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Abstract

In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding
strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly
used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints
on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably
consistent regularized method with training/tuning complexity which is independent to the number of classes.
Tools from convex analysis are introduced that can be used beyond the scope of this paper.

1 Introduction

As bigger and more complex datasets are available, multiclass learning is becoming increasingly important in ma-
chine learning. While theory and algorithms for solving binary classification problems are well established, the
problem of multicategory classification is much less understood. Practical multiclass algorithms often reduce the
problem to a collection of binary classification problems. Binary classification algorithms are often based on a re-
laxation approach: classification is posed as a non-convex minimization problem and hence relaxed to a convex one,
defined by suitable convex loss functions. In this context, results in statistical learning theory quantify the error
incurred by relaxation and in particular derive comparison inequalities explicitly relating the excess misclassification
risk with the excess expected loss, see for example [2, 27, 14, 29] and [18] Chapter 3 for an exhaustive presentation
as well as generalizations.
Generalizing the above approach and results to more than two classes is not straightforward. Over the years,
several computational solutions have been proposed (among others, see [10, 6, 5, 25, 1, 21]. Indeed, most of the
above methods can be interpreted as a kind of relaxation. Most proposed methods have complexity which is more
than linear in the number of classes and simple one-vs all in practice offers a good alternative both in terms of
performance and speed [15]. Much fewer works have focused on deriving theoretical guarantees. Results in this
sense have been pioneered by [28, 20], see also [11, 7, 23]. In these works the error due to relaxation is studied
asymptotically and under constraints on the function class to be considered. More quantitative results in terms of
comparison inequalities are given in [4] under similar restrictions (see also [19]). Notably, the above results show
that seemigly intuitive extensions of binary classification algorithms might lead to methods which are not consis-
tent. Further, it is interesting to note that these restrictions on the function class, needed to prove the theoretical
guarantees, make the computations in the corresponding algorithms more involved and are in fact often ignored
in practice.
In this paper we dicuss a novel framework for multiclass learning, defined by a suitable coding/decoding strat-
egy, namely the simplex coding, in which a relaxation error analysis can be developed avoiding constraints on the
considered hypotheses class. Moreover, we show that in this framework it is possible to derive the first provably
consistent regularized method with training/tuning complexity which is independent to the number of classes. In-
terestingly, using the simplex coding, we can naturally generalize results, proof techniques and methods from the
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binary case, which is recovered as a special case of our theory. Due to space restriction in this paper we focus on
extensions of least squares, and SVM loss functions, but our analysis can be generalized to large class of simplex
loss functions, including extension of logistic and exponential loss functions (used in boosting). Tools from convex
analysis are developed in the longer version of the paper and can be useful beyond the scopes of this paper, and
in particular in structured prediction.

The rest of the paper is organized as follow. In Section 2 we discuss problem statement and background.
In Section 3 we discuss the simplex coding framework that we analyze in Section 4. Algorithmic aspects and
numerical experiments are discussed in Section 5 and Section 6, respectively. Proofs and supplementary technical
results are given in the longer version of the paper.

2 Problem Statement and Previous Work

Let (X,Y ) be two random variables with values in two measurable spaces X and Y = {1 . . . T}, T ≥ 2. Denote by
ρX , the law of X on X , and by ρj(x), the conditional probabilities for j ∈ Y . The data is a sample S = (xi, yi)

n
i=1,

from n identical and independent copies of (X,Y ).We can think of X as a set of possible inputs and of Y , as a
set of labels describing a set of semantic categories/classes the input can belong to. A classification rule is a map
b : X → Y , and its error is measured by the misclassification risk R(b) = P(b(X) 6= Y ) = E(1I[b(x) 6=y](X,Y )). The
optimal classification rule that minimizes R is the Bayes rule, bρ(x) = arg maxy∈Y ρy(x), x ∈ X . Computing the
Bayes rule by directly minimizing the risk R, is not possible since the probability distribution is unknown. In fact
one could think of minimizing the empirical risk (ERM), RS(b) = 1

n

∑n
i=1 1I[b(x)6=y](xi, yi), which is an unbiased

estimator of the R, but the corresponding optimization problem is in general not feasible. In binary classification,
one of the most common way to obtain computationally efficient methods is based on a relaxation approach. We
recall this approach in the next section and describe its extension to multiclass in the rest of the paper.
Relaxation Approach to Binary Classification. If T = 2, we can set Y = ±1. Most modern machine learning
algorithms for binary classification consider a convex relaxation of the ERM functional RS . More precisely: 1) the
indicator function in RS is replaced by non negative loss V : Y ×R→ R+ which is convex in the second argument
and is sometimes called a surrogate loss; 2) the classification rule b replaced by a real valued measurable function
f : X → R. A classification rule is then obtained by considering the sign of f . It often suffices to consider a
special class of loss functions, namely large margin loss functions V : R → R+ of the form V (−yf(x)). This last
expression is suggested by the observation that the misclassification risk, using the labels ±1, can be written as
R(f) = E(Θ(−Y f(X))), where Θ is the heavy side step function. The quantity m = −yf(x), sometimes called
the margin, is a natural point-wise measure of the classification error. Among other examples of large margin loss
functions (such as the logistic and exponential loss), we recall the hinge loss V (m) = |1 +m|+ = max{1 + m, 0}
used in support vector machine, and the square loss V (m) = (1 +m)2 used in regularized least squares (note that
(1− yf(x))2 = (y − f(x))2). Using surrogate large margin loss functions it is possible to design effective learning
algorithms replacing the empirical risk with regularized empirical risk minimization

EλS (f) =
1

n

n∑
i=1

V (yi, f(xi)) + λR(f), (1)

whereR is a suitable regularization functional and λ is the regularization parameter, see Section 5.

2.1 Relaxation Error Analysis

As we replace the misclassification loss with a convex surrogate— loss, we are effectively changing the problem:
the misclassification risk is replaced by the expected loss, E(f) = E(V (−Y f(X))) . The expected loss can be seen
as a functional on a large space of functions F = FV,ρ, which depend on V and ρ. Its minimizer, denoted by fρ,
replaces the Bayes rule as the target of our algorithm.
The question arises of the price we pay by a considering a relaxation approach: “What is the relationship between
fρ and bρ?” More generally, “What is the approximation we incur into by estimating the expected risk rather than
the misclassification risk?” The relaxation error for a given loss function can be quantified by the following two
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requirements:
1) Fisher Consistency. A loss function is Fisher consistent if sign(fρ(x)) = bρ(x) almost surely (this property is re-
lated to the notion of classification-calibration [2]).
2) Comparison inequalities. The excess misclassification risk, and the excess expected loss are related by a compari-
son inequality

R(sign(f))−R(bρ) ≤ ψ(E(f)− E(fρ)),

for any function f ∈ F , where ψ = ψV,ρ is a suitable function that depends on V , and possibly on the data dis-
tribution. In particular ψ should be such that ψ(s) → 0 as s → 0, so that if fn is a (possibly random) sequence
of functions, such that E(fn) → E(fρ) (possibly in probability), then the corresponding sequences of classification
rules cn = sign(fn) is Bayes consistent, i.e. R(cn) → R(bρ) (possibly in probability). If ψ is explicitly known, then
bounds on the excess expected loss yields bounds on the excess misclassification risk.
The relaxation error in the binary case has been thoroughly studied in [2, 14]. In particular, Theorem 2 in [2] shows
that if a large margin surrogate loss is convex, differentiable and decreasing in a neighborhood of 0, then the loss is
Fisher consistent. Moreover, in this case it is possible to give an explicit expression of the function ψ. In particular,
for the hinge loss the target function is exactly the Bayes rule and ψ(t) = |t|. For least squares, fρ(x) = 2ρ1(x)− 1,
and ψ(t) =

√
t. The comparison inequality for the square loss can be improved for a suitable class of probability

distribution satisfying the so called Tsybakov noise condition [22], ρX ({x ∈ X , |fρ(x)| ≤ s}) ≤ Bqs
q, s ∈ [0, 1], q >

0. Under this condition the probability of points such that ρy(x) ∼ 1
2 decreases polynomially. In this case the com-

parison inequality for the square loss is given by ψ(t) = cqt
q+1
q+2 , see [2, 27].

Previous Works in Multiclass Classification. From a practical perspective, over the years, several computational
solutions to multiclass learning have been proposed. Among others, we mention for example [10, 6, 5, 25, 1, 21].
Indeed, most of the above methods can be interpreted as a kind of relaxation of the original multiclass problem.
Interestingly, the study in [15] suggests that the simple one-vs all schemes should be a practical benchmark for
multiclass algorithms as it seems to experimentally achive performances that are similar or better to more sophis-
ticated methods.
As we previously mentioned from a theoretical perspective a general account of a large class of multiclass meth-
ods has been given in [20], building on results in [2] and [28]. Notably, these results show that seemingly intuitive
extensions of binary classification algorithms might lead to inconsistent methods. These results, see also [11, 23],
are developed in a setting where a classification rule is found by applying a suitable prediction/decoding map to
a function f : X → RT where f is found considering a loss function V : Y × RT → R+. The considered functions
have to satisfy the constraint

∑
y∈Y f

y(x) = 0, for all x ∈ X . The latter requirement is problematic since it makes
the computations in the corresponding algorithms more involved and is in fact often ignored, so that practical
algorithms often come with no consistency guarantees. In all the above papers relaxation is studied in terms of
Fisher and Bayes consistency and the explicit form of the function ψ is not given. More quantitative results in
terms of explicit comparison inequality are given in [4] and (see also [19]), but also need to to impose the ”sum to
zero” constraint on the considered function class.

3 A Relaxation Approach to Multicategory Classification

In this section we propose a natural extension of the relaxation approach that avoids constraining the class of func-
tions to be considered, and allows to derive explicit comparison inequalities. See Remark 1 for related approaches.

Simplex Coding. We start considering a suitable coding/decoding strategy. A coding map turns a label y ∈ Y
into a code vector. The corresponding decoding map given a vector returns a label in Y . Note that, this is what we
implicitly did while treating binary classification encoding the label space Y = {1, 2} using the coding ±1, so that
the naturally decoding strategy is simply sign(f(x)). The coding/decoding strategy we study is described by the
following definition.

Definition 1 (Simplex Coding). The simplex coding is a map C : Y → RT−1, C(y) = cy, where the code vectors
C = {cy | y ∈ Y} ⊂ RT−1 satisfy: 1) ‖cy‖2 = 1, ∀y ∈ Y , 2)〈cy, cy′〉 = − 1

T−1 , for y 6= y′ with y, y′ ∈ Y , and
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Figure 1: Decoding with simplex coding T = 3.

3)
∑
y∈Y cy = 0. The corresponding decoding is the map D : RT−1 → {1, . . . , T}, D(α) = arg maxy∈Y 〈α, cy〉 ,

∀α ∈ RT−1.

The simplex coding corresponds to the T most separated vectors on the hypersphere ST−2 in RT−1, that is the
vertices of the simplex (see Figure 1). For binary classification it reduces to the ±1 coding and the decoding map
is equivalent to taking the sign of f . The decoding map has a natural geometric interpretation: an input point is
mapped to a vector f(x) by a function f : X → RT−1, and hence assigned to the class having closer code vector
(for y, y′ ∈ Y and α ∈ RT−1, we have ‖cy − α‖2 ≥ ‖cy′ − α‖2 ⇔ 〈cy′ , α〉 ≤ 〈cy, α〉.
Relaxation for Multiclass Learning. We use the simplex coding to propose an extension of the binary classification
approach. Following the binary case, the relaxation can be described in two steps:

1. using the simplex coding, the indicator function is upper bounded by a non-negative loss function V :
Y × RT−1 → R+, such that 1I[b(x) 6=y](x, y) ≤ V (y, C(b(x))),for all b : X → Y , and x ∈ X , y ∈ Y ,

2. rather than C ◦ b we consider functions with values in f : X → RT−1, so that V (y, C(b(x))) ≤ V (y, f(x)), for
all b : X → Y, f : X → RT−1 and x ∈ X , y ∈ Y .

In the next section we discuss several loss functions satisfying the above definitions and we study in particular
the extension of the least squares and SVM loss functions.
Multiclass Simplex Loss Functions. Several loss functions for binary classification can be naturally extended
to multiple classes using the simplex coding. Due to space restriction, in this paper we focus on extensions of
least squares, and SVM loss functions, but our analysis can be generalized to large class of simplex loss functions,
including extension of logistic and exponential loss functions( used in boosting). The Simplex Least Square loss (S-
LS) is given by V (y, f(x)) = ‖cy − f(x)‖2, and reduces to the usual least square approach to binary classification
for T = 2.One natural extension of the SVM’s hinge loss in this setting would be to consider the Simplex Half space
SVM loss (SH-SVM) V (y, f(x)) = |1− 〈cy, f(x)〉|+. We will see in the following that while this loss function would
induce efficient algorithms in general is not Fisher consistent unless further constraints are assumed. In turn, this
latter constraint would considerably slow down the computations. Then we consider a second loss function Sim-
plex Cone SVM (SC-SVM), related to the hinge loss, which is defined as V (y, f(x)) =

∑
y′ 6=y

∣∣∣ 1
T−1 + 〈cy′ , f(x)〉

∣∣∣
+
.

The latter loss function is related to the one considered in the multiclass SVM proposed in [10]. We will see that
it is possible to quantify the relaxation error of the loss function without requiring further constraints. Both the
above SVM loss functions reduce to the binary SVM hinge loss if T = 2.

Remark 1 (Related approaches). The simplex coding has been considered in [8],[26], and [16]. In particular, a kind of SVM
loss is considered in [8] where V (y, f(x)) =

∑
y′ 6=y |ε− 〈f(x), vy′(y)〉|+ and vy′(y) =

cy−cy′
‖cy−cy′‖ , with ε = 〈cy, vy′(y)〉 =

1√
2

√
T
T−1 . More recently [26] considered the loss function V (y, f(x)) = |ε− ‖cy − f(x)‖|+, and a simplex multi-class

boosting loss was introduced in [16], in our notation V (y, f(x)) =
∑
j 6=y e

−〈cy−cy′ ,f(x)〉. While all those losses introduce
a certain notion of margin that makes use of the geometry of the simplex coding, it is not to clear how to derive explicit
comparison theorems and moreover the computational complexity of the resulting algorithms scales linearly with the number
of classes in the case of the losses considered in [16, 26] and O((nT )γ), γ ∈ {2, 3} for losses considered in [8] .
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Figure 2: Level sets of different losses considered for T = 3. A classification is correct if an input (x, y) is mapped
to a point f(x) that lies in the neighborhood of the vertex cy . The shape of the neighborhood is defined by the
loss, it takes form of a cone supported on a vertex in the case of SC-SVM, a half space delimited by the hyperplane
orthogonal to the vertex in the case of the SH-SVM, and a sphere centered on the vertex in the case of S-LS.

4 Relaxation Error Analysis

If we consider the simplex coding, a function f taking values in RT−1, and the decoding operator D, the mis-
classification risk can also be written as: R(D(f)) =

∫
X (1 − ρD(f(x)))dρX (x). Then, following a relaxation ap-

proach we replace the misclassification loss by the expected risk induced by one of the loss functions V defined
in the previous section. As in the binary case we consider the expected loss E(f) =

∫
V (y, f(x))dρ(x, y). Let

Lp(X , ρX ) = {f : X → RT−1 | ‖f‖pρ =
∫
‖f(x)‖p dρX (x) <∞}, p ≥ 1.

The following theorem studies the relaxation error for SH-SVM, SC-SVM, and S-LS loss functions.

Theorem 1. For SH-SVM, SC-SVM, and S-LS loss functions, there exists a p such that E : Lp(X , ρX ) → R+ is convex
and continuous. Moreover,

1. The minimizer fρ of E over F = {f ∈ Lp(X , ρX ) | f(x) ∈ K a.s.} exists and D(fρ) = bρ.

2. For any f ∈ F , R(D(f))−R(D(fρ)) ≤ CT (E(f)− E(fρ))
α, where the expressions of p,K, fρ, CT , and α are given

in Table 1.

Loss p K fρ CT α
SH-SVM 1 conv(C) cbρ T − 1 1
SC-SVM 1 RT−1 cbρ T − 1 1

S-LS 2 RT−1
∑
y∈Y ρycy

√
2(T−1)
T

1
2

Table 1: conv(C) is the convex hull of the set C defined in (1).

The proof of this theorem is given in the longer version of the paper.
The above theorem can be improved for Least Squares under certain classes of distribution . Toward this end we
introduce the following notion of misclassification noise that generalizes Tsybakov’s noise condition.
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Definition 2. Fix q > 0, we say that the distribution ρ satisfy the multiclass noise condition with parameter Bq , if

ρX

({
x ∈ X | 0 ≤ min

j 6=D(fρ(x))

T − 1

T
(
〈
cD(fρ(x)) − cj , fρ(x)

〉
) ≤ s

})
≤ Bqsq, (2)

where s ∈ [0, 1].

If a distribution ρ is characterized by a very large q, then, for each x ∈ X , fρ(x) is arbitrarily close to one of
the coding vectors. For T = 2, the above condition reduces to the binary Tsybakov noise. Indeed, let c1 = 1, and
c2 = −1, if fρ(x) > 0, 1

2 (c1 − c2)fρ(x) = fρ(x), and if fρ(x) < 0, 1
2 (c2 − c1)fρ(x) = −fρ(x).

The following result improves the exponent of simplex-least square to q+1
q+2 >

1
2 :

Theorem 2. For each f ∈ L2(X , ρX ), if (2) holds, then for S-LS we have the following inequality,

R(D(f))−R(D(fρ)) ≤ K
(

2(T − 1)

T
(E(f)− E(fρ))

) q+1
q+2

, (3)

for a constant K =
(
2
√
Bq + 1

) 2q+2
q+2 .

Remark 2. Note that the comparison inequalities show a tradeoff between the exponent α and the constant C(T ), for S-LS
and SVM losses. While the constant is order T for SVM it is order 1 for S-LS, on the other hand the exponent is 1 for SVM
losses and 1

2 for S-LS. The latter could be enhanced to 1 for close to separable classification problems by virtue of the Tsybakov
noise condition.

Remark 3. Comparison inequalities given in Theorems 1 and 2 can be used to derive generalization bounds on the excess
misclassification risk. For least square min-max sharp bound, for vector valued regression are easy to derive.Standard tech-
niques for deriving sample complexity bound in binary classification extended for multi-class SVM losses could be found in
[7] and could be adapted to our setting. The obtained bound are not known to be tight, better bounds akin to those in [18],
will be subject to future work.

5 Computational Aspects and Regularization Algorithms

In this section we discuss some computational implications of the framework we presented.
Regularized Kernel Methods. We consider regularized methods of the form (1), induced by simplex loss func-
tions and where the hypotheses space is a vector valued reproducing kernel Hilbert spaces (VV-RKHSs) and the
regularizer the corresponding norm. See Appendix D.2 for a brief introduction to VV-RKHSs.
In the following, we consider a class of kernels such that the corresponding RKHS H is given by the completion
of the span {f(x) =

∑N
i=j Γ(xj , x)aj , aj ∈ RT−1, xi,∈ X , ∀j = 1, . . . , N}, where we note that the coefficients

are vectors in RT−1. While other choices are possible this is the kernel more directly related to a one vs all ap-
proach. We will discuss in particular the case where the kernel is induced by a finite dimensional feature map,
k(x, x′) = 〈Φ(x),Φ(x′)〉 , where Φ : X → Rp, and 〈·, ·〉 is the inner product in Rp. In this case we can write each
function inH as f(x) = WΦ(x), where W ∈ R(T−1)×p.
It is known [12, 3] that the representer theorem [9] can be easily extended to a vector valued setting, so that that
minimizer of a simplex version of Tikhonov regularization is given by fλS (x) =

∑n
j=1 k(x, xj)aj , aj ∈ RT−1, for

all x ∈ X , where the explicit expression of the coefficients depends on the considered loss function. We use the
following notations: K ∈ Rn×n,Kij = k(xi, xj),∀i, j ∈ {1 . . . n}, A ∈ Rn×(T−1), A = (a1, ..., an)T .
Simplex Regularized Least squares (S-RLS). S-RLS is obtained considering the simplex least square loss in the
Tikhonov functionals. It is easy to see [15] that in this case the coefficients must satisfy either (K + λnI)A = Ŷ

or (X̂T X̂ + λnI)W = X̂T Ŷ in the linear case, where X̂ ∈ Rn×p, X̂ = (Φ(x1), ...,Φ(xn))> and Ŷ ∈ Rn×(T−1), Ŷ =
(cy1 , ..., cyn)> .
Interestingly, the classical results from [24] can be extended to show that the value fSi(xi), obtained computing the
solution fSi removing the i− th point from the training set (the leave one out solution), can be computed in closed
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form. Let fλloo ∈ Rn×(T−1), fλloo = (fλS1
(x1), . . . , fλSn(xn)). Let K(λ) = (K + λnI)−1and C(λ) = K(λ)Ŷ . Define

M(λ) ∈ Rn×(T−1), such that: M(λ)ij = 1/K(λ)ii, ∀ j = 1 . . . T − 1. One can show similarly to [15], that fλloo =

Ŷ − C(λ) �M(λ), where � is the Hadamard product. Then, the leave-one-out error 1
n

∑n
i=1 1Iy 6=D(fSi (x))

(yi, xi),

can be minimized at essentially no extra cost by precomputing the eigen decomposition of K (or X̂T X̂).
Simplex Cone Support Vector Machine (SC-SVM). Using standard reasoning it is easy to show that (see Ap-
pendix C.2), for the SC-SVM the coefficients in the representer theorem are given by ai = −

∑
y 6=yi α

y
i cy, i =

1, . . . , n, where αi = (αyi )y∈Y ∈ RT , i = 1, . . . , n, solve the quadratic programming (QP) problem

max
α1,...,αn∈RT

−1

2

∑
y,y′,i,j

αyiKijGyy′α
y′

j +
1

T − 1

n∑
i=1

T∑
y=1

αyi

 (4)

subject to 0 ≤ αyi ≤ C0δy,yi , ∀ i = 1, . . . , n, y ∈ Y

where Gy,y′ = 〈cy, cy′〉 ∀y, y′ ∈ Y and C0 = 1
2nλ , αi = (αyi )y∈Y ∈ RT , for i = 1, . . . , n and δi,j is the Kronecker delta.

Simplex Halfspaces Support Vector Machine (SH-SVM). A similar, yet more more complicated procedure, can
be derived for the SH-SVM. Here, we omit this derivation and observe instead that if we neglect the convex hull
constraint from Theorem 1, requiring f(x) ∈ co(C) for almost all x ∈ X , then the SH-SVM has an especially
simple formulation at the price of loosing consistency guarantees. In fact, in this case the coefficients are given by
ai = αicyi , i = 1, . . . , n, where αi ∈ R, with i = 1, . . . , n solve the quadratic programming (QP) problem

max
α1,...,αn∈R

−1

2

∑
i,j

αiKijGyiyjαj +

n∑
i=1

αi

subject to 0 ≤ αi ≤ C0, ∀ i = 1 . . . n,

where C0 = 1
2nλ . The latter formulation could be trained at the same complexity of the binary SVM (worst case

O(n3)) but lacks consistency.
Online/Incremental Optimization The regularized estimators induced by the simplex loss functions can be com-
puted by mean of online/incremental first order (sub) gradient methods. Indeed, when considering finite dimen-
sional feature maps, these strategies offer computationally feasible solutions to train estimators for large datasets
where neither a p by p or an n by n matrix fit in memory. Following [17] we can alternate a step of stochas-
tic descent on a data point : Wtmp = (1 − ηiλ)Wi − ηi∂(V (yi, fWi(xi))) and a projection on the Frobenius ball
Wi = min(1, 1√

λ||Wtmp||F
)Wtmp (See Algorithn C.5 for details.) The algorithm depends on the used loss function

through the computation of the (point-wise) subgradient ∂(V ). The latter can be easily computed for all the loss
functions previously discussed. For the SLS loss we have ∂(V (yi, fW (xi))) = 2(cyi −Wxi)x

>
i , while for the SC-

SVM loss we have ∂(V (yi, fW (xi))) = (
∑
k∈Ii ck)x>i where Ii = {y 6= yi| 〈cy,Wxi〉 > − 1

T−1}. For the SH-SVM loss
we have: ∂(V (y, fW (xi))) = −cyix>i if cyiWxi < 1 and 0 else .

5.1 Comparison of Computational Complexity

The cost of solving S-RLS for fixed λ is in the worst case O(n3) (for example via Choleski decomposition). If we
are interested into computing the regularization path for N regularization parameter values, then as noted in [15]
it might be convenient to perform an eigendecomposition of the kernel matrix rather than solving the systems N
times. For explicit feature maps the cost isO(np2), so that the cost of computing the regularization path for simplex
RLS algorithm is O(min(n3, np2)) and hence independent of T . One can contrast this complexity with the one of
a näive One Versus all (OVa) approach that would lead to a O(Nn3T ) complexity. Simplex SVMs can be solved
using solvers available for binary SVMs that are considered to have complexity O(nγ) with γ ∈ {2, 3}(actually
the complexity scales with the number of support vectors) . For SC-SVM, though, we have nT rather than n
unknowns and the complexity is (O(nT )γ). SH-SVM where we omit the constraint, could be trained at the same
complexity of the binary SVM (worst case O(n3)) but lacks consistency. Note that unlike for S-RLS, there is no
straightforward way to compute the regularization path and the leave one out error for any of the above SVMs .
The online algorithms induced by the different simplex loss functions are essentially the same, in particular each
iteration depends linearly on the number of classes.
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6 Numerical Results

We conduct several experiments to evaluate the performance of our batch and online algorithms, on 5 UCI datasets
as listed in Table 6, as well as on Caltech101 and Pubfig83. We compare the performance of our algorithms to on
versus all svm (libsvm) , as well as the simplex based boosting [16]. For UCI datasets we use the raw features,
on Caltech101 we use hierarchical features1 , and on Pubfig83 we use the feature maps from [13]. In all cases the
parameter selection is based either on a hold out (ho) (80% training − 20% validation) or a leave one out error
(loo). For the model Selection of λ in S-LS, 100 values are chosen in the range [λmin, λmax],(where λmin and λmax,
correspond to the smallest and biggest eigenvalues of K). In the case of a Gaussian kernel (rbf) we use a heuristic
that sets the width of the gaussian σ to the 25-th percentile of pairwise distances between distinct points in the
training set. In Table 6 we collect the resulting classification accuracies:

Landsat Optdigit Pendigit Letter Isolet Ctech Pubfig83
SC-SVM Online (ho) 65.15% 89.57% 81.62% 52.82% 88.58% 63.33% 84.70%

SH-SVM Online (ho) 75.43% 85.58% 72.54% 38.40% 77.65% 45% 49.76%

S-LS Online (ho) 63.62% 91.68% 81.39% 54.29% 92.62% 58.39% 83.61%

S-LS Batch (loo) 65.88% 91.90% 80.69% 54.96% 92.55% 66.35% 86.63%

S-LS rbf Batch (loo) 90.15% 97.09% 98.17% 96.48% 97.05% 69.38% 86.75%

SVM batch ova (ho) 72.81% 92.13% 86.93% 62.78% 90.59% 70.13% 85.97%

SVM rbf batch ova (ho) 95.33% 98.07% 98.88% 97.12% 96.99% 51.77% 85.60%

Simplex boosting [16] 86.65% 92.82% 92.94% 59.65% 91.02% − −

Table 2: Accuracies of our algorithms on several datasets.
As suggested by the theory, the consistent methods SC-SVM and S-LS have a big advantage over SH-SVM

(where we omitted the convex hull constraint) . Batch methods are overall superior to online methods, with online
SC-SVM achieving the best results. More generally, we see that rbf S- LS has the best performance among the
simplex methods including the simplex boosting [16]. When compared to One Versus All SVM-rbf, we see that
S-LS rbf achieves essentially the same performance.

References

[1] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary: a unifying approach
for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2000.

[2] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk bounds. Journal
of the American Statistical Association, 101(473):138–156, 2006.

[3] A. Caponnetto and E. De Vito. Optimal rates for regularized least-squares algorithm. Foundations of Compu-
tational Mathematics, 2006.

[4] D. Chen and T. Sun. Consistency of multiclass empirical risk minimization methods based in convex loss.
Journal of machine learning, X, 2006.

[5] Crammer.K and Singer.Y. On the algorithmic implementation of multiclass kernel-based vector machines.
JMLR, 2001.

[6] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

[7] Yann Guermeur. Vc theory of large margin multi-category classiers. Journal of Machine Learning Research,
8:2551–2594, 2007.

1The data set will be made available upon acceptance.

8



[8] Simon I. Hill and Arnaud Doucet. A framework for kernel-based multi-category classification. J. Artif. Int.
Res., 30(1):525–564, December 2007.

[9] G. Kimeldorf and G. Wahba. A correspondence between bayesian estimation of stochastic processes and
smoothing by splines. Ann. Math. Stat., 41:495–502, 1970.

[10] Lee.Y, L.Yin, and Wahba.G. Multicategory support vector machines: Theory and application to the classifica-
tion of microarray data and satellite radiance data. Journal of the American Statistical Association, 2004.

[11] Liu.Y. Fisher consistency of multicategory support vector machines. Eleventh International Conference on Arti-
ficial Intelligence and Statistics, 289-296, 2007.

[12] C.A. Micchelli and M. Pontil. On learning vector–valued functions. Neural Computation, 17:177–204, 2005.

[13] N. Pinto, Z. Stone, T. Zickler, and D.D. Cox. Scaling-up biologically-inspired computer vision: A case-study
on facebook. 2011.

[14] M.D. Reid and R.C. Williamson. Composite binary losses. JMLR, 11, September 2010.

[15] Rifkin.R and Klautau.A. In defense of one versus all classification. journal of machine learning, 2004.

[16] Saberian.M and Vasconcelos .N. Multiclass boosting: Theory and algorithms. In NIPS 2011, 2011.

[17] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient solver for
svm. In Proceedings of the 24th ICML, ICML ’07, pages 807–814, New York, NY, USA, 2007. ACM.

[18] I. Steinwart and A. Christmann. Support vector machines. Information Science and Statistics. Springer, New
York, 2008.

[19] Van de Geer.S Tarigan.B. A moment bound for multicategory support vector machines. JMLR 9, 2171-2185,
2008.

[20] A. Tewari and P. L. Bartlett. On the consistency of multiclass classification methods. In Proceedings of the 18th
Annual Conference on Learning Theory, volume 3559, pages 143–157. Springer, 2005.

[21] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interde-
pendent output variables. JMLR, 6(2):1453–1484, 2005.

[22] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32:135–
166, 2004.

[23] Elodie Vernet, Robert C. Williamson, and Mark D. Reid. Composite multiclass losses. In Proceedings of Neural
Information Processing Systems (NIPS 2011), 2011.

[24] G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, Philadelphia, PA, 1990.

[25] Weston and Watkins. Support vector machine for multi class pattern recognition. Proceedings of the seventh
european symposium on artificial neural networks, 1999.

[26] Tong Tong Wu and Kenneth Lange. Multicategory vertex discriminant analysis for high-dimensional data.
Ann. Appl. Stat., 4(4):1698–1721, 2010.

[27] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning. Constructive Approxi-
mation, 26(2):289–315, 2007.

[28] T. Zhang. Statistical analysis of some multi-category large margin classification methods. Journal of Machine
Learning Research, 5:1225–1251, 2004.

[29] Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk minimiza-
tion. The Annals of Statistics, Vol. 32, No. 1, 56134, 2004.

9


