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Measurement of the B̄0
s Meson Lifetime in Dþ

s π− Decays

R. Aaij et al.*

(LHCb Collaboration)
(Received 22 July 2014; published 24 October 2014)

We present a measurement of the ratio of the B̄0
s meson lifetime, in the flavor-specific decay to Dþ

s π
−,

to that of the B̄0 meson. The pp collision data used correspond to an integrated luminosity of 1 fb−1,
collected with the LHCb detector, at a center-of-mass energy of 7 TeV. Combining our measured value of
1.010� 0.010� 0.008 for this ratio with the known B̄0 lifetime, we determine the flavor-specific B̄0

s

lifetime to be τðB̄0
sÞ ¼ 1.535� 0.015� 0.014 ps, where the uncertainties are statistical and systematic,

respectively. This is the most precise measurement to date, and is consistent with previous measurements
and theoretical predictions.

DOI: 10.1103/PhysRevLett.113.172001 PACS numbers: 14.40.Nd, 13.25.Hw, 14.65.Fy

Lifetimes of b-flavored hadrons show the effects of all
processes governing their weak decays. In the case of
neutral mesons, the decay rates are not purely exponen-
tial, but are modified by flavor mixing and charge parity
(CP ) violation. The B̄0

s meson’s decay width Γs differs
for the heavy and light mass eigenstates, by an amount
ΔΓs that has been measured to be significantly different
from zero [1]. This gives rise to a rich phenomenology of
mixing and CP violation. Precision measurement of the
lifetime τs ¼ ℏ=Γs is therefore an important benchmark.
The ratio of B̄0

s to B̄0 lifetimes is well predicted in the
heavy quark expansion model [2], which is used to extract
values of the quark-mixing parameters jVcbj and jVubj,
and thus lifetime measurements provide a precision test
of the theory.
In this Letter we measure the lifetime of the decay

B
ð–Þ

0
s → D�

s π
∓ by summing over B0

s and B̄0
s states. Since CP

violation in B̄0
s mixing is negligible [3], the final state

receives equal contributions from light and heavy mass
eigenstates. Consequently, the decay rate is given by the
sum of two exponentials and can be fitted by a single
exponential with the measured flavor-specific lifetime τfs
related to the decay width. Expanding in terms of ΔΓs=Γs
[4] (we use natural units where ℏ ¼ c ¼ 1),

τfs ≈
1

Γs

1þ ðΔΓs
2Γs

Þ2
1 − ðΔΓs

2Γs
Þ2 : ð1Þ

The B̄0
s time-dependent decay rate is measured with respect

to the well-measured lifetimes of the B− and B̄0 mesons,
which are reconstructed in final states with similar topology

and kinematic properties. (Reference to a given decay mode
implies the use of the charge-conjugate mode as well.)
The LHCb detector [5] is a single-arm forward spec-

trometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system
consisting of a silicon-strip vertex detector surrounding the
pp interaction region [6], a large-area silicon-strip detector
located upstream of a dipole magnet with a bending
power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes [7] placed downstream of
the magnet. The tracking system provides a measurement
of momentum p with a relative uncertainty that varies from
0.4% at low momentum to 0.6% at 100 GeV. The minimum
distance of a track to a primary vertex, the impact parameter,
is measured with a resolution of ð15þ29=pTÞ μm, where pT

is the component of p transverse to the beam, in GeV.
Different types of charged hadrons are distinguished using
information from two ring-imaging Cherenkov detectors [8].
Photon, electron, and hadron candidates are identified
by a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter, and a
hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire
proportional chambers [9].
The trigger consists of a hardware stage, based on

information from the calorimeter and muon systems,
followed by a software stage, which applies a full event
reconstruction. The signal candidates are hardware trig-
gered if there is at least one track having a large transverse
energy deposit, then the track is required in software to
have a transverse momentum pT > 1.7 GeV and an impact
parameter χ2IP with respect to the primary vertex (PV)
greater than 16, where χ2IP is defined as the difference in χ2

of a given PV reconstructed with and without the consid-
ered particle included. In addition a vertex detached from
the PV must be formed with either two, three, or four
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tracks, with a scalar pT sum of the tracks that must exceed
a threshold that varies with the track multiplicity.
The advantage of measuring the B̄0

s lifetime using the
ratio with respect to well-measured lifetimes is that the
decay time acceptances introduced by the trigger and
selection almost cancel, and only small corrections are
required to the ratio of the decay time acceptances, which
are taken from simulation. Thus, we reconstruct signals not
only in the B̄0

s → Dþ
s π

−,Dþ
s → KþK−πþ (denoted B̄0

s½KKπ�)
decay mode, but also in the topologically similar channels
(i) B− → D0π−, D0 → K−πþ (B−

½Kπ�), (ii) B− → D0π−,

D0 → K−π−πþπþ (B−
½Kπππ�), and (iii) B̄0 → Dþπ−, Dþ →

K−πþπþ (B̄0
½Kππ�).

