
6.828 Fall 2006 Lab 2: Memory 
Management 
Handed out Wednesday, September 13, 2006 
Due Thursday, September 28, 2006  

Introduction 
In this lab, your will write the memory management code for your operating system. 
Memory management is comprised of two components.  

The first component of memory management is virtual memory, where we set up the 
PC'S Memory Management Unit (MMU) hardware to map the virtual addresses used by 
software to physical addresses. You will modify JOS to set up virtual memory mappings 
according to a specification we provide.  

The second component is managing the physical memory of the computer so that the 
kernel can allocate and free physical memory as needed. The x86 divides physical 
memory into 4096-byte regions called pages. Your task will be to maintain data 
structures that record which physical pages are free and which are allocated, and how 
many processes are sharing each allocated page. You will also write the routines to 
allocate and free pages of memory.  

Getting started 

Download the code for lab 2 from (lab2-handout.gz) from the labs section of this course
                      and untar it into your 6.828 directory, just as you did for lab 1. 

                                             You will then need to merge the changes between our lab 1 and lab 2 source code trees into your 
                                                                    own kernel code resulting from completing lab 1.  

In this and future labs you will progressively build on this same kernel. With each new 
lab we will hand out a source tree containing additional files and possibly some changes 
to existing files. You will need to compare the new source tree against the one we 
provided for the previous lab in order to figure out what new code you need to 
incorporate into your kernel. You may find it useful to keep a "pristine" copy of our 
source tree for each lab around along with your modified versions. You should expect to 
become intimately familiar with the Unix diff utility if you aren't already, and patch 
can be highly useful as well. "Diff-and-merge" is an important and unavoidable 
component of all real OS development activity, so any time you spend learning to do this 
effectively is time well spent.  

One option is to just merge in your changes manually. If you remember what functions 
you modified, you can copy the changes into the lab2 code. To actually see what changes 
you made, and try to patch them in to the code, run the following sequence of commands. 



Be warned that these utilities are not perfect, and merging in the changes by hand may be 
simpler.  

cd ~/6.828 
 
# this creates a tar of what you handed in, for backup purposes 
tar czvf lab1-handin.tar.gz lab1 
 
mkdir given-code 
cd given-code 
tar xzf ../lab1.tar.gz 
cd .. 
mv given-code/lab1 lab1-unchanged 
 
# now we have the handed out lab1 code in lab1-unchanged 
 
diff -r -u lab1-unchanged lab1 > lab1-changes.txt 
 
# It is very important to look at the patch file.  All of the changes 
# in it should be for code that you added to lab 1 and want to bring 
# to lab 2.  If there are other changes (like changes to the 
# makefiles), then you should NOT run the 'patch' command below. 
# Instead, you should apply the patch by hand.  If you decide to apply 
# it with patch, then run the commands below. 
 
cd lab2 
patch -p1 -u < ../lab1-changes.txt 
 
# if any chunks failed, then you will need to look at the rejects 
# files (.rej) and merge those changes in yourself. 

Anyone serious about software development should consider using a source code 
management system like CVS. The NYU version of this class has some potentially useful 
instructions on setting up a CVS repository. The course staff is a big fan of CVS, by the 
way. 

Lab 2 contains the following new source files, which you should browse through:  

• inc/memlayout.h  
• kern/pmap.c  
• kern/pmap.h  
• kern/kclock.h  
• kern/kclock.c  
• kern/kdebug.h  
• kern/kdebug.c  

memlayout.h describes the layout of the virtual address space that you must implement 
by modifying pmap.c. memlayout.h and pmap.h define the Page structure that you'll use 
to keep track of which pages of physical memory are free. kclock.c and kclock.h 
manipulate the PC's battery-backed clock and CMOS RAM hardware, in which the BIOS 
records the amount of physical memory the PC contains, among other things. The code in 
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pmap.c needs to read this device hardware in order to figure out how much physical 
memory there is, but that part of the code is done for you: you do not need to know the 
details of how the CMOS hardware works. The last two files provide support for 
extending the kernel monitor.  

Lab Requirements 

In this lab and subsequent labs, you will need to do all of the regular exercises described 
in the lab and at least one challenge problem. (Some challenge problems are more 
challenging than others, of course!) Additionally, you will need to write up brief answers 
to the questions posed in the lab and a short (e.g., one or two paragraph) description of 
what you did to solve your chosen challenge problem. If you implement more than one 
challenge problem, you only need to describe one of them in the write-up, though of 
course you are welcome to do more. Place the write-up in a file called answers.txt 
(plain text) or answers.html (HTML format) in the top level of your lab2 directory 
before handing in your work.  

Hand-In Procedure 

When you are ready to hand in your lab code and write-up, 
 following the procedure outlined by instructors.

As before, we will be grading your solutions with a grading program. You can run gmake 
grade in the lab2 directory to test your kernel with the grading program. You may 
change any of the kernel source and header files you need to in order to complete the lab, 
but needless to say you must not change or otherwise subvert the grading code.  

Part 1: Virtual Memory 
Before doing anything else, you will need to familiarize yourself with the x86's 
protected-mode memory management architecture: namely segmentation and page 
translation.  

Exercise 1. Read chapters 5 and 6 of the Intel 80386 Reference 
Manual, if you haven't done so already. Although JOS relies most 
heavily on page translation, you will also need a basic understanding of 
how segmentation works in protected mode to understand what's going 
on in JOS.  

Virtual, Linear, and Physical Addresses 

In x86 terminology, a virtual address is a "segment:offset"-style address before segment 
translation is performed; a linear address is what you get after segmentation but before 
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page translation; and a physical address is what you finally get after both segmentation 
and page translation. Be sure you understand the difference between these three types or 
"levels" of addresses!  

Exercise 2. Review the debugger section in the Bochs user manual, 
and make sure you understand which debugger commands deal with 
which kinds of addresses. In particular, note the various vb, lb, and pb 
breakpoint commands to set breakpoints at virtual, linear, and physical 
addresses. The default b command breaks at a physical address. Also 
note that the x command examines data at a linear address, while the 
command xp takes a physical address. Sadly there is no xv at all.  

The JOS kernel tries to use consistent type names for different kinds of address. In 
particular, the type uintptr_t represents virtual addresses, and physaddr_t represents 
physical addresses. Of course, both these types are really just synonyms for 32-bit 
integers (uint32_t), so the compiler won't stop you from assigning one type to another! 
Every pointer value in JOS should be a virtual address (once paging is set up), since only 
virtual addresses can be dereferenced. The kernel runs in protected mode too! To 
summarize: 

C type Address type
T*   Virtual 
uintptr_t   Virtual 
physaddr_t  Physical 

Question:  

1. Assuming that the following JOS kernel code compiles correctly and doesn't 
crash, what type should variable x have, uintptr_t or physaddr_t?  

2.  mystery_t x; 
3.  char* value = return_a_pointer(); 
4.  *value = 10; 

 x = (mystery_t) value; 

In Part 3 of Lab 1 we noted that the boot loader sets up the x86 segmentation hardware so 
that the kernel appears to run at its link address of 0xf0100000, even though it is actually 
loaded in physical memory just above the ROM BIOS at 0x00100000. In other words, the 
kernel's virtual starting address at this point is 0xf0100000, but its linear and physical 
starting addresses are both 0x00100000. The kernel's linear and physical addresses are 
the same because we have not yet initialized or enabled page translation.  

In the virtual memory layout you are going to set up for JOS, we will stop using the x86 
segmentation hardware for anything interesting, and instead start using page translation to 
accomplish everything we've already done with segmentation and much more. That is, 
after you finish this lab and the JOS kernel successfully enables paging, linear addresses 
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will be the same as (the offset portion of) the kernel's virtual addresses, rather than being 
the same as physical addresses as they are when the boot loader first enters the kernel.  

In JOS, we divide the processor's 32-bit linear address space into two parts. User 
environments (processes), which we will begin loading and running in lab 3, will have 
control over the layout and contents of the lower part, while the kernel always maintains 
complete control over the upper part. The dividing line is defined somewhat arbitrarily by 
the symbol ULIM in inc/memlayout.h, reserving approximately 256MB of linear (and 
therefore virtual) address space for the kernel. This explains why we needed to give the 
kernel such a high link address in lab 1: otherwise there would not be enough room in the 
kernel's linear address space to map in a user environment below it at the same time.  

Permissions and Fault Isolation 

Since the kernel and user environment will effectively co-exist in each environment's 
address space, we will have to use permission bits in our x86 page tables to prevent user 
code from accessing the kernel's memory: i.e., to enforce fault isolation. We do this as 
follows.  

The user environment will have no permission to any of the memory above ULIM, while 
the kernel will be able to read and write this memory. For the address range 
(UTOP,ULIM], both the kernel and the user environment have the same permission: they 
can read but not write this address range. This range of address is used to expose certain 
kernel data structures read-only to the user environment. Lastly, the address space below 
UTOP is for the user environment to use; the user environment will set permissions for 
accessing this memory.  

Initializing the Kernel Portion of the Linear Address Space 

In this lab, you are going to set up the address space above UTOP - the kernel part of the 
address space. The layout of this portion of the virtual address space will be handled by 
the i386_vm_init() function, defined in kern/pmap.c. The actual layout is diagrammed 
in inc/memlayout.h. It would behoove you to become familiar with this file as well as 
inc/mmu.h, which contains useful macros and definitions relating to the x86 memory 
management hardware.  

Exercise 3. Implement the following functions in kern/pmap.c:  
 boot_alloc() 
 boot_pgdir_walk() 
 boot_map_segment() 
 i386_vm_init() 
  
The comments in i386_vm_init() specify the virtual memory layout. 
Your task is to fill in the missing code to build a 2-level page table 
fulfilling this specification. The other functions are helper routines you 
will find useful.  



Once you have done this, run the code by booting JOS. The function 
call to check_boot_pgdir() (it's located about half way down the 
i386_vm_init()) will check the page table you have built and report 
any problems it finds. Do not continue until you pass this check. Your 
code should also pass the Page directory test when you run gmake 
grade. You may find it helpful to add your own assert()s to verify 
that your own assumptions are, in fact, correct.  

Answer these questions:  

1. What entries (rows) in the page directory have been filled in at this point? What 
addresses do they map and where do they point? In other words, fill out this table 
as much as possible:  

Entry Base Virtual Address Points to (logically): 
1023 ? Page table for top 4MB of phys memory 
1022 ? ? 

. ? ? 

. ? ? 

. ? ? 
2 0x00800000 ? 
1 0x00400000 ? 
0 0x00000000 [see next question?] 

2. In i386_vm_init(), after check_boot_page_directory, we map the first entry 
of the page directory to the page table of the first four MB of RAM, but delete this 
mapping at the end of the function. Why is this necessary? What would happen if 
it were omitted? Does this actually limit our kernel to be 4MB? What must be true 
if our kernel were larger than 4MB?  

3. (From Lecture 4) We have placed the kernel and user environment in the same 
address space. Why will user programs not be able to read or write the kernel's 
memory? What specific mechanisms protect the kernel memory?  

Exercise 4. Modify your stack backtrace function to display, for each 
EIP, the function name, source file name, and line number 
corresponding to that EIP. To help you we have provided 
debuginfo_eip, which looks up eip in the symbol table and is defined 
in kern/kdebug.c.  

In debuginfo_eip, where do __STAB_* come from? This question has 
a long answer; to help you to discover the answer, here are some things 



you might want to do:  

• look in the file kern/kernel.ld for __STAB_*  
• run i386-jos-elf-objdump -h obj/kern/kernel  
• run i386-jos-elf-objdump -G obj/kern/kernel  
• run i386-jos-elf-gcc -pipe -nostdinc -O2 -fno-

builtin -I. -MD -Wall -Wno-format -DJOS_KERNEL -
gstabs -c -S kern/init.c, and look at init.s.  

• see if the bootloader loads the symbol table in memory as part 
of loading the kernel binary  

Complete the implementation of debuginfo_eip by inserting the call 
to stab_binsearch to find the line number for an address.  

Extend your implementation of mon_backtrace to call 
debuginfo_eip and print a line for each stack frame of the form:  

Stack backtrace: 
kern/monitor.c:74: mon_backtrace+10 
  ebp f0119ef8  eip f01008ce  args 00000001 f0119f20 
00000000 00000000 2000000a 
kern/monitor.c:143: monitor+10a 
  ebp f0119f78  eip f01000e5  args 00000000 f0119fac 
00000275 f01033cc fffffffc 
kern/init.c:78: _panic+51 
  ebp f0119f98  eip f010133e  args f01033ab 00000275 
f01033cc f0103473 f01030bc 
kern/pmap.c:711: page_check+9e 
  ebp f0119fd8  eip f0100082  args f0102d20 00001aac 
000006a0 00000000 00000000 
kern/init.c:36: i386_init+42 
  ebp f0119ff8  eip f010003d  args 00000000 00000000 
0000ffff 10cf9a00 0000ffff 
  
The read_eip() function may help with the first line. You may find 
that the some functions are missing from the backtrace. For example, 
you will probably see a call to monitor() but not to runcmd(). This is 
because the compiler in-lines some function calls. Other optimizations 
may cause you to see unexpected line numbers. If you get rid of the -
O2 from GNUMakefile, the backtraces may make more sense (but your 
kernel will run more slowly).  

Challenge! We consumed many physical pages to hold the page tables 
for the KERNBASE mapping. Do a more space-efficient job using the 
PTE_PS ("Page Size") bit in the page directory entries. This bit was not 
supported in the original 80386, but is supported on more recent x86 
processors. You will therefore have to refer to Volume 3 of the current 
Intel manuals (See readings.). Make sure you design the kernel to use  
this optimization only on processors that support it! 



