
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.097 Operating System Engineering: Fall 2002

Quiz I
All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you find a question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

1 (xx/35) 2 (xx/20) 3 (xx/25) 4 (xx/15) 5 (xx/5) Total (xx/100)

Name:

I

6.097 FALL 2002, Quiz 1 Page 2 of 7

Traps/Interrupts

1. [15 points]: Draw a picture of the kernel stack after the following events have happened: (1) the
icode program has called the exec system call; and (2) a clock interrupt handler has interrupted exec()
at line 3027; and (3) the clock handler just finished executing line 3739? For each entry on the stack
describe what that entry represents. You may ignore local variables.

(Draw high addresses high.)

The kernel stack starts off empty. A system call must be the first thing on a trap frame at this point
— if any interrupts happened before, they would not have had any other process to switch to on the
return path.

in trap PSW from icode
PC of icode’s SYS instruction
r0 of icode
PSW after trap (br7 + 6)
r1 of icode
SP of icode
masked PSW after trap (6)
return address for call1 return (line 786)

in trap saved r5
saved r4
saved r3
saved r2
&cret
&exec (an argument to trap1)
return address in trap (line 2772)

in trap1 saved r5/r4/r3/r2 + &cret
return address in trap1 (line 2848)

in exec saved r5/r4/r3/r2 + &cret
CLOCK interrupt PSW from exec

PC from exec (line 3027)
r0 from exec
PSW after interrupt (br6)
r1 from exec
sp (same as sp now)
masked PSW
return address in trap (line 800)

in clock saved r5/r4/r3/r2 + &cret

Name:

6.097 FALL 2002, Quiz 1 Page 3 of 7

2. [5 points]: Which kernel stack is the one you drew in response to question 1? Kernel stack 0?
Kernel stack 1?

(Explain your answer briefly)

Kernel Stack 1 is used. Process 1 (icode) was executing at the time of the trap and so its kernel stack
is used. If the machine is already in kernel mode when an interrupt happens, the current kernel stack
is used.

3. [5 points]: Can another clock interrupt interrupt the handler at line 3739? At line 3770?
(Explain your answer briefly)

At line 3739, another clock interrupt can not interrupt the handler: the priority of the processor has
been set to 6 already as a result of line 534 (or 535).

At line 3770, the interrupt handler has lowered the priority level to 5 so another clock interrupt (at

level 6) could interrupt the handler at this point.

4. [10 points]: Estimate how large a kernel stack must be to handle recursive traps and interrupts
correctly?

(Explain your answer briefly)

The kernel stack must be able to hold sufficient stack and trap frames for the most recursive case.
This occurs if a process executes a system call, receives a priority 4 interrupt, followed by a priority 5
interrupt, followed by a priority 6 interrupt, followed by a re-entrant priority 6 interrupt.

In addition to the size of the trap frame (i.e. the arguments to trap), you would need to consider
stack frames generated by the deepest system call procedure call path (e.g. open calls namei which
calls . . . ; this is probably not too deep but might change as the kernel evolved), the deepest interrupt
4 handler call path, etc.

From the figure, we can see that a system call trap requires 20 stack elements for the trap frame and
stack frames for the trap dispatch code (plus some extra for locals). Similarly, a non-syscall trap
requires 8 stack elements for the trap frame. Assume that the maximum call depth for a function in
the kernel is 4, where each stack frame requires 6 stack elements (5 from csav, and an average of 1
argument). This gives a maximum depth of approximately

20 + 4 × 6 + 4 × (8 + 4 × 6) = 172

. Since each stack entry is two bytes, this gives a lower bound of 344 bytes. Of course, some additional
room will be needed to account for local variables, which were ignored for this problem.

Name:

6.097 FALL 2002, Quiz 1 Page 4 of 7

II Coordinating threads

5. [5 points]: What do the statements at line 2088 and line 2092 do?

(Explain your answer briefly)

Line 2088 calls spl6() which sets the processor privilege level to 6. This causes all interrupts of
priority less than or equal to 6 to be ignored. Line 2092 calls spl0(), lowering the privilege level back
to 0. These calls are used to mark atomic sections.

6. [15 points]: Why are these statements needed? Give an actual sequence of events that will
result in erroneous behavior if these two statements are omitted. Your sequence of events should be
as concrete as possible, not merely hypothetical.

(Illustrate your answer using a time line)

Several scenarios can lead to incorrect behavior:

Deadlock:

1. runin++ on 1954
2. scheduler calls sleep on 1955 with runin as channel
3. executes lines 2089 setting p wchan to &runin
4. processor is interrupted by clock
5. clock interrupt handler sets runin to zero (3821)
6. handler calls wakeup with &runin as argument (3822)
7. wakeup calls setrun, which sets p wchan to zero and p stat to SRUN (2139–2140)
8. handler returns
9. now scheduler sets p stat to SSLEEP (2090)

10. and calls swtch
11. scheduler will never be woken up, because p stat == SSLEEP and p wchan is zero

Deadlock:

1. a user process calls indirectly bwrite(), which launches write on buffer.
2. then calls iowait,
3. which calls sleep with the address of the buffer as the channel
4. sleep sets p wchan (2089)
5. disk interrupt comes in completing the write of the buffer
6. it calls iodone, which calls wakeup on the buffer address
7. calls setrun, which sets p wchan to zero and p stat to SRUN
8. interrupt handler completes
9. process sets p stat to SSLEEP (2090)

10. and call swtch
11. process will never be woken up because p wchan is zero and p stat SSLEEP

Name:

6.097 FALL 2002, Quiz 1 Page 5 of 7

III Address spaces

7. [10 points]: Draw the prototype segmentation registers with their actual content after the call to
estabur() on line 3152 has completed. Assume that w0 is 410, w1 is 129, w2 is 32, and w3 is 128
(see lines 3076 through 3082). Explain the content of the registers briefly.

(Ignore the protection bits in the descriptor)

Converting what we are given into blocks (and hence the arguments to estabur), we get:

text size is 129 bytes (w1 = 129) ==> nt = 3 blocks

SSIZE (stack size) = 20 blocks ==> ns = 20 blocks

data size is 160 bytes (w2 = 32, w3 = 128) ==> nd = 3 blocks

USIZE = 16 blocks

That is, estabur(nt = 3, nd = 3, ns = 20, sep = 0).

Since each segment (8KB) contains 128 blocks, the text, data, and stack each fit within one segment:

+------------+ +------------+

PAR[7]: | -89 | PDR[1]: | 108 ED RW |

+------------+ +------------+

PAR[7] = USIZE + nd + ns - 128

= 16 + 3 + 20 - 128

= 39 - 128

= -89

PDR[1] = (128 - ns) << 8 | ED | RW

= 108<<8 | ED | RW

+------------+ +------------+

PAR[1]: | USIZE | PDR[1]: | 2 RW |

+------------+ +------------+

PAR[1] = USIZE = 20

PDR[1] = (nd - 1) << 8) | RW

= 2<<8 | RW

+------------+ +------------+

PAR[0]: | 0 | PDR[0]: | 2 RO |

+------------+ +------------+

PAR[0] = 0, because at line 1675 a = 0

PDR[0] = (nt - 1) << 8) | R0

= 2<<8 | R0

All other PARs and PDRs are cleared by lines 1694–1696.

Name:

6.097 FALL 2002, Quiz 1 Page 6 of 7

8. [10 points]: Why is “a-128” stored in the prototype segment for the stack? Explain your answer
by showing how the virtual address 0177777 is translated to a physical address.

(Explain your answer briefly)

At the point where “a-128” is written into PAR[7], “a” equals the combined sizes of the u area, data,
bss and stack. A contiguous region of physical memory (“a” blocks in size) is allocated to hold these
components of the process.

+-----------+

| stack |

+-----------+

| data+bss |

+-----------+

| u area |

+-----------+

a blocks in size

Dividing the VA 0177777 into its constituent fields, APF:block number:block offset yields 7:127:63.
Translation of this VA selects PAR[7] which holds “a-128”. Added to this number is the block number,
127, resulting in physical block number “a-1”. The physical address refernced is therefore “a-1”:63.
But since the chunk of physical memory allocated was of size “a” blocks, this precisely refers to the
last byte (byte 63) of the last block (block “a-1”). This is where the first byte of the stack is located.

9. [5 points]: What happens if the processor executes the instruction “tst -(sp)”, and the user stack
pointer falls below the stack segment? Write down the names of the functions that v6 invokes in order.

(Explain briefly)

A segmentation exception will result and the stack will grow (assuming free memory can be found).

The following calls will be made:

Machine generates exceptions

=> trap:

=> trap()

=> backup()

=> grow()

Then control returns back to the user process and it resumes execution where it left off, re-executing
the ”tst -(sp)” instruction. The second execution succeeds of course.

IV I/O and file systems

10. [5 points]: Why does the structure struct file exist? Why not have a file descriptor point directly
to the incore inode structure, and store f offset in it?

struct file exists so that if two separate processes open the same file, they have their own offset pointer

into it.

Name:

6.097 FALL 2002, Quiz 1 Page 7 of 7

11. [10 points]: Assume the directory “d” exists, that it is the current working directory, and that it
has two entries (including “.” and ‘”..”). If an application calls creat (“bar”, 0444), and the power
fails right after the processor completed the call wdir on line 7467, what is the state of the file system
on disk? More specifically, does the file “bar” exist on disk? Does the file “bar” show up in the
directory “d” on disk?

(Be brief)

The updated inode of directory “d” exists (because inodes are updated synchronously). The data of
“d” may not be written because v6 wrote it using bdwrite (it is a partial block). The file doesn’t exist
yet, because we haven’t gotten far enough yet into the creat call (maknode is called from line 5790).

End of Quiz I Solutions

Name:

