
6.828 Fall 2006 Lab 2: Memory
Management
Handed out Wednesday, September 13, 2006
Due Thursday, September 28, 2006

Introduction
In this lab, your will write the memory management code for your operating system.
Memory management is comprised of two components.

The first component of memory management is virtual memory, where we set up the
PC'S Memory Management Unit (MMU) hardware to map the virtual addresses used by
software to physical addresses. You will modify JOS to set up virtual memory mappings
according to a specification we provide.

The second component is managing the physical memory of the computer so that the
kernel can allocate and free physical memory as needed. The x86 divides physical
memory into 4096-byte regions called pages. Your task will be to maintain data
structures that record which physical pages are free and which are allocated, and how
many processes are sharing each allocated page. You will also write the routines to
allocate and free pages of memory.

Getting started

Download the code for lab 2 from (lab2-handout.gz) from the labs section of this course
 and untar it into your 6.828 directory, just as you did for lab 1.

 You will then need to merge the changes between our lab 1 and lab 2 source code trees into your
 own kernel code resulting from completing lab 1.

In this and future labs you will progressively build on this same kernel. With each new
lab we will hand out a source tree containing additional files and possibly some changes
to existing files. You will need to compare the new source tree against the one we
provided for the previous lab in order to figure out what new code you need to
incorporate into your kernel. You may find it useful to keep a "pristine" copy of our
source tree for each lab around along with your modified versions. You should expect to
become intimately familiar with the Unix diff utility if you aren't already, and patch
can be highly useful as well. "Diff-and-merge" is an important and unavoidable
component of all real OS development activity, so any time you spend learning to do this
effectively is time well spent.

One option is to just merge in your changes manually. If you remember what functions
you modified, you can copy the changes into the lab2 code. To actually see what changes
you made, and try to patch them in to the code, run the following sequence of commands.

Be warned that these utilities are not perfect, and merging in the changes by hand may be
simpler.

cd ~/6.828

this creates a tar of what you handed in, for backup purposes
tar czvf lab1-handin.tar.gz lab1

mkdir given-code
cd given-code
tar xzf ../lab1.tar.gz
cd ..
mv given-code/lab1 lab1-unchanged

now we have the handed out lab1 code in lab1-unchanged

diff -r -u lab1-unchanged lab1 > lab1-changes.txt

It is very important to look at the patch file. All of the changes
in it should be for code that you added to lab 1 and want to bring
to lab 2. If there are other changes (like changes to the
makefiles), then you should NOT run the 'patch' command below.
Instead, you should apply the patch by hand. If you decide to apply
it with patch, then run the commands below.

cd lab2
patch -p1 -u < ../lab1-changes.txt

if any chunks failed, then you will need to look at the rejects
files (.rej) and merge those changes in yourself.

Anyone serious about software development should consider using a source code
management system like CVS. The NYU version of this class has some potentially useful
instructions on setting up a CVS repository. The course staff is a big fan of CVS, by the
way.

Lab 2 contains the following new source files, which you should browse through:

• inc/memlayout.h
• kern/pmap.c
• kern/pmap.h
• kern/kclock.h
• kern/kclock.c
• kern/kdebug.h
• kern/kdebug.c

memlayout.h describes the layout of the virtual address space that you must implement
by modifying pmap.c. memlayout.h and pmap.h define the Page structure that you'll use
to keep track of which pages of physical memory are free. kclock.c and kclock.h
manipulate the PC's battery-backed clock and CMOS RAM hardware, in which the BIOS
records the amount of physical memory the PC contains, among other things. The code in

http://ximbiot.com/cvs/cvshome/
http://www.scs.cs.nyu.edu/aos/
http://www.scs.cs.nyu.edu/aos/lab/lab3.html
http://www.scs.cs.nyu.edu/aos/lab/lab3.html

pmap.c needs to read this device hardware in order to figure out how much physical
memory there is, but that part of the code is done for you: you do not need to know the
details of how the CMOS hardware works. The last two files provide support for
extending the kernel monitor.

Lab Requirements

In this lab and subsequent labs, you will need to do all of the regular exercises described
in the lab and at least one challenge problem. (Some challenge problems are more
challenging than others, of course!) Additionally, you will need to write up brief answers
to the questions posed in the lab and a short (e.g., one or two paragraph) description of
what you did to solve your chosen challenge problem. If you implement more than one
challenge problem, you only need to describe one of them in the write-up, though of
course you are welcome to do more. Place the write-up in a file called answers.txt
(plain text) or answers.html (HTML format) in the top level of your lab2 directory
before handing in your work.

Hand-In Procedure

When you are ready to hand in your lab code and write-up,
 following the procedure outlined by instructors.

