
6.828 Fall 2006 Lab 6: the shell 
Handed out Wednesday, November 22, 2006 
Tarball Due Thursday, December 7, 2006 
Private Demos on December 11 and 12, 2006 
In Class Demos on December 13, 2006 

Introduction 
In this lab you will flesh out your kernel and library operating system enough to run a 
shell on the console. You will do this in steps:  

1. You will generalize the file descriptor support to handle a variety of file types 
rather than just on-disk files. This will pave the way for pipes and a console 
device.  

2. You will change fork and spawn to share their file descriptors with the child 
environment. Sharing them across fork and spawn allows the parent to set up i/o 
redirection before starting the child. This enables i/o redirection of child programs 
without needing to do anything special in the child.  

3. You will implement pipes.  
4. You will implement the system call linkage for the keyboard driver. We have 

provided the hardware driver itself as well as the console device file support.  
5. You will implement pipes and redirection in the shell. We have provided a basic 

shell.  

Lab Requirements 
Unlike in previous labs, in this lab you may work in pairs. If you are working in a pair, 
you must email by Monday, November 28 to tell us.  

To complete the assignment, you will have to demonstrate your shell for us in person the 
last week of the term. Dates and a sign-up form will be posted soon.  

Update: Every group should be prepared to do a short (5 minute) in-class demo on 
Wednesday December 13, 2006.  

Late policy. If you are working in a pair, you may combine your late days, so if one of 
you has one day and the other also has one day, you can turn in the assignment up to two 
days late without penalty. However, the assignment must be turned in by the evening of 
Friday, December 16, even if you have enough late days (or want to use penalty days) to 
be able to hand it in later. Labs received after Friday, December 16 will receive an F.  

Getting Started 



Download the lab 6 code 

 , and unpack it into your 6.828 directory as before. You will need to merge 
our new code for this lab and your source tree.  

The pingpong and primes test should still work. Check this by runing gmake run-
pingpong and gmake run-primes.  

The file system tests will not work yet. To facilitate file descriptor sharing and multiple 
types of files, the implementation of routines like open, close, read, and write have 
changed. As the first exercise in this lab, you will adapt your solutions from lab 5 to fit in 
this framework.  

Exercise 1: the file system switch 
In this lab, we will add pipes and console input to the fledgling library operating system. 
Like Unix does, our system will present these resources as file descriptors manipulated 
via the read/write/close file interface.  

The file support we wrote in the last lab assumed that disk files were the only possible 
type of file. In this exercise, we will address that shortcoming, making files a generic 
concept, implemented by the disk file, pipe, and console devices.  

The generic file descriptor code is in lib/fd.c. You already encountered this code in lab 
5, but now you will now need to understand it in more detail in order to implement other 
kinds of file descriptors.  

As we outlined in lab 5, each environment has a file descriptor table located at virtual 
address FDTABLE (which happens to be 0xCFC00000). Each page in the table represents a 
single file descriptor. For example, file descriptor 2 is represented by the page at 
FDTABLE+2*BY2PG. If the file descriptor is closed, there is no page mapped there. The file 
descriptor page contains a struct Fd, declared in inc/fd.h:  

 struct Fd 
 { 
  u_int fd_dev_id_id; // device id  
  u_int fd_offset; // offset for read/write 
  u_int fd_omode;  // open mode 
 }; 
The fd_offset and fd_omode are the current file descriptor offset and open mode. 
Fd_dev_id lets us know which device implements the read, write, close and stat.  

Each device exports a struct Dev with function pointers:  

 struct Dev 
 { 
  u_int dev_id; 
  char *dev_name; 
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  int (*dev_read)(struct Fd*, void *buf, u_int n); 
  int (*dev_write)(struct Fd*, const void *buf, u_int n); 
  int (*dev_close)(struct Fd*); 
  int (*dev_stat)(struct Fd*, struct Stat*); 
 }; 
The devtab in lib/fd.c lists the known devices. To find the device responsible for a 
given struct Fd, dev_lookup looks through devtab for a device with dev_id == 
fd_dev_id_id. (The struct Fd cannot simply contain a pointer to the appropriate 
struct Dev, because we want to share them among different programs. Pointers in one 
program are not likely to be valid in others.) To keep things simple, the device ids are just 
characters: 'c' for console, 'p' for pipe, and 'f' for file system.  

As before, each file descriptor has a 4MB region of virtual memory reserved for its own 
use. The file system device still uses this range to map the file. The pipe device will use it 
to map the pipe buffer.  

To make things concrete, let's consider the implementation of two of the generic 
functions: write and dup. Write looks like this:  

 int 
 write(int fdnum, const void *buf, u_int n) 
 { 
  int r; 
  struct Dev *dev; 
  struct Fd *fd; 
  
  if ((r = fd_lookup(fdnum, &fd)) < 0 
  ||  (r = dev_lookup(fd->fd_dev_id_id, &dev)) < 0) 
          return r; 
  if ((fd->fd_omode & O_ACCMODE) == O_RDONLY) 
          return -E_INVAL; 
  r = (*dev->dev_write)(fd, buf, n, fd->fd_offset); 
  if (r > 0) 
          fd->fd_offset += r; 
  return r; 
 } 
Fd_lookup, which you implemented in lab 5, checks whether the page corresponding to 
fdnum is mapped. If not, it returns an error. Otherwise, it stores sets fd to point at the 
page. Then dev_lookup searches for the appropriate device. Next, we check that the file 
is not open read-only. Now we have the fd and the dev and can call the dev-specific 
write function. If this is successful, we update the fd_offset.  

Dup looks like this:  

 int 
 dup(int oldfdnum, int newfdnum) 
 { 
         int i, r; 
         u_int ova, nva, pte; 
         struct Fd *oldfd, *newfd; 
  



         if ((r = fd_lookup(oldfdnum, &oldfd)) < 0) 
                 return r; 
         close(newfdnum); 
 
         newfd = (struct Fd*)INDEX2FD(newfdnum); 
         sys_mem_map(0, (u_int)oldfd, 0, (u_int)newfd, 
vpt[VPN(oldfd)]&PTE_USER); 
 
         ova = fd2data(oldfd); 
         nva = fd2data(newfd); 
         if (vpd[PDX(ova)]) 
                 for (i=0; i<PDMAP; i+=BY2PG) { 
                         pte = vpt[VPN(ova+i)]; 
                         if(pte&PTE_P) 
                                 sys_mem_map(0, ova+i, 0, nva+i, 
pte&PTE_USER); 
                 } 
         return newfdnum; 
 } 
Dup tweaks the file descriptor table so that after the call, referring to newfdnum will be 
just like referring to oldfdnum. We use fd_lookup to find the struct Fd for the old file 
descriptor. If the file descriptor isn't valid or isn't open, we return an error. Otherwise, we 
can go ahead. First, close newfdnum in case it is already open. Then just copy the 
mappings for oldfdnum into the mapping area for newfdnum. First we copy the struct 
Fd page in the file descriptor table. Then we scan the virtual address space reserved for 
the old descriptor, copying any mappings into the virtual address space reserved for the 
new descriptor.  

If we needed to, we could add a dev_dup function pointer to struct Dev in order to 
allow device implementations to run their own code in response to dup, but for our 
purposes it isn't necessary.  

Make sure you understand these code snippets. You may find it useful to consult the rest 
of lib/fd.c as well as lib/console.c, an example device implementation.  

Run gmake run-icode to check that file operations and spawn still work. If you see:  

 init: running sh 
 init: starting sh 
        <probably some error here> 
then all is well.  

Exercise 2: sharing library code across 
fork and spawn 
We would like to share file descriptor state across fork and spawn, but file descriptor 
state is kept in user-space memory. Right now, on fork, the memory will be marked 
copy-on-write, so the state will be duplicated rather than shared. (This means that running 



"(date; ls) >file" will not work properly, because even though date updates its own 
file offset, ls will not see the change.) On spawn, the memory will be left behind, not 
copied at all. (Effectively, the spawned environment starts with no open file descriptors.)  

We will change both fork and spawn to know that certain regions of memory are used by 
the "library operating system" and should always be shared. Rather than hard-code a list 
of regions somewhere, we will set an otherwise-unused bit in the page table entries (just 
like we did with the PTE_COW bit in fork).  

We have defined a new PTE_SHARE bit in inc/lib.h. This bit is one of the three PTE bits 
that are marked "available for software use" in the Intel and AMD manuals. We will 
establish the convention that if a page table entry has this bit set, the PTE should be 
copied directly from parent to child in both fork and spawn. Note that this is different 
from marking it copy-on-write: as described in the first paragraph, we want to make sure 
to share updates to the page.  

Coding  

 

Change duppage in lib/fork.c to follow the new convention. If the page table entry 
has the PTE_SHARE bit set, just copy the mapping directly. (Note that you should use 
PTE_USER, not PTE_FLAGS, to mask out the relevant bits from the page table entry. 
PTE_FLAGS picks up the accessed and dirty bits as well.)  

Coding  

 

Change spawn in lib/spawn.c to propagate the PTE_SHARE pages. After it finishes 
setting up the child virtual address space but before it marks the child runnable, it 
should loop through all the page table entries in the current process (just like fork did), 
copying any mappings that have the PTE_SHARE bit set.  

Use gmake run-testpteshare to check that your code is behaving properly.  

You should see lines that say "fork handles PTE_SHARE right" and "spawn handles 
PTE_SHARE right".  

Coding  

 Change the file server so that all the file descriptor table pages and the file data pages 
get mapped with PTE_SHARE.  

Use gmake run-testfdsharing to check that file descriptors are shared properly. You 
should see lines that say "read in child succeeded" and "read in parent 
succeeded".  

Exercise 3: pipes 
Now we are ready to implement a new kind of file: pipes. A pipe is a shared data buffer 
accessed via two file descriptors: one is for writing data into the pipe, and one is for 
reading data out of it.  



You may wish to read the pipe manual page [1] for a description, the V6 pipe 
implementation (/usr/sys/ken/pipe.c) for details, and pipe section of Dennis Ritchie's 
UNIX history paper [2] for interesting history.  

 [1] 
http://www.freebsd.org/cgi/man.cgi?query=pipe&manpath=Unix+Seventh+Edit
ion 
 [2] http://cm.bell-labs.com/cm/cs/who/dmr/hist.html#pipes 

In your library operating system, a pipe is represented by a single struct Pipe. For 
sharing purposes, each struct Pipe is on its own page.  

 #define PIPEBUFSIZ 32 
 struct Pipe { 
  u_int p_rpos;  // read position 
  u_int p_wpos;  // write position 
  u_char p_buf[PIPEBUFSIZ]; // data buffer 
 }; 
The bytes written to the pipe can be thought of as numbered starting at 0. The read 
position gives the number of the next byte to be read. The write position gives the 
number of the next byte that will be written. The reader and writer share the pipe 
structure, but coordinate via these two variables: only the reader updates p_rpos and only 
the writer updates p_wpos.  

Since the pipe buffer is not infinite, byte i is stored in pipe buffer index i%PIPEBUFSIZ.  

To read a byte from a pipe, the reader copies p_buf[p_rpos%PIPEBUFSIZ] and 
increments p_rpos. But the pipe might be empty! First the reader has to yield until 
p_rpos < p_wpos.  

To write to a pipe, the writer stores into p_buf[p_wpos%PIPEBUFSIZ] and increments 
p_wpos. But the pipe might be full! First the writer must wait until p_wpos - p_rpos < 
PIPEBUFSIZ.  

There is a final catch -- maybe we are trying to read from an empty pipe but all the 
writers have exited. Then there is no chance that there will ever be more data in the pipe, 
so waiting is futile. In such a case, Unix signals end-of-file by returning 0. So will we. To 
detect that there are no writers left, we could put reader and writer counts into the pipe 
structure and update them every time we fork or spawn and every time an environment 
exits. This is fragile -- what if the environment doesn't exit cleanly? Instead we can use 
the kernel's page reference counts, which are guaranteed to be accurate.  

Recall that the kernel page structures are mapped in the user environments as pages. The 
library function pageref(void *ptr) returns the number of page table references to the 
page containing the virtual address ptr. So, for example, if fd is a pointer to a particular 
struct Fd, pageref(fd) will tell us how many different references there are to that 
structure.  

http://www.freebsd.org/cgi/man.cgi?query=pipe&manpath=Unix+Seventh+Edition
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html#pipes
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html#pipes


Three pages are allocated for each pipe: the struct Fd for the reader descriptor rfd, the 
struct Fd for the writer descriptor wfd, and the struct Pipe p shared by both. The 
following equation holds: pageref(rfd) + pageref(wfd) = pageref(p). Therefore, a 
reader can check whether there are any writers left by computing pageref(wfd) = 
pageref(p) - pageref(rfd): there are no writers if pageref(p) == pageref(rfd). 
A writer can check for readers in the same manner.  

Coding  
 Implement pipes in lib/pipe.c.  

Test your code by running gmake run-testpipe and gmake run-primespipe. You 
should make it through the first few primes, but don't be surprised if, after a while, 
primespipe panics with a read or write error. We'll fix that in the next exercise.  

Exercise 3b: races, races everywhere 
We've gotten through the semester without worrying too much about the wild wacky 
world of concurrency. This was mostly intentional, since the best way to tame 
concurrency is to avoid it completely. We made the kernel cooperatively scheduled, 
meaning it only gives up the processor when it chooses to. Unlike UNIX, our kernel 
doesn't have to worry about device interrupts causing bits of program to run when we 
weren't expecting them.  

User-space programs are preemptively scheduled: if an environment is the middle of 
something important and the clock interrupt comes along, too bad -- it has to stop and 
pick up again later. (This is transparent to the environment, since the kernel saves and 
restores its registers as though nothing had happened.)  

Preemptive scheduling isn't a problem as long as all the environments are completely 
isolated from each other -- if they can't interfere with one another, the task switches aren't 
likely to be a problem.  

We've seen that sometimes it's useful for different environments to "interfere 
constructively" with each other, in the form of IPC and shared memory pages. 
Unfortunately, preemptive scheduling and shared mutable state is a recipe for trouble. 
We'd been lucky so far, but our luck just ran out.  

There are a couple of race conditions in the implementation of pipes. They center around 
the test for whether a pipe is closed.  

Recall that in _pipeisclosed, we simply check whether "pageref(fd structure) == 
pageref(pipe structure)", where pageref uses the VPT to get the physical page 
number holding the given pointer and then looks up the kernel-maintained reference 
count for that page in the pages array.  



_pipeisclosed compares two reference counts which typically change together. If, 
under some conditions, this comparison gives the wrong answer, we might think the other 
end of pipe is closed even when it isn't.  

If we think of the result of _pipeisclosed as being stored across these two words in 
memory (the two reference counts), then _pipeisclosed might fail when the writing of 
the two words is not done atomically and also might fail when the reading of the two 
words is not done atomically. It turns out that both cases can happen. We fix the first by 
being careful about ordering the writes. We fix the second by implementing support for a 
limited form of restartable atomic sequences (RAS).  

Remember that anything we do inside the kernel runs without interruption (unless we 
explicitly yield the processor). From user space, any such changes are atomic -- the user 
environment sees the whole change or none of it. Our problems happen because the reads 
and writes of the data are done in user space, and thus not atomic.  

The update race 
The first race happens because the reference count updates do not happen atomically. 
Recall our supposed invariant: pageref(p[0]) + pageref(p[1]) == pageref(pipe 
structure). (We're being a little sloppy with notation here -- in the code pfd[0] and 
pfd[1] are integers, so we really mean pageref applied to the corresponding struct Fd 
pointers.) Because the reference counts change one by one, the invariant can be 
temporarily violated. For concreteness, suppose we run:  
 pipe(p); 
 if(fork() == 0){ 
  close(p[1]); 
  read(p[0], buf, sizeof buf); 
 }else{ 
  close(p[0]); 
  write(p[1], msg, strlen(msg)); 
 } 
The following might happen:  

• The child runs first after the fork. It closes p[1] but a clock interrupt comes along 
before the read, switching execution to the parent.  

• The parent starts to close(p[0]), which will unmap the shared pipe structure and 
then unmap the fd page for p[0]. A clock interrupt comes along between the two 
unmappings, switching execution back to the child.  

• Now the reference count on p[0] is 2 (both parent and child have it mapped) and 
the reference count on p[1] is 1 (only the parent has it mapped). But the reference 
count for the pipe structure is 2: the child has it mapped for p[0], and the parent 
has it mapped for p[1] but not p[0], which is still in the middle of being closed. 
The invariant no longer holds.  

• The child runs. Read sees the buffer is empty and then decides the pipe is closed 
because pageref(p[0]) and pageref(pipe structure) are both 2. Oops.  



The same problem can happen with dup, if an environment is interrupted between 
mapping the file descriptor page and mapping the pipe data page.  

Run gmake run-testpiperace to see the race in action. When the race actually 
happens, the test code will print RACE: pipe appears closed. (You should read 
user/testpiperace.c and make sure you understand what's going on.)  

Since each system call can only map or unmap a single page, the two mappings cannot be 
updated atomically, so neither can the reference counts. Since two reference counts 
cannot be updated atomically, the invariant cannot be maintained -- it is temporarily 
broken when one reference count is updated but not the other. One way to fix the 
problem would be to add new system calls to map or unmap two pages at a time. Then 
the two mappings (and thus the two reference counts) could be updated in one system 
call, making them atomic from the user-space point of view. We won't do this.  

Instead, we can relax the invariant, since _pipeisclosed doesn't actually need all of it. 
What _pipeisclosed really needs is the following conditions:  

• pageref(p[0]) == pageref(pipe structure) if and only if all the writers are 
closed.  

• pageref(p[1]) == pageref(pipe structure) if and only if all the readers are 
closed.  

The race happens because while a pipe is half-mapped or half-unmapped there is an fd 
reference but not a pipe structure reference, so pageref(p[0])+pageref(p[1]) > 
pageref(pipe structure). As a consequence, pageref(p[0]) might equal 
pageref(pipe structure) even though pageref(p[1]) is non-zero.  

Suppose instead we arrange that while pipes are half-mapped or half-unmapped, 
pageref(p[0])+pageref(p[1]) < pageref(pipe structure). Then the conditions 
would be satisfied, and _pipeisclosed would not give incorrect answers about 
intermediate states.  

We can do this by making sure that the fd structure is never mapped without the pipe 
structure also being mapped. This leads to a pair of rules:  

• always map the pipe structure, then the fd structure.  
• always unmap the fd structure, then the pipe structure.  

If we follow these rules, then the reader reference count and the pipe reference count can 
only be equal when all the writers are gone, and vice versa.  
Coding  

 Change the code that implements closing and dupping of pipes to follow these rules, 
eliminating the race. Hint: you only need to change pipeclose and dup. 



Make sure you understand why it's okay that pipe (the function that creates a new pipe) 
doesn't follow these rules. (Maybe we will ask you during the meeting with the TAs.)  

Test your code by running gmake run-testpiperace. If the race is gone, you won't see 
"RACE: pipe appears closed" and should see race didn't happen.  

The read race 
The second race occurs because there is no guarantee that the reads in _pipeisclosed 
will happen atomically. If another process dups or closes fd between the call to 
pageref(fd) and the call to pageref(p), the comparison will be meaningless. To make 
it concrete, suppose that we run:  
 pipe(p); 
 if(fork() == 0){ 
  close(p[1]); 
  read(p[0], buf, sizeof buf); 
 }else{ 
  close(p[0]); 
  write(p[1], msg, strlen(msg)); 
 } 
The following might happen:  

1. Suppose the child runs first after the fork. It closes p[1] and then tries to read 
from p[0]. The pipe is empty, so read checks to see whether the pipe is closed 
before yielding. Inside _pipeisclosed, pageref(fd) returns 2 (both the parent 
and the child have p[0] open), but then a clock interrupt happens.  

2. Now the kernel chooses to run the parent for a little while. The parent closes p[0] 
and writes msg into the pipe. Msg is very long, so the write yields halfway to let a 
reader (the child) empty the pipe.  

3. Back in the child, _pipeisclosed continues. It calls pageref(p), which returns 
2 (the child has a reference associated with p[0], and the parent has a reference 
associated with p[1]). The counts match, so _pipeisclosed reports that the pipe 
is closed. Oops.  

(If the child checked again, pageref(fd) would now return 1, but 
_pipeisclosed is holding onto the 2 from before, unaware that something might 
have happened in the interim to change the count.)  

Run "gmake run-testpiperace2" to see this race in action. Like before, you should see 
"RACE: pipe appears closed" when the race occurs.  

This race is a little simpler to fix. Comparing the counts can only be incorrect if another 
environment ran between when we looked up the first count and when we looked up the 
second count. In other words, we need to make sure that _pipeisclosed executes 
atomically.  



Since _pipeisclosed does not change any variables (it only reads them), it is safe to run 
multiple times. If we had some way to check whether _pipeisclosed got interrupted, we 
could repeatedly run it until it a run completed without being interrupted. Since 
_pipeisclosed is so short, it will usually not be interrupted.  

To tell whether it is being interrupted, we will add a new variable env_runs to the 
environment structure. Each time the kernel context switches back to an environment, it 
will increment env_runs. Thus, user code can record env->env_runs, do its 
computation, and then look at env->env_runs again. If env_runs didn't change, then the 
environment was not interrupted. Conversely, if env_runs did change, then the 
environment was interrupted.  

Effectively, the env_runs counter enables support for restarting read-only atomic 
sequences from user space.  

Coding  

 If your kernel does not already maintain the env_runs counter properly, change it to do 
so. (Hint: you only need to add one line of code.)  

Coding  

 
Change _pipeisclosed to repeat the check until it completes without interruption. 
Print "pipe race avoided\n" when you notice an interrupt and the check would have 
returned 1 (erroneously indicating that the pipe was closed).  

Run "gmake run-testpiperace2" to check whether the race still happens. If it's gone, you 
should not see "RACE: pipe appears closed", and you should see "race didn't 
happen". You should also see plenty of your "avoided" messages, indicating places 
where the race would have happened if you weren't being so careful. The test prints the 
current iteration count every ten iterations. You should see a couple of "avoided" 
messages per ten iterations.  

Challenge! If multiple environments read from a pipe simultaneously, 
what happens? Fix this.  

Real-world example: reading 64-bit interrupt counters on a 32-bit machine 

This trick of restarting interrupted reads appears in other contexts as well. For example, 
in a preemptible x86 kernel, a system call might need to read a 64-bit counter that an 
interrupt routine updates. Since the x86 is a 32-bit machine, reading a 64-bit value is not 
atomic. Suppose the counter is at 0x 00000001 FFFFFFFF and gets incremented to 0x 
00000002 00000000 during a read. The read might get one half before the update and the 
other half after, yielding either 0x 00000001 00000000 or 0x 00000002 FFFFFFFF, 
both of which are nowhere near the real value. We'd like the read be atomic; that is, we'd 
like it to return either the old or new value, but not a mix of the two.  



If the counter runs slowly enough that it takes a significant amount of time to go up by 
2^32, then instead of protecting the value with a lock, the reader can use the high 32 bits 
as a way to see whether an interrupt happened between the two word accesses:  

 // Copy 64-bit counter src into dst, being careful about read 
races. 
 struct split64 { 
  // assumes little-endian memory 
  uint lo; 
  uint hi; 
 }; 
 void 
 readcounter(uint64 *src64, uint64 *dst64) 
 { 
  struct split64 *src; 
  struct split64 *dst; 
 
  src = (struct split64*)src64; 
  dst = (struct split64*)dst64; 
 
       do { 
   dst->hi = src->hi; // read high bits 
   dst->lo = src->lo; // read low bits 
  } while (dst->hi != src->hi); // do over if high bits 
changed 
 } 
Suppose src->hi changes between the two times it is read (in the body and in the 
condition). Then an interrupt happened at some point and we may or may not have a 
bogus dst like in the examples above. We assume the worst and try again.  

On the other hand, suppose src->hi is the same before and after the read of src->lo. 
Then perhaps no interrupt happened. In this case, the copy is good, so we can stop. But 
perhaps an the interrupt occurred that changed only the bottom 32 bits. If the read of 
src->lo happened before the interrupt, then dst has the pre-interrupt value. If the read of 
src->lo happened after the interrupt, then dst has the post-interrupt value. Either way, 
the read executed atomically, so we can stop.  

Exercise 4: the keyboard interface 
We're going to write a shell, so we need a way to type at it. bochs has been displaying 
output we write to the printer port, but there is no good way to give it input. Instead, we'll 
use the X11-based interface and use CGA output and a keyboard driver. We've written 
the keyboard driver for you in kern/console.c, but you need to attach it to the rest of 
the system.  
Coding  
 In your kern/trap.c, call kbd_intr to handle trap IRQ_OFFSET+1.  
Coding  

 In your kern/syscall.c, add a new system call sys_cgetc implemented by calling 
cons_getc. It should be system call number SYS_cgetc.  



Coding  
 In your lib/syscall.c, implement sys_cgetc.  

We implemented the console input/output file type for you, in user/console.c.  

Test your code by running gmake xrun-testkbd and type a few lines. The system 
should echo your lines back to you as you finish them. Make sure you type into the X 
window bochs brings up, not the console.  

Exercise 5: the shell 
Run gmake xrun-icode. This will run your kernel inside the X11 Bochs starting 
user/icode. Icode execs init, which will set up the console as file descriptors 0 and 1 
(standard input and standard output). It will then spawn sh, the shell. Run ls.  
Coding  

 The shell can only run simple commands. It has no redirection or pipes. It is your job to 
add these. Flesh out user/sh.c.  

Once your shell is working, you should be able to run the following commands:  

 echo hello world | cat 
 cat lorem >out 
 cat out 
 cat lorem |num 
 cat lorem |num |num |num |num |num 
 lsfd 
 cat script 
 sh <script 
Note that the user library routine printf prints straight to the console, without using the 
file descriptor code. This is great for debugging but not great for piping into other 
programs. To print output to a particular file descriptor (for example, 1, standard output), 
use fprintf(1, "...", ...). See user/ls.c for examples.  

Run gmake run-testshell to test your shell. Testshell simply feeds the above 
commands (also found in fs/testshell.sh) into the shell and then checks that the 
output matches fs/testshell.key.  

Challenge! Add more features to the shell. Some possibilities include:  

• backgrounding commands (ls &)  
• multiple commands per line (ls; echo hi)  
• command grouping ((ls; echo hi) | cat > out)  
• environment variable expansion (echo $hello)  
• quoting (echo "a | b")  
• command-line history and/or editing  
• tab completion  



• directories, cd, and a PATH for command-lookup.  
• file creation  
• ctl-c to kill the running environment  

but feel free to do something not on this list. Be creative.  

Challenge! There is a bug in our disk file implementation related to 
multiple programs writing to the same file descriptor. Suppose they are 
properly sequenced to avoid simultaneous writes (for example, running 
"(ls; ls; ls; ls) >file" would be properly sequenced since 
there's only one writer at a time). Even then, this is likely to cause a 
page fault in one of the ls instances during a write. Identify the reason 
and fix this.  

 
This ends the lab. As usual, you can grade your submission with gmake grade and hand 
it in with gmake handin. You only need to handin non-challenge portions of the 
assignment by December 7th. By December 11th and 12th, you should be prepared to 
show off your challenge to the TAs and then to the class.  
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