
Improvements to Building Energy Usage Modeling During Early Design Stages and Retrofits

Andrew Mandelbaum

B.S.E., Mechanical and Aerospace Engineering
Princeton University, 2012

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering
at the

Massachusetts Institute of Technology

June 2014

Signature of Author: __

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 15 2014

IyRARIES
2014 Massachusetts Institute of Technology

All rights reserved

Signature redacted
Andrew Mandelbaum

Department of Mechanical Engineering

May 19, 2014

Signature redacted
Leon R. Glicksman

Professor of Architecture and Mechanical Engineering

Thesis Supervisor

Signature redacted-

Accepted by:

David E. Hardt

Professor of Mechanical Engineering

Chairman, Department Committee on Graduate Students

1

Certified by:



Improvements to Building Energy Usage Modeling During Early Design Stages and Retrofits

by

Andrew Mandelbaum

Submitted to the Department of Mechanical Engineering

on May 19,2014 in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Mechanical Engineering

Abstract

A variety of improvements to the MIT Design Advisor, a whole-building energy usage modeling

tool intended for use during early design stages, are investigated. These include changes to the thermal

mass temperature distribution and lighting requirement calculations, the formulation of a

representative day scheme to reduce the number of days that need to be simulated to find energy

usage for a full year, the creation of an optimization algorithm to allow users to improve on their

designs, and the addition of an algorithm to predict potential savings from retrocommissioning (RCx)

using a limited set of simple inputs. Design Advisor itself is also tested for usability, speed, and accuracy

using three existing buildings.

The frequency of thermal mass-related calculations is reduced by finding the limits of the semi-

implicit Crank-Nicolson method before it begins to return physically implausible oscillatory temperature

profiles. An effort is made to speed up lighting calculations using a multivariate regression analysis in

place of a multiple-reflection-based illuminance model. Representative days are formed by creating an

average and two extreme weather days per month using existing climatological data, reducing the

number of simulated days per year from 365 to 72 (three per month, repeated once for training).

Combined, these changes lead to reductions in run time of up to 50% with roughly 10% loss of accuracy.

The optimizer leverages these run time improvements to rapidly find optimal building designs

given a set of input constraints. Initially, a multistep multivariate regression is used to reduce the given

search space and tighten the constraints. Then, a genetic algorithm is used to find the target solution.

Initial tests of this combination have led to average reductions in energy usage of 25% given 6 minutes

of calculation.

To extend Design Advisor's applicability to existing buildings, an algorithm for predicting

potential energy savings from RCx is implemented and tested. A database of 90 buildings that have

undergone an RCx process and had their resulting energy savings documented has been collected. A k-

2



nearest neighbors algorithm is used to evaluate the potential savings of test buildings based on this data

set, operating on the assumption that similar buildings (in terms of location, size, and energy usage

intensity) will present similar faults or opportunities for savings. While the average savings percentage

prediction error is 0.02, the root-mean-square error is 12.4, which is greater than the actual savings

potential of many buildings.

Model validation is performed using three existing buildings; two in the Philadelphia area and

one on MIT's campus. For energy types for which no building faults or other issues were later found (as

in the MIT building), final usage predictions are found to be accurate to within a mean bias error of -

11.2% to 2.6%. To improve upon these accuracies, further details about key building parameters and

modes of operation would be required. These studies also inform further usability improvements,

including reporting site (rather than primary) energy usage and expending reported electricity usage to

include loads other than lighting.

Thesis Supervisor: Leon Glicksman

Title: Professor of Architecture and Mechanical Engineering
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Introduction

Motivation

The buildings sector is one of the most significant drivers of energy usage in the developed and

developing world today. In 2010, energy consumption by buildings in the United States alone (for

heating, cooling, lighting, and other activities) accounted for 7% of global primary energy consumption

(and over 40% of primary energy consumption nationwide) [1]. With the value of new construction in

the United States increasing year-on-year [21 and the famed economic surges of the BRIC nations

(among others) yielding entire new cities, moderating this energy usage will be vital if we as a global

community are to set and meet effective energy efficiency goals.

The first step in controlling this energy usage is to understand it - what factors lead to energy

consumption in buildings and how these factors interact with one another. The best way to accomplish

this is through building modeling and simulation. While individual building subsystems or construction

materials can be tested empirically using an environmental test chamber, this is not always feasible.

These experiments can be costly and time-consuming, and it can be challenging if not impossible to

scale results for an entire building. Furthermore, pressure from government regulations as well as

changes to industry code have pushed designers and property managers more towards modeling and

simulation in recent years [3].

There are numerous software platforms available that simulate the behavior of whole buildings

and building subsystems. The US Department of Energy lists over 140 under the category of "Whole

Building Analysis: Energy Simulation" alone [4]. Many are paid tools and some are now defunct or have

not been updated recently. Much of the industry and development attention is focused on a select few

programs, such as DOE-2, eQUEST, and EnergyPlus. We have found, both in our own experience and

through conversations with building designers, that non-expert users are often put off by the initial

complexity of these programs. Many can be simplified using additional frontend software, but the

default skin can still be overwhelming. One example is the default launch window (and associated

building definition file) for EnergyPlus, shown below.
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Figure 1: Default EnergyPlus launch window

While an experienced user might, just as with any other complex piece of software, know

beforehand which options are germane to their work or how to install an additional frontend, not every

user has the time or expertise to do that. Even if they do, the level of detail required for many of these

models and the amount of time it can take to collect and input this information can lead to simulation

being put off until late in the design process. While these late-phase simulations may be needed for

regulatory compliance, "when modeling is only used late in design-after the massing, orientation,

envelope and glazing design, and mechanical systems in a building are already specified, and hundreds

of hours of work have already been put into those designs-the modeling might have little value beyond

keeping score" [3]. Ideally, modeling and simulation is a part of design process from the very beginning,

where it can provide valuable input that can be acted upon despite the number of still-unknown

variables [5], [6]. Therefore, we believe that there is a need for simplified building energy modeling

software that limits the number and specificity of the variables required from the user while retaining

the most important first-order effects.

Building energy usage concerns do not disappear once a design is finalized and construction is

complete. They must still be considered throughout the lifespan of a building, as systems degrade and

occupant practices change. One way for these concerns to be addressed is through retrocommissioning

(RCx). Building commissioning is analogous to ship commissioning, wherein a commissioned ship is "one
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deemed ready for service" through a variety of tests and checks. Retrocommissioning applies this

notion to already-existing buildings, and is aimed at finding and fixing faults in components and

procedures that arise naturally over time. Another method of reducing energy usage in existing

buildings is through retrofitting, in which machinery and infrastructure is upgraded using more efficient

or more reliable technology. While an RCx investigation can lead to a retrofit, the initial intention is

often to keep the building as is but fix what is necessary. As a result of this purposeful limitation of

scope, RCx initiatives generally have very short payback periods and rarely lose money for the building

owner in the long term.

As with building energy usage simulation, there are certain barriers to be overcome in the world

of retrocommissioning. One is knowledge of the process itself. While building commissioning is not an

especially new concept (for example, ASHRAE first formed a committee on the topic in 1982 [7] and the

National Conference on Building Commissioning is currently in its 22'" year [8]), its application to

existing buildings is a relatively recent development (ASH RAE's first guideline committee for existing

building commissioning was formed in 2007 [7]). As a result, RCx is very much in a growth phase and it

is easy to find a variety of publications from trade magazines [9], non-profits [10], and government labs

and agencies [11], [12] explaining RCx and promoting its use. Property owners and managers are

unlikely to make use of RCx without understanding the process and its benefits, so this multi-pronged

approach is necessary to reach the widest swath of the target audience.

That said, knowledge of RCx alone is not enough. The second obstacle is motivation. A

successful RCx project that yields long-lasting results requires multiple steps: a well-researched planning

phase, a thorough investigation phase that involves testing, monitoring, and documentation,

implementation of the identified faults, and a hand-off phase that helps property managers and their

workers to properly maintain the building for years to come [13]. Given the increasing number of RCx

providers going into business, simply starting this process can be daunting for the inexperienced,

especially if they are unsure of their potential return on investment (of both time and money). To solve

this, both governments and energy providers have been working on requirements and incentives to

encourage RCx.

Of particular interest is a recent legislative push that has led to the integration of RCx into

building performance standards in New York City and San Francisco. The New York law, Local Law 87,

was enacted in 2009 and "mandates that buildings over 50,000 gross square feet undergo periodic

energy audit and retro-commissioning measures" [14]. An energy report must be submitted to the city

every 10 years. A previous law, Local Law 84, mandated annual energy benchmarking [15], but LL87
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explicitly discusses RCx and provides resources for building owners and managers to learn about and get

in touch with approved energy auditors and retrocommissioning providers.

San Francisco's 2011 law, the Energy Commercial Buildings Energy Performance Ordinance,

requires an "energy efficiency audit once every 5 years identifying specific cost-effective measures that

would save energy" for "existing nonrestidential buildings 10,000 square feet and larger" [16]. While

the law, unlike New York's, does not call for an actual RCx process, the city does accept a variety of

retrocommissioning certifications as proof of qualification and competence for the auditors in question

[17]. This fact, combined with the savings identification requirement from the law, should encourage

property managers to seek out RCx providers on their own.

The U.S. Department of Energy has seized upon these two laws as well-implemented examples

of state and local laws intended to promote retrocommissioning [18]. Local governments can enact

policies that best fit the buildings and services in their own jurisdictions and can also test out these

policies on their own buildings (which are, on average, "nearly 25% more energy-intensive than non-

government-owned buildings" [18]). On the other hand, each jurisdiction must write and pass these

laws through their own legislative systems, meaning that successful trailblazing attempts (especially by

such large cities) are important for the instruction they provide.

As previously mentioned, utilities have also been working on incentive programs, even in areas

where there has yet to be any legislative pressure. Three examples from across the country are

programs by Connecticut Light and Power [19], ComEd in Illinois [20], and Pacific Gas and Electric-in

California [21]. Plans like these offer property owners payments based on energy savings if they

undergo and implement the fixes recommended by a well-documented RCx project. For example,

through PG&E, participants can be paid roughly "$0.09/kWh, $1.00/therm, and $100/on-peak kW,

capped at 50% of the total project cost" (based on achieved savings) as well as receive some engineering

support during the process. To qualify, the building must be of a certain size or consume a certain

amount of energy per year. The participants must also meet certain standards, such as a willingness to

"spend typically between 8-16 hours documenting their facility's energy usage involving multiple site

visits" and "spend a minimum of $25,000 on all reasonable and eligible RCx measures identified as

having a simple payback less than or equal to one year" [21]. There are additional guidelines for the RCx

process itself. The other utility companies have similar guidelines (with varying rebate rates and

eligibility requirements). Given that, in the case of PG&E, current commercial electricity rates range

from $0.15 to $0.23/kWh and commercial gas costs roughly $0.90/therm [22], these refunds can be

powerful economic incentives. Additionally, given the clause concerning simple payback time, property
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owners are encouraged to act on issues for which they will see results the fastest, mitigating some of

the uncertainty they may feel.

To further disseminate knowledge and understanding of RCx and to promote its use, we would

like to apply the same philosophy of simplicity and usability that drives Design Advisor to the world of

commissioning. If, using a minimal set of inputs, building owners could be given a rough sense of

potential energy or monetary savings through RCx and then pointed to further resources, the previously

discussed barriers to implementation would be lowered even further. The specifics of both this work as

well as the intended improvements to Design Advisor are detailed in the "Goals" section below.

Existing Work

The MIT Building Technology Lab has done work in the past on promoting and facilitating the

consideration of energy usage during the design and planning stages of building construction. This work

culminated in the development of the MIT Design Advisor [23], a simplified and streamlined building

modeling tool. Available free of charge online, this web-based tool is intended for use by architects and

other non-expert users who may not have the time or resources to learn and use the more complex

modeling suites previously mentioned. As has been noted, there are many other modeling programs

available that simulate the whole or parts of a building. As the goal of the building modeling portion of

this work is to further develop and improve Design Advisor, it will be the focus of this section.

Design Advisor is a white box simulation platform - its predictions are based primarily on the

fundamental energy balances and heat transfer processes governing the behavior of the building, and

the outside assumptions and approximations that are made are reported. This, combined with the fact

that only those inputs that affect these calculations to first order are considered, allows for much of

Design Advisor's simplicity. As all of the major design factors of the building are retained and the basic

equations are sound, Design Advisor is capable of producing energy usage predictions comparable to

those from Energy Plus - for an idealized building, the two have been shown to agree to within 10%

[23]. Avoiding the use of highly specific and complex correlations and reducing the number of inputs

required from the user does limit Design Advisor's accuracy, especially when modeling real-world

buildings. Factors such as building geometry, air distribution, and human behavior can only be

simplified so far, especially considering the fact that uncertainties in these inputs can lead to prediction

errors much larger than 10% even when using more complex pieces of software. However, if these

limitations are understood and accepted, Design Advisor can still be a very powerful and instructive tool.

Design Advisor's setup screen and a sample results page are shown in Figure 2.
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Figure 2: Setup and energy usage results screen from Design Advisor

The various inputs are broken down into groups by type, with presets for many of them based

on building type (for occupancy schedule, plug loads, person-density, and lighting and air change

requirements) or window type (for blinds and ventilated window unit settings). Generalized drop-down

menus are used where applicable to guide the user and avoid specific details that may be unknown at

the time of simulation. Users select a region and input information about the building usage,

ventilation, thermal mass, building geometry, roof, and a typical room (that is tiled around the

perimeter of the building for four-sided simulations). Up to four simulations can be saved concurrently,

allowing for direct comparison between different designs, as seen in Figure 2. Viewable results include

yearly and monthly energy usage (broken down by heating, cooling, and lighting), occupant comfort

metrics, natural ventilation temperature histograms, daylighting simulations, C02 production, and life

cycle costs. Users can also download text-based reports offering a greater level of detail. Relative to

popular simulation suites, Design Advisor is fast, easy to use, and reasonably accurate.

Retrocom mission ing, owing to its relative youth as a concept, has not been explored as fully as

building simulation. Much of the work on savings prediction has been done by RCx providers

themselves. Their systems, once installed, monitor building performance and aid in the detection of

potential faults and notification of building managers if the building is not behaving as expected. This is
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known by a multitude of names, including ongoing/continuous commissioning [24], [25] and monitoring-

based commissioning (MBCx) [20], [26]. These systems can be extremely powerful, customizable, and

informative, allowing building managers to find and fix problems before they worsen. For example, KGS

Building's system, when installed in a wet laboratory, identified problems whose repairs "led to

$286,000 per year in operational energy cost savings, with additional benefits to the customer derived

from utility incentive payments from documented savings." This involved "monitoring and analysis on

more than 13,000 data points, including 24 air-handlers, over 700 terminal boxes and fume hoods, and

many other pieces of HVAC equipment" [24]. The benefits, especially for large, energy-intensive

buildings, are clear. However, implementation of such a system can be very complex (depending on

existing infrastructure) and time-consuming for managers of small buildings or limited property

portfolios. It also does not solve the problem of building managers not being able to quantify possible

savings before contacting and working with a commissioning provider.

One interesting piece of work is a spreadsheet that was put together by the California

Commissioning Collaborative. It "targets commercial buildings and allows providers to calculate energy

and peak demand savings for thirteen common controls- and schedule-based commercial building

optimization measures" [27]. Based on a variety of inputs, including basic characteristics of the building

and its systems as well as baseline performance measures and metric concerning proposed changes, the

spreadsheet calculates potential savings from correcting various system sensors, schedules, and

settings. While this can be a useful tool, it also fails to address the problem at hand. Not only is it

intended for use by commissioning providers (and asks for proposed system changes in order to make

its estimates), but it also produces its estimate using a large lookup table containing the results from an

exhaustive parametric set of building simulations. This limits the accuracy of the estimates to the

accuracy of the simulations themselves. Such a program that makes use of historical RCx data rather

than simulations has yet to be created. This could be due to the lack of a comprehensive data set of

verified real-world RCx savings, as addressed in the "Data Collection" section.

Goals

Given all of this, there are three primary goals of this work. The first is to reduce the run time

required for a single simulation. This would have multiple benefits, chief among them being improved

usability. Multiple studies have shown that web users are put off by seemingly minor delays in

information retrieval and feedback. [28], [291 The run times for a variety of simulations of a classroom
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building located in Boston in the current version of Design Advisor are shown below in Table 1. For all

non-specified variables, Design Advisor's defaults were used.

Cooling Geometry Floors Roof Window
Run 1

(s)
Run 2

(s)
Run 3 j Average

(s) Run Time
Mech Single zone One None Single glazed 9.9 9.3 9.6 9.6
Mech Single zone One None Inside vent. 69.5 72.4 79.9 73.9

Mech Single zone Five Bitumen Single glazed 23.7 24.2 24.2 24.0

Mech Single zone Five Bitumen Inside vent. 149.4 145.9 165.2 153.5
4 zones+core,

Mech well-mixed One None Single glazed 48.9 45.4 46.7 47.0
4 zones+core,

Mech well-mixed One None Inside vent. 300.4 293.1 343.7 312.4
4 zones+core,

Mech well-mixed Five Bitumen Single glazed 119.8 122.2 121.3 121.1
4 zones+core,

Mech well-mixed Five Bitumen Inside vent. 709.4 708.5 610.5 676.1

Natural Single zone One None Single glazed 10.5 9.9 10.1 10.2

Natural Single zone One None Inside vent. 71.9 80.2 70.3 74.1

Natural Single zone Five Bitumen Single glazed 25.3 25.5 25.4 25.4

Natural Single zone Five Bitumen Inside vent 148.1 150.1 153.7 150.6
4 zones+core,

Natural well-mixed One None Single glazed 49.4 49.7 50.7 49.9
4 zones+core,

Natural well-mixed One None Inside vent. 292.9 347.3 306.5 315.6
4 zones+core,

Natural well-mixed Five Bitumen Single glazed 129.5 126.9 134.1 130.2

Natural
4 zones+core,
well-mixed Five Bitumen Inside vent. 720.2 623.5 644.2

Table 1: Run timesforselected simulations in current version of Design Advisor (seconds)
662.6

The simplest simulations (of a single shoe box zone with no roof) can take 10 seconds or less.

More complex simulations, involving heat transfer through a roof as well as air mixing between four

zones and a-central core, can take several minutes. Ventilated window units, included for completeness

despite being a niche application, increase simulation times by a factor of five or more. While it is

understandable that a full-year energy usage simulation would take longer than loading a web page,

that is no reason to not strive to improve the user experience. A more convenient tool is more likely to

be used, especially when other alternatives are available. This is important considering Design Advisor's

original purpose of facilitating and popularizing early-stage building modeling.
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Improving Design Advisor's performance feeds into the second goal: implementing a form of

model optimization. Optimization can allow the user to reach the most energy-efficient design, both for

new buildings and retrofits. It can provide suggestions for the most efficient new design or for retrofit

actions that the user can explore in further depth. Finding even a local energy usage minimum,

however, can require thousands of iterations for a system as complex as a building. While users may be

willing to wait several minutes for a single simulation, it is unreasonable to expect them to leave Design

Advisor open for a day or longer without any interruption between their computer and a remote server.

Therefore, a "fuzzy" optimization method must be developed, one which sacrifices some accuracy

(within the spirit under which Design Advisor was developed) and may not reach the absolute most

efficient design by reducing the number of simulations that must be performed. If the remaining

simulations can be made faster, the total computation time may be reduced to a more acceptable level.

The keys are then to define meaningful target criteria and select an acceptable final error.

The final goal is the development and implementation of an algorithm to predict potential

energy and monetary savings from retrocommissioning based on real building data. While the

development of Design Advisor has focused in the past on improving inchoate building designs,

expanding its functionality and enhancing its appeal to other elements of the buildings industry

necessitates examining existing buildings as well. As previously discussed, while retrocommissioning has

been rapidly expanding for several years, city and state governments around the country are beginning

to recognize its value and mandate regularly scheduled RCx projects for certain types of buildings. This

has prompted a growth in the number of commissioning firms as well as renewed attention from

certification and standards groups. The RCx savings prediction algorithm is therefore intended to aid

property owners and managers in navigating these new regulations and interacting with commissioning

professionals. It is also, much like Design Advisor itself, intended to generate interest (especially among

non-expert users) in energy savings measures. Lastly, it is our goal that the prediction algorithm derive

its results using data from completed and documented RCx projects. Simulations, as already discussed,

are limited by a wide variety of factors. Historical data implicitly include these factors and reflect actual

savings.

Combined, these measures represent a variety of improvements and additions to the Design

Advisor simulation engine. Their implementation and the results from the changes made are detailed in

the following sections.
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Reducing Run Time

Thermal Mass Calculations

The most computationally-intensive portion of a given day's simulation involves calculating the

heat flux in and out of the thermal mass in the floor and roof (if applicable) of the building. For a typical

building, it is assumed that each floor is a concrete slab and comprises the bulk of the thermal mass in

any given room. The slab itself is assumed to be semi-infinite along the expanse of the room (that is,

edge effects near the walls are neglected) and of finite depth (specified by the user). This depth is

discretized such that each slice can be assumed to have a uniform temperature at any given point in

time as per the Biot constant:

Bi = hd< 1 (1)

kFo =A (2)

dn = Bi * k (3)

Atma = Fo * pcdjW (4)
k

Using these slices, the temperature distribution in the thermal mass is then calculated using the

Crank-Nicolson method. The Crank-Nicolson method is one of several schemes for numerically

evaluating the one-dimensional diffusion equation:

= D = ) 2T(5)

The one-dimensional form of the equation is used because the concrete slab is assumed to be

significantly more expansive in the horizontal plane than it is deep. The thermal diffusivity of the slab is

assumed to be constant in both time and space.

A simple and common numerical method that can be used to find an approximate solution to

this equation is Euler's method. Euler's method comes in two main forms: forward time centered space

(FTCS) and backward time centered space (BTCS) [30].

FTCS:

At D (6)

BTCS:

S= D (~)
At I ) I

Where n is the time step i ndex and j is the slice index.
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As the names imply, the difference between the two lies in the dependence on the change in

temperature across a time step (on the left-hand side of the equation) on the temperature difference

within the slab during the current (FTCS) or next (BTCS) time step. As a result, the FTCS Euler method is

fully explicit, while the BTCS form is fully implicit. Both have their own advantageous and disadvantages.

The FTCS scheme is simple to understand, implement, and compute, even by hand. With that simplicity

comes major shortcomings - the error in its approximation is proportional to the time step used and it

can become unstable when the time step or slice thickness becomes too large [311. The BTCS method,

on the other hand, is unconditionally stable but requires solving a system of equations at each time step

[32]. This requires more computation time and is generally more difficult to implement. It is also still

subject to the same accuracy concerns as the FTCS version.

To improve on the accuracy of these methods, we turn to the Crank-Nicolson method. The

Crank-Nicolson method is, in essence, an average of the FTCS and BTCS methods described above:

TP+1-T? D (Tn+1-2T+1+T,_+, )+(T+ -2T7?+T 1 )
_A) (8)At 2 [(s)2

Like the BTCS scheme, the semi-implicit Crank-Nicolson method is unconditionally stable and

requires solving a system of equations at each time step [33]. Unlike either Euler method, it is

susceptible to predicting non-physical (but not destabilizing) temperature oscillations at larger time

steps or slice thicknesses [23]. The Biot criteria discussed above will prevent these oscillations by

limiting the size of both of these factors.

In order to form the actual approximation of the temperature distribution at each time step, the

n equations (one for each thermal mass slice) are combined into a matrix. The matrix equation used in

Design Advisor is as follows [23]:

Tt+At = B- [S * Tt + QAt] (9)
hAtkAAt kAAt 0 0 0

C + d+ d

- C + - 0 0
2d d 2d

B 0 -k +kAAt C+- t 0 (10)
2d C d d

0 0 - C + - -
2d d 2d

0 0 0 -A~ C +kAAt
2d d
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C - AAt kAit 0 0 0
2 24id 2d
kA,&t C MAt kAAt 00C- 0 0
2d d 2d

S kAAt kAAt 0 (11)
2d d 24

0 0 __ C kAAt
2d d 2d

0 0 0 C -

-asolar incident-
0

Q =0 (12)
0
0

Where C is the specific heat capacity of the slab, h is the convection heat transfer coefficient between

the slab and the air in the room, k is the thermal conductivity of the concrete, d is the slice thickness, A

is the area of the room, At is the time step size, a is the thermal absorptivity of the slab, and Q is the

heat flux.

In the original Design Advisor code, conservative values are used for the Fourier modulus and

the Biot constant (0.5 and 0.05, respectively) to ensure stable, physically plausible results. The table of

values that determined this is shown below.

a 0.80
c 880 kJ/kg-K
p 2300 kg/mA3
k 1.4 W/m-k
h 10 W/mA2-K

Table 2: Physical properties of concrete slab [23]

Using these values in the relevant equations for the Biot criterion, this yields a maximum slice thickness

of 0.007m.

Thermal Mass Setting
High Low

Slab thickness (m) 0.2 0.02
Max slice thickness (m) 0.007 0.007
Number of slices 28.57 2.86
Whole number of slices 29 3
Slice thickness (m) 0.006897 0.006667
Max time step (s) 34.38 32.13
Time step (s) 30 30

Table 3: Discretization of concrete slab [23]
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As shown in Table 3, the values used in Design Advisor yield a time step of slightly more than 30

seconds, Both the number of slices and the time step size were rounded to allow for simpler whole-

number calculations and to allow the thermal mass time steps to fit into the 60-second time step used in

the rest of the program. However, given the long timescale over which the relevant heat transfer

processes occur, these constants (and thus the computation time step) can be increased without a

significant loss of accuracy. Through testing, it was found that, rather than twice every minute, heat

transfer to and from the concrete slab could safely be calculated as infrequently as once every 15

minutes without instability. The effects from making this change are summarized in the figures and

tables below.

A single-sided one-floor shoebox model room was simulated for a full year using the original

Design Advisor code. The ambient air temperature and the midpoint temperature of the top thermal

mass slice were extracted at the start of each hour on January 15 and July 15. From that point, to allow

for a fair comparison, the only change that was made to the code was to reduce the number of times

per hour that the heat flux from the thermal mass was recalculated (to 10 times per hour and 4 times

per hour).

Surface Layer Temperature - January
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Figure 3: Thermal mass surface layer temperature in January
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Room Temperature - January
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Figure 4: Ambient room temperature in January
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Figure 5: Thermal mass surface layer temperature in July
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Room Temperature - July
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Figure 6: Ambient room temperature in July

January
Max Error - Surface Avg Error - Surface Max Error - Room Avg Error - Room

1Ix per hour 2.35 1.05 1.35 0.46

4x per hour 2.88 0.59 1.56 0.12

July
Max Error - Surface Avg Error - Surface Max Error - Room Avg Error - Room

lIx per hour 1.95 -0.13 1.15 0.01

4x per hour 2.50 -0.32 2.88 0.33
Table 4: Temperature difference when compared to original method when using reduced calculations

Runtime
Single Sided Four Sided

60x per hour 9.02 38.22
10x per hour 8.14 33.25
4x per hour 6.78 27.14

Table 5: Runtime comparison between original method and reduced calculations

Variable Value

City Boston

Room Width 5

Room Depth 5

Room Height 3

Thermal Mass Thickness Low

Window Area % 50
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Window Type Single glazed, no blinds

Glass Coating Clear

Wall R-Value 1
Roof Type Bitumen

Roof R-Value 2

Ventilation Type Mechanical
Table 6: Important design parametersfor thermal mass example

As demonstrated by Table 4 and Table 5, the potential reduction in runtime is effectively

proportional to the level of error one is willing to accept. While on average the temperature predictions

that arise from calculating the heat flux from the floor every 15 minutes are not significantly different

from those when the flux is calculated every 6, the maximum error can be more than a degree larger.

However, using 4 calculations per hour reduced the simulation time of a sample multi-floor building by

25% (single-sided) to 30% (four-sided), compared to 10% to 13%.

It must be noted that, despite these temperature differences, the resulting heating and cooling

energy usage predictions (the only information reported to the user) for each of the modes were nearly

identical:

I January

Heating Energy (kWh/mA2)
February March April May I June

60x per hour 55.188 47.450 35.708 18.000 6.202 0.000
10x per hour 55.135 47.444 35.617 17.669 5.875 0.005
% Error -0.096 -0.012 -0.255 -1.837 -5.277 1400.377
4x per hour 55.078 47.444 35.590 17.536 5.847 0.000
% Error -0.200 -0.013 -0.329 -2.576 -5.731 -100.000

July August September October November December
60x per hour 0.000 0.000 0.223 13.101 26.909 49.137
10x per hour 0.004 0.004 0.104 12.951 26.813 49.132
% Error Inf Inf -53.467 -1.145 -0.358 -0.011
4x per hour 0.000 0.000 0.000 12.542 26.763 49.129
% Error lnf Inf -99.986 -4.264 -0.542 -0.016

Cooling Energy (kWh/mA2)
January February March April May June

60x per hour 0.011 0.000 0.000 0.000 0.106 4.335
10x per hour 0.011 0.000 0.000 0.000 0.048 3.238
% Error 0.000 Inf Inf Inf -54.263 -25.301
4x per hour 0.011 0.000 0.000 0.000 0.042 3.303
% Error 0.000 Inf Inf Inf -60.345 -23.804
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60x per hour 13.815 13.689 1.843 1.244 0.495 0.000
lIx per hour 12.515 12.905 1.302 1.215 0.545 0.000
% Error -9.407 -5.723 -29.348 -2.285 10.167 Inf

4x per hour 12.703 13.076 1.236 1.227 0.567 0.000
% Error -8.046 -4.474 -32.914 -1.329 14.503 lnf

Table 7: Heating and cooling energy usage predictions using reduced thermal mass calculations

During the heating and cooling seasons (i.e., months during which heating or cooling energy

usage is significant, respectively), the prediction error for either calculation reduction scheme (to 10

times per hour or 4 times per hour) does not exceed 8%. Given the simulation time comparison in Table

5, it appears to be a safe and logical choice to reduce thermal mass-related calculations to four per hour

from 60, especially if, as in the case of the optimizer, the primary concern is speed.

An effort was also made to fully replace the matrix-based Crank-Nicolson calculations with a

fully explicit forward time method adapted from MIT's CoolVent, a natural ventilation simulation

program [34]. The equations used are given below.

For the surface slice:

_______enj 2hA1t

Tj+1 = T2,j - T2,j -TI( + At *~ e PAdcP (13)

For the bottom slice:

2h~ht

= n 1 ,j - (Tn- 11 - Tnj) * e (14)

For all other slices:

Ti +, = 4(Ti-i + T401j) - ((Ti-1j + Ti+1j) - 2T i) * e PAdCp (15)

Finally, to find the heat into or out of the room:

Qnet = hAAt * (Troom - (+ (16)

For all of these, i denotes the index of the thermal mass slice (from 1 at the surface to n at the bottom), j

denotes the index of the time step, d is the slice thickness, A is the exposed area, and Troon is the air

temperature during the current time step.

The results from this change, both in terms of time as well as accuracy, are summarized below.

A representative set of runs were performed as a basic demonstration of the difference between the
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two calculation strategies. Time step size and spatial discretization were left the same for both

schemes.

Geometry Floors
Crank-Nicolson Explicit

Time (ms) I Time (ms) % Difference

One-sided 1 8285 7604 8.2

One-sided 3 11698 10624 9.2

Four-sided 1 33423 29829 10.8

Four-sided 3 48499 44314 8.6
Table 8: Run timefor Crank-Nicolson and forward time explicit thermal mass calculations

While changing the calculation method alone leads to an appreciable time savings (roughly 10%

across various types of simulations, as shown in Table 8), the accuracy loss from doing so is greater than

for simply reducing the number of times per hour that the Crank-Nicolson scheme is run. This is shown

below in Figure 7.

Thermal Mass Temperature in January

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

-- Crank-Nicolson - - Forward Time Explicit

Figure 7: Comparison of thermal moss temperatures for Crank-Nicolson and forward time explicit methods

This increased error is likely due to the time step and thermal mass slice size. As discussed

previously, the error in an explicit solver like this one is proportional to the time step used. When the

number of slices is increased (for the "low" thermal mass setting used here, from 3 to 10), thus

decreasing the slice size and the time step as per the Biot criterion, the 10%/ reduction in run time

becomes a 25% to 50% increase in run time.
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Lighting Calculations

One of the oldest pieces of code present in Design Advisor concerns the simulation of lighting in

the user-defined typical room. Before the full building is formed (if applicable) or energy use is

simulated, a lengthy set of calculations takes place during which the distribution of solar radiation within

the room (and, concurrently, additional lighting requirements at the workplane) is predicted. This also

allows for the daylighting visualizations that are a part of Design Advisor's output. The basic steps are as

follows [35]:

1. Discretize the window, both side walls, the ceiling, and the floor of the shoebox room (all

surfaces except for the back wall) into small rectilinear elements. Each element stores its own

illumination level. The number of elements can vary greatly depending on the resolution setting

chosen by the program and the dimensions of the room. For the default room, 5m wide by 5m

deep by 3m high, each element could be 10cm on a side (for the crudest setting) or 0.1cm on a

side (for the finest).

2. At each time step, use the calculable position of the sun relative to the window as well as the

direct solar radiation data from the weather file to find the discretized surface regions that are

illuminated. In all cases, the room is assumed to be empty, so there are no pieces of furniture or

occupants blocking the light. If blinds are present, their effect on the initial distribution of light

on the room (by absorbing incoming solar radiation or reflecting it into the room or back out

into the environment) is accounted for here.

3. Add diffuse solar radiation throughout the room by treating the window as a uniform source of

diffuse radiation.

4. Calculate the contribution of reflected light to the light level at each element. This is done by

summing the radiosity of every other element in the room, accounting for the view factor

between each pair:

Ri = (1 - a) * ( VFji * Rj) (17)

Where R is the radiosity of the indexed rectilinear element, a is its absorptivity, and VF is the

view factor between element i and j. All of the elements are assumed to reflect light in a diffuse

manner, so the angle of incoming radiation is not preserved. This step takes up a majority of the

total calculation time.

5. Repeat step 4 until the change in radiosity of the room elements does not change with

additional reflections. The final difference between the illumination level at the workplane and
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the required light level set by the user governs the amount of lighting energy that is used during

the current time step.

While this algorithm does succeed in rapidly predicting the daylighting levels in the room (this

process is generally completed during the first several seconds of the simulation), it is nonetheless a

significant source of potentially superfluous calculation time, especially if the goal is model optimization.

Examining the code, one finds unnecessary repetition of complex calculations. There is also the

question of the necessity of these calculations for the purposes of the average user.

As stated previously, this process of discretization and lighting prediction takes place before the

building as a whole is created and the general energy usage simulation is performed. For a single room,

this is not an issue. However, for four-sided or multi-floor simulations, this code runs multiple times.

Obviously, the lighting requirements will change for different room orientations, but the map of

rectilinear elements will remain the same (as the typical room is tiled around the building core). The

calculations are also redone between types of floors (with and without a roof). Since the height of the

building does not have a significant effect on the solar altitude, it is not included in the calculation of the

lighting in the room. As a result, the lighting in a room will be the same as all those above and below it.

This means that, in the most complex cases, the discretization could take place once and the lighting

prediction could be done four times, once per facade direction. In those cases, as presently coded, the

process described above takes place in full eight times.

On top of this, in the case in which we are most concerned with simulation speed (genetic

algorithm-related runs during optimization), these calculations may not be necessary at all. The

daylighting visualizations, while very informative for designers, would never be seen with the exception

of the one corresponding to the optimal solution. Deactivating a portion of this code would also for

additional variables or levels to be included in the initial parametric search and regression.

However, due to the structure of the Design Advisor code base, this kind of decoupling has

proven to be very difficult. As discussed, the daylighting simulation leads to the lighting usage

prediction during most simulations, which impacts heating and cooling energy use and is itself one of

the primary outputs. Because of this, not only is the code rather complex (having been ported from

MathCAD and spanning 48 files) but it is hooked into the structure of the software at a very deep level.

This makes it difficult to modify but not fully replace the daylighting libraries without causing errors

from dependencies elsewhere in the program.
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It may instead be possible to predict required lighting energy alone with a simple correlation.

The factors that affect lighting represent a somewhat reduced subset of Design Advisor's inputs:

* Solar information - solar altitude, solar-surface azimuth, incoming solar radiation (encapsulated

with the selection of five cities - Boston, Miami, Anchorage, Santiago, and Kuala Lumpur - and

the four cardinal directions from Design Advisor)

* Window - percent glazing area, window unit type, glass coating

* Blinds - blind angle, blind geometry, blind color

* Room - width, depth, height

* Lighting settings - required light levels, lighting control method

Recognizing that the various solar measures are themselves functions of the current time and

location and choosing to disregard blinded window units (as in done below during the initial optimizer

regressions) serves to shrink this list even further. This in turn allows for a parametric set of runs that

can be used to relate required lighting energy to the selected variables:

Variable Minimum Maximum Levels
City N/A N/A 5
Orientation N/A N/A 4
% glazing 20 80 3
Window type Single glazed Triple glazed 3
Glass coating Clear High performance 2
Lighting control Single dimmer Individual dimmers 2
Lighting req. 300 600 2
Room width 4 10 3
Room depth 4 10 3
Room height 3 5 2

25920 Total runs
5 Seconds per run

129600 Total seconds
2160 Total minutes

36 Total hours
Table 9: Table of variables for lighting regression

The yearly lighting energy requirement for the room was treated as the dependent variable for

the regression analysis. The orientation variable was converted into a number, with 00 being north and

the value increased clockwise around the cardinal directions. The city and orientation variables together

were taken as signifiers of the physical configuration of the sun relative to the building fasade and the

incident illuminance (rather than radiation, as we are concerned with the light levels in the room). Total
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incident illuminance is made up of direct, diffuse, and reflected (from the ground) components, as

follows:

Itotal = Idirect,incident + Idiffuse,vertical + IrefLectedincident from ground (18)

The typical meteorological year data files used by Design Advisor contain hourly information

about direct normal radiation, defined as the "average amount of direct normal illuminanc. ... received

within a 5.7* field of view centered on the sun" and diffuse horizontal illuminance, defined as the

"average amount of illuminance .. . received from the sky (excluding the solar disk) on a horizontal

surface" [36]. These are converted into the three components mentioned above using several

configuration-related factors:

Itotal = Idirect,nornal * cos 0 + Idi fusehorizontai * Y + Idirectnormai * (C + sin P)pg * (1-cosE)

(19) [23]

Where E is known as the surface-solar angle of incidence (the angle between the fagade normal and the

vector from the fagade to the sun), C is a dimensionless factor taken to be its yearly average value of

0.118, p. is the ground surface albedo (roughly 0.2), 1 is the inclination of the fasade surface (assumed

to be 90* here), P is the solar altitude (based on location and time of year), and Y is a dimensionless

factor dependent on the surface-solar angle of incidence.

The surface-solar angle of incidence, given the stated assumption about the faeade inclination, is

found as follows:

coso = cos/ *cosy *sinZ+ sinfl *cosE = cosi * cosy (20) [23]

Where y is the difference between the solar and surface azimuths (the angle between the sun and

fagade normal, respectively, and north).

