
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Operating System Engineering: Fall 2003

Quiz II Solutions

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you find a question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

1 (xx/15) 2 (xx/25) 3 (xx/20) 4 (xx/25) 5 (xx/15) Total (xx/100)

Name:

I

6.828 FALL 2003, Quiz 2 Solutions	 Page 2 of 11

Control-C and the shell

1. [15 points]:In UNIX when a user is running a program from the shell, the user can terminate
the program by typing ctrl-C. How would you change the 6.828 kernel and its shell to support this
feature? Be careful, make sure when a user types the name of the program and hits ctrl-C before the
program runs that the right thing happens (i.e., don’t kill the shell itself or the file system). (Sketch an
implementation and define “what the right thing” is.)

There are many possible solutions; here are three:

–	 Add a system call to the kernel that allows the shell to indicate at any given point what
environment, if any, should be killed when the user types ctrl-C. Modify the console
code in the kernel appropriately so that the kernel intercepts ctrl-C (instead of passing
it on as a control character to whatever environment is reading the console), and kills
the indicated environment. With this solution, environments can never prevent them
selves from getting killed: thus, CTRL-C acts like a “hard” or “uncatchable” Unix
signal.

–	 Modify the kernel’s console code so that the shell can intercept ctrl-C input charac
ters even when other, “normal” input characters may be going to some other (e.g.,
child) environment that happens to be reading from the console. Then upon receiving
this special control character from the kernel in the console input stream, the shell
can decide which of its child environments should be killed. With this solution, en
vironments once again cannot prevent themselves from getting killed, but only the
immediate child environments of the shell can be killed this way: a (killable) child
environment can easily create another, “unkillable” environment simply by forking or
spawning a child of its own (a grandchild of the shell).

–	 Add some form of asynchronous event handling support to the kernel’s console code
so that environments can asynchronously accept and handle ctrl-C input characters
themselves. For example, each environment might be able to register a user-mode
“ctrl-C handler,” along the lines of the current user-mode “page fault handler.” When
ever the user hits ctrl-C, the kernel scans through the list of environments and, for each
environment that has registered a ctrl-C handler (and perhaps has set a flag indicating
that ctrl-C “signals” should be accepted), the kernel sets up the environment’s registers
and user-mode exception stack to cause the environment’s registered ctrl-C handler to
be invoked. Each environment can then perform whatever ctrl-C handling it deems
appropriate, such as by killing itself immediately, by killing itself after “gracefully”
shutting down (such as after closing files and syncing outstanding data to disk), or
even by ignoring the ctrl-C signal entirely. With this solution, CTRL-C is effectively
a “soft” signal, which is not guaranteed to work on environments that may be either
accidentally or maliciously ignoring it. (This is like the Unix behavior for ctrl-C, since
Unix processes can intercept the SIGINT signal.)

Name:

6.828 FALL 2003, Quiz 2 Solutions	 Page 3 of 11

II CPU scheduling

2. [10 points]: primespipe spawns many environments until it has generated a prime greater
than some specified number. If you modify your shell for the 6.828 kernel to run primespipe in
the background and then type ls at your shell, it can happen that the output of ls won’t show before
primespipe completes. Explain why.

(Keep it brief)

The kernel’s scheduler uses a round-robin scheduling policy, always choosing the next
runnable environment in environment ID-space whenever the current environment yields
or runs out of its timeslice. Since newly created environments are assigned environment
IDs in ascending sequence, primespipe creates a pathological unfairness situation. The
“root” primespipe environment creates the first child environment, fills the pipe to that
child with numbers, then yields the processor in order to wait for more space in the pipe.
Since the first child environment typically has the environment ID immediately following
the parent’s, the child is the next to run. The child in turn creates its own grandchild envi
ronment, then reads numbers from its parent’s pipe buffer and stuffs the ones that “pass”
into the grandchild’s pipe buffer. Upon running out of numbers, the child yields, causing
the grandchild to run next, and so on. Even if the shell managed to start the ls environ
ment before the primespipe cascade takes over, ls requires a few back-and-forth IPCs
with the file system, and so it is very unlikely to get much of anything done before the
entire primespipe cascade has completed. The key point is that this unfairness is cre
ated by the interaction of the round-robin scheduling policy with the kernel’s “first-free”
environment ID assignment.

