrate geometries that is fabricated using 3D printing techniques and

stretchable conductive ink.
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Chapter 2
Background

In this chapter, we first characterize the material behavior of the silicone rubber we use

throughout the study. Then, the method of periodic boundary conditions as a means for modeling

periodic structures and Refined Eigen Analysis are introduced. The former is useful for

analyzing large structures with repeating units, while the latter is a typical approach to explore

the instability of structures.

2.1 List of symbols

We use standard notation of modem

is listed below.

X

x

X = X(X, t)

F = VX

J = detF > 0

u = x - X

H = Vu

F = RU = VR

U,V

R

C =U2 = FTF,B = V2 FFT

1
E = -(C -1)

2

Ii(B)

continuum mechanics throughout this work, which

Material point in the reference body

Spatial point in the deformed body

Motion function

Deformation gradient

Determinant of F

Displacement

Displacement gradient

Polar decomposition of F

Right and left stretch tensor

Rotation tensor

Right and left Cauchy-Green tensor

Green strain tensor

Invariants of B
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xi > 0 Principal stretches

il Left principal basis

{rI} Right principal basis

T Cauchy stress

TR First Piola stress

TRR Second Piola stress

Principal value of Cauchy stress/true stress

Principal value of Piola stress/engineering

Si stress/nominal stress

PR Mass density per unit reference volume

IR Free energy density per unit reference volume

boR Body force per unit reference volume

p Arbitrary pressure

Generalized shear modulus

* Eigen modes

2.2 Characterization of material behavior

A silicone rubber (Elite Double 8, Zhermack) is used throughout this study. The major

macroscopic physical characteristic of this material is its ability to sustain large reversible strains

with negligible hysteresis, which makes it ideal to be modeled by the theory of finite elasticity.

Uniaxial compression tests were conducted to determine the material constants.

A mold was made from acrylic sheets using laser cutting to cast the material testing

specimen. The testing specimen was a cylinder with a radius of 10 mm and a height of 6.35 mm

(Figure 2.1).
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Figure 2.1 (a) Acrylic mold (b) Cylindrical testing specimen with a radius of 10 mm and a height

of 6.35 mm (c) Uniaxial compression test setup

Uniaxial compression tests were conducted on the specimen to characterize the material

response of the elastomeric matrix and the behavior was found to be well captured by a simple

Neo-Hookean model. The specimen was subjected to uniaxial compression at different strain rate

using a Zwick screw-driven testing machine. Vaseline was used to reduce the friction effects

between the sample and the plates. The tests showed that the material exhibits a behavior typical

for elastomers: large strain elastic behavior with negligible rate dependence and negligible

hysteresis during a loading-unloading cycle. The material behavior at a compression speed of 20

mm/min is reported in Figure 2.2 and is used to determine the shear modulus.

The uniaxial stress-strain behavior of the material up to an applied strain of over 35%

was found to be well captured using an incompressible Neo-Hookean model, whose strain

energy is,

$= (1 1 -3) (2.1)

where p.o is the initial shear modulus and I, is the first invariant of the left Cauchy Green tensor.

This covers well beyond the range of strain in this study. After curve fitting, the initial shear

modulus was found to be 0.058 MPa.
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Figure 2.2 Engineering stress vs. principle stretch. Comparison between experiment and Neo-
Hookean model

2.3 Boundary conditions for infinite periodic structures

When analyzing a structure with complicated and repeating units of microstructures, we

often use periodic boundary conditions. One methodology was first developed by Danielsson,
Parks and Boyce [1].

The key idea of this methodology is that instead of analyzing the entire structure, we

consider a representative volume element (RVE) that contains one or multiple unit cells of the

structure. A unit cell is defined as the smallest repeating geometric units. Figure 2.3 shows a

structure with repeating units. Square ABCD is a unit cell; the unit cell itself is typically taken as

the RVE. However, with deformation, instabilities may actually have their lowest energy mode

over multiple "initial unit cells", hence changing the "unit cell" to require more of the "initial

unit cells". Therefore, we also consider RVEs include multiple "initial unit cells" such as the

square EFHG containing four unit cells. We impose boundary conditions on the RVE to capture

the periodic nature of the deformation of the RVE edge boundaries, written in terms of the

macroscopic deformation gradient and the local position of the edge nodes. Using periodic

boundary conditions is not only computationally efficient but also eliminates the artificial

boundary effects of the finite structure.
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Figure 2.4 A RVE deforming under periodic boundary conditions with pi and P2 periodically
located on the RVE boundary
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The periodic boundary condition can be mathematically defined as follows:

uP2 - uP, = H(Xp 2 - Xp) = (F - 1)(X 2 - Xp1 ) (2.2)

where pi and P2 are two points periodically located on the RVE boundary, shown in Figure 2.4.

F denotes the macroscopic applied deformation gradient.

To implement in finite element programs, we impose the macroscopic deformation by

prescribing the components of H through a set of virtual nodes. The components of H are

assigned to be the displacement components of the virtual nodes. Therefore, by prescribing

corresponding displacements of the virtual nodes, we can realize different macroscopic loading

conditions including uniaxial compression, biaxial tension and simple shear. Using the principle

of virtual power, the components of the macroscopic first Piola stress S are identified as the

reaction forces of the virtual nodes divided by VO, the reference volume of the RVE. Then the

Cauchy stress can be found through T = L SF T, where V is the volume of the deformed

configuration. The components of the macroscopic nominal strain are simply equal to the

displacements of the virtual nodes.

2.4 Eigen analysis

In this study, we mostly focused on infinite periodic structures for the sake of

computational efficiency with a few analyses performed on finite-sized specimens to enable

comparison with the experimental results.

The stability of both the finite-sized specimens and the corresponding infinite periodic

structures was first examined using eigenvalue analysis. It is a linear perturbation procedure that

perturbs an arbitrary reference load by X and seeks alternative configurations that can sustain the

perturbed load [2], [3]. It is essentially an eigenvalue problem. In our study, this procedure was

implemented using the *BUCKLE module in the commercial finite element package

ABAQUS/Standard. It returns an eigenmode which corresponds to a buckled shape and an

eigenvalue which corresponds to a critical stress/strain. There can be multiple eigenvalues and

eigenmodes.

12



It is rather straightforward for a finite-sized specimen. However for its infinite periodic

counterpart a Refined Eigen Analysis [4], [5] is needed because it is possible that there exists a

microscopic bifurcation with a longer periodic length than a "unit cell." A "unit cell" here is

defined as the smallest repeating geometry unit. Therefore, in order to obtain the correct

eigenvalue and eigenmode of an infinite periodic structure, we should perform eigenvalue

analysis on RVEs with an increasing number of unit cells. Then the critical load of the infinite

periodic structure is defined as the infimum of the critical load on all possible RVEs. This

approach is referred to as Refined Eigen Analysis.

In particular, an RVE is constructed consisting of pY cells, where p = (Pl, P2) and Y

serves as a unit cell. Periodic boundary conditions described in Section 2.2 were imposed and

linear buckling analysis was performed on each RVE with increasing p. In theory, we need to

examine an infinite number of RVEs for different values of p, but for practical purposes, RVE

size up to 10Y by 10Y is sufficient to get a reasonable understanding of material behaviors.

2.5 Post-buckling analysis

The eigenvalue analysis using *BUCKLE in ABAQUS is a one-step linear analysis that

only returns the end-state data, i.e., eigenvalues and eigenmodes. It does not provide any

information about the material response prior to or after the bifurcation. On the other hand, a

static analysis using *STATIC in ABAQUS does generate progressive data at each time

increment, but it does not capture the bifurcation at the critical load. In order to depict both the

buckling and evolution of material behavior, we introduce an imperfection in the form of the first

buckling mode 4 1 (the eigenmode with the lowest eigenvalue) obtained from the linear buckling

analysis to perturb the mesh by a small amount, scaled by a scale factor w,

dx + d(2.7)
AX0 = w 2 (27

Thus, the perturbation Ax0 introduced into the mesh is a fraction of the average center-to-

center distance between the voids (dx and dy denoting the horizontal and vertical center to center

distance, respectively). With this initial imperfection, the structure can capture the bifurcation

point during a static analysis and deform as the first buckling mode.

13



2.6 References

[1] M. Danielsson, D. M. Parks, and M. C. Boyce, "Three-dimensional micromechanical
modeling of voided polymeric materials," J. Mech. Phys. Solids, vol. 50, no. 2, pp. 351-
379,Feb.2002.

[2] R. D. Cook, M. E. Plesha, D. S. Malkus, and R. J. Witt, "Concepts and applications of
finite element analysis," 2002.

[3] S. Timoshenko, Theory of Elastic Stability. McGraw-Hill Book Company, Incorporated,
1936, p. 518.

[4] K. Bertoldi, M. C. Boyce, S. Deschanel, S. M. Prange, and T. Mullin, "Mechanics of
deformation-triggered pattern transformations and superelastic behavior in periodic
elastomeric structures," J. Mech. Phys. Solids, vol. 56, no. 8, pp. 2642-2668, 2008.

[5] G. Geymonat, S. Muller, and N. Triantafyllidis, "Homogenization of nonlinearly elastic
materials, microscopic bifurcation and macroscopic loss of rank-one convexity," Arch.
Ration. Mech. Anal., vol. 122, no. 3, pp. 2 3 1-290, 1993.

14



Chapter 3
Pattern transformation of
periodic elastomeric
structures with a square array
of circular holes

Before introducing our key design features (the contact nubs and the conduction

pathways), it is worthwhile to extend some of the key results of the modeling of an elastomeric

periodic matrix with circular holes on a square lattice, especially the effect of void-volume

fraction on critical stress, as they provide important guidance for our design. This section

essentially follows the approach by Bertoldi and Boyce [1].

3.1 Infinite periodic structure, unit cell and RVE

As was briefly mentioned in Section 2.3, we analyze infinite periodic structures for

computational efficiency. Figure 3.1(a) shows an infinite periodic structure with circular holes.

A unit cell is defined as the smallest repeating geometric unit of the periodic structure, as is

shown in Figure 3.1(b). A representative volume element (RVE) contains m x m repeating unit

cells. Figure 3.1 (c)-(e) show RVEs of size 2 x 2, 3 x 3 and 4 x 4.

Since the infinite periodic structure is just the repeating of the unit cells, the void-volume

fraction $ of the infinite structure can thus be defined as

1TR 2  
(3.1)

where R is the radius of the circular void and L is the length of the unit cell square shown in

Figure 3.1(b). To examine specimens with various void-volume fractions, we can simply change

the ratio between R and L.
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3.2 Analysis of instability

We analyzed three void-volume fractions 1 = 30%, 50% and 60%. Figure 3.2 shows the

infinite periodic structures and the corresponding unit cells.

Following the procedure by Bertoldi and Boyce [1], Refined Eigen Analysis (Section 2.4)

was performed on RVEs consisting of m x m (m = 2,3, ... ,10) unit cells for all three void-

volume fractions, a total of 27 RVEs. All analyses were performed in ABAQUS/Standard using

*BUCKLE module. The material model used was the Neo-Hookean model (Section 2.2) with a

shear modulus of 0.058MPa. Infinite periodic boundary conditions (Section 2.3) with uniaxial

loading were imposed. Triangular, quadratic plane strain elements (CPE6H) were used.

0 p p *000
00000000 00
000 00000 0

000000000 0
00000000000
01000000000

00000000000
00000000000
0 0000 00000

00000000000
00 000 0* e U U I U I I I Ise ee eeIIs

Figure 3.2 Infinite periodic structures and their corresponding

fraction 4 = 30%, 50% and 60%

unit cells with void-volume

LU~ -L

T
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Figure 3.3 shows the first and second mode of * = 50% for cases where p = (2,2), p =

(3,3), p = (4,4), p = (5,5) and p = (6,6). 4' = 30% and 4' = 60% showed similar modes.

The figure clearly shows that eigenmodes of the RVE vary with the number of unit cells

it consists of. Interestingly, the same first eigenmode exists for RVEs that consist of even

number of unit cells (i.e. p = (2n, 2n), n = 1,2 ... ). In other words, the first mode of a 6 x 6

RVE can be assembled by three 2 x 2 RVEs. This does not hold for either the second mode or

the odd-sized RVEs. This observation suggests that the first mode of the even-sized RVEs is a

result of local instability that occurs through the entire structure, causing the global periodic

pattern transformation. Higher modes are not presented here as they are unlikely to occur due to

their high critical loads. However, one may preferentially activate high modes by placing

inclusions in the voids. This is yet beyond the scope of this study and thus will not be discussed.

mode 1 16

P1 = P2 = 2

mode 2

P1 = P2 = 2

P1 =P2 =3

P1= P2= 3

P1 =P2= 4

P1 = P2= 4

Figure 3.3 First and second eigenmode for 4' = 50% for

(5,5) and p = (6,6)

p = (2,2), p = (3,3), p = (4,4), p =

To quantitatively verify the above observation, we plot the eigenvalues against RVE size

in Figure 3.4. As is clearly shown in the plot, even-sized RVEs have the same values for the

lowest critical load and hence are the preferred eigen modes. This indicates a repeating 2X2 first

buckling mode throughout the structure.
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--- 1st buckling mode

-M-2nd buckling mode

2X2 3X3 4X4 5X5 6X6 7X7 8X8 9X9 1OX10

Figure 3.4 Eigenvalue vs. RVE size for ip = 50%. $p = 30% and q' = 60% showed similar

trends with different eigenvalues.

3.3 Post-buckling analysis

From the Refined Eigen Analysis in the previous section, a 2 x 2 RVE was used for post-

buckling analysis to obtain stress-strain data for post-buckling behavior. An imperfection in the

form of the first buckling mode was introduced to preferentially activate the first mode. Figure

3.5 shows the stress-strain curve for each void-volume fraction.

35 1

- 'P =30%

=50%

--- P =60%

6 8

Nominal strain (%)
10 12 14

Figure 3.5 Nominal strain vs. nominal stress for $ = 30%, $ = 50% and 4' = 60%
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From the plot, we can see that:

(1) All three curves have three distinct regimes: a linear elastic response followed by a

distinct rollover at a critical load followed by a much reduced slope (a near plateau like regime)

This is clearly a result of the buckling at the critical load.

(2) Although all structures exhibited similar behaviors, a departure from linearity due to

instability, their critical stress or critical strain at buckling were quite distinct.

3.4 Understanding the effect of void-volume fraction

The observations in Section 3.3 can be conceptually understood as follows.

The ligaments between the voids can be viewed as small beam elements. Figure 3.6

shows a beam subject to compressive load and the first buckling mode of the beam when the

load reaches a critical value.

From Euler beam buckling, the critical load for beam buckling with pinned-pinned ends

is

nri
Pr = EI(-) 2

L

where E is the Young's modulus, I is the moment of inertia and L is the beam length.

a

(3.2)

I iI

b

Pr --- v -- ~ Pcr

Figure 3.6 (a) A beam subject to compressive load (b) The first buckling mode of the beam when
the load reaches a critical value.
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Figure 3.7 shows the dimension of the beam with Young's modulus E. Let the symbol "~"

denote "proportional to" or "scale as" and we conduct the following scaling

E

t

d

Figure 3.7 Dimensions of the beam

The moment of inertia I is scaled as

(3.3)

where d is the in-plane width of the beam and t is the depth.