Y, the conversion factor from diffuse illuminance falling on a horizontal surface and that falling

on a vertical surface, is equal to:

Y = 0.55+ 0.437 cos B + 0.313(cos 9)2 cos 6 > -0.21 (21) [23]
(0.45 cos 0 9 -0.2 }

These calculations can be found in full in Bryan Urban's original thesis about the MIT Design

Advisor [23]. The resultant total incident illuminance levels are then averaged (only for daytime hours)

for each of the four simulated cardinal directions for each city. To have a mix of different latitudes and

longitudes in the simulation set, the five cities chosen were Boston, Anchorage, Santiago, Kuala Lumpur,

and Miami. Note that the illuminance levels differ from east to west due to differences in solar radiation

levels (as reported in the weather files used here) between the morning and afternoon hours.
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Average Yearly Illuminance in Lux
I North I East I South I West

Boston 15626 36198 35529 29484
Anchorage 12559 25812 29960 22917
Santiago 27430 37014 18113 24840
Kuala Lumpur 21181 20429 22405 33098
Miami 19021 39273 34803 35205

Table 10: Average yearly illuminance levels during daylight hours for vertical surface facing in given direction

Each of the runs detailed in Table 9 were ordered by yearly required lighting energy. Performing

a regression on that data set yielded the following results (note that any categorical variable that is not

listed, such as double glazed window units, were selected as the default for the variable in question and

have an effective coefficient of 0):

Lighting Energy Required

I I I I

0 5000 10000 15000

Run Number

2 2
20000 25000

Figure 8: Calculated and predicted yearly lighting energy requirements

Coefficient
Intercept
Avg. Total Ill.
Lighting control = "Single Dim"
Depth
Width
Height

I Value
2.2
0.0
8.9
1.9

-0.8
-2.8

Max Residual 41.72
Median Residual -1.12
Min Residual -17.643
RMSE 9.013453
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Glazing % -0.1 Adj. RA2 0.6296
Window type = "single glazed" -1.2
Window type = "triple glazed" 1.3
Coating = "high performance" 2.7
Lighting required 0.1

Table 11: Summary of lighting regressions

While the regression yields significant residuals for scenarios corresponding to the extreme ends

of the plot in Figure 8, the bulk of the predictions agree somewhat with the corresponding calculated

lighting energy usage. This is especially true in the region from 20-40 kWh/M 2 per year, which covers

many offices and other buildings with similar lighting needs. As these types of buildings account for a

significant proportion of this country's total electricity usage, it is important that those simulations are

the most accurate.

It was found during the regression analysis that when the lights are set to be on (and at full

brightness) during occupied hours, even though the lighting-related energy consumption is not a

function of the available daylighting, the room is still discretized as discussed before. Therefore, this is

the one case where the daylighting module can be switched off entirely with no change in prediction

accuracy when the daylighting visualizations are not needed. The run time savings from this change are

shown below.

Original Run Time (ms) No Daylighting (ms) % Difference
Single-sided One floor 7728 6727 -12.95
Four-sided One floor 32201 28964 -10.05

Single-sided Three floors 12744 10812 -15.16
Four-sided Three floors 53213 47752 -10.26

Table 12: Run time changes from removing daylighting module when lights are always on

This change serves mainly as a demonstration that there is likely more time to be saved by

continuing to find and eliminate unnecessary or repeated calculations. Design Advisor's default settings

assume that light fixtures respond to the lowest lighting level in the room (rather than always being on),

so most simulations will not benefit from this fix.

Representative Day Formulation

Another barrier to reducing overall simulation runtime is the fact that, by default, the energy

usage for a full year is calculated. Any reduction in the number of days that need to be simulated will

logically reduce the total time required. As such, four methods for formulating and testing
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representative days were implemented. The representative days are formed from the same weather

data used by Design Advisor but do not themselves necessarily correspond to any given actual day. The

four methods are described below, followed by a summary of the results from each.

The first method is simply to use the 24 hourly averages of temperature and solar radiation to

create a single day for each month. Each day is simulated twice, once as a training day and once to find

the heating, cooling, and lighting energy usage for the month. The training day serves to "reset" the

temperature of the air in the room and the temperature distribution within the thermal mass so that,

for example, a day representing April is not simulated with an initial temperature distribution

corresponding to the end of an average day in March. This reduces the number of days from 365 to 24.

The second method separates heating and cooling processes into two separate days per month.

Heating and cooling degree hours are calculated for each hour each month (i.e.: total heating and

cooling degree hours from 00:00 to 01:00 in January, etc.) relative to a standard 18.3*C setpoint. [37]-

[39] From this, hourly temperatures are determined by averaging the hourly degree hour counts and

finding the required temperature difference from 18.3*C for each hour. User-set loads, such as heat

from equipment in the room, are split between the heating and cooling day for each month. This

method produces 48 simulated days in total.

The third method attempts to capture the effects of extreme weather that are missed when

using a pure average. It does this by assuming that hourly temperatures are normally distributed within

each month and uses this to form three representative days. The three days represent average, low

temperature (with each hourly temperature set one standard deviation below the monthly mean for

that hour), and high temperature (one standard deviation above the mean) days. All three are

simulated and the predicted energy usages are weighted according to the 68-95-99.7 rule for normal

distributions. This rule of thumb states that, for a normally-distributed variable, roughly 68% of the

values fall within one standard deviation of the mean, 95% fall within two, and 99.7% fall within three.

Therefore, the energy usage predicted for the average temperature day is weighted to account for 68%

of the energy usage for the month while the two extreme days account for 16% each. This is referred to

in Figure 9 as "Normal Dist. Temp." The final method expands on the third by assuming that incident

solar radiation follows a normal distribution as well. This version is referred to as "Normal Dist. All." For

both the third and fourth methods, 72 days are simulated.

The four strategies (as well as a standard simulation) were used to simulate a standard office-

type building with low thermal mass and a bitumen roof in Boston, Anchorage, Los Angeles, and
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Mumbai. This was done to test the strategies across a set of disparate climates. The results of this

study are presented below.

First, it is important to note that while limiting the number of days that need to be simulated

does drastically reduce the overall simulation time (by 47% to 56% for the building tested here), a

significant proportion of the calculations are used to set up and initialize the building. As a result, the

difference in calculation time between the four representative day methods is minimal. This led in part

to the effort to change the lighting model as discussed previously.

Average Time (ms)
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Temp.

Figure 9: Average simulation time for full-year simulation and representative day methods

On a monthly basis, the average temperature and degree hour methods tend to produce the

largest monthly errors. This is especially true for climates dominated by one temperature extreme, such

as in the Anchorage and Mumbai examples shown below. In the case of the average temperature

formulation, this is likely due to the fact that averaging hides perturbations that could be important to

energy usage. In Anchorage, this leads to an underestimation of heating energy during the summer (as

unseasonably cold days have been smoothed out). In Mumbai, this leads to an underestimation of

cooling energy during the winter (as the unseasonably hot days are lost). It is important to know,

however, that those types of days in those extreme climates represent a small percentage of yearly

heating and cooling demands. This effect is seen in other fields as well; for example, crop growth

simulations programs that make use of weather averaging tend to overestimate yields as they miss

damaging day-to-day variation in conditions. [40] In the case of the degree hour method, it is possible

that the 18.3*C setpoint is incorrect or insufficiently descriptive for extreme climates. That temperature
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is meant to represent a point of thermal equilibrium between a building and its environment. As this

equilibrium depends on weather conditions (temperature, wind, solar gains, etc.), building construction

norms, and internal loads, the accuracy of this setpoint will vary from place to place. It could be the

case that the unique conditions and building insulation needs in extreme environments renders the

18.3*C setpoint too inaccurate to be used in this kind of simulation. Therefore, different equilibrium

points may need to be found for these locations. Another possibility would be to use two different

setpoints for heating and cooling. For example, the Pacific Energy Center uses a 65'F baseline for

heating degree days and an 80'F baseline for cooling degree days. [41] This, along with finding a more

accurate equilibrium point, could improve the performance of the degree hour method described here.
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Figure 10: Monthly heating energy error for Anchorage for representative day methods
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Mumbai Cooling Percentage Error
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Figure 11: Monthly cooling energy error for Mumbaifor representative day methods

Note: the two normal-distribution-based methods produced nearly identical results, which is

why they are difficult to distinguish from one another in Figure 10 - Figure 13.

That said, the two normal distribution methods, while more accurate on average, still produce

statistically significant errors. In temperate regions, such as the example in Boston shown below, both

methods have their largest errors during the shoulder months of late spring and early fall. The average

temperature in Boston during June and September is closer to the aforementioned 18.30C equilibrium

point (19.8*C and 18.10C, respectively) than during any other month. As heating and cooling

requirements during these months are relatively balanced and minimal (compared to other months of

the year), small absolute errors can lead to large percentage differences. These errors (compared to the

default full year simulation) are shown below for Boston.
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Boston Heating Absolute Error
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Figure 12: Monthly heating energy error for Boston for representative day methods
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Figure 13: Monthly cooling energy error for Boston for representative day methods

The average percentage errors for whole-year energy usage for the four cities tested are

presented below. Together, these measures serve to highlight the fact that, while both normal

distribution methods lead to significantly more accurate results (compared to a standard Design Advisor

simulation) than either the average temperature of degree hour method, the difference between the

two is minor - a 2.7% difference at most across all four cities. Depending on how many simulations

need to be run (such as in the case of an optimization algorithm), this slight increase in accuracy may not
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be worth the extra time it takes to prepare the solar radiation data (about 0.2 seconds on average). It is

also interesting to note that no method overestimated whole-year heating or cooling energy usage for

any of the four cities. This points back to the importance of extreme weather days and the need to

capture their effects in these representative day formulations.
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Figure 14: Total yearly heating energy error for representative day methods

Cooling Energy Percentage Error
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Figure 15: Total yearly cooling energy error for representative day methods

One way to accomplish this would be to move away from the assumption that hourly and daily

temperatures are perfectly normally distributed within each month. A cursory examination of the

weather file for any of the cities tested here shows that to be false - some monthly temperature
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distributions are highly skewed, some are bimodal, and many exhibit other irregularities. Incorporating

these non-ideal factors without sacrificing the generalizability of these methods would require changing

the weighting used (from 16% for each of these extreme days and 68% for the average day) in

accordance with some additional mathematical measure such as skewness or kurtosis.

One possibility would be to assume that temperature follows a skew-normal rather than a

normal distribution. First Introduced by O'agan and Leonard in 1976, the skew-normal distribution, as

the name implies, attempts to incorporate the skewness of a distribution into its probability density

function. [42] A method of estimating the probability density function, from Azzalini and Valle, is given

below. [43], [44]

f(x) = 20 (x)(D(ax) (22)

Where f is the probability density function of the skew-normal variable x and a is a parameter describing

its skewness. 4p and D are the probability density function and cumulative distribution function of the

normal distribution, respectively, and are given below.

X2

O(x = e2(23)

0(ax) = f0 qb(t)dt = 1 [1+ erf f)] (24)

However, given the previously-discussed tradeoff between speed and accuracy (in terms of

using a normal distribution for only temperature), it is unlikely that the addition of these skewness

calculations would result in significant enough improvements in net yearly accuracy to be worth the

extra calculation time. This is especially true if the representative days are used primarily for faster

simulations during optimization rather than for individual building runs.
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Design Advisor Validation

As part of the Department of Energy's Energy Efficient Buildings Hub Project (referred to as "the

Hub" from this point onwards), model testing and validation was performed on three existing buildings.

Two, selected by project administrators for use with all simulation engines involved, are located in the

Philadelphia area. The third is located in Cambridge, Massachusetts on the campus of the

Massachusetts Institute of Technology (MIT). The testing of these demonstration buildings represented

the first such validation of Design Advisor using already-existing buildings. Previous validations had

been performed by comparing Design Advisor's energy usage predictions to those from Energy Plus, but

real buildings inevitably include inefficiencies and complexities arising from user behavior, equipment

malfunctions, and other factors that are not necessarily included in simulations. The process of and

results from these three buildings are summarized below.

One Montgomery Plaza

The first demonstration building to be selected was One Montgomery Plaza, a municipal office

building in Norristown, Pennsylvania. It has 10 floors, approximately 250,000 square feet of gross floor

area, and serves roughly 3,000 employees. It was of particular interest due to the building's ongoing

need for extensive retrofits (and the controversy surrounding the final expense to Montgomery County).

A variety of documents describing the building were made available through the Hub and used

to form estimates of the simulation inputs. For example, hourly utility data was used to determine the

occupancy schedule of the building while a site audit documenting the repair needs mentioned above

was used to find building envelope parameters [46]. Furthermore, several parameters (such as air

change rates and equipment power usage) were not available in any explicit form and had to be

estimated from related measures or industry guidelines. As a result, a majority of the time needed to

simulate the building was spent distilling these various data sources down into the inputs required by

Design Advisor. Due to the nature and format of the reported data, this would likely be true for any

other simulation suite.

Using these initial inputs, a baseline run was performed. The goal was to first validate Design

Advisor's stock capabilities - that is, to check the accuracy of the outputs without any additional post-

simulation calculations. The results from this first simulation are shown below in Figure 16..
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Energy Usage - Initial Simulation
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Figure 16: Initial simulation results for One Montgomery Plaza

This comparison proved to be very informative in terms of shortcomings in Design Advisor and

changes that could be made for the sake of usability as well as simulation accuracy. The first is that

Design Advisor's electricity (lighting and cooling) usage predictions reflect primary or source energy

usage, which means that HVAC system efficiency and transmission losses are taken into account. While

this is useful from a sustainability perspective, as it provides a more inclusive view of a building's impact,

it can be less useful to a building manager looking at site energy usage measurements on a utility bill. It

also makes the simulation seem far less accurate than it is, as seen through the three electricity curves

in Figure 16.

The second is that air handler and miscellaneous equipment electricity usage is not accounted

for in any of the final report categories. Equipment energy usage (in watts per unit area) is a required

input, but it is treated only as a constant internal heat load. Similarly, hourly air change rate is an input,

but Design Advisor does not calculate the energy required to actually facilitate that movement of air

(which, in the case of One Montgomery Plaza, turned out to be fairly constant throughout the year).

The energy used by the HVAC equipment was included using a simple rule of thumb: 1 CFM of airflow

takes 1 W of power to move. While the output categories are clearly denoted as heating, cooling, and

lighting, the lack of these other major usage categories can be confusing to users. It also paints a too-

optimistic picture of the energy efficiency of the simulated building: in the case of One Montgomery

Plaza, total monthly electricity consumption was underestimated by up to 250 MWh before these loads

were included.
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Lastly, a reexamination of the available data on One Montgomery Plaza led to a third change,

the inclusion of multiple occupancy schedules. During the heating season, in order to retain occupant

comfort levels, the boiler and air handlers run on what is essentially a 24-hour schedule [47]. As Design

Advisor relaxes internal temperature and air change requirements during unoccupied hours, this meant

that a significant use of both heating and electrical energy was being missed. To correct this, the

simulation was split into two: one full-building simulation using the original occupancy schedule for the

cooling season and one with a 24-hour schedule for the heating season. Alongside this, the assumed

boiler efficiency was changed from the ideal case (100%) to a more realistic value (90%). The energy

usage predictions were extracted for the specified months and combined to yield the final results show

below in Figure 17 and Figure 18.
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Figure 17: Heating and electricity usage for One Montgomery Plaza
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Annual Energy Usage Breakdown
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Figure 18: Breakdown of Design Advisor predictions for heating, cooling, and lighting energy usage per unit area for One
Montgomery Plaza

With the aforementioned changes and additions in place, the energy usage predictions from

Design Advisor agreed fairly closely with the actual utility data for the building, especially for electricity

usage. Heating energy usage was still under-predicted for much of the winter and spring, most likely

due to the nature of the 24-hour heating cycle. This led to an overall mean yearly bias error (for the

combination of the two energy types) of -11.2% and a root-mean-square error (RMSE) of 27.1%. The

absolute monthly error ranged from 2.9% in December to 29.1% in April. Additional operational details

that would reduce these errors would also be required for an accurate simulation using a more

comprehensive program such as EnergyPlus.

Philadelphia Navy Yard Building 101

The second case study focused on Building 101 at the Philadelphia Navy Yard, which acted as the

central office for the Hub project. It is shown in map view below in Figure 19. It is a 55,000 square foot

office building with three aboveground floors, an attic, and a basement. [48] It is billed as "one of the

nation's most highly instrumented commercial buildings," [49] leading to a plethora of detailed data

about its operation.

45



Figure 19: Map view of Building 101 [50]

The general process behind the simulation of Building 101 was the same as that for One

Montgomery Plaza. First, input values were extracted or estimated from the documents made available

through the Hub: for example, floor dimensions and air change rates were determined through an

envelope air tightness study performed by Camroden Associates [51] and the ventilation mode (joint

mechanical and natural ventilation) was chosen based on site photos that showed user-operable windows.

As Design Advisor assumes a rectangular floor plan, the overall building dimensions were set such that

the length and total floor area matched reality. Finally, the building was split into three separate

simulated regions - basement, main floors, and attic - to allow for differences in glazing percentage,

room height, and insulation.

Continuing to follow the process from the previous demonstration building, a second set of

simulations was performed making use of additional knowledge about Building 101. A before, the

furnace efficiency was lowered, plug loads and air handler energy usage added (using the same rule of

thumb described earlier), and the occupancy schedule was modified to more accurately reflect the heating

and cooling of the actual building. The most significant change involved corrected the floor plan and

region definitions for the simulated building. As shown in Figure 19, Building 101 is roughly T-shaped,

with a small foyer on its eastern side leading to the main floor area (running north-south). These two

sections were treated and modeled separately. The airflow between them was assumed to be minimal

based on the floor plans of the building. Further examination of the available information concerning the

attic (specifically, that it is "used only for mechanical and storage space" [52] and appears to lack

windows) led to the decision to approximate it as a highly-insulating roof. The basement was left as its

own region. This led to a total of four simulated sections (basement and aboveground floors for both the

lobby and main wing). The results from this final set of simulations are summarized in Figure 20 and

Figure 21. The error bars on the measured data denote the standard deviation in each month's

measurement.
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Figure 20: Heating and electricity usagefor Building 101
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Figure 21: Breakdown of Design Advisor predictions for heating, cooling, and lighting energy usage per unit area for Building 101

Again, the predictions from Design Advisor closely match the actual energy usage of the building

for much of the year. The monthly heating predictions are all within the spread of the data between the

different years for which data was provided (as indicated by the bars on the measured data points).

Electricity usage is overestimated in December and underestimated in the shoulder months between
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the heating and cooling seasons. It is difficult to determine the source of this error, as the occupancy of

the building was generally very low and changed drastically over the period of time for which data was

made available. This led to an overall yearly mean bias error of 2.6% and an RMSE of 31.4%. The

absolute monthly error ranged from 1.2% in July to 46.3% in December. The yearly RMSE for both this

building and One Montgomery Plaza compares favorably to those from the other simulation engines in

the Hub Project (some of which are based on EnergyPlus), which ranged from 10% to 20%.

MIT Building E40

The third validation building was Building E40, also known as the Muckley Building, located on

MIT's campus. The building was constructed in 1930 [53] and underwent major renovations in 1980 and

2000 [54]. Its usable floor area (across four above-ground floors and a basement) is primarily office

space [55] (for graduate students, meeting rooms, etc.). Half of the basement is devoted to a chilled water

plant that is considered separate from the building, both for modeling and utility billing purposes. It was

later discovered that a portion of the remaining half of the basement houses a bank of servers, which

could account for some of the error in electricity usage seen in Figure 23. An overhead map view of the

building is shown in Figure 22.

E370

i8 E_ E25
E17

Figure 22: Map view of MIT Building E40 [56]

Again, simulation inputs were determined primarily through documents concerning the building

(in this case, made available by MIT's Department of Facilities). Internal temperature and building

insulation specifications were confirmed via an in-person IR survey of the site. This was done by taking

corresponding measurements of air and surface temperature on both sides of various external walls of the

building. Assumptions were made about convection and radiation heat transfer coefficients based on the

conditions at the time. The calculations are as follows:
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Tinternal air = 71OF = 21.70 C

Tinternal wall = 66F = 18.90C

Toutside air = 37F = 2.80 C

Texternal wall = 41OF = 50C

hinternai 5 W

R = (25)

4 = hinternalATin = (hinternai + hR) * (Tinternal air - Tinternal wall) = 10 2 * (2.8 K) = 28
m M2

(26)

ATwai - 139 K =0.5 m = 2.85 hr ft2 *F

28;p- W Btu

Using the data described above, initial energy usage simulations were performed with the weather

file for Boston from the Design Advisor website. Steam and chilled water consumption were converted

to kWh-equivalent to ease comparison to the cooling and heating predictions from Design Advisor (1 ton-

hour of chilled water = 3.517 kWh and 1 pound of steam = 0.3523 kWh). Simulation results are

summarized in Figure 23, Figure 24, and Figure 25 and are compared to average monthly utility usage

from June 2010 to February 2014.

Electricity Usage
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Figure 23: Electricity usage for MIT Building E40
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Chilled Water Usage
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Figure 24: Chilled water usagefor MIT Building E40

Steam Usage
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Figure 25: Steam usage for MITBuilding E40

Across all three utility categories, Design Advisor's predictions were less accurate than for the

previous two buildings (especially for electricity and steam usage). However, it has since been found

that several important factors were either entirely unknown or otherwise unaccounted for and could

explain these errors. As noted previously, a bank of servers (of unknown specification) is accounted for

in Building E40's electricity usage. Given the power and cooling requirements of such devices, it is

plausible that this could lead to the gap between the predicted and actual electricity consumption seen

above. Without additional information, however, it is impossible to determine and will require further

work.
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Additionally, there is significant year-to-year variation in utility usage whose cause, as of yet, has

not been found. For example, chilled water usage in March ranged from 5,050 kWh-equivalent in 2012

to 45,076 kWh-equivalent in 2011 (with a standard deviation, shown via the error bars on Figure 24, of

21,892 kWh-equivalent). Similarly, steam usage in June ranged from 8,808 kWh-equivalent in 2011 to

69,057 kWh-equivalent in 2013 (with a standard deviation of 30,233 kWh-equivalent). This implies the

presence of simultaneous heating and cooling in the building. In the case of steam, the monthly

averages appear to indicate that a leak developed some time in 2012 (the summer when steam usage

first began to rise). For the most part, however, these abnormal usage patterns remain unexplained.

Resulting Improvements

As mentioned previously, much of the value in performing these validation simulations lay not

just in quantifying Design Advisor's accuracy but also in discovering its weaknesses. As such, many of

the changes discussed here were subsequently or will be added to Design Advisor to improve its

usability and reliability for end users. These are briefly summarized below:

" Option to display site instead of source energy usage, allowing for comparison with actual utility

bills without additional hand calculations

" Change "Lighting" category to "Electricity" to include lighting, plug loads, and an estimation of

air handler and fan energy usage based on air change rate requirements

" Include more realistic estimates of furnace efficiency and chiller coefficient of performance

Other steps that were taken during the validation process have not been added to the program in

order to prevent user interface clutter and limit the number of new inputs. These indude but are not

limited to: non-rectangular building layouts, multiple occupancy schedules per year, and allowing for

different glazing percentages across floors. While these options were needed for these simulations, it

would be difficult to implement them fully without overwhelming the target audience with or artificially

limiting the number of possible variable combinations.
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Optimization

Once a user models their proposed building design, it is not always clear what the takeaway

should be. Knowing the energy use of a building does not necessarily imply knowledge of what should

be changed to improve its performance. One possible solution to this is an optimizer, which would

remove the guesswork by automatically finding the most energy-efficient solution based on the original

design and the given constraints. As discussed previously, the challenge is not just to develop and

implement any optimization algorithm (something as simple as an exhaustive parametric search would

find an optimal solution) but to strike a balance between speed and accuracy to provide the maximum

value to the user.

The Design Advisor website has, for some time, had a placeholder entry for an optimizer.

Despite being nonfunctional, it served as the basis for the optimizer detailed here. The original user

interface is shown in Figure 26.
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Figure 26: Original Design Advisor optimizer interface

This mockup has two key features that informed and guided the optimizer development

process. The first is the integration of the optimizer into the overall scenario saving system in Design

Advisor. As noted, the optimized building can be treated as a normal user-created scenario, allowing for

direct comparison to the original design as well as further edits. The second is the user-selectable

constraint system. Allowing the user to set not only variable limits but whether they vary at all ensures

that the final design conforms to budgetary, geometric, or other constraints. Limiting the number of
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inputs that can change also serves to reduce the problem domain and the number of simulations that

need to be performed.

A hybrid optimization technique was explored as part of this work. The optimization itself is

handled using a genetic algorithm, which uses successive generations of sets of "chromosomes"

(representing encoded sets of inputs) to work towards an optimal solution. To simplify the search and

initially move toward an optimal solution, a multistep multivariate regression precedes the genetic

algorithm, as used (with Design Advisor) by Carrie Brown, a previous graduate student at MIT [57]. It

involves multiple levels of regression that allows increased accuracy compared to a single regression

calculation. Both methods are detailed in the sections below.

Genetic Algorithm: Background and Usage

A genetic algorithm is a type of search algorithm that is often applied to optimization problems.

Its name comes from the fact that it mimics natural selection in that the fittest solutions in each

generation are the most likely to survive and pass on their traits. Numerous researchers worked

independently on the application of evolutionary strategies to optimization problems throughout the

1950s and 1960s. The framework behind the modern genetic algorithm, however, was introduced by

John Holland in his 1975 book Adaptation in Natural and Artificial Systems [58]. Holland's method

defines and makes use of many of the features discussed below: binary-encoded chromosomes and

genes, chromosomal crossover, mutation, etc. Previous implementations focused on individual

evolutionary strategies (e.g., Fogel, Owens, and Walsh selecting the fittest solution from randomly-

mutated options), lacked the scale of Holland's version (e.g., Rechenberg's use of a single pair of

"parent" chromosomes rather than a larger population), or simply did not get the widespread academic

attention and use that Holland's did [58].

Keeping with the evolution analogy, the solutions (or, in the case of Design Advisor, the inputs

that will determine the solution) are stored in binary-encoded "chromosomes." The chromosomes can

be subdivided into "genes" depending on the number of inputs that may be required. The number of

bits comprising each gene (along with the range of possible values the trait or input encoded in the gene

can take) determines the resolution of the search. For example, a 12-bit gene can take 4096 different

values, meaning that a search on an input that ranges from 0 to 1 would have a resolution of 2.44E-4. A

higher-resolution search can lead to a more precise solution but is likely to take longer, as a stricter

convergence criterion will be required.
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The general steps in the genetic algorithm used here are as follows:

1. Form initial chromosome set

2. If adding mutations, flip bits at random

3. Evaluate fitness of each chromosome (in this case, by simulating the building described by it)

4. Determine selection probability of each chromosome by dividing individual fitness by sum of

fitness values

5. Select new set of chromosomes randomly according to calculated probabilities

6. Pair up chromosomes at random

7. Select crossover points at random and perform crossover on each pair

8. Repeat from step 2 until convergence criteria are reached

There are several ways to form the initial chromosome set (step 1), each of which addresses

different concerns [59]. The chromosomes can be generated pseudo-randomly within the search space,

which is a common method and adequately satisfies concerns about both the diversity of the population

and speed and ease of implementation of the generator. There are also quasi-random generation

schemes that space the chromosomes out on a grid or checks for some specified minimum distance

between the pseudo-randomly generated points [60]. This enforces population diversity more strictly

than pure pseudo-random generation. Lastly, the initial population could be chosen to be optimal in

some sense, which ignores diversity but gives some direction to the algorithm. Beyond the method

itself, the size of the population is also a concern [61]. A small population may lack the ability to contain

enough diversity to avoid local maxima or minima. A large population would be preferable, but

computation time will increase both due to the number of simulations required per generation and

because the solution set will likely take longer to converge.

Step 2 is a simple programming exercises and requires no further explanation. For step 3, the

fitness function being evaluated depends on the scenario in question. For Design Advisor, the fitness

function is related to the difference between the energy usage of the building encoded in the

chromosome and that of the user's original design. Depending on the goals of the designer, another

appropriate function might be related to the total fuel cost to power the building (based on electricity

and heating oil requirements). In the case of the weights for the retrocommissioning algorithm

(discussed in a later chapter), the fitness function is related to the total error in predicted savings using

the weights from the chromosome.
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The reproduction (steps 4-7) is meant to mimic reproduction in actual creatures. For the

purposes of reproduction, chromosomes are paired off into "parent" sets and have their genetic

information mixed to create "offspring" chromosomes (the next generation). This can be, broadly

speaking, split into two processes: parent selection and the crossover itself. There are four main parent

selection strategies that are commonly used: proportionate, linear rank, tournament, and truncation

selection [62], [63]. Proportionate selection is the method used here (implemented in steps 4-6). In it,

chromosomes are assigned a selection probability in direct proportion to their fitness:

P! = fitnessi (28)
=ifitness

These probabilities are then used to select chromosomes to be paired. in the algorithm described here,

this is implemented by first filling a placeholder generation with copies of the original chromosomes

chosen randomly as per the calculated probabilities. The placeholder copies are then paired up at

random. This method is easy to implement, but has several shortcomings. It can only be applied in

cases where the fitness function increases with the desirability of the solution. For example, in the case

of Design Advisor, the fitness function has been written such that it increases with decreasing energy

usage, which is the desired trait. Proportionate selection is also susceptible to single individuals

dominating the reproduction process. This can lead to limited genetic diversity in subsequent

generations, which will hinder the algorithm's ability to find the true optimum solution.

When using linear rank selection, the probability of a given chromosome being chosen for

reproduction depends not on its actual fitness but on its fitness rank relative to the rest of the

generation. This rank is used to assign a new fitness value as follows [62]:

fnew,i = (N-r)*fn -fnmin) + fnew,min (29)

Where N is the number of chromosomes in the generation, r, is the rank of chromosome i, and f,,,,

and fn.,,,min are the predetermined maximum and minimum fitness values to be assigned. These new

fitness values are then used to select parenting pairs using the same roulette wheel/probability-based

method as in proportionate selection. Linear rank selection is less susceptible to dominant individuals

than proportionate selection but, conversely, it can magnify the influence of weaker individuals,

especially when using a small population.

Tournament selection does not rely on fitness-based probability at all. In it, a subset of

chromosomes of size k is taken from the generation of size N. From this subset, the most-fit individual is

chosen to become a parent. A common choice for k is 2 (a process known as binary tournament

selection) [63]. In tournament selection, the only way for the least-fit chromosome to reproduce is if
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there are multiple individuals tied for the lowest fitness and they are the only ones chosen for the

tournament. Otherwise, the presence of individual chromosomes in the parenting pairs will be

inconsistent: depending on the subsets that are chosen, any given chromosome could be highly under-

or over-represented.

Truncation selection is the simplest of the four methods described here. Some predetermined

top-performing fraction of the chromosomes are selected to reproduce (0.5 and 0.3 are common

choices [63]). Parenting pairs are then formed and each pair reproduces a number of times equal to the

inverse of the truncation factor (twice each for 0.5, etc.). Truncation selection is not very common in

practice as the truncation pressure it provides lacks any nuance or detailed selectivity.

Once the pairs of parents are chosen, there are also multiple strategies that can be used to

perform the genetic crossover operation. Four common methods are discussed here: one point, two

point, uniform, and arithmetic crossover [64]. In one point crossover, a single index point is chosen for

each pair of binary-encoded chromosomes. Two offspring are created by exchanging the values from

the parents from that point to the end of the chromosome. This is the crossover method that is used in

the algorithm described here. Two point crossover introduces a second such swap point. In uniform

crossover, each binary digit for both of the offspring is chosen from the corresponding index point in the

parents according to some predetermined probability (often 50% for each parent). The two offspring

will not share a parental source at any given index, so in practice the selection probability determines

how intact the two parents remain in the next generation. Lastly, in arithmetic crossover, each offspring

gene is formed using a weighted average of the corresponding parental genes, as follows [64]:

Offspring,k = a * Parent;=i,k + (I - a) * Parent*1 k (30)

Where i is the number of the offspring (1 or 2), j is the number of the parent (1 or 2), and k is the index

of the gene.

The appropriate convergence criteria are dependent upon many factors, including but not

limited to: the complexity of the problem, the number of chromosomes per generation, the resolution

of each gene, the presence of mutations, and the amount of time available for the search. One could

choose to end the search based on the most or least-fit chromosome in the generation (to ensure the

quality of one solution or the entire population), the average or total fitness of the population, the

difference between subsequent generations, or the amount of time elapsed or number of generations

simulated [651, [66]. A combination of these criteria could be employed as well, depending on the

scenario.
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Multistep Multivariate Regression

Multistep multivariate regression is a technique intended to take advantage of the

computational speed and ease of implementation of a linear regression without the loss of accuracy that

often comes with deriving said regression from a widely-varying domain. By repeatedly subdividing the

data set and performing new regression analyses, we can drill down to a more accurate prediction

without incurring a significant penalty in terms of computation time. The methodology used here was

adapted from work done by Carrie Brown, a former graduate student in the Building Technology lab at

MIT [57].

The data set is first sorted by the selected independent variable. Here, that would be heating,

cooling, or other electric energy usage, depending on the needs of the user. It is then divided in two

different ways - once into overlapping halves and once into overlapping quartiles. The overlap is

intended to mitigate errors in the regression from edge cases. A multivariate regression analysis is

performed on each of these seven tiers (full ordered data set, both halves, and all four quartiles),

leading to seven regression formulas for each energy type. The percentage ranges defining the tiers [57]

and the resultant counts for the data set used in the optimizer are given below in Table 13.

Tier Min % Max % Min Count Max Count
1 0 100 1 314928
2a 0 55 1 173210
2b 45 100 141717 314928
3a 0 27 1 85031
3b 23 52 72433 166912
3c 48 77 151165 242495
3d 73 100 229897 314928

Table 13: Tier limits for multistep regression

A set of graphs showing the ordering and subdivision process for the heating energy usage

portion of the data set used here is given in Figure 27. The parameters defining this data set are given in

Table 14, Table 15, and Table 16.
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Figure 27: Subdivision of heating regressions

The equations derived from these regression analyses are used sequentially to predict the

energy usage of a given target building. At each level, the input variables that define the building are
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used to evaluate the corresponding regression formula. Where the resultant predicted energy usage

falls amidst the ordered set determines which equation will be used in the subsequent level of

regression. A building found to be in the lower half of heating energy usage as per the Tier 1 regression

would move on to Tier 2a, and so on. A single design can move separately through the regression

subdivisions corresponding to each energy usage type, leading to a final predicted EUI that combines the

three.

Optimizer

The optimizer developed here for Design Advisor makes use of both multistep multivariate

regression and a genetic algorithm to determine the most efficient building design within the given

constraints. The regression allows the algorithm to use a pseudo-elitist approach during the beginning

of the optimization process, eliminating regions of the search domain that it knows, a priori, will not

contain the desired solution. The genetic algorithm can then operate within the reduced search

domain, providing greater accuracy than the regression can.

The first step in forming the multistep regression is, as discussed, performing multiple

representative simulations across the relevant variable ranges. As more variables are being considered

than in Carrie Brown's work, the number of steps for each variable has been reduced. A list of variables

with their respective ranges and step sizes is given below in Table 14.

Input Variable Name Input Variable Unit Min Max # of Steps
Lighting Requirements lux 200 800 3
Equipment Load W/mA2 5 15 3
Lighting Control Type N/A 2
Ventilation System N/A 2
Thermal Mass N/A 2
Roof Description N/A 3
Roof Insulation R-Value (mA2-*C)/W Twice wall R-value
Room Depth m 4 10 3
Window Area Percentage % 20 80 3
Window Type N/A 3
Glass Type N/A 2
Wall R-Value (mA2-*C)/W 1 5 3

34992 Total runs
5 Seconds per run

174960 Total seconds
2916 Total minutes
48.6 Total hours
2.03 Total days
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Table 14: Multistep regression variables

The cities chosen are listed below. In order to increase the applicability of the regressions, the

cities are converted from a single categorical variable to a set of five continuous numerical variables as

in Carrie Brown's work. The five variables are latitude, heating and cooling degree days (using a 65*F

baseline) [67], average relative humidity, and average global horizontal solar radiation. Latitude,

relative humidity, and solar radiation were taken directly from the weather files used by Design Advisor.

The solar radiation values were averaged after all null readings (implying complete darkness) were

removed. One direction for future research is immediately visible once the cities are broken down in

this manner: none of the nine cities are located in the Southern Hemisphere. This is due to the fact that

the vast majority of the weather files included with Design Advisor are from cities in the Northern

Hemisphere, but it could still be an important consideration if and when the list of available cities is

expanded.

Latitude
HDD (65-F
Baseline)

CDD (65-F
Baseline)

Relative
Humidity (%)

Solar Radiation
(Wh/m 2)

Anchorage 61.22 10655 33 71.18 209.06
Boston 42.36 5412 903 65J2 326.02
Delhi 28.61 791 5312 56.45 455.69

Los Angeles 34.05 1537 1144 69.60 415.26
Pittsburgh 40.44 5508 1033 73.74 315.67
St. Louis 38.63 4817 1659 69.49 351.85
San Francisco 37.78 3254 215 73.74 395.69
Seattle 47.61 4789 357 73.23 282.61
Washington, D.C. 38.90 3947 j 1817

Table 15: Multistep regression cities and weather variables
67.91 342.87

The remaining variables are held constant:

Input Variable Name

Occupancy Start
Occupancy End
Person-desnity
Max Indoor Temp.
Min. Indoor Temp.
Max Relative Humidity
Fresh Air Rate

Air Change Rate
Unoccupied Air Change Rate
Max Temp. Unoccupied
Min. Temp. Unoccupied

Input Variable Unit

Hours
Hours
People/mA2
0C
0C

L/s per person
roomfuls/hour
roomfuls/hour
*C
0C

60

City

Value
7

19
0.1
26

.20
60

8
1.8

0
28
18



Building Geometry N/A One-sided
Roof Insulation Location N/A Top
Number of Floors N/A 1
Room Width m 5
Room Height m 3
Primary Fagade Orientation N/A East
Window Overhang Depth m 0
Blind Width mm 15
Blind Schedule (Occupied Hours) N/A 4
Blind Schedule (Unoccupied Hours) N/A 2
Blind Angle When Closed degrees 90
Slat Emissivity N/A 0.2
Slat Absorptivity N/A 0.9

Table 16: Inputs held constant during multistep regression

The predicted energy consumptions from these runs (broken into heating, cooling, and

electricity) are shown below in Figure 28. They have been sorted with respect to their own usage type

as for the multistep regression.

Energy Consumption Curves

o - Heating
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Figure 28: Predicted energy consumption from multistep regression simulations

The steps in the electricity usage plot come from the addition of HVAC and plug loads to Design

Advisor's original lighting energy usage calculations. The rule of thumb used for HVAC-related energy

usage depends only on room dimensions and air change rate, all of which are held constant with the
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exception of room depth, which varies between discrete levels rather than as a continuous numerical

variable. Similarly, the energy usage attributed to miscellaneous plug loads is simply taken from the

discrete "Equipment" input in Design Advisor. This means that when the lighting energy usage is

constant (such as when the lights are always on, which is the least-efficient setting and would fall on t

right-hand side of Figure 28), the only remaining possible variance is stepwise rather than smooth.

The regression and subdivision process was carried out as previously described using R. The

coefficients for each of the 21 regression equations can be found in Appendix A. The root-mean-

squared and average percentage errors for each of the tiers of each of the three energy usage types

(heating, cooling, and other electricity) are given in Table 17.

Root-Mean-Square Error for Regression Subdivisions (kWh/m2)
Tier 1 Tier 2a Tier 2b Tier 3a Tier 3b Tier 3c Tier 3d

Heating 26.10 6.03 24.46 0.91 5.36 7.18 26.54
Cooling 14.88 5.48 15.49 2.99 4.29 5.52 16.65
Electricity 14.75 3.11 5.52 1.20 3.25 6.89 0.00

Average Percentage Error for Regression Subdivsions (kWh/M 2)
Tier 1 Tier 2a Tier 2b Tier 3a Tier 3b Tier 3c Tier 3d

Heating -275.97 -42.88 -0.31 7.22 8.66 1.47 0.92
Cooling -138.38 -83.07 0.98 27.26 2.39 0.92 0.28

he

Electricity 1 -35.08 1.44 0.86 0.27 2.05 1.76 -3.6E-16
Table 17: Root-mean-square and average percentage errors from multistep regression

The errors shown here compare favorably, both in trend and in value, to those found by Carrie

Brown through her regression analysis (albeit with a different set of cities and selected variables) [57].

For heating and cooling, the primary cause of the relatively large RMSE for tiers 1, 2b, and 3d is the

subset of highly-consuming or energy=inefficient buildings as seen at the right side of Figure 27. The

electricity predictions are somewhat immune to this due to the limited combination of variables that

directly affect them (lighting requirements, lighting control type, equipment loads, location, and window

description). Conversely, percentage errors are greatest in magnitude for the buildings that consume

the least energy, as even a slight error in absolute terms can give rise to a large percentage difference.

Additionally, due to the nature of linear regression, highly negative energy usage is often predicted for

buildings with near-zero (but obviously positive) actual energy usage of the selected type.

Using these regressions, a parametric search is performed across the variable ranges specified

by the user. Each given numerical variable range is divided into five equal levels, and every combination

of these levels, the varying categorical inputs, and the non-varying parameters is tested using the
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multistep regressions for the energy type of interest. This means that the total number of combinations

depends on the number of varying parameters selected by the user. Through this, we can find the one

mesh region within the variable space (as opposed to the entirety of the variable space) in which the

simulation inputs for the optimal building design are most likely to be found. Note that a rough

estimate of the value of those inputs can also be found, but the accuracy of this estimate is limited by

the accuracy of the regression itself. A simple two-dimensional visualization of this search space

reduction strategy is shown below.
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Figure 29: Simplified example of search space reduction

In this case, the local regression curve is modeled as a paraboloid of revolution. In this model,

the regression was formed using data taken at the mesh points on the X-Y plane. The true maximum of

the paraboloid lies at (0, 0, 40), which falls between these mesh points. By testing input values across

the relevant variable ranges (-10 to 10 for both X and Y), we can identify the mesh points between which

the optimal solution lies. This mesh region is highlighted on the X-Y plane in Figure 29. By doing this,

the search space is reduced from 25 such mesh regions to one. The more variables/dimensions are

considered, the more dramatic this reduction becomes.

Additional validation work was performed on several cities that were not included in the original

regression:

City Latitude HDD CDD Rel. Hum.(%) Avg. Sol. Rad. (Wh/m 2)
Denver 39.739167 6224 1118 52.0229 418.4259

Chicago 41.881944 6167 1128 70.7229 328.2181
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Houston 1 29.762778 1351 1 3409 1 75.22371
Table 18: City data for multistep regression validation

HEATING Run 1 Run 2 Run 1 Run 2

299.986

Run 1 Run 2

City Denver Denver Chicago Chicago Houston Houston

Light Req. 500 400 500 400 500 400

Equipment Load 5 8 5 8 5 8
Light Control Indep. Dim Always On Indep. Dim Always On Indep. Dim Always On

Ventilation Control Mech Hybrid Mech Hybrid Mech Hybrid

Thermal Mass Low High Low High Low High

Roof Type Bitumen Cool Bitumen Cool Bitumen Cool

Room Depth 5 4 5 4 5 4

Window Area % 60 40 60 40 60 40

Window Type Single Triple Single Triple Single Triple

Glass Coating Clear High perf. Clear High perf. Clear High perf.

Wall Insulation R-value 1 2 1 2 1 2

Design Advisor Result 255.92 158.07 304.96 192.00 46.97 19.45

Regression Result 178.90 48.82 209.54 81.15 96.37 45.02

% Difference -30.10 -69.11 -31.29 -57.73 105.17 131.47

COOUNG Run 1 Run 2 Run 1 Run 2 Run I Run 2

City Denver Denver Chicago Chicago Houston Houston

Design Advisor Result 23.49 16.33 40.78 30.47 223.81 194.52

Regression Result 23.70 25.48 58.78 56.15 121.37 114.47

% Difference 0.89 56.03 44.14 84.28 -45.77 -41.15

ELECTRICITY Run 1 Run 2 Run 1 Run 2 Run 1 Run 2

City Denver Denver Chicago Chicago Houston Houston

Design Advisor Result 11.64 82.87 13.17 82.87 9.16 82.87

Regression Result 12.95 66.28 15.14 65.68 10.88 61.24

% Difference 11.25 -20.02 14.96 -20.74 18.78 -26.10

TOTAL Run 1 Run 2 Run 1 Run 2 Run 1 Run 2

City Denver Denver Chicago Chicago Houston Houston

Design Advisor Result 291.05 257.27 358.91 305.34 279.94 296.84

Regression Result 215.55 140.58 283.46 202.98 228.62 220.73

% Difference -25.94 -45.36 -21.02 -33.52 -18.33
Table 19: Comparison of results from Design Advisor and regression

-25.64
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These runs show markedly higher percentage error than the averages for the cities used in the

regression process (see Table 17). Assuming the regressions themselves are sound, this is likely due to

the selection of the subdivision points and the wide range of EUIs covered by the fourth quartile (tier

3d). As seen in Figure 28, designs with predicted EUis (for any of the three energy types) of roughly 100

kWh/M 2 and above will fall into tier 3d. This covers a wide range of situations, from relatively-inefficient

buildings in moderate climates to high-performing buildings in extreme environments. As a result (and

as discussed above), residuals for individual designs using the tier 3d regression formula can be very

large. There are several possible solutions to this issue. The most inefficiently-constructed buildings -

for example, those with single glazed window units and meager wall insulation - could be removed from

the data set, possible reducing the variety of disparate scenarios within each tier. Alternatively, all

outliers with respect to EUI could be removed. This would eliminate designs with near-zero energy

consumption, which often lead to negative energy usage predictions when using a regression, as well as

the highly-consuming designs that cause the sharp changes in slope seen in Figure 28. Lastly, the

subdivision points could be changed, effectively making the "mesh" finer where the errors are the most

significant.

Once the best-performing set of parameters is found, the original variable maxima and minima

are reduced to one step above and below the levels in the best combination, respectively. At this point,

the optimization process is handed to the genetic algorithm. The initial chromosomes are based, when

applicable, on the limits of the previously-identified mesh region (i.e., the reduced limits). For inputs

that are allowed to vary but were not included in the regression simulations, the full user-defined range

is employed. Each parameter has a gene length associated with it which, along with the range of

possible values, defines the resolution of the variable. Each chromosome is built up by concatenating

groups of binary digits corresponding to these gene lengths. Each bit is set using a uniform random

variable. String-based inputs (e.g., roof composition or window type) are represented by a unique

integer for each possible option. In cases where the input has fewer possible options than binary values

representing it (such as thermal mass, which has three options but is represented by two bits), the extra

binary values are assigned to Design Advisor's default for that variable. A simulation is performed based

on the user's original inputs and the resultant energy consumption is used as the basis for comparison

for the fitness function. This is true for whichever mode of energy usage the user chooses to

investigate: heating, cooling, electric, or all three. Energy consumption in general is penalized, with

consumption beyond the baseline punished more severely:

J = Esimulated + C * (Esimulated - Ebaseline) (31)
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Where J is the cost associated with the given run and C is the additional penalty factor for excess

consumption. For testing purposes, C has been set to 2. The fitness function is simply the inverse of the

cost (so that it decreases with increasing energy usage):

fi =1 (32)

As a proof of function of the genetic algorithm alone and to test the convergence criterion, a

selection of runs was performed for an idealized shoebox room located in Boston. Here, the

convergence criterion refers to the maximum variation between the sum of the fitness values from the

previous generation and the sum from the current generation. When this falls below the set threshold

and the minimum EUI from the current generation's simulations is less than that of the original design,

the genetic algorithm's search is said to be complete. The best-performing design in the final generation

is reported to the user. As discussed previously, it would be wrong to refer to this design as truly

optimal, since there is no statistical guarantee that the genetic algorithm will find the global minimum

EUI each time. As this criterion is based on a sum and not on an individual's fitness, it would, in reality,

be linearly dependent upon the number of chromosomes in the generation. In this case, each

generation contained 10 chromosomes. In addition, while there is some chance that the encoded

simulations could change between generations without significantly altering this fitness sum, it is more

likely that meeting this benchmark indicates some convergence on a set of building parameters. The

results of the first set of tests, examining roof composition, roof insulation R-value, room width, window

area as a percentage of wall area, and lighting requirements are shown below:

HEATING

Roof Window Light Time
Roof R-Val Width Area % Re. EUI % Diff Gens s Criterion

Original Bitumen 3 5 60 400 243.86
Run 1 Cool 3.25 4.5625 45.625 375 223.39 -8.4 20 902.3 5.00E-06
Run 2 Green 3.4375 4.9375 49.375 425 227.13 -6.9 11 518.3 5.00E-06
Run 3 Bitumen 2.5 4.1875 42.8125 337.5 217.65 -10.7 31 1391.6 1.OOE-06
Run 4 Bitumen 2.6875 4.75 48.4375 412.5 224.72 -7.8 20 903.9 1.OOE-06

COOLING

Roof Window Light Time
Roof R-Val Width Area % Req. EUI % Diff Gens (s) Criterion

Original Bitumen 3 5 60 400 37.24
Run 1 Cool 1 4.1875 41.875 325 28.2 -24.3 9 406.6 5.00E-06
Run 2 Green 1 4.375 43.75 350 28.2 -24.3 16 745.4 5.OOE-06
Run 3 Green 3.4378 5.125 51.25 450 30.76 -17.4 27 1268.5 1.00E-06
Run 4 Green 3.25 4.375 43.75 350 28.2 -24.3 20 926.5 1.OOE-06
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Roof
Roof
R-Val

ELECTRICITY

Window I Light
Area % I Req. EUI % Diff Gens

Time
(s) Criterion

Original Bitumen 3 5 60 400 67.07
Run 1 Cool 2.125 5.6875 57.8125 337.5 57.22 -14.7 6 273.4 5.OOE-06

Run 2 Green 1.75 4 40 300 50.42 -24.8 18 839.6 5.OOE-06
Run 3 Cool 2.5 4 40.9375 312.5 52.45 -21.8 6 280.3 1.00E-06
Run 4 Cool 2.5 4.375 43.75 350 58.69 -12.5 11 499.8 1.OOE-06

TOTAL

Roof Window Light Time
Roof R-Val Width Area % Req. EUI % Diff Gens (s) Criterion

Original Bitumen 3 5 60 400 348.17

Run 1 Green 2.5 4.375 44.6875 362.5 315.63 -9.3 6 278.7 5.00E-06

Run 2 Bitumen 3.25 4 40 300 290.42 -16.6 14 634.9 5.00E-06

Run 3 Bitumen 3.4375 4.75 47.5 400 319.77 -8.2 15 593.2 1.00E-06

Bitumen 3.25 4.1875 42.8125 337.5 301.72 -13.3 11

Average -15.3 15.1
Table 20: Genetic algorithm test results part 1

456.9

682.49

1.OOE-06

The limits for the selected variables are given in Table 21. Roof type, like other string-valued

variables, does not have a set of limits associated with it.

Variable Minimum Maximum
Roof Type N/A N/A
Roof R-Value 1 4
Width 4 7
Window % 40 70
Light Req. 300 500

Table 21: Genetic algorithm test variables and ranges part 1

A second set of tests was performed using a different selection of parameters (room

orientation, room depth, room width, window glass coating, and lighting control system) to ensure

reproducibility over a wider variety of cases. Note that for lighting control, "Always On" refers to a

system in which the lights are used to meet the lighting requirements regardless of the current natural

lighting conditions, "Indep. Dim" refers to a situation in which each light fixture is individually dimmable

and automatically responds to the lighting needs at its own location, and "Single Dim" refers to a
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situation in which all of the light fixtures in the room dim together in response to the lowest light level in

the room.

Orientation Height
Glass
Coating

HEATING

Light
Control EUI % Diff Gens

Time
(s) Criterion

Original East 5 3 Clear Always On 184.45

Run 1 South 5 2.5 Clear Always On 133.13 -27.8 12 488.1 5.OOE-06

Run 2 Southwest 5.125 2.78 Clear indep. Dim 166.70 -9.6 15 619.3 5.OOE-06

Run 3 Southwest 5.25 2.875 Clear Indep. Dim 170.52 -7.6 17 700.4 1.0E-06

Run 4 South 5 2.5 Clear Always On 133.13 -27.8 18 736.7 1.OOE-06

COOLING

Glass Light Time
Orientation Depth Height Coating Control EUI % Duff Gens (s) Criterion

Original East 5 3 Clear Always On 48.39

Run 1 East 5.75 3.625 High Perf. Single Dimt 30.58 -36.8 38 1551.3 5.00E-06

Run 2 North 5.5 3.344 High Perf. Always On 27.26 -43.7 22 895.5 5.OOE-06

Run 3 Northeast 5.5 3.344 High Perf. Indep. Dim 26.67 -44.9 9 367.0 1.00E-06

Run 4 West 5.5 3.344 High Perf. Single Dim 30.39 -37.2 28 1143.7 1.OOE-06

ELECTRIITY

Glass Light Time
Orientation Depth Height Coating Control EUI % Duff Gens (s) Criterion

Original East 5 3 Clear Always On 83.29

Run 1 Northeast 4.125 2.688 Clear Indep. Dim 12.86 -84.6 10 417.3 5.OOE-06

Run 2 Northeast 4.25 2.969 Clear Indep. Dim 12.90 -84.5 23 945.8 5.OOE-06

Run 3 Southwest 5 2.594 Clear Indep. Dim 13.60 -83.7 23 947.4 1.00E-06

Run 4 Southwest 4.125 2.781 Clear Indep. Dim 12.20 -85.4 12 495.3 1.OOE-06

TOTAL

Glass Light Time
Orientation Depth Height Coating Control EUI % Duff Gens (s) Criterion

Original East 5 3 Clear Always On 316.13

Run 1 East 4.125 2.688 Clear Single Dim 250.35 -20.8 9 376.4 5.00E-06

Run 2 Northeast 5 2.5 Clear Indep. Dim 230.98 -26.9 16 668.9 5.00E-06

Run 3 Northeast 5.125 2.688 Clear IIndep. Dim 238.00 -24.7 14 575.4 1.00E-06

Southeast 5.375 3.063 Clear Single Dim 236.47 -25.2 23 952.4 1.00E-06

Average -41.9 18.1 742.6
Table 22: Genetic algorithm test results part 2

Variable Minimum I Maximum
Orientation N/A N/A
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Depth 4 6
Height 2.5 4
Coating N/A N/A
Light Control N/A N/A

Table 23: Genetic algorithm test variables and ranges part 2

The relationship between time taken (and thus number of generations simulated) and the

resulting reduction in EUI (for the selected usage type) for the first set of tests is plotted in Figure 30. As

shown, the only energy type for which there is a clear increase in optimizer performance with increased

run time is heating. For electricity and total energy use, one of the four optimizations underperformed

relative to the others. As discussed, this is a natural consequence of the stochastic nature of the genetic

algorithm itself. For cooling energy, there seemed to be no relationship or even a slightly negative

correlation between performance and run time at these convergence criterion levels. For an initial

design that is already close to optimal, a relaxation of this test or the introduction of a limit on the total

number of generations may be necessary. As a result, the proper choice for the convergence criterion

remains unclear.

Results from Genetic Algorithm vs. Time Taken
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Figure 30: Percentage EUI reduction vs. time taken for first set of optimizer tests

With these separate tests done, the multistep regression and genetic algorithm were linked, as

discussed, to form the final optimizer module. It was tested using the same sets of varying parameters

as the genetic algorithm alone. In response to the results shown in Figure 30 and some of the more
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counterintuitive recommendations from the genetic algorithm (e.g., decreasing the roof insulation R-

value to save heating energy), a stricter convergence criterion was included. The results are given

below.

Roof
Roof
R-Val

HEATING

Window
Area %

Light
Req. EUI % Diff Gens

Time
(s) Criterion

Original Bitumen 3 5 60 400 243.86
Run 1 Bitumen 3 5 34.375 365 199.46 -18.2 12 378.3 5.0E-06
Run 2 Bitumen 3 5 35.5 380 201.05 -17.6 20 484.8 5.00E-06
Run 3 Bitumen 3.625 6.0625 42.25 390 210.32 -13.8 18 426.2 1.OOE-06
Run 4 Bitumen 3.4375 4.9375 38.125 415 202.72 -16.9 18 453.3 1.OOE-06
Run 5 Bitumen 3.25 4 34.375 365 197.14 -19.2 11 254.9 5.00E-07

Run 6 Bitumen 3.25 4.1875 34.75 370 197.77 -18.9 18 334.6 5.OOE-07

COOUNG

Roof Window Light Time
Roof R-Val Width Area % Req. EUI % Diff Gens (s) Criterion

Original Bitumen 3 5 60 400 37.241

Run 1 Cool 3.4375 4.75 37 400 26.88 -27.8 7 193.7 5.00E-06

Run 2 Cool 3.8125 6.25 43 400 28.07 -24.6 6 148.3 5.OOE-06
Run 3 Green 2.125 5.5 40 360 26.99 -27.5 8 204.9 1.00E-06
Run 4 Green 1.75 4.5625 36.25 390 26.51 -28.8 13 367.2 1.OOE-06

Run 5 Cool 3.25 4.5625 36.25 390 26.68 -28.4 20 372.4 5.OOE-07

Run 6 Green 3.25 4 34 360 25.84 -30.6 16 320.9 5.OOE-07

ELECTRICITY

Roof Window Light Time
Roof R-Val Width Area % Req. EUI % Diff Gens (s) Criterion

Original Bitumen 3 5 60 400 67.07
Run 1 Bitumen 3 4.5625 36.625 395 66.07 -1.5 22 598.7 5.OOE-06
Run 2 Cool 1.375 6.0625 42.625 395 66.71 -0.5 5 143.1 5.OOE-06
Run 3 Bitumen 1.375 5.6875 40.75 370 62.49 -6.8 14 379 1.OOE-06
Run 4 Green 1.375 5.875 41.875 385 65.01 -3.1 18 517.5 1.OOE-06

Run 5 Bitumen 1.75 4.1875 34.75 370 61.86 -7.8 9 173.2 5.OOE-07

Run 6 Bitumen 3.25 4 34 360 60.16 -10.3 16 305.6 1 5.00E-07

TOTAL
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Roof
Roof
R-Val

Window I Light
Area % Req. EUI % Diff Gens

Time
(s) Criterion

Original Bitumen 3 5 60 400 348.17

Run 1 Bitumen 2.5 4 40 300 295.71 -15.1 16 435.3 5.00E-06

Run 2 Bitumen 3.4375 4.75 47.5 400 319.77 -8.2 22 592.3 5.00E-06

Run 3 Green 3.25 4.375 44.6875 362.5 310.4 -10.8 11 314.2 1.OOE-06

Run 4 Bitumen 2.5 4.1875 42.8125 337.5 307.02 -11.8 14 382.3 1.OOE-06

Run 5 Green 2.5 4 40.9375 312.5 300.12 -13.8 15 307.9 5.00E-07

Run 6 Cool 2.5 4 40 300 298.02 -14.4 8 155.9 5.OOE-07

Average -15.68 14.04 343.52
Table 24: Full optimizer test results part 1

HEATING

Glass Light Time
Orientation Depth Height Coating Control EUI % Diff Gens (s) Criterion

Original East 5 3 Clear Always On 184.45 1

Run 1 Southeast 4 2.59375 Clear Single Dim 161.81 -12.3 33 960.8 5.00E-06

Run 2 Southeast 3.65 2.6875 Clear Always On 153.98 -16.5 10 292.9 5.00E-06

Run 3 Southwest 4 2.5 Clear Indep. Dim 162.17 -12.1 11 323.2 1.00E-06

Run 4 Southeast 4.1 2.875 Clear Single Dim 176.47 -4.3 9 266.6 1.00E-06

Run 5 Southeast 3.6 2.5 Clear Single Dim 154.82 -16.1 33 681.9 5.OOE-07

Run 6 Southeast 4 2.59375 Clear Single Dim 156.69 -15.1 7 151.8 5.00E-07

COOUNG

Glass Light Time
Orientation Depth Height Coating Control EUI % Duff Gens (s) Criterion

Original East 5 3 Clear Always On 48.39

Run 1 Northeast 4.2 3.34375 High perf. tndep.Dim 29.60 -38.8 15 377.4 5.00E-06

Run 2 North 4.05 2.78125 Clear Always On 35.00 -27.7 6 130.7 5.00E-06

Run 3 East 3.9 3.625 High perf. Single Dim 38.34 -20.8 15 344.6 1.00E-06

Run 4 West 4.2 3.25 High perf. Single Dim 34.43 -28.8 22 498.7 1.00E-06
Run 5 Northeast 4.3 3.625 High perf. Indep.Dim 30.36 -37.3 8 171.9 5.00E-07

Run 6 Northwest 3.8 3.25 High perf. Single Dim 29.88 -38.3 18 383.2 5.00E-07

ELECTRICITY

Glass Light Time
Orientation Depth Height Coating Control EUI % Dift Gens (s) Criterion

Original East 5 3 Clear Always On 83.29 1

Run 1 East 4.35 3.90625 High perf. Single Dim 16.68 -80.0 9 199.7 5.00E-06

Run 2 West 3.6 2.59375 Clear Single Dim 14.97 -82.0 14 300.4 5.00E-06
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Run4 j East 3.65 2.6875 Clear Single Dim 15.24 -81.7 18 388.5 1.0E-06

Run 5 Southwest 3.85 3.53125 High perf. Indep. Dim 13.24 -84.1 22 467.6 5.00E-07

Run 6 West 3.7 2.96785 Clear Single Dim 14.56 -82.5 17 362.1 5.00E-07

TOTAL

Glass Ught Time
Orientation Depth Height Coating Control EUI % Diff Gem (s) Criterion

Original East 5 3 Clear Always On 316.13

Run 1 South 5.125 2.6875 Clear Always On 270.89 -14.3 16 341.1 5.00E-06

Run 2 East 4 2.5 Clear Single Dim 242.25 -23.4 15 321.8 5.OOE-06

Run 3 East 5.625 3.53125 High perf. Single Dim 255.33 -19.2 18 391.0 1.OOE-06
Run 4 Southeast 5.125 2.6875 Clear Single Dim 218.18 -31.0 14 306.2 1.OOE-06

Run 5 Northwest 5 2.59375 Clear Single Dim 226.70 -28.3 33 662.3 5.OOE-07

Run 6 Southeast 5 2.59375 Clear Single Dim 205.89 -34.9 18 358.5 5.00E-07

Average -37.98 17.08 387.87
Table 25: Full optimizer test results part 2

Combined, the regression and genetic algorithm find, on average, similar opportunities for

reducing energy usage while taking fewer generations to do so than the genetic algorithm alone. The

multistep regression calculations are completed on the order of several milliseconds, making their

contribution to the overall run time negligible. Despite the fact that it is inaccurate on its own when

used to predict a single EUI value, the parameter ranges obtained from the regressions appear to be

broad enough. to mitigate further error while still reducing the search space by a significant amount.

The strictest convergence criterion option appeared to produce the most consistent (and generally

lowest) final EUI value for each energy type. It is possible that there is a level that will generate only

those results that are in some small local neighborhood around the true optimal design.

These initial results from the optimizer are promising. While it rarely settled on one set of

parameters across multiple runs, certain trends did arise (e.g., reducing unshaded window area,

reducing lighting levels, moving away from traditional bitumen roofs, etc.). For the most part, these

changes conform to logical decisions that someone well-versed in building mechanics would make,

acting as a basic sanity check for the optimizer. Since the optimizer converged on a solution so quickly

each time (with a maximum run time of 16 minutes and an average of 6.1 across 32 tests), it would be

possible for a designer to run it multiple times, noting these trends and using them to improve their

original simulation.
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Another key lesson is that existing designs can often be improved in a variety of different ways

to reach the same end goal. As shown in the two sets of optimizer test results, multiple different

parameter selections can lead to the same or similar final EUI. This allows designers to choose the most

desirable option while still potentially reducing the environmental impact of their building.

Multivariate Regression for Individual Climates

Based on the results from the multistep regression on its own, an effort was also made to use

the regression framework for single-city and single-climate energy usage predictions. By reducing the

range of EUI results (especially for heating and cooling) and eliminating the location-dependent

variables, the aim was to produce more accurate results for a single city and surrounding

climatologically-similar locales. To facilitate this, additional simulations were performed for Boston

using the remaining three cardinal fagade orientations (north, south, and west, as east had been used in

the original regressions). Regressions for each energy type were performed as before, with the addition

of orientation as a variable and the removal of the five location-dependent variables (latitude, HDD,

CDD, average relative humidity, and average solar radiation). The coefficients from these regressions

are given in Appendix B. Tests were then performed using the same two sets of parameters as in Table

19 but for Boston and two other climatologically-similar cities (New York and Cleveland). The results

from these tests are shown below.

HEATING Run I Run 2 Run 1 Run 2 Run I Run 2

City Boston Boston New York New York Cleveland Cleveland

Orientation South North South North South North

Light Req. 500 400 500 400 500 400

Equipment Load 5 8 5 8 5 8

Ught Control Efficient Always On Efficient Always On Efficient Always On
Ventilation Control Mech Hybrid Mech Hybrid Mech Hybrid

Thermal Mass Low High Low High Low High

Roof Type Bitumen Cool Bitumen Cool Bitumen Cool

Room Depth 5 4 5 4 5 4

Window Area % 60 40 60 40 60 40

Window Type Single Triple Single Triple Single Triple

Glass Coating Clear High perf. Clear High perf. Clear High perf.

Wall Insulation R-value 1 2 1 2 1 2

Design Advisor Result 152.75 80.22 122.33 60.67 169.07 85.62

Regression Result 167.39 85.73 167.39 85.73 167.39 85.73

% Difference 9.58 6.87 36.83 41.31 -0.99 0.13
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City Boston Boston New York New York Cleveland Cleveland
Design Advisor Result 31.67 21.90 46.00 34.76 27.62 22.44
Regression Result 36.37 21.30 36.37 21.30 36.37 21.30
% Difference 14.84 -2.74 -20.93 -38.72 31.68 -5.08

ELECTRICITY Run 1 Run 2 Run I Run 2 Run 1 Run 2
City Boston Boston New York New York Cleveland Cleveland
Design Advisor Result 12.38 65.75 11.41 65.75 10.23 65.75
Regression Result 20.43 72.12 20.43 72.12 20.43 72.12
% Difference 65.02 9.69 79.05 9.69 99.71 9.69

TOTAL Run 1 Run 2 Run 1 Run 2 Run I Run 2
City Boston Boston New York New York Cleveland Cleveland
Design Advisor Result 196.80 167.87 179.74 161.18 206.92 173.81
Regression Result 224.19 179.15 224.19 179.15 224.19 179.15
% Difference 13.92 6.72 1 24.731 11.15 8.35

Table 26: Comparison of results from Design Advisor and regression for single climate
3.07

The location-based parameters for these cities are summarized in Table 27.

HDD (65*F CDD (65*F Relative
Latitude Baseline) Baseline) Humidity Avg. Solar Rad.

Boston 42.36 5412 903 65.72 326.02
New York 40.71 4640 1222 63.04 329.14
% Diff. from Bos. -3.89 -14.26 35.33 -4.08 0.96
Cleveland 41.48 5702 1079 70.34 314.88
% Diff. from Bos. -2.071 5.36 19.491

Table 27: Location-based parameters for single climate test cities
7.03 1 -3.42

Based on these preliminary results, it appears as if regression performed on a single city could

be applied to cities with temperature distributions similar to the city used for the regression (as

measured by latitude, heating degree days, and cooling degree days) with reasonable accuracy. To

further validate this concept, additional tests will need to be done with a wider variety of

climatologically-similar cities and parameter sets. The next step would be to reintroduce the location

data by performing the regression analyses on a single climate rather than a single city. An end product

could be a set of multivariate regressions corresponding to different climate groups around the country.
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If these could be used during the genetic-algorithm-based optimization process, total processing time

could be drastically reduced even with a tighter convergence criterion.
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Retrocommissioning Savings Prediction Algorithm

Choice and Description of Variables

The goal of the retrocommissioning (RCx) savings prediction algorithm, much like for Design

Advisor as a whole, is to generate reasonably accurate results in a transparent and tractable manner

without requiring significant levels of detail or expertise from the user. As such, an effort was made to

minimize both the number and complexity of the algorithm inputs. An evaluation of the key variables in

Design Advisor led to the selection of three main input categories: location (which would determine

climate and weatherization requirements), size (determining the technology used), and usage type

(again, determining technologies used and relevant building codes). Examining the literature on RCx

usage and effectiveness led to the inclusion of a fourth category, age (determining available technology

and best practices at the time of construction).

To allow for the cleanest and most straightforward implementation of the k-nearest neighbors

algorithm used here, these categories were then reduced to a set of numerical variables. These were

heating and cooling degree days, gross square footage, energy usage intensity, and year of construction.

The location category was split into heating and cooling degree days rather than a single measure of

latitude due to potential issues surrounding rescaling a distance-related metric [68] as well as to allow

for climatic differences across geographic regions.

Data Collection

Another goal of this algorithm, as stated previously, is to make use of historical data from real

RCx projects rather than simulated savings whenever possible. As such, the process of data collection

and the data set that has been built up formed the backbone of this work. Through a mix of publicly-

available literature [69], [70] and partnerships with energy and RCx providers [24], [71], data on 90

individual properties have been collected, representing an average energy savings percentage (across all

types of energy) of 16.75%. 44 of these are entirely new and are not contained in any publicly-available

reports.

The primary issue during this process was that of completeness. Reporting on completed RCx

projects, both by property owners and the companies involved, is inconsistent. Requiring enough

information to find and fill in just the four categories discussed here led to significant culling of potential

data points. For example, one report, "The Cost-Effectiveness of Commercial-Buildings Commissioning:

A Meta-Analysis of Energy and Non-Energy Impacts in Existing Buildings and New Construction in the
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United States" (Mills et al), contained information on 106 existing buildings that had undergone an RCx

process. Of those, 46 entries met the standards listed here (i.e., they contain information on the

variables discussed above).

There is also an understandable recalcitrance on the part of energy and commissioning

providers to divulge potentially-identifying information about their clients. As such, all data used here

has been made anonymous and restricted from viewing by the end user.

Each input variable is plotted against percent energy savings in the figures below. The plots can

be thought of as projections of the 5-dimensional variable space onto the five mutually perpendicular

planes formed by the basis vectors of the space. Note that the heating and cooling degree day plots are

combined on to one set of axes to more clearly show their relation to one another.

Energy Savings vs. Heating and Cooling
Degree Days
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Figure 31: Percentage energy savings vs. heating and cooling degree days

The achieved savings are also compared to the total number of degree days (the sum of heating

and cooling degree days):
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Figure 32: Percentage energy savings vs. total degree days

The columns of data points visible here denote sets of buildings in the same geographical

region. Within each of those regions, a wide variety of energy savings have been realized. In most

cases, the highest-resolution location information available was the city in which the building is located.

For those, a variety of publicly-available sources were used to find an average number of yearly heating

and cooling degree days (based on historical data) for the region in question. [72]-[75]

Overall building size, as shown below, appears to have the clearest relation to energy savings.

Roughly speaking, the potential for these savings on a percentage basis diminishes with increasing

building size, with a sharp change in slope between 300,000 and 400,000 square feet. Intuitively, it

would make sense that a larger building would provide more opportunities for energy savings, leading to

a greater absolute reduction in energy usage even if the percentage is smaller. However, given the

limited number of data points at the tail end of this distribution, it is difficult to draw statistically valid

conclusions.
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Gross Square Footage vs. Energy Savings
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Figure 33: Building size vs. percentage energy savings

Energy Usage Instensity vs. Energy Savings
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Figure 34: Energy usage intensity vs. percentage energy savings

As with building size, a higher EUI could indicate an opportunity for greater absolute energy

savings, as it could denote a poorly-run or otherwise faulty building or an incorrect categorization in the

data set.
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Year Constructed vs. Energy Savings
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Figure 35: Year of building construction vs. percentage energy savings

There are two main reasons why building age alone is a poor predictor of energy savings. The

first is that older buildings are likely to have been retrofitted or otherwise altered significantly at some

point during their lifetimes. Depending on the changes that were made, the building's original

construction year may no longer accurately represent the age of the primary energy-consuming

technologies in the building. The second reason is that issues that arise in older buildings

(superstructure degradation, subsystem failure, etc.) may well require complex fixes that lie outside the

scope of most RCx investigations. More significant energy usage reductions could be attained using

measures beyond RCx.

Taken as a group, these graphs reemphasize the point that no single variable is sufficient to

calculate the reduction in energy usage for these buildings. As a whole, however, they could potentially

characterize the conditions that make it possible to save energy through retrocommissioning and allow

for a reasonably accurate prediction. For example, based on the relation apparent in Figure 33, the link

between total building floor area and savings percentage was further examined:
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Savings % vs. Floor Area

70

60
y= 1E-11x2 - 3E-05x+ 23.817

R2= 0.1141
40

30 9
S20

10 0

0

-10 0 500000 1000000 1500000 2000000

-20
Gross Square Footage

. Savings - Poly. (Savings)

Figure 36: Building size vs. percentage energy savings with polynomial regression of order 2
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Figure 37: Predicted savings and residuals using polynomialfit

Clearly, while the available data implies some relationship, the variety of RCx outcomes for

smaller buildings is far too wide to draw any strong conclusions. The limited number of very large

buildings in the data set also reduces the applicability and meaningfulness of this kind of simpler

analysis.
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Algorithm Background

The key assumption behind the formulation of the savings prediction algorithm is that buildings

belonging to the same set or cohort will develop similar problems throughout their lifetimes. That is,

buildings of the same age, region, size, and usage type will be susceptible to similar modes of

degradation and systems malfunctions that could be addressed through retrocommissioning. If we can

categorize a building into the same "neighborhood" as other buildings on which we have data and this

assumption holds, we can base a prediction of potential savings through RCx on the actual savings that

were attained in the other buildings in the group.

The algorithm that was chosen to take advantage of this assumption is known, logically, as the k-

nearest neighbors (KNN) algorithm. Data points can be thought of as situated in an n-dimensional space

(where n is the number of similarity parameters by which new points are being evaluated). Predictions

can be made about the nature of new samples based on their distance from the pre-existing data points

in this space and their similarity to the nearest k of those points. The accuracy of these predictions

depends on, among other things, the parameters chosen, the method of distance measurement, the

presence and method of weighting, and the number of neighbors examined. A simple example of the

effect of the selection of k is shown below.
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Figure 38: Effect of size of neighborhood on KNN algorithm categorizations

Here, the solid line represents a neighborhood size of 1, the dashed line represents a size of 2,

and the dotted line represents a size of 3. If the goal is to categorize the new sample (denoted by an X)

as either a square or a circle, these three neighborhood sizes will yield three different answers - circle,
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undetermined, and square, respectively. While one might be able to make an intuitive choice in this

simple two-dimensional example, doing that becomes more difficult as multiple dimensions are added.

This is why ensuring the completeness and integrity of the data used, as discussed in the previous

section, was important - while the missing parameters could be filled in themselves using the KNN

algorithm, any inaccuracy in one of the measured dimensions could lead to drastic changes in the

predicted energy savings (depending on the number of neighbors surveyed).

The example above implicitly used a Euclidean measure of distance to determine the meaning of
"nearest" neighbors:

D' = Yi(xi _ yi32 (33)

That is not the only option, especially for discrete or non-numerical data. For discrete variables with a

meaningful innate definition of distance (e.g., pixels on a screen or location on a gridded map),

Manhattan distance (also known as cityblock or taxicab distance) [76] may be best:

D = Xjxj - yjI (34)

Manhattan distance allows for simple decomposition of the individual parameter contributions to the

total distance. It also results in an interesting change to the notion of equidistance - a circle (the locus

of points equidistant from some center) becomes a square on the grid. For example, each of the points

on the figure below is four units from the origin.

Figure 39: Circle of radius 4 using Manhattan distance

Both Euclidean distance and Manhattan distance are special cases of the more generalized

Minkowski distance [681 (for q=2 and q=1, respectively):
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D = CEixI - yq)q (35)

Another possibility for data that can be referred to by vectors is cosine similarity [77], [78]:

sim(x,y) = -_- (36)

Cosine similarity could be useful in cases where the scaling of each parameter is either inconsistent or

not meaningful in terms of one of the more conventional distance measurements given above. It yields

the cosine of the angle between the two vectors corresponding to the two samples being compared and

thus ranges from -1 to 1.

Finally, as mentioned previously, there are also options for non-numerical variables or

parameters. A common example is Hamming distance [79]:

DHamming = iff(Xt,yi) (37)

f(xi,y) =to, Xj

Hamming distance can be used, for example, to compare categorical similarity (where x, and y, are

considered equal if both samples belong to the same category) or for character-wise string comparisons

(where x1 and y, are equal if the character at position i is the same for both strings).

These distance measures, in turn, raise the questions of parameter scaling and weighting. It is

likely that not all of the parameters chosen for evaluation will have the same units and, furthermore,

that those units will be of vastly different scale. In the case of the variables selected here, building age

might be measured in tens of years, location in degrees latitude and longitude (from 00 to 90* and 0* to

180*, respectively), and EUI in hundreds of kWh/M2. These differences in magnitude can cause one

variable to dominate the distance calculation, reducing the importance of the others in judging similarity

regardless of physical meaningfulness. One solution to this is to rescale and non-dimensionalize each

variable such that they all range from 0 to 1, inclusive, as follows:

Xi,rescated = xLxImL1 (38)

Scaling variables in this manner allows continuous numerical and categorical variables (using the

aforementioned Hamming distance) to be mixed.

Scaling, in turn, emphasizes the need for weighting. All scaled variables, unweighted, are

treated as if they signify overall similarity equally. To correct this, we can augment each parameter's

contribution using attribute weighting [80]:

D _ _ yi32 (39)

Where w, is the individual weighting constant for the ith parameter. One can also weight each neighbor's

contribution to the final prediction (for continuous variables) using its distance to the test point:
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Ytest = Ejf (D) * y (40)

These two methods of weighting allow for significant flexibility in determining the set of nearest

neighbors and categorizing the test point. If no physically meaningful attribute weights are known, an

evolutionary algorithm is often employed to find optimal values for the given data set.

Final Algorithm

The final prediction algorithm makes use of a scaled Euclidean distance measure as well as both

attribute and neighbor contribution weighting. At first, attribute weights were set equal to the

individual coefficients of determination from a linear regression of each attribute against the actual

energy savings percentages. However, in an effort to improve upon those initial results, they were later

chosen through multiple runs of a genetic algorithm (GA) working to minimize:

j = ZXIpredictedi - actualil (41)

Each property is, in turn, isolated from the data set and a prediction of its energy savings is

made using the remaining buildings. The individual errors are them summed. The chromosomes are

made up of five 12-digit binary-encoded genes, each corresponding to one of the attribute weights. As

each weight ranges from zero to one, this gives the genes a resolution of 1/4096 or 2E-4. The fitness

function (which increases as the chromosomes converge on the optimal solution) was chosen to rescale

the cost function to avoid very large values and values close to zero:

fitness = exp(- f ) (42)

The genetic algorithm used to find the attribute weights was implemented in Matlab. For ease of

testing, the initial RCx prediction algorithm was also written in Matlab before being ported to Java (for

compatibility with Design Advisor).