3. [5 points]: Describe a solution to the problem described in the previous question.
(Keep it brief; no pseudocode required)

–	 A quick-and-dirty solution that would make this unfairness problem go away but
would probably leave many others: Simply make the round-robin scheduling policy
look for runnable environments in descending rather than ascending order of environ
ment ID. Then ls and the file server will each typically get one chance to run for each
new primespipe instance.

–	 A more general solution: maintain an explicit queue of runnable environments from
which the scheduler picks the next environment to run instead of just scanning by en
vironment ID. As long as newly-runnable (including newly-created) environments are
always added to the tail of the queue and the scheduler always picks the environment
at the head as the next environment to run, environment creation cannot be used as a
way to hog the CPU.

–	 Implement a Unix-style interactive scheduling policy in which processes that have not
run for a while or have not used much CPU time receive an elevated priority.

–	 Implement a hierarchical or group-based scheduling policy where an environment’s
children receive a share of the CPU time originally allotted to its parent, so that the
entire group of primespipe environments collectively get only as much CPU time
as the ls or file server environments do individually.

Name:

6.828 FALL 2003, Quiz 2 Solutions Page 4 of 11

Let’s assume we modify the 6.828 kernel to build a high-performance Web server. We add a driver for
ethernet card in in the Web server environment. Interrupts from the card are directly delivered to the Web
server’s environment, and the interrupt handler executes on a separate stack in the Web server’s environment
(in a similar style as the 6.828 kernel sends page faults to environments.) The Web server’s interrupt handler
runs with interrupts disabled, processes the received interrupt completely (including any TCP/IP and HTTP
processing), returns all resources associated with handling the interrupt, and re-enables interrupts. Web
pages in the cache are served straight from the interrupt handler. CGI scripts and pages not in the cache are
handled by the Web server on the main stack (not in the interrupt handler).

4. [10 points]: Does this implementation suffer from receive livelock? If so, sketch a sequence
of events that will result in receive livelock. If not, explain why. (If you need to make any more
assumptions about the architecture of the system, be sure to state them explicitly.)

Yes, the implementation does suffer from receive livelock. Suppose HTTP requests arrive
at a sufficient rate that by the time the web server’s interrupt handler is finished with the
interrupt processing for one request, the Ethernet card has already received another request,
causing the interrupt to be triggered again immediately as soon as the web server re-enables
interrupts. Since cached pages are served straight from the interrupt handler, the web server
will be able to continue serving them. Pages that miss in the cache and dynamic CGI pages
must be handled by the web server outside of the interrupt handler, however. As long as
the web server keeps getting a continuous load of interrupts it will never get out of its
network interrupt handler and get around to processing any of these cache misses or CGI
requests. Thus, the web server is livelocked, making no forward progress at all on many of
the requests it is supposed to be serving.

Name:

6.828 FALL 2003, Quiz 2 Solutions	 Page 5 of 11

III File systems and reliability

Modern Unixes support the rename(char *from, char *to) system call, which causes the link
named “from” to be renamed as “to”. Unix v6 does not have a system call for rename; instead, rename is an
application that makes use of the link and unlink system calls.

5. [5 points]: Give an implementation of rename using the link and unlink system calls, and
briefly justify your implementation.

int rename(char *from, char *to) {

/* 1 */ unlink(to);

/* 2 */ link(from, to);

/* 3 */ unlink(from);

}

Some editors use rename to make a new version of a file visible to user atomically. For example, an editor
may copy “x.c” to “#x.c”, make all changes to “#x.c”, and when the user hits save, the editor calls sync()
followed by rename("#x.c", "x.c").

6. [5 points]: What are the possible outcomes of running rename("#x.c", "x.c") if the
computer fails during the rename library call? Assume that both “#x.c” and “x.c” exist in the same
directory but in different directory blocks before the call to rename.

