
6.828 Fall 2006 Lab 5: File Systems and 
Spawn 
Handed out Wednesday, November 1, 2006 
Part A due Thursday, November 9, 2006 
Part B due Thursday, November 22, 2006 

Introduction 
In this lab, you will implement a simple disk-based file system, and then write exec code 
to load and run an executable stored in this on-disk file system. The file system itself will 
be implemented in microkernel fashion, outside the kernel but within its own user-space 
environment. Other environments access the file system by making IPC requests to this 
special file system environment. The exec functionality, however, will be implemented 
in neither the kernel nor the file system, but in typical exokernel fashion, as part of the 
user space library operating system that is linked into each application that wants to use 
it.  

Getting Started 

Download the lab 5 code
and unpack it into your 6.828 directory as before. As usual, you will need 

to merge our new code for this lab into your source tree or vice versa.  

The main new component for this lab is the file system server, located in the new fs 
directory. Scan through all the files in this directory to get a feel for what all is new. Also, 
there are some new file system-related source files in the user and lib directories, 
particularly lib/fsipc.c, lib/file.c, lib/spawn.c, and new global header files 
inc/fs.h and inc/fd.h. Be sure to scan through all of these files.  

You should run the pingpong, primes, and forktree test cases from lab 4 again after 
merging in the new lab 5 code. You will need to comment out the ENV_CREATE line that 
starts fs/fs to avoid Bochs panicking because fs/fs does some I/O. Similarly, 
temporarily comment out the call to close_all() in lib/exit.c; this function calls 
subroutines that you will implement later in the lab, and therefore will panic if called. If 
your lab 4 code doesn't contain any bugs, the test cases should run fine. Don't proceed 
until they work.  

If they don't work, use diff -u -r lab4 lab5 to review all the changes, making sure 
there isn't any code you wrote for lab4 (or before) missing from lab 5. Make sure that lab 
4 still works. Then go on to lab 5.  

Lab Requirements 

(lab5-handout.zip) from labs section for this course, 



This lab is divided into two parts, A and B. We have allocated one week in the schedule 
for each part. As before, you will need to do all of the regular exercises described in the 
lab and at least one challenge problem. (You do not need to do one challenge problem 
per part, just one for the whole lab.) Additionally, you will need to write up brief answers 
to the questions posed in the lab and a short (e.g., one or two paragraph) description of 
what you did to solve your chosen challenge problem. If you implement more than one 
challenge problem, you only need to describe one of them in the write-up, though of 
course you are welcome to do more. Place the write-up in a file called answers.txt 
(plain text) or answers.html (HTML format) in the top level of your lab2 directory 
before handing in your work.  

5. File system preliminaries 
The file system you will work with is much simpler than most "real" file systems 
including that of xv6 UNIX, but it is powerful enough to provide the standard "basic" 
features: creating, reading, writing, and deleting files organized in a hierarchical directory 
structure.  

We are (for the moment anyway) developing only a "single-user" operating system, 
which provides protection sufficient to catch bugs but not to protect multiple mutually 
suspicious users from each other. Our file system therefore does not support the UNIX 
notions of file ownership or permissions. Our file system also currently does not support 
hard links, symbolic links, time stamps, or special device files like most UNIX file 
systems do.  

On-Disk File System Structure 
Most UNIX file systems divide available disk space into two main types of regions: inode 
regions and data regions. UNIX file systems assign one inode to each file in the file 
system; a file's inode holds critical meta-data about the file such as its stat attributes and 
pointers to its data blocks. The data regions are divided into much larger (typically 8KB 
or more) data blocks, within which the file system stores file data and directory meta-
data. Directory entries contain file names and pointers to inodes; a file is said to be hard-
linked if multiple directory entries in the file system refer to that file's inode. Since our 
file system will not support hard links, we do not need this level of indirection and 
therefore can make a convenient simplification: our file system will not use inodes at all, 
but instead we will simply store all of a file's (or sub-directory's) meta-data within the 
(one and only) directory entry describing that file.  

Both files and directories logically consist of a series of data blocks, which may be 
scattered throughout the disk much like the pages of an environment's virtual address 
space can be scattered throughout physical memory. The file system allows user 
processes to read and write the contents of files directly, but the file system handles all 
modifications to directories itself as a part of performing actions such as file creation and 
deletion. Our file system does, however, allow user environments to read directory meta-



data directly (e.g., with read and write), which means that user environments can 
perform directory scanning operations themselves (e.g., to implement the ls program) 
rather than having to rely on additional special calls to the file system. The disadvantage 
of this approach to directory scanning, and the reason most modern UNIX variants 
discourage it, is that it makes application programs dependent on the format of directory 
meta-data, making it difficult to change the file system's internal layout without changing 
or at least recompiling application programs as well.  

Sectors and Blocks 

Most disks cannot perform reads and writes at byte granularity, but can only perform 
reads and writes in units of sectors, which today are almost universally 512 bytes each. 
File systems actually allocate and use disk storage in units of blocks. Be wary of the 
distinction between the two terms: sector size is a property of the disk hardware, whereas 
block size is an aspect of the operating system using the disk. A file system's block size 
must be at least the sector size of the underlying disk, but could be greater.  

The UNIX xv6 file system uses a block size of 512 bytes, the same as the sector size of 
the underlying disk. Most modern file systems use a larger block size, however, because 
storage space has gotten much cheaper and it is more efficient to manage storage at larger 
granularities. Our file system will use a block size of 4096 bytes, conveniently matching 
the processor's page size.  

Superblocks 

File systems typically reserve certain disk blocks, at "easy-to-find" locations on the 
disk such as the very start or the very end, to hold meta-data describing properties of 
the file system as a whole, such as the block size, disk size, any meta-data required to find 
the root directory, the time the file system was last mounted, the time the file system was 
last checked for errors, and so on. These special blocks are called superblocks.  

Our file system will have exactly one superblock, which will always be at block 1 on the 
disk. Its layout is defined by struct Super in inc/fs.h. Block 0 is typically reserved to 
hold boot loaders and partition tables, so file systems generally never use the very first 
disk block. Most "real" file systems maintain multiple superblocks, replicated throughout 
several widely-spaced regions of the disk, so that if one of them is corrupted or the disk 
develops a media error in that region, the other superblocks can still be found and used to 
access the file system.  

The Block Bitmap: Managing Free Disk Blocks 

In the same way that the kernel must manage the system's physical memory to ensure that 
a given physical page is used for only one purpose at a time, a file system must manage 
the blocks of storage on a disk to ensure that a given disk block is used for only one 
purpose at a time. In pmap.c you keep the Page structures for all free physical pages on a 
linked list, page_free_list, to keep track of the free physical pages. In file systems it is 



more common to keep track of free disk blocks using a bitmap rather than a linked list, 
because a bitmap is more storage-efficient than a linked list and easier to keep consistent. 
Searching for a free block in a bitmap can take more CPU time than simply removing the 
first element of a linked list, but for file systems this isn't a problem because the I/O cost 
of actually accessing the free block after we find it dominates for performance purposes.  

To set up a free block bitmap, we reserve a contiguous region of space on the disk large 
enough to hold one bit for each disk block. For example, since our file system uses 4096-
byte blocks, each bitmap block contains 4096*8=32768 bits, or enough bits to describe 
32768 disk blocks. In other words, for every 32768 disk blocks the file system uses, we 
must reserve one disk block for the block bitmap. A given bit in the bitmap is set if the 
corresponding block is free, and clear if the corresponding block is in use. The block 
bitmap in our file system always starts at disk block 2, immediately after the superblock. 
For simplicity we will reserve enough bitmap blocks to hold one bit for each block in the 
entire disk, including the blocks containing the superblock and the bitmap itself. We will 
simply make sure that the bitmap bits corresponding to these special, "reserved" areas of 
the disk are always clear (marked in-use).  

