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Abstract In this paper we analyze the behavior of system approximation processes
for stable linear time-invariant (LTI) systems and signals in the Paley–Wiener space
PW 1

π . We consider approximation processes, where the input signal is not directly
used to generate the system output, but instead a sequence of numbers is used that
is generated from the input signal by measurement functionals. We consider classi-
cal sampling which corresponds to a pointwise evaluation of the signal, as well as
several more general measurement functionals. We show that a stable system ap-
proximation is not possible for pointwise sampling, because there exist signals and
systems such that the approximation process diverges. This remains true even with
oversampling. However, if more general measurement functionals are considered,
a stable approximation is possible if oversampling is used. Further, we show that
without oversampling we have divergence for a large class of practically relevant
measurement procedures.
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1 Introduction

Sampling theory plays a fundamental role in modern signal and information pro-
cessing, because it is the basis for today’s digital world [46]. The reconstruction of
continuous-time signals from their samples is also essential for other applications
and theoretical concepts [29, 26, 34]. The reconstruction of non-bandlimited signals,
which was analyzed for example in [15, 17, 18], will not be considered in this pa-
per, instead we focus on bandlimited signals. For an overview of existing sampling
theorems see for example [29, 27], and [16].

The core task of digital signal processing is to process data. This means that,
usually, the interest is not in a reconstruction of the sampled signal itself, but in
some processed version of it. This might be the derivative, the Hilbert transform
or the output of any other stable linear system T . Then the goal is to approximate
the desired transform T f of a signal f by an approximation process, which uses
only finitely many, not necessarily equidistant, samples of the signal f . Exactly as
in the case of signal reconstruction, the convergence and approximation behavior is
important for practical applications [14].

Since sampling theory is so fundamental for applications it is essential to have
this theory developed rigorously. From the first beginnings in engineering, see for
example [11, 10] for historical comments, one main goal in research was to extend
the theory to different practically relevant classes of signals and systems. The first
author’s interest for the topic was aroused in discussions with Paul Butzer in the
early 1990s at RWTH Aachen. Since 2005 both authors have done research in this
field and contributed with publications, see for example the second author’s thesis
[35] for a summary.

In order to continue the “digital revolution”, enormous capital expenditures and
resources are used to maintain the pace of performance increase, which is described
by Moore’s law. But also the operation of current communication systems requires
huge amounts of resources, e.g. energy. It is reasonable to ask whether this is neces-
sary. In this context, from a signal theoretic perspective, three interesting questions
are: Do there exist fundamental limits that determine which signals and systems can
be implemented digitally? In what technology—analog, digital, or mixed signal—
can the systems be implemented? What are the necessary resources in terms of en-
ergy and hardware to implement the systems?

Such an implementation theory is of high practical relevance, and it already in-
fluences the system design, although there is no general system theoretic approach
available yet to answer the posed questions. For example, the question whether to
use a system implementation based on the Shannon series operating at Nyquist rate
or to use an approach based on oversampling, which comes with higher techno-
logical effort, plays a central role in the design of modern information processing
systems. A further important question concerns the measurement procedures. Can
we use classical sampling-based measurement procedures, where the signal values
are taken at certain time instants, or is it better to use more general measurement
procedures? As already mentioned, no general methodical approach is known that
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could answer these questions. Regardless of these difficulties, Hilbert’s vision ap-
plies: “We must know. We will know.”

In this paper we analyze the convergence behavior of system approximation pro-
cesses for different kinds of sampling procedures. The structure of this paper is
as follows: First, we introduce some notation in Section 2. Then, we treat point-
wise sampling in Section 3. In Section 4 we study general sampling functionals and
oversampling. In Section 5 we analyze the convergence of subsequences of the ap-
proximation process. Finally, in Section 6 we discuss the structure of more general
measurement functionals.

2 Notation

In order to continue the discussion, we need some preliminaries and notation. Let
f̂ denote the Fourier transform of a function f , where f̂ is to be understood in the
distributional sense. By Lp(R), 1≤ p≤∞, we denote the usual Lp-spaces with norm
‖·‖p. C[a,b] is the space of all continuous functions on [a,b]. Further, lp, 1≤ p<∞,
is the space of all sequences that are summable to the pth power.

For σ > 0 let Bσ be the set of all entire functions f with the property that for all
ε > 0 there exists a constant C(ε) with | f (z)| ≤C(ε)exp

(
(σ + ε)|z|

)
for all z ∈ C.

The Bernstein space Bp
σ consists of all functions in Bσ , whose restriction to the real

line is in Lp(R), 1 ≤ p ≤ ∞. A function in Bp
σ is called bandlimited to σ . By the

Paley–Wiener–Schwartz theorem, the Fourier transform of a function bandlimited
to σ is supported in [−σ ,σ ]. For 1≤ p≤ 2 the Fourier transformation is defined in
the classical and for p> 2 in the distributional sense. It is well known that Bp

σ ⊂Bs
σ

for 1≤ p≤ s≤ ∞. Hence, every function f ∈Bp
σ , 1≤ p≤ ∞, is bounded.

For −∞ < σ1 < σ2 < ∞ and 1 ≤ p ≤ ∞ we denote by PW p
[σ1,σ2]

the Paley–

Wiener space of functions f with a representation f (z) = 1/(2π)
∫

σ2
−σ1

g(ω)eizω dω ,
z ∈ C, for some g ∈ Lp[σ1,σ2]. The norm for PW p

[σ1,σ2]
, 1 ≤ p < ∞, is given by

‖ f‖PW p
[σ1 ,σ2 ]

= (1/(2π)
∫

σ2
σ1
| f̂ (ω)|p dω)1/p. For PW p

[−σ ,σ ]
, 0 < σ < ∞, we use the

abbreviation PW p
σ . The nomenclature concerning the Bernstein and Paley–Wiener

spaces, we introduced so far, is not consistent in the literature. Sometimes the space
that we call Bernstein space is called Paley–Wiener space [45]. We adhere to the
notation used in [27].

Since our analyses involve stable linear time-invariant (LTI) systems, we briefly
review some definitions and facts. A linear system T : PW p

π →PW p
π , 1≤ p≤∞,

is called stable if the operator T is bounded, i.e., if ‖T‖ := sup‖ f‖
PW

p
π
≤1‖T f‖PW p

π
<

∞. Furthermore, it is called time-invariant if (T f ( · − a))(t) = (T f )(t − a) for all
f ∈PW p

π and t,a ∈ R.
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For every stable LTI system T : PW 1
π→PW 1

π there exists exactly one function
ĥT ∈ L∞[−π,π] such that

(T f )(t) =
1

2π

∫
π

−π

f̂ (ω)ĥT (ω)eiωt dω, t ∈ R, (1)

for all f ∈PW 1
π [4]. Conversely, every function ĥT ∈ L∞[−π,π] defines a stable

LTI system T : PW 1
π →PW 1

π . The operator norm of a stable LTI system T is
given by ‖T‖ = ‖ĥ‖L∞[−π,π]. Furthermore, it can be shown that the representation
(1) with ĥT ∈ L∞[−π,π] is also valid for all stable LTI systems T : PW 2

π →PW 2
π .

Therefore, every stable LTI system that maps PW 1
π in PW 1

π maps PW 2
π in

PW 2
π , and vice versa. Note that ĥT ∈ L∞[−π,π] ⊂ L2[−π,π], and consequently

hT ∈PW 2
π .

An LTI system can have different representations. In textbooks, usually the fre-
quency domain representation (1), and the time domain representation in the form
of a convolution integral

(T f )(t) =
∫

∞

−∞

f (τ)hT (t− τ) dτ (2)

are given [23, 39]. Although both are well-defined for stable LTI systems T :
PW 2

π →PW 2
π operating on PW 2

π , there are systems and signal spaces where
these representations are meaningless, because they are divergent [19, 3]. For ex-
ample, it has been shown that there exist stable LTI systems T : PW 1

π →PW 1
π

that do not have a convolution integral representation in the form of (2), because the
integral diverges for certain signals f ∈PW 1

π [3]. However, the frequency domain
representation (1), which we will use in this paper, holds for all stable LTI systems
T : PW 1

π →PW 1
π .

3 Sampling-Based Measurements

3.1 Basics of Non-Equidistant Sampling

In the classical non-equidistant sampling setting the goal is to reconstruct a ban-
dlimited signal f from its non-equidistant samples { f (tk)}k∈Z, where {tk}k∈Z is the
sequence of sampling points. One possibility to do the reconstruction is to use the
sampling series

∞

∑
k=−∞

f (tk)φk(t), (3)

where the φk, k ∈ Z, are certain reconstruction functions.
In this paper we restrict ourselves to sampling point sequences {tk}k∈Z that are

real and a complete interpolating sequence for PW 2
π .
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Definition 1. We say that {tk}k∈Z is a complete interpolating sequence for PW 2
π if

the interpolation problem f (tk) = ck, k ∈ Z, has exactly one solution f ∈PW 2
π for

every sequence {ck}k∈Z ∈ l2.

We further assume that the sequence of sampling points {tk}k∈Z is ordered strictly
increasingly, and, without loss of generality, we assume that t0 = 0. Then, it follows
that the product

φ(z) = z lim
N→∞

∏
|k|≤N
k 6=0

(
1− z

tk

)
(4)

converges uniformly on |z| ≤ R for all R < ∞, and φ is an entire function of expo-
nential type π [33]. It can be seen from (4) that φ , which is often called generating
function, has the zeros {tk}k∈Z. Moreover, it follows that

φk(t) =
φ(t)

φ ′(tk)(t− tk)
(5)

is the unique function in PW 2
π that solves the interpolation problem φk(tl) = δkl ,

where δkl = 1 if k = l, and δkl = 0 otherwise.

Definition 2. A system of vectors {φk}k∈Z in a separable Hilbert space H is called
Riesz basis if {φk}k∈Z is complete in H , and there exist positive constants A and B
such that for all M,N ∈ N and arbitrary scalars ck we have

A
N

∑
k=−M

|ck|2 ≤
∥∥∥∥∥ N

∑
k=−M

ck φk

∥∥∥∥∥
2

≤ B
N

∑
k=−M

|ck|2. (6)

A well-known fact is the following theorem [53, p. 143].

Theorem 1 (Pavlov). The system {eiωtk}k∈Z is a Riesz basis for L2[−π,π] if and
only if {tk}k∈Z is a complete interpolating sequence for PW 2

π .

It follows immediately from Theorem 1 that {φk}k∈Z, as defined in (5), is a Riesz
basis for PW 2

π if {tk}k∈Z is a complete interpolating sequence for PW 2
π .

For further results and background information on non-equidistant sampling we
would like to refer the reader to [27, 34].

3.2 Basics of Sampling-Based System Approximation

In many signal processing applications the goal is to process a signal f . In this
paper we consider signals from the space PW 1

π . A common method to do such
a processing is to use LTI systems. Given a signal f ∈PW 1

π and a stable LTI
system T : PW 1

π →PW 1
π we can use (1) to calculate the desired system output

T f . Equation (1) can be seen as an analog implementation of the system T . As
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described in Section 2, (1) is well defined for all f ∈PW 1
π and all stable LTI

systems T : PW 1
π →PW 1

π , and we have no convergence problems.
However, often only the samples { f (tk)}k∈Z of a signal are available, like it is

the case in digital signal processing, and not the whole signal. In this situation we
seek an implementation of the stable LTI system T which uses only the samples
{ f (tk)}k∈Z of the signal f [48]. We call such an implementation an implementation
in the digital domain. For example, the sampling series

∞

∑
k=−∞

f (tk)(T φk)(t) (7)

is a digital implementation of the system T . However, in contrast to (1), the conver-
gence of (7) is not guaranteed, as we will see in Section 3.4.

In Figure 1 the different approaches that are taken for an analog and a digital
system implementation are visualized. The general motive for the development of
the “digital world” is the idea that every stable analog system can be implemented
digitally, i.e., that the diagram in Figure 1 is commutative.

f T f

{ f (tk)}k∈Z T D{ f (tk)}k∈Z

T A

T D

Analog world

Digital world
Sampling Reconstruction

“Analog” system
implementation

“Digital” system
implementation

Input signal space
(analog)

Output signal space
(analog)

Discrete-time input
signal space (digital)

Discrete-time output
signal space (digital)

Fig. 1 Analog versus digital system implementation of a stable LTI system T .

Remark 1. In this paper the systems are always linear and well defined. However,
there exist practically important systems that do not exist as a linear system [8]. For
a discussion about non-linear systems, see [20].
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3.3 Two Conjectures

In [5] we posed two conjectures, which we will prove in this paper. The first con-
jecture is about the divergence of the system approximation process for complete
interpolating sequences in the case of classical pointwise sampling.

Conjecture 1. Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for
PW 2

π , φk as defined in (5), and 0 < σ < π . Then, for all t ∈ R there exists a stable
LTI system T∗ : PW 1

π →PW 1
π and a signal f∗ ∈PW 1

σ such that

limsup
N→∞

∣∣∣∣∣(T∗ f∗)(t)−
N

∑
k=−N

f∗(tk)(T∗φk)(t)

∣∣∣∣∣= ∞.

For the special case of equidistant sampling, the system approximation process
(7) reduces to

1
a

∞

∑
k=−∞

f
(

k
a

)
hT

(
t− k

a

)
, (8)

where a≥ 1 denotes the oversampling factor and hT is the impulse response of the
system T . It has already been shown that the Hilbert transform is a universal system
for which there exists, for every amount of oversampling, a signal such that the peak
value of (8) diverges [4]. In Conjecture 1 now, the statement is that this divergence
even occurs for non-equidistant sampling, which introduces an additional degree
of freedom, and even pointwise. However, in this case, the Hilbert transform is no
longer the universal divergence creating system.

Conjecture 1 will be proved in Section 3.4.
The second conjecture is about more general measurement procedures and states

that with suitable measurement procedures and oversampling we can obtain a con-
vergent approximation process.

Conjecture 2. Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for
PW 2

π , φk as defined in (5), and 0 < σ < π . There exists a sequence of con-
tinuous linear functionals {ck}k∈Z on PW 1

π such that for all stable LTI systems
T : PW 1

π →PW 1
π and all f ∈PW 1

σ we have

lim
N→∞

sup
t∈R

∣∣∣∣∣(T f )(t)−
N

∑
k=−N

ck( f )(T φk)(t)

∣∣∣∣∣= 0.

Conjecture 2 will be proved in Section 4, where we also introduce the general mea-
surement procedures more precisely.
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3.4 Approximation for Sampling-Based Measurements

In this section we analyze the system approximation process which is given by the
digital implementation (7). The next theorem proves Conjecture 1.

Theorem 2. Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for
PW 2

π , φk as defined in (5), and t ∈ R. Then there exists a stable LTI system
T∗ : PW 1

π →PW 1
π such that for every 0 < σ < π there exists a signal f∗ ∈PW 1

σ

such that

limsup
N→∞

∣∣∣∣∣ N

∑
k=−N

f∗(tk)(T∗φk)(t)

∣∣∣∣∣= ∞. (9)

Remark 2. It is interesting to note that the system T∗ in Theorem 2 is universal in
the sense that it does not depend on σ , i.e., on the amount of oversampling. In other
words, we can find a stable LTI system T∗ such that regardless of the oversampling
factor 1 < α < ∞ there exists a signal f∗ ∈PW 1

π/α
for which the system approxi-

mation process diverges as in (9).

Remark 3. Since {φk}k∈Z is a Riesz basis for PW 2
π , it follows that the projections

of {φk}k∈Z onto PW 2
σ form a frame for PW 2

σ , 0 < σ < π [25, p. 231]. Theo-
rem 2 shows that the usually nice behavior of frames is destroyed in the presence
of a system T . Even though the projections of {φk}k∈Z onto PW 2

σ form a frame
for PW 2

σ , 0 < σ < π , we have divergence when we add the system T . This be-
havior was known before for pointwise sampling: The reconstruction functions in
the Shannon sampling series form a Riesz basis for PW 2

π , and the convergence of
the series is globally uniform for signals in PW 1

σ , 0 < σ < π , i.e., if oversampling
is applied. However, with a system T we can have even pointwise divergence [4].
Theorem 2 illustrates that this is true not only for pointwise sampling but also if
more general measurement functionals are used.

Remark 4. The system T∗ from Theorem 2 can, as a stable LTI system, of course
be implemented, using the analog system implementation (1). However, Theorem 2
shows that a digital, i.e., sampling based, implementation is not possible. This also
illustrates the limits of a general sampling-based technology. We will see later, in
Section 4.2, that the system can be implemented by using more general measure-
ment functionals and oversampling.

The result of Theorem 2 is also true for bandpass signals. However, in this case
the stable LTI system T∗ is no longer universal but depends on the actual frequency
support of the signal space.

Theorem 3. Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for
PW 2

π , φk as defined in (5), t ∈ R, and 0 < σ1 < σ2 < π . Then there exist a stable
LTI system T∗ : PW 1

π →PW 1
π and a signal f∗ ∈PW 1

[σ1,σ2]
such that

limsup
N→∞

∣∣∣∣∣ N

∑
k=−N

f∗(tk)(T∗φk)(t)

∣∣∣∣∣= ∞.
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For the proof of Theorems 2 and 3, we need two lemmas, Lemma 1 and Lemma 4.
The proof of Lemma 1 heavily relies on a result of Szarek, which was published in
[52].

Lemma 1. Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for
PW 2

π and φk as defined in (5). Then there exists a positive constant C1 such that
for all ω ∈ [−π,π] and all N ∈ N we have

max
1≤M≤N

1
2π

∫
π

−π

∣∣∣∣∣ M

∑
k=−M

eiωtk φ̂k(ω1)

∣∣∣∣∣ dω1 ≥C1 log(N). (10)

Remark 5. Later, in Section 5, we will see what potential implications the presence
of the max-operator in (10) can have on the convergence behavior of the approxi-
mation process. Currently, our proof technique is not able to show more, however,
we conjecture that (10) is also true without max1≤M≤N .

For the proof of Lemma 1 we need Lemmas 2 and 3 from Szarek’s paper [52]. For
completeness and convenience, we state them next in a slightly simplified version,
which is sufficient for our purposes.

Lemma 2 (Szarek). Let f be a nonnegative measurable function, C2 a positive con-
stant, and n a natural number such that

1
2π

∫
π

−π

( f (t))2 dt ≤C2n (11)

and
1

2π

∫
π

−π

( f (t))5/4 dt ≥ n1/4

C2
. (12)

Then there exists a number α = α(C2), 0 < α < 2−3 and a natural number s such
that

1
2π

∫
{t∈[−π,π]: f (t)> n

α2 }
f (t) dt ≤ α

24

and
1

2π

∫
{t∈[−π,π]: αsn

α2 < f (t)≤ αsn
α3 }

f (t) dt ≥ sα.

Lemma 3 (Szarek). Let 0 < α < 2−3 and {Fk}N
k=1 be a sequence of measurable

functions. Further, define Fk,n :=Fk+n−Fk. Assume that for all k,n satisfying 1≤ k,n
and 1≤ k+n≤ N there exists a natural number s = s(k,n) such that

1
2π

∫
{t∈[−π,π]:|Fk,n(t)|> n

α2 }
|Fk,n(t)| dt ≤ α

24

and
1

2π

∫
{t∈[−π,π]: αsn

α2 <|Fk,n(t)|≤ αsn
α3 }
|Fk,n(t)| dt ≥ sα.
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Then there exists a positive constant C3 =C3(α) such that

max
1≤k≤N

1
2π

∫
π

−π

|Fk(t)| dt ≥C3(α) log(N).

Now we are in the position to prove Lemma 1.

Proof (Lemma 1). Let {tk}k∈Z ⊂ R be an arbitrary but fixed ordered complete in-
terpolating sequence for PW 2

π and φk as defined in (5). Further, let ω ∈ [−π,π] be
arbitrary but fixed. For ω1 ∈ [−π,π] consider the functions

Gk(ω1,ω) :=
k

∑
l=−k

eiωtl φ̂l(ω1),

and

Gk,n(ω1,ω) := Gk+n(ω1,ω)−Gk(ω1,ω)

= ∑
k<|l|≤k+n

eiωtl φ̂l(ω1).

We will show that |Gk,n(ω1,ω)| satisfies the conditions (11) and (12) of Lemma 2.
We have

1
2π

∫
π

−π

|Gk,n(ω1,ω)|2 dω1 =
∫

∞

−∞

∣∣∣∣∣ ∑
k<|l|≤k+n

eiωtl φl(t)

∣∣∣∣∣
2

dt

≤ B ∑
k<|l|≤k+n

1

= B2n, (13)

where we used the fact that {φl}k∈Z is a Riesz basis for PW 2
π .

Next, we analyze the expression

1
2π

∫
π

−π

|Gk(ω1,ω)|p dω1 =
1

2π

∫
π

−π

∣∣∣∣∣ k

∑
l=−k

eiωtl φ̂l(ω1)

∣∣∣∣∣
p

dω1

for 1 < p < 2. We set

Gk,n(ω1,ω) = 0 for |ω1|> π (14)

and consider the Fourier transform

(FGk,n( · ,ω))(t) =
∫

∞

−∞

Gk,n(ω1,ω)e−iω1t dω1. (15)

Due to (14), the integral in (15) is absolutely convergent. We have

(FGk,n( · ,ω))(t) = 2πgk,n(−t,ω),
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where
gk,n(t,ω) := ∑

k<|l|≤k+n
eiωtl φl(t).

Let q be the conjugate of p, i.e., 1/p+1/q= 1, then the Hausdorff–Young inequality
[9],[27, p. 19] shows that there exists a constant C4 =C4(p) such that(∫

∞

−∞

|(FGk,n( · ,ω))(t)|q dt
) 1

q

≤C4(p)
(∫

π

−π

|Gk,n(ω1,ω)|p dω1

) 1
p

,

which implies that

1
2π

∫
π

−π

|Gk,n(ω1,ω)|p dω1 ≥
(2π)p−1

(C4(p))p

(∫
∞

−∞

|gk,n(t,ω)|q dt
) p

q

. (16)

Note that the constant C4(p) is independent of ω . We analyze the integral on the
right-hand side of (16). We have gk,n( · ,ω) ∈Bq

π . Since {tk}k∈Z is a complete inter-
polating sequence for PW 2

π , we have [41]

inf
k∈Z

(tk+1− tk)> 0,

and it is known [2, p. 101] that there exists a positive constant C5(q) that is indepen-
dent of k, n, and ω such that

(∫
∞

−∞

|gk,n(t,ω)|q dt
) 1

q

≥C5(q)

(
∞

∑
l=−∞

|gk,n(tl ,ω)|q
) 1

q

.

Since
∞

∑
l=−∞

|gk,n(tl ,ω)|q = ∑
k<|l|≤n+k

1 = 2n,

we obtain (∫
∞

−∞

|gk,n(t,ω)|q dt
) 1

q

≥C5(q)(2n)
1
q . (17)

Combining (16) and (17) gives

1
2π

∫
π

−π

|Gk,n(ω1,ω)|p dω1 ≥
(2π)p−1(C5(q))p

(C4(p))p (2n)
p
q ,

and for p = 5/4 we obtain

1
2π

∫
π

−π

|Gk,n(ω1,ω)| 54 dω1 ≥
(4π)

1
4 (C5(5))

5
4

(C4(
5
4 ))

5
4

n
1
4 . (18)

Choosing
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C2 = max

{
2B2,

(C4(
5
4 ))

5
4

(4π)
1
4 (C5(5))

5
4

}
,

we see from (13) and (18) that the function |Gk,n(ω1,ω)| satisfies conditions (11)
and (12), that is the assumptions of Lemma 2. Hence, as a result of Lemma 2,
|Gk(ω1,ω)| also satisfies the assumptions of Lemma 3, and application of Lemma 3
completes the proof. ut

Next, we state the second lemma which we need for the proofs of Theorems 2
and 3. We will use it to analyze the influence of the transfer function ĥT on the
approximation process.

Lemma 4. Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for
PW 2

π and φk as defined in (5). For all ω ∈ [−π,π], all t ∈ R, and all N ∈ N we
have

sup
‖ĝ‖L∞[−π,π]≤1

ĝ∈C[−π,π]

∣∣∣∣∣ N

∑
k=−N

eiωtk 1
2π

∫
π

−π

ĝ(ω1)φ̂k(ω1)eiω1t dω1

∣∣∣∣∣
=

1
2π

∫
π

−π

∣∣∣∣∣ N

∑
k=−N

eiωtk φ̂k(ω1)

∣∣∣∣∣ dω1.

Proof (Lemma 4). Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence
for PW 2

π , ω ∈ [−π,π], t ∈ R, and N ∈ N, all be arbitrary but fixed. Further, let φk
be defined as in (5). For

ĝ(ω1) = exp

(
−i arg

(
eiω1t

N

∑
k=−N

eiωtk φ̂k(ω1)

))

we have∣∣∣∣∣ N

∑
k=−N

eiωtk 1
2π

∫
π

−π

ĝ(ω1)φ̂k(ω1)eiω1t dω1

∣∣∣∣∣= 1
2π

∫
π

−π

∣∣∣∣∣ N

∑
k=−N

eiωtk φ̂k(ω1)

∣∣∣∣∣ dω1. (19)

Further, as a consequence of Lusin’s theorem [43, p. 56], there exists a sequence of
functions {ĝn}n∈N with ĝn ∈ C[−π,π] and ‖ĝn‖L∞[−π,π] ≤ 1, such that
limn→∞ ĝn(ω1) = ĝ(ω1) almost everywhere. It follows from Lebesgue’s dominated
convergence theorem and (19) that
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lim
n→∞

∣∣∣∣∣ N

∑
k=−N

eiωtk 1
2π

∫
π

−π

ĝn(ω1)φ̂k(ω1)eiω1t dω1

∣∣∣∣∣
=

∣∣∣∣∣ N

∑
k=−N

eiωtk 1
2π

∫
π

−π

ĝ(ω1)φ̂k(ω1)eiω1t dω1

∣∣∣∣∣
=

1
2π

∫
π

−π

∣∣∣∣∣ N

∑
k=−N

eiωtk φ̂k(ω1)

∣∣∣∣∣ dω1.

Hence, taking the limit n→ ∞ on both sides of

sup
‖ĝ‖L∞[−π,π]≤1

ĝ∈C[−π,π]

∣∣∣∣∣ N

∑
k=−N

eiωtk 1
2π

∫
π

−π

ĝ(ω1)φ̂k(ω1)eiω1t dω1

∣∣∣∣∣
≥
∣∣∣∣∣ N

∑
k=−N

eiωtk 1
2π

∫
π

−π

ĝn(ω1)φ̂k(ω1)eiω1t dω1

∣∣∣∣∣
completes the proof. ut

Proof (Theorem 2). Let {tk}k∈Z ⊂ R be an arbitrary but fixed ordered complete
interpolating sequence for PW 2

π and φk as defined in (5). Further, let t ∈ R be
arbitrary but fixed.

From Lemma 1 we see that

sup
N∈N

∫
π

−π

∣∣∣∣∣ N

∑
k=−N

eiωtk φ̂k(ω1)

∣∣∣∣∣ dω1 = ∞

for all ω ∈ [−π,π]. Due to Lemma 4 this implies that

sup
N∈N

(
sup

‖ĥT ‖L∞[−π,π]≤1
ĥT∈C[−π,π]

∣∣∣∣∣ N

∑
k=−N

eiωtk 1
2π

∫
π

−π

ĥT (ω1)φ̂k(ω1)eiω1t dω1

∣∣∣∣∣
)

= ∞

for all ω ∈ [−π,π]. Thus, according to the Banach–Steinhaus theorem [43, p. 98],
for all ω ∈ [−π,π] there exists a function ĥTω

∈C[−π,π] such that

limsup
N→∞

(∣∣∣∣∣ N

∑
k=−N

eiωtk 1
2π

∫
π

−π

ĥTω
(ω1)φ̂k(ω1)eiω1t dω1

∣∣∣∣∣
)

= ∞.

Further, since ĥTω
∈C[−π,π] ⊂ L∞[−π,π], and since there is the bijection (1) be-

tween L∞[−π,π] and the set of stable LTI systems Tω : PW 1
π →PW 1

π , it follows
that for all ω ∈ [−π,π] there exists a stable LTI system Tω such that
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limsup
N→∞

∣∣∣∣∣ N

∑
k=−N

eiωtk(Tω φk)(t)

∣∣∣∣∣= ∞.

In particular, for ω = 0 there exists a stable LTI system T∗ = T0 such that

limsup
N→∞

∣∣∣∣∣ N

∑
k=−N

(T∗φk)(t)

∣∣∣∣∣= ∞. (20)

T0 is the desired stable LTI system T∗.
Next, let 0 < σ < π be arbitrary but fixed. For f ∈PW 1

σ and N ∈ N we have

N

∑
k=−N

f (tk)(T∗φk)(t) =
1

2π

∫
σ

−σ

f̂ (ω1)
N

∑
k=−N

eiω1tk(T∗φk)(t) dω1.

Hence, it follows that

sup
‖ f‖

PW 1
σ
≤1

∣∣∣∣∣ N

∑
k=−N

f (tk)(T∗φk)(t)

∣∣∣∣∣= max
ω1∈[−σ ,σ ]

∣∣∣∣∣ N

∑
k=−N

eiω1tk(T∗φk)(t)

∣∣∣∣∣
≥
∣∣∣∣∣ N

∑
k=−N

(T∗φk)(t)

∣∣∣∣∣ .
Consequently, from (20) we obtain that

limsup
N→∞

 sup
‖ f‖

PW 1
σ
≤1

∣∣∣∣∣ N

∑
k=−N

f (tk)(T∗φk)(t)

∣∣∣∣∣
= ∞.

Thus, the Banach–Steinhaus theorem [43, p. 98] implies that there exists a signal
f∗ ∈PW 1

σ such that

limsup
N→∞

∣∣∣∣∣ N

∑
k=−N

f∗(tk)(T∗φk)(t)

∣∣∣∣∣= ∞.

This completes the proof. ut

Proof (Theorem 3). The proof of Theorem 3 is identical to the proof of Theorem 2,
except that we choose ω ∈ [σ1,σ2] instead of ω = 0. Since the divergence creating
stable LTI system T∗ depends on the actual choice of ω , we see that T∗ is no longer
universal in the sense that it is independent of σ1 and σ2. ut
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4 General Measurement Functionals and Oversampling

4.1 Basic Properties of General Measurement Functionals

A key concept in signal processing is to process analog, i.e., continuous-time signals
in the digital domain. The fist step in this procedure is to convert the continuous-
time signal into a discrete-time signal, i.e., into a sequence of numbers. In Section 3
we analyzed a sampling-based system approximation, where the point evaluation
functionals f 7→ f (tk) are used to do this conversion. Next, we will proceed to more
general measurement functionals [40, 12, 13].

The approximation of T f by the system approximation process

N

∑
k=−N

f (tk)(T φk)(t) (21)

can be seen as an approximation that uses the biorthogonal system
{

e−i · tk , φ̂k
}

k∈Z.
In this setting, the sampling functionals, which define a certain measurement proce-
dure, are given by

ck( f ) = f (tk) =
1

2π

∫
π

−π

f̂ (ω)eiωtk dω, (22)

and the functions
φk(t) =

1
2π

∫
π

−π

φ̂k(ω)eiωt dω

serve as reconstruction functions in the approximation process (21).
In Theorem 2 we have seen that for f ∈PW 1

π even with oversampling an ap-
proximation of T f using the process (21) is not possible in general, because there
are signals f ∈PW 1

π and stable LTI systems T such that (21) diverges.
Next, we will study more general measurement procedures than (22) in hopes

of circumventing the divergence that was observed in Theorem 2. To this end, we
consider a complete orthonormal system {θ̂n}n∈N in L2[−π,π].

For f ∈PW 2
π the situation is simple. The measurement functionals cn : PW 2

π→
C are given by

cn( f ) =
1

2π

∫
π

−π

f̂ (ω)θ̂n(ω) dω =
∫

∞

−∞

f (t)θn(t) dt.

Further, we have

lim
N→∞

1
2π

∫
π

−π

∣∣∣∣∣ f̂ (ω)−
N

∑
n=1

cn( f )θ̂n(ω)

∣∣∣∣∣
2

dω = 0

as well as
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lim
N→∞

∫
∞

−∞

∣∣∣∣∣ f (t)− N

∑
n=1

cn( f )θn(t)

∣∣∣∣∣
2

dt = 0

for all f ∈PW 2
π .

In order that
cn( f ) =

1
2π

∫
π

−π

f̂ (ω)θ̂n(ω) dω (23)

is also a reasonable measurement procedure for f ∈PW 1
π , we need the functionals

cn : PW 1
π → C, defined by (23), to be continuous and uniformly bounded in n.

Since
sup

‖ f‖
PW 1

π
≤1
|cn( f )|= ‖θ̂n‖L∞[−π,π],

this means we additionally have to require that the functions of the complete or-
thonormal system {θ̂n}n∈N satisfy

sup
n∈N
‖θ̂n‖L∞[−π,π] < ∞. (24)

Using these more general measurement functionals (23), the system approxima-
tion process takes the form

∞

∑
n=1

cn( f )(T θn)(t). (25)

In the next section we study the approximation process (25) and analyze its conver-
gence behavior for signals f ∈PW 1

σ , 0 < σ < π . We will see that with these more
general linear measurement functionals a stable implementation of LTI systems is
possible.

A special case of measurement functionals are local averages. Reconstruction of
functions from local averages was, for example, studied in [49, 50, 51, 47].

4.2 Approximation for General Measurement Functionals and
Oversampling

The next theorem describes the convergence behavior of the approximation process
(25) in the case of oversampling.

Theorem 4. Let 0 < σ < π . There exists a complete orthonormal system {θ̂n}n∈N
in L2[−π,π] satisfying (24), an associated sequence of measurement functionals
{cn}n∈N as defined by (23), and a constant C6 such that for all stable LTI systems
T : PW 1

π →PW 1
π and all f ∈PW 1

σ we have

sup
t∈R

∣∣∣∣∣ N

∑
n=1

cn( f )(T θn)(t)

∣∣∣∣∣≤C6‖ f‖PW 1
σ
‖T‖
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for all N ∈ N, and further

lim
N→∞

(
sup
t∈R

∣∣∣∣∣(T f )(t)−
N

∑
n=1

cn( f )(T θn)(t)

∣∣∣∣∣
)

= 0. (26)

Remark 6. Theorem 4 shows that, using oversampling and more general measure-
ment functionals, it is possible to have a stable system approximation with the pro-
cess (25). This is in contrast to pointwise sampling, which was analyzed in Sec-
tion 3.4, where even oversampling is not able to prevent the divergence. It is inter-
esting to note that Theorem 4 is not only an abstract existence result. The complete
orthonormal system {θ̂n}n∈N which is used in Theorem 4 can be explicitly con-
structed by a procedure given in [36, 37].

Remark 7. In Section 4.3 we will see that oversampling is necessary in order to
obtain Theorem 4, i.e., a stable system implementation is only possible with over-
sampling and suitable measurement functionals.

Remark 8. Theorem 4 also shows that, for the space PW 1
π , it is sufficient to use a

linear process for the system approximation if oversampling is used, which intro-
duces a kind of redundance. However, for other Banach spaces this is not necessarily
true. There exist Banach spaces where non-linear processes have to be used, even in
the signal reconstruction problem [40].

For the proof of Theorem 4 we need the following theorem from [36, 37].

Theorem 5 (Olevskii). Let 0 < δ < 1. There exists an orthonormal system {ψn}n∈N
of real-valued functions that is closed in C[0,1] such that

sup
n∈N
‖ψn‖L∞[0,1] < ∞

and such that there exists a constant C7 such that for all x ∈ [δ ,1] and all N ∈N we
have ∫ 1

0

∣∣∣∣∣ N

∑
n=1

ψn(x)ψn(τ)

∣∣∣∣∣ dτ ≤C7.

Remark 9. In the above theorem, we adopted the notion of “closed” from [38]. In
[38] a system {ψn}n∈N is called closed in C[0,1] if every function in C[0,1] can be
uniformly approximated by finite linear combinations of the system {ψn}n∈N, that
is if for every ε > 0 and every f ∈ C[0,1] there exists an N ∈ N and a sequence
{αn}N

n=1 ⊂ C such that
∥∥ f −∑

N
n=1 αnψn

∥∥
L∞[0,1] < ε .

Proof (Theorem 4). Let 0 < σ < π be arbitrary but fixed and set δ = (π−σ)/(2π).
Using the functions ψn from Theorem 5, we define

θ̂n(ω) := ψn

(
ω +π

2π

)
, ω ∈ [−π,π].
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Due to the properties of the functions ψn, we see that {θ̂n}n∈N is a complete or-
thonormal system for L2[−π,π], and that

sup
n∈N
‖θ̂n‖L∞[−π,π] < ∞.

Furthermore, for ω ∈ [−σ ,σ ], we have

1
2π

∫
π

−π

∣∣∣∣∣ N

∑
n=1

θ̂n(ω)θ̂n(ω1)

∣∣∣∣∣ dω1 =
∫ 1

0

∣∣∣∣∣ N

∑
n=1

ψ̂n

(
ω +π

2π

)
ψn(τ)

∣∣∣∣∣ dτ

≤C7, (27)

according to Theorem 5, because for ω ∈ [−σ ,σ ] we have (ω +π)/(2π) ∈ [δ ,1].
Next, we study for f ∈PW 1

σ the expression

(UN f̂ )(ω) :=
N

∑
n=1

cn( f )θ̂n(ω)

=
1

2π

∫
σ

−σ

f̂ (ω1)
N

∑
n=1

θ̂n(ω)θ̂n(ω1) dω1.

We have

|(UN f̂ )(ω)| ≤ 1
2π

∫
σ

−σ

| f̂ (ω1)|
∣∣∣∣∣ N

∑
n=1

θ̂n(ω)θ̂n(ω1)

∣∣∣∣∣ dω1,

which implies, using Fubini’s theorem and (27), that

1
2π

∫
π

−π

|(UN f̂ )(ω)| dω ≤ 1
2π

∫
σ

−σ

| f̂ (ω1)|
(

1
2π

∫
π

−π

∣∣∣∣∣ N

∑
n=1

θ̂n(ω)θ̂n(ω1)

∣∣∣∣∣ dω

)
dω1

≤C7‖ f‖PW 1
σ
. (28)

Now, let f ∈PW 1
σ and ε > 0 be arbitrary but fixed. Then there exists an fε ∈

PW 2
σ such that

‖ f − fε‖PW 1
σ
< ε. (29)

We have

1
2π

∫
π

−π

| f̂ (ω)− (UN f̂ )(ω)| dω

≤ 1
2π

∫
π

−π

| f̂ (ω)− f̂ε(ω)| dω +
1

2π

∫
π

−π

| f̂ε(ω)− (UN f̂ε)(ω)| dω

+
1

2π

∫
π

−π

|(UN( f̂ − f̂ε))(ω)| dω

≤ ε +C7ε +

(
1

2π

∫
π

−π

| f̂ε(ω)− (UN f̂ε)(ω)|2 dω

) 1
2
,
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where we used (28) and (29). Since PW 2
σ ⊂PW 2

π and {θ̂n}n∈N is a complete
orthonormal system in L2[−π,π], there exists a natural number N0 = N0(ε) such
that (

1
2π

∫
π

−π

| f̂ε(ω)− (UN f̂ε)(ω)|2 dω

) 1
2
< ε

for all N ≥ N0. Hence, we have

1
2π

∫
π

−π

| f̂ (ω)− (UN f̂ )(ω)| dω ≤ ε(2+C7)

for all N ≥ N0. This shows that

lim
N→∞

1
2π

∫
π

−π

| f̂ (ω)− (UN f̂ )(ω)| dω = 0. (30)

Next, let T : PW 1
π →PW 1

π be an arbitrary but fixed stable LTI system. We
have

(T f )(t)−
N

∑
n=1

cn( f )(T θn)(t)

=
1

2π

∫
π

−π

(
f̂ (ω)ĥT (ω)eiωt −

N

∑
n=1

cn( f )ĥT (ω)θ̂n(ω)eiωt

)
dω

=
1

2π

∫
π

−π

( f̂ (ω)− (UN f̂ )(ω))ĥT (ω)eiωt dω

and consequently∣∣∣∣∣(T f )(t)−
N

∑
n=1

cn( f )(T θn)(t)

∣∣∣∣∣≤ ‖ĥT‖L∞[−π,π]
1

2π

∫
π

−π

| f̂ (ω)−(UN f̂ )(ω)| dω (31)

for all t ∈ R. From (30) and (31) we see that

lim
N→∞

(
sup
t∈R

∣∣∣∣∣(T f )(t)−
N

∑
n=1

cn( f )(T θn)(t)

∣∣∣∣∣
)

= 0.

Further, we have∣∣∣∣∣ N

∑
n=1

cn( f )(T θn)(t)

∣∣∣∣∣≤ 1
2π

∫
π

−π

|(UN f̂ )(ω)ĥT (ω)| dω

≤C7‖ĥT‖L∞[−π,π]‖ f‖PW 1
σ
,

where we used (28) in the last inequality. ut
Remark 10. Since {θ̂n}n∈N is a complete orthonormal system in L2[−π,π], it fol-
lows that the projections of the functions {θn}n∈N onto PW 2

σ form a Parseval frame
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for PW 2
σ , 0 < σ < π [25, p. 231]. Although we have seen in Remark 3 that a frame

does not necessary lead to a convergent approximation process, Theorem 4 shows
that there are even Parseval frames for which we have convergence.

4.3 The Necessity of Oversampling

In Section 4.2 we have seen that if oversampling and generalized measurement func-
tionals are used, we can approximate T f by (25). The question whether this remains
true if no oversampling is used, is the subject of this section. We want to answer this
question for a large class of practically relevant measurement functionals.

We start with a biorthogonal system {γ̂n, φ̂n}n∈N, i.e., a system that satisfies

1
2π

∫
π

−π

γ̂n(ω)φ̂m(ω) dω =

{
1, m = n,
0, m 6= n.

Further, we assume that {γ̂n}n∈N ⊂ L∞[−π,π] and {φn}n∈N ⊂PW 2
π , and define the

measurement functionals by

cn( f ) :=
1

2π

∫
π

−π

f̂ (ω)γ̂n(ω) dω, n ∈ N. (32)

As discussed in Section 4, we additionally require that

sup
n∈N
‖γ̂n‖L∞[−π,π] < ∞, (33)

in order that (32) defines reasonable measurement functionals for f ∈PW 1
π . We

further assume that there exists a constant C8 such that for any finite sequence {an}
we have ∫

∞

−∞

∣∣∣∣∑
n

anφn(t)
∣∣∣∣2 dt ≤C8 ∑

n
|an|2. (34)

Condition (34) relates the l2-norm of the coefficients to the L2(R)-norm of the
continuous-time signal. If (34) is fulfilled, the L2(R)-norm of the continuous-time
signal is always bounded above by the l2-norm of the coefficients, i.e., the measure-
ment values. This property is practically interesting, because in digital signal pro-
cessing we operate on the sequence of coefficients {an}n∈N by using stable l2→ l2

mappings, and we always want to be able to control the L2(R)-norm of the corre-
sponding continuous-time signal. Note that in the special case of equidistant point-
wise sampling at Nyquist rate, the norms are equal according to Parseval’s equality.

Remark 11. Instead of requiring (34) to hold we could also require that there exists
a constant C9 such that for any finite sequence {an} we have
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∞

−∞

∣∣∣∣∑
n

anγn(t)
∣∣∣∣2 dt ≥C9 ∑

n
|an|2. (35)

Indeed (35) is a weaker assumption than (34), because condition (34) implies con-
dition (35) but the reverse direction is not true in general.

Remark 12. Note that the setting which we consider here is a generalization of the
setting that arises when staring with complete interpolating sequences.

Theorem 6. Let {γ̂n, φ̂n}n∈N be a biorthogonal system that satisfies (33) and (34),
and let {cn}n∈N be the associated sequence of measurement functionals as defined
by (32). For every t ∈ R there exist a stable LTI system T∗ : PW 1

π →PW 1
π and a

signal f∗ ∈PW 1
π such that

limsup
N→∞

∣∣∣∣∣ N

∑
n=1

cn( f∗)(T∗φn)(t)

∣∣∣∣∣= ∞. (36)

Remark 13. The orthonormal sequence from Section 4 of course satisfies the con-
ditions of Theorem 6. This shows how important the assumption of oversampling,
i.e., f ∈PW 1

σ , σ < π , is in order to obtain Theorem 4.

For the proof we use the following result from [52], which is included here for
convenience, with a slightly modified notation.

Proposition 1 (Szarek). Let (S,B,m) a probability space and { fn,gn}n∈N a biorthog-
onal sequence of measurable functions on S (i.e.,

∫
S fkgn dm = δkn) such that

1. ‖gn‖∞ ≤ 1 for n = 1,2, . . . ,N.
2.
∫

S|∑N
n=1 sn fn|2 dm≤C ∑

N
n=1|sn|2 for some C > 0 and for all sequences of scalars

s1, . . . ,sN (and, as a consequence,
∫

S|∑N
n=1 tngn|2 dm ≥ C−1

∑
N
n=1|tn|2 for all

scalars t1, . . . , tN).

Then there exists C′ > 0, depending only on C, such that

max
1≤M≤N

∫
S

∫
S

∣∣∣∣∣ M

∑
n=1

gn(t) fn(s)

∣∣∣∣∣ dm(t) dm(s)≥C′ log(N).

Proof (Theorem 6). Let {γ̂n, φ̂n}n∈N be an arbitrary but fixed biorthogonal system
that satisfies (33) and (34). According to Proposition 1 we have

max
1≤M≤N

(
1

2π

)2 ∫ π

−π

∫
π

−π

∣∣∣∣∣ M

∑
n=1

γ̂n(ω)φ̂n(ω1)

∣∣∣∣∣ dω dω1 ≥C10 log(N)

with a universal constant C10. This implies that

max
1≤M≤N

esssup
ω∈[−π,π]

1
2π

∫
π

−π

∣∣∣∣∣ M

∑
n=1

γ̂n(ω)φ̂n(ω1)

∣∣∣∣∣ dω1 ≥C10 log(N).
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As in the proof of Theorem 2 it is shown that there exists a stable LTI system
T∗ : PW 1

π →PW 1
π such that

limsup
N→∞

esssup
ω∈[−π,π]

∣∣∣∣∣ N

∑
n=1

γ̂n(ω)(T∗φn)(t)

∣∣∣∣∣= ∞.

And again by the same reasoning as in the proof of Theorem 2, there exists a signal
f∗ ∈PW 1

π such that

limsup
N→∞

∣∣∣∣∣ N

∑
n=1

(
1

2π

∫
π

−π

f̂∗(ω)γ̂n(ω) dω

)
(T∗φn)(t)

∣∣∣∣∣= ∞.

This completes the proof. ut

5 Convergence of Subsequences of Certain Measurement
Procedures

So far, we have seen that a system approximation is possible if we use suitable
measurement functionals and oversampling. Further, the previous section has shown
that oversampling is necessary, because without oversampling we can always find
a stable LTI system T∗ : PW 1

π →PW 1
π and a signal f∗ ∈PW 1

π such that (36) is
true. Since in (36) we have a limsup, it is legitimate to ask whether there exists an
increasing subsequence {MN}N∈N of the natural numbers such that

lim
N→∞

∣∣∣∣∣(T f )(t)−
MN

∑
n=1

cn( f )(T φn)(t)

∣∣∣∣∣= 0. (37)

If (37) was true it would show that a careful choice of the number of measurements
that are used in each step of the approximation could generate a convergent approx-
imation process, even without oversampling. Theorem 7 will answer this question
in the affirmative for a special pair of measurement functionals and reconstruction
functions.

For k ∈ N0 = N∪{0} we consider the functions

θ̂k(ω) = wk

(
ω +π

2π

)
, −π ≤ ω < π, (38)

where wk are the Walsh functions. Then {θ̂k}k∈N0 is a complete orthonormal system
in L2[−π,π]. Further, let T : PW 1

π →PW 1
π be a stable LTI system. For t ∈ R we

define
ck( f , t) :=

1
2π

∫
π

−π

f̂ (ω)θ̂k(ω)eiωt dω, (39)
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and analyze the convergence behavior of

2N

∑
k=0

ck( f ,0)(T θk)(t) (40)

and
2N

∑
k=0

ck( f , t)(T θk)(0) (41)

as N tends to infinity. In (40) we have the ordinary system approximation process,
except for the difference that the number of measurements, and consequently the
number of summands used for the approximation, is doubled in each approxima-
tion step. In (41) we have an alternative implementation of the system, where the
variable t is included in the measurement functionals. As in (40), the number of
measurements is doubled in each step.

We have the following result.

Theorem 7. Let {θk}k∈N0 be defined through its Fourier transform (38) and ck as
in (39). For all f ∈PW 1

π and all stable LTI systems T : PW 1
π →PW 1

π we have

lim
N→∞

(
sup
t∈R

∣∣∣∣∣(T f )(t)−
2N

∑
k=0

ck( f ,0)(T θk)(t)

∣∣∣∣∣
)

= 0 (42)

and

lim
N→∞

(
sup
t∈R

∣∣∣∣∣(T f )(t)−
2N

∑
k=0

ck( f , t)(T θk)(0)

∣∣∣∣∣
)

= 0. (43)

Theorem 7 shows that there exists a complete orthonormal system that leads to
a stable system approximation process for all f ∈PW 1

π and all stable LTI systems
T : PW 1

π →PW 1
π if we restrict to a suitable subsequence. It is important to note

that the subsequence is universal because it neither depends on the signal f nor on
the system T . It is also interesting that with this kind of approximation we do not
need oversampling in order to have convergence.

Remark 14. For sampling-based signal processing with equidistant sampling points
at Nyquist rate such a result cannot exist, because for every subsequence {MN}N∈N
of the natural numbers there exists a signal f∗ ∈ PW 1

π and stable LTI system
T∗ : PW 1

π →PW 1
π such that

limsup
N→∞

(
sup
t∈R

∣∣∣∣∣(T∗ f∗)(t)−
MN

∑
k=−MN

f∗(k)(T∗ sinc( · − k))(t)

∣∣∣∣∣
)

= ∞.

This follows directly from the fact that there exists a positive constant C11 such that

1
2π

∫
π

−π

∣∣∣∣∣ N

∑
k=−N

eik(ω−ω1)

∣∣∣∣∣ dω1 ≥C11 log(N) (44)
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for all ω ∈ [−π,π] and all N ∈ N [54, p. 67].

Proof (Theorem 7). Let {θk}k∈N0 be defined through its Fourier transform (38) and
ck as in (39). Further, let f ∈PW 1

π and T : PW 1
π→PW 1

π be a stable LTI system,
both arbitrary but fixed.

We first prove (42). In [22] it was shown that

lim
N→∞

1
2π

∫
π

−π

∣∣∣∣∣ f̂ (ω)−
2N

∑
k=0

ck( f ,0)θ̂k(ω)

∣∣∣∣∣ dω = 0.

Further, since∣∣∣∣∣(T f )(t)−
2N

∑
k=0

ck( f ,0)(T θk)(t)

∣∣∣∣∣
=

∣∣∣∣∣ 1
2π

∫
π

−π

f̂ (ω)ĥT (ω)eiωt −
2N

∑
k=0

ck( f ,0)θ̂k(ω)ĥT (ω)eiωt dω

∣∣∣∣∣
=

∣∣∣∣∣ 1
2π

∫
π

−π

(
f̂ (ω)−

2N

∑
k=0

ck( f ,0)θ̂k(ω)

)
ĥT (ω)eiωt dω

∣∣∣∣∣
≤ ‖ĥT‖L∞[−π,π]

1
2π

∫
π

−π

∣∣∣∣∣ f̂ (ω)−
2N

∑
k=0

ck( f ,0)θ̂k(ω)

∣∣∣∣∣ dω,

the first assertion of the theorem is proved.
Next, we prove (43). Let ε > 0 be arbitrary but fixed. There exists a measurable

set Fε ⊂ [−π,π] such that

1
2π

∫
Fε

| f̂ (ω)| dω <
ε

2

and
esssup

ω∈[−π,π]\Fε

| f̂ (ω)|=C( f̂ ,Fε)< ∞.

Further, we have
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2π

∫
π

−π

(
ĥT (ω)−

2N

∑
k=0

θ̂k(ω)(T θk)(0)

)
f̂ (ω)eiωt dω

∣∣∣∣∣
≤ 1

2π

∫
π

−π

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣ | f̂ (ω)| dω

=
1

2π

∫
Fε

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣ | f̂ (ω)| dω

+
1

2π

∫
[−π,π]\Fε

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣ | f̂ (ω)| dω. (45)

Next, we analyze the two summands on the right hand side of (45). For the first
summand we have

1
2π

∫
Fε

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣ | f̂ (ω)| dω

≤ 1
2π

∫
Fε

|ĥT (ω)|| f̂ (ω)| dω +
1

2π

∫
Fε

∣∣∣∣∣ 2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣ | f̂ (ω)| dω

≤ 2‖ĥT‖L∞[−π,π]
1

2π

∫
Fε

| f̂ (ω)| dω

< ε‖ĥT‖L∞[−π,π], (46)

because∣∣∣∣∣ 2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣=
∣∣∣∣∣ 1
2π

∫
π

−π

ĥT (ω1)
2N

∑
k=0

θ̂k(ω)θ̂k(ω1) dω1

∣∣∣∣∣
≤ ‖ĥT‖L∞[−π,π]

1
2π

∫
π

−π

∣∣∣∣∣ 2N

∑
k=0

θ̂k(ω)θ̂k(ω1)

∣∣∣∣∣ dω1

and
1

2π

∫
π

−π

∣∣∣∣∣ 2N

∑
k=0

θ̂k(ω)θ̂k(ω1)

∣∣∣∣∣ dω1 = 1 (47)

for all ω ∈ [−π,π] [22, 44]. For the second summand we have
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1
2π

∫
[−π,π]\Fε

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣ | f̂ (ω)| dω

≤C( f̂ ,Fε)
1

2π

∫
[−π,π]\Fε

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣ dω

≤C( f̂ ,Fε)

 1
2π

∫
π

−π

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣
2

dω

 1
2

,

and because

lim
N→∞

1
2π

∫
π

−π

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣
2

dω = 0,

according to [44], there exists a natural number N0 = N0(ε) such that

1
2π

∫
[−π,π]\Fε

∣∣∣∣∣ĥT (ω)−
2N

∑
k=0

θ̂k(ω)(T θk)(0)

∣∣∣∣∣ | f̂ (ω)| dω < ε (48)

for all N ≥ N0. Combining (45), (46), and (48), we see that∣∣∣∣∣ 1
2π

∫
π

−π

(
ĥT (ω)−

2N

∑
k=0

θ̂k(ω)(T θk)(0)

)
f̂ (ω)eiωt dω

∣∣∣∣∣≤ (‖ĥT‖L∞[−π,π]+1)ε

for all N ≥ N0, and since∣∣∣∣∣(T f )(t)−
2N

∑
k=0

ck( f , t)(T θk)(0)

∣∣∣∣∣
=

∣∣∣∣∣ 1
2π

∫
π

−π

(
ĥT (ω)−

2N

∑
k=0

θ̂k(ω)(T θk)(0)

)
f̂ (ω)eiωt dω

∣∣∣∣∣ ,
the proof is complete. ut

Theorem 7 shows that if the summation is restricted to a suitable subsequence
of the natural numbers, we can have a convergent system approximation process
if we use measurement functionals. Now the question arises if this is also true for
pointwise sampling as analyzed in Section 3. Since in Theorem 2 we only have a
limsup this could be the case. However, we have the following conjecture.

Conjecture 3. Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for
PW 2

π . Then there exists a positive constant C12 such that

1
2π

∫
π

−π

∣∣∣∣∣ N

∑
k=−N

eiωtk φ̂k(ω1)

∣∣∣∣∣ dω1 ≥C12 log(N) (49)
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for all ω ∈ [−π,π] and all N ∈ N.

If this conjecture is true then the derivations in this work imply that a theorem such
as Theorem 7 cannot hold for the sampling-based system approximation that was
treated in Section 3. Because then, for every subsequence {MN}N∈N of the natural
numbers and all ordered complete interpolating sequences {tk}k∈Z ⊂ R we have

limsup
N→∞

(
sup
t∈R

∣∣∣∣∣(T∗ f∗)(t)−
MN

∑
k=−MN

f∗(tk)(T∗φk)(t)

∣∣∣∣∣
)

= ∞ (50)

for some f∗ ∈PW 1
π and some stable LTI system T∗ : PW 1

π →PW 1
π . In fact,

in order to obtain this negative result for sampling-based system approximation it
would suffice to have an arbitrary sequence {LN}N∈N with limN→∞ LN = ∞ on the
right-hand side of (49). Note that we already know from (44) and Remark 14 that
Conjecture 3 and (50) are true for the special case of equidistant sampling.

6 More General Measurement Functionals

In this section we consider even more general measurement functionals than those
in Section 4. For this, we restrict ourselves to stable LTI systems T with continuous
ĥT .

Now let {ĝn}n∈N ⊂C[−π,π] be a sequence of functions with the following prop-
erties:

1. supn∈N‖ĝn‖L∞[−π,π] < ∞ and infn∈N‖ĝn‖L∞[−π,π] > 0.
2. {ĝn}n∈N is closed in C[−π,π] and minimal, in the sense that for all m ∈ N the

function ĝm is not in the closed span of {ĝn}n6=m.
3. There exists a constant C13 > 0 such that for any finite sequences {an} we have∥∥∥∥∑

n
anĝn

∥∥∥∥
L∞[−π,π]

≥ 1
C13

(
∑
n
|an|2

) 1
2
. (51)

Property 2 guarantees that there exists a unique sequence of functionals {un}n∈N
which is biorthogonal to {ĝn}n∈N [25, p. 155].

We shortly discuss the structure of measurement functionals and approximation
processes which are based on sequences {ĝn}n∈N⊂C[−π,π] that satisfy the proper-
ties 1–3. Let {un}n∈N be the unique sequence of functionals which is biorthogonal
to {ĝn}n∈N. Since we assume that ĥT ∈ C[−π,π], it follows that there exist finite
regular Borel measures µn such that

un(ĥT ) =
1

2π

∫
π

−π

ĥT (ω) dµn(ω).
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In [52] it was shown that, due to property 3, there exists a regular Borel measure ν

such that
∞

∑
n=1
|cn(ĥT )|2 ≤C14

∫
π

−π

|ĥT (ω)|2 dν(ω).

Further, all Borel measures µn are absolutely continuous with respect to ν , and the
Radon–Nikodym derivatives of µn with respect to ν , which we call Fn, are in L2(ν),
i.e, we have ∫

π

−π

|Fn(ω)|2 dν(ω)< ∞.

It follows that
1

2π

∫
π

−π

ĝn(ω)Fl(ω) dν(ω) =

{
1, n = l,
0, n 6= l,

i.e., the system {ĝn,Fn}n∈N is a biorthogonal system with respect to the measure ν .
Note that this time we have a system that is biorthogonal with respect to the

regular Borel measure ν and not with respect to the Lebesgue measure, as before.
Thus, if we only require property 3, we cannot find a corresponding biorthogonal
system for the Lebesgue measure in general, but only for more general measures.
Nevertheless, we can obtain the divergence result that is stated in Theorem 8.

In [52] it was analyzed whether a basis for C[−π,π] that satisfies the above prop-
erties 1–3 could exist, and the nonexistence of such a basis was proved. We employ
this result to prove the following theorem, in which we use the abbreviations

cn( f , t) :=
1

2π

∫
π

−π

f̂ (ω)ĝn(ω)eiωt dω.

and
wn(ĥT , t) =

1
2π

∫
π

−π

ĥT (ω)eiωtFn(ω) dν(ω). (52)

Theorem 8. Let {ĝn}n∈N ⊂C[−π,π] be an arbitrary sequence of functions that sat-
isfies the above properties 1–3, and let t ∈ R. Then we have:

1. There exists a stable LTI system T∗1 : PW 1
π →PW 1

π with ĥT∗1 ∈C[−π,π] and
a signal f∗1 ∈PW 1

π such that

limsup
N→∞

∣∣∣∣∣ N

∑
n=1

cn( f∗1, t)wn(ĥT∗1 ,0)

∣∣∣∣∣= ∞. (53)

2. There exists a stable LTI system T∗2 : PW 1
π →PW 1

π with ĥT∗2 ∈C[−π,π] and
a signal f∗2 ∈PW 1

π such that

limsup
N→∞

∣∣∣∣∣ N

∑
n=1

cn( f∗2,0)wn(ĥT∗2 , t)

∣∣∣∣∣= ∞. (54)
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Proof. We start with the proof of assertion 1. In [52] it was proved that there exists
no basis for C[−π,π] with the above properties 1–3. That is, if we set

(SN ĥT )(ω) =
N

∑
n=1

wn(ĥT ,0)ĝn(ω), ω ∈ [−π,π],

then, for
‖SN‖= sup

ĥT∈C[−π,π],

‖ĥT ‖L∞[−π,π]≤1

‖SN ĥT‖L∞[−π,π]

we have according to [52] that

limsup
N→∞

‖SN‖= ∞.

Due to the Banach–Steinhaus theorem [43, p. 98] there exists a ĥT∗1 ∈C[−π,π] such
that

limsup
N→∞

(
max

ω∈[−π,π]

∣∣∣∣∣ N

∑
n=1

wn(ĥT∗1 ,0)ĝn(ω)

∣∣∣∣∣
)

= ∞. (55)

Since

N

∑
n=1

(
1

2π

∫
π

−π

f̂ (ω)ĝn(ω)eiωt dω

)
wn(ĥT∗1 ,0)

=
1

2π

∫
π

−π

f̂ (ω)eiωt

(
N

∑
n=1

wn(ĥT∗1 ,0)ĝn(ω)

)
dω,

and

sup
‖ f‖

PW 1
π
≤1

N

∑
n=1

(
1

2π

∫
π

−π

f̂ (ω)ĝn(ω)eiωt dω

)
wn(ĥT∗1 ,0)

= max
ω∈[−π,π]

∣∣∣∣∣ N

∑
n=1

wn(ĥT∗1 ,0)ĝn(ω)

∣∣∣∣∣ ,
it follows from (55) and the Banach–Steinhaus theorem [43, p. 98] that there exists
an f∗1 ∈PW 1

π such that (53) is true.
Now we prove assertion 2. For ĥT ∈ C[−π,π], it follows for fixed t ∈ R that

ĥT (ω)eiωt is a continuous function on [−π,π], and hence the integral (52) exists.
Let t ∈ R be arbitrary but fixed, and let ĥT∗1 ∈C[−π,π] be the function from (55).
We define

ĥT∗2(ω) = e−iωt ĥT∗1(ω), ω ∈ [−π,π],

and clearly we have ĥT∗2 ∈C[−π,π]. It follows that
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N

∑
n=1

wn(ĥT∗2 , t)ĝn(ω) =
N

∑
n=1

wn(ĥT∗1 ,0)ĝn(ω)

for all ω ∈ [−π,π] and all N ∈ N. Hence, we see from (55) that

limsup
N→∞

(
max

ω∈[−π,π]

∣∣∣∣∣ N

∑
n=1

wn(ĥT∗2 , t)ĝn(ω)

∣∣∣∣∣
)

= ∞,

and, by the same reasoning that was used in the proof of assertion 1, there exists an
f∗2 ∈PW 1

π such that (54) is true. ut
Remark 15. Clearly, the development of an implementation theory, as outlined in the
introduction, is a challenging task. Some results are already known. For example,
in [8] it was shown that for bounded bandlimited signals a low-pass filter cannot be
implemented as a linear system, but only as a non-linear system. Further, problems
that arise due to causality constraints were discussed in [42].

At this point, it is worth noting that Arnol’d’s [1] and Kolmogorov’s [30] solu-
tion of Hilbert’s thirteenth problem [28] give another implementation for the analog
computation of functions. For a discussion of the solution in the context of commu-
nication networks, we would like to refer the reader to [24].

Finally, it would also be interesting to connect the ideas of this work with Feyn-
man’s “Physics of Computation” [21] and Landauer’s principle [31, 32]. Right now
we are at the beginning of this development.

”Wir, so gut es gelang, haben das Unsre [(vorerst)] getan.”
Friedrich Hölderlin ”Der Gang aufs Land - An Landauer”
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