Note: If you compiled bochs yourself, be sure that the appropriate 
configuration options (see tools section) were specified. By default 
bochs does not support some extended page table features.  

Challenge! Extend the JOS kernel monitor with commands to:  

• Display in a useful and easy-to-read format all of the physical 
page mappings (or lack thereof) that apply to a particular range 
of virtual/linear addresses in the currently active address space. 
For example, you might enter 'showmappings 0x3000 
0x5000' to display the physical page mappings and 
corresponding permission bits that apply to the pages at virtual 
addresses 0x3000, 0x4000, and 0x5000.  

• Explicitly set, clear, or change the permissions of any mapping 
in the current address space.  

• Dump the contents of a range of memory given either a virtual 
or physical address range. Be sure the dump code behaves 
correctly when the range extends across page boundaries!  

• Do anything else that you think might be useful later for 
debugging the kernel. (There's a good chance it will be!)  

Address Space Layout Alternatives 

The address space layout we use in JOS is not the only one possible. An operating system 
might map the kernel at low linear addresses while leaving the upper part of the linear 
address space for user processes. x86 kernels generally do not take this approach, 
however, because one of the x86's backward-compatibility modes, known as virtual 8086 
mode, is "hard-wired" in the processor to use the bottom part of the linear address space, 
and thus cannot be used at all if the kernel is mapped there.  

It is even possible, though much more difficult, to design the kernel so as not to have to 
reserve any fixed portion of the processor's linear or virtual address space for itself, but 
instead effectively to allow allow user-level processes unrestricted use of the entire 4GB 
of virtual address space - while still fully protecting the kernel from these processes and 
protecting different processes from each other!  

Challenge! Write up an outline of how a kernel could be designed to 
allow user environments unrestricted use of the full 4GB virtual and 
linear address space. Hint: the technique is sometimes known as 
"follow the bouncing kernel." In your design, be sure to address exactly 
what has to happen when the processor transitions between kernel and 
user modes, and how the kernel would accomplish such transitions. 
Also describe how the kernel would access physical memory and I/O 
devices in this scheme, and how the kernel would access a user 
environment's virtual address space during system calls and the like. 



Finally, think about and describe the advantages and disadvantages of 
such a scheme in terms of flexibility, performance, kernel complexity, 
and other factors you can think of.  

Part 2: Physical Page Management 
Besides setting up the processor hardware to translate virtual addresses correctly into 
physical addresses, the operating system must also keep track of which parts of physical 
RAM are free and which are currently in use. JOS will manage the PC's physical memory 
with page granularity so that it can use the MMU to map and protect each piece of 
allocated memory.  

Exercise 5. In the file kern/pmap.c, you must implement code for the 
five functions listed below: You may find it useful to read 
inc/memlayout.h and kern/pmap.h.  
 page_init() 
 page_alloc() 
 page_free() 
 pgdir_walk() 
 page_insert() 
 page_remove() 
  

The function page_check(), called from i386_init(), tests these 
functions. You must get page_check() to run successfully.  

Answer these questions:  

1. What is the maximum amount of physical memory that this operating system can 
support? Why?  

2. How much space overhead is there for managing memory, if we actually had the 
maximum amount of physical memory? How is this overhead broken down?  

Challenge! Since our JOS kernel's memory management system only 
allocates and frees memory on page granularity, we do not have 
anything comparable to a general-purpose malloc/free facility that we 
can use within the kernel. This could be a problem if we want to 
support certain types of I/O devices that require physically contiguous 
buffers larger than 4KB in size, or if we want user-level environments, 
and not just the kernel, to be able to allocate and map 4MB superpages 
for maximum processor efficiency. (See the earlier challenge problem 
about PTE_PS.) 
Note: If you compiled bochs yourself, be sure that the appropriate 
configuration options (see tools section) were specified. By default  
bochs does not support some extended page table features.  

Generalize the kernel's memory allocation system to support pages of a 



variety of power-of-two allocation unit sizes from 4KB up to some 
reasonable maximum of your choice. Be sure you have some way to 
divide larger allocation units into smaller ones on demand, and to 
coalesce multiple small allocation units back into larger units when 
possible. Think about the issues that might arise in such a system.  

Challenge! Extend the JOS kernel monitor with commands to allocate 
and free pages explicitly, and display whether or not any given page of 
physical memory is currently allocated. For example:  
 K> alloc_page 
  0x13000 
 K> page_status 0x13000 
  allocated 
 K> free_page 0x13000 
 K> page_status 0x13000 
  free 
  
Think of other commands or extensions to these commands that may 
be useful for debugging, and add them.  

This completes the lab. When you are ready to hand in your lab, submit it electronically by
following the procedure outlined by instructors.  
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