Thus, the critical force is scaled as

I d 3 t
Pcr~ -1 12W

where L is the in-plane length of the beam.

Then, the cross-sectional area is scaled as

A-dt

(3.4)

(3.5)

Hence, the critical stress

d 3t
cPr Pcr ~- d 2
A dt dt 1

(3.6)

The term d/1 is usually referred to as the slenderness ratio of the beam. As we can see,

the critical buckling stress is proportional to the slenderness ratio of the beam squared, meaning

the more slender the beam, the lower the critical stress it takes to buckle.
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We apply this result to the understanding of the behavior of our periodic cellular

structures. The internal ligaments between the voids can be modeled as beam elements. The

effective beam length 1 can be approximated as the diameter of the void, while the effective

beam width d can be approximated as the smallest distance between the voids. Hence, the

slenderness ratio of the ligament is also d/l. 1 and d are depicted in Figure 3.8 (a). Moreover, the

relation between the critical stress of the local ligament and the macroscopic critical stress is

depicted in Figure 3.8(b). The critical stress of the local ligament is the critical stress we

described above in the beam analogy. It should be proportional to the slenderness ratio of the

ligament.

d d
-+31 1

d4=30%-- 0.67

1 1

d
=50%,- = 0.25

d
i~60%-T=O.14

acrmacro

Ucrligament

Figure 3.8 (a) Inter-void ligament slenderness of RVE with different void volume fractions (b)

relation between critical stress of the ligament and the macroscopic critical stress
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When the whole structure is compressed, the ligaments experience mainly the

compressive load along their 1 direction. When the local compressive stress is below the critical

value, the ligament behaves linearly as a normal linear elastic column, which explains the linear

regime of the stress-strain curve. However, as the deformation becomes larger, the local

compressive stress reaches the critical value and thus all the ligaments buckle in a way similar to

Euler beam buckling. This accounts for the critical stress followed by the stress plateau after the

linearity.

To quantitatively look into the effect of the slenderness ratio of the ligament, we plot

acrjligament vs. in Figure 3.9. The values of ( and acr-ligament are normalized by their values

at $ = 60%.

The void-volume fraction is related by the ratio of d/1 and the macroscopic critical stress

is related to the local ligament critical stress; therefore if we plot the macroscopic critical stress

vs. void-volume fraction, it follows the same trend as local ligament critical stress vs.

slenderness ratio. This is shown in Figure 3.10.

It can be clearly seen from Figure 3.8 that the inter-void ligament of 4, = 60% is much

longer and thinner than that of = 30%, or equivalently has a larger slenderness ratio, so it

should buckle much earlier than $ = 30% and have a lower local and macroscopic critical stress.

This conclusion is in good agreement with the stress-strain plot in Figure 3.5.

It is worth noting that critical stress is strongly affected by the void-volume fraction or

the slenderness ratio, as is shown in Figure 3.9 and Figure 3.10. The macroscopic critical stress

drops by nearly 70% when the void-volume fraction increases from 30% to 50%. This makes a

huge difference in designing deformation-induced devices as will be explained in the following

chapters.
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Figure 3.10 Void-volume fraction vs. critical stress

3.5 Conclusions

Here, we summarize the important results from analyzing circular holes on a square

lattice of varying void-volume fraction, as they are crucial to our design in the following chapters.

(1) An elastomeric periodic cellular structure comprising of square arrays of circular

holes would suddenly transform into a periodic pattern of alternating and mutually orthogonal
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ellipses (Figure 3.2) upon reaching a critical load. This dramatic shape change offers the

opportunity for the design of tunable and deformation-controlled switches.

(2) The global dramatic pattern transformation is a result of the buckling of the inter-void

ligaments.

(3) The void-volume fraction has a strong effect on the onset of buckling (i.e. critical

stress and strain).
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Chapter 4
Micromechanical model based

design of contact nubs

In this chapter, in order to make connections within the voids upon pattern transformation,

we introduce a microstructural feature - contact nubs. It is reasonable to expect the response of

the structure with nubs will be different from the one without the nubs due to the change in the

microscopic structure. Therefore, to explore the effect of adding contact nubs on the structural

behavior, finite element models were built and analyzed in the commercial finite element

package ABAQUS. A series parametrical analysis was undertaken over different nub

geometrical parameters to test and optimize the nub geometry. The input file for ABAQUS was

generated using MATLAB scripts.

In the following sections, the finite element model used, the nub design parameters and

the simulation results are presented.

4.1 Conceptual design

In light of the conclusions drawn from Chapter 3, the periodic structure showed great

potential for the design of instability-induced switches and yet one major challenge remains; how

to utilize the dramatic shape change upon buckling. In this section, we present a novel design

feature, which we refer to as the "contact nubs" to take advantage of the shape transformation of

voids from circle to ellipse.

The difference between a circle and an ellipse is that an ellipse has one long major axis

and one short minor axis while a circle has essentially an infinite number of pairs of "major" and

"minor' axes of the same length. The design idea is simple, as shown in Figure 4.1. By adding a

pair of nubs, we make the connection when the circular void on the left buckles into an elliptical

void on the right, turning the sudden shape change into a real "switch".
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Particularly, when the load is below the critical load, even though the circle is

compressed, the deformation is still relatively small so that the nubs are not in contact, which

means the switch is off. Only if the load and the strain pass the critical value, the circular void

would suddenly transform into the elliptical shape so that contact between the nubs is then

initiated, which means the switch is on. Since the material is elastic, this process can be repeated.

Therefore, a switch that can be turned on and off via deformation is realized.

We also note that since the void shape is symmetric, we can add two pairs of nubs

aligned vertically and horizontally, so that at least one pair of nubs can make contact regardless

of the loading direction.

Figure 4.1 The conceptual design of contact nubs

4.2 Design parameters

The nub design concept is easy to grasp, however, adding nubs is essentially changing the

microstructure of the periodic structure. It presumably could affect the instability response of the

structure. Therefore, the effect of nub geometry on the buckling and post-buckling behavior of

the structure needs further investigation.

Guided by engineering intuition, we identified three major geometrical parameters as

shown in Figure 4.2.

A is the length of intersection between the nub and the inter-void ligament. B is the width

of the nub end that makes the contact. C is the distance between the opposing nubs. Therefore, A

is used to examine the effect of the connection between the nubs and the inter-void ligament. B is

used to examine the contact between the mating nubs. C is used to examine the strain level at

which the nubs make contact. A larger C means that greater strain or stress is required to achieve
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contact. We also looked into the effect of all three parameters and their relationship with the

void-volume fraction. The results are reported in the next few sections.

A

Figure 4.2 Nub design parameters

4.3 Effect of nub geometries for fixed void-volume fractions

From Chapter 3, we know that the critical load is strongly dependent on the void-volume

fraction. Here, in order to examine solely the effec of nub geometry, we kept the void-volume

fraction 4 = 50% fixed and varied the parameters A, B and C. The focus here is still the

eigenvalues and eigenmodes, or in other words, critical stress and strain.

4.3.1 Keep A constant while varying B and C

We still used 2x2 RVEs as we assume that there would be the same 2x2 periodicity as in

the structures without the nubs. A total of nine structures were considered (see Figure 4.3). We

normalized the parameters by R to make our studies applicable to different length scales.