These decay modes are selected using some common
criteria. All of the tracks coming from candidate D meson
decays are required to have χ2IP > 9. Pions arising from B̄
meson decays have a more selective requirement χ2IP > 36

and they are required to be inconsistent with being
identified as muons. The D candidates are required to
have masses within 25 MeV of their known values [1],
which corresponds to about 3 rms widths, be reconstructed
downstream of the PV, and have χ2IP > 4. The D vertex
separation from the B̄ vertex should satisfy χ2VS > 2, where
χ2VS is the increase in χ2 of the parent B̄ vertex fit when the
D decay products are constrained to come from the B̄
vertex, relative to when they are allowed to come from a
separate vertex.

B− and B̄0 candidates are required to have χ2IP < 16
with respect to the PV and masses in the ranges 5100–
5600 MeV, while for B̄0

s candidates the mass range is
changed to 5200–5700 MeV. The cosine of the angle
between the B̄ momentum and its direction of flight is
required to be greater than 0.9999. All signal candidates are
refitted taking both D mass and vertex constraints into
account [10]. All charged particles are required to be
identified as either pions or kaons. Efficiencies are evalu-
ated with a data-driven method using large samples of
D0 → K−πþ events, where the kinematic distributions of
kaons and pions from the calibration sample are reweighted
to match those of the B̄ decays under study.
We eliminate B̄0

½Kππ� decay candidates that result from

other similar decays, the B̄0
s → Dþ

s π
−,Dþ

s → KþK−πþ and
Λ0
b → Λþ

c π
−, Λþ

c → pK−πþ modes, if the invariant mass of
the particles forming the Dþ candidate, with appropriately
swapped mass assignments, is compatible within 30 MeV
with either of the known Dþ

s or Λþ
c masses. Similar vetoes

are applied for B̄0
s½KKπ� candidates, where cross feed from

B̄0 → Dþπ−, Dþ → K−πþπþ, and Λ0
b → Λþ

c π
−, Λþ

c →
pK−πþ can happen if misidentification occurs. The com-
bined efficiencies of the particle identification requirements
and the mass vetoes depend on the specific decay mode
considered, ranging from 80% to 90%, while more than
95% of cross-feed backgrounds are rejected.
The B̄ candidate mass distributions for the four decay

modes considered are shown in Fig. 1, along with the
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FIG. 1 (color online). Fits to the invariant mass spectra of candidates for the decays (a) B− → D0½Kπ�π−, (b) B− → D0½Kπππ�π−,
(c) B̄0 → Dþ½Kππ�π−, (d) B̄0

s → Dþ
s ½KKπ�π−. The points are the data and the superimposed curves show the fit components. The solid

(blue) curve gives the total. The DK− component is not visible, but is included.
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results of binned maximum likelihood fits. Signal shapes
are parametrized using modified Gaussian functions
(Cruijff) with independent tail shapes on both sides [11].
All signal parameters are allowed to vary in the fit.
A residual component of B̄ → DK− misidentified events
is also included, with its yield constrained to that deter-
mined by examining the data where the kaon is positively
identified instead of the pion. Partially reconstructed
backgrounds, where a pion or a photon is missed in
reconstruction, are modeled using a sum of parametric
empirical functions convolved with resolution functions.
The unique decay kinematics of each of the modes, mostly
determined by the polarization amplitudes, is taken into
account. The combinatorial background is parametrized by
a linear term. The fitted signal yields are 179 623� 467,
82 880� 339, 109 670� 378 and 21 058� 245 for B−

½Kπ�,
B−
½Kπππ�, B̄

0
½Kππ�, and B̄0

s½KKπ� decays, respectively.
The decay time t is derived from a flight-length meas-

urement between production and decay points of the B̄
particle, given by

t ¼ m
~d · ~p
jpj2 ; ð2Þ

where m is the reconstructed invariant mass, ~p is the
momentum. and ~d is the distance vector of the particle from
its production to decay vertices. Prior to this determination,
the PV position is refitted excluding the tracks forming the
signal candidate, and the B̄ meson is further constrained to
come from the PV. The decay time distribution of the signal
DTðtÞ can be described by an exponential function con-
volved with a decay time resolution function Gðt; σÞ, and
multiplied by an acceptance function AðtÞ:

DTðtÞ ¼ AðtÞ × ½e−t0=τ ⊗ Gðt − t0; σÞ�: ð3Þ

The ratio of the measured decay time distributions of B̄0
s

to B̄0 or B− (we denote the use of either B̄0 or B− modes by
the symbol Bx) can be written as

RðtÞ ¼ AB̄0
s
ðtÞ × ½e−t0=τB̄0s ⊗ Gðt − t0; σB̄0

s
Þ�

ABx
ðtÞ × ½e−t0=τBx ⊗ Gðt − t0; σBx

Þ� : ð4Þ

Resolutions are evaluated using simulated events and they
are found to be 38, 37, 39, and 36 fs for B̄0

s½KKπ�, B̄
0
½Kππ�,

B−
½Kπ�, and B

−
½Kπππ�, respectively. Since the resolution is very

similar in all the modes, and much smaller than our 0.5 ps
bin width, the resolution effects cancel [12], and we are
left with a ratio of two exponentials times the ratio of
acceptance functions,

