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We present a new string method for finding the most probable transition pathway and optimal reac-
tion coordinate in complex chemical systems. Our approach evolves an analytic parametric curve,
known as a Bézier curve, to the most probable transition path between metastable regions in config-
uration space. In addition, we demonstrate that the geometric properties of the Bézier curve can be
used to construct the optimal reaction coordinate near the most probable reaction path, and can fur-
ther be used to devise a ranking vector capable of identifying precisely which collective variables are
most important for governing the transition between metastable states. We discuss the algorithmic
details of the Bézier curve string method, analyze its stability, accuracy and efficiency, and illustrate
its capabilities using model potential energy functions. In particular, we use the degree elevation
property of Bézier curves to develop an algorithm that adaptively learns the degree polynomial nec-
essary to accurately represent the most probable transition path. Subsequently, we apply our method
to the isomerization of alanine dipeptide, and demonstrate that the reaction coordinate obtained from
the Bézier curve string method is in excellent agreement with the optimal reaction coordinate con-
structed from an aimless shooting and maximum likelihood procedure. Finally, we apply our method
to a large complex system and study the homogenous nucleation of benzene from the melt. In these
two examples, we illustrate that the ranking vector correctly identifies which collective variables gov-
ern these chemical transitions. © 2074 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4893216]

. INTRODUCTION

The evolution of a complex molecular system often ex-
hibits motion on widely separated time scales since different
physical interactions in the molecular potential induce differ-
ent characteristic timescales. Some examples of systems ex-
hibiting this behavior include conformational changes of large
biomolecules, molecular assembly of macromolecules, ligand
binding, and nucleation events in phase transitions. The ap-
pearance of long time scales is a manifestation of large free
energy barriers or entropic bottlenecks that confine the system
in metastable basins in regions of phase space. Transitions out
of these metastable basins only occur when sufficiently large
energy fluctuations localized in these regions allow the system
to overcome the free energy barriers. These types of transi-
tions are referred to as rare events because these large energy
fluctuations occur rarely with respect to the typical molecular
time scales present in the system. In addition, these transitions
generally occur on time scales that are much longer than those
accessible by direct molecular dynamics simulations, making
it impractical to study these systems with traditional methods.
Consequently, more sophisticated computational methodolo-
gies are required to overcome this time scale problem.

In addition to overcoming the time scale problem, identi-
fying the underlying mechanisms that cause these transitions
is a fundamental challenge by itself. In general, the system
evolves in high dimensional phase space, but because of the
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separation of time scales, the transitions between metastable
states is often governed only by a subset of variables that
evolve on the slower time scales present in the system. There-
fore, to gain insight into the mechanism of the reaction, it is
more useful to reduce the dimensionality of the system and
describe the system as a function of important collective mo-
tions. These collective motions are known as collective vari-
ables, and ideally there exists some combination of them that
can be formed into a single variable that completely describes
the reaction between metastable states. This single variable
description of the system in terms of collective variables is
known as the reaction coordinate. The major challenge in
gaining insight into the mechanism is therefore identifying
which collective variables correctly describe the reaction and
how each of them participates in the reaction coordinate. In
addition, it is of paramount importance to choose the correct
collective variables to describe the system because the exclu-
sion of important degrees of freedom can lead to artificially
low or high free energy barriers, incorrect reaction rates and
mechanistic interpretation. Consequently, when modeling any
large complex chemical system, a systematic approach to test
reaction coordinates is needed.

To develop a systematic approach for testing reaction co-
ordinates, one necessarily needs a criterion for what the re-
action coordinate should be. For a phase space model of any
chemical reaction, the unique reaction coordinate is the solu-
tion to the backward Kolmogorov equation,'™® which in the
chemical physics literature, is known as the committor prob-
ability. The committor probability, g(x), is a function that

© 2014 AIP Publishing LLC


http://dx.doi.org/10.1063/1.4893216
http://dx.doi.org/10.1063/1.4893216
http://dx.doi.org/10.1063/1.4893216
mailto: trout@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4893216&domain=pdf&date_stamp=2014-08-20

074110-2 M. A. Bellucci and B. L. Trout

specifies at each point in configuration space or phase space,
the probability that a trajectory initiated at that point will suc-
ceed in making a transition to a product state. Furthermore, it
has been shown'>? that the isosurfaces of the committor prob-
ability completely characterize the progress of the reaction.
Unfortunately, for all but the simplest of systems, obtaining
the exact committor function is impractical. However, it can
often be approximated to varying levels of accuracy. Ideally,
for a computational method to be successful at modeling large
complex systems, at the very least, it must be capable of over-
coming the time scale issue and approximating the commit-
tor function in some region of configuration space. A number
of methods have been developed to address these issues. Of
these methods, we focus our discussion here on two of the
most successful methods: path sampling methods and string
methods.

Path sampling methods are generally based on the tran-
sition path sampling (TPS) framework, which has been uti-
lized to obtain insight into the mechanism of rare events in
a variety of chemical and biological systems.>*7:3 Under
this framework, an ensemble of unbiased reactive trajecto-
ries is obtained between metastable basins by performing a
Monte Carlo procedure in path space. This methodology has
been used to study melt crystallization in sodium halides,’
pressure induced polymorphic transformations,'® evaporation
coefficients of water,'' and to generate nucleation pathways
to hexagonal ice in water.'>!3 Recently, a variant of TPS
known as the aimless shooting algorithm was developed in
our group.'*!3 In this method, the TPS algorithm is modified
and combined with a likelihood maximization method capa-
ble of finding the optimal reaction coordinate. It has been suc-
cessfully used to obtain insight into the nucleation mechanism
in the Ising Model'* and benzene from the melt,'® as well
as polymorph transformations in organic compounds.'>!7-18
Despite the success of these methods, the diffusive nature of
the system and ruggedness of the free energy landscape can
limit their applicability due to long simulation times needed
to gather adequate statistics.

Alternatively, the string method, and its variants,
can circumvent long simulation times even for diffusive sys-
tems or systems with rugged free energy landscapes. The
string method is a general approach that provides a reli-
able way of calculating minimum energy paths (MEP) or
minimum free energy paths (MFEP) for barrier-crossing
events. The method proceeds by evolving strings, i.e.,
smooth curves, to the most probable transition path between
metastable regions in configuration space. It has been used to
study hydrophobic collapse of hydrated chains,>> membrane
adhesion, capillary condensation,?’ and to find nucleation
pathways in block copolymers.”® However, in contrast to path
sampling methods, the string method using collective vari-
ables is a biased method, requiring one to choose suitable col-
lective variables a priori. Moreover, the string method con-
verges to a single path in collective variable space, whereas
path sampling methods build an ensemble of unbiased tran-
sition paths, which in the case of aimless shooting, can be
used to systematically construct the optimal reaction coordi-
nate. Therefore, the string method inherently provides differ-
ent information than path sampling methods, making it cum-

19,20 21-24
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bersome to test reaction coordinate models using simulation
data a posteriori.

The objective of this work is to develop an approach
for determining important collective variables and the opti-
mal reaction coordinate, comparable in accuracy to a max-
imum likelihood approach, from information available from
the string method in collective variables. In this work, we
show that provided that the number of collective variables
is large enough, the mechanism of the reaction can be ade-
quately captured by finding the most probable reaction path
in this large set of collective variables. In addition, it has
been shown that isocommittor surfaces can be locally approx-
imated near the MFEP by the normal planes of the curve. The
normal plane near the g(x) = 1/2 point on the string gives us an
estimate for configurations that comprise the transition state
ensemble, and by definition, motion in this direction does not
lead toward the reactant or product region. In contrast, mo-
tion in the direction of the tangent plane leads to the most sig-
nificant progress in the reaction. Moreover, since the tangent
plane is orthogonal to the committor isosurfaces, it must be
proportional to the change in the reaction coordinate, Vg(x),
since the gradient of any function is orthogonal to its level
sets. Consequently, to determine what collective variables are
important in governing the transition from reactants to prod-
ucts, one can analyze the components of the unit velocity
vector and unit acceleration vector tangent to the MFEP at
the g(x) = 1/2 point on the string. Together, these components
impart a natural rank on the collective variables in terms of
importance; the larger the magnitude of the components asso-
ciated with a particular collective variable, the more important
the collective variable is in governing the transition. Unfortu-
nately, in the string method in collective variables, the string is
represented by a piecewise cubic spline, and therefore, there is
little information regarding the components of these vectors.
One could always approximate these vectors numerically as
was done in the original string method,'® but it was shown?’
that evolving the string using the numerical derivatives was
numerically unstable and less accurate than the current ap-
proach, which uses a Lagrange multipliers method to evolve
the string.

In the spirit of the original string method, we have de-
veloped a numerically stable and accurate string method us-
ing Bézier curves to find MEPs and MFEPs on potential or
free energy surfaces. The Bézier curve is an analytic para-
metric curve equipped with a Bernstein polynomial basis set
and has been used in a variety of applications.?”33 A natu-
ral advantage of using a Bézier curve in the representation
of the string is that any geometric property of the curve can
be computed analytically, including the velocity and accel-
eration vectors. This allows us to perform the reaction coor-
dinate analysis described above. In addition, we demonstrate
that the natural properties of Bézier curves, such as degree
elevation, imparts a level of flexibility in the algorithm pro-
posed here, and allows us to compute the MEP or MFEP to
a high level of accuracy. The discussion of our method pro-
posed herein is as follows: we begin with an overview of the
string method, Bézier curves, their properties, and the Bézier
curve string method algorithm. We then develop a reaction
coordinate analysis for quantifying how important collective
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variables are in governing rare event transitions relative to one
another. Subsequently, we use model potentials to test the ro-
bustness of our method and its convergence properties. We
further apply our method to study the isomerization of the
alanine dipeptide molecule, and show that the reaction coor-
dinate obtained from the Bézier curve string method is equiv-
alent to results obtained from a likelihood maximization re-
action coordinate analysis performed on data obtained from
aimless shooting. In addition, we demonstrate that the reac-
tion coordinate analysis we develop here allows us to deter-
mine precisely which collective variables are governing the
conformational transition. Finally, we apply our method to a
large complex chemical system, and study the mechanism of
homogenous nucleation of benzene from the melt.