Because the effects of the calls in our rename implementation are not persistent unless the
corresponding block writes go out to disk, it is not correct simply to consider the failure
happening before or after each call. Instead, we need to think about the possible block
writes that can happen before the failure.
The rename implementation above causes three block writes, all possibly delayed (written
with bdwrite). First, the directory entry for “to” is removed from its block. Second, the
directory entry for “to” is added back to its block, but with the i-number for “from”. Third,
the directory entry for “from” is removed from its block.
The possible outcomes are:

–	 Nothing done: no changes written to disk yet.
–	 The first write went to disk: “from” remains as before, but “to” doesn’t exist at all.

(Looks like rename failed just after line 1 above.)
–	 The first and second writes went to disk: “from” remains as before, but now “to”

points at the same file as “from”. (Looks like rename failed just after line 2 above.)
–	 The first, second, and third writes went to disk: “from” is gone, and “to” points at the

new file. (Looks like rename succeeded.)
–	 The first and third writes went to disk, but not the second: both “from” and “to” are

gone! (Cannot be explained by examination of the rename implementation!)

Name:

6.828 FALL 2003, Quiz 2 Solutions Page 6 of 11

Modern BSD UNIX implements rename as system call. The pseudocode for rename is as follows (as
suming “to” and “from” are in different directory blocks):

int rename (char *from, char *to) {
update dir block for ‘‘to’’ to point to ‘‘from’’’s inode // write block
update dir block for ‘‘from’’ to free entry // write block

}

BSD’s Fast File System (FFS) performs the two writes in rename synchronously (i.e., using bwrite).

7. [5 points]: What are the possible outcomes of running rename("#x.c", "x.c") if the
computer fails during the rename system call? Assume that both “#x.c” and “x.c” exist in the same
directory but in different directory blocks before the call to rename.

– Nothing done: state remains as-is before the rename.
– Only first (“to”) update done: “from” and “to” both refer to the same file.
– Everything done: rename completed successfully.

Because of the atomic change of the “to” entry in this implementation, we never get into a
state where “to” does not point to anything. Because the first write must go out before the
second, we cannot lose the new copy of the file. Many common Unix applications today
depend on this level of rename atomicity in the file system in order to ensure reasonable
robustness against failures.

Assume the same scenario but now using FFS with soft updates.

8. [5 points]: How does using FFS with soft updates change this scenario?

In terms of robustness, soft updates do not change the file system’s semantics at all: ex
actly the same situations are possible as above for FFS with synchronous writes, because
the writes must go out in the same order. The difference is in performance: with soft
updates, the file system does not have to perform all meta-data writes synchronously, and
therefore can achieve much greater performance benefits from caching without compro
mising robustness.
Just to be precise, it’s worthy of note that soft updates can potentially change the file
system’s failure semantics in ways that are theoretically observable to applications; just
not in ways that create file system metadata inconsistencies. For example, suppose an
application creates a file A somewhere in the file system, then creates a file B somewhere
else in the file system that happens to involve completely unrelated directory and inode
blocks. If a failure occurs during or shortly after these files are created, with soft updates
the application could (on system restart) observe that file B was successfully created but
A wasn’t, because the soft updates algorithm imposes no ordering dependency between
them. With synchronous writes, however the application would never observe that B as
having been successfully created unless A had also been successfully created.

Name:

6.828 FALL 2003, Quiz 2 Solutions Page 7 of 11

IV Virtual machines

A virtual machine monitor can run a guest OS without requiring changes to the guest OS. To do so, virtual
machine monitors must virtualize the instruction set of a processor. Consider implementing a monitor for the
x86 architecture that runs directly on the physical hardware. This monitor must virtualize the x86 processor.
Unfortunately, virtualizing the x86 instruction set is a challenge.

9. [5 points]: Using the instruction “mov %cs, %ax”, give a code fragment that shows how a
guest operating system could tell the difference between whether it is running in a virtual machine
or directly on the processor, if the virtual machine monitor is not sufficiently careful about how it
virtualizes the x86 architecture.