Results and Discussion

Results from the algorithm described above are summarized in the figures and table below. As

shown in Figure 40, the GA-weighted predictions reproduce the actual distribution of energy savings

much more closely than the R2 weighted set. However, both fail in the same way: they fail to predict

both modest (0-5%) and high (>40%) energy savings, instead over-predicting savings between 15 and

20% by a factor of four.
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Figure 40: Actual savings vs. predictions using R2 and genetic algorithm attribute weights

A more direct comparison of the predictions and the corresponding actual savings is shown in

Figure 41. The more accurate the predictions, the closer the points will get to a straight line with a slope

of unity. There is significant spread in the predictions produced using the GA attribute weights, reducing

the R 2 value of the correlation to the actual savings to 0.20. The predictions using the individual R 2

attribute weights (not shown for clarity) actually correlate slightly negatively with the true savings.
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Figure 41: Actual savings vs. predictions using genetic algorithm attribute weights
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Finally, three different measures of error (average error, sum of error magnitudes as used in the

genetic algorithm, and root-mean-square error) are shown for the two attribute weighting schemes

described here as well as no (or equal) weighting. As seen in Table 28, R 2 weighting performs worse in

terms of all but average error than no weighting at all.

Attribute Weighting
None R2 Value GA

Average Error -0.82 0.52 0.02
Sum of Error Magnitudes 1130.9 1132 876.4
Root-Mean-Square Error 15.5 15.7 12.4

Table 28: Error comparison for attribute weighting schemes

The nature of the algorithms used here, specifically the genetic algorithm used to determine the

attribute weights, leaves this work open to future improvement in several ways. The first would be to

further explore the solution space traversed by the genetic algorithm to see if a more optimal set of

weights could be found. Due to the stochastic nature of this method, it is possible for the search to

return a locally optimal solution (a local minimum of total error, in this case) instead of the desired

global optimum. A possible solution to this problem would be to add mutations to the chromosomes at

random, which would serve to perturb the algorithm enough to avoid the local minimum. This would

require reexamining and resetting the threshold value used to determine when a solution has been

found (as mutations will lead to an increase in generation-to-generation variance) as well as longer run

times.

The cost function itself could also be changed. As seen above, the current algorithm over-

predicts energy savings in the middle of the range of values (around 15-20%). This is a result of the fact

that the cost function penalizes the sum of the magnitude of the prediction errors across the 90

properties tested. By predicting that many buildings will save a moderate amount of energy, the overall

error can be minimized without producing individual accurate predictions. Therefore a superior cost

function might penalize any error, not just their sum. This could lead to a set of weights that would yield

somewhat larger (and fewer) individual errors, but that may be, for the purposes of prediction,

preferable to smaller but more omnipresent errors. The best solution may be to continue working with

RCx providers and utilities to obtain a larger, more robust, more detailed data set.
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Conclusions

The collection of work presented in this thesis is aimed at one overarching goal: popularizing

and facilitating awareness of building energy usage throughout the entire lifespan of a structure. Design

Advisor in its original form was aimed at the early planning phases, when many design details would be

undecided or still open to change. The retrocommissioning savings prediction algorithm was intended

to expand the usability of Design Advisor to include existing buildings as well. Through the changes

discussed here and the lessons learned through the real-world validation studies that were done, this

position has been strengthened - simulations are faster and more accurate and the outputs relate more

directly to real-world usage. The conclusions drawn from the results of these various products of

research are discussed below.

Run Time Improvements

The various run time improvements discussed previously - modifying the thermal mass

calculations, reducing the daylighting calculations, and implementing a representative day formulation

to limit the number of days simulated per year - were integral to the other work described here,

especially the optimizer. Using the original version of Design Advisor would have made it more difficult

and time-consuming to plan, code, and test an optimization algorithm. For example, even the restricted

set of simulations used for the initial regressions done here would have taken three times longer to

compute (15 second per run compared to 5). The same is true for the genetic algorithm portion of the

optimizer. Given the number of simulations per generation and the fact that hundreds or thousands of

generations can pass before a suitable solution is found, the total time required can quickly balloon. For

a web-based application, speed is paramount, so longer simulations might have ruled out genetic

algorithms as a possible basis for the optimizer.

Additionally, by reducing the time taken for each simulation without violating the integrity of

the results, we increase Design Advisor's accessibility and take another step toward near-instantaneous

feedback on the energy efficiency of a proposed building design (see "Future Work" for further

discussion of this goal). it reduces the chance that the user will worry that the program has stopped

responding and allows them to test a wider variety of designs in the same amount of time, possibly

leading to more efficient building plans.

With these improvements and positive results come some negative side effects. Introducing

further approximations into the model will inevitably impact the accuracy of the predictions. As

discussed in their relevant sections, the thermal mass and lighting modifications led to relatively small
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changes in accuracy. Simulating only a reduced subset of representative days, however, causes more

problems. As demonstrated previously, the individual monthly errors for moderate climates are

significant enough to prohibit the use of said monthly predictions. The average error remains small,

allowing for the use of total yearly energy usage predictions (such as in the optimizer), but the user

would not be able, for example, to compare heating or cooling season energy usage across designs.

Further changes that could be made remain to be seen. As discussed, even given these reductions in

run time, there are various required calculations that take a non-trivial amount of time to perform. This

can be seen through the following breakdown of the run time of a simulation using the original version

of Design Advisor:

Description Time (ms)
Entire simulation 25481
Final data storage and manipulation 1054
Hourly energy usage calculations 14936
Supporting hourly calculations 470
Daylight solve 8915
Building creation 106

Table 29: Run time breakdown using original Design Advisor code

Even if one could remove thermal mass, daylighting, and day-to-day energy calculations in their

entirety, just creating the building and formatting and storing the energy predictions would take more

than a second per simulation. At a certain point, continued gains in simulation speed might require

rewriting large portions of the program.

Design Advisor Validation

While Design Advisor and its constituent theoretical components (specifically the window unit

solver, thermal mass calculations, and daylighting distribution prediction) have been measured against

industry-standard software, the program had not previously been rigorously tested against a real-world

building [23], [81]. As a part of the work done under the auspices of the Department of Energy's Energy

Efficient Buildings Hub Project, this testing was done with three such buildings (two in the Philadelphia

area and one on MIT's campus). This served to more concretely confirm the potential accuracy of

Design Advisor in a realistic use case, at least relative to the limits of modeling as a discipline - the

human element of building operation remains "very difficult (or nearly impossible) to estimate" [82],

even for more complex software.
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The two Philadelphia-area buildings were simulated fairly successfully, with a total mean bias

error (for heating, cooling, and electricity on a kWh-equivalent basis) of -11.2% for One Montgomery

Plaza and,2.6% for Navy Yard Building 101. The third building, MIT Building E40, was somewhat more

problematic: the simulations resulted in a mean bias error of -76.6% for electricity, 3.7% for chilled

water, and -50.4% for steam. Of the three, the most accurately predicted energy source, chilled water,

was the only one for which no issues in the actual building were later discovered. The electricity

underestimation can be explained, at least in part, by the previously-unreported presence of a server

cluster in the basement. Without knowing the specifications of the computers, a better estimate cannot

be made, but servers are known to be a significant source of electricity consumption. Similarly, when

the provided data were expanded to include earlier years, the high level of steam usage observed during

the cooling season was revealed to be a recent (and unexplained) development. The MIT Department of

Facilities is currently investigating the site for evidence of a steam valve leak that may account for the

increased consumption.

The three simulations highlight the fact that further details about building operation are needed

for complete and certain knowledge of agreement between Design Advisor and actual utility bills. Errors

arising from unknown or incorrectly-assumed factors both infrastructural (such as the servers in MIT

E40) and operational (details about occupant activity, for example) can represent a significant

proportion of the energy usage predicted by a simulation engine. This is true regardless of the software

that is used.

Lastly, these studies uncovered several usability issues that had not previously been considered.

Once the simulations were complete, additional calculations had to be performed to include important

factors that were not accounted for in the original program. These include but are not limited to the

inclusion of fan and AHU energy usage, displaying total electricity usage (including equipment loads)

rather than just lighting usage, and displaying site energy usage along with primary energy usage. As

discussed earlier, the lighting energy consumption calculation grew out of older daylighting simulation

code, and thus was not chiefly concerned with general electricity usage. Depending on the user's

selections, however, HVAC equipment and other equipment loads can be far more significant than

lighting alone. If Design Advisor is intended to promote awareness of energy efficiency in early designs,

however, it would be counterintuitive and potentially misleading to not include them. Similarly, while

primary energy usage is a valuable measure for judging the overall impact of a building (as it includes

losses during generation and transmission), it is probably not as immediately useful to a designer or

property owner as site energy usage, which would be reflected on a utility bill. Including these changes
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will not only improve Design Advisor for the target user group but will also make it so future validation

studies require fewer post-simulation calculations.

Optimizer

The multistep regression used here leveraged the various improvements summarized above to

expand upon the work done previously by Carrie Brown [57]. By focusing on single-sided simulations

and drastically reducing the run time of an individual simulation, the data set for the regressions grew

from 7 cities to 9 and, through an increase in the number of levels for each variable, 48,383 total runs to

314,928. This allowed for a much more varied and detailed set of multistep multivariate regressions,

although the run-time-reducing changes that were employed necessitated the prediction of yearly

rather than monthly energy usage values.

As discussed, the initial results from the multistep regression do not suggest that it could be

used (in its current form) on its own to reliably predict building energy usage. While the median

prediction error is small, individual run errors can be substantial, either on a percentage or absolute

basis. This seems to be especially true for buildings in cities that were not included in the original

regression, despite the fact that the categorical "city" variable was replaced with five continuous

numerical variables that could be extended to cover any location. It is plausible that, given the

distribution of simulations that went into the regression analyses and characteristics of the designs most

likely to be simulated with Design Advisor, the regression subdivision points need to be re-examined.

Using smaller subsets for the more energy-intensive designs (as opposed to roughly equal quartiles)

could reduce these errors and allow for standalone use of the regressions. As the regression formulas

yield a result in milliseconds as opposed to seconds, this would open up many new opportunities for

Design Advisor as a tool.

The results from the optimizer as a whole suggest the possibility of real usability and potential

for impact in the future. Across a variety of simple test cases, the genetic algorithm alone suggested

changes that would lead to substantial reductions in building EUI (upwards of 25%) despite relatively

short total run time (the bulk of which is taken up, on average, by 16.6 generations of 10 simulations

each, or 714 seconds in total for a single representative room). Including the search space reduction

from the multistep multivariate regression further improved these design suggestions.

Future work on the optimizer would, by necessity, focus at first on finding and fixing the source

of the regression errors discussed above. From there, the convergence criteria used by the genetic

algorithm should be more comprehensively tested to find a set that will consistently yield design
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improvements without incurring unnecessary simulations due to overly-strict requirements. From a

user and usability standpoint, it would also be beneficial to rewrite how parameter ranges are handled

to allow for subsets of string-based variables to be selected for investigation (as opposed to the current

all-or-nothing approach for variables such as thermal mass thickness and window unit type).

Retrocommissioning

The results from the retrocommissioning savings prediction algorithm are less clear. The

module was intended as a proof-of-concept that would show that potential energy savings could be

predicted (within a reasonable confidence interval) given only a basic and limited set of information

about a building. There is some evidence that this can be done, but it is difficult to ascertain the causes

of the errors and the proper way to correct them.

The most significant positive contribution of the RCx algorithm is the data set itself. As

evidenced by the size and sparseness of other such collections, it can be difficult to bring together a list

of even basic but not publicly-available information about a variety of properties. This is especially true

for energy savings data, as commissioning providers are understandably cautious about possibly

violating the privacy of their clients. Even if the prediction algorithm itself turns out to be impractical,

this data set identifying 6 variables across 90 buildings (44 for which information is not otherwise

available) could prove useful for other projects in the future. Otherwise, as discussed previously, the

results from the algorithm itself are mixed but encouraging. While the average prediction error across

all of the tested properties is very low (0.02%), individual predictions remain suspect (12.4% RMSE,

which is larger than the actual savings achieved in many buildings, and an R2 of 0.2 between the

predicted and actual savings). Much of this error can be attributed to poor estimates for buildings that

displayed energy savings either significantly higher or significantly lower than the average. While

outliers can be difficult to work with in any analysis, it is important that the algorithm not overestimate

potential energy savings, which would give the property owner a false sense of how much to invest in

RCx measures.

The possible sources of error are highly varied, as are the potential solutions. Some or all of the

attribute weightings could be incorrect. This could require a change to the parameters of the genetic

algorithm use to determine the weights or a deeper investigation into the possibility of an analytic

relationship that might determine them (although the simplest solution, using the R 2 values from

individual variable regressions, was unsuccessful). Mixed-use buildings (which cannot be identified

reliably using EUI alone) or facilities that are outliers for their type in terms of energy usage intensity
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could be confounding the results. A larger data set could solve this by allowing for individual sets of

weights for each building usage type and the elimination of outliers within each category. Some of the

entries in the data set might be erroneous in some way. As achieved savings are often self-reported, it

would be infeasible to validate each entry. The assumptions underlying the k-nearest neighbors

algorithm might not apply to this situation; each building might need to be treated as a wholly unique

case. In that case, the data set would still be useful and informative, but a different machine learning

strategy would need to be applied. This is also not an exhaustive list, as there could be other heretofore

unconsidered issues.

Future Work

The work described here in no way represents the limits of this avenue of research (simplified

building modeling and energy usage estimation). There are a wide variety of further improvements in

applicability, usability, and beyond that have yet to be implemented. These can be split into two broad

categories: issues for further research and programming issues. A variety of unexplored and unfinished

ideas concerning both Design Advisor as well as retrocommissioning are discussed below.

One step in reducing the simulation runtime was separating the discretization of the typical

room geometry from the calculation of solar gains for each building side. It may be worthwhile to take

this further and separate out the daylighting visualization code as well. During optimization, it takes up

processing time for a result that will never be seen by the user or used in subsequent simulations (but is

needed for energy usage calculations in some cases). Even during normal use, there is no guarantee

that the user's primary interest is daylighting. If it were made optional, the runtime for the average

simulation would be reduced. However, given the tight integration of the visualization calculations into

the overall lighting code, this would require an extensive rewrite.

Another potential change would be to expand the chiller options available to the user. At the

moment, all cooling energy calculations in Design Advisor are done with an assumed chiller coefficient

of performance of 3, regardless of locale, actual building needs, or other factors. A project that was

started but not completed as part of the Hub was the development and implementation of a series of

simple regressions that would automatically provide the user with a set of chiller options akin to those

given for insulation (i.e., commercial or residential system with low, medium, or high efficiency). This

was to involve performing a series of chiller simulations across various climates and given various

cooling requirements and regressing the resultant COPs against the relevant inputs in Design Advisor.
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This would allow the COPs displayed to the user to change realistically in response to the selected

building parameters rather than remaining static.

One initial target deliverable for this work was a portable standalone/offline application to allow

Design Advisor to be used more easily at prospective building sites. In its current form, Design Advisor

requires web access (which may not be available in all cases) and its user interface is not optimized for

mobile device touchscreens. Porting Design Advisor to iOS and/or Android would be a significant

undertaking, but would go a long way towards the general goal of facilitating building energy modeling

during the early stages of planning and construction. Creating a mobile-friendly version of the current

site would be significantly easier but would not allow the simulations to be run entirely locally unless the

multistep regressions were used. It would, however, be a good first step and would gauge the

prevalence of or interest in this type of on-site usage.

For the RCx prediction algorithm, the best direction for future work is unclear. The first priority

would be to expand the set of documented RCx projects. Ideally, there would be enough properties

listed to be able to create separate algorithms for each building usage category (office, food service,

classroom, etc.). As stated previously, the KNN algorithm relies on the assumption that data points that

appear similar (as per the selected attributes) are in fact similar to one another. It is possible that

mixing obviously dissimilar groups of buildings together acts as a confounding factor and reduces the

efficacy of the algorithm. If, for example, the distribution of savings differed between building types,

the attribute weightings would necessarily be different as well. Combining the groups (and therefore

combining the distributions and weightings) would disguise that fact. The majority of the buildings in

the current data set are used for education or office space, meaning that other categories would have to

be populated before this change would be possible.

There are three main directions for research concerning the algorithm itself and its

implementation. The first is the cost function. The current cost function penalizes the total deviation of

all savings predictions from the actual achieved savings percentages. There are likely other cost

functions that would more successfully reduce individual errors as well. The second is the attribute

weightings. Obviously, these would change if a different cost function were used, but they could also

change given more runs of the genetic algorithm if it found a more effective set. This would simply

require time for more runs or for runs using a higher fitness threshold. The third direction is the

algorithm itself. If, once more data was collected, it turned out that the similarity assumption

underlying the KNN algorithm did not apply to this problem, a new method would have to be found.
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There are numerous machine learning algorithms that could be applied to the problem, or perhaps

multivariate regression could be revisited and different variable transformations could be explored.

The development of a piece of software like Design Advisor is an ongoing process. There will

always be new technologies that change assumptions or require new research (such as chillers) or new

practices or standards that push innovation and raise new questions (like retrocommissioning). By

keeping up with these advances, we can ensure that Design Advisor makes the greatest possible impact

on building energy usage.
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Appendix A: Multistep Regression Coefficients

Heating
Tier
Intercept (kWh/n 2)
Latitude,
HDD
CDD
ROL Hum.
Avg. SoL Rad.
LWbt Req.
Equipment Load
Lght control (Indep. Dim)
Ventilation control (mech)
Thermal mass (low)
Roof type (cool)
Roof type een)
Room depth
Window area %
Window type (singlgzed)
Window type (triple glazed)
Coating type (hgh performance)
WaE insulation R-wahae

1 2a 2b 3a 3b
1.42E+02 3.62E+02 6.70E+02 2.36E+02 3.
-9.69E-01 -3.64E+00 -5.58E+00 -4.62E-01 -3.
2.33E-02 9.53E-03 2.81E-02 4.34E-03 1.
2.35E-03 -3.32E-03 1.1OE-02 -9.61E-03 -2.

-1.33E+00 -1.14E+OO -2.78E+00 -3.05E+00 -1.
-4.41E-02 -3.70E-01 -7.85E-01 NA -3.
-1.22E-02 -5.22E-03 -2.06E-02 -4.81E-04 -1.
-1.55E+00 -6.12E-01 -2.64E+00 -5.84E-02 -1.
5.44E+00 2.05E+00 9.1OE+00 2.22E-01 3.
-7.70E-13 -2.06E-12 1.22E-12 8.10E-05 6.
1.75E+00 8.05E-01 2.93E+00 -4.15E-02 1.
2.59E+00 7.28E-01 4.43E+00 1.65E-01 1.
2.02E+00 6.88E-01 3.41E400 1.57E-O1 .

-5.16E+00 -9.22E-01 -8.88E+00 -1.71E-01 -1.
4.69E-01 9.82E-02 8.03E-O 1.70E-02 1.
2.48E+01 3.84E+00 4.O1E+01 7.12E-01 7.

-6.66E+00 -1.60E+00 -1.24E+01 -2.64E-01 -3.
-1.09E+01 -1.62E+00 -1.88E+01 -4.15E-01 -2.