As before, we will be grading your solutions with a grading program. You can run gmake
grade in the lab2 directory to test your kernel with the grading program. You may
change any of the kernel source and header files you need to in order to complete the lab,
but needless to say you must not change or otherwise subvert the grading code.

Part 1: Virtual Memory
Before doing anything else, you will need to familiarize yourself with the x86's
protected-mode memory management architecture: namely segmentation and page
translation.

Exercise 1. Read chapters 5 and 6 of the Intel 80386 Reference
Manual, if you haven't done so already. Although JOS relies most
heavily on page translation, you will also need a basic understanding of
how segmentation works in protected mode to understand what's going
on in JOS.

Virtual, Linear, and Physical Addresses

In x86 terminology, a virtual address is a "segment:offset"-style address before segment
translation is performed; a linear address is what you get after segmentation but before

submit it electronically by

http://www.cs.ucla.edu/~kohler/class/04f-aos/ref/i386.pdf
http://www.cs.ucla.edu/~kohler/class/04f-aos/ref/i386.pdf

page translation; and a physical address is what you finally get after both segmentation
and page translation. Be sure you understand the difference between these three types or
"levels" of addresses!

Exercise 2. Review the debugger section in the Bochs user manual,
and make sure you understand which debugger commands deal with
which kinds of addresses. In particular, note the various vb, lb, and pb
breakpoint commands to set breakpoints at virtual, linear, and physical
addresses. The default b command breaks at a physical address. Also
note that the x command examines data at a linear address, while the
command xp takes a physical address. Sadly there is no xv at all.

The JOS kernel tries to use consistent type names for different kinds of address. In
particular, the type uintptr_t represents virtual addresses, and physaddr_t represents
physical addresses. Of course, both these types are really just synonyms for 32-bit
integers (uint32_t), so the compiler won't stop you from assigning one type to another!
Every pointer value in JOS should be a virtual address (once paging is set up), since only
virtual addresses can be dereferenced. The kernel runs in protected mode too! To
summarize:

C type Address type
T* Virtual
uintptr_t Virtual
physaddr_t Physical

Question:

1. Assuming that the following JOS kernel code compiles correctly and doesn't
crash, what type should variable x have, uintptr_t or physaddr_t?

2. mystery_t x;
3. char* value = return_a_pointer();
4. *value = 10;

 x = (mystery_t) value;

In Part 3 of Lab 1 we noted that the boot loader sets up the x86 segmentation hardware so
that the kernel appears to run at its link address of 0xf0100000, even though it is actually
loaded in physical memory just above the ROM BIOS at 0x00100000. In other words, the
kernel's virtual starting address at this point is 0xf0100000, but its linear and physical
starting addresses are both 0x00100000. The kernel's linear and physical addresses are
the same because we have not yet initialized or enabled page translation.

In the virtual memory layout you are going to set up for JOS, we will stop using the x86
segmentation hardware for anything interesting, and instead start using page translation to
accomplish everything we've already done with segmentation and much more. That is,
after you finish this lab and the JOS kernel successfully enables paging, linear addresses

http://bochs.sourceforge.net/doc/docbook/user/internal-debugger.html
http://bochs.sourceforge.net/doc/docbook/user/internal-debugger.html
http://bochs.sourceforge.net/doc/docbook/user/book1.html
http://bochs.sourceforge.net/cgi-bin/topper.pl?name=New+Bochs+Documentation&url=http://bochs.sourceforge.net/doc/docbook

will be the same as (the offset portion of) the kernel's virtual addresses, rather than being
the same as physical addresses as they are when the boot loader first enters the kernel.

In JOS, we divide the processor's 32-bit linear address space into two parts. User
environments (processes), which we will begin loading and running in lab 3, will have
control over the layout and contents of the lower part, while the kernel always maintains
complete control over the upper part. The dividing line is defined somewhat arbitrarily by
the symbol ULIM in inc/memlayout.h, reserving approximately 256MB of linear (and
therefore virtual) address space for the kernel. This explains why we needed to give the
kernel such a high link address in lab 1: otherwise there would not be enough room in the
kernel's linear address space to map in a user environment below it at the same time.

Permissions and Fault Isolation

Since the kernel and user environment will effectively co-exist in each environment's
address space, we will have to use permission bits in our x86 page tables to prevent user
code from accessing the kernel's memory: i.e., to enforce fault isolation. We do this as
follows.

The user environment will have no permission to any of the memory above ULIM, while
the kernel will be able to read and write this memory. For the address range
(UTOP,ULIM], both the kernel and the user environment have the same permission: they
can read but not write this address range. This range of address is used to expose certain
kernel data structures read-only to the user environment. Lastly, the address space below
UTOP is for the user environment to use; the user environment will set permissions for
accessing this memory.

Initializing the Kernel Portion of the Linear Address Space

In this lab, you are going to set up the address space above UTOP - the kernel part of the
address space. The layout of this portion of the virtual address space will be handled by
the i386_vm_init() function, defined in kern/pmap.c. The actual layout is diagrammed
in inc/memlayout.h. It would behoove you to become familiar with this file as well as
inc/mmu.h, which contains useful macros and definitions relating to the x86 memory
management hardware.

Exercise 3. Implement the following functions in kern/pmap.c:
 boot_alloc()
 boot_pgdir_walk()
 boot_map_segment()
 i386_vm_init()

The comments in i386_vm_init() specify the virtual memory layout.
Your task is to fill in the missing code to build a 2-level page table
fulfilling this specification. The other functions are helper routines you
will find useful.

Once you have done this, run the code by booting JOS. The function
call to check_boot_pgdir() (it's located about half way down the
i386_vm_init()) will check the page table you have built and report
any problems it finds. Do not continue until you pass this check. Your
code should also pass the Page directory test when you run gmake
grade. You may find it helpful to add your own assert()s to verify
that your own assumptions are, in fact, correct.

Answer these questions:

1. What entries (rows) in the page directory have been filled in at this point? What
addresses do they map and where do they point? In other words, fill out this table
as much as possible:

Entry Base Virtual Address Points to (logically):
1023 ? Page table for top 4MB of phys memory
1022 ? ?

. ? ?

. ? ?

. ? ?
2 0x00800000 ?
1 0x00400000 ?
0 0x00000000 [see next question?]

2. In i386_vm_init(), after check_boot_page_directory, we map the first entry
of the page directory to the page table of the first four MB of RAM, but delete this
mapping at the end of the function. Why is this necessary? What would happen if
it were omitted? Does this actually limit our kernel to be 4MB? What must be true
if our kernel were larger than 4MB?

3. (From Lecture 4) We have placed the kernel and user environment in the same
address space. Why will user programs not be able to read or write the kernel's
memory? What specific mechanisms protect the kernel memory?

Exercise 4. Modify your stack backtrace function to display, for each
EIP, the function name, source file name, and line number
corresponding to that EIP. To help you we have provided
debuginfo_eip, which looks up eip in the symbol table and is defined
in kern/kdebug.c.

In debuginfo_eip, where do __STAB_* come from? This question has
a long answer; to help you to discover the answer, here are some things

you might want to do:

• look in the file kern/kernel.ld for __STAB_*
• run i386-jos-elf-objdump -h obj/kern/kernel
• run i386-jos-elf-objdump -G obj/kern/kernel
• run i386-jos-elf-gcc -pipe -nostdinc -O2 -fno-

builtin -I. -MD -Wall -Wno-format -DJOS_KERNEL -
gstabs -c -S kern/init.c, and look at init.s.

• see if the bootloader loads the symbol table in memory as part
of loading the kernel binary

Complete the implementation of debuginfo_eip by inserting the call
to stab_binsearch to find the line number for an address.

Extend your implementation of mon_backtrace to call
debuginfo_eip and print a line for each stack frame of the form:

Stack backtrace:
kern/monitor.c:74: mon_backtrace+10
 ebp f0119ef8 eip f01008ce args 00000001 f0119f20
00000000 00000000 2000000a
kern/monitor.c:143: monitor+10a
 ebp f0119f78 eip f01000e5 args 00000000 f0119fac
00000275 f01033cc fffffffc
kern/init.c:78: _panic+51
 ebp f0119f98 eip f010133e args f01033ab 00000275
f01033cc f0103473 f01030bc
kern/pmap.c:711: page_check+9e
 ebp f0119fd8 eip f0100082 args f0102d20 00001aac
000006a0 00000000 00000000
kern/init.c:36: i386_init+42
 ebp f0119ff8 eip f010003d args 00000000 00000000
0000ffff 10cf9a00 0000ffff

The read_eip() function may help with the first line. You may find
that the some functions are missing from the backtrace. For example,
you will probably see a call to monitor() but not to runcmd(). This is
because the compiler in-lines some function calls. Other optimizations
may cause you to see unexpected line numbers. If you get rid of the -
O2 from GNUMakefile, the backtraces may make more sense (but your
kernel will run more slowly).

Challenge! We consumed many physical pages to hold the page tables
for the KERNBASE mapping. Do a more space-efficient job using the
PTE_PS ("Page Size") bit in the page directory entries. This bit was not
supported in the original 80386, but is supported on more recent x86
processors. You will therefore have to refer to Volume 3 of the current
Intel manuals (See readings.). Make sure you design the kernel to use
this optimization only on processors that support it!

Note: If you compiled bochs yourself, be sure that the appropriate
configuration options (see tools section) were specified. By default
bochs does not support some extended page table features.

Challenge! Extend the JOS kernel monitor with commands to:

• Display in a useful and easy-to-read format all of the physical
page mappings (or lack thereof) that apply to a particular range
of virtual/linear addresses in the currently active address space.
For example, you might enter 'showmappings 0x3000
0x5000' to display the physical page mappings and
corresponding permission bits that apply to the pages at virtual
addresses 0x3000, 0x4000, and 0x5000.

• Explicitly set, clear, or change the permissions of any mapping
in the current address space.

• Dump the contents of a range of memory given either a virtual
or physical address range. Be sure the dump code behaves
correctly when the range extends across page boundaries!

• Do anything else that you think might be useful later for
debugging the kernel. (There's a good chance it will be!)

Address Space Layout Alternatives

The address space layout we use in JOS is not the only one possible. An operating system
might map the kernel at low linear addresses while leaving the upper part of the linear
address space for user processes. x86 kernels generally do not take this approach,
however, because one of the x86's backward-compatibility modes, known as virtual 8086
mode, is "hard-wired" in the processor to use the bottom part of the linear address space,
and thus cannot be used at all if the kernel is mapped there.

It is even possible, though much more difficult, to design the kernel so as not to have to
reserve any fixed portion of the processor's linear or virtual address space for itself, but
instead effectively to allow allow user-level processes unrestricted use of the entire 4GB
of virtual address space - while still fully protecting the kernel from these processes and
protecting different processes from each other!

Challenge! Write up an outline of how a kernel could be designed to
allow user environments unrestricted use of the full 4GB virtual and
linear address space. Hint: the technique is sometimes known as
"follow the bouncing kernel." In your design, be sure to address exactly
what has to happen when the processor transitions between kernel and
user modes, and how the kernel would accomplish such transitions.
Also describe how the kernel would access physical memory and I/O
devices in this scheme, and how the kernel would access a user
environment's virtual address space during system calls and the like.

Finally, think about and describe the advantages and disadvantages of
such a scheme in terms of flexibility, performance, kernel complexity,
and other factors you can think of.

Part 2: Physical Page Management
Besides setting up the processor hardware to translate virtual addresses correctly into
physical addresses, the operating system must also keep track of which parts of physical
RAM are free and which are currently in use. JOS will manage the PC's physical memory
with page granularity so that it can use the MMU to map and protect each piece of
allocated memory.

Exercise 5. In the file kern/pmap.c, you must implement code for the
five functions listed below: You may find it useful to read
inc/memlayout.h and kern/pmap.h.
 page_init()
 page_alloc()
 page_free()
 pgdir_walk()
 page_insert()
 page_remove()

The function page_check(), called from i386_init(), tests these
functions. You must get page_check() to run successfully.

Answer these questions:

1. What is the maximum amount of physical memory that this operating system can
support? Why?

2. How much space overhead is there for managing memory, if we actually had the
maximum amount of physical memory? How is this overhead broken down?

Challenge! Since our JOS kernel's memory management system only
allocates and frees memory on page granularity, we do not have
anything comparable to a general-purpose malloc/free facility that we
can use within the kernel. This could be a problem if we want to
support certain types of I/O devices that require physically contiguous
buffers larger than 4KB in size, or if we want user-level environments,
and not just the kernel, to be able to allocate and map 4MB superpages
for maximum processor efficiency. (See the earlier challenge problem
about PTE_PS.)
Note: If you compiled bochs yourself, be sure that the appropriate
configuration options (see tools section) were specified. By default
bochs does not support some extended page table features.

Generalize the kernel's memory allocation system to support pages of a

variety of power-of-two allocation unit sizes from 4KB up to some
reasonable maximum of your choice. Be sure you have some way to
divide larger allocation units into smaller ones on demand, and to
coalesce multiple small allocation units back into larger units when
possible. Think about the issues that might arise in such a system.

Challenge! Extend the JOS kernel monitor with commands to allocate
and free pages explicitly, and display whether or not any given page of
physical memory is currently allocated. For example:
 K> alloc_page
 0x13000
 K> page_status 0x13000
 allocated
 K> free_page 0x13000
 K> page_status 0x13000
 free

Think of other commands or extensions to these commands that may
be useful for debugging, and add them.

This completes the lab. When you are ready to hand in your lab, submit it electronically by
following the procedure outlined by instructors.

	6.828 Fall 2006 Lab 2: Memory Management
	Introduction
	Getting started
	Lab Requirements
	Hand-In Procedure

	Part 1: Virtual Memory
	Virtual, Linear, and Physical Addresses
	Permissions and Fault Isolation
	Initializing the Kernel Portion of the Linear Address Space
	Address Space Layout Alternatives

	Part 2: Physical Page Management