RðtÞ ¼ AB̄0
s
ðtÞ

ABx
ðtÞ e

−tð1=τB̄0s−1=τBx Þ ¼ AB̄0
s
ðtÞ

ABx
ðtÞ e

−tΔB̄0sBx ; ð5Þ

where ΔB̄0
sBx

≡ 1=τB̄0
s
− 1=τBx

. Acceptance functions are
evaluated by simulation. The effective lifetime τB̄0

s
can

then be calculated from ΔB̄0
sBx

using the well-known Bx

lifetimes. The current world average values are τB̄0 ¼
1.519� 0.007 ps and τB− ¼ 1.641� 0.008 ps [1].
The signal yields are determined in each decay time bin

by fitting the mass distribution in each bin with the same
shapes as used in the full fits, with the signal shape
parameters fixed to those of the full fit as they are
independent of the decay time. The yields are shown
in Fig. 2.
The signal yields are then corrected by the relative decay

time acceptance ratio, obtained by simulation, and shown in
Fig. 3. Then the efficiency-corrected yield ratios are fitted
with a single exponential function to extract ΔB̄0

sBx
. Fits are

performed in the 1–8 ps region. The 0–1 ps region is
excluded since the ratio of acceptances varies significantly
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here, due to the differences between the lifetimes and track
multiplicities in the D decays.
The full analysis is also applied to the control decay

modes and the B− lifetime is measured relative to that of the
B̄0 meson. Given their well-known lifetimes, this provides
a robust check on the validity of the procedure. We then
measure the B̄0

s=By lifetime ratio for each of the three
samples. The exponential fits for the B̄0

s=By lifetime ratios
are shown in Fig. 4, with the results given in Table I. In each
case good agreement with the known values of the light B̄
meson lifetime ratio is found, and the three values of the B̄0

s
lifetime are consistent.
The sources of systematic uncertainties on ΔB̄0

sBx
are

summarized in Table II. The statistical precision on the
relative acceptance is the largest source of systematic
uncertainty. The uncertainties due to the background
description are estimated by comparing the nominal result
to that obtained when the linear background slope is

allowed to float separately in each decay time bin; in
addition, an exponential shape is used, and the largest
deviation is assigned as a systematic uncertainty. Using a
different signal shape to fit the data (double Crystal Ball
function [13]) leads to small changes. There is also an
uncertainty due to the decay time range and binning used.
These uncertainties are ascertained by changing the fit range
limits down to 0.5 ps and changing the size of the bins from
0.3 to 1 ps. The relative measurements with respect to the
three control samples agree within 0.005 ps, and this is
conservatively added to the total systematic uncertainty.
Using the known lifetimes of the B− and B̄0 mesons and

the three different normalization channels, the flavor-
specific B̄0

s lifetime is determined as

τfs ¼ 1.540� 0.015� 0.012� 0.008 ps½B−
½Kπ��

τfs ¼ 1.535� 0.015� 0.012� 0.007 ps½B̄0
½Kππ��

τfs ¼ 1.535� 0.016� 0.018� 0.008 ps½B−
½Kπππ��;

where the first uncertainty is statistical, the second is
systematic and the third is the uncertainty due to the input
decay lifetimes of the B− and B̄0 mesons, 0.008 ps for the
B− meson and 0.007 ps for the B0 meson [1]. As the results
are fully correlated, that with the smallest uncertainty is
chosen

τfs ¼ 1.535� 0.015� 0.012� 0.007 ps:
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TABLE I. Measured lifetime ratios, compared with the known values, and the difference (fitted minus known), as
well as the resulting measured lifetime τmeas. Errors are statistical only. Bx and By indicate the modes used.

Value B−
½Kπ�=B̄

0
½Kππ� B−

½Kπππ�=B̄
0
½Kππ� B−

½Kπππ�=B
−
½Kπ�

Measured ΔBxBy
(ps−1) −0.0451� 0.0033 −0.0452� 0.0039 0.0011� 0.0034

Known ΔBxBy
(ps−1) [1] −0.0489� 0.0042 −0.0489� 0.0042 0

Difference (ps−1) 0.0038� 0.0054 0.0037� 0.0057 0.0011� 0.0034
τmeasðB−Þ (ps) 1.631� 0.009 1.631� 0.010 1.638� 0.009

Value B̄0
s½KKπ�=B

−
½Kπ� B̄0

s½KKπ�=B̄
0
½Kππ� B̄0

s½KKπ�=B
−
½Kπππ�

Fitted ΔB̄0
sBy

(ps−1) 0.0402� 0.0062 −0.0063� 0.006 5 0.0418� 0.0066
τBy

(ps) [1] 1.641� 0.008 1.519� 0.007 1.641� 0.008
τmeasðB̄0

sÞ (ps) 1.540� 0.015 1.535� 0.015 1.535� 0.016

TABLE II. Systematic uncertainties for ΔB̄0
sBx

(ps−1).

Source B̄0
s½KKπ�=B

−
½Kπ� B̄0

s½KKπ�=B̄
0
½Kππ� B̄0

s½KKπ�=B
−
½Kπππ�

Lifetime
acceptance

0.003 0.004 0.005

Background
model

0.002 0.002 0.002

Signal shape 0.0004 0.0005 0.0005
Binning
schemes

0.003 0.001 0.005

Total 0.005 0.005 0.007
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This is the most precise measurement to date and it is
consistent with previously available flavor-specific
measurements [14], and measurements of B̄0

s lifetimes in
CP eigenstatemodes [15]. The lifetime ratio τfsðB̄0

sÞ=τðB̄0Þ ¼
1=ð1þ τðB̄0ÞΔB̄0

sB0Þ is determined as 1.010�0.010�0.008,
where we assign the uncertainty due to the B̄0 lifetime
as purely systematic. A rather precise prediction of Γd=Γs
is given using the heavy quark expansion model [2].
To compare with our measured lifetime ratio we apply a
0.8% correction from Eq. (1), resulting in a corrected pre-
diction for our measured lifetime ratio of 1.009� 0.004,
in excellent agreement with our measurement, lending
credence to this model.