Il. OVERVIEW OF THE STRING METHOD

The Bézier curve string method is based on the string
method in collective variables algorithm of Maragliano et al.,
and so, we present a general overview of the string method
and refer the reader to Ref. 21 for a detailed description of
the algorithm. The main objective of the string method is to
find the MEP or MFEP for chemical systems. Denote by V (x)
the potential energy of the system of interest and assume that
V(x) has at least two minima, corresponding to a reactant
state and a product state. By definition, a MEP is a curve,
@, connecting the reactant and product basins that satisfies

VV(p)t =0, (1)

VV(p)t = VV(p) — (VV(p)- )2, 2

where 7 is the unit tangent vector. Therefore, the MEP is a
curve where the normal component of the gradient of the po-
tential is zero, or equivalently, the gradient of the potential is
parallel to the tangent vector at every point along the curve.
The underlying idea of the string method is to find MEPs by
evolving a curve by

vt = —VV(p)t, A3)

where v is the normal velocity of the curve, since stationary
solutions of (3) satisfy (1). Similarly, given a set of N collec-
tive variables, 6(x) = (6,(x), ..., 85(x)), where N is less than
the dimensionality of the full system, then the free energy of
the system can be written as

N
F(z)= —kgTln| Z™" / e PVOTT8; — 0;(x)dx |
j=1

“
where Z is the canonical partition function. We can see that if
N is less than the dimensionality of the full system, then only
the degrees of freedom used to define the collective variables
are explicitly taken into account in the free energy, whereas all
other degrees of freedom contribute to the free energy in an
average sense. Consequently, to adequately capture the barrier
heights and shape of the full dimensional free energy surface
along the MFEP, one must choose collective variables that are
relevant to the underlying molecular transition.

J. Chem. Phys. 141, 074110 (2014)

Let z(«) be a path in collective variable space, then the
MFEP connecting a reactant state and a product state is a
curve that satisfies

M)V, F(z)*" =0, 5)

M@V, F(2)" = M(2)V,F(z) — (M(2)V,F(z) - ),  (6)

where F(z) is the free energy of the system and M(z) is a ten-
sor that accounts for the curvilinear nature of the collective
variables. The MFEP is found by evolving the curve by the
corresponding normal velocity equation until the curve is sta-
tionary. Once the string has converged to the MFEP, the free
energy along the string can be determined using the follow-
ing:

D) _ 9, Petay - B2, ™
do : do
o d /
Fle@) - FaOD = [ VG- S
0 o

lll. BEZIER CURVES

A Bézier curve is a parametric curve originally devel-
oped for use in computer aided geometric design,” but has
also been used in approximation theory,**! optimal control
theory,> and in applied mathematics to solve partial differ-
ential equations.** Moreover, Bézier curves are very useful in
curve fitting; since every real-valued continuous function on
the interval [a, b] can be uniformly approximated by a nth
degree polynomial, every continuous function has a Bézier
curve representation. A Bézier curve is defined as a linear
combination of Bernstein polynomials,

z(@) =) P B, (@), acl01], )
=0

B, = (l;_)aj(l ) (10)

where z,(«) represents the ith component of the parametric
curve z(or), which corresponds to the ith collective variable,
« is a parameter, n is the degree of the polynomial, B, ,(«)
are Bernstein polynomials, and P, ; is a set of control points
that together form a control polygon (see Fig. 1). The veloc-
ity and acceleration of the curve have the following analytic
expressions:

n—1

V(@) = Zn(P[,jJrl — P )B,_ (o), an

=0
n—2

a(@) =Y n(n—D(P, 1, = 2P, 1 + P, B, ;(@).
=0

(12)
One of the most useful properties of Bézier curves is the de-
gree elevation property. Any nth degree Bézier curve can be
exactly represented as a Bézier curve of degree n+1, and
hence, as a curve of any degree n' > n. When raising the
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FIG. 1. Example of a two dimensional Bézier curve with control points over-
laid in green. Aside from the endpoints of the curve, the remaining n — 2
control points do not necessarily lie on the curve itself.

degree of the Bézier curve, one necessarily needs to deter-
mine the control points for the equivalent n+1 Bézier curve.
The n+1 control points can be computed using the following
equation:

n+1 __ J n

n+1—j
ntl— 21 pn P".. 13
12¥) n+1 L]— ( )

n+1 "/

The degree elevation property of Bézier curves is especially
useful because it allows us to adaptively increase the degree
of the polynomials in the Bézier curve to achieve a high level
of accuracy when evolving the string. In general, if the collec-
tive variables are sufficiently well-behaved when describing a
barrier-crossing event, as is the case for most collective vari-
ables, then a Bézier curve can describe the transition to a very
high level of accuracy using a small Bernstein polynomial
basis.

1

IV. BEZIER CURVE STRING METHOD ALGORITHM

The Bézier curve string method algorithm can be broken
down into a series of simple steps:

Generate Initial String

Compute Mean Force and Metric Tensor
Evolve String

Reparameterization

Evaluate Error

Degree Elevation

SAIAIE I S e

These steps are described in greater detail below.

A. Initial Bézier string

In practice, the Bézier string, z(«, 1), is discretized into a
set of m images by discretizing the parameter « in (9) into a
set of m points. Since the string method is a local optimiza-
tion method, it is advantageous to have an initial string close
to, in the Fréchet distance sense, the most probable transi-
tion path. For example, to generate an initial string to study

J. Chem. Phys. 141, 074110 (2014)

crystallization, one would typically take the crystal of inter-
est, slowly melt it in a molecular dynamics simulation, and
choose configurations along the melting trajectory as the dis-
cretized points along the initial string. Let z0 represent the
initial string in collective variable space determined from a
molecular dynamics simulation, let B= (B, ..., B, ,) be the
m x n Bernstein polynomial matrix, and let P = (P, ..., Py)
be the n x N control point matrix, then we necessarily have
the following condition:

BP = 0. (14)

Therefore, finding an initial Bézier string amounts to finding
the control points, P, that make the Bézier string best approx-
imate some initial string z0. For a detailed description of how
to determine the optimal control points for the initial string,
we refer the reader to Appendix A.

B. Mean force and metric tensor

The evolution of the string requires the evaluation of the
mean force, V_F(z), and the tensor M(z) locally around the
string. Since this aspect of our algorithm is performed in the
same way as in the original string method in collective vari-
ables algorithm, we refer the reader to Ref. 21 for a detailed
description of how the mean force and metric tensor are de-
termined from simulation. Once the mean force and metric
tensor are determined, we compute the normal component
of the mean force using (6). The unit tangent vector of the
curve can be computed analytically with (11) using the rela-
tion T = v/|v].

C. String dynamics

To evolve the Bézier curve toward the MFEP, one evolves
the m images on the string in the direction of the normal ve-
locity of the curve. In practice, this amounts to finding the
control points that reproduce the correct string after evolu-
tion by the normal velocity. This evolution can be viewed as
a curve-fitting problem that involves first evolving the string
by the normal velocity and then finding the control points
that best reproduce the time-evolved string. However, a much
more simple and stable approach is to allow the control points
to be a time-dependent dynamical system. Using a forward
Euler integration scheme, we can determine the time evolved
control points using the following:

B MOV.FQ*
Bn,k : Bn,k

Plf“zpkh_ t, k=1,...,n—1.

15)
For a derivation of this equation, please refer to Appendix B.
Our algorithm performs this update on all the control points
except the control points on the endpoints of the string. For
the control points on the endpoints, we evolve them toward
the minima of the reactant and product basins by evolving
them by the full force instead of the normal force, i.e., we
evolve them by

Pt = P — M(z2(0)V, F(z(@))At,  k=0,n, (16)
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where —M(z(a}))V_F(z(ay)) is the force at the corresponding
endpoints. Note that this step must be performed before evolv-
ing the n — 2 control points by the normal force to maintain
stability in the equations of motion.

D. Reparameterization

The reparameterization step is performed to ensure that
the images along the string are equidistant from one another,
or equivalently, it is the realization of an arc length parameter-
ization of the curve. In the original string method algorithm,
this step was necessary to enforce a Lagrange multiplier con-
straint throughout the evolution of the string. However, in
our algorithm, this step is not explicitly necessary, but is of-
ten useful to ensure adequate sampling across the string. The
most straightforward parameterization of a Bézier curve is to
simply discretize « into m points, which in turn, discretizes
the string into m images. This parameterization is usually suf-
ficient, but in regions of high curvature, i.e., where the string is
bending, this parameterization can lead to images being very
close together. As a result, in regions of low curvature, the
images can be widely separated, and thus, the sampling in
these regions will be sparse. Fortunately, a Bézier curve has
an arbitrary parameterization, and therefore, any parameteri-
zation can be realized by performing a parameter substitution,
o = flu). If in particular, we let u = s, then our curve will be
parameterized with respect to arc length s provided that f{(s) is
the inverse function of the arc length. The function f{s) cannot
be computed analytically, but it can be determined numeri-
cally. To find f{(s) we first compute the arc length function of
the curve with numerical integration

s(@) = / " o) del (17)
0

where |v(a')] is the speed of the curve. After determining the
arc length function of the curve, the inverse function f{s) can
then be computed numerically with the following:

£(s) = /0 Ju(shl s (18)

Once we know the function f(s), we determine what values
of « correspond to an equal arc length parameterization. To
do this, we interpolate f{s) using a cubic spline interpolation
as a function of the computed arc length s(«), then we dis-
cretize s into m equidistant points, and subsequently calculate
the new values of « that correspond to the equal arc length pa-
rameterization from the interpolated function f{s). Using the
calculated values of « in the Bézier curve yield an equal arc
length parameterization.