The first buckling mode essentially follows that of the structure without the nubs;

however, the eigenvalues are changed quite a bit due to the effect of the additional "nub"

material at the beam center which also aids in resisting buckling. Figure 4.4 shows the first mode

of the specimen with A = 0.25R, B = O.5R, C = 0.6R. The nubs make connections after the

structure buckles as expected.
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B = 0.6R

C = 1.1R

C = R

C = 0.9R

Figure 4.3 Nub shapes with B = O.5R: O.1R: 0.7R, and C = 0.9R: O.1R: 1.1R while keeping

A = 0.25R fixed

Figure 4.4 First mode of the specimen with Nub shapes with A = 0.25R, B = O.5R, C = 0.6R
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Eigenvalues plotted against B with different values C are shown in Figure 4.5. As we can
see, there is no significant difference between different values of B or C for a fixed A. However,
the eigenvalue of the structure with nubs is about 10% higher than those of the structures without
nubs. This can be interpreted as meaning that adding nubs is somehow equivalent to adding more
material and stiffness to the inter-void ligaments, which gives rise to a higher buckling load.

Since B is the surface that makes the contact, we would want B to be as large as possible

to ensure full contact between the nubs, as long as they do not touch each other during the
process.

Since C determines when the nubs meet, we could easily tune the length of C to control
the strain level at which the nubs make contact.

0.46

-4-C/R=1.1
__.44__-_C/R=1

0.44 C/R=0.9

0.42

Without Nubs0.4 --

0.38 -
0.5 0.6 0.7

B/R

Figure 4.5 Eigenvalues vs. B for different values of C for a fixed A=0.25R

4.3.2 Keep B constant while varying A and C

Having identified the effect of B and C, we now explore the design parameter A that
relates the nub with the ligaments, through Refined Eigen Analysis of the 2x2 RVEs. A total of
nine structures were considered in this section (see Figure 4.6).
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A = 0.15R

C = 1.1R

C = R E

C = 0.9R

Figure 4.6 Nub shapes with C=0.9R, R,

fixed

A = 0.25R

E:3
A = 0.75R

1.lR, and A=O.15R, 0.25R, 0.75R, while keep B=0.7R

The results are shown in Figure 4.7. As predicted in Section 4.3.1, the parameter C plays

no role in determining the critical stress. However, parameter A, on the other hand, has a strong

effect on the buckling load. The eigenvalue increases by nearly 30% as A increases from 0.15R

to 0.75R.

This gives us great flexibility for designing our structures. For example, we can control

the width of A to obtain the desired critical stress, or vice versa. Also, the strain level at which

the nubs make contact is solely determined by C. Therefore, by simply adjusting the distance

C between the nubs, we could easily control the contact strain.

31



0.55

0.5
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Figure 4.7 eigenvalues vs A for different values of C

4.4 Effect of void-volume fractions for fixed nub geometries

So far, we have examined the effect of nub geometry on material behavior at a given

void-volume fraction. In this section, we evaluate the material response for a given nub geometry

with the change of void-volume fraction. Three specimens with Ji = 20%, 50%, 70% were

studied (see Figure 4.8). The nub geometry is the same for all three specimens with A =

0.25R, B = .5R, C = 0.9R.

ip=20% 0 = 50% 70%

Figure 4.8 The 2D unit cell with $f = 20%, 50%, 70%. Nub design parameters are A =

0.25R, B = 0.5R, C = 0.9R.
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We compare the results with structures without nubs in Figure 4.9. The eigenvalues of all

three structures are larger than their corresponding structures without the nubs. However, the

increase of eigenvalue is tremendously larger for structures with a small void-volume fraction.
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Figure 4.9 Comparison of eigenvalues between structures with and without nubs
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4.5 Design of contact nubs for circular holes on a hexagonal lattice

Previous sections explored the design of contact nubs utilizing the alternating, mutually

orthogonal elliptical pattern of an elastomeric matrix with a square array of circular voids after

buckling. It has also been found that different hole arrangements would result in different

buckling patterns for porous elastomers [1], [2]. Figure 4.10 shows examples of two distinct

buckling patterns resulting from different hole arrangements under uniaxial compression.

Figure 4.10 Two elastomeric porous structures with different hole arrangements buckle under

uniaxial compression (Taken from Shim, Shan et al. 2013 [2])

The findings create more options for the design of our contact nubs, as the nubs do not

necessarily need to be aligned vertically or horizontally. Their orientation can be tailored

according to the buckling pattern.

Guided by the results in previous sections, we choose a nub design with A = 0.25R, B =

0.5R, C = 0.9R and the void-volume fraction is j = 50%. In this case, we simulated both a

finite-sized specimen and its infinite periodic counterpart.

Figure 4.11 (a) shows a finite-sized sample with a 7X8 hexagonal array of circular holes

with nubs while Figure 4.11 (b) shows a RVE representing its infinite periodic counterpart.

Note that the RVE was deliberately chosen as in Figure 4.11(b) for it to be compatible

with our MATLAB code for periodic boundary conditions in x and y directions. There exist

other choices of RVEs that may be more computationally efficient but require another set of

scripts. Moreover, we want the RVE to have a complete void in the middle for better visualizing

the deformation.
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Also, the holes next to the edge of the finite-sized sample were cut in half to minimize the

boundary effect.

Figure 4.11 (a) a finite-sized sample with a 7 x 8 hexagonal array

a RVE representing its infinite periodic counterpart.

of circular holes with nubs; (b)

Figure 4.12 presents the first buckling mode of the structure. A different pattern from the

matrix with holes on a square lattice is observed. The circular holes morphed into ellipse-like

holes that alternate direction from row to row, clearly indicating a different mechanism from that

of the square array. This distinctive pattern transformation is a result of critical intervoid shear

instability, which is discussed in detail in Bertoldi, Boyce et al. 2008 [1]. An important

consequence of this shear instability mechanism is that the contact nubs which had been aligned

were shifted due to the shear deformation and thus no connections were able to be made upon

buckling. This is also expected to happen in matrix with a staggered array of voids.

- In a word, elastomeric matrix with a hexagonal or staggered array of holes is not suitable

for the design of conductive pathways due the nub shifting resulting from shear instabilities.
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Figure 4.12 (a) first mode of the finite-sized sample (b) first mode of the RVE

4.6 References

[1] K. Bertoldi, M. C. Boyce, S. Deschanel, S. M. Prange, and T. Mullin, "Mechanics of
deformation-triggered pattern transformations and superelastic behavior in periodic
elastomeric structures," J. Mech. Phys. Solids, vol. 56, no. 8, pp. 2642-2668, 2008.

[2] J. Shim, S. Shan, A. Kosmrlj, S. H. Kang, E. R. Chen, J. C. Weaver, and K. Bertoldi,
"Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials," Soft
Matter, vol. 9, no. 34, p. 8198, Aug. 2013.

36

4M

"Alio AOQ .4

jp%: 
,Pp

A PZ 
444

..... .....
-AV



Chapter 5
Micromechanical model based
design of conductive pathways

In Chapter 4, we introduced a novel design feature which we referred to as "contact nubs"

and demonstrated how connections are made when the circular holes transform into the elliptical

shape. We also investigated the effect of nub geometry on the structural behavior. Thus far,

however, we have not addressed the question on how to make connections between the voids.

In this chapter, we will introduce another design feature: the conductive pathways. By

adding a conductive layer on the substrate, we are able to activate a conductive pathway when

opposing nubs make contact. In general, the conductive path can be thermal, mechanical or

electrical, but here, we will focus on the electrical conductivity for its application in flexible

circuits.

5.1 Modeling rationale for thin film bonded to an elastomer substrate

To form electrical conductive pathways, or conductive patterns, the most common way is

to bond a layer of thin film to the substrate. Traditionally, the film is made of metal for its high

electrical conductivity. But recently, with advances in 3D printing technology and its application

in printed electronics, conductive ink, a special ink that conducts electricity by adding silver

nanoparticles or graphene into a solvent, is gaining more and more attention for its operational

ease and printing flexibility.

