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We propose a fast method to determine the local curvature in two-dimensional (2D) systems with arbitrary
shape. The curvature information, combined with elastic constants obtained for a planar system, provides an
accurate estimate of the local stability in the framework of continuum elasticity theory. Relative stabilities
of graphitic structures including fullerenes, nanotubes, and schwarzites, as well as phosphorene nanotubes,
calculated using this approach, agree closely with ab initio density functional calculations. The continuum
elasticity approach can be applied to all 2D structures and is particularly attractive in complex systems with
known structure, where the quality of parameterized force fields has not been established.
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I. INTRODUCTION

Layered structures including graphite, hexagonal boron
nitride, black phosphorus, transition-metal dichalcogenides
such as MoS2, and oxides including V2O5 are very common
in nature. The possibility to form stable two-dimensional
(2D) structures by mechanical exfoliation of these structures
appears very attractive for a variety of applications [1,2]. The
most prominent example of such 2D systems, graphitic carbon,
is the structural basis not only of graphene [1] but also of
fullerenes, nanotubes, tori, and schwarzites [3–7]. Even though
the structural motif in all of these systems may be the same,
their mechanical and electronic properties depend sensitively
on the local morphology [8–10]. Not only does the natural
abundance of structural allotropes and isomers reflect their
net energetic stability, but also the relative chemical reactivity
of specific sites in a given structure correlates well with the
local curvature and local stability [8–10]. This relationship
has been well established for the reactive sites in the C50

fullerene [8], used to induce structural collapse leading to
chemical unzipping of carbon nanotubes [11–13], and to
destroy collapsed carbon nanotubes [10].

For very large structures, estimating the global or local
stability using ab initio calculations has proven impracticable.
There, the stability has often been estimated using empirical
rules or parameterized force fields including the Tersoff
potential and molecular mechanics [14–17], with sometimes
unsatisfactory results. Application of continuum elasticity the-
ory, which can describe stability changes due to deviation from
planarity, has been successful, but limited to systems with a
well-defined, constant curvature [18,19]. Since strain energy is
local and independent of the global morphology, it is intriguing
to explore whether the local deformation energy may be
accurately determined from local morphology estimates using
the atomic geometry. If so, then the local stability in even
arbitrarily shaped structures could be estimated accurately.

Here we propose a fast method to determine the local
curvature in 2D systems with a complex morphology using

*tomanek@pa.msu.edu

the local atomic geometry. Curvature information alone,
combined with elastic constants obtained for a planar system,
provides accurate stability estimates in the framework of
continuum elasticity theory. We find that relative stabilities
of graphitic structures including fullerenes, nanotubes, and
schwarzites, as well as phosphorene nanotubes, calculated
using this approach, agree closely with ab initio density
functional calculations. The continuum elasticity approach can
be applied to all 2D structures and is particularly attractive in
complex systems with known structure, where the quality of
parameterized force fields has not been established.

II. LOCAL CURVATURE AND CURVATURE ENERGY

The local curvature at a particular location on a surface
is given by the two principal radii of curvature R1 and R2,
as shown in Fig. 1. On a spherical surface, R1 = R2. On a
cylindrical surface, R1 is the cylinder radius and R2→∞.
Finally, a saddle point on a surface is characterized by
opposite signs of R1 and R2. Knowing the principal radii of
curvature everywhere, we may use continuum elasticity theory
to determine the curvature energy �EC with respect to a planar
layer using [20]

�EC = 1

2
D

∫
surface

dA

(
1

R2
1

+ 1

R2
2

+ 2α

R1R2

)
. (1)

Here, the integral extends across the entire closed surface,
D is the flexural rigidity, and α is the Poisson ratio. Simple
expressions for �EC can be obtained for simple morphologies
such as a sphere or a cylinder, where R1 and R2 are constant
everywhere [18]. This is, however, not the case in general.

We find it convenient to introduce the local mean curvature

k = 1

2

(
1

R1
+ 1

R2

)
(2)

and the local Gaussian curvature

G = 1

R1R2
. (3)
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FIG. 1. (Color online) Principal radii of curvature R1,R2 and the
Gaussian curvature G (a) on the surface of a sphere, (b) on the surface
of a cylinder, and (c) in a saddle point. (d) Determination of the local
curvature at point P using the atomic lattice and the dual lattice.