E. Error evaluation

As a simple measure of error, we can define our error
function to be

EMFEP = max |M(Z(a,‘))sz(Z(a,‘))L|a (19)

where max represents the maximum value of
|M(z(ozl-))VzF(z(ai))l| over the string. To judge conver-
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gence of the string, we evolve the string until E, ., drops
below some tolerance level, TOL. E, - is a fairly stringent
measure of error, since it ensures that the maximum magni-
tude of M(z(oti))VzF(z(ai))J- never exceeds TOL, which can
arbitrarily be set to some desired accuracy level. However,
this definition of error can lead to slow convergence. To see
why this is the case, we first note that (19) may be rewritten
as

Epypep = max [|M(z(e,)V, F(z(e;)I*(1 — cos(¢)»)]'/2,

(20)
where ¢ is the angle between M(z(a,))V F(z(;)) and
7, the unit tangent vector of the string. We see from
(20), that the convergence of the string is governed
by |M(z(ai))VzF(z(ai))|2 and ¢, and if in particular,
[M(z(et;))V F' (z(oz,-))l2 happens to be very large, then ¢ < 1°
in order to satisfy E,;-;p ~ 0. In practice, the string is sta-
tionary long before ¢ < 1°, and so, further evolution of the
string beyond the point it is stationary makes little difference
in the MFEP. Therefore, (20) is not a very efficient error func-
tion for measuring convergence. Furthermore, since the mag-
nitude of |M(z(a;))V_F (z(ozi))|2 depends on the system and is
not known a priori, it is difficult to set an appropriate value
for TOL that coincides with the string being stationary. How-
ever, we see from (20) that the defining criterion for a MFEP
is such that M(z)V_F(z) is parallel to £, or equivalently, that (1
— cos (¢)?) = 0. Therefore, we can define an equivalent error
function based solely on geometrical considerations as

Eyppp = max (1 — cos(¢)?), 21

where max is defined with respect to the maximum
|M(z(ai))VzF(z(ai))i| along the string. Moreover, we define
TOL = 1 — cos(¢)?, for some small value of ¢, typically
¢ < 0.5°. In this way, we are still minimizing (20), but our
criterion for judging convergence is system independent and
better defined. Consequently, the algorithm spends less time
trying to achieve very small values of ¢, as it would if we
used (20) as an error function, and therefore, it is much more
efficient.

F. Degree elevation

When evolving the Bézier string, we generally begin with
a low degree Bézier curve, usually the lowest degree Bézier
curve that fits the data for the initial string below some thresh-
old, and subsequently make use of the degree elevation prop-
erty throughout the evolution of the string. This approach
allows the algorithm to adaptively find the degree of the poly-
nomial that best represents the MFEP. Moreover, it prevents
the Bézier string from becoming kinked, which can occur if
the degree of the polynomial is much greater than is needed
to represent the MFEP. In practice, a n + 1 degree elevation
is achieved by increasing the Bernstein basis set to B, | | and
recursively solving for the n + 1 control points using (13).

The simplest approach to determine when to perform a
degree elevation is to increase the degree of the basis set ev-
ery T time steps. However, since we can explicitly measure
M(z)V F (z)* when searching for the MFEP, we can therefore



074110-6 M. A. Bellucci and B. L. Trout

compute the exact error on the string in our method. Conse-
quently, a much better approach at determining when to per-
form a degree elevation is to monitor the error of the string and
perform a degree elevation when the change in error drops be-
low a tolerance level, A. In addition, as the string converges
toward the MFEP, the change in error necessarily gets smaller,
and therefore, the tolerance level, A, that governs whether
or not to perform a degree elevation should get smaller as
well. Consequently, every time we perform a degree eleva-
tion, we rescale A by some number C, which is a number in
the range 0 < C < 1. This leads to an exponential decay in the
value of A, i.e., A = AyC", where A is the initial tolerance,
and r is the number of times the change in error drops below
A throughout the evolution of the string.

In general, the convergence time depends on the param-
eters A, and C. However, there exists a set of parameters for
which the algorithm performs optimally. To find this set of
parameters, we adopt a simple and reliable approach for ap-
proximating the optimal parameters from simulation.

The change in error as a function of time, denoted AE(f),
to a good approximation can be thought of as following some
unknown exponential decay model, AE(f) = AE,(Cj)’, where
0 < C; < 1. The function A in our algorithm represents a
model for this exponential decay. Therefore, we can use the
first few data points of the simulation to estimate good values
for Ay and C in our model. A suitable value for A is the
initial change in error between the first and second times steps
from simulation, i.e., A, = AE,. Similarly, the parameter C
can be thought of as a rate of convergence, w, which can be
measured as

_AE(+1)
T AE®@)

Therefore, we can estimate the parameter C by measuring the
change in error in the simulation during the first few time
steps and then calculating the rate of convergence. Once we
have done this, we set the parameter C to be slightly less than
that of the measured rate of convergence so that the algorithm
does not perform an excessive number of degree elevations
throughout the simulation. In general, we find that values of
C in the range 0.90 < C < 0.95 work well.

(22)

V. COMMITTOR FUNCTION, REACTION COORDINATE,
AND RANKING VECTOR

Consider a system governed by overdamped Langevin
dynamics,

AV (x)

~3 dt + /2kzTdw,
x

where V(x) is the potential energy of the system, k; is the
Boltzmann constant, 7 is the temperature, and dw is the stan-
dard Brownian motion. The system described by (23) samples
configurations from the canonical ensemble and has the stan-
dard equilibrium distribution

_ exp(—BV(x)
- Z

in the configuration space €2, where Z = fQ exp(—BV(x))dx
is the partition function. Suppose that one is interested in

dx = xeQCR", (23)

o(x) (24)
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understanding the mechanism of a reaction between two
metastable states described by two subsets, A and B, of the
configuration space €2. Then the unique reaction coordinate,
q(x), that characterizes the transition between A and B is de-
fined as the solution of the backward Kolmogorov equation,

B~V . Vg(x)—VV(x)  Vg(x) =0, (25)

q'xeA = O’ q'xeB =1

The committor probability, g(x), is a function that specifies at
each point in configuration space, the probability that a tra-
jectory initiated at that point will succeed in making a tran-
sition to a product state. With this definition, we can see that
the committor probability leads to a natural generalization of
the concept of a transition state. For simple systems with few
degrees of freedom and sufficiently smooth free energy land-
scapes, transition states are often identified by finding saddle
points on the free energy landscape. However, for large sys-
tems with many degrees of freedom, the free energy landscape
can often be very rugged with numerous saddle points, giv-
ing this definition little significance. In contrast, true statisti-
cal transition states can be found by looking at configurations
on the g(x)=1/2 isosurface, since any trajectory initiated from
these configurations have a 50% chance to proceed toward the
product state or return to the reactant state. Furthermore, it has
been shown that the MFEP proceeds in the orthogonal direc-
tion to the committor isosurfaces.">?"~2> Consequently, the
committor isosurfaces completely characterize the progress
of the reaction, and therefore, the committor function can be
viewed as the ideal reaction coordinate.

Unfortunately, Eq. (25) is a multidimensional partial dif-
ferential equation, and as such, it has no analytic solution.
Furthermore, the large dimensionality of the system makes it
impossible to find a solution with traditional numerical meth-
ods. Although, it is often not necessary to know the com-
mittor probability in all of configuration space, but rather,
only locally around the MFEP. Since the MFEP represents
the most probable transition path, it follows that the vast ma-
jority of transition pathways between metastable states occur
near or on the MFEP. To a good approximation,’->2! the prob-
ability to observe a transition pathway away from the MFEP
decreases with increasing distance from the MFEP. Conse-
quently, to gain insight into the reaction mechanism, it is suf-
ficient to approximate the committor function in some finite
neighborhood of the MFEP.

The most direct approach at approximating the commit-
tor probability is to choose points in configuration space, sam-
ple random initial velocities from the Boltzmann distribution,
integrate trajectories from these points, and record the num-
ber of times each trajectory ended in the product basin versus
the reactant basin. By computing the histogram of these out-
comes, one can approximate the committor probability at any
point. For systems exhibiting widely separated time scales,
this approach is generally only feasible near the transition
state isosurface. The aimless shooting algorithm developed in
our group utilizes this fundamental idea within a TPS frame-
work to build estimates of the g(x) = 1/2 isosurface. However,
unlike TPS where a new trajectory is obtained by modifying
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velocities from a previous trajectory, a new trajectory in aim-
less shooting is obtained by choosing a configuration along
the previous trajectory (near the putative g(x)=1/2 isosur-
face), and drawing new velocities from the Boltzmann dis-
tribution. By drawing new velocities from the Boltzmann dis-
tribution, the outcomes of the path sampling are independent,
and thus, these outcomes can be used to estimate commit-
tor probabilities at each shooting point. Therefore, during the
course of the aimless shooting, one keeps track of the out-
comes of each trajectory, i.e., whether or not the sampled path
connects the reactant and product basins. To find the optimal
reaction coordinate, one uses a model function, which is a
function of some trial reaction coordinate, 7(z), and optimizes
the parameters in the reaction coordinate using a maximum
likelihood procedure such that the model function best ex-
plains the outcomes from the aimless shooting. Often, the re-
action coordinate is simply represented as a linear combina-
tion of collective variables, such as

r(z) = chzj — ¢y (26)
j=1

The method can find higher order reaction coordinates, but
this planar reaction coordinate is usually sufficient.

In contrast, the string method uses a variational approach
to locally approximate the isocommittor surfaces near the
MEP or MFEP. As the solution of (25), g(x) has an equiva-
lent characterization as being the minimizer of

1 =/ |Vg(x)|* exp(—=BV (x))dx. (27)
Q/AUB

Using a planar approximation for the committor isosurfaces,
it was shown in Ref. 22 that (27) can be simplified as

1
1= /0 (q' (@) exp(—BF(a))it;,, - ¢'| "' da, (28)

where 7, is the unit normal to the isocommittor surface and
¢’ is the tangent vector of the string. The minimization con-
dition for this functional is such that 71, is parallel to ¢’, and

given this minimization condition, the minimizer of (28) sub-
ject to the boundary conditions in (25) is given by

_ f: exp(BF(a))da’
[ exp(BF(a'))da
Since 7i;

iso || @', we necessarily have the condition that the unit
normal of the MEP or MFEP is a first order approximation to
the isocommittor surfaces and that ¢’ is a first order approxi-
mation to the reaction coordinate. Provided that the string has
been converged in a large set of collective variables, the re-
action coordinate obtained from the string method should be
equivalent to the one obtained from the aimless shooting and
maximum likelihood approach under the planar approxima-
tion. We demonstrate this below in Sec. VI.

Using the analytic properties of the Bézier curve, we
can go a step further and assess which collective variables
are participating the most in the transition from reactant to
product. In general, this information is more elucidating than
the reaction coordinate itself because it provides information
about which collective variables are likely to be the govern-
ing variables in the system. Since 7;,, = Vq(x)/|Vg(x)| and

q(a)

(29)
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fi;s, | @', when the string is converged, we must have the con-
dition that

. Vgqx)
T —_—

NZE N

where 7 is the unit tangent vector of the string, or equiva-
lently, the unit velocity vector tangent to the string. Therefore,
T gives information about the magnitude and direction of the
change in reaction coordinate as a function of the collective
variables of the system. This is particularly important near
the transition state isosurface since changes in the reaction
coordinate are responsible for inducing the transition. There-
fore, the relative level of “importance” of a collective variable
can be assessed by looking at its corresponding magnitude in
the unit velocity and unit acceleration vectors tangent to the
string near the transition state isosurface, which can be deter-
mined using (29). To devise a simple ranking system for the
importance of the collective variables, we use the following:

(30)

TotT+aoalt
TS VIE (31)
|ToT 4+ aoalt|
where T and & are the unit velocity and unit acceleration
vectors tangent to the string, respectively, and o denotes the
Hadamard product, or equivalently, component-wise multipli-
cation. The appearance of Atin (31) is due to the fact that the
acceleration is proportional to A%, while the velocity is pro-
portional to At with respect to motion in the system. There-
fore, when determining the importance of a variable, more
weight should be allocated to its velocity component than to
its acceleration component. To get (31), we simply divided by
At. In addition, since the signs of the components do not mat-
ter for our purposes, we use the Hadamard product to ensure
each component in the two vectors is positive before adding
them together. Once we compute (31), we sort the resulting
vector from largest to smallest to determine the relative rank
of importance of the collective variables.

VI. MODEL EXAMPLES

To illustrate the efficiency of the Bézier curve string
method in finding MEPs, we first applied it to the Mueller
potential®® and the circle potential,”® which are simple two-
dimensional test systems commonly used in testing the perfor-
mance of algorithms. We first studied the convergence prop-
erties of the Bézier curve string method without degree eleva-
tion and converged a series of Bézier strings as a function of
increasing number of Bernstein polynomial basis functions,
or equivalently, increasing number of control points since the
number of control points is always equal to the number of ba-
sis functions. In addition, the number of control points is also
equal to the degree of the Bernstein polynomial basis set.

For the Mueller potential, we used a linear interpolation
between the basins of attraction as the initial string, and for
the circle potential, the initial string was generated from the

following:
x =cos(wt), y = —0.5sin(m?), (32)

Note that the locations of the minima are not required a priori.
As long as the end points of the initial string lie in the
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FIG. 2. Number of time steps to converge the Bézier strings below a given tolerance TOL as a function of the number of basis functions for (a) Mueller potential
and (b) circle potential. The tolerance was defined as TOL = 1 — cos (¢)?, with ¢ = 0.5°, which ensures that the angle between V'V (x) and 7 is less than 0.5° at
the maximum error point on the string. The points at 15 000 in (a) show that the Bézier string did not converge below TOL in the 15 000 steps of the simulation.
Similarly, the first three data points in (b) did not converge below TOL as well, but are omitted for clarity.

neighborhood of the minima, they are identified automatically
since the end points of the string evolve by —VV (x) and their
positions are not affected by the reparameterization step. For
our studies here, the Bézier strings, ¢(«), were discretized
into m = 30 images and the reparameterization of the strings
was carried out every time step. The normal force along the
string was computed using (2) and £ was computed by nor-
malizing (11). The control points were evolved with

B, VV(p)*

Pt =p - A1

k=1,...,.n—1 (33
Bn,k'Bn,k " ( )

P = Pl — VV(p(@))AL, k=0,n,

which corresponds to forward Euler integration. For each
string, we fixed the number Bernstein polynomial basis func-
tions, and evolved each string for 15000 time steps using a
time step of At = 0.5 x 10~*. The number of basis functions
used in the convergence study ranged fromn =3 ton = 99 in
increments of 1.

The resulting convergence profiles of the Bézier strings
on the Mueller potential and on the circle potential are shown
in Figs. 2(a) and 2(b), respectively. From Fig. 2, we see the
number of time steps it took to converge each Bézier string
below a given tolerance, TOL, as a function of increasing
number of basis functions. For this study, we used (21) as
the error function, and defined the tolerance as TOL = 1 —
cos (¢)2, with ¢ = 0.5°, which ensures that the angle between
VV(x) and 7 is less than 0.5° at the maximum error point on
the string. In Fig. 2(a), we see that Bézier strings with n < 24
do not converge below TOL in the 15 000 time steps of the
simulation, highlighting the stringent requirements of the er-
ror function. Similarly, for the circle potential, Bézier strings
with n < 5 do not converge below TOL in the 15 000 time
steps of the simulation. However, we also see from Fig. 2 that

the convergence time decreases exponentially with increasing
number of basis functions. For example, for the circle poten-
tial with n =5, it took 4073 steps to converge, whereas with
n = 15, it took 291 steps to converge, and with n = 99, it
took only 13 steps to converge. In addition, for the Mueller
potential with n = 99, it took only 162 steps to converge.
These results demonstrate that for appropriately sized Bern-
stein polynomial basis sets, the algorithm can be remarkable
efficient. Examples of converged strings for the Mueller and
circle potentials are shown in Fig. 3.

In addition to studying the convergence properties using
fixed sized Bernstein polynomial basis sets, we used the de-
gree elevation algorithm, described in Sec. IV F, to find MEPs
on both the Mueller and circle potentials. We performed these
studies to determine the effect of the degree elevation algo-
rithm on the convergence time, as compared to the previous
studies with fixed sized Bernstein polynomial basis sets. For
these studies, we chose the same initial strings as before, but
we also ran separate simulations using initial strings where the
endpoints were not located at the minima in their correspond-
ing basins (see Fig. 4). In addition, nearly all of the simulation
parameters that were used in the control point convergence
studies were adopted in these studies. The only difference is
that we used an initial Bernstein polynomial basis set of n = 3
for each string, and the reparameterization of the strings was
carried out every 50 time steps, demonstrating that reparam-
eterization need not be carried out every time step. For both
the Mueller potential and circle potential, the A, and C pa-
rameters were estimated from the first few time steps of the
simulation by measuring the initial change in error, AE,,, and
the rate of convergence, u, respectively. We used values of
Ay=0.1 and C=0.91 for both the Mueller and circle poten-
tials for the simulations that used an initial string with end-
points at their corresponding minima. For the simulations us-
ing the initial string with endpoints not at their corresponding
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FIG. 3. Minimum energy paths for the (a) Mueller potential and (b) circle potential with control points overlaid in green. The number of control points is 35

for both (a) and (b).

minima, we kept the same value for C but changed the val-
ues of A, to Ay = 0.01 and A, = 0.0001 for the Mueller
and circle potentials, respectively. Using a smaller value for
A has little effect on the convergence properties of the al-
gorithm since the convergence properties are more strongly
influenced by the rate of convergence parameter C, but it does
help increase the stability of the string when the endpoints are
not located at their corresponding minima. The smaller val-
ues for A, delays the start of the degree elevation algorithm,
and so, it allows time for the endpoints of the string to evolve
toward the minima before the degree elevations begin. Note
that this step is only necessary if the endpoints of the string
are initially located very far away from the basins of attrac-
tion, as we have chosen to highlight here. If the endpoints of
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the string are initially in the basins of attraction, but not at the
minima, this step is not necessary. In any case, a very sim-
ple and effective solution aside from the one we have adopted
here would be to first evolve the string for a finite period of
time with a small Bernstein polynomial basis set, and subse-
quently use the degree elevation algorithm to enhance the rate
of convergence of the string once the endpoints of the string
are near their corresponding minima.

In comparison to the previous study where we utilized
a fixed number of basis polynomials, the results from these
studies demonstrate that using the degree elevation property
of Bézier curves speeds up convergence. For the simulations
using an initial string with endpoints at their corresponding
minima, the resulting convergence properties are shown in

FIG. 4. Minimum energy paths for the (a) Mueller potential and (b) circle potential obtained from the Bézier curve string method using degree elevations with
images (blue points). The initial string is overlaid (yellow points) for both (a) and (b).
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TABLE I. Comparison of the convergence properties of the degree elevation algorithm to that of the fixed basis
set algorithm. The convergence is defined as the number of time steps to converge the Bézier string below a
given tolerance TOL. For the degree elevation algorithm, each string initially had a Bernstein polynomial basis
set of n = 3 and the number of basis functions reported above is the size of the Bernstein polynomial basis set at

J. Chem. Phys. 141, 074110 (2014)

convergence.
Mueller potential Circle potential
Fixed basis Degree elevation Fixed basis Degree elevation
set algorithm algorithm set algorithm algorithm
Basis functions 81 39 39
Convergence 174 130 71 46

Table 1. These results indicate that performing degree ele-
vations at appropriate times throughout the evolution of the
string can lead to faster convergence times than if one were
to use a fixed sized basis set throughout. For the simulations
using an initial string with endpoints far away from their cor-
responding minima, the Bézier string converged in 249 steps
and resulted in a Bernstein polynomial basis set of n = 71 on
the Mueller potential, and for the circle potential, the Bézier
string converged in 744 steps and resulted in a Bernstein poly-
nomial basis set n = 38. The longer convergence times are
a result of the initial strings being much farther away from
their corresponding MEPs, and so, the strings naturally must
evolve for a longer period of time. Moreover, the endpoints of
the string evolve with a steepest descent dynamics, which can
become inefficient in basins with low curvature. The much
longer convergence time in the circle potential is a reflection
of this fact. However, the broader implication of these results
is that the algorithm is capable of adaptively learning the size
of the polynomial basis set that best represents the MEP, and
therefore it alleviates the need for a knowledge of a suitable
sized basis set a priori. Furthermore, since the bottleneck in
any string method algorithm is the evaluation of the potential
force, increasing the number of basis functions does not slow
down the performance of the algorithm. This is particularly
true for large systems, where the evaluation of the mean force
and metric tensor are overwhelmingly the bottleneck in the
performance of the algorithm.

(a)

VIl. ALANINE DIPEPTIDE

In order to demonstrate that the Bézier curve string
method is capable of finding MFEPs in chemical systems,
we have analyzed the isomerization of the alanine dipeptide
molecule at 298 K in vacuum. For this simple system, we have
studied the transition between the two metastable conformers,
G5, and G5, which has been extensively studied in the lit-
erature with a variety of different methods.®%2!-22:34=37 The
two metastable states of alanine dipeptide can be defined as
local minima in the space of the two dihedral angles ¢ and .
The two conformers of alanine dipeptide are shown in Fig. 5,
as well as the dihedral angles used in our study as collective
variables. Of the two conformers in this system, the C;,, con-
former has the deepest minimum and is approximately located
at (¢,¥) = (—83.2,74.5), while the C,,, conformer is approx-
imately located at (¢,¥) = (70,—70) in the two dihedral an-
gle collective variable space. In our study, we have used the
Bézier curve string method to find MFEPs in the space of two
collective variables, (¢,V), and in the space of four collective
variables (0, ¢, ¥, ¢). We have chosen to perform these stud-
ies using these collective variables for two reasons: to bench-
mark our method, since there are previous string method stud-
ies of this system using these collective variables,”! and be-
cause it has been shown that the set of four dihedral angles, (6,
¢, ¥, ), sufficiently characterize the isomerization, whereas
the set of two dihedral angles, (¢, V), does not.2!

FIG.5. The C,,, and C,, conformers of alanine dipeptide are shown in (a) and (b), respectively. The central carbon atom is referred to as C,,. All four dihedral
angles used as collective variables are shown in both (a) and (b), and are defined as the dihedral angles between the following groups of atoms: (O, C, N, C,)

for 0, (C,N, C,, C) for ¢, (N, C,, C, N) for ¢, and (C,,, C, N, H) for ¢.
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FIG. 6. Minimum free energy paths obtained from the Bézier curve string method using the (a) two dihedral angles (¢, ¥) and (b) four dihedral angles (0,
¢, ¥, ¢) as collective variables. Note that for graphical purposes, (b) is the projection of the string from the four dimensional space (6, ¢, ¥, ¢) into the two
dimensional space (¢, ¥). (c) Initial string used in the search for a MFEP in both the two dihedral angle and four dihedral angle collective variable space. Note

that the endpoints are not at the minima in their corresponding basins.

The simulations were performed within the framework of
the DL_POLY molecular dynamics package.® In all simula-
tions, we used an all-atom representation of alanine dipeptide
in the CHARMM force field.’®>4° We used the DL_FIELD
program to ensure that the correct CHARMM force field pa-
rameters were used within the DL._POLY molecular dynam-
ics package. For the dynamics, we used a time step of 0.1 fs
and a Nosé-Hoover thermostat to maintain the temperature at
298 K. The force field was extended to include harmonic po-
tentials involving the collective variables, with force constants
k = 1000 kcal/(mol rad?). These potentials were used to per-
form restrained dynamics around each image of the string and
compute the mean force. The DL_POLY package was modi-
fied to compute the collective variables as well as the quanti-
ties needed for the computation of the mean force and tensor
M(z). For each image on the string, both the mean force and
tensor were computed as the ensemble average over 250 ps of
molecular dynamics simulation.

The initial string used in the simulations for the MFEP is
shown in Fig. 6(c). This initial string was used in the search
for a MFEP in both the two dihedral angle and four dihedral
angle collective variable space. The initial string was con-
structed by taking the C;,, and C;,,, structures and performing
a linear interpolation in the corresponding collective variable
space, resulting in 24 images on the string. The ¢ and i di-
hedral angles were purposely perturbed by a random amount
before performing the linear interpolation so that the initial
string did not have endpoints exactly at the minima. For the
initial string, we used an initial Bernstein polynomial basis set
of n = 10, and we used values of Ay =0.25 and C =0.91 in
the degree elevation algorithm. Once the initial string was set
up, the procedure in Sec. IV was applied until the string con-
verged on the MFEP. For the evolution of the string, we used a
time step of A= 0.5 x 10~* and performed the reparameter-
ization of the string every time step. In order for the string to
converge to the MFEP, about 100 updates were needed in two
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FIG.7. The C,,, and C,, conformers of alanine dipeptide are shown in (a) and (c), respectively, whereas the alanine dipeptide geometry at the g(s) = 1/2 point
along the MFEP is shown in (b). Comparing these configurations, it is evident that the ¥ dihedral angle at the transition state in (b) more closely resembles the
Y dihedral angle of the product state in (c), whereas the ¢ dihedral angle does not. This suggests that the v dihedral angle evolves on a faster time scale relative

to the ¢ dihedral angle.

angles and about 150 in four angles, and in both cases, the re-
sulting Bézier string had a Bernstein polynomial basis set of n
=40 at convergence. At the last update, 1 ns simulations were
performed for each image on the string to minimize statistical
error in V_F(z) and M(z).

The resulting MFEPs obtained from the Bézier curve
string method in the two dihedral angle and four dihedral an-
gle collective variable space are shown in Figs. 6(a) and 6(b),
respectively. Since the MFEP in Fig. 6(b) represents a curve
in the four dimensional space, (6, ¢, ¥, ), we have projected
this curve into the two dimensional space (¢, ¥) for graphi-
cal purposes. Furthermore, the MFEPs in Fig. 6 are superim-
posed on the adiabatic potential energy landscape of alanine
dipeptide for the collective variables, ¢ and ¥, since these
collective variables should participate the most in the transi-
tion. This surface is defined as the minimum potential energy
of the full system for fixed values of ¢ and i, and for this sim-
ple system, this surface governs the transition. For the MFEP
defined in two dihedral angle collective variable space, we
see that the path goes through the major saddle point on the
surface and that our MFEP is in excellent agreement with pre-
vious strings and paths obtained for this system in two dimen-
sional collective variable space.21 However, we also note that
the MFEP does not proceed orthogonally to the equipoten-
tial contour lines of the adiabatic potential energy landscape
as should be the case if the (¢, ¥) collective variables com-
pletely described the transition. It has been shown that the true
MEFERP of the full dimensional system can be thought of as the
centerline of a transition tube that carries the vast majority of
probability current from one metastable state to another over
the free energy landscape."-? In the limit that the temperature
of the system goes to zero, the transition tube should shrink to
the centerline of this tube and become the MEP. Therefore, the
true MFEP should coincide with the MEP on the adiabatic po-
tential landscape, which in turn, should proceed in the orthog-
onal direction to the equipotential contour lines of the surface.
This suggests that by defining the MFEP in two dihedral an-
gles alone, we have integrated out important degrees of free-
dom in the free energy necessary to describe the transition.
Consequently, the free energy surface defined solely by (¢,
Yr) does not adequately capture the free energy of the full di-
mensional system. In contrast, from Fig. 6(b), we see that the

MFERP in the space of four collective variables does proceed in
the orthogonal direction of the equipotential contour lines of
the adiabatic potential energy surface. This suggests that the
free energy surface defined by (0, ¢, ¥, ¢) sufficiently cap-
tures the free energy of the full dimensional system. Further-
more, the MFEP in the space of the four collective variables
is in very good agreement with the one calculated in Ref. 22,
where the string was converged in the full dimensional Carte-
sian space. This further suggests that the four dihedral angles
provide an accurate description of the transition between the
metastable states. This also demonstrates how converging a
string in a larger set of collective variables can lead to ade-
quate recovery of the features of the full dimensional system
necessary to describe the transition.

The results presented in Fig. 6 clearly demonstrate that
the four dihedral angle collective variable space provides a
better description of the transition between the C;,, and Cy,,
conformers, but does not give information about which of the
four collective variables is most important in governing the
transition. To determine which of the four collective variables
is most responsible for inducing the transition, we first com-
puted the committor probability along the MFEP from (29).
In Fig. 7(b), the molecular geometry of alanine dipeptide cor-
responding to the g(s) = 1/2 point along the MFEP is shown.
Comparing this structure to the C;,, and C;,,, structures in Fig.
7, we see that the transition must take place by a faster rota-
tion of the ¢ dihedral angle relative to the ¢ dihedral angle,
which intuitively indicates that the collective variable corre-
sponding to the ¢ dihedral angle moves on a much slower time
scale, and thus is the collective variable that governs the iso-
merization near the transition state. This behavior is evident
when one analyzes values of ¢ and ¥ along the MFEP in Fig.
6(b). However, what is not immediately evident is how the
6 and ¢ dihedral angles participate in the transition, or how
important each collective variable is relative to one another.
To gain insight into the latter, we have ranked the importance
of the collective variables relative to one another using (31).
From (31), we get (0.017,0.998,0.057,0.004) as the ranking
vector, where each number in this vector corresponds to the
collective variables in the order (6, ¢, ¥, {). As expected,
the ranking vector correctly identifies the ¢ collective vari-
able as the variable overwhelmingly responsible for inducing
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FIG. 8. Example of an aimless shooting trajectory for the alanine dipeptide
system. The reactant and product regions on the potential are enclosed within
the green circles, the blue path designates the forward path, the white path
designates the backward path, and the larger turquoise point near the saddle
point of the surface designates the shooting point.

the transition from C;,, to C;,,. This result can also be in-
terpreted as meaning that near the g(s) = 1/2 transition state
isosurface, only motion in the ¢ collective variable leads to
any significant progress in the reaction. This can also be seen
in Fig. 6(b), where it is apparent that the tangent vector (not
shown) to the string near the saddle point is nearly parallel to
the ¢ axis. It is important to note however that these results
do not mean that the other dihedral angles play no role in the
overall mechanism at different stages of the transition. For ex-
ample, the faster rotation of ¥ relative to ¢ demonstrates that
the ¢ dihedral angle is important in the early stages of the
isomerization. Moreover, both the 6 and ¢ dihedral angles are
important to adequately describe the overall molecular transi-
tion but their importance near the transition state is negligible
in comparison to the ¢ dihedral angle. Due to the analytic
representation of the Bézier curve, the ranking vector can be
used to quantify the relative importance of collective variables
at any stage of the molecular transition since it can be com-
puted at any point along the MFEP. However, our discussion
here is focused on the ranking vector near the transition state
since we are interested in elucidating the collective variables
that govern the isomerization.

To determine the accuracy of our ranking vector and re-
action coordinate analysis proposed here, we have used an
aimless shooting and maximum likelihood analysis for com-
parison. The aimless shooting and maximum likelihood anal-
ysis should provide a high quality test of our method since
the aimless shooting sampling is based on unbiased trajecto-
ries in the full dimensional Cartesian space and the maximum
likelihood approach utilizes the outcomes of these trajectories
to construct the optimal reaction coordinate. The procedure
we followed to implement the aimless shooting and maxi-
mum likelihood analysis can be found in Ref. 15. To begin,
we have used our MFEP in four collective variables as the
initial reactive trajectory needed for the aimless shooting al-
gorithm. More specifically, we have used the configuration
at the g(s) = 1/2 point along the string as our initial shoot-
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ing point. We have defined the reactant and product basins
as shown in Fig. 8, and we have integrated the forward and
backward paths from each shooting point for 10 ps using a
time step of 0.1 fs. From this sampling, we keep track of the
outcomes of the forward and backward paths for each shoot-
ing point, i.e., whether or not the forward and backward paths
passed through the designated regions on the potential land-
scape. For the maximum likelihood optimization, we used a
linear reaction coordinate, as in (26), and optimized the pa-
rameters of the reaction coordinate with respect to the like-
lihood function such that the model function, ¢(r) = 0.5(1
+ tanh (7)), which is a function of the reaction coordinate, best
fits the outcomes from aimless shooting. The aimless shooting
procedure was repeated until the parameters and location of
the optimized reaction coordinate determined from the like-
lihood maximization no longer changed with respect to in-
creasing the size of the shooting point ensemble. The results
of this procedure led to a shooting point ensemble with about
6000 configurations, and is shown in Fig. 9. In Fig. 9, we have
overlaid the shooting point ensemble with the MFEP in the
four dihedral angle collective variable space, as well as the
isocommittor surfaces and reaction coordinates determined
from the maximum likelihood method and Bézier curve string
method. From Fig. 9, we see that the isocommittor surface
and reaction coordinate determined from the Bézier curve
string method is in excellent agreement with the isocommittor
surface and reaction coordinate determined from the aimless
shooting and maximum likelihood procedure. The reaction
coordinate we have obtained from the maximum likelihood
analysis has components of (—0.053, 0.966, —0.245, 0.057)

()

0

&

FIG. 9. Shooting point ensemble from the aimless shooting procedure over-
laid with the MFEP (white path) in four collective variables (6, ¢, ¥, ¢)
projected onto the two collective variable space (¢, ¥). The shooting points
colored in blue resulted in forward trajectories that led to the C,, . product
basin, whereas the shooting points colored in white resulted in backward tra-
jectories that led to the C,, reactant basin. The linear isocommittor surface
(normal to the path) and reaction coordinate (tangent to the path) determined
from the maximum likelihood procedure is colored in yellow, while the linear
isocommittor surface (normal to the path) and reaction coordinate (tangent to
the path) determined from the Bézier curve string method is colored in green.
The g(s) = 1/2 point on the string is represented by the green point along the
string. Note that the isocommittor surface and reaction coordinate in green is
elongated for clarity.
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after transforming the reaction coordinate hyperplane (26) to
parametric form. By comparison, the reaction coordinate ob-
tained from the Bézier curve string method has components
of (—0.127, 0.954, —0.259, 0.066). In addition, the shooting
point ensemble and forward trajectory outcomes as well as
the control points that define the Bézier curve in the space
of four collective variables have been made available in the
supplementary material.*! This agreement is significant be-
cause it demonstrates that the reaction coordinate analysis we
have obtained from the Bézier curve string method, which is
a biased method in a reduced-dimension collective variable
space, provides equivalent information to that of the aimless
shooting and maximum likelihood method, which is an unbi-
ased method in the full Cartesian space. In addition, since the
reaction coordinate we have obtained is accurate, the informa-
tion provided by the ranking vector must also be reliable. This
gives us confidence that the collective variable associated with
the ¢ dihedral angle is the variable that governs the transition.
The broader implication of this result is that the method we
propose here is capable of overcoming the time scale issue
associated with systems exhibiting rare events, and simulta-
neously determining the reaction coordinate and importance
of collective variables relative to one another. However, it is
hard to imagine a more simple system than the alanine dipep-
tide system, and so, to verify that our method is successful for
large complex systems, we have applied it to the much more
challenging problem of homogenous nucleation of benzene.

Vill. HOMOGENOUS NUCLEATION OF BENZENE

We have used our method to study crystallization, since
this problem should provide a rigorous test of the effective-
ness of our method at overcoming challenges inherent in large
complex systems. For this study, we have chosen to use our
method to model the homogenous nucleation of the Form I
crystal of benzene from the melt since there are previous stud-
ies of this system using both aimless shooting and the string
method in collective variables.'%*?

In order to describe the liquid to solid phase transition,
one necessarily needs a suitable set of collective variables that
are capable of distinguishing liquid states from solid states. In
general, this is a highly non-trivial problem, but has been ex-
tensively addressed in the paper by Santiso and Trout,** where
it was shown that a set of collective variables suitable for de-
scribing liquid-solid phase transitions can be systematically
defined for any system. In addition, it was shown that these
collective variables are not only capable of distinguishing be-
tween liquid and solid states, but also between different poly-
morphs of crystals. Here we provide a general overview of
these collective variables, and refer the reader to Ref. 43 for a
detailed description.

The set of collective variables utilized in this study are
based on a generalized pair distribution function, which for
any given crystalline system at zero K, gives sharp peaks in
specific regions of configuration space that can be used to
uniquely describe a crystal. At finite temperature however,
these signature peaks spread due to thermal motion in the
system. In the method presented by Santiso and Trout, this
peak spreading is approximated by a set of model probability
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density functions, and the pair distribution function at finite
temperature is represented as a linear combination of a prod-
uct of these model probability density functions. The proba-
bility density functions themselves are functions of internal
coordinates such as distances, bond orientations, and relative
orientations, and the parameters appearing in these models
are optimized to reproduce information easily obtained from
straightforward molecular dynamics simulations. In addition,
the collective variables can be further refined to provide infor-
mation about local crystalline order by discretizing the simu-
lation box into a set of cells, and defining a set of collective
variables within these cells. In doing so, the collective vari-
ables are sensitive enough to detect seeds forming in any re-
gion of space, and therefore, are extremely useful in determin-
ing where and when nucleation events take place.

To begin, we obtained the structure of the benzene Form
I crystal (refcode: BENZEN) from the Cambridge Structural
Database,** which corresponds to the experimental study of
Bacon et al.¥ and is the stable polymorph of benzene at
low temperatures and pressures.*® The Form I crystal of ben-
zene belongs to the space group Pbca, where the benzene
molecules are arranged on an orthorhombic lattice in the unit
cell. The values of the lattice parameters have been taken from
the experimental crystal structure.*> For our study, we used
a system size of 720 molecules, which corresponds to 8640
atoms. We used an all-atom representation of benzene in the
CHARMM?2?2 force field*>*° and all simulations were per-
formed with the NAMD software package.*’ In addition, the
NAMD software package was modified to compute the col-
lective variables as well as the quantities needed for the com-
putation of the mean force and tensor M(z). The parameters
for the model probability density functions used in the collec-
tive variables were taken from Ref. 43, and the simulation box
was divided into a 5 x 5 x 5 grid, resulting in 125 cells. The
collective variables used in our simulation were pair distribu-
tion functions defined between pairs of benzene molecules,
and were a function of bond orientation and of relative orien-
tation variables. The bond orientation variable was defined as
the angle between the center of mass vector between two ben-
zene molecules and the normal vector to the molecular plane
of the reference benzene molecule. The relative orientation
variable was defined as the angle between the normal vec-
tors of the molecular planes of both benzene molecules. Initial
equilibration and energy minimization on the benzene system
was carried out at 200 K and 1 bar using the NAMD software
package. After equilibration, the system size was 45.13 A
x 4832 A x 41.84 A. For each image on the string, the
mean force and tensor were computed as the ensemble aver-
age over 350 ps in the NPT ensemble using a time step of 1 fs.
A Langevin thermostat with a damping coefficient of 5 ps~!
was employed to maintain the temperature at 200 K, and a
Langevin piston with a piston period of 100 fs and damping
coefficient of 50 fs was utilized to maintain the pressure at 1
bar. Periodic boundary conditions were used, and long-range
electrostatics were treated using a particle mesh Ewald (PME)
summation.

In our study, we first converged the MFEP in the space
of 125 collective variables, which were functions solely of
the bond orientation collective variables. Upon convergence,
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FIG. 10. Free energy profile for the MFEP in (a) bond orientation collective variable space and (b) bond orientation and relative orientation collective variable
space as a function of arc length. The liquid state corresponds to the leftmost point, while the crystal state corresponds to the rightmost point in both (a) and (b).

we then increased the size of the collective variable space to
250; 125 collective variables that were a function of bond ori-
entation and 125 collective variables that were a function of
relative orientation. Each of the different types of collective
variables, either bond orientation or relative orientation, oc-
cupied one of the 125 cells that resulted from discretization
of the simulation box. The initial string in our study was ob-
tain by first slowly melting the Form I crystal over a very long
molecular dynamics trajectory, and then subsequently fitting
each component of the Bézier curve to the corresponding col-
lective variable time series using a Bernstein polynomial ba-
sis set of n = 35. Once the initial string was fit, we discretized
the string into m = 38 equal arc length images and chose con-
figurations from the melting trajectory that best matched the
values of the collective variables at these images. Once the
initial string was set up, the procedure in Sec. IV was applied
until the string converged on the MFEP. For the evolution of
the string, we used a time step of Ar = 0.01, we performed
the reparameterization of the string every time step, and we
used values of A, = 0.35 and C = 0.91 in the degree ele-
vation algorithm. In order for the string to converge to the
MEFEP, about 150 updates were needed using the bond ori-
entation collective variables and about 75 in both the bond
orientation and relative orientation collective variables. The
much shorter convergence time in the bond orientation and
relative orientation collective variable space indicates that the
converged MFEP in the bond orientation collective variable
space is close to the MFEP in the bond orientation and rel-
ative orientation collective variable space. In both cases, the
resulting Bézier string had a Bernstein polynomial basis set
of n=110 at convergence. At the last update, 1 ns simulations
were performed for each image on the string to minimize sta-
tistical error in V_F(z) and M(z).

The resulting MFEPs clearly cannot be plotted due to
the high dimensionality of the system, but we can analyze
the resulting free energy profiles associated with each path,

which are shown in Fig. 10. From Fig. 10, we see that in both
cases, the crystal structure has a lower free energy than the
liquid state at 200 K as expected since the crystal structure
is the stable state at 200 K. We also note that our free en-
ergy profile in the bond orientation collective variable space
is in excellent agreement with a previous study of this sys-
tem utilizing the string method and the bond orientation col-
lective variables.*> However, it is quite evident that the free
energy profiles are different from one another. In each case,
the free energy difference between the liquid and solid states
are nearly identical, but the free energy maximum along each
MEFERP is different. For the MFEP in bond orientation collec-
tive variable space, the free energy barrier to crystallization is
about 40 kcal/mol, whereas for the MFEP in bond orientation
and relative orientation collective variable space, the free en-
ergy maximum is about 60 kcal/mol. This indicates that the
MFEP in bond orientation collective variable space has an
underestimated free energy barrier relative to the MFEP in
bond orientation and relative orientation collective variable
space. Therefore, the use of bond orientation collective vari-
ables alone is not a large enough set of collective variables
to describe the transition. Evidence for this is also apparent
when we computed the ranking vector for each MFEP near
the transition state isosurface to determine which collective
variables were most important for the transition. If the rela-
tive orientation collective variables were not participating in
the transition, then the majority of components in the ranking
vector corresponding to relative orientation collective vari-
ables should have magnitude much less than that of the com-
ponents of the bond orientation collective variables. However,
this is not what we observe when we perform this analysis. In
Fig. 11, a histogram of the magnitudes of the components in
the ranking vector is shown as a function of the cell number.
In this figure, the magnitudes associated with bond orienta-
tion collective variables are colored in blue, whereas the mag-
nitudes of the relative orientation variables are colored in red.
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FIG. 11. Magnitude of components of ranking vector as a function of cell
number. Bond orientation values are colored in blue, whereas relative orien-
tation values are colored in red.

In each case, we see that the components associated with rel-
ative orientation collective variables are larger than the com-
ponents associated with the bond orientation collective vari-
ables in nearly every cell within the simulation box, indicating
that these collective variables are more important for describ-
ing the transition. This is in accord with results reported by
Shah et al.,'® where an aimless shooting and maximum likeli-
hood analysis was performed on the homogenous nucleation
of benzene from the melt. In this study, the maximum likeli-
hood analysis demonstrated that from a very large set of can-
didate collective variables, reaction coordinate models with
the relative orientation collective variable consistently yielded
much higher likelihood scores.

After computing the ranking vector, we have analyzed
the configurations near the g(s) = 1/2 transition state isosur-
face for each MFEP. Figure 12 shows the configurations near
the g(s) = 1/2 transition state isosurface along each MFEP.

J. Chem. Phys. 141, 074110 (2014)

To demonstrate the effectiveness of the ranking vector at find-
ing important collective variables, we have colored the spa-
tial cells in red in Fig. 12 where the corresponding collec-
tive variables have large components in the ranking vector. In
each case, we define a large component to be greater than 0.1.
Taking into consideration the periodic boundary conditions
in the system, it is very clear that all these cells lie adjacent
to one another in space. It is a good sign that the collective
variables identified as important belong to spatially localized
crystalline clusters rather than random cells spread across the
system. In addition, the fact that the ranking vector identified
regions where crystalline clusters have formed instead of re-
gions with liquid-like structure gives us confidence that it cor-
rectly identifies collective variables and regions of space that
cause the liquid to solid phase transition. We also see from
Fig. 12 that the transition state configuration in both bond
orientation and relative orientation collective variable space
has clusters with a much higher degree of local crystalline
order than the clusters present in the configuration obtained
from bond orientation collective variables alone. This indi-
cates that the inclusion of relative orientation collective vari-
ables helps the system organize into to well formed crystalline
clusters near the transition state, which again illustrates their
importance in governing the transition. Taking our analysis a
step further, we have extracted the structures of the nucleation
seeds by locating the cells with the highest components in the
ranking vector that are adjacent to one another. In both cases,
this procedure identified five cells that have components in the
ranking vector that are well separated in terms of magnitude
from all other components. For both collective variables, the
resulting seed structures were found to be in cells 100, 101,
105, 106, and 110. For the identified nucleation seeds, the
clusters were composed of 16 molecules and 28 molecules.
We note that the latter of these cluster sizes is very similar
in size to the average critical cluster size of 32 reported by
Shah et al.'®

Despite the fact that the relative orientation collective
variables govern the nucleation near the transition state, the

FIG. 12. (a) Configuration corresponding to the g(s) = 1/2 point on the MFEP in bond orientation collective variable space. (b) Configuration corresponding
to the g(s) = 1/2 point on the MFEP in bond orientation and relative orientation collective variable space. The larger benzene molecules colored in red indicate
cells where the corresponding collective variable has a large component in the ranking vector. These cells indicate where the reaction coordinate is changing the
most and are the regions in space where the benzene molecules are organizing themselves into the Form I crystal. Note that the configuration in (b) has better

local crystalline order at the transition state than the configuration in (a).
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optimal reaction coordinate in this study was determined to be
a combination of bond orientation and relative orientation col-
lective variables. Indeed, both of these collective variables are
important for describing the mechanism of the phase change,
which is consistent with the results presented in Ref. 16. In
particular, analysis of the ranking vector in the early stages of
the transition demonstrates that the bond orientation collec-
tive variables are more important than the relative orientation
collective variables. This trend continues until the system ap-
proaches the transition state and the magnitudes of the com-
ponents of the relative orientation collective variables in the
ranking vector suddenly become much larger than those of the
bond orientation collective variables and continue to dominate
until the crystal is fully formed. This behavior could signify
that the bond orientation collective variables are better capa-
ble of describing a semi-ordered dense phase in comparison
to the relative orientation collective variables. However, the
relative orientation collective variables are much more sensi-
tive to crystalline order, and so, once the semi-ordered crys-
talline phase is formed, the relative orientation collective vari-
ables provide a strong driving force for crystallization. This is
consistent with the large sudden change in the ranking vector
near the transition state that persists until the crystal is fully
formed.

IX. CONCLUSION

In this research, we have developed an approach for find-
ing MEPs and MFEPs in complex chemical systems exhibit-
ing rare event transitions. Our approach utilizes Bézier curves,
which are analytic parametric curves defined as a linear com-
bination of Bernstein basis polynomials, and are capable of
accurately approximating any continuous algebraic curve. We
have shown that by using the degree elevation property of
Bézier curves, our algorithm is capable of adaptively learn-
ing the size and degree of the Bernstein basis set necessary to
reproduce MEPs or MFEPs, circumventing the need for es-
timating these quantities a priori. In addition, the use of the
degree elevation property increases the stability of the string
as it evolves toward the most probable transition path, and
simultaneously increases the convergence speed of the algo-
rithm. The algorithm proposed here evolves the string by a
forward Euler integration, but we note that more sophisticated
optimization algorithms can be used to accelerate the conver-
gence of the string.

In addition to developing the Bézier curve string method
algorithm, we have devised a ranking vector for the purpose
of determining which collective variables are most important
for governing chemical transitions. In general, this informa-
tion is more elucidating than finding the reaction coordinate
itself because it provides information about which collective
variables are most likely to initiate the molecular transition.
To illustrate the utility of the ranking vector, and to demon-
strate that the reaction coordinate obtained from the Bézier
curve string method is consistent with the reaction coordi-
nate obtain from an aimless shooting and maximum likeli-
hood procedure, we applied our method to the isomerization
of the alanine dipeptide molecule. Our analysis indicates that
the use of two dihedral angles, (¢, V), as collective variables
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does not completely capture the mechanism of the transition,
whereas the use of four dihedral angles, (6, ¢, ¥, ¢), does ad-
equately capture the mechanism of the transition. Moreover,
the MFEPs obtained using our method in both two dihedral
angle collective variable space and four dihedral angle col-
lective variable space are consistent with previous studies®'-?
using the string method. After convergence of the MFEPs, we
have used the ranking vector to identify the ¢ dihedral an-
gle as the collective variable most responsible for governing
the conformational transition. This is consistent with the fact
that we observe the ¢ dihedral angle evolving on the slowest
of timescales along the MFEP. Since the collective variable
corresponding to the ¢ dihedral angle evolves on the slow-
est of timescales, it is the rate-limiting variable, and there-
fore governs the transition. In addition, we have also demon-
strated that the reaction coordinate and isocommittor surface
obtained from our method are equivalent to the reaction co-
ordinate and isocommittor surface obtained from an aimless
shooting and maximum likelihood analysis. This is signifi-
cant because it demonstrates that the reaction coordinate we
have obtained from the Bézier curve string method, which is
a biased method in a reduced-dimension collective variable
space, provides equivalent information to that of the aimless
shooting and maximum likelihood method, which is an unbi-
ased method in the full Cartesian space.

Finally, to test our method in a large complex chemical
system, we have applied it to study the homogenous nucle-
ation of benzene from the melt. The study of crystallization
using all atom simulations is challenging for a variety of rea-
sons, but the main challenges are due to the diffusive nature
of the crystallization process, the prevalence of large free en-
ergy barriers and rugged free energy landscapes, and the dif-
ficulty associated with defining suitable collective variables
to describe the transition. Consequently, testing our method
for such a demanding problem provides evidence for its ef-
fectiveness and applicability. For our simulations, we adopted
the collective variables described in Ref. 43. In our study, we
converged two MFEPs for this system using a large set of
collective variables: the first set consisted of 125 bond orien-
tation collective variables and the second set consisted of 250
collective variables, of which 125 were bond orientation col-
lective variables and 125 were relative orientation collective
variables. The free energy profile obtained from our method
is consistent with the free energy profile reported in Ref. 42,
where the string method in collective variables was applied
to the benzene system using the bond orientation collective
variables, giving us confidence in our converged MFEPs. Our
analysis of these paths indicates that the use of both bond ori-
entation and relative orientation collective variables was nec-
essary to sufficiently capture the mechanism of the phase tran-
sition. However, we also demonstrated that the relative orien-
tation collective variables were more important for character-
izing the mechanism. The importance of the relative orien-
tation collective variable in describing the transition is con-
sistent with a previous study'® on the benzene system using
an aimless shooting and maximum likelihood analysis, which
demonstrated that reaction coordinate models with the rela-
tive orientation collective variable consistently yielded much
higher likelihood scores. After convergence of the MFEPs,
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we used the ranking vector to identify a subset of collective
variables that govern the phase transition. It was shown that
all of these collective variables lie adjacent to one another
in space, and are part of spatially localized crystalline clus-
ters where the nucleation event takes place. The fact that the
ranking vector identified regions in configuration space where
crystalline clusters formed instead of regions with liquid-like
structure signifies that it correctly identified collective vari-
ables and regions of space that govern the liquid to solid phase
transition.

The method we propose here is capable of overcoming
the time scale issue associated with systems exhibiting rare
events, and simultaneously determining the reaction coordi-
nate and importance of collective variables relative to one an-
other. We are currently applying it to more complicated nu-
cleation problems in an effort to understand the underlying
mechanisms inherent in these systems. This will be the sub-
ject of our future work.
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APPENDIX A: OPTIMAL CONTROL POINTS
FOR INITIAL STRING

Although the Bernstein polynomials are not orthonormal,
we can find the optimal control points to approximate the ini-
tial string, in the least squares sense, with the following equa-
tion:

P = (B"B)"'BT70. (A1)

However, as the number of basis functions increase the B'B
matrix can become ill-conditioned, and so, numerical insta-
bilities associated with finding its inverse can lead to highly
oscillatory, or sporadic control points. Highly oscillatory con-
trol points should be avoided because they can affect the ac-
curacy of the tangent vectors. As a simple visual check of the
accuracy of the tangent vectors, one can plot each component
of the Bézier curve fit and the associated tangent vectors at
each point as a function of «.

A much more numerically stable way of solving for the
control points is to first find the QR decomposition of the ma-
trix B, where Q and R are defined as

Q = (60, MR} en)a (AZ)
€-B,o €-B,o € B,
0 e -B,, e B,
R= O 62 : Bn,Z (A3)

The matrix Q is an orthonormal matrix and the matrix R
is an upper triangular matrix where the components are the
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dot products between the orthonormal basis functions and the
Bernstein polynomial basis functions. Substituting B = QR in
(14) and using the fact that QTQ = I, we get

RP = Q720. (A4)

Since R is an upper triangular matrix, we can find the con-
trol points by recursively back solving from P, to P, with the
following equation:

P = % 0,20, — > R, P|. i=n.....1
Li\ j=0 j=i+l

(AS5)

Even for large basis sets, this procedure can be used to find the

initial Bézier string without numerical instability. This proce-

dure should be repeated, slowly increasing the degree of the

polynomial, n, until the Bézier string best approximates the

initial string.

APPENDIX B: TIME-DEPENDENT CONTROL POINTS

The MFEP is the stationary solution of the following dy-
namics:

Ha, 1) = —MQR)V,F@)". (B1)

To derive Eq. (15), we first make the following change of vari-
ables for the control points:

. Bn k-’ Bn j
Uksz—i—ZﬁPj, (B2)
j#k n,k n,k

where U, is the new kth control point. The reason for this
change of variables will become clear in the discussion below.
Letting the control points be time-dependent, from (B1), we
get

BU = —M(z)V_F(2)", (B3)

which in the case of a forward Euler integration yields
BD = —M(2)V,F(2)" At, (B4)
D=U""-U". (B5)

To find U" + !, we need to minimize the sum of squares error

m
53
i=1

2
n

> B, (@)D; + M(z(e; )V F(z(e) At |
j=0

(B6)
where the first summation is over the m images on the string
and the second summation is over the n Bernstein polynomi-
als. For clarity we drop the first sum and « parameter with the
understanding that the procedure below holds for every image
on the string. To minimize E, we take the derivative and set it
equal to zero,

aE n J_
ST = 2B,, | > B, ;D;+ M@)V.Fx)* At | =0.
k j=0

(B7)
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Substituting in (BS) and simplifying, we get
n
D BuxB,; ;"
=0

=> BB, U} — B, MQZ)V.Fx)"Ar.  (BS)
j=0

This equation is seemingly problematic because in order to
find the time-evolved control point U,ﬁ‘“, one necessarily
needs to know all other time-evolved control points due to
the presence of the cross terms in the above expression. The
cross terms arise in the above expression because the Bern-
stein polynomials are not orthonormal. However, making use
of the change of variables in (B2), we can greatly simplify
this equation. Using the change of variables (B2) in the first
term of (B8), we get

Z Bn,an,j
Jj=0

Expanding the summation and simplifying, we get

n B B
h+1 n,j=nl phtl
P! +Z—B =P
I#£j M)

(B9)

" B ,B
h+1 nk=n,j phtl
B, B, | Pk + § :—Pj
ok n,k=n.k

n n B B
+D BB [ PTG R L (B10)
J#k I#]

B, B, Pt +2> "B, B, P! +> "B, B, P

J#k J#k 1]
(B11)
The last term in (B11) can be further simplified as
Z Z Bn,an,lPlh-‘_1
J#k 1#£]
=(n—1)B, B, P, +(n—2)) B, B, P (Bl2)

J#k
Substituting (B12) into (B11) and simplifying, we get

n

h+1
n Bn,an,kPk+ +ZBn,kB
J#k

phitl

_ h+1
n,jtj _n’Bn,an,kUk .

(B13)

Since the same arguments above apply to the second term in

(B8), this equation simplifies to the following:

Bn’kM(z)VZF(Z)LAt
Bn,an,k

nUM = Ut — (B14)
Dividing both sides by n, letting AY = At/n, and including
contributions from all images over the string, we get the fol-
lowing update rule:

B, M()V_F()-Ar'

U — yh
k k Bn,k : Bn,k

(B15)
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This update rule for the control points is remarkably simple,
computationally inexpensive, and it completely avoids any
kind of numerical instability associated with inverting matri-
ces. In addition, in regard to the change of variables in (B2),
since we could have just as easily let

n
n, n,j
P =W, + E 3 B W,
j#k nk " Pnk

Bui B B16
B (B16)

then the change of variables itself is arbitrary since we can in
principle always find some set W that satisfies (B16). Con-
sequently, we can revert back to our original notation, which
leads to (15) as the update rule for the control points.
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