(List a sequence of x86 assembly instructions)

movw %cs, %ax
andw $3, %ax
jnz running_on_vm

The bottom two bits of the CS register on the x86 represent the processor’s current privilege
level, 0 meaning kernel mode and 3 meaning user mode. The guest operating system can
therefore tell whether it is running in user or kernel mode simply by testing those two bits
of CS. Since the “mov %cs, %ax” instruction is not privileged, the virtual machine monitor
has no easy way to trap that instruction and emulate the correct behavior—i.e., to return
a CS register value with 0 in the low two bits, indicating that the guest OS is running in
“virtualized” kernel mode, even though the guest OS code is actually running in user mode
as far as the physical hardware is concerned.

10. [5 points]: Describe a solution for how to virtualize the instruction “mov %cs, %ax” correctly.
What changes do you need to make to the monitor?

(Give a brief description; no pseudocode required)

The virtual machine monitor first scans through all code in the guest OS before allowing it
to run, replacing each non-virtualizable instruction such as the one above with a one-byte
“int $3” instruction, and remembering the original instruction replaced at each point in
the code using a table maintained elsewhere by the monitor. When the guest OS hits one of
these “int $3” instructions, the virtual machine monitor intercepts the interrupt, scans
its table of replaced instructions for that EIP address, emulates the correct behavior for the
replaced instruction, and increments EIP past the space reserved for it.

Name:

6.828 FALL 2003, Quiz 2 Solutions	 Page 8 of 11

The monitor might emulate a load of CR3 as follows:

// addr is a physical address
void
emulate_lcr3(thiscpu, addr)
{
Pte *fakepdir;

thiscpu->cr3 = addr;
fakepdir = lookup(addr, oldcr3cache);
if (!fakepdir) {
fakedir = page_alloc();
store(oldcr3cache, addr, fakedir);
// CODE MISSING:
// May wish to scan through supplied page directory to see if
// we have to fix up anything in particular.
// Exact settings will depend on how we want to handle
// problem cases.

}
asm("movl fakepdir,%cr3");
// Must make sure our page fault handler is in sync with what we do here.

}

11. [15 points]: Describe a solution for handling a guest OS that executes instructions stored in its
data segment (e.g., user icode in the 6.828 kernel).

The virtual machine monitor must use some protection mechanism to ensure that:

–	 Any attempt by the guest OS to “jump into” and run newly loaded or modified code
will trap into the monitor, giving the monitor a chance to scan the code and replace
non-virtualizable instructions as described for question 10.

–	 After a page of physical memory containing code has been scanned and modified, any
attempts by the guest OS to read or write that page of memory (treating it once again
as “data” instead of jumping into it as “code”) will once again trap into the monitor,
allowing the monitor to undo its modifications or simulate the correct read or write to
the code page as if the page contained the guest OS’s original, unmodified code.

There are different ways of achieving the above protection characteristics on the x86, but
none of them are simple due to such practical complications as the lack of support for
“execute-only” page mappings in the x86 architecture. Clever use of segment registers,
privilege levels, and/or more intelligent guest OS code analysis and rewriting can help.

Name:

6.828 FALL 2003, Quiz 2 Solutions Page 9 of 11

V Feedback

Since 6.828 is a new subject, we would appreciate receiving some feedback on how we are doing so that we
can make corrections next year. (Any answer, except no answer, will receive full credit!)

12. [1 points]: Did you learn anything in 6.828, on a scale of 0 (nothing) to 10 (more than any other
class)?

13. [1 points]: What was the best aspect of 6.828?

14. [1 points]: What was the worst aspect of 6.828?

15. [2 points]: If there is one thing that you would like to see changed in 6.828, what would it be?

Name:

6.828 FALL 2003, Quiz 2 Solutions Page 10 of 11

16. [2 points]: How should the lab be changed?

17. [1 points]: How useful was the v6 case study, 0 (bad) to 10 (good)?

18. [1 points]: How useful were the papers, 0 (bad) to 10 (good)?

19. [2 points]: Which paper(s) should we definitely delete?

20. [2 points]: Which paper(s) should we definitely keep?

Name:

6.828 FALL 2003, Quiz 2 Solutions Page 11 of 11

21. [1 points]: Rank TAs on a scale of 0 (bad) to 10 (good)?

22. [1 points]: Rank the professor on a scale of 0 (bad) to 10 (good)?

End of Quiz II

Name:

