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ABSTRACT

Piezomechanical loading of an adhesive joint is a very close analogue to the loading imposed

by adherends with dissimilar thermal expansion coefficients under a temperature change.

Using this concept, a double lap joint test specimen was developed to investigate the damage

mechanisms in solder joints for electronic packaging applications under cyclic loading

conditions. Analytical results are derived for the plastic shear strain at the free edges of such a

specimen using a shear lag model. Results are also presented for the strain energy release rate

for steady state crack growth. Experimental results and observations are presented for the

damage processes in lead-tin eutectic solder joints between PZT-5H adherends. The lifetime of

a specimen can be divided into two regimes: initiation and steady crack growth. Cracking was

generally observed to initiate at voids and other defects in the solder joint. The time to initiate

damage, the total joint life, and crack growth rates were quantified as a function of applied

loading. Data for damage initiation was quite scattered, reflecting the variation in joint quality,

but broadly conformed to a Coffin-Manson relationship. The data for crack growth rate

approximately corresponded to a Paris law at higher applied voltages. At lower voltages, a

strong dependence on frequency was observed, and there was evidence of a threshold strain-

energy release rate. Crack growth rates increased with increasing temperature over the range 0-

25'C, but decreased up to 80'C. The appendices detail the specimen manufacturing techniques,

the experimental set-up, and the testing methods and regime. An expanded literature review for

this work is also provided in the appendices for further background and insight as to the issues

surrounding adhesive fatigue.

Thesis Supervisor: S. Mark Spearing

Title: Esther and Harold E. Edgerton Associate Professor of Aeronautics and Astronautics
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1. Introduction

The thermomechanical fatigue of solder joints is a common cause of failure of microelectronic

devices. Notwithstanding the importance of this failure mode, there is a general lack of clear

guidelines for the selection of materials, the design, and the manufacturing of solder joints to

ensure their reliability. This reflects the fact that the lifetimes of solder joints in service are

governed by multiple interacting factors. Typically, fatigue failures occur in solder joints

between sub-components with different thermal expansion characteristics, either because of the

use of dissimilar materials, or because of thermal gradients in the device. Thus, when the

device is turned on or off, a temperature change occurs and the solder joint is subjected to a

stress/deformation cycle. This mechanical loading couples with time-dependent material

responses. Since solders are low melting point alloys (Tm - 200'C), creep effects are

significant over the temperature range of a typical thermal cycle (-50 to +150'C). Furthermore,

prolonged operation at elevated temperature can lead to diffusion-controlled processes, such as

grain growth, segregation, void growth and diffusion of metallization layers into the bulk of

the solder. Anecdotal evidence also suggests that the presence of voids, the shape of fillets at

the edge of joints, the metallizations applied to the adherends, and the solder layer thickness all

play important roles in determining joint reliability.1 4 It is difficult to separate the relative

importance of these effects experimentally to determine the fatigue life. Generally, testing

consists of power cycling complete devices, or thermal cycling, which is achieved by

alternately transferring devices between hot and cold environments. These approaches

inevitably result in both cycle-dependent and time- and temperature-dependent effects occurring

simultaneously. This convolution of degradation processes has hitherto prevented the

construction of effective models for the failure of solder joints. Various investigators have

developed methods to apply purely mechanical loading to solder joints in attempts to isolate the

mechanical contribution to solder fatigue.5 However, applied mechanical loading does not

exactly replicate the stress and strain state that is induced by thermal expansion mismatch,

particularly for the case of lap joints with relatively large bonded areas, as opposed to solder

bumps, pin attachments, or wire bonding.

The hypothesis behind the work presented in this paper is that piezo-actuation can be used as

an analogue of thermal cycling. The deformation of piezo-ceramic materials under an electric

field is similar to thermal expansion-induced deformation. By actuating piezo-ceramic

substrates soldered together, a stress and strain state can be induced in the solder, which is

nearly identical to that which would be produced in a joint between two dissimilar adherends
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with a thermal expansion mismatch under thermal cycling conditions. Since the piezo-actuation

does not involve a temperature change, this approach should make it possible to separate the

effects of mechanical fatigue from time and temperature dependent effects. Two further

opportunities are provided by this piezo/thermal analogue. Firstly, the rate of thermal cycling

is limited by the time required for the specimen to reach thermal equilibrium before the

temperature is reversed. This limits the frequency of testing to the order of four cycles per

hour for liquid to liquid testing, and even slower rates for gas to gas testing.' Given the high

frequency capability of piezo-ceramics, the potential exists for performing accelerated testing.

Secondly, since test specimens do not have to be transferred between chambers of hot and cold

fluids, it is easier to make in situ observations of damage accumulation during cycling. This

capability is important in isolating the mechanisms of solder fatigue failure.

The research presented in this thesis shows experimental results and supporting analysis of the

capability to use piezo-actuation to cyclically load solder lap joints to failure. Section 2

presents mechanics analyses of the analogy between thermomechanical and piezomechanical

actuation of solder joints. Section 3 presents the experimental details of the manufacturing and

testing of the piezo-actuated solder fatigue specimens. Section 4 presents the experimental

results. Section 5 contains a discussion of the results and section 6 presents some conclusions

and suggestions for future work.

2. Modeling

The fatigue failure of solder joints can be divided into two regimes: damage initiation and

damage growth.' For different joint configurations, solder types, and loading cases, either

regime may control the overall lifetime of the joint. In this section, these two regimes are

treated separately. The analysis presented here will focus on the double lap joint configuration

shown in Figure 1. This geometry has several experimental advantages over a single lap joint,

which is more commonly found in microelectronic applications. The symmetry of the

specimen eliminates bending deformations by actuating the piezo-ceramic adherends 1800 out-

of-phase, which reduces the likelihood of cracking of the brittle piezo-ceramics. Additionally,

actuating the piezo-ceramics out-of-phase increases the deformation in the solder for a given

applied voltage to the piezo-ceramic adherends.
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Fatigue Damage Initiation

The fatigue life of ductile materials, including solders, has been empirically correlated with the

plastic strain range experienced by the material. A simple approach to relating the plastic strain

range in an adhesive joint to the applied loading (thermal or piezo) is to use a one dimensional

shear lag model.'

Consider a symmetric tri-layer joint configuration as shown in Figure 1. The adherends,

materials 1 and 2, are considered to be perfectly elastic and the solder is modeled as being

perfectly plastic with a constant shear strength, T. The thermoelastic behavior of the solder is

ignored, as is any shear deformation of the adherends. A change in temperature (AT), causes

in-plane stresses a1 and ( 2 to be induced in the adherend layers at a distance x from the free

end.

Now, consider the equilibrium of a differential element, length dx, as shown in Figure 2.

Equilibrium for the center adherend (Figure 2b) is given by:

t2b (a2 + da 2) - t2b (C2) + Tbdx = 0

da 2  '(
dx t2

Similarly for the outer adherend (Figure 2a):

da1 - _ r(2)

dx ti

This implies that the stress in the layers varies linearly from zero at the free edge to the far-field

stress over a slip length, £. The slip length, and the relationship to the temperature change,

can be obtained by consideration of the stresses and deformations in the far field, i.e., in the

center of the joint, where the strains in the adherend layers are equal.

From compatibility:

Ei = E2 (3)
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From the thermoelastic constitutive behavior of the adherends:

al+ ajAT = 2 + a 2AT (4)
Ei E2

From equilibrium:

a1b + O2 t2 b = 0

C 2 = - t1 (5)
t2

substituting (3) and(4) into (5) produces:

(a 2 - ai)AT (6a)
I+ ti

E E2 t2

and

2 (a 2 - a)AT (6b)
t2 jl+ tij

Ei E2 t2

Integration of equation 1 or 2 and substitution for the boundary condition of equation 6 for the

far-field stress results in the slip length:

ti (a2 - a1)A T (7)

E+ Elt2

The resulting variation of stress in the adherends is shown schematically in Figure 3.

The average shear strain in the solder at a distance, x, from the edge is given by the difference

in displacements of the adherends at that location, as shown in Figure 5. i.e:

y =-= h (8)
h h
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The displacements can be obtained by integrating the strain in the adherends. The maximum

shear strain occurs at the free edge hence:

AYmax = hf( 2(x) - e1(x))dx (9)
0

After integration and substitution, the maximum shear strain occurring in the solder joint is

given by:

- (a 2 - a,)2 AT 2  EitiE2 t 2

2h~r Eit1 + E2 t2 )

An analogous shear lag analysis can be performed for piezo-induced strains, due to an applied

voltage across the adherends, as shown in Figure 6 (see also Appendix E). In this case, the

constitutive behavior of the adherend materials is given by:

U1J - U 2 +-
E + 1d31, - + (11)

Where E is the applied electric field (AV/t) and d31,1 is the piezoelectric coupling coefficient

between a field applied across the thickness of a piezoceramic and the strain induced in-plane.

For a constant adherend thickness and uniform applied electric field, this reduces to:

(2d31,2 - N1d3 1,1)
Ori = t (12a)

( El E2 t2

(2d31,2 ~ k1d31,1)---

I- = -j t2 (12b)

Ei E2t2)

By proceeding through the same analysis, but replacing equation 4 with equation 11 as given in

equations 1-7, the maximum shear strain in the solder is given by:

Ay 12 d3 - 2 E t, E2 t2
AYmax (Ei d31,1 + E2 d31,2)2 iEt (13)

2hEit + E2t2)
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Strain-Based Approach: Coffin-Manson Prediction

The well-known Coffin-Manson equation assumes that the inelastic strain range is the

governing parameter for low cycle fatigue. This analysis has previously been used to predict

the lifetime of solder subjected to shear-strain-dominated deformation. 9"0 Generally, the

Coffin-Manson relationship is expressed as:

= y 2Nf) (14)

where Ay is the plastic shear strain amplitude determined from the aforementioned shear lag

analysis, Nf is the number of cycles to failure (initiation based failure criteria), yf and c are

empirically determined material constants. In combination with equations 10 and 13, this

provides a means to interpret and compare thermal and voltage cycling data.

Fracture Mechanics Approach: Strain Energy Release Rate

Various researchers have shown that a fracture mechanics approach in conjunction with a

"Paris law" can be applied to describe the growth of damage in solder joints" and monolithic

specimens of solder.' 2 For a lap joint, cracks growing in the solder joints under thermal or

piezo loading reach a steady state in which the strain energy release rate does not depend on the

crack length once they have grown more than a few times the adherend layer thickness in

extent. This simplifies analysis since the complex stress state at the crack tip does not have to

be directly considered. As a further simplification, the contribution of the solder layers to the

strain energy release rate will also be ignored.

The strain energy available for the advancement of the crack is calculated by considering

control volumes with length da far ahead and behind the crack tip. The difference in strain

energy between the control volumes is equivalent to advancing the crack by a distance da" (see

Figure 10). In the particular case of a double lap joint, there are two possible crack

configurations; cracks either grow simultaneously in both solder joints, or only in one of the

joints. In the former case, the material in the wake of the crack tip is stress free, whereas in the

latter case, the pair of adherends that remain joined acts as a bimaterial strip and is not stress

free. The asymmetric single cracking case was usually observed experimentally.
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Symmetric Double Fracture:

Since material in the wake of the crack tip is stress free, all the stored strain energy in the three

layer stack is available to propagate the crack. The stresses in the two layers are given by the

compatibility, equilibrium, and constitutive considerations of equations 4-6. The stresses in

layers 1 and 2 are:

E (5
1 =d 3 E(AV + AV2) (15)

t

Since the stresses are uniform through the layer thicknesses, the strain energy stored in length

da is given by:

U = PIE, (16)
2+ A2

Where for the piezo case: = (AV + AV 2 ) , and for the thermal case Ep = (a, - a2)AT,
t

t2 E2

From the definition of strain energy release rate, G = dUlda, thus the strain energy release

rate is simply:

G = 3 d 3 (AV + AV2 )2  (17)

Single joint fracture:

The procedure for calculating G, for this case is similar for the double crack case given above

except that the strain energy associated with the intact bond in the crack wake must be taken

into account. This is shown schematically in Figure 11.

The total strain energy release rate is given by:

UA - (UB + Uc)

w da

The strain energy for region A is given by equation 17, above.

U 3 => 321 E(AV+AV2 )2
2 t
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Region B is stress free, therefore UB = 0.

G2
U = f-tbda (20)

Region C requires the evaluation of the strain energy in a bilayer, bimaterial strip. This is

obtained by enforcing considerations of equilibrium of forces and bending moments and the

compatibility of strains and curvatures in the two layers (Spearing, 1996). Hence:

#l2 2t1 (A2+)-2
Uc = 2E . 2 + 1 3 + 1) + 3A3(4 + 1)2] (21)

where

#= eE(, d31V+AV) =t_
((A3+ 1)(A + +) +342( + 1)2 t2

and A = -
E2

In the case corresponding to the experiments in which the piezoceramic substrates are made of

the same material with the same thickness, A = E = 1, =1
E2

This simplifies to:

13 E 231 AAG - d31(AV1 + AV2 )2  (22)
48 t

3. Experimental

Specimen Manufacture

Test specimens consisted of three substrates of 0.19 mm thick lead-zirconate-titanate (PZT) 5H

(PiezoSystems, Inc.). The substrates were supplied cut to size, with widths of 6.35 mm and

lengths of 31.75 mm for the outer pieces and 38.10 mm for the central pieces. The longer

length of the central pieces facilitated access to the center piezo-ceramic for electrical

connections (Figure 8). The substrates were bonded with 25.4 pm thick eutectic lead (37
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wt%)-tin (63 wt%) solder preform (Indium Corporation). The piezo-ceramic substrates were

supplied coated with a 5000 A gold layer over an electroless nickel-plated metallization to

promote wetting of the solder.'4 The joints were made by a standard (proprietary) solder

reflow process in a reducing atmosphere, which was performed in a batch furnace for the first

batch of specimens and in a belt furnace for subsequent batches. A polished tri-layer specimen

is shown in Figure 9. Compositional analysis of the solder revealed significant diffusion of

the gold adhesion layer into the solder. Figure 10 shows a scanning electron microscope

(SEM) micrograph of a polished cross section of the solder indicating the presence of three

distinct phases. Electron dispersive spectroscopy revealed the presence of the expected Pb-rich

and Sn-rich phases of the lead-tin eutectic, but also a tin-gold phase containing approximately 4

at% gold.

The material properties required for modeling were obtained from the suppliers data sheets,

except for the piezo strain coefficients, which were measured using a laser extdnsometer after

poling. The Young's modulus, E, of PZT-5H is 60 GPa, the piezo-strain coefficient, d31, is
-320x10- 2 m/W, and the shear yield stress of the solder is assumed to be 37 MPa, based on

the solder manufacturer's data sheets. See Appendix B for details on specimen manufacture.

Testing

Testing requires the outer two piezo layers to be actuated 1800 out-of-phase from the center

piezo (Figure 11). This requires separate connections to be made to both surfaces of all three

piezo ceramic substrates. A specimen holder with flexible copper fingers (Figure 12) was

designed to achieve this without the need for additional soldering of leads. Since piezoelectric

materials have a preferred actuation direction determined by poling (orienting the dipoles in the

ceramic), a DC offset is required to prevent de-poling when actuated in the opposite direction.

A constant 100 V DC offset was used for all specimens and the AC component of the voltage

was cycled about this offset. The utilization of a DC offset allowed use of the piezo-ceramic's

maximum actuation range. An H-bridge voltage cycling circuit was used to achieve these

applied voltages. See Appendix C for details on the design and construction of the circuit.

Piezo-induced fatigue experiments were performed in which voltage amplitude, frequency, and
temperature were varied. Voltage, which controls the amount of shear strain applied to the

solder, was varied from 1OOVDC ± 90VAC to 100 VDC ± 200 VAC. The effects of three

frequencies, 0.5 Hz, 1 Hz, and 5 Hz, were characterized. Tests were also performed at 25'C,
80'C, and 0*C, for several voltage levels at a fixed frequency of 1 Hz.
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Crack growth rate and crack opening displacement were monitored in situ using a high
resolution long-working distance microscope mounted on a motor-driven calibrated X-Y stage.
This system provided a resolution of 10 pm on damage observations and crack length
measurements. When acquiring data, the cycling frequency was reduced to 0.01 Hz, so that an

accurate measurement of crack opening displacement and crack length could be made.

Thermal testing (00C, 25'C and 80'C) was performed using a thermoelectric heating/cooling
system utilizing Peltier junctions. A small fan inside the chamber provided convection to
assure a uniform temperature, which was manually monitored. Temperature was controlled to
better than ±3 'C during the conduct of each test. A transparent plastic window allowed in situ

crack growth measurements during the thermal testing. See Appendix D for details regarding
testing procedures.

4. Results

In situ observations of specimens during voltage cycling revealed that the primary failure

mechanism was the initiation and growth of fatigue cracks in the solder joints. Such cracks

invariably initiated at voids, debonded regions, or other defects in the solder (see Figure 13a).

Although not quantified in the present study, the presence of such defects in the solder

correlated with a greatly reduced number of cycles to crack initiation. Figure 13b shows the

fracture surface of a failed specimen. Multiple cracks, originating at different defects in the

same joint, were often observed; however, once one of the cracks reached the free end of the

specimen, this crack would dominate over the other smaller cracks. This behavior is consistent

with previous observations.7 As shown in Figure 18, the growth of such primary cracks away

from the free ends of the specimen was observed to occur at an approximately constant rate;

however, their growth was measurably accelerated by interactions with voids and pre-existing

small cracks. In some specimens, the coalescence of short cracks and voids to form a primary

crack was observable as a distinct phase of the failure process. In others, the primary crack

appeared to form over a very short number of cycles, as was the case for the specimen

observed in Figure 14. In most specimens, the steady-state growth of a single primary crack

was observed to occupy a significant portion of the fatigue life.

The cracks generally initiated within the solder material, and the initial phase of growth was

also generally confined to a cohesive mode. However, subsequent growth would often occur

in an adhesive mode at the interface between the solder and the substrate surface or oscillate

between cohesive and adhesive fracture. The overall rate was not significantly affected by the
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mode of growth. The data in Figure 18 contains regions of both cohesive and adhesive

fracture.

It was possible to measure directly the crack opening displacement using the micrometer stage

on the microscope. A crack opening from the free end of a specimen can be seen in Figure 15.

A typical plot of crack opening displacement versus number of cycles is shown in Figure 16.

The trend in crack opening displacement as a function of cycles is consistent with the crack

growth behavior.

Data was recorded for the number of cycles to initiate fatigue damage. To circumvent

uncertainties in identifying precisely when and where damage first initiated, an arbitrary crack

length of 2 mm was defined as constituting damage initiation. Using this criterion, the data

presented in Figure 17a was obtained. The applied voltage was converted to a cyclic shear

strain using equation 13 with an assumed shear strength of 37 MPa. Figure 17b shows the

data for the total number of cycles to failure, i.e. the point at which the specimen could no

longer actuate as intended.

Figure 18 shows reduced data for steady state crack growth rates as a function of applied strain

energy release rate from equation 22. At higher strain energy release rates, the data for tests

conducted at different frequencies converge to a monotonic dependence of growth rate on strain

energy release rate. However, at lower strain energy release rates, the data sets diverge. Tests

conducted at lower frequencies exhibit higher growth rates for a given applied strain energy

release rate than those cycled at higher frequencies. At the higher strain energy release rates, a

"Paris Law" relationship appears to hold. There is some indication of a threshold strain energy

release rate that is frequency dependent.

Figure 19 shows the effect of temperature on the steady state crack growth rate at various strain

levels. There is nearly an order of magnitude increase in the crack growth rate at a given

nominal strain energy release rate at 25'C compared to 00C. However, the crack growth rates

at 80'C are lower than those at 25'C. See Appendix E for details on how data analysis was

performed and Appendix F for a listing of all data sets. Tables I through III list a summary of

crack growth rate results for the three testing temperatures.
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5. Discussion

The results presented in the previous section demonstrate the capability of using piezo-

mechanical cycling to cause fatigue in solder lap joints. The stress and deformation levels are

similar to those that would be achieved in conventional thermal cycling of joints between

adherends with different thermal expansion coefficients. This opens the possibility of using

this method as a research tool for exploring the mechanisms of the thermo-mechanical fatigue

of solder joints and for performing accelerated tests. It remains to be established whether the

degradation mechanisms and number of cycles to failure correlate with data obtained from

thermal cycling tests.

The data obtained for crack initiation, shown in Figure 17a, can be fitted with a Coffin-Manson

relationship in which the exponent is -0.23 and the pre-factor is 3.34 x 10-2 . This compares

with corresponding values of -0.54 and 1.13 found by Lau' conducting mechanical fatigue

tests on eutectic lead-tin solders. The difference may be explained by the embrittlement of the

solder by the inclusion of the gold. It is also significant that the data for fatigue crack initiation

and total life is very scattered. This can be attributed to the observation that damage initiates

preferentially at voids and other defects. There was considerable variation in the area fraction

of voids and their spatial distribution over the joint area from specimen to specimen. These

observations suggest that the elimination of defects from the solder joint is a key to achieving a

high level of reliability. They also suggest that using an empirical relationship, such as the

Coffin-Manson equation should be accompanied by careful characterization of the joint

microstructure. It is interesting to note that there is not a clear correlation between the test

frequency and the number of cycles to initiate damage. This is somewhat surprising, since at

slower loading rates, creep effects would be expected to result in a greater accumulation of

inelastic strain, therefore resulting in early damage initiation. It is possible that if such an effect

were present, its influence would be obscured by the scatter in the data due to specimen to

specimen variations in joint microstructure.

The crack growth rate data is considerably less scattered than the crack initiation data. This is

to be expected since the time to initiate damage depends on the local microstructure of the

solder, whereas steady state crack growth rates depend on the average response of the joint,
which is expected to be less subject to variation. The crack growth rate approximately

conforms to a Paris Law at higher cyclic strain energy release rates. It is interesting to note that

the slope of the Paris law and the crack growth rates for the piezo-mechanical loading of joints

in this study are significantly greater than those observed in fatigue tests conducted on compact
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tension specimens of eutectic solder." This discrepancy can be ascribed to the influence of the

constraint imposed by the joint configuration, the differences in microstructure, gold

absorption into the solder and the presence of voids, which may not be present in monolithic

solder specimens. This discrepancy illustrates the need to conduct testing of solders in

configurations as close to the service environment as possible." These experimental

observations also suggest that, given the scatter in times to initiate damage, calculations based

on the time for cracks to grow to a significant length, may offer a robust, conservative

approach to life prediction.

The influence of test frequency on crack growth rates is an important observation. It confirms

the role of plastic and viscous behavior in the fatigue crack propagation process. At lower

frequencies, there is more time for irreversible deformation to occur at the crack tip, resulting in

a greater increment of crack growth per cycle. The results are consistent with those of

Logsdon et al", who observed similar increases in cyclic growth rates at frequencies below 2

Hz on monolithic solder specimens.

The temperature data is unexpected. It is to be expected that decreasing the temperature would

reduce the cyclic crack growth rate because it reduces the extent of the creeping plastic zone at

the crack tip. This was observed between 00 C and 25'C. However, upon increasing the

temperature further, the rate decreased. This may indicate that there is a transition in damage

mechanisms between 25'C and 80'C, particularly the role of creep deformations at the crack

tip. This observation requires further examination and verification.

The work presented here raises the possibility that the failure of joints by piezo-mechanical

loading may be a concern for the long-term reliability of systems containing active elements.

Preliminary work has shown that polymer adhesive joints are also liable to undergo fatigue

failure via piezo-mechanical loading. As single crystal piezo-ceramics that allow higher

actuation strains are developed, the durability of the adhesive joints used to bond them together

into stacks or to attach them to structural elements for vibration and noise control may become a

limiting issue.

The analysis and experimental results presented here confirm the potential for using the

analogue of piezo-mechanical loading to thermo-elastic loading of solder joints to better

understand the mechanisms of failure. However, considerable work is still required to

establish the usefulness of the analogue as a means of performing accelerated testing and of

separating the influence of different factors on lifetime.
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6. Conclusions

The capability to cause fatigue failure in solder lap joints by piezo-mechanical loading has been

demonstrated. Analysis shows that the solutions for the free edge strain levels and cyclic strain

energy release rates for crack growth achievable by piezo-mechanical loading are analogous to

those expected to be induced by thermo-mechanical loading. The double lap joint configuration

introduced in this article and the associated circuitry for voltage cycling has been shown to be a

straightforward means of achieving this capability. For the tests described in this work, the life

of these joints can be divided into two distinct regimes: crack initiation and steady state crack

growth. Damage initiation depends strongly on the presence of voids and other defects in the

joint, and as a result, the number of cycles to initiate damage was quite scattered. In the

growth phase there was less scatter. At higher applied voltages, data conformed to a Paris type

relationship of crack growth rate on strain energy release rate amplitude. At lower voltages,

there was evidence of a threshold strain energy release rate, and frequency was observed to

have an increased effect. Low-frequency loading resulted in higher cyclic growth rates.

Overall this test technique has great potential for allowing a rational investigation of the factors

contributing to the thermomechanical fatigue and reliability of solder and other adhesive joints.

7. Future Work

Possibilities for future work include a full battery of temperature tests, fully characterizing this

effect and how it relates to creep in the solder. A further study could be performed on the

metallization layer on the piezoceramic, selecting a different manufacturing technique to reduce

the solder's impurities. Another interest would be to test other active materials and to explore

their actuating and bonding capabilities. Testing other actuator materials could produce insight

directly impacting the burgeoning active material industry. Another potential application is to

automate the testing technique by using interferometry, changes in curvature, etc. instead of

visual crack inspection. This would reduce human error as well as further reduce

manufacturers' testing costs. Finally, one could apply this piezo-induced technique to other

adhesives, such as epoxy or other compositions of solders. Apart from further experimental

studies, it is necessary to validate the shear lag model by performing finite element analysis and

in situ strain mapping.
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9. Tables

Table I: Crack growth rate results at room temperature.

Frequency Voltage (V) crack growth rate, da/dN rsq cycles to

(Hz) (mm/cycle) initiation

0.5 100V +/-90V 6.81E-05 0.94875 27320

0.5 100V +/- 100V 3.01E-04 0.95824 48300

0.5 100V +/- 100V 3.98E-04 0.96926 62550

0.5 100V +/-120V 1.43E-04 0.97132 27650

0.5 100V +/-130V 3.65E-04 0.93288 10990

0.5 100V +/-150V 6.78E-04 0.9476 270

0.5 100V +/-150V 4.47E-04 0.98808 6630

0.5 100V +/-160V 3.55E-03 0.90881 240

0.5 100V +/-170V 3.77E-03 0.93827 2040

0.5 100V +/-180V 3.28E-03 0.97288 900

1 100V +/-130V 5.46E-05 0.94195 43400

1 100V +/-140V 3.86E-04 0.94837 500

1 100V +/-150V 1.51E-03 0.88906 730

1 100V +/-160V 1.OOE-03 0.93961 1000

1 100V +/-175V 2.51E-03 0.87864 3290

1 100V +/- 190V 2.59E-03 0.96549 300

1 100V +/-200V 6.49E-02 0.99521 330

5 100V +/-170V 5.37E-04 0.95497 3030

5 100V +- 180V 5.06E-03 0.95278 620

5 100V +/-180V 2.51E-03 0.97514 1930

5 100V +/-190V 2.54E-03 0.9703 1150

5 100V +/-200V 2.91E-02 0.96673 1030
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Table II: Crack growth rate results at 00C.

Frequency Voltage (V) crack growth rate, da/dN rsq cycles to

(Hz) (mm/cycle) initiation

1 100V +/-160V 4.52E-04 0.99528 11160

1 100V +/- 180V 3.25E-04 0.98499 2250

1 100V +/-200V 1.10E-03 0.96380 1920

1 100V +/-200V 7.12E-04 0.99798 10940

1 100V +/-220V 2.63E-03 0.89872 1920

1 100V +/-220V 3.1OE-03 0.91534 1440

Table III: Crack growth rate results at 80'C.

Frequency Voltage (V) crack growth rate, da/dN rsq cycles to

(Hz) (mm/cycle) initiation

1 100V +/-130V 2.37E-04 0.97487 2880

1 100V +/-140V 5.75E-04 0.95498 5250

1 100V +/-140V 8.02E-04 0.89272 25630

1 100V +/-160V 1.20E-03 0.97967 7470

1 100V +/-180V 6.89E-03 0.98459 8850

1 100V +/- 180V 1.04E-02 0.97048 7640
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10. Figures

symmetric 2 _A t
2

1

Figure 1: Double lap joint configuration where ti, t2 are the thicknesses of the top and center

layers respectively, and b is the width of the layers.

dx

OTI
o1 + dai

Figure 2a: Differential element of outer adherend layer.

(shear on top face)

a2 + da2

dx

Figure 2b: Differential element of center adherend layer.
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U

Figure 3: Variation of in-plane stress for inner and outer adherends from the free edge to the

far field stress state.

5

Figure 4: Shear strain in the solder layer.

}
}

A V

A V2

Figure 5: Shear lag analysis for out-of-phase piezo actuation.
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da: da-

U=0

Figure 6: Control volumes ahead and behind the crack tip are used to calculate the strain

energy available for crack propagation.

da: da:

- U= 0

I da!

Figure 7: Cracking scenario for piezo/solder tri-layer stack. As the crack passes, the top

layer is stress free, but there is still strain energy stored in the bottom two layers.
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| 3.175 cm (1.25 in)-|

Figure 8: Schematic diagram of piezo/solder stack and applied voltages. The piezoceramic

layers are actuated 180' out-of-phase to induce maximum shear in the solder and to eliminate

bending.

V. - -

- 4

-PZT

solder

-PZT

solder

-PZT

Figure 9: Polished cross edge of a test specimen. The dark marks on the solder and

piezoceramic layers are embedded particles from polishing.
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Figure 10: Compositional analysis of gold-embrittled solder. Bright regions: Pb-rich;

Medium Gray Regions: Sn-Au; Dark Gray Regions: Sn-Rich

Piezoceramic

Adhesive

Piezoceramic

Adhesive

Piezoceramic

Figure 11: Out-of-Phase Actuation. State 1 (middle): center piezo contracts; outer

piezos expands. State 2 (right): center piezo expands; outer piezos contract.

(a) (b)
Figure 12: Test specimen holder. Specimen holder constrains one end of specimen during testing

and delivers the proper voltage to the appropriate layers. (a): specimen holder with specimen

inserted. (b): Close-up of copper finger mechanism.
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Figure 13a: A micro-crack initiating at a void in the solder joint.

lox 38X 150X

Figure 13b: Fracture surface of a failure piezo/solder joint.
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Figure 14: Crack length versus number of cycles for one particular voltage and frequency

case.

Figure 15: Crack opening displacement as measured for free end cracks (bottom joint in the

figure). The left picture shows the crack in the open state; the right figure shows the crack in

the closed state. The crack initiated from the void shown in the center of the picture.
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Figure 16: Crack opening displacement versus number of cycles. The curve is characterized

by three distinct regions, initiation, coalescence, and growth before failure occurs.
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Figure 18: Crack growth rate versus strain energy release rate for three separate frequencies.

Downward arrows indicate that no visible crack growth was detected.
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Figure 19: Crack growth rate versus strain energy release rate for RT, 80'C, and 00 C at 1 Hz.
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Appendix A: Additional Literature Review

The fatigue of solder joints due to the thermal expansion mismatch of joined components has

been a well-known problem in the microelectronics industry for decades. The understanding

of the mechanisms contributing to thermal solder fatigue has been mostly anecdotal. To

compound the issue, a majority of solder and microelectronics manufacturers either do not

publish data collected on solder joint fatigue or the data obtained were too narrow a range to be

extrapolated to make broad conclusions on solder behavior under a cyclic thermal strain. This

work provides a new method for investigating solder fatigue without performing time-

consuming cyclic thermal tests; therefore, there are no direct references regarding the piezo-

induced fatigue of solder joints. However, in order to gain a complete understanding of the

problem, it was necessary to investigate past work on the fatigue of solder in general, whether

by mechanical or thermal means. This knowledge was then applied to the case of piezo-

induced solder fatigue. The background literature research performed for this work considered

the stresses experienced by adhesives in loaded joints, cyclic strain life prediction

methodologies of solder joints, and fracture mechanics methodologies to predict crack growth.

Background to Solder Fatigue

Solder joints fail due to one or more interacting loading conditions: cyclic differential thermal

expansion, vibration (high-cycle fatigue), thermal shock (rapid temperature change),

mechanical shock (high acceleration due to misuse).' However, the primary concern for solder

joint reliability is the cyclic differential thermal expansion problem. The common method for

determining joint reliability is to perform both low-cycle and high-cycle fatigue tests on

potential joint designs. The low-cycle fatigue tests more accurately simulate the effects that

influence long-term reliability such as dwell time (creep) and environmental exposure;

however, accelerated testing allows for a lifetime of cycles to be applied to a potential joint

design.'

Stresses in Adhesive Bonds

Shear lag modeling of adhesive single and double lap joints was first performed by Volkerson

in the 1930s.2 This initial analysis assumed that the adherends were rigid and that the adhesive

deformed uniformly with constant shear strain. Further analysis with single lap joints was

performed by Goland and Reissner in the 1940s, which accounted for elastic adherends and

subsequent edge shear effects in the solder.2 Hart-Smith derived explicit analytical solutions
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for double lap joints, extending the elastic solution to account for adhesive plasticity, adherend

stiffness imbalance, and thermal mismatch between adherends.3 Hart-Smith discovered that

the load-carrying capability of a joint increases with adherend overlap only up to a certain

point, beyond which no greater load transfer can be realized, giving rise to the concept of a slip

length.

Strain-Based Approach to Solder Joint Fatigue Life Prediction

Many researchers have worked extensively developing models to understand and predict the

fracture behavior of solder joints. Initially, researchers believed the fatigue life of a solder joint

was based solely on crack initiation. Final failure was considered imminent after crack

initiation. The Coffin-Manson law, developed in the 1950s, uses a linear cumulative damage

concept based on cyclic strain range to predict the number of cycles to failure of solder joints.4

In the late 1960s and early 1970s, researchers at IBM and Bell Laboratories discovered that the

Coffin-Manson relation was in need of modification because other factors were found to affect

the fatigue life of the solder joint. Frequency and maximum temperature during thermal cycling

were experimentally found to be important factors affecting fatigue life, and a modified Coffin-

Manson equation was proposed to account for these effects.' High temperature dwell time was

also found to have an effect, and the Coffin-Manson equation was further modified.'

Assuming that the plastic strain term in the original Coffin-Manson equation was pure shear

and applying fitting techniques based on test data to account for frequency and temperature

effects, Engelmaier developed an advanced model for predicting the fatigue life of LCC

(leadless chip carrier) solder joints.7 The Coffin-Manson equation (and its derivatives) uses

terms related to the mechanical properties of the bulk solder and joint geometry, except for the

strain levels, which must be calculated by additional detailed analysis. In the one-dimensional

case, these strains are usually easy to determine, but strain mapping may be required for multi-

dimensional cases before applying the Coffin-Manson equation.' Lau indicates that the Coffin-

Manson equation can still be used for fatigue life predictions of SMT (surface mount

technology) solder joints if detailed strain analysis for both plastic and creep strains is

performed, most likely by using a finite element method with a mapping function.8

Fracture Mechanics Approach to Solder Joint Fatigue Life Prediction

Although prediction methodologies involving crack initiation have been developed for 50

years, it has been only recently that prediction methods of crack extension life have been

applied to the solder joint problem. However, Lau clearly states that there are four stages of
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the solder fatigue process: (1) crack initiation, (2) slip-band crack growth, (3) crack growth on

planes of high tensile stress, and (4) ultimate ductile failure.' The later stages involving crack

growth were typically ignored in terms of solder joint fatigue life prediction until the late 1980s

and early 1990s. For cases where macroscopic cracks form and extend, fracture mechanics-

based life prediction methodologies were found to be valid. Damage or J integrals describing

the rate of change of potential energy by an advancing crack were applied to fatigue life

prediction of solder joints, as was the C* integral, which is the viscous analog of the path-

independent J-integral based on a power-law steady-state creep assumption. 9'10 Crack growth

rate, da/dN, data were collected on solder joints by Kaminishi et. al. and compared to FEM

predictions of crack extension path and life." Regions of initiation, steady-state crack growth,

and failure were observed in the data. Logsdon et. al. accumulated much data on the fracture

behavior of monolithic solder including Jc, a measure of the toughness of the solder joint which

has been used by Pao and others as a failure criteria. The fatigue crack growth rate of bulk

solder was found at various temperatures and frequencies. It was found that the crack growth

rate of eutectic solder decreased with a decreasing temperature over the range of 24 to -55'C

and was insensitive to frequency over the range of 2 to 10 Hz.'

In order to create a Paris-type relation with this work to complete the fracture mechanics

approach to solder fatigue life, the collected crack growth data must be compared to a calculated

strain energy release rate for the solder joint. Shetty developed equations for interfacial strain

energy release rate for debonding in single lap joints as well as double lap joints undergoing

simultaneous debonding of both interfaces." The equations were based on the steady-state

phenomenon, assuming that crack propagation is independent of crack length. Uniform, in-

plane forces of the individual layers were given by Euler-Bernoulli beam theory.
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Appendix B: Specimen Manufacture

Materials Selection

The piezoceramic material selected to perform the desired actuation is lead-zirconate-titanate

(PZT) 5H from Piezo Systems, Inc. PZT 5H was chosen because of its actuation capabilities

in the in-plane direction; Table B 1 details the properties of PZT 5H. Piezoelectric materials

deform under an applied electric field; they expand in one direction and contract in the other

direction (this is partially due to Poisson's contraction). A piezoceramic is poled by exposing it

to a strong electric field, which orients the domains, creating a preferred actuation direction.

After poling, when the piezoelectric is exposed to an electric field, the domains respond by

Coulombic attraction or repulsion, resulting in deformation of the material (Figure B 1). The

strongest piezoelectric effect is in the direction of the applied electric field, usually through the

thickness, conventionally defined as the three (3) direction, as shown in Figure B2.

Subsequent deformation also occurs perpendicular to the applied electric field (1 direction). In

this study, the focus was on this latter 31 actuation; the electric field was applied through the

thickness and the actuation was in-plane or perpendicular to the applied electric field.

The substrates were bonded with eutectic lead (37 wt%)-tin (63 wt%) solder preform from

Indium Corporation. The piezoceramic substrates were supplied coated with a 5000 A gold

layer over an electroless nickel-plated metallization to promote wetting of the solder.

Piezoceramic with traditional nickel electrodes were found to have a tenacious oxide layer that

prevented solder wetting. Figure B3 shows the futile bonding attempts using piezoceramic

with nickel electrodes. The use of flux is not prudent because gas evolution leads to bubbles in

the final solder joint, especially when the joint is bonded over a large area. Therefore, the use

of a gold adhesion layer became necessary to promote wetting without a flux.

The thickness of the solder joint was chosen to be 25.4 pm (1 mil), which is considerably

smaller than the thickness of the piezo adherends of 0.19 mm thick (7.5 mil). Joints of this

thickness are typical in the microelectronics industry and, thus, are of great interest to

microcomponent manufacturers. Eutectic lead-tin solder was chosen as the adhesive because it

is probably the most widely used solder; therefore, a substantial amount of information is

available regarding its mechanical properties.
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Piezoceramic Characterization

In order to generate the maximum shear strain on the solder, it is desirable to operate the

piezoceramic over its maximum actuation range. Because piezoelectric materials have a

preferred direction of actuation, defined by the poling direction, this maximum actuation range

is asymmetric. The range is bounded by the shortage voltage in the positive actuation direction

(poling direction) and by the depoling voltage in the negative actuation direction. When a poled

piezoceramic is operated within these limits, a fairly linear strain-voltage curve is generated, as

shown in Figure B4. When the depoling voltage is exceeded, the piezoceramic returns to its

natural, unpoled state, characterized by a "butterfly curve" (see Figure B 18). If the voltage

limit in the positive actuation direction is exceeded, the piezoceramic will spark and will result

in destruction of part or all of the piezoceramic. Experiments using a laser interferometer were

performed to determine the exact voltage limits for the supplied PZT 5H. Strain was measured

for a given DC offset voltage and AC cycling voltage. Data from these experiments is shown

in Figures B4 through Figures B 17. From these experiments, it was found that the maximum

voltage range is -200 V to +400 V. In order to remain well within the useful actuation range

and to avoid possible depoling of the ceramic but still achieve the maximum actuation possible,

the actuation range for the experiments performed in this study was restricted to -150 V to

+350 V, corresponding to an electric field of 0.79 x 106 V/m to 1.84 x 106 V/m). These limits

were never quite reached during testing (-100 V to +300 V) due to excessive sparking and

subsequent rapid failure of the piezoceramic or joint. An H-bridge voltage cycling circuit, as

detailed in Appendix C, is utilized in the asymmetric voltage application. The effective

piezoelectric strain coefficient defined in this study is based on the maximum strain range for

each supplied voltage level. The value of d3 , is plotted versus voltage in Figure B 19. A line

was fit through the data and a linear equation for d3 l as a function of voltage was determined.

The fit deviates from the data below ± 50 V; however, no testing was performed below ± 90

V because of the shear strain requirements. Therefore, the d3 , in future calculations is based on

values determined through this linear fit.

Specimen Geometry

The specimen geometry consists of three piezo sheets joined by two solder joints as shown in

Figure 8. Using the characterization data of the piezoceramic, it was determined that the

actuation of a single piezo sheet adhered to a rigid substrate would not be sufficient to achieve

the levels of strain that are induced during a typical thermal cycle. To achieve the desired strain

levels in the solder, the piezoceramic adherends must be actuated in opposite directions. In

order to eliminate the bending that is induced by such a configuration, the resulting tri-layer
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symmetric stack was designed. The shorter piezo sheets (0.25 x 1.25 in) are actuated 1800

out-of-phase from the longer, inner piezo adherend (0.25 x 1. 5 in). When the center piezo

contracts, the outer two piezos expand and vice versa. This allows the shear strain in the

solder to be doubled without inducing bending. The center piezo tab permits electrical

connections to be made and aids in holding the specimen in the holder. The first batch of

specimens was manufactured with one center tab, and the second set was manufactured with

tabs on both ends. The dual tabs are shorter, 0.175 in, compared to 0.25 in of the first batch.

Dual tabs provide greater flexibility during testing because they allow the specimen to be

reversed in the specimen holder during testing should the center tab break or if the free end is

needed to facilitate cracking (KI mode). The piezo sheets were cut to specifications (0.01 in

tolerance) by Piezo Systems, Inc as shown in Figure B20.

Joint Manufacturing Procedures

The piezo/solder stacks were manufactured by first cutting the solder preform to the proper

size, cleaning the adherend and adherent surfaces, carefully arranging the layers, then placing

the stack in either a reflow solder oven or a belt furnace. The piezo sheets was provided with a

red ink mark indicating the positive-poled direction. When cleaning in acetone solution to

remove dirt and oils, this red mark disappeared. To maintain the poled designation, the piezo

ceramic was carefully chipped in the upper left corner when the red line was facing up. After

cleaning, the positive poled side could be easily identified. Other options, such as scratching

or marking the adherend surface were not as desirable because it could adversely affect the

soldering process. The 1 mil thick solder preform ribbon was cut to the size of the joint (0.25

in x 1.25 in) using a razor blade on a clean glass surface with a straight edge. The piezo sheets

and trimmed solder preforms were placed in an acetone ultrasonic bath for at least 15 minutes.

Each piece was then removed from the bath, rinsed with acetone, and dried with an air jet. The

components were then carefully stacked and aligned. A glass slide and small copper weights

were placed on the stack to apply pressure. Reflow soldering was performed in a reducing

atmosphere of nitrogen in a solder reflow oven (at Rockwell Science Center) for the first batch

of specimens and in a belt furnace (at Olin-Aegis Corporation) for the second batch of

specimens. For the first batch of specimens, a time/temperature profile was determined for

optimum bonding of the solder joint, as shown in Table B2. For the second batch of

specimens, which were prepared in a belt furnace, the temperature was fixed at 210 C; the pull

speed of the belt was three inches per minute, which resulted in approximately the same hold

time at maximum temperature as the first batch of specimens. It is standard procedure to set the
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peak temperature of the reflow cycle to 40-50'C above the melting temperature of solder. The

peak temperature achieved in this manufacturing procedure was 210*C, 27'C above the eutectic

lead-tin solder melting temperature of 183'C. Higher peak temperatures were avoided to

prevent the piezo from approaching its Curie temperature of 250'C, which is the temperature at

which the poled domains randomly switch back to their natural state. If the piezos were to

depole during manufacturing, there would be no way to repole them independently of one

another and the specimen would be useless. After the cooled specimens were removed from

their respective solder reflow devices, they were marked and individually wrapped with tissue

paper and a cardboard backing for protection.

Verification of Joint Integrity

The integrity of the joint was verified in a variety of ways. First, the joints were sectioned and

observed in the scanning electron microscope (SEM). The piezoceramic is not conductive and

tends to charge in the SEM; therefore, the specimen was mounted on carbon tape, and the

surface was coated with carbon paint. Some charging did still occur; however, it was kept to a

minimum. The joints were inspected for voids, debonded regions along the interface, and

other defects. The largest debonded region observed was approximately 150pm in diameter

(Figure B21); the largest void observed was approximately 50Pm in diameter (Figure B22).

Next, the integrity of the joint was verified using ultrasound to observe the interior of the

specimen nondestructively. Although the ultrasound was difficult to perform with a layered

ceramic material, the scan seemed to indicate that the overall joint integrity was good. The

resolution of the ultrasound was 2 mm, so it was unable to indicate small voids or debonded

regions. Figure B23 shows the scan, with blue areas indicating well-bonded regions. In this

specimen, the best bonding occurred in two square locations, exactly where the copper weights

were placed. This specimen was made before glass slides were used to distribute the pressure

over the entire joint. Because of time and cost constraints, another ultrasound scan was not

made, but from this scan, it can be inferred that applying pressure over the entire joint should

improve bonding.

Solder Composition

Upon observing the specimen in the SEM, it was immediately apparent that the eutectic tin-lead

composition had been altered. The gold adhesion layer (approx. 4 wt%) completely diffused

into the solder, creating a new gold-tin phase and shifting the relative contents of lead and tin in

the remaining two phases. An electron dispersive spectroscopy (EDS) compositional analysis
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can be seen in Figure B24. This new gold-tin phase is somewhat troublesome because it is

well understood that gold embrittles solder. Although this phase was unavoidable in this study

because of the need for wetting surfaces on the piezo, it could be avoided in future work if

other electrodes that neither produce an oxide nor diffuse into the solder are used.

Specimen Polishing

In order for crack growth to be monitored in situ, at least one edge of the piezo/solder stack

must be polished. It is difficult to polish the stack because piezoceramic and solder have such

disparate values of toughness and hardness. Also, the crucial center tab in the piezo stack has a

tendency to break off, rendering the specimen useless. A mounted and polishing procedure

was developed to address these problems. The specimens were mounted temporarily in a

thermoplastic wax material (Crystalbond) between square bars of steel. The bar dimensions

were 1.75 in x 0.25 in x 0.25 in. Therefore, the height of the bar was the same as the

piezo/solder stack on its edge. The bars and thermoplastic assembly acted to hold the piezos

securely in place during polishing while protecting the fragile piezo tab. To mount the

specimens, a polishing disk was heated on a hot plate and Crystalbond was melted on to it.

The bars were then placed down and the specimens placed between them. More Crystalbond

was applied, and then the assembly was cooled and ready to polish. Four to seven specimens

could be polished at the same time depending on the size of the polishing disk used. To polish,

sandpaper of the following grits were used in succession: 240, 400, 800, 1200, 4000. Then

0.3yim alumina solution was used on a felt polishing wheel. This procedure yielded specimens

that could be adequately viewed in the microscope during testing. A polished sample is shown

in Figure 9. To remove the specimens from the temporary mount, the polishing disk was again

heated on the hot plate until the thermoplastic was extremely fluid. Since the heated

thermoplastic is a shear-thinning liquid, the specimens were slid out from the sides rather than

pulled from the top. The specimens were allowed to air cool for a few seconds to reduce

thermal shock and then were placed into an acetone bath. The acetone completely dissolves the

thermoplastic, leaving a clean, polished surface.
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Appendix B Tables

Table Bi: Properties of PZT 5H (Piezo Systems, Inc.)

PIEZOELECTRIC:

Composition

Material Designation

Relative Dielectric Constant (@1 KHz) K,

Piezoelectric Strain Coefficient

d31

Ep

Ec

Polarization Field

Initial Depolarization Field

MECHANICAL:

Density

Elastic Modulus

THERMAL:

Thermal Expansion Coefficient

Curie Temperature

Lead Zirconate Titanate

PSI-5H-S4 ENH

3800

650 x 10-' m/V

-320 x 10- 2 m/V

1.5 x 106 V/m

3.0 x 105 V/m

7800 kg/m3

5.0 x 1010 Pa

6.2 x 10'4 Pa

3 x 10-6 m/m/C

250 0C
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Table B2: Time/temperature profile of solder reflow oven for first batch of specimens.

Total processing time - 35 min.

46

step time (min:sec) temperature (*C) environment

0 00:10 25 air

1 02:00 25 vacuum

2 02:00 25 nitrogen

3 02:00 25 vacuum

4 02:30 40 nitrogen

5 06:30 170 nitrogen

6 05:00 210 nitrogen

7 02:30 210 nitrogen

8 01:00 210 vacuum

9 01:00 210 nitrogen

10 05:30 60 nitrogen

processing nitrogen

11 03:00 35 +extra nitrogen



Appendix B Figures

F+V

Figure BI: Response of a poled (arrow) piezoceramic to an applied electric field.

3

(1)

1

Figure B2: Piezoelectric axes.
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Figure B3: SEM backscatter image showing lack of bonding along nickel oxide/solder

interface (nickel electrodes).
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Figure B4: PZT 5H characterization.
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Figure B5: PZT 5H characterization.
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Figure B6: PZT 5H characterization.
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Figure B7: PZT 5H characterization.
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Figure B8: PZT 5H characterization.
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Figure B9: PZT 5H characterization.
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Figure B10: PZT 5H characterization.
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Figure B11: PZT 5H characterization.
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Figure B12: PZT 5H characterization.
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Figure B13: PZT 5H characterization.
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Figure B14: PZT 5H characterization.
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Figure B15: PZT 5H characterization.
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Figure B16: PZT 5H characterization.
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Figure B17: PZT 5H characterization.
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Figure B18: PZT 5H - butterfly curve, unpoled.
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Effective Piezoelectric Strain
Coefficient of PZT 5H650
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Figure B19: Piezoelectric strain coefficient as a function of voltage.

1.25 in
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1.25 in

0.25 in
2.85 in
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2.85 in

Figure B20: Cutting diagrams supplied to Piezo Systems, Inc. specifying the dimensions piezo

sheets (dual tab configuration). Seven sheets of the left configuration and three of the right

configuration were cut per ten sheet order, resulting in 70 long (center piezo) and 130 short (outer

piezos) piezo pieces.
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Figure B21: SEM photomicrograph of large debonded region.

Figure B22: SEM photomicrograph of large void (internal section of solder joint).
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Figure B23: Ultrasonic scan of two piezo solder joints (bi-layer). Top: a two mil solder joint;

bottom: a one mil solder joint. The bottom joint shows well-bonded regions where weights were

placed during manufacturing.

kxV

Figure B24: Compositional analysis of gold-embrittled solder. In photograph, bright regions:

Pb-rich; medium gray regions: Sn-Au; dark gray regions: Sn-Rich.
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Appendix C: Voltage Cycling Circuit Design and Construction

Voltage States

In order to achieve the maximum shear strain in the solder joint, the voltage levels must be cycled

between the maximum allowable voltage settings as determined by the piezoelectric

characterization. To avoid depoling or shorting the piezo, the maximum voltages used in this study

were -100 V to +300 V accomplished by cycling up to ±200 V with a fixed 100 V DC offset.

Each piezo sheet must achieve these voltage limits and be perfectly synchronized with the other

piezos in the stack. If the center piezo is receiving + 300 V, then the outer two piezos receive -100

V and vice versa. Figure C1 shows the voltage states that must be achieved for each piezo sheet in

the stack. The cycling voltage was varied from ± 90 V to ± 200 V achieve a range of strain levels.

Design of H-Bridge Voltage Cycling Circuit

Instead of using a variable AC power supply to produce the required cyclic voltage, an H-bridge

voltage cycling circuit was designed and manufactured utilizing only DC power supplies. The

circuit was largely designed by Craig Winterhalter at Rockwell International at Thousand Oaks,

CA. The circuit utilizes a function generator to output a square wave to an inverter chip

(MC 14584B). The signal is then sent through an optical isolator chip (HCPL-4506), and another

non-inverted signal is sent through a different optical isolator. Both of these chips' output signals

are sent to separate gate drive chips (IR2101), which produce a high side and low side voltage that

is fed through power n- and p-channel MOSFETS (IRFBC40). The outputs from the system are

the AC and DC voltages required. The out-of-phase actuation of the piezos is created by the

inverted and non-inverted signal generated from the same square wave signal acting as a double

pole, double throw switch, as shown in Figure C2. An electrical diagram of the circuit can be

found in Figure C3. The system requires a function generator, two 9 V batteries or power sources

to drive the inverter chips, two 15 V power supplies to drive the optical isolator and gate drive

chips, two high voltage (up to 200 V) power supplies that will provide the AC switching voltage,

and one 200 V power supply that will be used to provide the +100 V and -100 V DC offset

voltage. The system works by utilizing five isolated grounds and relative voltages between them,

as shown in Figure C4. The function generator and the 9 V batteries share one ground, the 15 V

and 200 V power supplies share another ground (2 sets), the 200 V power supply (offset voltage)

has another ground, and the outputs of the system share a final ground. The outputs of the system
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are two (+/-) AC voltages that are always opposite each other and are equivalent to the input

voltage, one positive 100 V DC offset, one negative 100 V DC offset, and their respective

grounds, which are connected externally to the circuit. The elegant nature of the design allows for

variable frequency based on the input signal from the function generator and variable voltage based

on the voltage input level from the power supplies.

Manufacturing of H-Bridge Voltage Cycling Circuit

A prototype of the H-bridge circuit was created by manually wire wrapping the components in a

fiberglass electrical breadboard. This preliminary circuit was soldered after preliminary testing

proved its switching capabilities at low voltages. After further testing, the electrical connections

were found to be unreliable and inconsistent, which is unacceptable with the high voltages required

for this study. Therefore, for safety and reliability reasons, a more permanent circuit was created

using a copper-etched board. The board consists of two copper faceplates adhered to a

fiberglass/epoxy composite core. From CAD computer instructions, a punching and milling

machine etches out the traces, forming moats of non-conductive material around electrical

connections. The moats provide a 0.43 mm (17 mil) track of insulation around the copper

connections. Because the punched holes, where components are placed, have no electrical

conductivity, small tubes of solder-coated nickel were injected into the holes of the board. The

components are then dropped in and soldered to the copper surface. The process is extremely

tedious and time consuming, plus unforgiving of small errors in soldering, which could delaminate

the copper trace, causing a loss of electrical connections to part of the circuit. After successfully

manufacturing one of these boards, high voltage testing was conducted. The electrical insulation

of the etched tracks proved to be insufficient, as the circuit failed to work above ± 150 V due to a

short that failed the system. The electrical breakdown was most likely caused by a small solder

defect, such as a fleck of solder spanning the insulating track. Another circuit manufacturing

technique that provided more insulation was employed. A professional printed circuit board made

of plastic with a solder mask was contracted. Compared to the copper-etched board, the printed

circuit board featured substantial improvements, such as solder-lined punch holes, greatly

enhanced insulation, and ease in soldering, all of which contributed to a more reliable and stable H-

bridge circuit. This final design was manufactured and tested up to ± 250 V repeatedly for several

hours of continuous usage with no problems or failures. To contain and protect the printed circuit

board, a standard aluminum electronics box with banana clip terminals was constructed. The box

is grounded to G2, the ground of the high voltage power supplies.
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Figure Cl: Voltage states for the top, middle, and bottom piezos in the piezo/solder stack

(maximum actuation range). The arrow indicates poling direction.
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H-bridge state 1:

GND
out +VAC

H-bridge state 2:

GND
out -VAC
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Figure C2: H-bridge switching circuit - graphical interpretation.
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H-bridge Circuit:

DC Offset Circuit:

200 V -r ±

* +100 V

- - G3
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Figure C4: 5 isolated grounds in H-bridge circuit.
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Appendix D: Fatigue Testing

Experimental Set-Up

The experimental set-up consists of three high voltage power supplies (± 1000 V, 40 mA Kepco

Amplifiers), two 13.8 V power supplies, and a function generator arranged on a moveable cart

plus the circuit box, which is placed on a laboratory table. The inverter chip in the circuit box is

powered by either two 9 V batteries or two external 9 V power sources for long duration testing,

because the batteries drain after approximately 6 to 7 hours. There were several components of the

experimental set-up that were constructed to facilitate testing: a specimen holder to secure the

specimens at one end and to provide electrical connections to the piezo sheets; an interrupt box to

provide a voltage cut-off between the specimen holder and the circuit box; and a thermal box to test

the specimen isothermally at temperatures other than room temperature.

Specimen Holder

The specimen holder provides two important functions. Firstly, it enables the delivery of voltage

to the three separate piezo sheets without the need for soldering of leads. Early attempts at lead

soldering proved to be extremely tedious and often led to center tab breakage due to the extremely

brittle nature of piezoceramics. The specimen holder features a copper finger assembly that applies

an even, spring-loaded pressure to the piezo, holding it firmly. This ensures that the voltage is

applied directly to the conductive gold-coated surface and acts to hold the one end of the stack

firmly in place. This second important function provides a "fixed end" and a "free end," which

should facilitate cracking at the uninhibited end in an opening (K) mode. A prototype specimen

holder was manufactured at Rockwell Science Center consisting of four copper finger assemblies

soldered to copper plates. They were aligned with insulation paper separating the inner and outer

layers, and a plastic spacer separating the inner layers. The copper fingers were situated a fixed

distance apart by two nut and bolt assemblies that attached the copper finger assembly to a plastic

base. This specimen holder functioned quite well as far as applying the voltage; however, it was

difficult to insert and remove the specimens without breaking the center tab of the specimen. The

specimen holder was redesigned, and a second one manufactured at the central machine shop at

MIT. The concept for the specimen holder was the same, utilizing copper fingers to hold the

specimen in place, but the pressure of the copper fingers can be varied via a nylon wing nut. The

two halves of the specimen holder were consolidated and could be opened so that the specimen
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could be inserted and removed easily. Once in place, the wing nut could be tightened, applying an

even pressure that resulted in no breakage of any specimen. The body of the second specimen

holder is aluminum with insulating plastic and paper separating all the conductive areas.

Photographs of the completed holder are shown in Figure 12. The specimen holder was clamped

to a fiberglass platform on a ring stand to raise it to the level of the long-range microscope used in

testing.

Voltage Interrupt Box

Initially, it was thought that measuring capacitance and resistance could reveal information about

the fatigue of the solder during testing. It was decided to monitor the capacitance and resistance

during testing using a Hewlett-Packard Capacitance Analyzer. However, because the HP analyzer

could be damaged by voltage input from the specimen, the power to the specimen had to be shut

off before the measurement could be taken. Rather than turn off the power supplies or the H-

bridge circuit, it was decided to create a voltage interrupt box utilizing a simple switching

mechanism that would either connect the specimen with the power supplies or the HP analyzer but

never at the same time. A separate switch was used for each of the four leads running from the

circuit box to the specimen holder. Later, it was proven that capacitance was not a useful indicator

of solder fatigue activity. However, the interrupt box, although no longer needed for the

capacitance measurements, was still used because it was an effective method of interrupting voltage

to the specimen very quickly should a problem, such as sparking or extremely rapid crack growth,

occur during testing.

Thermal Box

A Styrofoam insulated thermal box with a transparent plastic window was constructed for in situ

monitoring of crack growth for elevated and reduced temperature testing. This box is a prototype

and is not intended for long-term usage. The box was constructed to verify that temperature does

have an effect on the fatigue behavior of solder joints; for further testing, it is strongly

recommended that a more robust thermal chamber be constructed. The challenge of this thermal

box was that it had to allow for visual in situ monitoring of the crack growth and be able to both

cool and heat the specimen. Therefore, a unique, yet rudimentary, thermal chamber was

constructed.

66



Two layers of 3/4 inch-thick Styrofoam sheet were used to construct the box. The sides were

joined with white glue suitable for use with Styrofoam. Nails held the foam in place while the glue

dried. On the six-sided box, five sides are fixed, and the sixth or front of the box is removable so

that the specimen holder can be inserted. The face of the box also contains the window, which is

inset in the Styrofoam with white glue. A Styrofoam ledge was installed in the box to enable the

specimen holder to rest (unclamped) so that the specimen is clearly visible through the window.

The box has holes for the input voltage wires to the specimen holder (no ring stand required) and a

hole for a thermometer to monitor temperature. A photo of the box is shown in Figure D1.

The box is cooled and heated by a thermoelectric device, or Peltier junction, which uses a doped

semiconductor-based electronic component to function as a small heat pump (Ferrotec-America,

model P/N 6320/157/040). By applying a low voltage DC power source, the module moves heat

from one side to the other, creating one face that heats and one face that cools. The concept is

analogous to a mechanical refrigerator. The heating direction of the thermoelectric device may be

inverted by simply switching the polarity of the applied electric field. Fins are adhered to the

heating and cooling faces to facilitate heat dissipation. The fins are held in place with thermal

grease (Ferrotec-America, AOS Heat Sink Compound-400), an exceptionally soft, non-silicone

grease. This specially formulated grease is designed to not harden, degrade, or migrate under

normal use within temperature environments from -40'C to 200'C. This ensures excellent heat

transfer between the thermoelectric device and the cooling fins. Aluminum wire was then wrapped

around the entire assembly to hold the fins securely in place. A photo of the thermoelectric device

with attached fins is shown in Figure D2. The device is placed such that half of it is inside the

thermal box and other half outside the box, with Styrofoam insulation filling the gaps as much as

possible. Heat sinks of a metal plate and a bath of ice water are used for the heating and cooling

modes respectively. To ensure the temperature inside the box is uniform, a fan is placed over the

fins of the thermoelectric device. Using a 20 V, 1 A power supply, a temperature of 80*C could be

maintained inside the box when heated and 00C when cooled. A greater temperature difference

could have been realized if a larger power supply were available, since the current rating on the

thermoelectric device is 4 A.

To perform the testing, first the wires of the specimen holder are threaded through the openings in

the thermal box. Next, the sample is mounted into the specimen holder. The front face of the box

is then fitted onto the box and held in place with masking tape. Next, the box is placed on top of

the thermoelectric device. If heating is desired, the positive lead from the device is connected to the

positive terminal on the power supply and similarly with the negative lead. If cooling is desired
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inside the box, then the negative lead from the thermoelectric device is connected to the positive

terminal on the power supply and similarly with the positive lead. The power supply is then turned

on and the voltage increased until the 1 A current limit of the power supply is reached. As the

device heats, the resistance decrease within the device will cause the voltage level of the power

supply to drop. The voltage is continually increased as this occurs to continue the heating process.

After approximately 20 minutes, the voltage, and subsequently the temperature inside the box, will

stabilize. As long as a proper heat sink is maintained outside the box, the temperature inside the

box will remain constant. This is a challenge for the tests at 00C; ice must be continually added to

the ice bath surrounding the cooling fins outside the box. As the device pumps heat out of the box

(cooling mode), the heat melts the ice. Water must be siphoned off, and more ice added

approximately every 15 minutes to maintain the temperature inside the box. Temperature was

monitored continuously using a thermometer and was kept within ± 2'C during testing. Crack

growth measurements are then performed following the same procedure as those taken at room

temperature.

Procedures

Crack Length

The primary objective of this study is to investigate crack growth during piezo-induced solder

fatigue. One of the benefits of the piezomechanical approach to fatigue testing is that the cracking

can be optically monitored and measured in situ. A long range microscope manufactured by

Questar, Inc. of New Hope, PA was used to measure solder fatigue crack length. The microscope

with a 2X magnification lens was used. The image from the microscope was fed through a single

charged coupled device (CCD), black and white digital video camera into a television monitor. A

digital measuring system with resolution up to 0.01 mm monitored the x-y-z positions of the

Questar microscope's stage based on the manual adjust knobs on the microscope's base. The x-

direction was used for measuring crack length and the z-direction for measuring crack opening

displacement. For measuring reference, cross-hairs were drawn on a transparency, which was

taped to the television monitor. To begin testing, the specimen was carefully inserted and tightened

into the specimen holder. The Questar microscope was then focused on the plane of the specimen,

and the plane of the microscope's optics was made parallel with the surface of the specimen by

rotating the specimen stand or the microscope itself. This ensured that a fatigue crack would

remain in focus along the length of the specimen or only require slight focusing adjustments. A

severe y-direction misalignment can cause errors in crack length accuracy. The lighting on the
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specimen was adjusted for best contrast; both external and beam splitter lighting techniques were

used. The entire joint was examined for defects that could act as crack initiators. Any suspect

voids or debonded regions were measured. Next the desired input voltage was set on the high

voltage power supplies and the desired frequency was set on the function generator. The

functionality of the circuit box was checked with a voltmeter on the output terminals. The function

generator was halted while the voltage was delivered to the specimen via the voltage interrupt box.

The cycling was then started by turning on the function generator. At the same time, a stop watch

was started to monitor cycling time. The cycling frequency was slowed at intervals to provide an

opportunity to scan the entire joint for crack opening. At frequencies of 1 Hz and lower, there was

often no need to slow the actuation frequency for crack measurements. A crack appeared as a dark

line either inside the solder or along an interface. If it were truly a crack, an opening relative to the

piezo adherends was apparent. The crack length was measured by first aligning the cross-hairs at

one end of the crack. This was either an internal location or the end of the specimen (free or

fixed). The stage of the microscope was then moved in the x-direction to the tip of the crack. The

crack tip was often difficult to see; therefore, the crack length was measured to the point where its

opening can no longer be observed. The cycles and length were recorded, and the testing

continued. This process continued until either the specimen broke or a certain "run-out" number of

cycles was reached. The latter was only used if the specimen showed no cracking or was cracking

at an extremely slow rate. Tests were as short as 1 hour for high voltages and frequencies, and as

long as several days for low voltages and frequencies.

Crack Opening Displacement

Crack opening displacement measurements were made when a crack reached the free end of the

specimen and opened in I (opening) mode. The procedure was identical to the crack length

measurements except that the stage of the microscope was moved in the z-direction. Crack

opening displacement measurements were made when the specimen exhibited a through-thickness

crack with a planar crack front; therefore, only a few of these data sets exist. Figure 15

demonstrates a crack opening from the free end.

Capacitance/Resistance

The capacitance and resistance of the solder were measured across both solder joints during initial

testing. It was hoped that capacitance and resistance measurements could be a sensitive metric to

changes occurring in the solder during fatigue. However, the values remained virtually unchanged
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over the course of the fatigue life, only deviating at failure when the piezo itself would break. An

example of these results is shown in Figure D3. These measurements were discontinued after they

were shown to be ineffective.
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Appendix D Figures

Figure D1: Photograph of thermal box.

Figure D2: Photograph of thermoelectric device.
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Figure D3: Capacitance (left) and resistance (right) measurements of solder joint during fatigue

testing. The final drop in capacitance and rise in resistance was caused by failure of the piezo.
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Appendix E: Data Analysis

Calculation of Strain Energy Release Rate Amplitude (AG)

In order to apply a fracture mechanics technique to the fatigue data, the crack growth rate must be

plotted versus the strain energy release rate amplitude, AG.

Strain energy release rate is calculated for a single crack growing in a double symmetric joint, as

shown in Figure 11, by subtracting the strain energy associated with the intact bond in the crack

wake from the total strain energy that would be released if both bonds were breaking.

The total strain energy release rate is given by:

G = UA - (UB + UC) (18)
w da

The strain energy for region A is given by equation 17, above.

U= 3d3 1 (AV + AV2 )2 (19)
UA 2 '3t

Region B is stress free, therefore UB = 0.

O.2
U = -tb da (20)

2E

Region C requires the evaluation of the strain energy in a bilayer, bimaterial strip. This is obtained

by enforcing considerations of equilibrium of forces and bending moments and the compatibility of

strains and curvatures in the two layers (Spearing, 1996). Hence:

U 2 2t (=g2 + 1). [ A2(/ + 1) (A3 + 1)+ 3A4f( + 1)2] (21)
2 El

where

P=e, 2 = 4' d31 V + AV) ( ti_

+ +A13+1 AA+1+3and + t t2

and A =-E-
E2
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In the case corresponding to the experiments in which the piezoceramic substrates are made of the

same material with the same thickness, A = -=1, =1
E2

This simplifies to:

13 E 2 AAG= -d 1 (A +AV2 )2  (22)
48 t

The equation for AG was given in equation 22 as:

13.E 
21(AAG= d3 i(A +AV 2 )2

48 t

E is the modulus of elasticity of the piezoceramic adherend, given as 62 GPa by the manufacturer.

The thickness, t, is the height of the adherend, which was measured at 0.1905 mm (7.5 mil), and

d3 , is the piezoelectric strain coefficient as determined by the piezoceramic characterization

described in Appendix B. The sum of AV, and AV2 represent the total actuating voltage of the out-

of-phase piezos, taking into account that the piezos are moving in opposite directions. For

example, if the center piezo is experiencing a AV, of -150 V, and the outer piezos are experiencing

a AV of +250 V, values are added to achieve 400 V total because the piezos are straining in

opposite directions, which increases the shear strain in the solder. Substituting into this equation,

the strain energy release rate was calculated for each testing scenario, as shown in Table El.

Correction of d31 for Temperature

The piezoelectric strain coefficient, d3 ,, varies with temperature in PZT 5H. The percentage of

deviation from the room temperature d3 , is given by the manufacturer as shown in Figure El. For

the high and low temperature testing, a new d31 was calculated accommodating for this deviation.

At 80 'C, the d31 is 22.6% greater than the room temperature d3 l and at 0*C, the d3 l is 5.4% less

than the room temperature d31.

Calculation of Shear Strain (A y)

The shear strain of the solder joint is calculated using shear lag analysis, as given equation in 13:

Ay 1 )2 E, tE2 t2
AYmax = (1 d31,1 + 2 d31,2r EtE 2t22hr 3 '1 2 1~~ Eiti + E2t2 )
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Since the adherends are made from the same PZT material, E = E2 , tl = t 2 , and d3 1,1 =4d1,2,

simplifying the above equation to:

Aymax = (Ay + 2)

where (AV + AV2 ), E, t, and d3 l are given above. The height of the solder joint, h, is 0.0254 mm

(1 mil) and the shear strength of solder, r, is 37 MPa. Solder shear strain values for each

actuation scenario are given in Table El.

Crack Growth Data

Each data set collected in this study is presented in Appendix F. For a given voltage and

frequency, the crack length versus number of cycles was plotted. This data was then imported into

MacCurveFitTM, and a linear regression was performed. The slope of the line was recorded as the

crack growth rate or da/dN. The data was only fit through zero if cracking initiated immediately

from the onset of testing. Since most specimens exhibited a period of cycling before the onset of

cracking (initiation), a forced fit through zero would skew da/dN. If clear initiation and steady

state crack growth regions were apparent in the data, the linear regression was performed only on

the steady state crack growth region. The crack growth rate was then plotted versus strain energy

release rate. Cycles to initiation, or the number of cycles accumulated for a crack to reach an

arbitrary two mm criterion, were plotted versus shear strain.
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Appendix E Tables

Table El: AG and Ay values for each testing scenario.

ROOM TEMPERATURE:

76

ooC.:

800C:

Voltage AG A y

100VDC 100VAC 0.942 0.00093

100VDC 110VAC 1.197 0.00118

100 VDC± 120VAC 1.494 0.00147

100VDC 130VAC 1.836 0.00180

100VDC ± 140VAC 2.228 0.00219

100VDC ±150VAC 2.673 0.00263

100VDC ±160VAC 3.176 0.00312

100VDC ± 175VAC 4.048 0.00398

100 VDC ±190 VAC 5.073 0.00498

10-VDC 200VAC 5.849 0.00575

Voltage AG A y

100VDC t 160VAC 2.806 0.00276

100VDC i l80VAC 3.863 0.00379

100VDC i 200VAC 5.168 0.00508

l00VDC ± 220VAC 6.757 0.00664

Voltage AG A y

100VDC 130VAC 2.869 0.00282

100VDC ±140VAC 3.481 0.00342

100VDC 160VAC 4.963 0.00487

100VDC 8 AC 6.830 0.00671



Appendix E Figures

Properties of PZT 5H
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Figure El: Thermal properties of PZT 5H (Piezo Systems, Inc.).
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Appendix F: Crack Growth Data

Room Temperature:
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Two data sets and line fits indicate two cracks running simultaneously in the same specimen.
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