We express our gratitude to our colleagues in the CERN
accelerator departments for the excellent performance of
the LHC. We thank the technical and administrative staff
at the LHCb institutes. We acknowledge support from
CERN and from the national agencies: CAPES, CNPq,
FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/
IN2P3 (France); BMBF, DFG, HGF, and MPG
(Germany); SFI (Ireland); INFN (Italy); FOM and
NWO (The Netherlands); MNiSW and NCN (Poland);
MEN/IFA (Romania); MinES and FANO (Russia);
MinECo (Spain); SNSF and SER (Switzerland); NASU
(Ukraine); STFC (United Kingdom); NSF (USA). The
Tier1 computing centres are supported by IN2P3 (France),
KIT and BMBF (Germany), INFN (Italy), NWO and
SURF (The Netherlands), PIC (Spain), and GridPP
(United Kingdom). We are indebted to the communities
behind the multiple open source software packages on
which we depend. We are also thankful for the computing
resources and the access to software R&D tools provided
by Yandex LLC (Russia). Individual groups or members
have received support from EPLANET, Marie
Skłodowska-Curie Actions, and ERC (European
Union), Conseil général de Haute-Savoie, Labex

ENIGMASS, and OCEVU, Région Auvergne (France),
RFBR (Russia), XuntaGal, and GENCAT (Spain), and the
Royal Society and Royal Commission for the Exhibition
of 1851 (United Kingdom).

[1] See J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,
010001 (2012), and the 2013 partial update for the 2014
edition.

[2] A. Lenz, arXiv:1405.3601.
[3] R. Aaij et al. (LHCb collaboration), Phys. Lett. B 728, 607

(2014).
[4] K. Hartkorn and H. Moser, Eur. Phys. J. C 8, 381 (1999).
[5] A. A. Alves, Jr. et al. (LHCb Collaboration), JINST 3,

S08005 (2008).
[6] R. Aaij et al., JINST 9, P09007 (2014).
[7] R. Arink et al., JINST 9, P01002 (2014),
[8] M. Adinolfi et al., Eur. Phys. J. C 73, 2431 (2013).
[9] A. A. Alves, Jr. et al., JINST 8, P02022 (2013).

[10] W. D. Hulsbergen, Nucl. Instrum. Methods Phys. Res., Sect.
A 552, 566 (2005);

[11] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 718, 902
(2013); P. del Amo Sanchez et al. (BABAR Collaboration),
Phys. Rev. D 82, 051101 (2010).

[12] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 734, 122
(2014).

[13] T. Skwarnicki, Ph.D. thesis, Institute of Nuclear Physics,
Krakow, [DESY-F31-86-02, 1986].

[14] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.
107, 272001 (2011); R. Aaij et al. (LHCb Collaboration),
Phys. Rev. Lett. 112, 111802 (2014); P. Abreu et al.
(DELPHI Collaboration), Eur. Phys. J. C 16, 555 (2000);
K. Ackerstaff et al. (OPAL Collaboration), Phys. Lett. B
426, 161 (1998); D. Buskulic et al. (ALEPH Collaboration),
Phys. Lett. B 377, 205 (1996).

[15] S. Stone, 2014 Flavor Physics and CPViolation (FPCP 2014),
Marseille, France, May 26–30, 2014, arXiv:1406.6497 (to be
published in the conference proceedings).

R. Aaij,41 B. Adeva,37 M. Adinolfi,46 A. Affolder,52 Z. Ajaltouni,5 S. Akar,6 J. Albrecht,9 F. Alessio,38 M. Alexander,51

S. Ali,41 G. Alkhazov,30 P. Alvarez Cartelle,37 A. A. Alves Jr.,25,38 S. Amato,2 S. Amerio,22 Y. Amhis,7 L. An,3

L. Anderlini,17,a J. Anderson,40 R. Andreassen,57 M. Andreotti,16,b J. E. Andrews,58 R. B. Appleby,54

O. Aquines Gutierrez,10 F. Archilli,38 A. Artamonov,35 M. Artuso,59 E. Aslanides,6 G. Auriemma,25,c M. Baalouch,5

S. Bachmann,11 J. J. Back,48 A. Badalov,36 W. Baldini,16 R. J. Barlow,54 C. Barschel,38 S. Barsuk,7 W. Barter,47

V. Batozskaya,28 V. Battista,39 A. Bay,39 L. Beaucourt,4 J. Beddow,51 F. Bedeschi,23 I. Bediaga,1 S. Belogurov,31

K. Belous,35 I. Belyaev,31 E. Ben-Haim,8 G. Bencivenni,18 S. Benson,38 J. Benton,46 A. Berezhnoy,32 R. Bernet,40

M.-O. Bettler,47 M. van Beuzekom,41 A. Bien,11 S. Bifani,45 T. Bird,54 A. Bizzeti,17,d P. M. Bjørnstad,54 T. Blake,48

F. Blanc,39 J. Blouw,10 S. Blusk,59 V. Bocci,25 A. Bondar,34 N. Bondar,30,38 W. Bonivento,15,38 S. Borghi,54 A. Borgia,59

M. Borsato,7 T. J. V. Bowcock,52 E. Bowen,40 C. Bozzi,16 T. Brambach,9 J. van den Brand,42 J. Bressieux,39 D. Brett,54

M. Britsch,10 T. Britton,59 J. Brodzicka,54 N. H. Brook,46 H. Brown,52 A. Bursche,40 G. Busetto,22,e J. Buytaert,38

S. Cadeddu,15 R. Calabrese,16,b M. Calvi,20,f M. Calvo Gomez,36,g P. Campana,18,38 D. Campora Perez,38 A. Carbone,14,h

G. Carboni,24,i R. Cardinale,19,38,j A. Cardini,15 L. Carson,50 K. Carvalho Akiba,2 G. Casse,52 L. Cassina,20

PRL 113, 172001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 OCTOBER 2014

172001-5

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://arXiv.org/abs/1405.3601
http://dx.doi.org/10.1016/j.physletb.2013.12.030
http://dx.doi.org/10.1016/j.physletb.2013.12.030
http://dx.doi.org/10.1007/s100520050472
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1748-0221/9/09/P09007
http://dx.doi.org/10.1088/1748-0221/9/01/P01002
http://dx.doi.org/10.1140/epjc/s10052-013-2431-9
http://dx.doi.org/10.1088/1748-0221/8/02/P02022
http://dx.doi.org/10.1016/j.nima.2005.06.078
http://dx.doi.org/10.1016/j.nima.2005.06.078
http://dx.doi.org/10.1016/j.physletb.2012.11.038
http://dx.doi.org/10.1016/j.physletb.2012.11.038
http://dx.doi.org/10.1103/PhysRevD.82.051101
http://dx.doi.org/10.1016/j.physletb.2014.05.021
http://dx.doi.org/10.1016/j.physletb.2014.05.021
http://dx.doi.org/10.1103/PhysRevLett.107.272001
http://dx.doi.org/10.1103/PhysRevLett.107.272001
http://dx.doi.org/10.1103/PhysRevLett.112.111802
http://dx.doi.org/10.1007/s100520000415
http://dx.doi.org/10.1016/S0370-2693(98)00289-5
http://dx.doi.org/10.1016/S0370-2693(98)00289-5
http://dx.doi.org/10.1016/0370-2693(96)00451-0
http://arXiv.org/abs/1406.6497
http://arXiv.org/abs/1406.6497


L. Castillo Garcia,38 M. Cattaneo,38 Ch. Cauet,9 R. Cenci,58 M. Charles,8 Ph. Charpentier,38 M. Chefdeville,4 S. Chen,54

S.-F. Cheung,55 N. Chiapolini,40 M. Chrzaszcz,40,26 K. Ciba,38 X. Cid Vidal,38 G. Ciezarek,53 P. E. L. Clarke,50

M. Clemencic,38 H. V. Cliff,47 J. Closier,38 V. Coco,38 J. Cogan,6 E. Cogneras,5 P. Collins,38 A. Comerma-Montells,11

A. Contu,15 A. Cook,46 M. Coombes,46 S. Coquereau,8 G. Corti,38 M. Corvo,16,b I. Counts,56 B. Couturier,38 G. A. Cowan,50

D. C. Craik,48 M. Cruz Torres,60 S. Cunliffe,53 R. Currie,50 C. D’Ambrosio,38 J. Dalseno,46 P. David,8 P. N. Y. David,41

A. Davis,57 K. De Bruyn,41 S. De Capua,54 M. De Cian,11 J. M. De Miranda,1 L. De Paula,2 W. De Silva,57 P. De Simone,18

D. Decamp,4 M. Deckenhoff,9 L. Del Buono,8 N. Déléage,4 D. Derkach,55 O. Deschamps,5 F. Dettori,38 A. Di Canto,38

H. Dijkstra,38 S. Donleavy,52 F. Dordei,11 M. Dorigo,39 A. Dosil Suárez,37 D. Dossett,48 A. Dovbnya,43 K. Dreimanis,52

G. Dujany,54 F. Dupertuis,39 P. Durante,38 R. Dzhelyadin,35 A. Dziurda,26 A. Dzyuba,30 S. Easo,49,38 U. Egede,53

V. Egorychev,31 S. Eidelman,34 S. Eisenhardt,50 U. Eitschberger,9 R. Ekelhof,9 L. Eklund,51 I. El Rifai,5 Ch. Elsasser,40

S. Ely,59 S. Esen,11 H.-M. Evans,47 T. Evans,55 A. Falabella,14 C. Färber,11 C. Farinelli,41 N. Farley,45 S. Farry,52 R. Fay,52

D. Ferguson,50 V. Fernandez Albor,37 F. Ferreira Rodrigues,1 M. Ferro-Luzzi,38 S. Filippov,33 M. Fiore,16,b M. Fiorini,16,b

M. Firlej,27 C. Fitzpatrick,39 T. Fiutowski,27 M. Fontana,10 F. Fontanelli,19,j R. Forty,38 O. Francisco,2 M. Frank,38 C. Frei,38

M. Frosini,17,38,a J. Fu,21,38 E. Furfaro,24,i A. Gallas Torreira,37 D. Galli,14,h S. Gallorini,22 S. Gambetta,19,j M. Gandelman,2

P. Gandini,59 Y. Gao,3 J. García Pardiñas,37 J. Garofoli,59 J. Garra Tico,47 L. Garrido,36 C. Gaspar,38 R. Gauld,55 L. Gavardi,9

G. Gavrilov,30 E. Gersabeck,11 M. Gersabeck,54 T. Gershon,48 Ph. Ghez,4 A. Gianelle,22 S. Giani’,39 V. Gibson,47

L. Giubega,29 V. V. Gligorov,38 C. Göbel,60 D. Golubkov,31 A. Golutvin,53,31,38 A. Gomes,1,k C. Gotti,20

M. Grabalosa Gándara,5 R. Graciani Diaz,36 L. A. Granado Cardoso,38 E. Graugés,36 G. Graziani,17 A. Grecu,29

E. Greening,55 S. Gregson,47 P. Griffith,45 L. Grillo,11 O. Grünberg,62 B. Gui,59 E. Gushchin,33 Yu. Guz,35,38 T. Gys,38

C. Hadjivasiliou,59 G. Haefeli,39 C. Haen,38 S. C. Haines,47 S. Hall,53 B. Hamilton,58 T. Hampson,46 X. Han,11

S. Hansmann-Menzemer,11 N. Harnew,55 S. T. Harnew,46 J. Harrison,54 J. He,38 T. Head,38 V. Heijne,41 K. Hennessy,52

P. Henrard,5 L. Henry,8 J. A. Hernando Morata,37 E. van Herwijnen,38 M. Heß,62 A. Hicheur,1 D. Hill,55 M. Hoballah,5

C. Hombach,54 W. Hulsbergen,41 P. Hunt,55 N. Hussain,55 D. Hutchcroft,52 D. Hynds,51 M. Idzik,27 P. Ilten,56

R. Jacobsson,38 A. Jaeger,11 J. Jalocha,55 E. Jans,41 P. Jaton,39 A. Jawahery,58 F. Jing,3 M. John,55 D. Johnson,55

C. R. Jones,47 C. Joram,38 B. Jost,38 N. Jurik,59 M. Kaballo,9 S. Kandybei,43 W. Kanso,6 M. Karacson,38 T. M. Karbach,38

S. Karodia,51 M. Kelsey,59 I. R. Kenyon,45 T. Ketel,42 B. Khanji,20 C. Khurewathanakul,39 S. Klaver,54 K. Klimaszewski,28

O. Kochebina,7 M. Kolpin,11 I. Komarov,39 R. F. Koopman,42 P. Koppenburg,41,38 M. Korolev,32 A. Kozlinskiy,41

L. Kravchuk,33 K. Kreplin,11 M. Kreps,48 G. Krocker,11 P. Krokovny,34 F. Kruse,9 W. Kucewicz,26,l M. Kucharczyk,20,26,38,f

V. Kudryavtsev,34 K. Kurek,28 T. Kvaratskheliya,31 V. N. La Thi,39 D. Lacarrere,38 G. Lafferty,54 A. Lai,15 D. Lambert,50

R.W. Lambert,42 G. Lanfranchi,18 C. Langenbruch,48 B. Langhans,38 T. Latham,48 C. Lazzeroni,45 R. Le Gac,6

J. van Leerdam,41 J.-P. Lees,4 R. Lefèvre,5 A. Leflat,32 J. Lefrançois,7 S. Leo,23 O. Leroy,6 T. Lesiak,26 B. Leverington,11

Y. Li,3 T. Likhomanenko,63 M. Liles,52 R. Lindner,38 C. Linn,38 F. Lionetto,40 B. Liu,15 S. Lohn,38 I. Longstaff,51

J. H. Lopes,2 N. Lopez-March,39 P. Lowdon,40 H. Lu,3 D. Lucchesi,22,e H. Luo,50 A. Lupato,22 E. Luppi,16,b O. Lupton,55

F. Machefert,7 I. V. Machikhiliyan,31 F. Maciuc,29 O. Maev,30 S. Malde,55 A. Malinin,63 G. Manca,15,m G. Mancinelli,6

J. Maratas,5 J. F. Marchand,4 U. Marconi,14 C. Marin Benito,36 P. Marino,23,n R. Märki,39 J. Marks,11 G. Martellotti,25

A. Martens,8 A. Martín Sánchez,7 M. Martinelli,39 D. Martinez Santos,42 F. Martinez Vidal,64 D. Martins Tostes,2

A. Massafferri,1 R. Matev,38 Z. Mathe,38 C. Matteuzzi,20 A. Mazurov,16,b M. McCann,53 J. McCarthy,45 A. McNab,54

R. McNulty,12 B. McSkelly,52 B. Meadows,57 F. Meier,9 M. Meissner,11 M. Merk,41 D. A. Milanes,8 M.-N. Minard,4

N. Moggi,14 J. Molina Rodriguez,60 S. Monteil,5 M. Morandin,22 P. Morawski,27 A. Mordà,6 M. J. Morello,23,n J. Moron,27

A.-B. Morris,50 R. Mountain,59 F. Muheim,50 K. Müller,40 M. Mussini,14 B. Muster,39 P. Naik,46 T. Nakada,39

R. Nandakumar,49 I. Nasteva,2 M. Needham,50 N. Neri,21 S. Neubert,38 N. Neufeld,38 M. Neuner,11 A. D. Nguyen,39

T. D. Nguyen,39 C. Nguyen-Mau,39,o M. Nicol,7 V. Niess,5 R. Niet,9 N. Nikitin,32 T. Nikodem,11 A. Novoselov,35

D. P. O’Hanlon,48 A. Oblakowska-Mucha,27 V. Obraztsov,35 S. Oggero,41 S. Ogilvy,51 O. Okhrimenko,44 R. Oldeman,15,m

G. Onderwater,65 M. Orlandea,29 J. M. Otalora Goicochea,2 P. Owen,53 A. Oyanguren,64 B. K. Pal,59 A. Palano,13,p

F. Palombo,21,q M. Palutan,18 J. Panman,38 A. Papanestis,49,38 M. Pappagallo,51 L. L. Pappalardo,16,b C. Parkes,54

C. J. Parkinson,9,45 G. Passaleva,17 G. D. Patel,52 M. Patel,53 C. Patrignani,19,j A. Pazos Alvarez,37 A. Pearce,54

A. Pellegrino,41 M. Pepe Altarelli,38 S. Perazzini,14,h E. Perez Trigo,37 P. Perret,5 M. Perrin-Terrin,6 L. Pescatore,45

E. Pesen,66 K. Petridis,53 A. Petrolini,19,j E. Picatoste Olloqui,36 B. Pietrzyk,4 T. Pilař,48 D. Pinci,25 A. Pistone,19 S. Playfer,50

M. Plo Casasus,37 F. Polci,8 A. Poluektov,48,34 E. Polycarpo,2 A. Popov,35 D. Popov,10 B. Popovici,29 C. Potterat,2 E. Price,46

PRL 113, 172001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 OCTOBER 2014

172001-6



J. Prisciandaro,39 A. Pritchard,52 C. Prouve,46 V. Pugatch,44 A. Puig Navarro,39 G. Punzi,23,r W. Qian,4 B. Rachwal,26

J. H. Rademacker,46 B. Rakotomiaramanana,39 M. Rama,18 M. S. Rangel,2 I. Raniuk,43 N. Rauschmayr,38 G. Raven,42

S. Reichert,54 M.M. Reid,48 A. C. dos Reis,1 S. Ricciardi,49 S. Richards,46 M. Rihl,38 K. Rinnert,52 V. Rives Molina,36

D. A. Roa Romero,5 P. Robbe,7 A. B. Rodrigues,1 E. Rodrigues,54 P. Rodriguez Perez,54 S. Roiser,38 V. Romanovsky,35

A. Romero Vidal,37 M. Rotondo,22 J. Rouvinet,39 T. Ruf,38 F. Ruffini,23 H. Ruiz,36 P. Ruiz Valls,64 J. J. Saborido Silva,37

N. Sagidova,30 P. Sail,51 B. Saitta,15,m V. Salustino Guimaraes,2 C. Sanchez Mayordomo,64 B. Sanmartin Sedes,37

R. Santacesaria,25 C. Santamarina Rios,37 E. Santovetti,24,i A. Sarti,18,s C. Satriano,25,c A. Satta,24 D. M. Saunders,46

M. Savrie,16,b D. Savrina,31,32 M. Schiller,42 H. Schindler,38 M. Schlupp,9 M. Schmelling,10 B. Schmidt,38 O. Schneider,39

A. Schopper,38 M.-H. Schune,7 R. Schwemmer,38 B. Sciascia,18 A. Sciubba,25 M. Seco,37 A. Semennikov,31 I. Sepp,53

N. Serra,40 J. Serrano,6 L. Sestini,22 P. Seyfert,11 M. Shapkin,35 I. Shapoval,16,43,b Y. Shcheglov,30 T. Shears,52

L. Shekhtman,34 V. Shevchenko,63 A. Shires,9 R. Silva Coutinho,48 G. Simi,22 M. Sirendi,47 N. Skidmore,46 T. Skwarnicki,59

N. A. Smith,52 E. Smith,55,49 E. Smith,53 J. Smith,47 M. Smith,54 H. Snoek,41 M. D. Sokoloff,57 F. J. P. Soler,51 F. Soomro,39

D. Souza,46 B. Souza De Paula,2 B. Spaan,9 A. Sparkes,50 P. Spradlin,51 S. Sridharan,38 F. Stagni,38 M. Stahl,11 S. Stahl,11

O. Steinkamp,40 O. Stenyakin,35 S. Stevenson,55 S. Stoica,29 S. Stone,59 B. Storaci,40 S. Stracka,23,38 M. Straticiuc,29

U. Straumann,40 R. Stroili,22 V. K. Subbiah,38 L. Sun,57 W. Sutcliffe,53 K. Swientek,27 S. Swientek,9 V. Syropoulos,42

M. Szczekowski,28 P. Szczypka,39,38 D. Szilard,2 T. Szumlak,27 S. T’Jampens,4 M. Teklishyn,7 G. Tellarini,16,b F. Teubert,38

C. Thomas,55 E. Thomas,38 J. van Tilburg,41 V. Tisserand,4 M. Tobin,39 S. Tolk,42 L. Tomassetti,16,b D. Tonelli,38

S. Topp-Joergensen,55 N. Torr,55 E. Tournefier,4 S. Tourneur,39 M. T. Tran,39 M. Tresch,40 A. Tsaregorodtsev,6 P. Tsopelas,41

N. Tuning,41 M. Ubeda Garcia,38 A. Ukleja,28 A. Ustyuzhanin,63 U. Uwer,11 V. Vagnoni,14 G. Valenti,14 A. Vallier,7

R. Vazquez Gomez,18 P. Vazquez Regueiro,37 C. Vázquez Sierra,37 S. Vecchi,16 J. J. Velthuis,46 M. Veltri,17,t G. Veneziano,39

M. Vesterinen,11 B. Viaud,7 D. Vieira,2 M. Vieites Diaz,37 X. Vilasis-Cardona,36,g A. Vollhardt,40 D. Volyanskyy,10

D. Voong,46 A. Vorobyev,30 V. Vorobyev,34 C. Voß,62 H. Voss,10 J. A. de Vries,41 R. Waldi,62 C. Wallace,48 R. Wallace,12

J. Walsh,23 S. Wandernoth,11 J. Wang,59 D. R. Ward,47 N. K. Watson,45 D. Websdale,53 M. Whitehead,48 J. Wicht,38

D. Wiedner,11 G. Wilkinson,55 M. P. Williams,45 M. Williams,56 F. F. Wilson,49 J. Wimberley,58 J. Wishahi,9 W. Wislicki,28

M. Witek,26 G. Wormser,7 S. A. Wotton,47 S. Wright,47 S. Wu,3 K. Wyllie,38 Y. Xie,61 Z. Xing,59 Z. Xu,39 Z. Yang,3

X. Yuan,3 O. Yushchenko,35 M. Zangoli,14 M. Zavertyaev,10,u L. Zhang,59 W. C. Zhang,12 Y. Zhang,3 A. Zhelezov,11

A. Zhokhov,31 L. Zhong3 and A. Zvyagin38

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France

5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France

9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland

13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy

18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy

20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Milano, Milano, Italy
22Sezione INFN di Padova, Padova, Italy

23Sezione INFN di Pisa, Pisa, Italy
24Sezione INFN di Roma Tor Vergata, Roma, Italy

PRL 113, 172001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 OCTOBER 2014

172001-7



25Sezione INFN di Roma La Sapienza, Roma, Italy
26Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

27AGH—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
28National Center for Nuclear Research (NCBJ), Warsaw, Poland

29Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia

31Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia

33Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia

35Institute for High Energy Physics (IHEP), Protvino, Russia
36Universitat de Barcelona, Barcelona, Spain

37Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38European Organization for Nuclear Research (CERN), Geneva, Switzerland
39Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

40Physik-Institut, Universität Zürich, Zürich, Switzerland
41Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands

42Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
43NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

44Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
45University of Birmingham, Birmingham, United Kingdom

46H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
47Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

48Department of Physics, University of Warwick, Coventry, United Kingdom
49STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

50School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

52Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
53Imperial College London, London, United Kingdom

54School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
55Department of Physics, University of Oxford, Oxford, United Kingdom

56Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
57University of Cincinnati, Cincinnati, Ohio 45220, USA

58University of Maryland, College Park, Maryland 20742, USA
59Syracuse University, Syracuse, New York 13244, USA

60Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
(associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
61Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
(associated with Center for High Energy Physics, Tsinghua University, Beijing, China)

62Institut für Physik, Universität Rostock, Rostock, Germany
(associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)

63National Research Centre Kurchatov Institute, Moscow, Russia
(associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

64Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain
(associated with Universitat de Barcelona, Barcelona, Spain)
65KVI–University of Groningen, Groningen, The Netherlands

(associated with Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands)
66Celal Bayar University, Manisa, Turkey

(associated with European Organization for Nuclear Research (CERN), Geneva, Switzerland)

aAlso at Università di Firenze, Firenze, Italy.
bAlso at Università di Ferrara, Ferrara, Italy.
cAlso at Università della Basilicata, Potenza, Italy.
dAlso at Università di Modena e Reggio Emilia, Modena, Italy.
eAlso at Università di Padova, Padova, Italy.
fAlso at Università di Milano Bicocca, Milano, Italy.
gAlso at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
hAlso at Università di Bologna, Bologna, Italy.
iAlso at Università di Roma Tor Vergata, Roma, Italy.
jAlso at Università di Genova, Genova, Italy.

PRL 113, 172001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 OCTOBER 2014

172001-8



kAlso at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
lAlso at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications,
Kraków, Poland.

mAlso at Università di Cagliari, Cagliari, Italy.
nAlso at Scuola Normale Superiore, Pisa, Italy.
oAlso at Hanoi University of Science, Hanoi, Viet Nam.
pAlso at Università di Bari, Bari, Italy.
qAlso at Università degli Studi di Milano, Milano, Italy.
rAlso at Università di Pisa, Pisa, Italy.
sAlso at Università di Roma La Sapienza, Roma, Italy.
tAlso at Università di Urbino, Urbino, Italy.
uAlso at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.

PRL 113, 172001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 OCTOBER 2014

172001-9