When one material is adhered to another material (i.e. the thin film and the substrate in

our case) upon deformation, several possible scenarios might happen due the mismatch in

material properties of the two materials and the loading condition.

1) When the load is tensile and the film and the substrate are perfectly bonded with each

other, they will either stretch together like a single material until one of them (usually the thin
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film because it is stiffer and also has a smaller strain to break than the substrate) ruptures at a

critical stress or strain, as shown in Figure 5.1(a).

2) When the load is compressive and the film and the substrate are still perfectly bonded

with each other, wrinkling would happen (i.e. the film buckles into multiple sine waves) upon

reaching a critical load, as is shown in Figure 5.1(b).

3) When the film and the substrate are not so well bonded, at some point of deformation,

the film detaches from the substrate. This can happen i either compression or tension and is

called delamination. Figure 5.1(c) shows that the film debonds and assists the rupture when

stretched, while Figure 5.1(d) shows the detachment of the film during compression.

Film

b d

Figure 5.1 (a) A film stretches with the substrate when well bonded to the substrate. (b) A film

wrinkles under compressive load when well bonded to the substrate. (Taken from Li, Suo et al.

2005[1]) (c) A film detaches from the substrate and ruptures under tensile load. (d) A film

detaches from the substrate under compressive load. (Taken from Huang, et al. 2012)

Modeling a substrate with a film coating requires a full three-dimensional analysis. The

film is taken to be perfectly bonded to the substrate and is modeled as linear elastic at all strain

levels of our interest so that fracture will not occur. Given the above discussions, in the

following sections we will focus on the effect of elastic properties and geometrical features of

the film on the 2D in-plane behavior of the structure. Note that the modeling space is in 3D

because of the film layer.
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5.2 Three dimensional periodic structures

The finite element analyses of the periodic elastomeric substrate were previously all

performed in 2D, assuming plane strain condition. This was sufficient for the study of the

behavior of the elastomeric substrate alone since there is only one material. Also, it is

computationally efficient to conduct 2D analysis.

However, when taking the film coating into account, the modeling space needs to be 3D,

even though we are still only focused on 2D in-plane behaviors. Therefore, it is important to

understand the effect of modeling a 2D plane strain condition in a 3D space. A MATLAB code

for generating ABAQUS input files for 3D periodic boundary conditions was developed based

on the code for 2D. The code is provided in the Appendix.

Since specimens of different void-volume fractions shows the same buckling shape, we

only examine the specimen of * = 50% for various relative thicknesses t/R (t = 1/8, 1/4, 1/

2, 5/4), where R is the radius of the hole. Figure 5.2 shows the detailed dimensions of the

specimen we tested.

p= 50%

R = 4mm

L =10mm

A = 0.25R = 1mm

B =0.5R = 2mm

C = 0.9R = 3.6mm

tIR = 1/8 t/R =1/4 t/R = 1/2 t/R - 5/4

Figure 5.2 Specimen dimensions
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Following the approaches in Chapter 3, Refined Eigen Analysis was performed for RVE

sizes up to 8 x 8. The front and back surfaces of the structure were constrained in such a way

that they could only deform within their planes. Hence the simulations were essentially a 2D

plane strain uniaxial compression but were modeled in 3D space.

Since we are essentially doing the same plane strain analysis, the buckling shapes and

eigenvalues of the 3D structure should be exactly the same as the results we obtained in 2D

analysis. Figure 5.3 shows the first four eigenmodes and eigenvalues of the structure of different

thicknesses. As is predicted, we get the same buckling shapes and the same eigenvalues as those

of 2D analyses for all thicknesses.

A = 0.4528

2D

t/R = 1/8

tIR = 1/4

tIR = 1/2

t/R = 5/4

= 0.8123 A = 1.1722 A = 1.3202

Figure 5.3 First four eigenmodes and eigenvalues of the 2D structure (plane strain) and the same

structure with different thicknesses t/R (t = 1/8, 1/4, 1/2, 5/4)
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We also plot a stress-strain curve for t/R = 1/8 and t/R = 1/4 to compare with that of

the 2D specimen. Again, as shown in Figure 5.4, the three curves almost identical.

The results in Figure 5.3 and 5.4 verify the validity and robustness of our code for 3D

periodic boundary conditions, and we are now in a good position to study the behavior of 3D

structures with thin film coating.
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Figure 5.4 Nominal strain vs. nominal stress for 2D structure and 3D structures with thickness

t/R = 1/8 and t/R = 1/4

5.3 Design of conductive pathways

Figure 5.5(a) depicts the undeformed configuration of the elastomeric substrate with

circular holes in a square array, while Figure 5.5(b) depicts the buckled configuration. There are

a number of ways of making connections between the voids based on the shape in Figure 5.5(b).

As a result, different conductive pathways on a macroscopic scale can be formed. Figure 5.6

depicts two schematics of potential conductive pathways which we will design to be active in the

buckled configuration and inactive in the undeformed state in the following sections. Figure

5.6(a) represents a conduction that goes diagonally across the substrate, while Figure 5.6(b)

represents a conduction that is perpendicular to the substrate.
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a

Figure 5.5 Transformative patterned elastomeric materials in undeformed and deformed states

Figure 5.6 Potential conductive pathways on the deformed patterned structure

In order to achieve the conductive pathways depicted in Figure 5.6(a), we need a 2 x 2

RVE with nubs and thin film coating shown in Figure 5.7. Note that besides the coating on top of

the substrate, the lower ends of the nubs are also fully covered with a layer of thin film to ensure

full contact between the mating nubs. We will look into the effects of conductive line stiffness,

conductive line width and conductive line pattern in the following sections.
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Figure 5.7 a 2 x 2 RVE with nubs and thin film coating to realize the conductive pathway

depicted in Figure 5.6(a)

5.3.1 The effect of film layer thickness and film stiffness

Metal film and conductive ink are the most commonly used coating materials for

conductive lines. To model a metal, a representative Young's modulus of 100 GPa is taken,

while the Young's modulus of conductive ink can range from 1 MPa to 1 GPa depending on the

ink component and drying time. Also, depending on the 3D printing technique, the coating film

thickness can range from 1 ptm to 1 mm. Since we will be using conductive ink in our

experiments, we'll mainly focus our attention within this range.

In order to analyze the effect of adding a film coating on buckling modes and post-

buckling behaviors of the substrate, we kept the substrate properties constant and simulated films

of various elastic moduli and thicknesses. To enable our results to be applicable across all length

scales, only the ratio of the elastic properties and geometrical features between the two materials

were considered.

The parameters taken into account in the model are listed below:

* Relative substrate thickness: t,/R

* Relative film thickness: tf/R

* Substrate initial Young's modulus: E,

* Film Young modulus: Ef
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The substrate material was still modeled as hyperelastic Neo-Hookean model, with an

initial shear modulus o of 0.029 MPa. The relative thickness t./R was 1/4. Using (5.1), the

initial Young's modulus Eo was 0.087 MPa. The nub geometry parameters used were A =

0.25R, B = 0.5R, C = 0.9R. The void-volume fraction * = 50%.

E = = 3 o (5.1)
3x + 1

The film material was modeled as linear elastic with tf denoting thickness and Ef

denoting Young's modulus, respectively. In this section, we will not study the effect of film line

width. So the film line relative width d/R was kept constant at 3/40.

A parametric study was performed using finite element analysis with 3D periodic

boundary conditions imposed. A total of nine specimens were examined. Table 5.1 shows the

detailed elastic moduli and thickness used for each specimen. The results are reported in Figure

5.8, 5.9 and 5.10.