File Meta-data 

The layout of the meta-data describing a file in our file system is described by 
struct File in inc/fs.h. This meta-data includes the file's name, size, type 
(regular file or directory), and pointers to the blocks comprising the file. Unlike in most 
"real" file systems, for simplicity we will use this one File structure to represent file 
meta-data as it appears both on disk and in memory. Some of the fields in the structure 
(currently, only f_dir) are only meaningful while the File structure is in memory; 
whenever we read a File structure from disk into memory, we clear these fields.  

The block array in struct File contains space to store the block numbers of the first 10 
(NDIRECT) blocks of the file, which we call the file's direct blocks. For small files up to 
10*4096 = 40KB in size, this means that the block numbers of all of the file's blocks will 
fit directly within the File structure itself. For larger files, however, we need a place to 
hold the rest of the file's block numbers. For any file greater than 40KB in size, therefore, 
we allocate an additional disk block, called the file's indirect block, to hold up to 4096/4 
= 1024 additional block numbers. To keep bookkeeping simple, we leave the first 10 
numbers in the indirect block unused. Thus, the 10th block number is the 10th slot in the 
indirect block (rather than the 0th, as might be done if we were being very space-
efficient). Our file system therefore allows files to be up to 1024 blocks, or four 
megabytes, in size. To support larger files, "real" file systems typically support double- 
and triple-indirect blocks as well.  

Directories versus Regular Files 

A File structure in our file system can represent either a regular file or a directory; these 
two types of "files" are distinguished by the type field in the File structure. The file 
system manages regular files and directory-files in exactly the same way, except that it 



does not interpret the contents of the data blocks associated with regular files at all, 
whereas the file system interprets the contents of a directory-file as a series of File 
structures describing the files and subdirectories within the directory.  

The superblock in our file system contains a File structure (the root field in struct 
Super), which holds the meta-data for the file system's root directory. The contents of 
this directory-file is a sequence of File structures describing the files and directories 
located within the root directory of the file system. Any subdirectories in the root 
directory may in turn contain more File structures representing sub-subdirectories, and 
so on.  

Part A: The File System Server 
Exercise 1: Disk Access 
The file system server in our operating system needs to be able to access the disk, but we 
have not yet implemented any disk access functionality in our kernel. Instead of taking 
the conventional "monolithic" operating system strategy of adding an IDE disk driver to 
the kernel along with the necessary system calls to allow the file system to access it, we 
will instead implement the IDE disk driver as part of the user-level file system 
environment. We will still need to modify the kernel slightly, in order to set things up so 
that the file system environment has the privileges it needs to implement disk access 
itself.  

It is easy to implement disk access in user space this way as long as we rely on polling, 
"programmed I/O" (PIO)-based disk access and do not use disk interruptes. It is possible 
to implement interrupt-driven device drivers in user mode as well (the L3 and L4 kernels 
do this, for example), but it is much more difficult since the kernel must field device 
interrupts and dispatch them to the correct user-mode environment.  

The x86 processor uses the IOPL bits in the EFLAGS register to determine whether 
protected-mode code is allowed to perform special device I/O instructions such as the IN 
and OUT instructions. Since all of the IDE disk registers we need to access are located in 
the x86's I/O space rather than being memory-mapped, giving "I/O privilege" to the file 
system environment is the only thing we need to do in order to allow the file system to 
access these registers. In effect, the IOPL bits in the EFLAGS register provides the kernel 
with a simple "all-or-nothing" method of controlling whether user-mode code can access 
I/O space. In our case, we want the file system environment to be able to access I/O 
space, but we do not want any other environments to be able to access I/O space at all.  

To keep things simple, from now on we will arrange things so that the file system is 
always user environment 1. (Recall that the idle loop is always user environment 0.)  

In the tests that follow, if you fail a test, the obj/fs/fs.img is likely to be left 
inconsistent. Be sure to remove it before running gmake grade or gmake bochs.  



Coding 

 

Modify your kernel's environment initialization function, env_alloc in env.c, so that 
it gives environment 1 I/O privilege, but never gives that privilege to any other 
environment.  

Use gmake grade to test your code.  

Do you have to do anything else to ensure that this I/O privilege setting is saved and 
restored properly when you subsequently switch from one environment to another? Make 
sure you understand how this environment state is handled.  

Read through the files in the new fs directory in the source tree. The file fs/ide.c 
implements our minimal PIO-based disk driver. The file fs/serv.c contains the umain 
function for the file system server.  

Note that the new .bochsrc file in this lab sets up Bochs to use the file kern/bochs.img 
as the image for disk 0 (typically "Drive C" under DOS/Windows) as before, and to use 
file the (new) file obj/fs/fs.img as the image for disk 1 ("Drive D"). In this lab your 
file system should only ever touch disk 1; disk 0 is used only to boot the kernel. If you 
manage to corrupt either disk image in some way, you can reset both of them to their 
original, "pristine" versions simply by typing:  

$ rm obj/kern/bochs.img obj/fs/fs.img 
$ gmake 

Challenge! Implement interrupt-driven IDE disk access, with or 
without DMA. You can decide whether to move the device driver into 
the kernel, keep it in user space along with the file system, or even (if 
you really want to get into the microkernel spirit) move it into a 
separate environment of its own.  

Exercise 2: The Block Cache 
In our file system, we will implement a very simplistic "buffer cache" with the help of the 
processor's virtual memory system. Our file system will be limited to handling disks of 
size 3GB or less. We reserve a large, fixed 3GB region of the file system environment's 
address space, from 0x10000000 (DISKMAP) up to 0xD0000000 (DISKMAP+DISKMAX), to 
map a page containing the corresponding disk block when that disk block is in memory. 
Pages of virtual address space in this region for disk blocks that are not in memory are 
left unmapped. For example, disk block 0 is mapped at virtual address 0x10000000 
whenever it is in memory, disk block 1 is mapped at virtual address 0x10001000, and so 
on. We can tell whether a block is mapped by consulting the vpt.  

Since our file system environment has its own virtual address space independent of the 
virtual address spaces of all other environments in the system, and the only thing the file 
system needs to do is to implement file access, it is reasonable to reserve most of the file 



system environment's address space in this way. It would be problematic for a "real" file 
system implementation on a 32-bit machine to do this of course, since most disks 
available today are already larger than 3GB. Such a buffer cache management approach 
may still be reasonable on a machine with a 64-bit address space, such as Intel's Itanic or 
AMD's Athlon 64 processors.  

Coding 

 

Implement the read_block and write_block functions in fs/fs.c. The read_block 
function should test to see if the requested block is already in memory, and if not, 
allocate a page and read in the block using ide_read. Keep in mind that there are 
multiple disk sectors per block/page, and that read_block needs to return the virtual 
address at which the requested block was mapped.  

The write_block function may assume that the indicated block is already in memory, 
and simply writes it out to disk. We will use the VM hardware to keep track of whether 
a disk block has been modified since it was last read from or written to disk. To see 
whether a block needs writing, we can just look to see if the PTE_D "dirty" bit is set in 
the vpt entry. (The PTE_D bit is set by the processor; see 5.2.4.3 in chapter 5 of the 386 
reference manual.) After writing the block, write_block should clear the PTE_D bit 
using sys_page_map.  

Use gmake grade to test your code.  

Exercise 3: The Block Bitmap 
After fs_init calls read_super (which we have provided) to read and check the file 
system superblock, fs_init calls read_bitmap to read and perform basic validity 
checking on the disk's block bitmap. For speed and simplicity, our file system will always 
keep the entire block bitmap in memory.  

Coding 

 

Implement read_bitmap. It should check that all of the "reserved" blocks in the file 
system - block 0, block 1 (the superblock), and all the blocks holding the block bitmap 
itself, are marked in-use. Use the provided block_is_free routine for this purpose. 
You may simply panic if the file system is invalid.  

Use gmake grade to test your code.  
Coding 

 

Use block_is_free as a model to implement alloc_block_num, which scans the 
block bitmap for a free block, marks that block in-use, and returns the block number. 
When you allocate a block, you should immediately flush the changed bitmap block to 
disk with write_block, to help file system consistency.  

Use gmake grade to test your code.  



Exercise 4: File Operations 
We have provided a variety of functions in fs/fs.c to implement the basic facilities you 
will need to interpret and manage File structures, allocate and/or find a given block of a 
file, scan and manage the entries of directory-files, and walk the file system from the root 
to resolve an absolute pathname. Read through all of the code in fs/fs.c carefully and 
make sure you understand what each function does before proceeding.  

Coding 

 

Fill in the remaining functions in fs/fs.c that implement "top-level" file operations: 
file_open, file_get_block, file_truncate_blocks, and file_flush.  

Use gmake grade to test your code.  

You may notice that there are two operations conspicuously absent from this set of 
functions implementing "basic" file operations: namely, read and write. This is because 
our file server will not implement read and write operations directly on behalf of client 
environments, but instead will use our kernel's IPC-based page remapping functionality 
to pass mapped pages to file system clients, which these client environments can then 
read and write directly. The page mappings we pass to clients will be exactly those pages 
that represent in-memory file blocks in the file system's own buffer cache, fetched via 
file_get_block. You will see the user-space read and write in part B.  

Challenge! The file system code uses synchronous writes to keep the 
file system fairly consistent in the event of a crash. Implement soft 
updates instead.  

Exercise 5: Client/Server File System Access 
Now that we have implemented the necessary functionality within the file system server 
itself, we must make it accessible to other environments that wish to use the file system. 
There are two pieces of code required to make this happen: client stubs and server stubs. 
Together, they form a remote procedure call, or RPC, abstraction, where we make IPC-
based communication across address spaces appear as if they were ordinary C function 
calls within client applications.  

The client stubs, which we have implemented for you and provided in lib/fsipc.c, 
implement the "client side" of the file system server's IPC protocol. Like fork, these 
functions are linked into each application that wants to use the file system. When a client 
application needs to communicate with the file server, it will use the client stubs to 
perform this communication. Each client stub uses ipc_send to send a message to the 
server, and then uses ipc_recv to wait for a reply to its request.  

Coding 



 

The server stubs are located in the file server itself, implemented in fs/serv.c. These 
stubs accept IPC requests from clients, decode and validate the arguments, and serve 
those requests using the file access functions in fs/fs.c. We have provided a skeleton 
for this server stub code, but you will need to fill it out. Use the client stubs in 
lib/fsipc.c to help you figure out the exact protocol between the client and the 
server.  

Use gmake grade to test your code.  

Part B: File System Access from Client 
Environments 
Exercise 6: Client-Side File Descriptors 
Although we can write applications that directly use the client-side stubs in lib/fsipc.c 
to communicate with the file system server and perform file operations, this approach 
would be inconvenient for many applications because the IPC-based file server interface 
is still somewhat "low-level" and does not provide conventional read/write operations. To 
read or write a file, the application would first have to reserve a portion of its address 
space, map the appropriate blocks of the file into that address region by making requests 
to the file server, read and/or change the appropriate portions of those mapped pages, and 
finally send a "close" request to the file server to ensure that the changes get written to 
disk. We will write library routines to perform these tasks on behalf of the application, so 
that the application can use conventional UNIX-style file access operations such as read, 
write, and seek.  

The client-side code that implements these UNIX-style file operations is located in 
lib/fd.c and lib/file.c. lib/fd.c contains functions to allocate and manage generic 
Unix-like file descriptors, while lib/file.c specifically implements file descriptors 
referring to files managed by the file server. We have implemented most of the functions 
in both of these files for you; the only ones you need to fill in are fd_alloc and 
fd_lookup in lib/fd.c, and open and close in lib/file.c.  

The file descriptor layer defines two new virtual address regions within each application 
environment's address space. The first is the file descriptor table area, starting at address 
FDTABLE, reserves one 4KB page worth of address space for each of the up to MAXFD 
(currently 32) file descriptors the application can have open at once. At any given time, a 
particular file descriptor table page is mapped if and only if the corresponding file 
descriptor is in use.  

The second new virtual address region is the file mapping area, starting at virtual address 
FILEBASE. Like the file descriptor table, the file mapping area is organized as a table 
indexed by file descriptor, except the "table entries" in the file mapping area consist of 



4MB rather than 4KB of address space. In particular, for each of the MAXFD possible file 
descriptors, we reserve a fixed 4MB region in the file mapping area in which to map the 
contents of currently open files. Since our file server only supports files of up to 4MB in 
size, these client-side functions are not imposing any new restrictions by only reserving 
4MB of space to map the contents of each open file.  

Coding 

 

Implement fd_alloc and fd_lookup. fd_alloc finds an unused file descriptor 
number, and returns a pointer to the corresponding file descriptor table entry. Similarly, 
fd_lookup checks to make sure a given file descriptor number is currently active, and 
if so returns a pointer to the corresponding file descriptor table entry.  

Coding 

 

Implement open. It must find an unused file descriptor using the fd_alloc() function 
we have provided, make an IPC request to the file server to open the file, and then map 
all the file's pages into the appropriate reserved region of the client's address space. Be 
sure your code fails gracefully if the maximum number of files are already open, or if 
any of the IPC requests to the file server fail.  

Use gmake grade to test your code.  
Coding 

 

Implement close. It must first notify the file server of any pages it has modified and 
then make a request to the file server to close the file. When the file server is asked to 
close the file, it will write the new data to disk. (Be sure you understand why the file 
system cannot just rely on the PTE_D bits in its own mappings of the file's pages to 
determine whether or not those pages were modified.) Finally, the close function 
should unmap all mapped pages in the reserved file-mapping region for the previously-
open file, to help catch bugs in which the application might try to access that region 
after the file is closed.  

Use gmake grade to test your code.  

Challenge! Add support to the file server and the client-side code for 
files greater than 4MB in size.  

Challenge! Make the file access operations lazy, so that the pages of a 
file are only mapped into the client environment's address space when 
they are touched. Be sure you can still handle error conditions 
gracefully, such as the file server running out of memory while the 
application is trying to read a particular file block.  

Challenge! Change the file system to keep most file metadata in Unix-
style inodes rather than in directory entries, and add support for hard 
links between files.  

Exercise 7: Spawning Processes 



In this exercise you will implement spawn, which creates a new environment, loads a 
program image from the file system into it, and then starts the child environment running 
this program. The parent process then continues running independently of the child. The 
spawn function effectively acts like a fork in UNIX followed by an immediate exec in 
the child process.  

We are implementing spawn rather than a UNIX-style exec because spawn is easier to 
implement from user space in "exokernel fashion", without special help from the kernel. 
Think about what you would have to do in order to implement exec in user space, and be 
sure you understand why it is harder.  

Coding 

 

The skeleton for the spawn function is in lib/spawn.c. We will put off the 
implementation of argument passing until the next exercise. Fill it in so that it operates 
roughly as follows:  

1. Create a new environment.  
2. Allocate a stack at USTACKTOP - BY2PG using the provided init_stack 

function.  
3. Load the program text, data, and bss at the appropriate addresses specified in the 

ELF executable. Don't forget to clear to zero any portions of these program 
segments that are not loaded from the executable file.  

4. Initialize the child's register state using the new sys_set_trapframe system 
call.  

5. Start it running from the entrypoint specified in the executable's ELF header.  

Use gmake grade to test your code.  

When you test your code, running the user/icode program from kern/init.c will 
attempt to spawn /init from the file system. You can add new files to the file system by 
editing the rules in fs/Makefrag.  

Challenge! Implement Unix-style exec.  

Challenge! Implement a shared library loading mechanism of some 
kind, and move the user-level library code (libos.c, fork.c, etc.) into 
a shared library.  

Exercise 8: Spawn arguments 
In this exercise, you'll extend spawn with the ability to pass arguments to the new 
environment. For example,  
spawn("simple", "-f", "foo", "-c", "junk", NULL);  // NOTICE: the 
trailing NULL! 
This call should invoke the program simple so that it can access its arguments as:  



void 
umain (int argc, char *argv[]) 
{ 
   int i; 
   for (i = 0; i < argc; i++) { 
     print ("  argv[", i, "] = "); 
     sys_cputs (argv[i]); 
     sys_cputs ("\n"); 
   } 
} 
 
Output: 
  argv[0] = "simple" 
  argv[1] = "-f" 
  argv[2] = "foo" 
  argv[3] = "-c" 
  argv[4] = "junk" 
There are two components of this work: what the parent does and what the child does.  

1. On the parent side: spawn must setup the new environment's initial stack page so 
that the arguments are available to the child's umain() function. The parent 
should format the memory according to the following diagram.  

2.   
3. USTACKTOP:  
4.          +--------------+ 
5.          |   block of   | Block of strings.  In the example 
6.          |    memory    | "simple", "-f", "foo", "-c", and 
7.          | holding NULL | "junk" would be stored here.  
8.          |  terminated  | 
9.          | argv strings | 
10.          +--------------+ 
11.          |  &argv[n]    |  Next, comes the argv array--an array 

of  
12.          |     .        |  pointers to the string. Each &argv[*] 

points  
13.          |     .        |  into the "block of strings" above. 
14.          |     .        | 
15.          |  &argv[1]    | 
16.          |  &argv[0]    |<-. 
17.          +--------------+   | 
18.          |   argv ptr   |__/  In the body of umain, access to 

argc  
19. %esp ->  |   argc       |     and argv reference these two 

values. 
20.          +--------------+ 

If these values are on the stack when umain is called, then umain will be able to 
access its arguments via the int argc and char *argv[] parameters.  

Warning: the diagram shows the memory at USTACKTOP since this is where it will 
be mapped in the child's address space. However, be careful! When the parent 
formats the arguments, it must do so at a temporary address, since it can't (well, 
shouldn't) map over its own stack. Similarly, take care when setting the pointers 



arg ptr, &argv[0] .. &argv[n]. These pointers need to account for the fact that the 
data will be remapped into the child at USTACKTOP.  

Coding 

 

We have set up spawn() so that it calls a helper function in the same source file, 
init_stack(), to set up the new child environment's stack. Most of the code 
for init_stack() is done for you; it allocates a temporary page and maps it 
into the parent's address space at a fixed address (from TMPPAGE through 
TMPPAGETOP-1), then (after the point at which you need to insert code) re-maps 
that page into the child's address space ending at USTACKTOP. You just need to 
copy the argument array and argument strings into the stack page at its temprary 
mapping in the parent, as indicated by the comments in the code. Be sure to 
change the line that sets *init_esp in order to give the child environment the 
correct initial stack pointer. The child's initial stack pointer should point to its 
'argc' argument, as shown in the figure above.  

Use gmake grade to test your code.  

21. Now for the child side of the spawn: examine the entry path of the child process 
under the start label. You'll see that it is written such that libmain() and 
umain() both take arguments (int argc, char *argv[]). libmain() simply 
passes its arguments along to umain(). You'll also notice that the entry path also 
takes care of the case when a new process is created by the kernel, in which case 
no arguments are passed.  

The code on the child side has been done for you; you do not need to make any 
changes.  

Technical Detail: Actually only the argc and the argv ptr must be placed on the new 
env's stack. The argv ptr must point to the &argv[0] .. &argv[n] array, each of 
which point to a string. As a consequence, the &argv[0] .. &argv[n] array and the 
"block of strings" can be located anywhere in the new env's address space--not 
necessarily on the stack. In practice, we find it convenient to store all of these values on 
the stack as has been presented in this exercise.  

Questions:  

1. How long approximately did it take you to do this lab?  

This completes the lab. Enjoy your Thanksgiving Break!  
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