A Radical Role for TOR in Longevity

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Lamming, Dudley W., and David M. Sabatini. "A Radical Role for TOR in Longevity." Cell Metabolism 13, no. 6 (June 2011): 617–618. © 2011 Elsevier Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.cmet.2011.05.006</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/92330</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
A Radical Role for TOR in Longevity

Dudley W. Lamming¹ and David M. Sabatini¹,2,3,4,5,*

¹Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
²Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
³Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁴David H. Koch Institute for Integrative Cancer Research at M.I.T., 500 Main Street, Cambridge, MA 02139, USA
⁵The Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA

*Correspondence: sabatini@wi.mit.edu
DOI 10.1016/j.cmet.2011.05.006

TOR (target of rapamycin) signaling regulates life span in many organisms, but the mechanism behind the effect is unknown. In this issue of Cell Metabolism, Pan and colleagues (2011) find that reduced TORC1 activity promotes yeast life span via a mechanism that, paradoxically, relies upon the production of normally deleterious reactive oxygen species.

The budding yeast Saccharomyces cerevisiae has proven to be a remarkably fruitful model for aging researchers. S. cerevisiae undergoes two distinct types of aging: replicative aging, in which the number of daughter cells that bud from a single mother cell is tallied, and chronological aging, which is defined by the length of time that a yeast culture can maintain viability in stationary phase. Yeast replicative aging is mediated, at least in part, by translation, and longevity can be promoted by deletion of ribosomal subunits (reviewed in Kaeberlein and Kennedy, 2011). Yeast chronological life span, however, is thought to be heavily dependent on resistance to oxidative stress (Fabrizio et al., 2003).

Inhibition of TOR (target of rapamycin) signaling in yeast, either by deletion of TOR1 or by treatment with rapamycin, an FDA-approved inhibitor of mTOR signaling, extends both chronological and replicative life span (Ha and Huh, 2011; Medvedik et al., 2007; also reviewed in Kaeberlein and Kennedy, 2011). Studies in yeast, C. elegans, and D. melanogaster have linked TOR-mediated life span extension to inhibition of translation and suggest that calorie restriction (CR), an intervention that extends the life span of many organisms, including mammals, works to some extent through similar mechanisms (reviewed in Kaeberlein and Kennedy, 2011). Recent work demonstrating that rapamycin can extend the life span of mice has generated significant interest in understanding the mechanism by which inhibition of mTOR signaling promotes life span extension (Harrison et al., 2009).

Recently, the validity of using yeast chronological life span as a longevity model has been questioned, with the discovery that yeast chronological life span is significantly inhibited by the buildup of acetic acid and ethanol in the growth media (Burtner et al., 2009; Fabrizio et al., 2005). In this issue of Cell Metabolism, Pan and colleagues (2011) show that the effect of TOR on life span in yeast is cell-intrinsic and demonstrate that reduced TORC1 signaling leads to increased mitochondrial respiration during logarithmic phase growth, with increased generation of reactive oxygen species (ROS) (Figure 1). Blocking this increase in ROS by overexpressing SOD2, the yeast mitochondrial superoxide dismutase, significantly decreases the ability of TOR inhibition to extend life span. This shows that the superoxide signal is the key to yeast chronological life span extension.

Pan and colleagues' work supports the validity of yeast chronological life span as a model for aging, and not simply as an assay for resistance to the detrimental effects of acetic acid, as previously suggested (Burtner et al., 2009). The authors find that neutralizing the media, which was previously shown to extend yeast chronological life span, significantly alters mitochondrial metabolism. In a series of elegant media-exchange experiments, the authors demonstrate that the effect of TOR on chronological life span is not affected by a differential accumulation of acetic acid or other metabolites in the growth media of tor1Δ yeast. While yeast replicative aging genes more closely overlap genes that extend life span in C. elegans than yeast chronological life span genes (Burtner et al., 2011), homologs of yeast chronological life span genes may still play a role in life span in higher organisms, and it seems likely that yeast
The surprising concept that mitochondrial superoxide plays a key, positive role in the regulation of life span has emerged in the past few years. In 2007, Michael Ristow’s group found that mitochondrial superoxide generation was required for glucose restriction to extend the life span of C. elegans (Schulz et al., 2007). More recently, it was demonstrated that a superoxide-based signal was required for CR to extend yeast chronological life span (Mesquita et al., 2010). When combined with the present work, these studies provide significant support for the concept that, while ROS may contribute to the aging process, the generation of a low level of superoxide in the mitochondria can prime cellular defenses against ROS and other stressors, with a net positive effect on cellular defenses and organismal life span. This effect has been named mitochondrial hormesis (mitohormesis). As we continue to learn more about the fundamental mechanisms of aging in mammals, it will not be surprising if mitohormesis, like other key mechanisms of aging, is conserved in humans, mice, flies, worms, and yeasts.

Figure 1. Rapamycin Promotes Yeast Chronological Life Span
Rapamycin treatment of a yeast culture (top) during the logarithmic growth phase increases mitochondrial respiration and the generation of reactive oxygen species, resulting in the induction of cellular defense mechanisms that protect the yeast and will preserve viability during stationary phase. In contrast, an untreated yeast culture (bottom) experiences less oxidative stress during logarithmic growth and is unprepared for the harsh environment of stationary phase. Figure by Tom DiCesare, Whitehead Institute.

It remains an open question if mitohormesis will promote life span in mammals. If so, it is possible that antioxidants, which have generally been thought of as beneficial, may actually have negative consequences. Understanding the mechanism by which increased mitochondrial ROS production leads to extended chronological life span may eventually pave the way for the development of small molecules that can activate this pathway without directly inducing oxidative stress. Efforts to find small molecule mimetics of CR will have to deal with the paradoxical conclusion that, in order to obtain beneficial effects on life span and organismal health, we may have to, first, do a small amount of harm.

REFERENCES