Table 5.1 Film elastic moduli and thickness

ts/tf = 103 ts/tf = 102 ts/tf = 101

Ef/Es = 106 Specimen 1 Specimen 2 Specimen 3

Ef/Es = 102 Specimen 4 Specimen 5 Specimen 6

Ef/Es = 101 Specimen 7 Specimen 8 Specimen 9

When the film is of very high stiffness compared to the substrate (see specimen 1, 2 and 3

in Figure 5.8), the eigenvalue and buckling modes are greatly affected by the film. This can be

the case for most metal films boned to a PDMS substrate. The stiffness of a metal is

usually 100 GPa, while the stiffness of a PDMS is about 1-10 MPa.

First, an increase in the eigenvalues is clearly observed, which means it requires more

force to onset the buckle. For example, the eigenvalue of specimen 3 is 20% higher than that of

the 2D counterpart without coating.

Another effect of having a stiff coating material is that it will alter the buckling shape

(see specimen 2 and 3) because the stiff film is not easy to stretch or bend. As a result, the film
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line just rotates like a rigid body, causing the mismatch of the nubs and failure to make contact

when buckling occurs.

Reducing the thickness of the film helps the structure to buckle to desired shape, and yet

this is not a very effective approach. As can be seen in specimen 1, even if the thickness of the

film is 1/1000 of that of substrate, the buckling shape is still slighted changed by the film.

Therefore, in order to reduce the effect of the stiffness mismatch, the film should have an

ultrathin thickness less than 1/1000 of that the substrate if the film is much stiffer than the

substrate. However, for freestanding ultrathin metal films, they usually rupture at a very small

strain (- 1%) [2]-[4]. But they have also been experiments that show that the rupture strain of

thin metal film is of large disparity, ranging from less than one percent to few tens of percent

[5]-[11].

A= 0.4716 = 0.5113 = 0.5522 A = 0.4518

E/E =106

ts/tf =103 ts/tf =102 ts/tf =10 2D

Figure 5.8 First buckling mode and eigenvalue of Specimen 1,2,3 and 2D strucutre (from left to

right)

For the case where the film is of intermediate stiffness (see specimen 4, 5 and 6 in Figure

5.9), our design of conductive pathways works well when the film thickness tf is less than 1

percent of t.. When the layer thickness continues to increase, the difference between the stiffness

of the substrate and coating begins to play a bigger role of determining the overall behavior of

the structure. As is clearly shown in Figure 5.9, the nubs of specimen 6 start to rotate with the

conductive line when the thickness ratio is 1: 10.
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When the film stiffness is close to the substrate stiffness (see specimen 7, 8 and 9 in

Figure 5.10), even though the thickness is as thick as 10 percent of the substrate, the effect of the

mismatch in stiffness is still negligible (See specimen 9).

A = 0.4554 A = 0.4572 A = 0.4715

Ef/ES = 102

ts/tf = 103 ts/tf = 102 ts/tf = 10

Figure 5.9 First buckling mode and eigenvalue of Specimen 4, 5 and 6 (from left to right)

A = 0.4553 A = 0.4555 A = 0.4555

Ef/ES = 10

ts/tf = 103 ts/tf = 102 ts/tf = 10

Figure 5.10 First buckling mode and eigenvalue of Specimen 7, 8 and 9 (from left to right)

To explore further on the effect of film thickness and stiffness on the coated substrate

behavior, stress and strain curves were plotted for specimen 3 (Ef/E, = 106,t 5/tf = 10) and

specimen 7(Ef/E, = 10,ts/tf = 103) in Figure 5.11. Specimen 3 is the structure with the

thickest coating and the stiffest film material, while specimen 7 has the thinnest coating and the

most compliant film material.
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As is predicted, the structure with the thickest coating and the stiffest film material (i.e.

specimen 3) is characterized by a much high buckling stress and a "stress plateau" with a much

larger slope than that of specimen 7 after the buckling.
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Figure 5.11 Nominal str
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ain vs. nominal stress for specimen 3 and 7

It is also important to study the strain distribution within the RVE, especially the strain

level in the film. Figure 5.12 shows the principal strain and strain in the 11 direction

(perpendicular to the compression direction). It can be seen the film is mostly stretched in the

middle region as it deforms with the substrate.
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Figure 5.12 Strain levels within the film
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5.3.2 The effect of conductive line width

It is expected that the narrower the conductive line, the less the effect on structure

behavior. However, narrow lines also mean less reliable conduction. So it is a design tradeoff

between the film width and the reliability of conduction. Here, we are going to briefly explore

the effect of conductive line width. Figure 5.13 shows RVEs of various conductive line widths.

In light of the results in the prior section, we vary the conductive line width on specimen

3 and specimen 7. The reason for choosing these two are that specimen 3's buckling mode was

greatly affected by the existence of the film and specimen 7's buckling mode was slightly

changed by the coating. We hope to find out whether reducing the conductive line width would

minimize the effect. The conductive line width was also normalized by R. The results are

presented in Figure 5.14 and Figure 5.15.

dIR =1/40 dIR =1/20 dIR = 3/20

Figure 5.13 RVEs with conductive line width d/R = 1/40, d/R = 3/40 and d/R = 3/20

Recall that specimen 3 is the one with Ef/Es = 106 and ts/tf = 10 (i.e. the thickest and

the stiffest film coating) and is found to be most affected by the film coating. Specimen 7 is the

one with Ef/Es = 103 and ts/tf = 10 3 (i.e. the thinnest and the most compliant film coating)

and is found to be least affected by the film coating.

Figure 5.14 shows the results for specimen 3. It can be seen that decreasing the coating

line width does not help reduce the effect of stiffness mismatch. Even the coating line is as thin

as d/R = 1/40, which is close to the limit of the conductive line width required to make

conductions, the nubs are still interfered by the rigid rotation of the film line.
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Figure 5.15 shows the results for specimen 7. Being the structure with the thinnest and

most compliant film coating, it is expected for the coating line to have negligible effect on the

buckling modes, regardless of the width. Surprisingly, just doubling the film line width from

d/R = 3/40 to d/R = 3/20 would cause a change in the buckling shape.

Figure 5.14 Specimen 3 with conductive line width d/R = 1/40, d/R = 3/40 and d/R = 3/20

Figure 5.15 Specimen 7 with conductive line width d/R = 1/40, d/R = 3/40 and d/R = 3/20

5.4 Discussion on the design of conductive pathways

The goal of this chapter is to explore the effect of coating film thickness, width and

stiffness on the electrical and mechanical behavior of the coated elastomeric substrate.

In order to achieve better electrical performance, the conductive line needs to be wide

enough and thick enough, because the electrical resistance of the conductive material is inversely

proportional to the cross-sectional area of the conductive line. In other words, larger cross-

sectional area leads to higher conductivity.

On the other hand, in order to take most advantage of the buckling shape of the

elastomeric substrate, the conductive line needs to be as narrow and thin as possible, because the

buckling shape of a compliant substrate is very sensitive to the addition of another stiff material.
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Therefore, it is a tradeoff between electrical performance and the mechanical behavior. It

is impossible to maximizing one without compromising the other.

The results we obtained from this chapter can provide us guidance for tailoring the elastic

properties and geometric features of the film to satisfy specific design requirements.

One important conclusion from the finite element analysis is that the compliance of the

film plays a much bigger role than the geometry (i.e thickness, width, orientation) of the film. In

particular, when the film stiffness is of the same order or one order higher than that of the

substrate, even if the film is as thick as 1/10 of the substrate, it is still able to stretch or bend

with the substrate maintaining the same buckling shape of the structure as it has without the

coating. However, geometrical features become equally important when the film is much stiffer

than the substrate. For instance, when the film is 106 stiffer than the substrate, the thickness

needs to be less than 1/1000 that of the substrate so as not to influence the buckling shape.

In terms of electrical performance, metal film has a much higher conductivity than any

existing type of conductive ink. For example, copper has a volume resistivity of 1.68 x 10-6 fl.

cm and silver has a volume resistivity of 1.59 x 10-6 f -cm, while the volume resistivity of

conductive ink ranges from 1 x 10-1 f -cm for silver particle-based conductive ink to 100

R - cm for carbon particle-based conductive ink. Just by simple comparison, the volume

resistivity of metal is nearly two orders of magnitude less than that of the best conductive ink

available.

If we are to use metal for better conductivity, we need to have a very thin layer of film to

minimize the influence of the high stiffness of the metal on the buckling shape of the circuit.

Consider the design of a 1mm thick flexible circuit with copper coating. The Young's modulus

of the circuit substrate is IMPa. We know that copper has a Young's modulus around 100 GPa,

so the thickness of the copper should be less than 0.001 mm, which is 1 gm. Advances in micro

and nano fabrications nowadays have made it possible to manufacture copper layers of thickness

in the order of nanometers, though it does require a fine and complicated manufacturing process.

Metal films, due to their excellent conductivity, appear to the best choice for fabricating

flexible circuits and yet conductive ink has one big advantage over metal films, that is, the ease

in operation and the flexibility in printing patterns. One can simply load the conductive ink in
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any ink-jet printer and print any complex conductive patterns on the substrate just as we

normally print on paper.

In summary, if we need to design a device that requires high conductivity and high

precision, we should use ultrathin metal films. If we are to manufacture a large number of

devices that do not require high conductivity, conductive ink offers a fast, easy and cost effective

alternative.

For the purpose of this study, we use conductive ink for our experiments for its

operational ease. The conductivity of the ink is found to be sufficient to demonstrate the key

ideas of this study. More details about conductive ink and the fabrication process are provided in

the following chapter.
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Chapter 6
Experiments

Having investigated the effect of various design parameters, in order to verify the validity
of our simulations we fabricated a specimen using 3D printing and casting. Uniaxial compression

tests were conducted. Later in this chapter, a printed working demonstration circuit that can be

turned on and off via external stimuli in the form of uniaxial compression is shown as a

successful example.

In the previous chapters, we've kept all design parameters dimensionless, so that only the
relative properties of materials and geometrical features matter. Therefore, the simulation results

are theoretically applicable to all length scales, including the desktop-scaled physical model

(~ 10 cm) we used in the experiment.

The substrate and the conductive lines were fabricated separately using distinct

techniques, both of which are introduced in this chapter.

The molding and casting were performed in the Boyce lab with great help from Professor
Pedro Reis in the Department of Civil Engineering at MIT. The printing of conductive pathways

were performed in collaboration with Dr. Bok Yeop Ahn and Professor Jennifer Lewis at the

Harvard School of Engineering.

6.1 Substrate fabrication

A silicone rubber (Vinyl Polysiloxane: Elite Double 8, Zhermack) was used to cast the

experimental specimens. The material properties were tested in Chapter 2. The material behavior

was found to be well captured by the NeosHookean model up to a strain of 35%. The shear

modulus was measured to be 0.058 MPa.

The mold for casting the specimen was made using 3D printing and laser cutting. The
mold comprised a base, 4 lateral walls and hundreds of pillars to shape the microfeatures of the
nubs. The base and the lateral walls were made from acrylic plates (McMaster-Carr Supply Co.).
A laser cutter (Epilog mini 18, Epilog Laser Corp.) was used to cut the voids with nubs. The
pillars were 3D printed using the Forml 3D printer (Formlabs) having a printing resolution

of 300 lim. Then the pillars were manually inserted into the base and were properly oriented

because of the nubs. The holes on the base were deliberately made slightly larger than the pillars

for easy insertion, but were still tight enough to prevent the uncured silicone rubber from leaking

through the gap (see Figure 6.1). The silicone rubber was vacuumed for 5 minutes to remove the
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air trapped during the mixing process before it was cast in the mold. The mold was then left open
to air and the casting mixture cured at room temperature in just 20 minutes. After curing was
completed, the walls were dismantled and pillars were removed. The final specimen and
zoomed-in images of the circular holes with nubs are shown in Figure 6.2.

Figure 6.1 (a) Acrylic base with microstructures made by laser cutter. (b) Pillars made using 3D
printer were inserted into the base.

The final specimen comprised a 10 x 10 square array of circular holes of 8 mm
diameter with 10 mm center-to-center spacing, vertically and horizontally. There is 6 mm from
the center of the lateral holes to the edge of the specimen. The microscopic geometrical
parameters of the nubs are A = 1, B = 2 and C = 3.6. The overall size of the specimen is
W(width)x H(height)x T(thickness)= 102 mm x 102 mm x 23 mm.

a

Figure 6.2 (a) Final substrate (b) Zoomed-in image of the RVE with four unit cells (top view) (c)
Zoomed-in image of one circular void with four contact nubs (top view)
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6.2 Conductive pathways printing

6.2.1 Conductive Ink

Conductive ink, as the term suggests, is a special ink that has electrical conductivity after
printing. It is usually made by the suspension of conductive materials, such as metallic
nanoparticles (silver, gold, and copper), carbon nanoparticles and carbon nanotubes (CNTs) into
solvents such as toluene, a-terpineol, glycerol and water. The ink is usually not conductive
before printing, but its electrical resistance reduces after solvent removal or heat treatment. The
ink conductivity and mechanical property is determined by the dispersed material and the solvent.
For example, silver or copper-based ink has excellent conductivity, but it is not stretchable or
bendable. Carbon-based ink possesses good flexibility, but it is restricted by their relatively low
conductivity [1]. A rudimentary version of ink can also be made by simply mixing conductive
particles with grease without using solvent.

For the purpose of this work, the conductive pattern was printed using a commercial
carbon-based conductive ink (Carbon Conductive Grease 846, M.G. Chemicals) for its low cost
and stretchability. The conductive material is the mixture of carbon particles and grease. No
solvent was used. The ink can be stretched up to 10% strain while maintaining a volume
resistivity at about 117 Q -cm.

6.2.2 Direct ink writing technique

There are different methods for printing conductive patterns such as ink jet, screen
printing, flexography and lithography. Each method has its own advantages and limits. In this
work, in order to achieve high efficiency, low cost and the ability to print arbitrary conductive
patterns, direct ink writing is used.

Direct writing describes fabrication methods that employ a computer controlled
translation stage, which moves a pattern generating device [2], [3], in our case, the ink-
deposition nozzle, to create materials with controlled architecture and composition.

Figure 6.3 (a) and (b) show photos of the direct ink writing printer we used in printing the
conductive pathways. As illustrated in Figure 6.3 (a), the printer comprises a three axis motion
stage, an ink reservoir with nozzle, a sample stage, an air supply and an optical microscope for
visualization.
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Figure 6.3 (a) 3D printer (b) printed conductive lines and nozzle (c) a printed circuit (Taken from
Russo, Ahn et al. 2011 [4])

The system works as follows: First, the conductive ink is loaded into a syringe. After
attaching a deposition nozzle, the ink loaded syringe is mounted onto the 3-axis printing stage,
which can move up and down, back and forth, and left and right. The nozzle then is connected to
an air-powered fluid dispensing system that controls the pressure applied to the syringe, so that
the velocity of the ink when ejecting out of the nozzle can be controlled as well. The substrate is
fixed on the sample stage and the moving speed of the nozzle is controlled by the computer. The
printed features depend on ink properties (viscosity, density, etc.), nozzle diameter and printing
speed. We can tailor any of the above parameters for specific printing of interest. Figure 6.3 (c)
shows a circuit printed using this method.

6.2.3 Printing of conductive pathways

A carbon-based conductive ink (Carbon Conductive Grease 846, M.G. Chemicals) was
used to print the conductive pattern. It has a volume resistivity of 117 Q cm. The conductive line
was about 1mm thick and 0.6 mm wide.

Figure 6.4 shows the schematics of the desired conductive pathways (the thick lines) and
the circuit components including a battery and a small LED (the thin lines). Figure 6.4(a) shows
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the circuit in an inactive state with disconnected conductive pathways before deformation, while
Figure 6.4(b) depicts a complete circuit that should light up the LED upon pattern transformation.

a b

A-9>->-9

A--6--6>

Figure 6.4 Schematics of designed conductive pathways (a) disconnected circuit in an
undeformed configuration (b) connected circuit in a deformed configuration

Figure 6.5 shows the printing setup. The substrate fabricated using methods outlined in
Section 6.1 was fixed on the sample platform. G-code controlling the movement of the nozzle
was implemented in the computer program. The printing was performed in air at room
temperature (-20 *C). Figure 6.6 shows the printed feature.

Figure 6.5 Printing setup
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Figure 6.6 Printed conductive pathways

6.3 Experiments and results

6.3.1 Mechanical behavior of the substrate

6.3.1.1 Experiment protocol

Uniaxial compression tests were performed using a Zwick screw-driven testing machine
with a 250 kN load cell. The thickness of the sample is large enough to avoid out-of-plane
buckling. Moreover, the friction between the sample surface and the load cell surface is also
large enough to fix the position of the specimen during the loading process. To avoid introducing
unnecessary frictions, no fixture was used.

The load cell was carefully adjusted to ensure that it was parallel to the bottom
supporting platform before we started the loading. Then uniaxial compression was performed in
a displacement-controlled manner at different speeds of loading, but the results showed the
structural response has no dependence on the rate, which confirms the validity of the quasi-static
analysis in the simulations. Therefore, only the test results performed at 20 mm/min are
reported.

A Nikon AF Micro Nikkor 60mm f/2.8D was used to take snapshots during the test at
every time increment At = 500 ms. Force and displacement were recorded automatically at a
time increment subject to the program. A post-processing MATLAB code was implemented to
correlate the images taken by the camera with the displacement data recorded by the computer,
so that we were able to identify the structure configuration at different strain levels. Also, a
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nominal strain vs. nominal stress relation was computed from the force and displacement data
and the specimen dimensions.

6.3.1.2 Results

Figure 6.7 shows both experiments and simulations of the pattern and its transformation.
Various stages of deformation show the ability to transform the pattern and provide conductive
pathways when the nubs make contact with one another. There is excellent agreement between
the simulation results and the experimental images of the pattern evolutions as shown in Figure
6.7.

Excellent quantitative agreement is obtained between the stress-strain results of the finite
element simulation and those from the experiment as shown in Figure 6.8. The stress-strain curve
captures the linear regime, pattern transformation at critical strain and stress plateau from the
accentuation of the elliptical pattern.

F = 0 E e=t10% e = 12%

Figure 6.7 Experimental and numerical images of the specimen at different strains
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Figure 6.8 Nominal stress vs. nominal strain curve showing experimental and numerical results

6.3.2 Demonstration circuit

6.3.2.1 Experiment protocol

After the uniaxial compression test, conductive lines were printed on the substrate using
the techniques discussed in Section 6.2. A simple circuit including a 9V battery, a tiny green
LED and two copper wires was designed as in Figure 6.9 to demonstrate the ability to activate
conductive pathways via pattern transformation.

Note that the LED is chosen to be small enough so that its presence is deemed as non-
interfering during pattern transformation.

Following the approaches used for testing the substrate, uniaxial compression was
performed and progressive images of the circuit were taken.
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Figure 6.9 Demonstration circuit layout

6.3.2.2 Working demonstration circuit

Figure 6.10 (a), (b) and (c) show the progressive images of the circuit during uniaxial
compression. Upon deformation, the nubs come closer and eventually make contact to complete
the circuit and the LED lights up to demonstrate the ability to switch conductive pathways on
and off. Figure 6.10 shows zoomed in images focused on the center part of the sample.

I

Figure 6.10 Images of progressive deformation of the demonstration circuit. (a) undeformed
circuit; conductive pathways disconnected (b) deforming circuit (c) deformed circuit; conductive
pathways connected to light up the LED
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Figure 6.11 Zoomed in images of the completion of the demonstration circuit.
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Chapter 7
Conclusion and future work

In this last chapter, a summary of the contributions and conclusions of this thesis as well

as future directions of this research are presented.

7.1 Conclusions

Guided by the dramatic pattern transformation of periodic elastomeric structures due to

instability, the purpose of this work is to exploit this unique ability to design a flexible circuit of

which the conductive pathways can be activated by a stimulus; here a load is used.

In Chapter 4, we introduced a microstructural feature, the contact nub, which enables

connections when the voids compact upon buckling. We identified key geometrical features of

the nubs and investigated their effects on the response of the structure through finite element

analysis. It was found that parameter A (the length of intersection between the nub and the inter-

void ligament) strongly affects the critical value of structure, while parameter B (the width of the

mating end of the nub) and C (the distance between the opposing nubs) have little influence.

Therefore, we can tune the critical stress required for buckling by changing the values of A,

while tailor B for optimal conduction and C for the strain level when connection is obtained.

In Chapter 5, we analyzed the effect of adding a thin film coating based on the results of

the elastomeric substrate. By running finite element simulations of structures coated with various

thickness, width and stiffness, it was concluded that the stiffness of the film plays a critical role

in influencing the overall buckling shape of the coated structure. For a very stiff material

compared to the substrate, thickness has to be less than 1/1000 that of the substrate for the film

to stretch and bend with the substrate and not to affect the buckling shape, while for a compliant

film, there is a wide range of flexibility in the coating film geometry.

In Chapter 6, first we verified the validity of simulation results by comparing them with

experimental results. Not only the qualitative images of different stages of deformation but also
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the quantitative stress-strain curve show excellent agreement between numerical and

experimental data.

Finally we applied our design princihle to practice. We have successfully fabricated a

flexible circuit using casting and 3D printing techniques and demonstrated the ability to activate

conductive pathways via deformation-induced instabilities.

7.2 Future work

Periodic elastomeric structure is an emerging research field that is attracting growing

interest for its unique properties. We have successfully demonstrated the ability to design a

deformation controllable switch by exploiting the instability aspect of it. There exists

tremendous opportunities for future research.

First, we designed the switch based on the simplest topology of cellular structures, a

square array of circular holes on an elastomeric matrix. It has already been found that the hole

shapes and hole arrangements have significant effects on the elastomer behavior. Moreover, the

loading condition we have considered so far is uniaxial compression. It is interesting and

desirable to explore the different responses of structures with complex topology and loading

conditions, and eventually utilize them to design more sophisticated conduction pathways.

Second, we mainly focused on 2D periodic structures in this study. Analogous

deformation-triggered instability should be expected in 3D periodic elastomeric structures with

much more complexity and variety, which offers great potentials for the design of novel adaptive

and responsive devices.

Another interesting direction of this research is to design other forms of conductive

pathways. The flexible circuit we realized in this work was a result of the integration of

mechanical analysis of deformation-induced surface topology change and 3D printing

technology. Applications for this structure can be expanded far beyond controlling electrical

conduction. Thermal, optical and acoustic conduction can also be obtained following similar

approaches and offer exciting applications over a wide range of industries.
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In summary, we hope this research offers some insight into the behavior of periodic

elastomeric structures and serves as an important example of utilizing the unique characteristics

of this structure, inspiring more exciting designs for the novel responsive and reconfigurable

devices for various applications across different length scales.
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