Using these quantities, we can rewrite Eq. (1) as

�EC = D

∫
surface

dA[2k2 − (1 − α)G]. (4)

In the following, we will consider the equilibrium arrange-
ment of atoms in a planar 2D structure as the reference structure
and will determine the local curvature from changes in the
local morphology. The discrete counterpart of Eq. (4) for the
curvature energy �EC is a sum over atomic sites i:

�EC ≈ DA
∑

i

[
2k2

i − (1 − α)Gi

]
, (5)

where A is the area per atom.
To use Eq. (5) for curvature energy estimates, we need

to know the local curvatures k and G at all atomic sites. Our
approach to estimate these values at a given site P is illustrated
in Fig. 1(d). According to Eq. (2), the local mean curvature k

should be close to the average inverse radius of curvature at
that point:

k ≈
〈

1

R

〉
. (6)

Since the atomic site P and its nearest three neighbors F1,
F2, and F3 define the surface of a sphere of radius R, we take
k = 1/R.

The positions of four atoms do not allow us to distinguish
whether P is on a plane, on a sphere, on a cylinder, or in a
saddle point. We may obtain this additional information using
the concept of angular defect. On any surface, which can be
triangulated as shown in Fig. 1(d), the angular defect at a
representative vertex V1 is defined by �(V1) = 2π − ∑

i ϕi in
radian units. The local Gaussian curvature at V1 is then given
by [21]

G(V1) = �(V1)/At =
(

2π −
∑

i

ϕi

) /
At, (7)

where At is the total area of the triangulated surface divided
by the number of vertices.

For trivalent molecular graphs containing five-, six-, and
seven-membered rings found in fullerenes, carbon nanotubes,
and schwarzites, a unique triangulation may be obtained by
connecting the centers of adjacent polygons. This method is
referred to as the dual graph in graph theory [22] and its
use is illustrated in Fig. 1(d). Since P is not a vertex in the
dual graph, but rather the center of the triangle �V1V2V3,
we must infer the local Gaussian curvature at P from the
angular defects at V1, V2, and V3. If vertex Vj is surrounded by
nj triangles, we may assign to point P the angular defect
�(P ) = �(V1)/n1 + �(V2)/n2 + �(V3)/n3. Then, we can
estimate the local Gaussian curvature at P as

G(P ) = �(P )/A, (8)

where A is the average area per atom. We use A = 2.62 Å2,
the value found in the honeycomb lattice of graphene, for all
graphitic structures.

The above definition of the local Gaussian curvature
satisfies exactly the equality

A
∑
atoms

G(Pj ) = At

∑
vertices

G(Vj ) = 2πχ. (9)

Here, χ is the Euler characteristic of the surface, given by χ =
2 − 2g, where g is the genus, meaning the number of holes.
Of interest here is the fact that χ = 2 for spherical objects like
fullerenes and χ = 0 for cylindrical objects such as nanotubes.
Equation (9) is the discretized version of the Gauss-Bonnet
theorem [23] regarding the integral of the Gaussian curvature
over an entire closed surface, called the sum of the defect,
which is usually formulated as

∫
surface GdA = 2πχ .

The variation of the local Gaussian curvature G and the
local curvature energy �EC/A across the surface of carbon
polymorphs, including two fullerene isomers discussed in
Sec. III B, a nanotube and a schwarzite structure, is displayed
in Fig. 2. The local curvature energy in these sp2 bonded
structures has been evaluated using the elastic constants
of graphene [18] D = 1.41 eV and α = 0.165. The higher
stability of the C38(17) isomer in Fig. 2(b) is reflected in a
rather uniform local curvature energy and Gaussian curvature
distribution. The low stability of the C38(2) isomer in Fig. 2(a)
is reflected in a large variation of local curvature energy and
Gaussian curvature, clearly indicating the most reactive sites.
Cylindrical carbon nanotubes, such as the (10,10) nanotube
displayed in Fig. 2(c), have zero Gaussian curvature and a
constant local curvature energy caused by the mean curvature.
Schwarzites such as the C152 structure, displayed in Fig. 2(d),
have only negative Gaussian curvature that may vary across
the surface, causing variations in the local curvature energy.

