
6.828 Fall 2006 Lab 3: User Environments
Handed out Wednesday, September 27, 2006
Part A due Thursday, October 5, 2006
Part B due Thursday, October 12, 2006

Introduction
In this lab you will implement the basic kernel facilities required to get a protected user-
mode environment (i.e., "process") running. You will enhance the JOS kernel to set up
the data structures to keep track of user environments, create a single user environment,
load a program image into it, and start it running. You will also make the JOS kernel
capable of handling any system calls the user environment makes and handling any other
exceptions it causes.

Note: In this lab, the terms environment and process are interchangeable - they have
roughly the same meaning. We introduce the term "environment" instead of the
traditional term "process" in order to stress the point that JOS environments do not
provide the same semantics as UNIX processes, even though they are roughly
comparable.

Getting Started

Download our reference code for lab 3 (lab3-handout.gz) from the labs section of this course,
untar it into your 6.828 directory, and merge the changes between lab2 and lab3 into your

diff

 and patch utilities can be very useful for this purpose, as well as their "big brother" cvs.

Lab 3 contains a number of new source files, which you should browse through as your
merge them into your kernel:

inc/ env.h Public definitions for user-mode environments
 trap.h Public definitions for trap handling

 syscall.h Public definitions for system calls from user environments to the
kernel

 lib.h Public definitions for the user-mode support library
kern/ env.h Kernel-private definitions for user-mode environments
 env.c Kernel code implementing user-mode environments
 trap.h Kernel-private trap handling definitions
 trap.c Trap handling code
 trapentry.S Assembly-language trap handler entry-points

working kernel source tree as you did before for lab2. As we mentioned before, the

 syscall.h Kernel-private definitions for system call handling
 syscall.c System call implementation code
lib/ Makefrag Makefile fragment to build user-mode library, obj/lib/libuser.a
 entry.S Assembly-language entry-point for user environments
 libmain.c User-mode library setup code called from entry.S
 syscall.c User-mode system call stub functions

 console.c User-mode implementations of putchar and getchar, providing
console I/O

 exit.c User-mode implementation of exit
 panic.c User-mode implementation of panic
user/ * Various test programs to check kernel lab 3 code

In addition, a number of the source files we handed out for lab2 are modified in lab3. To
see the differences, you can type:

$ diff -ur lab2 lab3

Lab Requirements

This lab is divided into two parts, A and B. Part A is due after the first week of the lab
period; you should just gmake handin your lab before the Part A deadline, even though
your code may not yet pass all of the grade script tests. (If it does, great!) You only need
to have all the grade script tests passing by the Part B deadline at the end of the second
week.

As in lab 2, you will need to do all of the regular exercises described in the lab and at
least one challenge problem. Additionally, you will need to write up brief answers to the
questions posed in the lab and a short (e.g., one or two paragraph) description of what
you did to solve your chosen challenge problem. If you implement more than one
challenge problem, you only need to describe one of them in the write-up, though of
course you are welcome to do more. Place the write-up in a file called answers.txt
(plain text) or answers.html (HTML format) in the top level of your lab2 directory
before handing in your work.

Debugging tips

For all its faults, Bochs is still a much more hospitable debugging environment than a real
processor. Put it to work for you!

• The command info idt will print the current interrupt descriptor table (IDT).
This is useful for checking whether you set it up correctly.

• The vb command sets a breakpoint at a particular CS:EIP address. Since the
kernel code segment selector is 8, vb 8:0xf0101234 sets a breakpoint at the

given kernel address. Similarly, since the user segment selector is 0x1b, vb
0x1b:0x80020 sets a breakpoint at the given user address.

Finally, note that passing all the gmake grade tests does not mean your code is perfect. It
may have subtle bugs that will only be tickled by future labs. In a perfect world, gmake
grade would find all your bugs, but no one builds operating systems in a perfect world
anyway. Keep in mind that debugging an operating system is a very holistic task -- there
are abstraction boundaries, but you can't necessarily place much trust in them since
nothing is really enforcing them. If you get all sorts of weird crashes that don't seem to be
explainable by a single bug in the layer you're working on, it's likely that they're
explainable by a single bug in a different layer.

Inline Assembly

In this section you may find GCC's inline assembly language feature useful, although it is
also possible to complete the lab without using it. At the very least, you will need to be
able to understand the fragments of inline assembly language ("asm" statements) that
already exist in the source code we gave you. For the "definitive" reference to GCC inline
assembly language, type info gcc, select the "C Extensions" chapter, and then the
"Extended Asm" section. You can find several other sources of information on GCC
inline assembly language on the class reference materials (syllabus section) page.

Hand-In Procedure

As before, you can test your code against our test scripts by running gmake grade. When
you are done, run gmake handin to tar up and hand in your source tree.

Part A: User Environments and Exception Handling
The new include file inc/env.h contains basic definitions for user environments in JOS;
you should familiarize yourself with it right away. The kernel uses the Env data structure
to keep track of critical data pertaining to each user environment. In this lab you will
initially create just one environment, but you will need to design the JOS kernel to
support multiple environments; lab 4 will take advantage of this feature by allowing a
user environment to fork other environments.

As you can see in kern/env.c, the kernel maintains three main global variables
pertaining to environments:

struct Env *envs = NULL; /* All environments */
struct Env *curenv = NULL; /* the current env */
static struct Env_list env_free_list; /* Free list */

Once JOS gets up and running, the envs pointer points to an array of Env structures
representing all the environments in the system. In our design, the JOS kernel will
support a maximum of NENV simultaneously active environments, although there will

typically be far fewer running environments at any given time. (NENV is a constant
#define'd in inc/env.h.) Once it is allocated, the envs array will contain a single
instance of the Env data structure for each of the NENV possible environments.

The JOS kernel keeps all of the inactive Env structures on the env_free_list. This
design allows extremely quick and efficient allocation and deallocation of environments,
as they merely have to be added to or removed from the free list.

The kernel uses the curenv variable to keep track of the currently executing environment
at any given time. During boot up, before the first environment is run, curenv is initially
set to NULL.

Environment State

The Env structure is defined in inc/env.h as follows (although more fields will be added
in future labs):
struct Env {
 struct Trapframe env_tf; // Saved registers
 LIST_ENTRY(Env) env_link; // Free list link pointers
 u_int env_id; // Unique environment
identifier
 u_int env_parent_id; // env_id of this env's parent
 u_int env_status; // Status of the environment

 // Address space
 Pde *env_pgdir; // Kernel virtual address of
page dir
 u_int env_cr3; // Physical address of page dir
};

We now briefly describe the state kept by the kernel for each user environment.

env_tf:
This structure, defined in inc/trap.h, holds the saved register values for the
environment while that environment is not running: i.e., when the kernel or a
different environment is running. The kernel saves these when switching from
user to kernel mode for any reason, so that the environment can later be resumed
where it left off.

env_link:
This is a pair of pointers allowing the Env to be placed on the env_free_list.
See inc/queue.h for details.

env_id:
The kernel stores here a value that uniquely identifiers the environment currently
using this Env structure (i.e., using this particular slot in the envs array). After a
user environment terminates, the kernel may subsequently re-allocate the same
Env structure to a different environment - but in this case the new environment
will still have a different env_id from the old one even though the new
environment is re-using the same slot in the envs array.

env_parent_id:
The kernel stores here the env_id of the environment that created this
environment. In this way the environments can form a ``family tree,'' which will
be useful for making security decisions about which environments are allowed to
do what to whom.

env_status:
This variable holds one of the following values:
ENV_FREE:
Indicates that the Env structure is inactive, and therefore on the env_free_list.
ENV_RUNNABLE:
Indicates that the Env structure represents a currently active environment, and the
environment is waiting to run on the processor.
ENV_NOT_RUNNABLE:
Indicates that the Env structure represents a currently active environment, but it is
not currently ready to run: for example, because it is waiting for an interprocess
communication (IPC) from another environment.

env_pgdir:
This variable holds a virtual address pointer to this environment's page directory.

env_cr3:
This variable holds the corresponding physical address for this environment's
page directory.

Like a Unix process, a JOS environment couples the concepts of "thread" and "address
space". The thread is defined primarily by the saved registers (the env_tf field), and the
address space is defined by the page directory and page tables pointed to by env_pgdir
and env_cr3. To run an environment, the kernel must set up the CPU with both the saved
registers and the appropriate address space.

Our struct Env is analogous to struct proc in xv6. Both structures hold the
environment's (i.e., process's) user-mode register state directly within the env_tf
substructure (dubbed simply tf in the case of xv6). In JOS, individual environments do
not have their own kernel stacks as processes do in xv6. Instead, all JOS kernel code runs
on a single kernel stack.

Allocating the Environments Array

In lab 2, you allocated memory in i386_vm_init() for the pages[] array, which is a
table the kernel uses to keep track of which pages are free and which are not. You will
now need to modify i386_vm_init() further to allocate a similar array of Env structures,
called envs.

Exercise 1. Modify i386_vm_init() in kern/pmap.c to allocate and
map the envs array. This array consists of exactly NENV instances of the
Env structure, laid out consecutively in the kernel's virtual address
space starting at address UENVS (defined in inc/memlayout.h). The

physical pages that these virtual addresses map to do not have to be
contiguous, since the kernel only ever uses virtual addresses to access
the envs array. You should be able to allocate and map this array in
exactly the same way as you did for the pages array.

Creating and Running Environments

You will now write the code in kern/env.c necessary to run a user environment.
Because we do not yet have a filesystem, we will set up the kernel to load a static binary
image that is embedded within the kernel itself, much like xv6 does with load_icode on
line 1356. As does xv6, JOS embeds these binaries in the kernel as real ELF executable
images. By contrast, the Unix V6 OS studied in 6.828 in previous years used short hand-
assembled code fragments.

The Lab 3 GNUmakefile generates a number of binary images in the obj/user/
directory. If you look at kern/Makefrag, you will notice some magic that "links" these
binaries directly into the kernel executable as if they were .o files. The -b binary option
on the linker command line causes these files to be linked in as "raw" uninterpreted
binary files rather than as regular .o files produced by the compiler. (As far as the linker
is concerned, these files do not have to be ELF images at all - they could be anything,
such as text files or pictures!) If you look at obj/kern/kernel.sym after building the
kernel, you will notice that the linker has "magically" produced a number of funny
symbols with obscure names like _binary_obj_user_hello_start,
_binary_obj_user_hello_end, and _binary_obj_user_hello_size. The linker
generates these symbol names by mangling the file names of the binary files; the symbols
provide the regular kernel code with a way to reference the embedded binary files.

In i386_init() in kern/init.c you'll see code to run one of these binary images in an
environment. However, the critical functions to set up user environments are not
complete; you will need to fill them in.

Exercise 2. In the file env.c, finish coding the following functions:
env_init():

initialize all of the Env structures in the envs array and add
them to the env_free_list.

env_setup_vm():
allocate a page directory for a new environment and initialize
the kernel portion of the new environment's address space.

segment_alloc():
allocates and maps physical memory for an environment

load_icode():
you will need to parse an ELF binary image, much like the boot
loader already does, and load its contents into the user address
space of a new environment.

env_create():

allocate an environment with env_alloc and call load_icode
load an ELF binary into it.

env_run():
start a given environment running in user mode.

As you write these functions, you might find the new cprintf verb %e
useful -- it prints a description corresponding to an error code. For
example,

 r = -E_NO_MEM;
 panic("env_alloc: %e", r);

will panic with the message "env_alloc: out of memory".

Once you are done you should compile your kernel and run it under Bochs. If all goes
well, your system should crash in the user program while it is trying to make a system
call, since you haven't implemented system calls yet; you should examine what happened
as explained below. Below is a call graph of the code up to the point where the user code
is invoked. Make sure you understand the purpose of each step.

• start (kern/entry.S)
• i386_init

o cons_init
o i386_detect_memory
o i386_vm_init
o page_init
o env_init
o idt_init (still incomplete at this point)
o env_create
o env_run

 env_pop_tf

Set a Bochs breakpoint at env_pop_tf, which should be the last function you hit before
actually entering user mode. Step through this function; the processor should enter user
mode after the iret instruction. You should then see the first instruction in the user
environment's executable, which is the cmpl instruction at the label start in
lib/entry.S. You should be able to single-step through this user mode environment
code until you first hit an int $0x30 instruction, which is the instruction that user-mode
code executes to make a system call. Unless you've changed the code in i386_init, the
first system call you'll hit is sys_cputs, which is called by cprintf to put characters to
the console. (See lib/syscall.c for more details.) If you cannot get to this point, then
something is wrong with your address space setup or program loading code; go back and
fix it before continuing.

Handling Interrupts and Exceptions

At this point, the first int $0x30 system call instruction in user space is a dead end: once
the processor gets into user mode, there is no way to get back out. You will now need to
implement basic exception and system call handling, so that it is possible for the kernel to
recover control of the processor from user-mode code. The first thing you should do is
thoroughly familiarize yourself with the x86 interrupt and exception mechanism.

Exercise 3. Read Chapter 9, Exceptions and Interrupts in the 80386
Programmer's Manual (or Chapter 5 of the IA-32 Developer's Manual)
(see readings), if you haven't already.

In this lab we generally follow Intel's terminology for interrupts, exceptions, and the like.
However, be aware that terms such as exceptions, traps, interrupts, faults and aborts have
no standardized meaning across architectures or operating systems, and often used rather
loosely without close regard to the subtle distinctions between them on a particular
architecture such as the x86. When you see these terms outside of this lab, the meanings
might be slightly different.

Basics of Protected Control Transfer

Exceptions and interrupts are both "protected control transfers," which cause the
processor to switch from user to kernel mode without giving the user-mode code any
opportunity to interfere with the functioning of the kernel or other environments. In
Intel's terminology, an interrupt is a protected control transfer that is caused by an
asynchronous event usually external to the processor, such as notification of external
device I/O activity. An exception, in contrast, is a protected control transfer caused
synchronously by the currently running code, for example due to a divide by zero or an
invalid memory access.

In order to ensure that these protected control transfers are actually protected, the
processor's interrupt/exception mechanism is designed so that the code currently running
when the interrupt or exception occurs does not get to choose arbitrarily where the kernel
is entered or how. Instead, the processor ensures that the kernel can be entered only under
carefully controlled conditions. On the x86, this protection is provided on the basis of two
particular mechanisms:

1. The Interrupt Descriptor Table. The processor ensures that interrupts and
exceptions can only cause the kernel to be entered at a few specific, well-defined
entry-points determined by the kernel itself, and not by the code currently running
when the interrupt or exception is taken.

In particular, x86 interrupts and exceptions are differentiated into up to 256
possible "types", each associated with a particular interrupt number (often
referred to synonymously as an exception number or trap number). Once the
processor identifies a particular interrupt or exception to be taken, it uses the
interrupt number as an index into the processor's interrupt descriptor table (IDT),
which is a special table that the kernel sets up in kernel-private memory, much
like the GDT. From the appropriate entry in this table the processor loads:

o the value to load into the instruction pointer (EIP) register, pointing to the
kernel code designated to handle that type of exception.

o the value to load into the code segment (CS) register, which includes in
bits 0-1 the privilege level at which the exception handler is to run. (In
JOS, all exceptions are handled in kernel mode, or privilege level 0.)

2. The Task State Segment. In addition to having a well-defined entry-point in the
kernel for an interrupt or exception handler, the processor also needs a place to
save the old processor state before the interrupt or exception occurred, such as the
original values of EIP and CS before the processor invoked the exception handler,
so that the exception handler can later restore that old state and resume the
interrupted code from where it left off. But this save area for the old processor
state must in turn be protected from unprivileged user-mode code; otherwise
buggy or malicious user code could easily compromise the kernel.

For this reason, when an x86 processor takes an interrupt or trap that causes a
privilege level change from user to kernel mode, it not only loads new values into
EIP and CS, but also loads new values into the stack pointer (ESP) and stack
segment (SS) registers, effectively switching to a new stack private to the kernel.
The processor then pushes the original values of all of these registers, along with
the contents of the EFLAGS register, onto this new kernel stack before starting to
run the kernel's exception handler code. The new ESP and SS do not come from
the IDT like the EIP and CS do, but instead from a separate structure called the
task state segment (TSS).

Although the TSS is a somewhat large and complex data structure that can
potentially serve a variety of purposes, in JOS it will only be used to define the
kernel stack that the processor should switch to when it transfers from user to
kernel mode. Since "kernel mode" in JOS is privilege level 0 on the x86, the
processor uses the ESP0 and SS0 fields of the TSS to define the kernel stack when
entering kernel mode; none of the other fields in the TSS will ever ever be used in
JOS.

Types of Exceptions and Interrupts

All of the synchronous exceptions that the x86 processor can generate internally use
interrupt numbers between 0 and 31, and therefore map to IDT entries 0-31. For example,
the page fault handler is ``hard-wired'' by Intel to interrupt number 14. Interrupt numbers
greater than 31 are only used by software interrupts, which can be generated by the INT
instruction, or asynchronous hardware interrupts, caused by external devices when they
need attention.

In this section we will extend JOS to handle the internally generated x86 exceptions in
the 0-31 that are currently defined by Intel. In addition, in the next section we will also
make JOS handle software interrupt number 0x30, which JOS (fairly arbitrarily) uses as
its system call interrupt number. In Lab 4 we will extend JOS to handle externally
generated hardware interrupts such as the clock interrupt.

An Example

Let's put these pieces together and trace through an example. Let's say the processor is
executing code in a user environment and encounters a divide instruction that attempts to
divide by zero.

1. The processor switches to the stack defined by the SS0 and ESP0 fields of the
TSS, which in JOS will hold the values GD_KD and KSTACKTOP, respectively.

2. The processor pushes the exception parameters on the kernel stack, starting at
address KSTACKTOP:

3. +--------------------+ KSTACKTOP
4. | 0x00000 old SS | " - 4
5. | old ESP | " - 8
6. | old EFLAGS | " - 12
7. | 0x00000 | old CS | " - 16
8. | old EIP | " - 20 <---- ESP
9. +--------------------+

10. Because we're handling a divide error, which is interrupt number 0 on the x86, the
processor reads IDT entry 0 and sets CS:EIP to point to the handler function
defined there.

11. The handler function takes control and handles the exception, for example by
terminating the user environment.

For certain types of x86 exceptions, in addition to the "standard" five words above, the
processor pushes onto the stack another word containing an error code. The page fault
exception, number 14, is an important example. See the 80386 manual to determine for
which exception numbers the processor pushes an error code, and what the error code
means in that case. When the processor pushes an error code, the stack would look as
follows at the beginning of the exception handler when coming in from user mode:

 +--------------------+ KSTACKTOP
 | 0x00000 old SS | " - 4
 | old ESP | " - 8
 | old EFLAGS | " - 12
 | 0x00000 | old CS | " - 16
 | old EIP | " - 20
 | error code | " - 24 <---- ESP
 +--------------------+

Nested Exceptions and Interrupts

The processor can take exceptions and interrupts both from kernel and user mode. It is
only when entering the kernel from user mode, however, that the x86 processor
automatically switches stacks before pushing its old register state onto the stack and
invoking the appropriate exception handler through the IDT. If the processor is already in
kernel mode when the interrupt or exception occurs (the low 2 bits of the CS register are

already zero), then the kernel just pushes more values on the same kernel stack. In this
way, the kernel can gracefully handle nested exceptions caused by code within the kernel
itself. This capability is an important tool in implementing protection, as we will see later
in the section on system calls.

If the processor is already in kernel mode and takes a nested exception, since it does not
need to switch stacks, it does not save the old SS or ESP registers. For exception types
that do not push an error code, the kernel stack therefore looks like the following on entry
to the exception handler:

 +--------------------+ <---- old ESP
 | old EFLAGS | " - 4
 | 0x00000 | old CS | " - 8
 | old EIP | " - 12
 +--------------------+

For exception types that push an error code, the processor pushes the error code
immediately after the old EIP, as before.

There is one important caveat to the processor's nested exception capability. If the
processor takes an exception while already in kernel mode, and cannot push its old state
onto the kernel stack for any reason such as lack of stack space, then there is nothing the
processor can do to recover, so it simply resets itself. Needless to say, any decent kernel
should be designed so that this will never happen unintentionally.

Setting Up the IDT

You should now have the basic information you need in order to set up the IDT and
handle exceptions in JOS. For now, you will set up the IDT to handle all the to handle
interrupt numbers 0-31 (the processor exceptions) and interrupts 32-47 (the device IRQs).
We may add additional interrupts later.

The header files inc/trap.h and kern/trap.h contain important definitions related to
interrupts and exceptions that you will need to become familiar with. The file
kern/trap.h contains trap-related definitions that will remain strictly private to the
kernel, while the companion header file inc/trap.h contains general definitions that
may also be useful to user-level programs and libraries in the system.

Note: Some of the exceptions in the range 0-31 are defined by Intel to be reserved. Since
they will never be generated by the processor, it doesn't really matter how you handle
them. Do whatever you think is cleanest.

The overall flow of control that you should achieve is depicted below:

 IDT trapentry.S trap.c

+----------------+

| &handler1 |---------> handler1: trap (struct Trapframe
*tf)
| | // do stuff {
| | call trap // handle the
exception/interrupt
| | // undo stuff }
+----------------+
| &handler2 |--------> handler2:
| | // do stuff
| | call trap
| | // undo stuff
+----------------+
 .
 .
 .
+----------------+
| &handlerX |--------> handlerX:
| | // do stuff
| | call trap
| | // undo stuff
+----------------+

Each exception or interrupt should have its own handler in trapentry.S and
idt_init() should initialize the IDT with the addresses of these handlers. Each of the
handlers should build a struct Trapframe (see inc/trap.h) on the stack and call into
trap() (in trap.c) with a pointer to the Trapframe.

After control is passed to trap(), that function handles the exception/interrupt or
dispatches the exception/interrupt to a specific handler function. If and when the trap()
function returns, the code in trapentry.S restores the old CPU state saved in the
Trapframe and then uses the iret instruction to return from the exception.

Exercise 4. Edit trapentry.S and trap.c and implement the features
described above. The macros TRAPHANDLER and TRAPHANDLER_NOEC in
trapentry.S should help you, as well as the T_* defines in
inc/trap.h. You will need to add an entry point in trapentry.S
(using those macros) for each trap defined in inc/trap.h. You will
also need to modify idt_init() to initialize the idt to point to each of
these entry points defined in trapentry.S; the SETGATE macro will be
helpful here.

Hint: your code should perform the following steps:

1. push values to make the stack look like a struct Trapframe
2. load GD_KD into %ds and %es
3. pushl %esp to pass a pointer to the Trapframe as an argument

to trap()
4. call trap
5. pop the values pushed in steps 1-3

6. iret

Consider using the pushal and popal instructions; they fit nicely with
the layout of the struct Trapframe.

Test your trap handling code using some of the test programs in the
user directory that cause exceptions before making any system calls,
such as user/divzero. You should be able to get make grade to
succeed on the divzero, softint, and badsegment tests at this point.

Challenge! You probably have a lot of very similar code right now,
between the lists of TRAPHANDLER in trapentry.S and their
installations in trap.c. Clean this up. Change the macros in
trapentry.S to automatically generate a table for trap.c to use. Note
that you can switch between laying down code and data in the
assembler by using the directives .text and .data.

Questions

Answer the following questions in your answers.txt:

1. What is the purpose of having an individual handler function for each
exception/interrupt? (i.e., if all exceptions/interrupts were delivered to the same
handler, what feature that exists in the current implementation could not be
provided?)

2. Did you have to do anything to make the user/softint program behave
correctly (i.e., as the grade script expects)? Why is this the correct behavior? What
happens if the kernel actually allows softint's int $14 instruction to invoke the
kernel's page fault handler (which is interrupt number 14)?

Part B: Page Faults, Breakpoints Exceptions, and
System Calls
Now that your kernel has basic exception handling capabilities, you will refine it to
provide important operating system primitives that depend on exception handling.

Handling Page Faults

The page fault exception, interrupt number 14 (T_PGFLT), is a particularly important one
that we will exercise heavily throughout this lab and the next. When the processor takes a
page fault, it stores the linear address that caused the fault in a special processor control
register, CR2. In trap.c we have provided the beginnings of a special function,
page_fault_handler(), to handle page fault exceptions.

Exercise 5. Modify trap_dispatch() to dispatch page fault

exceptions to page_fault_handler(). You should now be able to get
make grade to succeed on the faultread, faultreadkernel,
faultwrite, and faultwritekernel tests. If any of them don't work,
figure out why and fix them.

You will further refine the kernel's page fault handling below, as you implement system
calls.

The Breakpoint Exception

The breakpoint exception, interrupt number 3 (T_BRKPT), is normally used to allow
debuggers to insert breakpoints in a program's code by temporarily replacing the relevant
program instruction with the special 1-byte int3 software interrupt instruction. In JOS
we will abuse this exception slightly by turning it into a primitive pseudo-system call that
any user environment can use to invoke the JOS kernel monitor. This usage is actually
somewhat appropriate if we think of the JOS kernel monitor as a primitive debugger. The
user-mode implementation of panic() in lib/panic.c, for example, performs an int3
after displaying its panic message.

Exercise 6. Modify trap_dispatch() to make breakpoint exceptions
invoke the kernel monitor. You should now be able to get make grade
to succeed on the breakpoint test.

Challenge! Modify the JOS kernel monitor so that you can 'continue'
execution from the current location (e.g., after the int3, if the kernel
monitor was invoked via the breakpoint exception), and so that you can
single-step one instruction at a time. You will need to understand
certain bits of the EFLAGS register in order to implement single-
stepping.

Optional: If you're feeling really adventurous, find some x86
disassembler source code - e.g., by ripping it out of Bochs, or out of
GNU binutils, or just write it yourself - and extend the JOS kernel
monitor to be able to disassemble and display instructions as you are
stepping through them. Combined with the symbol table loading from
lab 2, this is the stuff of which real kernel debuggers are made.

Questions

Answer the following questions in your answers.txt:

1. The break point test case will either generate a break point exception of a general
protect fault depending on how you initialized the break point entry in the IDT
(i.e., your call to SETGATE from idt_init). Why? How did you need to set it in
order to get the breakpoint exception to work as specified above?

2. What do you think is the point of these mechanisms, particularly in light of what
the user/softint test program does?

System calls

User processes ask the kernel to do things for them by invoking system calls. When the
user process invokes a system call, the processor enters kernel mode, the processor and
the kernel cooperate to save the user process's state, the kernel executes appropriate code
in order to carry out the system call, and then resumes the user process. The exact details
of how the user process gets the kernel's attention and how it specifies which call it wants
to execute vary from system to system.

In the JOS kernel, we will use the int instruction, which causes a processor interrupt. In
particular, we will use int $0x30 as the system call interrupt. We have defined the
constant T_SYSCALL to 0x30 for you. You will have to set up the interrupt descriptor to
allow user processes to cause that interrupt. Note that interrupt 0x30 cannot be generated
by hardware, so there is no ambiguity caused by allowing user code to generate it.

We will pass the system call number and the system call arguments in registers. This
way, we don't need to grub around in the user environment's stack or instruction stream.
The system call number will go in %eax, and the arguments (up to five of them) will go in
%edx, %ecx, %ebx, %edi, and %esi, respectively. The kernel passes the return value back
in %eax. The assembly code to invoke a system call has been written for you, in
syscall() in lib/syscall.c. You should read through it and make sure you understand
what is going on.

Exercise 7. Add a handler in the kernel for interrupt number
T_SYSCALL. You will have to edit kern/trapentry.S and
kern/trap.c's idt_init(). You also need to change
trap_dispatch() to handle the system call interrupt by calling
syscall() (defined in kern/syscall.c) with the appropriate
arguments, and then arranging for the return value to be passed back to
the user process in %eax. Finally, you need to implement syscall() in
kern/syscall.c. Make sure syscall() returns -E_INVAL if the
system call number is invalid. You should read and understand
lib/syscall.c (especially the inline assembly routine) in order to
confirm your understanding of the system call interface. You may also
find it helpful to read inc/syscall.h.

Run the user/hello program under your kernel. It should print
"hello, world" on the console and then cause a page fault in user
mode. If this does not happen, it probably means your system call
handler isn't quite right.

Challenge! Implement system calls using the sysenter and sysexit
instructions instead of using int 0x30 and iret.

The sysenter/sysexit instructions were designed by Intel to be
faster than int/iret. They do this by using registers instead of the
stack and by making assumptions about how the segmentation registers
are used. The exact details of these instructions can be found in
Volume 2B of the Intel reference manuals.
The easiest way to add support for these instructions in JOS is to add a
sysenter_handler in kern/trapentry.S that creates the same trap
frame that is normally created by an int 0x30 instruction (being sure
to save the correct return address and stack pointer provided by the
user environment). Then, instead of calling into trap, push the
arguments to syscall and call syscall directly. Once syscall
returns, set everything up for and execute the sysexit instruction.
You will also need to add code to kern/init.c to set up the necessary
model specific registers (MSRs). Look at the enable_sep_cpu
function in this diff for an example of this, and you can find an
implementation of wrmsr to add to /inc/x86.h here). Finally,
lib/syscall.c must be changed to support making a system call with
sysenter. Here is a possible register layout for the sysenter
instruction:
 eax - syscall number
 edx, ecx, ebx, edi - arg1, arg2, arg3, arg4
 esi - return pc
 ebp - return esp
 esp - trashed by sysenter

GCC's inline assembler does not support directly loading values into
ebp, so you will need to add code to save (push) and restore (pop) it
yourself (and you may want to do the same thing for esi as well). The
return address can be put into esi by using an instruction like leal
after_sysenter_label, %%esi.
Note that this only supports 4 arguments, so you will need to leave the
old method of doing system calls around if you want to support 5
argument system calls as well.
Finally, in order for Bochs to support these instructions, it must be
compiled with the --enable-sep option, in addition to the other
options listed on the tools page.

User-mode startup

The user programs start running at the top of lib/entry.S. After some setup, this code
calls libmain(), in lib/libmain.c. The libmain() function needs to initialize a global
pointer env to point at this environment's struct Env in the envs[] array. (Note that
lib/entry.S has already defined envs to point at the UENVS mapping you set up in lab
2.) Hint: look in inc/env.h and use sys_getenvid.

http://lwn.net/Articles/18414/
http://www.garloff.de/kurt/linux/k6mod.c

libmain() then calls umain, which, in the case of the hello program, is in
user/hello.c. Note that after printing "hello, world", it tries to access env->env_id.
This is why it faulted earlier. Now that you've initialized env properly, it should not fault.
If it still faults, you probably haven't mapped the UENVS area user-readable (back in lab 1
in pmap.c; this is the first time we've actually used the UENVS area).

Exercise 8. Add the required code to the user library, then boot your
kernel. You should see user/hello print "hello, world" and then
print "i am environment 00000800". user/hello then attempts to
"exit" by calling sys_env_destroy() (see lib/libmain.c and
lib/exit.c). Since the kernel currently only supports one user
environment, it should report that it has destroyed the only
environment and then drop into the kernel monitor.

Page faults and memory protection

Memory protection is a crucial feature of an operating system. By using memory
protection, the operating system can ensure that bugs in one program cannot corrupt other
programs or corrupt the operating system itself.

Typically, operating systems rely on hardware support to implement memory protection.
The OS keeps the hardware informed about which virtual addresses are valid and which
are not. When a program tries to access an invalid address or one for which it has no
permissions, the processor stops the program at the instruction causing the fault and then
traps into the kernel with information about the attempted operation. If the fault is
fixable, the kernel can fix it and let the program continue running. If the fault is not
fixable, then the program cannot continue, since it will never get past the instruction
causing the fault.

As an example of a fixable fault, consider an automatically extended stack. In many
systems the kernel initially allocates a single stack page, and then if a program faults
accessing pages further down the stack, the kernel will allocate those pages automatically
and let the program continue. By doing this, the kernel only allocates as much stack
memory as the program needs, but the program can work under the illusion that it has an
arbitrarily large stack.

System calls present an interesting problem for memory protection. Most system call
interfaces let user programs pass pointers to the kernel. These pointers point at user
buffers to be read or written. The kernel then dereferences these pointers while carrying
out the system call. There are two problems with this:

1. A page fault in the kernel is taken a lot more seriously than a page fault in a user
program. If the kernel page faults, that's usually a kernel bug, and the fault
handler will panic the kernel (and hence the whole system). In a system call, when
the kernel is dereferencing pointers to the user's address space, we need a way to

remember that any page faults these dereferences cause are actually on behalf of
the user program.

2. The kernel typically has more memory permissions than the user program. The
user program might ask the kernel to read from or write to a location in kernel
memory that the user program cannot access but that the kernel can. If the kernel
is not careful, a buggy or malicious user program can trick the kernel into using
its greater privilege in unintended ways, possibly so as to destroy the integrity of
the kernel completely.

For both of these reasons the kernel must be extremely careful when handling pointers
presented by user programs.

You will now implement solutions to these two problems with a single mechanism. The
gist of the approach that this year's JOS kernel uses (which is different from last year's) is
to scrutinize all pointers passed from userspace into the kernel, and to perform in kernel
code what the processor does in hardware. That is, when the user passes the kernel a
pointer, the kernel will check that it's a user-accessible address, and that the user page
tables are correctly configured to allow the memory operation to go through.

Thus, the kernel ought never induce a page fault when handling a system call. If the
kernel does page fault, it should panic and terminate. (Why wouldn't this behavior be
acceptable for a "commercial" OS such as Linux or FreeBSD?)

Exercise 9. Change kern/trap.c's to panic if a page fault happens in
kernel mode.

Hint: to determine whether a fault happened in user mode or in kernel
mode, check the low bits of the tf_cs.

Read user_mem_assert in kern/pmap.c and implement
user_mem_check in that same file.

Change kern/syscall.c to sanity check arguments to system calls.

Change kern/init.c to run user/buggyhello instead of
user/hello. Compile your kernel and boot it. The environment should
be destroyed, and the kernel should not panic. You should see:

 [00001000] user_mem_check assertion failure for
va 00000001
 [00001000] free env 00001000
 Destroyed the only environment - nothing more to
do!

Note that the same mechanism you just implemented also works for malicious user
applications (such as user/evilhello).

Exercise 10.

Change kern/init.c to run user/evilhello. Compile your kernel
and boot it. The environment should be destroyed, and the kernel
should not panic. You should see:

 [00000000] new env 00001000
 [00001000] user_mem_check assertion failure for
va f0100020
 [00001000] free env 00001000

This completes the lab. Make sure you pass all the gmake grade tests, and hand in your
work with gmake handin.

	6.828 Fall 2006 Lab 3: User Environments
	Introduction
	Getting Started
	Lab Requirements
	Debugging tips
	Inline Assembly
	Hand-In Procedure

	Part A: User Environments and Exception Handling
	Environment State
	Allocating the Environments Array
	Creating and Running Environments
	Handling Interrupts and Exceptions
	Basics of Protected Control Transfer
	Types of Exceptions and Interrupts
	An Example
	Nested Exceptions and Interrupts
	Setting Up the IDT
	Questions

	Part B: Page Faults, Breakpoints Exceptions, and System Calls
	Handling Page Faults
	The Breakpoint Exception
	Questions

	System calls
	User-mode startup
	Page faults and memory protection