-5.98E+00 -1.53E+00 -1.06E+01 -1.68E-O1 -3.
Table 30: Heating energy multistep regression coefficients

3c 3d
7OE+02
IOE+00
36E-02
73E-03
21E+00

68E-01
O1E-02
2OE+00
99E+00
40E-13
54E+00
I1E+00
12E+00
32E+00
92E-01
45E+00
19E+00
39E+00
11E+00

3.74E+02
-3.09E+00

1.36E-02
2.08E-03

-1.40E+00
-3.67E-01
-1.08E-02

-1.39E+00
4.91E+00
1.49E-04

1.83E+00
2.55E+00
2.OOE+00

-3.39E+00
3.04E-01
1.42E+01

-6.26E+00
-5.95E+00
-5.60E+00

1.17E+03
-1.O1E+01

3.51E-02
1.05E-02

-4.60E+OO
-1.44E+00
-2.29E-02
-2.99E+00
1.03E+01
2.87E-12

2.90E+O
5.83E+00
4.13E+00

-1.34E+01
1.14E+00
5.73E+01

-1.70E+01
-2.93E+01
-1.33E+01

Cooling
Tier
intercept (kWh/rn)
Latitude
HDD
CDD
Rel. Hum.
Avg. Sol. Rad.
Lght Req.
Equipment Load
Lght control (indep. Dim)
Ventilation control (mech)
Thermal mass (low)
Roof tp (cool)
Rope -green)
Room depth
Window area %
Window type (sinloe glazed)
Wndow type (triple glazed)
Coating type (high performance)
Wal insulation R-value

1 Za 2b 3a 3b 3c 3d
-1.88E+02
4.22E-01
3.49E-03
4.15E-02
8.52E-01
2.61E-01
1.31E-02
1.89E+00

-9.29E+00
1.27E-12
1.75E+00

-7.55E+00
-7.40E+00
-2.18E+00

2.67E-01
-5.21E+00
2.76E+00

-8.37E+OD
-1.33E-01

2.78E+01
-1.15E+00
2.31E-03
2.53E-02
4.25E-02
2.26E-02
6.48E-03
1.04E+00

-4.87E+00
2.79E-13
1.28E+00

-4.02E+00
-3.73E+00
-3.46E-01
6.80E-02

-4.67E+00
1.86E+00

-2.15E+00
5.34E-01

-3.81E+02
-3.21E-02
1.38E-02
3.91E-02
1.11E+0
6.97E-01
1.78E-02
2.SOE+00

-1.22E+01
2.79E-12
2.03E+00

-9.73E+00
-9.80E+00
-3.55E+00
4.15E-01

-4.1E+00
2.73E+00

-1.28E+01
-7.97E-01

2.03E+01
-4.95E-01
5.34E-04
1.72E-02

NA
NA

2.37E-03
4.15E-01

-1.88E+00
1.63E-04
7.70E-01

-1.70E+00
-1.51E+00

1.78E-02
1.03E-02

-2.67E+00
5.72E-01

-3.28E-01
3.31E-01

Table 31: Cooling energy multistep regression coefficients

1.91E+02
-2.79E+00

3.77E-04
1.72E-02

-3.10E-01
-1.44E-01
8.31E-03
1.31E+00

-6.10E+00
4.13E-13
1.47E+00

-4.91E+00
-4.65E+00
-6.37E-01
1.07E-01

-4.33E+00
2.35E+00

-3.32E+00
5.44E-01

-3.77E+02
1.38E+00
1.06E-02
3.35E-02
8.88E-01
6.28E-01
1.01E-02

1.50E+00
-7.14E+00

3.69E-04
1.48E+00

-5.73E+00
-5.52E+00
-1.23E+00

1.66E-01
-4.90E+00
2.1OE+00

-5.06E+00
1.OIE-01

-1.06E+03
6.21E+00
1.75E-02
4.78E-02
3.34E+00
1.41E+00
2.41E-02
3.36E+00

-1.64E+01
-1.15E-12
2.40E+00

-1.26E+01
-1.32E+01
-5.69E+00

6.46E-01
-7.47E-01
2.62E400

-1.95E+01
-1.92E+00

Eectricity

TiWr

intercept (kWhImz)
Latitude

I i
-1.06E+03

6.21E+00

2a 2b 3a 3b 3c 3d
2.38E+01 4.89E+00 -2.04E+01
1.93E-01 1.16E-01 2.79E-01

1.89E+01 -3.49E+01 -3.99E-08
2.29E-01 5.14E-01 1.40E-14
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HDD
CDD
Rel. Hum.
Avg. SoL. Rad.
Ught Req.
EquimentLoad
Ught control (indep. Dim)
Ventilation control (mech)
Thermal mass (ow)
Roof type (cool)
Roof type (green)
Room depth
Window area %
Window type (single glazed)
Window type (triple glazed)
Coating type (high performance)
Wall insulation R-vahe

1.75E-02
4.78E-02
3.34E+00
1.41E+00
2.41E-02
3.36E+00

-1.64E+O1
-1.25E-12
2.40E+00

-1.26E+01
-1.32E+01
-5.69E+00

6.46E-01
-7.47E-01
2.62E+00

-1.95E+01
-1.92E+00

-2.19E-04
-3.52E-04
-8.20E-02
-7.07E-03
3.60E-02
4.16E-02

-2.80E+01
-6.02E-03
-2.65E-03
3.61E-04
2.17E-03
1.03E+00
-6.16E-02
-5.33E-01
4.99E-01
1.09E+00
9.90E-06

-1.07E-04
-5.27E-04
-1.16E-01
-7.29E-03
2.60E-02
1.11E-02

O.OOE+00
-1.51E-05
-1.51E-05
-2.61E-14
2.26E-05
6.29E-01

-3.53E-02
-2.90E-01
3.13E-01
6.26E-01
5.65E-06

7.05E-05
4.30E-04
3.56E-02
1.66E-02
1.60E-01
1.71E-02

-8.20E+01
3.55E-04
3.55E-04

-3.14E-15
-5.33E-04
5.20E-01

-3.85E-02
-3.66E-01
4.34E-01
8.36E-01

-4.40E-06
Table 32: Electric energy multistep regression coefficients

-2.40E-04
-1.89E-05
-2.71E-02
-3.12E-03
2.66E-02
3.63E-02

-2.33E+01
-3.53E-03
-3.53E-03
5.30E-03
5.30E-03

1.13E+00
-6.82E-02
-6.42E-01
5.52E-01
1.23E+00
1.85E-05

-6.94E-05
7.90E-04
7.94E-02
2.50E-02
1.56E-01

-1.98E-02
-8.15E+01

1.50E-02
6.23E-03

-4.46E-03
-6.42E-03
7.74E-01

-7.09E-02
-5.65E-01
7.16E-01
1.48E+00
-1.11E-05

6.26E-17
-1.04E-15
-5.58E-13
-7.07E-15

1.62E-O1
1.20E-02

-4.89E+01
-2.61E-13
-2.62E-13
-1.75E-16
3.92E-13
1.91E-01

-1.51E-17
4.22E-13
1.35E-14

-2.96E-13
-1.05E-13

Note: Entries labeled "NA" are those from which R failed to determine a coefficient due to a reported
singularity.

The following variables were held constant:

Input Variable Name
Occupancy Start
Occupancy End
Person-desnity

Max Indoor Temp.
Min. Indoor Temp.
Max Relative Humidity
Fresh Air Rate
Air Change Rate
Unoccupied Air Change Rate
Max Temp. Unoccupied
Min. Temp. Unoccupied
Building Geometry
Roof Insulation Location
Number of Floors
Room Width
Room Height
Primary Facade Orientation
Window Overhang Depth
Blind Width
Blind Schedule (Occupied Hours)

Input Variable Unit
Hours
Hours

People/mA2
0C
0C

L/s per person
roomfuls/hour
roomfuls/hour
C

0C

N/A
N/A
N/A
m
m

N/A
m
mm

N/A
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Value
7

19
0.1
26
20
60

8
1.8

0
28
18

One-sided

Top
1
5
3

East

0
15
4



Blind Schedule (Unoccupied Hours) N/A 2

Blind Angle When Closed degrees 90

Slat Emissivity N/A 0.2

Slat Absorptivity N/A 0.9
Table 33: Parameters held constant during multistep multivariate regression
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Appendix B: Multistep Regression Coefficients - Boston Only

Heating
Tier
Intercept
Orientation - North

orientation - South
Orientation - West
Light Req.
Equipment Load
Light control (Efficient)
Ventilation control (mech)
Thermal mass (low)
Roof type (cod)
Roof type (green)
Room depth
Window area %
Window type (single glazed)
Window type (trple glazed)
Coating type (high performance)
Wal insulation R-value

Table

1.OOE+00 2a 2b 3a 3b 3c 3d
1.39E+02 1.02E+02 1.50E+02 8.42E+01 8.24E+01
9.26E+00 3.60E+00 1.19E+O1 2.25E+00 2.19E+00

-1.20E+01 -7.27E+00 -1.39E+01 -5.48E+00 -3.95E+00
2.06E+00 8.69E-01 2.69E+.O 5.68E-01 5.63E-01

-1.63E-02 -1.35E-02 -1.64E-02 -1.26E-02 -6.04E-03
-2.12E+00 -1.61E+00 -2.29E+00 -1.49E+00 -7.18E-01
7.86E+00 5.68E+00 8.33E+00 4.97E+00 2.71E+00
2.61E-13 -3.73E-13 -7.48E-04 8.89E-05 4.88E-04
2.75E+00 2.02E+00 3.03E+00 1.82E+00 9.88E-01
4.04E+00 1.95E+00 5.93E+00 1.17E+00 1.24E+00
3.28E+00 1.78E+00 4.59E+00 1.17E+00 1.07E+00

-6.65E+00 -2.55E+00 -9.03E+00 -1.78E+00 -1.44E+00
5.94E-01 2.64E-01 7.39E-01 1.95E-01 1.46E-01

3.43E+01 1.14E+01 4.21E+01 7.25E+00 6.63E+00
-9.32E+00 -5.56E+00 -1.15E+01 -4.03E+00 -3.18E+00
-1.35E+01 -3.37E+00 -2.OOE+01 -1.88E+00 -2.06E+00
-8.13E+00 -5.62E+00 -9.83E+00 -3.33E+00 -3.25E+00

4: Heating energy multistep regression coefficients -single city

Cooing
Tier
Intercept
Orientation - North
Orientation - South

Orienitation - West
Light Req.
Equipment Load
Light control (Efficient)
Ventilation control (mech)
Thermal mass (low)
Roof type (cod)
Roof t -pe (een)
Room depth
Window area %
Window type (single glazed)
Window type (trple glazed)
Coating type (high performance)
Wal insulation R-value

1.OOE+00 2a 2b 3a 3b 3c 3d
2.57E+01

-1.08E+01
-2.19E+00
-1.38E+00

1.09E-02
1.57E+00

-7.75E+00
2.44E-13

2.59E+00
-6.15E+00
-6.19E+00
-1.03E+00

1.41E-01
-5.95E+00
2.67E+00

-4.76E+00
3.76E-01

2.08E+01
-8.16E+00
-1.41E+00
-1.53E+00

1.31E-02
1.75E+00

-8.66E+00
-5.76E-15
2.55E00

-5.46E+00
-5.55E+00
-9.45E-01
1.46E-01

-3.20E+00
2.79E+00

-4.79E+00
4.06E-01

3.21E+01
-1.25E+01
-3.37E+00
-1.33E+00

7.60E-03
1.29E+00

-6.40E+00
1.22E-04
2.74E+00

-6.85E+00
-6.91E+00
-1.44E+00

1.73E-01
-6.16E+00
2.46E+00

-5.54E+00
-5.86E-02

1.78E+01
-6.43E+00
-9.05E-01
-1.30E+00
1.47E-02
1.83E+00

-9.20E+00
4.70E-04
2.54E+00

-4.42E+00
-4.50E+00
-8.03E-01
1.48E-01

-1.89E+00
2.48E+00

-4.47E+00
2.21E-01

2.96E+01
-8.60E+00
-2.66E+00
-1.57E+00

9.78E-03
1.48E+00

-7.38E+00
6.75E-05
2.83E+00

-5.87E+00
-6.00E+00
-1.42E+00

1.85E-01
-1.77E+00
2.30E+00

-5.67E+00
-4.68E-01

Table 35: Cooling energy multistep regression coefficients - single city

3.4E+01
-1.04E+01
-3.93E+00
-1.53E+00

7.36E-03
1.22E+00

-6.24E+00
-1.07E-04
2.80E+00

-6.90E+00
-7.03E+00
-1.83E+00

2.09E-01
-2.78E+00
2.33E+00

-6.43E+00
-5.80E-01

3.48E+01
-1.37E+01
-3.88E+00
-9.83E-01
5.93E-03
1.12E+00

-5.64E+00
4.63E-14

2.95E+00
-6.33E+00
-6.44E+00
-1.80E+00

2.02E-01
-6.59E+00
1.49E+00

-6.16E+00
-4.05E-01

Electricity
Tier
Intercept
Orientation - North
Orientation - South

Orientation - West
Light Req.
Equipment Load

1.00E+00 2a

2.42E+01 2.18E+01
6.84E-01 1.12E+00

-6.32E-01 -8.71E-01
-3.25E-01 -2.94E-01

1.07E-01 1.15E-01
1.20E-02 -5.29E-02

2b 3a 3b 3c 3d
2.97E+01
7.63E-01

-8.86E-01
-2.67E-01
9.70E-02

-5.97E-02

2.21E+01
1.27E+00

-1.37E+00
-3.43E-01
1.21E-01

-1.34E-01

3.20E+01
1.69E+00

-2.33E+00
-2.80E-01

1.07E-01
-2.98E-01

3.25E+01
1.85E+00

-2.19E+00
-2.14E-01
1.00E-01

-2.54E-01

3.26E+01
6.91E-01
-8.43E-01
-1.52E-01
9.06E-02

-7.73E-02

99

1.04E+02
3.39E+00

-4.74E+00
8.59E-01

-6.55E-03
-&84E-01
3.09E+00
4.65E-04
1.19E+00
2.34E+00
1.82E+00

-2.37E+00
1.85E-01
1.04E+01

-4.11E+00
-3.97E+00
-3.75E+00

1.57E+02
1.49E+01

-1.79E+01
3.35E+00
-1.71E-02
-2.43E+00
9.21E+00
-4.74E-14
3.13E+00
7.25E+00
5.53E+00

-1.33E+01
9.66E-01
5.46E+01

-1.49E+01
-3.OOE+01
-9.OOE+00



Light control (Efficient) -6.18E+01 -6.I1E+01 -6.14E+01 -6.15E+01 -5.91E+01 -5.95E+01 -6.25E+01
Ventilation control (mech) 2.52E-13 6.74E-14 5.55E-04 -2.82E-04 -8.72E-04 -1.67E-04 -8.81E-14
Thennal mass (low) -1.51E-13 6.32E-02 6.96E-02 1.84E-01 4.14E-01 3.34E-01 1.54E-01
Roof type (cool) -3.19E-14 1.24E-01 1.62E-01 .51E-01 5.49E-01 6.29E-01 2.11E-01
Roof type (green) -1.52E-13 9.23E-02 1.23E-01 1.67E-01 4.05E-01 4.55E-01 1.49E-01
Room depth 1.14E+00 1.07E+00 8.82E-01 9.36E-01 5.58E-O1 4.10E-01 5.74E-01
Wkidow ares% -7.29E-02 -6.83E-02 -5.12E-02 -5.43E-02 -1.68E-02 -1.88E-02 -2.62E-02
Wlndowtype (singleglazed) -6.11E-01 -2.74E-01 2.40E-01 9.37E-02 2.23E+00 2.40E+00 1.1OE+00
Windowtype (tple glazed) 6.69E-01 5.33E-01 1.59E-01 2.20E-01 -4.61E-01 -6.69E-01 -1.96E-01
Coaintgtype (high performance) 1.35E+O 1.38E+00 8.32E-01 1.32E+00 4.51E-01 1.93E-01 1.43E-01
Wal Insulation R-value 8.84E-14 -2.70E-01 -3.12E-01 -5.SOE-01 -1.48E+00 -1.17E+00 -2.84E-01

Table 36: Electric energy multistep regression coefficients - single city
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Appendix C: Retrocommissioning Data

Year
Entry GSF Constructed HDD CDD EUI (kBtu/sf) Savings %

1 270000 1998 5537 724 64.64 7.43

2 143190 2006 6151 677 63.57 18.98
3 373500 1980 6151 677 83.26 9.11

4 178000 1980 6151 677 95.42 8.96

5 111212 1914 6151 677 85.54 26.69

6 119000 1966 6151 677 75.66 11.22

7 59218 1980 6151 677 97.10 12.85

8 105402 1927 6151 677 57.84 12.27

9 143887 1980 6151 677 76.48 26.03

10 380814 2007 6151 677 67.53 4.75

11 106000 1924 6151 677 63.69 8.01

12 130360 1991 6151 677 53.12 7.1

13 106000 1950 6151 677 69.84 11.79

14 128270 1931 6151 677 77.63 21.85

15 117098 1929 6151 677 82.20 10.59

16 117540 1980 6151 677 84.64 19.86

17 109613 1922 6151 677 749.03 2.68

18 158000 1997 6151 677 64.04 20.12

19 90774 2009 6151 677 63.89 7.71

20 205625 2003 5537 724 135.91 4.75

21 110560 2007 5537 724 73.35 49.8

22 242000 1968 5537 724 104.74 6.02

23 160000 1972 5537 724 149.09 7.91

24 269765 1970 6151 677 56.31 25.33

25 218200 1998 6151 677 84.21 3.38

26 127000 1998 6151 677 108.86 6.83

27 44900 1998 6151 677 85.03 17.65

28 78210 1998 6151 677 70.22 19.63

29 178000 2010 6151 677 90.79 28.83

30 193772 1999 5537 724 65.18 3.2

31 272000 1986 5537 724 103.79 30.78

32 115085 1980 6151 677 85.30 59.41

33 540000 2005 6151 677 76.29 2.62

34 140000 2005 6151 677 118.26 13.13

35 1615492 1980 6151 677 126.08 3.35

36 265000 1980 6151 677 132.92 10.46

37 323408 1980 6151 677 73.15 4.91

38 676301 1980 6151 677 78.66 21.14

39 756200 1980 6151 677 118.77 1.68
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529000

499000

603480

235000

320000

50000

156000

99000

165031

13084

113700

114666

257953

180316

110272

177838

192001

205000

118000

129000

48000

48000

370000

30244

45372

125000

230400

805000

261000

489700

275200

185500

23210

1014133

371343

317000

750000

226383

210406

467685

150000

383200

94000

1980

1980

1980

1980

1980

1990

1967

1946

1980

1970

1990

1990

1978

1973

1980

1960

1992

1966

1970

1970

1960

1968

1997

1991

1986

1983

1985

1997

1970

1997

1980

1994

1980

1999

1980

1911

1993

1980

1980

1985

1980

1984

1997

6151

6151

5537

6151

6151

6081

3431

1688

1747.55

1747.55

1747.55

1747.55

1747.55

1747.55

1747.55

1747.55

1747.55

3431

3431

3431

3431

3431

5765

4156

2707

1896

6152

5538

4785

4785

6207

4785

6226

3319

3319

3319

3319

3319

3319

3319

3205

2749

2749

677

677

724

677

677

622

1689

3016

2924.61

2924.61

2924.61

2924.61

2924.61

2924.61

2924.61

2924.61

2924.61

1689

1689

1689

1689

1689

1047

781

1470

980

828

489

538

538

964

538

1040

273

273

273

273

273

273

273

1383

1237

1237

99.30

256.78

269.64

107.31

177.33

529.25

405.83

211.7

405.83

211.7

405.83

185.35

185.35

405.83

211.7

221.1

185.35

185.35

185.35

185.35'

185.35

185.35

221.1

193.1

193.1

211.7

529.25

211.7

211.7

211.7

159.4

193.1

180

211.7

159

181.65

186.55

159

221.1

211.7

211.7

211.7

529.25

17.32

0.93

15.32

19.38

7.27

27.2

18.6

33.1

49.5

47.2

50.1

35.9

30.1

38

36.5

57.3

23.9

28.6

11.4

26.2

7.3

15.9

28.7

6

9.6

10.7

38.2

10.3

17.6

11.1

6

7.7

29.5

4.6

5

1.9

2.3

15.8

2

1.5

4.5

21.2

28.6
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83

84

85

86

87

88

89

90

300000
400000

324000
352000
308360
600000

11232

32800

1996

1991
1990
1995

1965
1980
1980

1980

2749

2749

2749

2749

2749

4785

7981
4611

Table 37: Retrocommissioning savings algorithm data set entries

Average energy savings = 16.75%

103

1237

1237
1237

1237

1237

538

682

167

497.17

211.7

211.7

211.7

367.2

438.8

172.6

211.7

-7.4

5.1
7.1

12
7.7

13.5

10
31
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