III. VALIDATION OF THE CONTINUUM
ELASTICITY APPROACH

We will next test the accuracy of the continuum elasticity
approach by calculating the relative stability of nonplanar
structures based on graphitic carbon. An infinite num-
ber of morphologies including nanotubes, fullerenes, and
schwarzites may be produced by deforming a segment of a
graphene layer and reconnecting its edges so that all carbon
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FIG. 2. (Color online) Local Gaussian curvature G (left panels)
and local curvature energy �EC/A across the surface of (a) the least
stable C38 isomer, (b) the most stable C38 isomer, (c) a (10,10) carbon
nanotube, and (d) a schwarzite structure with 152 atoms per unit
cell. The values of G and �EC/A have been interpolated across the
surface.

atoms are threefold coordinated. In many cases, the nonplanar
structures contain carbon pentagons and heptagons in the
graphitic honeycomb arrangement of atoms as required by
Euler’s theorem [23].

To validate the continuum elasticity theory results, we
calculated the total energy of a graphene monolayer and
selected graphitic structures using ab initio density functional
theory (DFT) as implemented in the SIESTA code [24]. We used
the local-density approximation (LDA) [25,26] and Perdew-
Burke-Ernzerhof (PBE) [27] exchange-correlation function-
als, norm-conserving Troullier-Martins pseudopotentials [28],
and a double-ζ basis including polarization orbitals. The
one-dimensional Brillouin zone of nanotubes was sampled
by 16 k points and the 2D Brillouin zone of graphene was
sampled by 16×16 k points [29]. The small Brillouin zones
of schwarzites with several hundred C atoms per unit cell
were sampled by only one k point. We used a mesh cutoff
energy of 180 Ry to determine the self-consistent charge
density, which provided us with a precision in total energy
of �2 meV/atom. All geometries have been optimized using
the conjugate gradient method [30], until none of the residual
Hellmann-Feynman forces exceeded 10−2 eV/Å.

A. DFT results for fullerenes

Our DFT-LDA results for the relative energy �EDFT
tot of

optimized Cn fullerenes [31,32] with respect to graphene are
shown in Fig. 3(a). The various data points for one size cor-
respond to different structural isomers, which are increasing
fast in number with increasing n. If all fullerenes were perfect
spheres, Eq. (4) would simplify to [18] �EC = 4πD(1 + α).
Using the proper elastic constants for graphene [18] D = 1.41
eV and α = 0.165, we would estimate �EC = 20.6 eV for
all fullerenes independent of size. The numerical values for
the different optimized fullerene isomers in Fig. 3(a) are all
larger, indicating that variations in the local curvature and bond
lengths cause a significant energy penalty.

B. Comparison between computational approaches
for C38 fullerene isomers

As we show in the following, considering only local curva-
ture variations across the surface (and ignoring precise atomic
positions) allows continuum elasticity theory to quantitatively
predict the strain energy with a precision competing with
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FIG. 3. (Color online) Strain energy �E in carbon nanostructures with respect to the graphene reference system. (a) DFT-based total strain
energy �EDFT

tot for selected fullerenes, with the most stable isomers indicated by the larger symbols. (b) Strain energy �E in different C38

isomers. Total-energy differences �EDFT
tot based on DFT, �ETersoff

tot based on the Tersoff potential, and �E
Keating
tot based on the Keating potential

are compared to curvature energies �E
Keating
C based on Keating optimized geometries. (c) Strain energy �E in different C38 isomers. DFT

total energies �EDFT
tot are compared to curvature energies �EDFT

C based on continuum elasticity theory for structures optimized by DFT, and
�E

Keating
C values based on continuum elasticity theory for structures optimized using the Keating potential.
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ab initio calculations. To illustrate this point, we present in
Fig. 3(b) the total strain energy �E in 17 isomers of C38

obtained using various approaches. The strain energy �EDFT
tot

based on DFT, which is expected to represent closely the
experimental results, is not only significantly lower than the
predicted values �ETersoff

tot based on the Tersoff potential [14]
but also differs from this popular bond-order potential in the
prediction of relative stabilities.

Next we demonstrate that accurate energy estimates may
be obtained even for geometries optimized using simple
potentials with only bond stretching and bond bending terms
such as the Keating potential [33,34]:

�EK = 1

2
αK

∑
〈i,j〉
i<j

(
r2
ij − R2

)2

R2
+ 1

2
βK

∑
〈i,j,k〉
j<k

(
rij · rik + 1

2R2
)2

R2
.

(10)

The first term sums over nearest-neighbor pairs and the second
term sums over nearest-neighbor triplets, where j and k share
the same neighbor i. DFT calculations for graphene yield R =
1.42 Å as bond length, 120◦ as bond angle, αK = 11.28 eV/Å2,
and βK = 4.14 eV/Å2.

Geometries of C38 fullerene isomers optimized by DFT and
the Keating potential are presented in [32]. Strain energies
for Keating optimized fullerenes are shown in Fig. 3(b).
Whereas the Keating optimized geometry is close to the
DFT optimized geometry, the Keating strain energy �E

Keating
tot

clearly underestimates the DFT values and does not correctly
represent the relative stabilities of the different isomers. As an
alternative, we used the Keating optimized geometry to obtain
the curvature strain energy �E

Keating
C using the continuum

approach. We found that this approach represents the relative
stabilities of isomers adequately and compares well to �EDFT

tot .
The curvature strain energy values are somewhat lower than
the DFT values, since energy penalties associated with bond
stretching and bending do not appear in the continuum
approach. The small value of such corrections reflects the
fact that in equilibrated structures bond lengths and angles
are near their optimum. The largest errors are expected in
frustrated structures, where not all bond lengths and angles
can be optimized simultaneously.

One of the key findings of this study is that continuum
elasticity theory provides not only a fast but also a relatively
robust way to determine relative stabilities that are, to some
degree, insensitive to the precise geometry. We illustrate
this point in Fig. 3(c), where we compare different ways
to determine the total strain energy �E in all C38 isomers
discussed in Fig. 3(b). �EDFT

tot , shown by the solid line, is the
difference between the total energy in DFT of DFT optimized
C38 isomers and 38 carbon atoms in the graphene structure.
�EDFT

C , given by the dashed line, is the curvature energy
based on the DFT optimized geometry. �E

Keating
C , given by the

dash-dotted line, is the curvature energy based on the Keating
optimized geometry. We note that all expressions provide an
accurate representation of relative stabilities. As mentioned
above, the fact that �EC is about 10% lower than �Etot is
caused by our neglecting the stretching and bending of discrete
atomic bonds in the continuum approach.

C. Comparison of computational approaches for
sp2 bonded carbon nanostructures

Encouraged by the level of agreement for C38, we present
in Fig. 4(a) the correlation between the curvature energy
�E

Keating
C and �EDFT

tot based on DFT for all fullerenes
discussed in Fig. 3(a). The narrow spread of the data points
around the �E

Keating
C = �EDFT

tot line confirms that the con-
tinuum elasticity approach is competitive in accuracy with
computationally much more involved ab initio calculations.

To demonstrate the generality of our approach, we extend it
from near-spherical fullerenes to nanotubes with cylindrical
symmetry and schwarzites with local negative Gaussian
curvature. Since nanotubes and schwarzites are infinitely large,
we compare stabilities on a per-atom basis in these structures.
Besides results for the fullerenes discussed in Figs. 3 and 4(a),
Fig. 4(b) displays results for nanotubes with radii ranging
between 2.5 and 9.0 Å and for schwarzite structures with 152,
192, and 200 carbon atoms per unit cell. These results again
indicate an excellent agreement between curvature energies in
Keating optimized structures and DFT-based strain energies.

(a) 
K
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g 

Etot
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Fullerenes
Nanotubes

Schwarzites

K
ea

tin
g 

Etot
DFT/n (eV)

(b) 

FIG. 4. (Color online) Strain energy �E in carbon nanostruc-
tures with respect to the graphene reference system. (a) Comparison
between DFT-based total energies �EDFT

tot and the curvature energy
�E

Keating
C based on Keating optimized geometries for all fullerene

isomers considered in Fig. 3(a). (b) Comparison between DFT-based
strain energies �EDFT

tot /n and curvature energies per atom �E
Keating
C /n

for Keating optimized geometries of fullerenes, nanotubes, and
schwarzites. Dashed lines represent agreement between DFT and
continuum elasticity results.
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(a) (b)

R

FIG. 5. (Color online) (a) Perspective view of the planar structure
of a blue phosphorene monolayer (top), which has been rolled up to a
nanotube with radius R (bottom). (b) Comparison between the strain
energy per atom �EC/n based on continuum elasticity theory and
�EDFT

tot /n based on DFT in blue phosphorene nanotubes. The dashed
line represents agreement between DFT and continuum elasticity
results.

This agreement is particularly impressive, since the spread of
atomic binding energies extends over more than 1 eV.

D. Phosphorene nanotubes

As suggested at the outset, our approach to estimate relative
stabilities is particularly valuable for unexplored systems
such as monolayers of blue phosphorus [35], where model
potentials have not yet been proposed. Our DFT-PBE results
for a blue phosphorene monolayer indicate A = 4.78 Å2 as
the projected area per atom, D = 0.84 eV, and α = 0.10. The
monolayer structure, shown in the top panel of Fig. 5(a), has
an effective thickness of 1.27 Å. This structure can be rolled
up to phosphorene nanotubes with different radii R using the
approach used in the construction of carbon nanotubes [7].
As seen in Fig. 5(b), the strain energy for this geometry,
obtained using continuum elasticity theory, agrees very well
down to very small radii with results obtained using much
more involved DFT calculations [36].

IV. DISCUSSION

Given a set of points in space, such as atomic positions,
it is possible to construct a smooth surface that contains all
these points in order to characterize its shape everywhere,
and to eventually determine the deformation energy using the
continuum elasticity approach.

We illustrate this point by tessellating the smooth surface
of a graphitic nanocapsule, consisting of a cylinder capped by
hemispheres at both ends and representing C120, in different
ways. Our results in Fig. 6 show that the average curvature
energy 〈�EC〉 is rather insensitive to the tessellation density.
The horizontal dashed line at 〈�EC〉 = 0.099 eV/Å2, repre-
senting an extrapolation to a dense tessellation, is ≈5% higher
than the exact continuum elasticity value of 0.093 eV/Å2,
obtained for an ideal capsule with cylinder and hemisphere
radius R = 3.55 Å. The small difference arises from our
approximate way to estimate the mean curvature k on the
cylinder surface and at the interface between the cylinder and
the hemisphere. The extrapolated value is also close to the

Nanocapsule

120
Number of vertices

<
E C

>/
ar

ea
 (e

V/
Å

2 )

FIG. 6. (Color online) Average curvature energy 〈�EC〉 per area
of a nanocapsule tessellated by a honeycomb lattice with different
numbers of vertices. The vertical dash-dotted red line indicates that
the capsule represents the C120 structure. The inset shows how the
capsule surface can be tessellated by a honeycomb lattice with 120
vertices or atoms, shown by the white lines, and also with 480 vertices,
shown by the red lines. The horizontal dashed black line represents
an extrapolation to an infinitely dense tessellation.

〈�EDFT
tot 〉 = 0.100 eV/Å2 based on the DFT optimized C120

capsule.
The reverse process to determine atomic positions from

the shape alone is not unique. An informative example is the
structure of a carbon nanotube. Whereas the precise atomic
structure within each nanotube is defined by the chiral index,
many nanotubes with different chiral indices share essentially
the same diameter and the same local curvature. Thus, given
only the diameter of a (wide) hollow cylinder representing a
nanotube, it is impossible to uniquely identify the chiral index
and thus the atomic position. As a matter of fact, identifying
the precise atomic positions is not necessary, since according
to continuum elasticity theory, supported by experimental
evidence, the stability of nanotubes depends only on the tube
diameter [7].

From its construction, the continuum elasticity description
of local and global stability is best suited for very large
structures with small local curvatures. Therefore, the high
level of agreement between its predictions and ab initio results
in structures with large local curvatures is rather impressive.
Among the different allotropes, we find the continuum elastic-
ity description to be most accurate for carbon nanotubes, where
all bond lengths are at their equilibrium value. In fullerenes and
schwarzites, the presence of nonhexagonal rings, including
pentagons and heptagons, prevents a global optimization of
bond lengths and bond angles, reducing the agreement with
DFT results.

Our stability results are consistent with the pentagon
adjacency rule that provides an energy penalty of 0.7−0.9
eV for each pair of adjacent pentagons [37–39], which causes
an increase of the local curvature. While this rule is surely
useful, it cannot compare the stability of isomers with isolated
pentagons or structures of different size.

What we consider the most significant benefit of our
approach to determine local strain [32] is to identify the
least stable sites in a structure. Local curvature and in-plane
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strain play the key role in both local stability and local
electronic structure [9], which also controls the chemical
reactivity [8,10]. Thus, our approach can identify the most
reactive and the least stable sites, which control the stability
of the entire system.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have introduced a fast method to
determine the local curvature in 2D systems with arbitrary
shape. The curvature information, combined with elastic
constants obtained for a planar system, provides an accurate
estimate of the local stability in the framework of continuum
elasticity theory. Relative stabilities of graphitic structures
including fullerenes, nanotubes, and schwarzites, as well
as phosphorene nanotubes calculated using this approach,

agree closely with ab initio density functional calculations.
The continuum elasticity approach can be applied to all 2D
structures and is particularly attractive in complex systems
with known structure, where the quality of parameterized force
fields has not been established.
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