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ABSTRACT: Composite membranes of highly conductive and selective layer-by-layer (LbL) 

films and electrospun fiber mats were fabricated and characterized for mechanical strength and 

electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-

blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl 1,4-phenylene 

oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl 

hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity.  The 

bare mats were annealed to improve their mechanical properties, which improvements are shown 
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to be retained in the composite membranes.  Spray LbL assembly was used as a means for the 

rapid formation of proton-conducting films that fill the void space throughout the porous 

electrospun matrix and create a fuel-blocking layer. Coated mats as thin as 15 μm were 

fabricated, and viable composite membranes with methanol permeabilities twenty times lower 

than Nafion, and through-plane proton selectivity five and a half times greater than Nafion, are 

demonstrated. The mechanical properties of the spray coated electrospun mats are shown to be 

superior to the LbL-only system, and possess intrinsically greater dimensional stability and lower 

mechanical hysteresis than Nafion under hydrated conditions. The composite proton exchange 

membranes fabricated here were tested in an operational direct methanol fuel cell.  The results 

show the potential for higher open circuit voltages (OCV) and comparable cell resistances when 

compared to Nafion. 

 

1. INTRODUCTION 

Improvements to the performance of thin-film solid polymer electrolytes are critical for the 

advancement of the electrochemical energy devices.1 In recent years, there has been considerable 

interest on designing more chemically stable and mechanically robust membranes while 

maintaining high ionic conductivity and low fuel crossover.2,3 For current state-of-the-art 

hydrogen and methanol fuel cells, proton exchange membranes (PEMs) comprising 

perfluorosulfonic acid polymers such as Nafion are the material of choice, primarily because 

they exhibit superior protonic conductivity, relatively high mechanical integrity, and chemical 

stability; however, even perfluorosulfonic acid polymers have shown limited device lifetimes 

due to mechanical degradation.4,5 One of the main causes of membrane failure is the repeated 

swelling/deswelling of the membrane during fuel cell operation due to the cycling of temperature 
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and humidity. This cyclic fatigue stress has been shown to weaken the membrane mechanically 

after as few as a hundred cycles.6,7 The hydro-thermal mechanical behavior of Nafion during 

swelling has been extensively studied;8,9 there is a significant need to improve upon the current 

membrane’s durability. Many methods have been proposed to improve the mechanical properties 

of PEMs, such as incorporating Nafion into a polytetrafluoroethylene (PTFE) supporting 

matrix.10,11 Other methods of mechanical reinforcement have led researchers to incorporate metal 

oxides,12 zirconium phosphates,13 and carbon nanotubes14 into Nafion matrices in order to 

improve PEM lifetime or the overall fuel cell performance. 

The continued reliance on Nafion, with its high cost and relatively high fuel crossover, as well 

as the lack of control of the microscale composition of previously investigated composite PEMs, 

has proven to be a significant obstacle for development of direct methanol fuel cells (DMFCs). 

In recent years, alternative composite polyelectrolyte membranes have been investigated as 

substitutes for Nafion in PEMs, such as sulfonated poly(ether ether ketone)/phenoxy resin 

(SPEEK/PHR) composites,15 poly(vinyl alcohol)/sulfonated polyhedral oligosilsesquioxane 

(PVA/sPOSS) hybrid membranes,16 and sulfonated polystyrene/poly(vinylidene fluoride) blends 

compatibilized with block copolymers.17 More recently, researchers have attempted to fabricate a 

composite membrane based on sulfonated poly(2,6-dimethyl 1,4-phenylene oxide) (sPPO) 

reinforced by electrospun and cross-linked bromomethylated poly(2,6-dimetyl-1,4-phenylene 

oxide) (cBPPO), for a hydrogen fuel cell.18 While many of these alternative composite PEMs 

have shown promising results, there are still concerns regarding their mechanical durability, 

chemical stability, and/or transport properties that prevent them from widespread use in DMFCs. 

In recent reports, we have produced layer-by-layer (LbL)-based PEMs that perform well in 

hydrogen and direct methanol fuel cells.19,20 LbL assembly is a versatile nanoscale fabrication 
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technique that allows for the coating of any wettable substrate with a combination of two or more 

polymers possessing complementary interactions such as oppositely charged functional 

groups.21,22 The films can be tuned by adjusting the pH or salt content of the polymer solutions; 

the thickness per bilayer of films constructed by the LbL method ranges from as small as a few 

nanometers to over one hundred nanometers. An LbL system composed of poly(diallyl dimethyl 

ammonium chloride) (PDAC) and sulfonated poly(2,6-dimethyl 1,4-phenylene oxide) (sPPO) 

has shown promise for use in a DMFC, with the highest ionic conductivity of any LbL 

assembled system to date, at 70 mS cm-1, comparable to that of Nafion, while possessing 

methanol permeability values less than one hundredth that of Nafion. A key weakness of this 

promising system is that it is mechanically deficient when hydrated.20,23,24  In fact, many 

electrostatically assembled polymer membrane systems present the same issues with regard to 

mechanical integrity. 

Electrospun fiber (EF) mats are non-woven materials with high porosity and a large surface 

area-to-volume ratio (~1-10 m2/g).25,26 A wide range of polymers can be formed into electrospun 

mats, and it has been shown that the resulting fiber diameters can be controlled during 

fabrication in the range of 0.1–10 μm, depending on the solution and processing parameters.27 In 

addition, we have previously shown that significant improvements in the mechanical response of 

EF mats can be achieved by thermal annealing, with only modest decreases in porosity of the 

mats.28 The spray-assisted LbL process can be used to coat fibers individually throughout the 

interior of the electrospun mat with the assistance of a vacuum to control the convection of the 

spray through the mat; in the absence of a vacuum, the spray-assisted LbL process creates a film 

that can bridge the pores at the surface of the mat, resulting in an asymmetric composite 

membrane.24,29 This versatility in fabrication through the combination of LbL assembly and 
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electrospinning allows for the manufacture of PEMs with controllable transport properties. 

Previously, we demonstrated that the highly selective PDAC/sPPO LbL system could be 

conformally coated onto electrospun fiber mats and successfully blocks pores, thus producing a 

stronger membrane with superior methanol resistance when compared to Nafion.24 

In this work we manipulate the structure of the underlying electrospun nanofiber scaffold to 

investigate the effects on the mechanical and functional performance of the composite proton 

exchange membrane. Thermal annealing of the electrospun fiber mats at temperatures near the 

glass transition was found to improve the mechanical response and dimensional stability of the 

coated PEMs. The mechanical durability and hysteretic cycling of the composite membranes 

were investigated as well as the key transport properties (protonic conductivity and methanol 

permeability) for a PEM to be used in a methanol fuel cell. The transport properties of the 

composite systems are controllable by manipulation of the fiber mat thickness and LbL 

deposition parameters. Complete Membrane Electrode Assemblies (MEAs) were constructed and 

used to evaluate composite PEM performance in an operational DMFC for comparison to 

Nafion. 

2. EXPERIMENTAL SECTION 

2.1. Chemicals. 

PPO (Mw = 23,000) was obtained from Sigma-Aldrich, Inc. PDAC (Mw = 240,000) was 

obtained from Polysciences, Inc.  Poly(trimethyl hexamethylene terephthalamide) [PA 6(3)T] 

was purchased from Scientific Polymer Products, Inc. N,N-dimethyl formamide (DMF) was 

purchased from Sigma-Aldrich and used as received for creating polymeric solutions. PPO was 

sulfonated as previously reported20 to yield highly sulfonated sPPO. Magnesium nitrate salt was 
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purchased from Sigma-Aldrich and used as received. An E-Tek gas diffusion layer (GDL) 

comprising 4.0 mg/cm2 of 60 wt.% HP Pt catalyst on Vulcan XC-72 was used for the cathode 

side of the membrane electrode assembly (MEA) and an E-Tek GDL comprising 4.0 mg/cm2 of 

80 wt.% Pt/Ru catalyst on Vulcan XC-72 was used for the anode side. For the custom ink and 

wet deposition, 80 wt.% Pt/Ru on Vulcan carbon was purchased from the Fuel Cell Store. Nafion 

DE2020 solution was purchased from Ion Power, Inc. and used as the catalyst binder at 0.8:1 wt. 

ratio to carbon. Catalyst ink slurry using a 1:1 mixture by volume of isopropanol:water as solvent 

was sonicated for five minutes before application. The target catalyst loading was 4.0 mg/cm2 

and the gas diffusion layer was ELAT carbon cloth from the Fuel Cell Store. 

2.2. Electrospinning Fiber Mats. 

As described in a previous report,28 the electrospinning apparatus consisted of two aluminum 

disks 10 cm in diameter oriented parallel to each other and separated by a distance of 30 cm. A 

22 wt.% solution of PA 6(3)T in DMF was pumped through a Teflon tube with a syringe pump 

(Harvard Apparatus PHD 2000) at a rate of 0.01 mL/min through a 0.040" ID needle in the top 

aluminum disk. A high voltage power supply (Gamma High Voltage Research, ES40P) provided 

20-24 kV potential to the upper aluminum disk, and the polymer solution jet emitted from the 

needle was drawn to the bottom grounded disk, where ultrafine fibers of approximately 400 nm 

diameter were collected. The thickness of the mat (from ~10 µm to 80 µm) was controlled by the 

time allowed for deposition. The EF mats were (optionally) annealed in an oven at a specified 

temperature between 130-170 °C for 2 hours prior to coating by the spray-LbL method as 

previously reported.28 

2.3. LbL Spray Assembly. 
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Samples of EF mats about 100 mm in diameter were first plasma treated in an oxygen 

atmosphere for 1 minute to make the EF mats hydrophilic and to impart an initial negative 

charge to the fibers (forming carboxylates on the surface).30 The mats were then placed onto a 75 

mm diameter plastic funnel fitted with a steel mesh (2 mm grating) to support the membrane. 

Sprayed films were fabricated using the same polymer and rinse solutions described previously.24 

For all ES mats 25 µm or thicker, halfway through the desired number of bilayers, the coated mat 

was flipped over on the steel mesh such that the vacuum was drawn through the opposite side; 

this is done to provide a more even coating throughout the fiber matrix. The coated fiber mats 

were then hydrated in deionized water and consolidated in a Carver Hot Press (15 cm x 15 cm 

platens) at 100 °C and 50 kN for 30 minutes in order to reduce the remaining pore spaces within 

the composite membrane. A “capping layer” of LbL film (typically 1 μm thick) was then applied 

to the composite membrane on both sides by spraying without the vacuum assist, to further 

inhibit methanol crossover. Free-standing LbL films were also assembled on Teflon substrates or 

polystyrene-coated silicon wafers and gently peeled off after assembly, similar to a previous 

report.23 

2.4. Composite Membrane Characterization. 

Scanning electron microscopy (SEM) images were obtained on a JEOL JSM-6060 scanning 

electron microscope after coating the composite membranes with roughly 5 nm of Au/Pd. Cross-

sectional images were obtained by cryo-fracturing the composite membranes in liquid nitrogen. 

Porosities of the fiber mats were determined gravimetrically by cutting out rectangular 

specimens and measuring the mass and dimensions of the mat sample and converting to porosity. 

Sample thickness was measured with a Mitutoyo digital micrometer with a constant measuring 

force of 0.5 N. Lateral sample dimensions were determined using a digital caliper. The volume 
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and mass of the specimen were then converted to a porosity using the bulk density. The bulk 

density was estimated as the average value for the polymers used: PA 6(3)T (1.12 g/cm3), sPPO 

(1.06 g/cm3), PDAC (1.04 g/cm3). 

2.5. Mechanical Testing. 

Uniaxial tensile testing of dry and fully hydrated electrospun fiber mats and composite 

membranes was performed with a Zwick Roell Z2.5 tensile testing machine using a 2.5 kN load 

cell. Rectangular specimens were cut to 100 mm x 12.5 mm and extended at a constant crosshead 

speed of 0.50 mm/s with a 50 mm gauge length (corresponding to a constant strain rate of 0.01 s-

1). The thickness of each specimen was determined from the average of three measurements 

taken along the gauge length with a Mitutoyo digital micrometer at a constant force of 0.5 N. 

The force–displacement data were converted to engineering stress versus engineering strain 

using the initial cross-sectional area and gauge length of the test specimen, respectively. Samples 

defined as “dry” were tested at ambient conditions of 25 °C and approximately 40-45% RH, 

while samples defined as “hydrated” were conditioned overnight in water and tested while fully 

saturated with water. Tensile testing under specific humidity conditions was conducted in an 

EnduraTEC Electroforce 3200 (ELF) with an environmental control chamber. Samples were cut 

to 4 mm x 30 mm and tested at a constant crosshead speed of 0.12 mm/s with a 0.12 mm gauge 

length (corresponding to a constant strain rate of 0.01 s-1). The ELF testing grips were 

completely enclosed in a stainless steel chamber, which was controlled at 25 °C and 50% RH 

with a magnesium nitrate salt solution, as confirmed by a humidity gauge. Samples were 

equilibrated in a humidity chamber before being transferred to the testing chamber, and the 

chamber allowed to re-equilibrate for 1 min after reaching the desired relative humidity prior to 

being tested. 
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Swelling measurements were performed by cutting out approximately 10 mm x 10 mm 

specimens and measuring the precise length and width using a Mitutoyo digital caliper with 0.01 

mm precision. Specimens were then placed in boiling water (maintained at 100 °C) for 2 hours, 

before being removed and re-measured using the digital calipers. The linear swelling was then 

defined as: swelling %=100% x (Ls-L0)/L0, where L0 is the longer of the original length or width 

(at ambient humidity, 50% RH), and Ls is the corresponding swollen length or width of the 

specimen. 

2.6. Transport Properties. 

Proton conductivity, unless otherwise noted, was measured in-plane using a custom machined 

PEEK electrode with two platinum wires spaced 1 cm apart. The samples were immersed in 18.2 

MΩ deionized water before drying to ensure the removal of excess ions and then dried and cut 

into approximate 1.5 cm x 2 cm rectangles and placed on top of a glass slide. The electrode was 

placed above the PEM specimen and clamped down to ensure good continuous connection 

between the wires and the sample membrane. Humidity was controlled using a chamber from 

Electro-tech Systems, Inc. Impedance values were determined by electrochemical impedance 

spectroscopy with a Solartron 1260 impedance analyzer, measuring from 1 MHz down to 1 Hz at 

room temperature. 

Through-plane proton conductivity measurements were made using a two electrode Swagelok 

cell with two 12 mm diameter aluminum plates as electrodes.31 The composite membrane testing 

specimens were soaked in deionized water and cut into 12 mm diameter disks. Excess water was 

removed from each sample with a Kim-wipe, and the specimen was placed between two 10 mm 

diameter fine wire meshes to decrease the contact resistance.  Impedance values were determined 
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using a Solartron 1260 impedance analyzer as described earlier; the membrane resistance was 

calculated as the total resistance minus the resistance contribution of the Swagelok cell and the 

two wire meshes.    

Methanol permeability values were determined by using a dual chamber apparatus, where the 

membrane sample is the separator between pure methanol and water, as described previously.20 

The liquids in both chambers were stirred, and the increase in methanol concentration of the 

water as a function of time was determined by the changes in the refractive index of the solution 

using a Waters 2414 Refractive Index Detector. 

2.7. Direct Methanol Fuel Cell Testing. 

The membrane electrode assemblies (MEA) were fabricated by sandwiching a 16 mm diameter 

circular cut-out composite PEM between two 12 mm diameter GDLs containing catalyst coating 

and hot-pressing at 135 °C and a force of 5 kN for 5 minutes using a Carver Hot Press. Two 8 

cm x 8 cm square gasket layers (250 µm thick PTFE-coated fiberglass sheets, VWR) were used 

to align the positions of the PEM and GDL during hot-pressing and to transfer the assembly to 

the DMFC. The MEAs were then tested using DMFC hardware obtained from Fuel Cell 

Technologies, Inc. Methanol (10% v/v in water) was fed to the anode at a flow rate of 4 mL/min 

using a peristaltic pump, and humidified air was supplied to the cathode at 60 mL/min. 

Polarization curves were generated from a Gamry PCI750 potentiostat connected to the DMFC 

hardware. 

3. RESULTS AND DISCUSSION 

3.1. Composite PEM Fabrication. 
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Figure 1 is a diagram illustrating the main steps of composite PEM fabrication: 

electrospinning, spray-assisted LbL deposition, hot-pressing, and LbL capping, as well as a 

representative cross-sectional SEM of a completed composite membrane. The membrane solidity 

(defined as (1-porosity)) was found to increase up to ~70-80 % with 200-250 bilayers, at which 

point further increases in solidity with additional bilayers were not observed. In order to fill the 

remaining interstices of the fiber matrix (and thus create a denser composite membrane), the 

coated membranes were hydrated in deionized water and hot-pressed. This process allows the 

collapse of the remaining pore space between the hydrated, compliant coatings on fibers, thus 

increasing the overall PEM solidity. 
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Figure 1. Diagram showing the steps used in fabricating the composite PEM: 1) electrospinning 

of nanofiber matrix (with optional thermal annealing); 2) spray-coat fibers with LbL 

polyelectrolytes using a vacuum assist; 3) heat press membrane to remove voids; 4) continue 
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coating LbL without vacuum to provide a capping layer to top of PEM. Scale bar of SEM 

micrograph is 5 µm. 

Thermal annealing of the underlying electrospun fiber matrix at 130, 150, and 170 °C was used 

to improve the mechanical properties of the composite PEM.  Annealing at temperatures close to 

the glass transition (Tg) of PA 6(3)T was found to increase the mechanical strength while 

increasing the solidity of uncoated EF mats from about 11-14%, for mats annealed below 150 

°C, up to 35% for mats annealed at 170 °C.28 After coating 200 bilayers of PDAC/sPPO using 

vacuum-assisted spray-LbL, all membranes plateaued at 68-76% solidity.  We hypothesize that 

the residual porosity was due to closing off of unfilled pores prematurely (“bottle-necking”) and 

non-uniformity of pressure drop through the entirety of the membrane. Hot-pressing of the 

hydrated membranes was used to push the membrane solidity up to 88-93%, with the EF mats 

originally annealed at 130 °C and 150 °C exhibiting the highest overall solidities after 

fabrication. Data for the solidity of the composite membranes after each step in the fabrication 

process, as a function of the annealing temperature of the EF mat prior to LbL deposition can be 

found in the Supporting Information (Figure S1). It should be noted that despite the fact that all 

of the composite membranes exhibit comparable solidities after hot-pressing, the ratio of LbL:EF 

for the 170 °C thermally annealed fiber mats is much lower than the other membranes, which is 

detrimental to the transport properties of the PEM. 

Representative SEM images of the composite PEM at different stages of fabrication are shown 

in Figure 2. PA 6(3)T nanofibers that have been conformally coated with 50 bilayers of 

PDAC/sPPO are shown in Figure 2a,b; there remains a significant amount of pore space 

between the coated fibers. SEM micrographs of a cross-section of the hot-pressed composite 

membranes with 250 bilayers of PDAC/sPPO sprayed with vacuum assist are shown in Figure 
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2c,d; the LbL film can be seen filling the interstices between the PA 6(3)T fibers due to 

compression of the hydrated LbL system into the void space during pressing. Before pressing, 

the composite membrane was an opaque, whitish color, which turns clear after being hydrated 

and hot-pressed, as a result of the elimination of residual air pockets that scatter light. 

 

Figure 2. SEM micrograph of ~800 nm diameter PA 6(3)T fibers coated with 50 bilayers of 

PDAC/sPPO (A & B). SEM Micrograph of composite PEM, consisting of PA 6(3)T fibers 

whose interstices are completely filled with PDAC/sPPO (250 BLs with vacuum assist) after 

being hot-pressed while hydrated. Scale bars for A & D are 1 µm; scale bar for B is 0.5 µm; 

scale bare for C is 10µm. 

A 

D C 

B 
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3.2. Mechanical Properties. 

We have previously shown that the mechanical properties of the composite LbL-EF 

membranes in the hydrated state depend primarily on the nonwoven fiber “endoskeleton”, while 

those of the composite membranes in the dry state are stiff and brittle, like the LbL film itself.24 

The mechanical properties of uncoated nanofiber mats have also been investigated extensively, 

and can be controlled by various post-spin treatments.28,32,33 Annealing of the PA 6(3)T nanofiber 

mats, in particular, improves the mechanical properties of the EF mats by a factor of 5-6 fold 

over the as-spun mats. Here we show that these improvements survive hydration and are 

reflected in the composite PEMs as well.  

 Under dry conditions, the Young’s moduli of the composite membranes range from 383 ± 

43 MPa, for the composite PEM based on the unannealed PA 6(3)T EF mat, up to 482 ± 71 MPa, 

for the composite PEM based on the EF mat annealed at 150 °C. Yield stresses range from 8.9 ± 

3.5 MPa to 12.3 ± 3.3 MPa for these same composite PEMs.  The values for Young’s modulus 

and yield stress are comparable to the values for the free-standing PDAC/sPPO film, at 610 ± 

113 MPa and 12.8 ± 4.5 MPa, respectively. Even though the Young’s moduli and yield stresses 

of the composite PEMs are greater than those of Nafion, all of the LbL systems exhibit brittle 

behavior at 25 °C and 50 %RH. 

 In an operational DMFC, the composite PEMs are in a hydrated state; therefore, tensile 

testing was also conducted on membranes that have been pre-conditioned in water for 24 hours.  

A summary of the improvements to the Young’s moduli and yield stresses of the composite 

PEMs when hydrated as a function of the annealing temperature of the EF mat is shown in Table 

1. An increase of up to 5-6 fold in the Young’s modulus and yield stress of the hydrated 
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composite PEM can be observed for the composite PEMs as a result of annealing the underlying 

PA 6(3)T fiber mat. The mechanical properties of the fully hydrated composite LbL-EF PEMs 

with various temperatures of heat treatment match that of the uncoated PA 6(3)T fibers mats 

under the same conditions, confirming that the mechanical response of the composite PEM is 

controlled by the underlying electrospun mat. At 150 °C heat-treatment, the mechanical 

properties of the hydrated composite PEM are comparable to that of hydrated Nafion N112, with 

Young’s moduli of 80.2 ± 9.9 and 74.3 ± 5.7 MPa, and yield stresses of 3.39 ± 0.37 and 5.56 ± 

0.22 MPa, respectively. 

 

Figure 3. Representative stress-strain plots for hydrated membranes of: Nafion (black squares), 

150 °C heat-treated PA 6(3)T nanofiber mat (red triangles), free-standing LbL film (green x’s), 

and the composites of PA 6(3)T and using 150 °C heat-treated electrospun mat (blue diamonds). 
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 Figure 3 compares the data for engineering stress vs. engineering strain for a typical 

composite membrane annealed at 150°C vs. Nafion in the fully hydrated state; included as well, 

for reference, are curves for a hydrated uncoated 150 °C heat-treated PA 6(3)T fiber mat and for 

a free-standing LbL film. When hydrated, the free-standing LbL film becomes swollen and 

pliable, thus losing most of its mechanical integrity.  The yield stress drops to ~0.1 MPa and the 

Young’s modulus drops to 1-2 MPa. Figure 3 shows that when coated onto the heat-treated PA 

6(3)T electrospun fiber scaffold, the composite membrane exhibits the superior mechanical 

response of the underlying thermally treated EF mat. At low strains (<0.05 mm/mm), the 

mechanical response of the composite membrane is nearly identical to that of the hydrated 

Nafion membrane, and maintains its integrity through the plastic deformation region (>0.05 

mm/mm).  

The failure mechanisms of the coated fiber mats in both the dry and hydrated cases were 

observed during mechanical testing.  In the dry case, cracking occurs along the LbL surface, 

exposing the underlying electrospun mat. In the hydrated case, the polyelectrolyte coating is able 

to deform with the rest of the mat without cracking, due to the ductile behavior of the LbL films 

when hydrated; this ductility was also observed in bare film testing. SEM micrographs of the 

fracture plane for composite membranes after tensile testing in both “dry” conditions and “wet” 

conditions are presented in Figure 4. The breaking mechanism for the dry samples is brittle 

fracture, as indicated by the minimal plastic deformation of the specimen before breaking and the 

very smooth conchoidal fracture (normal to the applied tension) (Figure 4 (A)). The breaking 

mechanism for the wet samples is ductile rupture as the wet membrane exhibits significant 

necking and the fiber matrix deforms plastically before rupture, yielding a very rough fracture 

surface (Figure 4 (B)). Consequently, the spray coated fiber mats exhibit greater toughness in the 
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hydrated state as compared to the free-standing PDAC/sPPO films, and are comparable to 

commercial proton exchange membranes such as Nafion. 

 

Figure 4. Representative SEM micrographs of composite LbL-electrospun fiber membrane 

fracture surfaces: A) “dry” membrane fracture plane indicating brittle fracture mechanism, B) 

“wet” membrane fracture plane showing thinning & plastic deformation during ductile rupture. 

The scale bar for each image is 10 µm. 

 

3.3. Swelling Behavior. 

In an operational fuel cell, the PEM undergoes repeated swelling and de-swelling cycles, 

which can decrease significantly the lifetime of the membrane.9,34 Perfluorosulfonic acid (PFSA)-

based proton exchange membranes, such as Nafion, exhibit substantial swelling in water. 

Repeated hydration cycling often leads to mechanical failure and fracture, as a result of 

membrane thinning and pinhole formation;9,35 therefore, PEMs that swell less offer some 

advantages in a fuel cell due to their potential for increased service lifetime. Figure 5 shows that 

the composite membranes fabricated in this work have significantly greater dimensional stability 

than both Nafion and the pristine LbL film during a swelling experiment under the same 
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conditions. We hypothesize that the significant decrease in linear swelling for the composite 

PEM is due to constraint of the LbL film within the electrospun fiber matrix; the LbL film is 

electrostatically bound to the fiber surfaces and is unable to expand freely because the film is 

mechanically weaker than the electrospun fibers.  This hypothesis explains why the linear 

swelling decreases with increasing annealing temperature of the underlying EF mat. Figure 5 

also shows a comparison of the tensile strain-to-break of the PEMs at 50% RH and 25 °C. The 

composite membranes exhibited both a moderate increase in the strain to break at 50% RH (0.06 

mm/mm for the free-standing LbL to 0.10 mm/mm for the composite system), and a more than 

three-fold decrease in the linear swelling (from 0.17 mm/mm for the free-standing LbL to 0.03-

0.05 mm/mm for the composite PEM), compared to the pristine LbL film. The linear swelling 

strains of all of the LbL systems were found to be significantly lower than Nafion, which swelled 

to 0.36 ± 0.04 mm/mm, nearly an order of magnitude larger than the composite PEMs. A 

summary of the strain to break and linear swelling properties can be found in Table 1. 

 

Table 1. Summary of Mechanical and Swelling Properties of Composite PEM at 25 °C. 

 

Young’s 
Modulus 
(100% 
RH)  
[MPa] 

Yield 
Stress 
(100% 
RH) 
[MPa] 

Strain at 
Break (50% 
RH) 
[mm/mm] 

Linear 
Swellinga 
[mm/mm] 

Hydration 
Stability 
Factorb 
(HSF) 

Hysteresisc 

(1 Swelling 
Cycle) 
(100% RH) 
[%] 

PDAC/sPPO 
Film 1.70 ± 0.95 0.11 ± 0.04 0.06 ± 0.02 0.16 ± 0.02 0.34 ± 0.11 N/A 

As-spun+LbL 36.1 ± 5.1 1.07 ± 0.14 0.10 ± 0.02 0.05 ± 0.01 1.84 ± 0.35 47.5 ± 6.3 

130 °C HT+LbL 52.1 ± 10.8 1.69 ± 0.10 0.09 ± 0.01 0.04 ± 0.01 1.97 ± 0.31 36.8 ± 5.6 

150 °C HT+LbL 80.2 ± 9.9 3.39 ± 0.37 0.09 ± 0.01 0.03 ± 0.01 2.76 ± 0.37 37.0 ± 5.2 
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170 °C HT+LbL 197.7 ± 
54.2 6.51 ± 0.63 0.07 ± 0.01 0.03 ± 0.01 2.64 ± 0.37 39.2 ± 5.4 

Nafion® N112 74.3 ± 5.7 5.56 ± 0.22 1.56 ± 0.15 0.36 ± 0.04 4.28 ± 0.40 62.9 ± 3.9 
a Subjected to boiling water (100 °C) for 2 hours 
b Ratio of strain at break [mm/mm] to linear swelling [mm/mm] 
c Each sample extended to its corresponding linear swelling strain 

 

 

Figure 5. Dimensional change in the strain to break (at 50% RH) and linear swelling of 

composite PEMs and Nafion. 

The mechanical durability of a PEM in a hydrated fuel cell is directly linked to its tensile strain 

to break and its linear swelling in the same direction after exposure to liquid water. Membranes 
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undergo significant swelling when humidified, and may fail mechanically if membrane stresses 

experienced during hydration cycling exceed the tensile strength of the membrane; therefore, 

larger membrane breaking strains are desirable. The hydration stability factor is a metric that was 

proposed recently for characterizing the likelihood that a membrane can withstand repeated 

humidity cycling;7 it is defined as: 

HSF = !"#$%&  !"  !"#$%  [!!/!!]  (!"  °",!"  %"#)
!"#$%&  !"#$$%&'  [!!/!!]  (!""  °"  !"  !!!)

       (1) 

This metric has proven to be a convenient measure for assessing various membranes and for 

predicting their relative durability in the accelerated mechanical humidity cycling test. Figure 

6(A) shows the HSF of the composite membranes as well as the HSF of the free-standing LbL 

film and of Nafion. A value of HSF<1 indicates that the membrane is not robust enough to 

survive even one humidity cycle, which highlights the weakness of the free-standing 

PDAC/sPPO film, whose HSF is 0.34 ± 0.11. All of the composite LbL-EF membranes are seen 

to have HSF values that are 5-6 times larger than that for the free-standing LbL, and only ~30% 

or so less than Nafion; these results indicate that the composite LbL-EF PEMs possess sufficient 

mechanical integrity to withstand humidity cycling in an operational fuel cell. 
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Figure 6. (A) Comparison of hydration stability factor and hydration yield factor for the free-

standing LbL film, composite PEMs made with EF mats annealed at different temperatures, and 

Nafion. (B) Comparison of the mechanical hysteresis for composite PEMs made with EF mats 

annealed at different temperatures and Nafion. 

The comparable values of HSF for the composite PEMs and Nafion suggest that the LbL-EF 

membranes may exhibit humidity fatigue cycling lifetimes similar to Nafion; however, the HSF 

does not fully capture the significant advantage of the dimensional stability (reduced linear 

swelling) of the composite PEMs in this work. A comparison of the single load-unload stress-

strain curves for Nafion and the composite LbL-EF membrane under extension can be found in 

the Supporting Information (Figure S2(A)). The membranes are extended up to a total strain 

equivalent to its linear swelling deformation in boiling water. It is important to note that the 

strain reached by Nafion upon swelling (~0.36 mm/mm) extends well beyond the yield point 

(~0.08 mm/mm) of Nafion. A membrane that is repeatedly deformed beyond the yield point 

loses its mechanical integrity irreversibly, increasing the likelihood of mechanical failure within 

an operational fuel cell.33 
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To better evaluate the extent of the irreversible deformation a membrane would experience 

with each swelling cycle, we propose the following “hydration yield factor”, which we define as 

Hydration  Yield  Factor = !"#$%  !"#$%&   !!/!! (!"  °",      !"  %"#)
!"#$%&  !"#$$%&'  [!!/!!]  (!""  °"  !"  !!!)

    (2) 

If the hydration yield factor is greater than 1, then the swelling occurs entirely within the 

elastic regime, and repeated cycling should be mostly recoverable; however, if the hydration 

yield factor is less than 1, then the sample deforms plastically during each cycle; the more the 

ratio is below one, the greater the deformation the membrane would exhibit during hydration 

cycling. All of the composite PEM’s exhibit hydration yield factors of ~1 or higher (1.09 ± 0.22 

for the 150 °C annealed sample), indicating that the strains induced in the membranes by 

swelling are equal to or slightly below the yield point, and thus recoverable, as shown in Figure 

6(B). The hydration yield factor of Nafion is found to be 0.24 ± 0.04, which corresponds to large 

plastic (unrecoverable) deformation after each swelling cycle. 

To quantify the energy loss during a swelling cycle, the mechanical hysteresis for a single 

cycle of loading and unloading (up to the measured swelling strain) was determined for each 

sample and compared to that of Nafion (Figure S2(B)). The area contained between the load-

unload curves is an indication of the work performed on the membrane with each swelling cycle; 

Nafion exhibits significantly larger hysteretic losses as compared to the LbL-EF membranes. A 

quantitative comparison of the percent of mechanical hysteresis for each type of PEM is shown 

in Figure 6 (B). All of the composite LbL-EF membranes exhibit lower percent mechanical 

hystereses relative to that of Nafion. The composites of 130 °C and 150 °C heat-treated PA 6(3)T 

and LbL exhibit the lowest hysteretic losses, at 36.8 ± 5.6 % and 37.0 ± 5.2 %, respectively, 

compared to 62.9 ± 3.9 % for Nafion. The greater dimensional stability and lower mechanical 
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hysteresis indicate the potential for longer operational lifetimes of the composite LbL-EF proton 

exchange membranes relative to Nafion. 

3.4. Transport Properties. 

In-plane conductivities of the composite PEMs assembled using the various thermally treated 

PA 6(3)T electrospun scaffolds and of the free-standing LbL-deposited film were measured to 

quantify their dependence on humidity (see Figure 7a).  All of the composite PEMs and the 

pristine LbL film show similar humidity dependence; the proton conductivity improves by 

approximately an order of magnitude with every 20% increase in the relative humidity, 

indicating that the proton conduction mechanism of the LbL films is not significantly affected by 

the assembly method or by the supporting scaffold. The PA 6(3)T electrospun mats (80 μm 

thick) annealed at 130°C yielded composite PEMs with a protonic conductivity several times 

higher than those annealed at 150 °C or 170 °C. The slight porosity decrease of the fiber mats is 

not enough to explain the significant drop in ion transport with the higher annealing 

temperatures. This difference in the conductivity is most likely due to difficulty in coating mats 

comprising merged fibers and weld points, which are believed to exacerbate bottle-necking of 

the spray-LbL before complete filling of pore space. Lower total resistances and a reduction of 

bottle-necking can be achieved by utilizing thinner proton exchange membranes in DMFCs and 

in the composite LbL-EF PEMs. Figure 7b shows the effect of using electrospun mats of various 

thicknesses (80, 60, 40, and 25 µm thick before coating and pressing) for fabrication of the 

composite PEM. All of these PA 6(3)T mats were annealed at 150 °C. The thinner membranes 

exhibited increased protonic conductivity due to more complete impregnation with 

polyelectrolytes; when fully hydrated, the thinnest membrane (25 µm) exhibits protonic 

conductivity comparable to that of a pure LbL film. 
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Figure 7. Humidity dependence of the proton conductivity of (A) the composite PEMs 

assembled on various thermally treated EFMs (80 μm thick before annealing) and free-standing 

LbL film and (B) the proton conductivity for different composite PEM thickness [150 °C heat-

treated samples]. 

To observe the effect of adding the capping layer on conductivity, the through-plane and in-

plane conductivities were measured for uncapped and capped PEMs (see Supplemental 

Information, Figure S3). While the in-plane conductivity of the capped PEM showed a marked, 

four-fold increase from the uncapped PEM (1.6 ± 0.1 mS/cm for uncapped to 7.7 ± 0.4 mS/cm 

for capped), the through-plane conductivity of the capped PEM was only slightly more 

conductive than the uncapped PEM (6.9 ± 0.4 mS/cm for uncapped to 7.0 ± 0.3 mS/cm for 

capped).  We hypothesize that the uncapped composite PEM had a low in-plane conductivity due 

to proton transport occurring along the length of the electrospun fibers, which are randomly 

aligned, and that the large increase in the in-plane conductivity after the addition of the capping 

layer was the result of the conduction through the capping LbL film. Conversely, the uncapped 
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composite PEM exhibited a high through-plane conductivity because the LbL films were already 

well connected through the thickness of the fiber matrix as a result of the vacuum-assisted LbL 

deposition process and the subsequent hot-pressing. The capping process does not alter 

significantly the through-plane ionic conductivity of the mat. Note that despite the anisotropic 

morphology of the capped composite PEM, the conductivity through-plane and in-plane are quite 

similar. This is in contrast to Nafion membranes, which exhibit through-plane conductivities 

between 1/3 to 1/4 of their in-plane conductivities.4   

While the through-plane proton conductivity of the composite PEM provides an indication of 

the membrane’s ability to sustain high currents in a fuel cell, its methanol permeability 

ultimately determines its potential use for DMFC applications. Lower crossover limits fuel loss 

and permits the use of a higher methanol feed concentration, leading to a higher overall cell 

voltage, power density and efficiency.  In the context of DMFCs, the “selectivity”, defined as the 

ratio of proton conductivity to methanol permeability, is a useful metric for predicting the 

performance of a PEM.7 Protons and methanol have similar molecular transport mechanisms in 

sulfonic acid-containing PEMs. As a consequence, it is generally difficult to improve membrane 

selectivity significantly, even with substantial modifications to the membrane’s ion content, 

water content, or polymer chemistry, architecture or morphology.4  LbL assembled PDAC/sPPO 

films exhibit methanol permeabilities two orders of magnitude lower than that of Nafion due to 

its light cross-linking between PDAC and sPPO. It is therefore possible to decrease the methanol 

crossover of the composite PEM significantly (by capping), while maintaining a reasonable 

through-plane conductivity. Table 2 shows a summary of the through-plane proton conductivity, 

methanol permeability and calculated selectivity of the composite PEM from this work, 

compared with Nafion and highly selective composite PEMs reported in the literature.  The 
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capped composite PEM was made from a 18 μm thick EF mat that was thermally treated at 130 

°C, coated by the vacuum assisted spray LbL method and subsequently capped with 5 μm of 

PDAC/sPPO on both sides.  The resultant PEM had a through-plane conductivity one fourth that 

of Nafion (7 vs. 26 mS/cm) and methanol permeability twenty times lower than that of Nafion 

(9.7 vs. 198 x 10-8 cm2/s). The result is a selectivity five and a half times greater than that of 

Nafion (7.2 vs. 1.3 x 107 mS•sec/cm3) and greater than that of all the highly selective composite 

PEMs listed in Table 2.  Taking into consideration the thickness of the composite membrane (30 

µm) relative to that of the Nafion membrane typically used in a DMFC (180 µm), the composite 

PEM’s conductance (conductivity / thickness) is 60% higher than that of Nafion, and its 

permeance (permeability / thickness) is still 3.4 times lower than that of Nafion. 

 

Table 2. Summary of Transport Properties of Composite PEMs. 

Membrane 

Through-
plane Proton 

Conductivity* 

(σ) [mS/cm] 

MeOH 
Permeability 

(Px108) [cm2/s] 

Selectivity 

(S=σ /Px108) 
[mS•sec/cm3] 

PA6(3)T+PDAC/sPPO 

(~10 μm cap/30 μm) [this work] 
7.0 9.7 0.72 

Nafion N1124 26 198 0.13 

Sulfonated poly(styrene-b-ethylene-r-
butadiene-b-styrene) block copolymer36 23 82 0.28 

Phosphotungstic acid/poly(vinyl 
alcohol) composite37 6 45.4 0.13 

Nafion/poly(vinyl alcohol) blend38 20 65 0.31 

PVOH/PVP blend39 1.4 10 0.14 

SPEEK/cyclodextrin40 48 76 0.63 
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* tested at 100 %RH 

3.5. DMFC Performance. 

Despite the attractive characteristics of the composite PEM, fabrication of a membrane 

electrode assembly (MEA) using the composite PEM proved to be a challenge. This difficulty 

was traced to incomplete bonding of the PEM to the GDL during MEA assembly. The difficulty 

in determining optimum hot-pressing conditions for adhesion of the PEM to the catalyst layers 

was exacerbated by the incompatible thermal expansion and swelling of the composite PEM 

versus the catalyst, which has a Nafion binder, especially upon drying. The Pt catalyst-coated 

GDL (cathode side) was found to adhere well to the LbL-EF composite PEM after MEA hot-

pressing; however, the Pt/Ru catalyst-coated GDL (anode side) was found to delaminate 

frequently from the PEM, leading to increased cell resistances and greatly reduced catalyst 

activation.  This problem has been observed previously with other Nafion-free PEMs.41 Cross-

sectional SEM micrographs of the MEA showing the delamination of the Pt-Ru catalyst side can 

be found in the Supporting Information (Figure S4). Several techniques to remedy this issue 

were attempted; these included adjusting the hot-pressing conditions (temperature, time, wet or 

dry PEM), adding a thin layer of Nafion paint as binder, coating catalyst directly onto the PEM, 

or even synthesizing a custom batch of Pt/Ru catalyst slurry using PDAC/sPPO as the polymer 

binder. A summary of several of the various MEA construction methods and catalysts used are 

shown in Table 3 along with the resultant cell resistances and comments on whether methanol 

penetrated through the membrane. In each case, the MEA exhibited higher cell resistances and/or 

higher methanol crossover than expected.  However, some trends were observed to reduce cell 

resistances. Hot-pressing was observed in all situations to improve contact and, on average, 

reduced resistances by half, but would lead to fuel penetration though the membranes if they 

were hot-pressed while wet, due to failure of the capping layer. Wet assembly of the cell (either 
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by depositing the ink on the membrane or by using wet membranes) further improves contact 

and prevents delamination (upon drying), but the membranes again tend to exhibit methanol 

break-through. Use of excess Nafion paint helped reduce the methanol break-through, but not 

completely. These techniques for improving connection typically have little effect in Nafion 

based systems, further proof that it is the difference in properties of the composite membrane 

(i.e. mechanical properties, swelling and flow behavior) versus Nafion that is causing the high 

resistances. 

 

Table 3. Summary of MEAs. 

Membrane 
Condition Anode Catalyst* Hot Press Cell Resistance 

[Ω] Comments 

Wet None n/a 0.38 Resistance of 
membrane alone 

Dry flat Pt/Ru (E-TEK) No 18.26 Fuel blocking 

Dry flat Pt/Ru (E-TEK) Yes 10.88 Fuel blocking 

Dry flat Pt/Ru (wet deposit) No 10.43 Fuel break-through 

Dry flat Pt/Ru (wet deposit) Yes 5.32 Fuel break-through 

Wet Pt/Ru (E-TEK) No 7.03 Fuel break-through 

Wet Pt/Ru (custom ink) No 4.60 Fuel break-through 

Wet Pt/Ru (E-TEK) Yes 3.06 3x Nafion paint, 
reduced break-through 

Dry flat Pt (E-TEK) Yes 2.66 Fuel blocking 

* Pt (E-TEK) used as cathode catalyst for all MEAs 

Since the Pt/Ru catalyst could not be successfully integrated into the MEA containing the 

composite LbL-EF PEM, an alternative system consisting of Pt-catalyst coated GDL sandwiched 

around both sides of the PEM was used to obtain a relative measure of the DMFC performance. 
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The activation energy of methanol oxidation with Pt catalyst is higher than that with Pt/Ru 

catalyst, resulting in lower fuel efficiency; however, the PEM transport should be unaffected. 

Comparison of the overall performance of this MEA with the composite PEM to that of an MEA 

constructed using Nafion and the same Pt(anode)/Pt(cathode) catalyst assembly provides a useful 

measure of the relative operational DMFC performance. Figure 8 shows voltage-current 

polarization curves as well as a power density curve for a 100 µm thick Nafion PEM and a 25 

µm thick LbL-EF composite PEM in a DMFC using 10 wt.% methanol in water as the fuel and 

tested at 25 °C. The MEA with composite PEM exhibits a higher open circuit voltage (OCV) 

than does the MEA with Nafion (270 mV vs. 257 mV), indicating that methanol is blocked more 

efficiently by the composite PEM. The MEA with composite PEM also draws a current of 5.8 

mA at 100 mV, compared to 9.4 mA at 100 mV for the MEA with Nafion. Even with the Pt 

catalyst, the total cell resistance was greater than expected (2.66 Ω vs. ~0.5 Ω), indicating that 

MEA adhesion to the electrode was still not optimal. It is possible that the DMFC performance 

of the composite PEM could be further improved with the development of a custom catalyst and 

binder system for optimized compatibility with the composite PEM, but this is beyond the scope 

of the current study. 
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Figure 8. V-I polarization curves for Nafion and PA6(3)T+LBL composite membrane using Pt 

catalyst for both the anode and cathode GDL in 10 wt.% methanol/water mixture. 

 

4. Conclusions 

Composite membranes of highly conductive LbL films and electrospun fiber mats were 

fabricated and characterized for mechanical strength and electrochemical selectivity. To create a 

proton-conducting, fuel-blocking layer and to fill in the void space throughout the porous 

electrospun fiber matrix, the spray-LbL assembly method with and without vacuum was used to 

form LbL films rapidly. These membranes consist of highly selective poly(diallyl dimethyl 

ammonium chloride)/sulfonated poly(2,6-dimethyl 1,4-phenylene oxide) (PDAC/sPPO) thin 
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films. The mechanical properties of the spray coated electrospun fiber mats are shown to 

improve with increasing temperature of thermal annealing of the underlying electrospun scaffold. 

The composite PEMs exhibited a Young’s modulus of 80.2 MPa and a yield stress of 3.39 MPa 

when the EF mat was annealed at 150 °C, comparable to the mechanical properties of Nafion 

under the same testing conditions. Modifications to the mechanical response of the composite 

PEM were achieved by thermal treatment of the underlying EF mat. The composite PEMs also 

swell less than Nafion under hydration cycling; the greater dimensional stability also means 

lower mechanical hysteresis under hydration cycling, which promises longer operational 

lifetimes. The composite PEM also exhibited through-plane proton conductivity as high as 7 

mS/cm at 100 %RH and methanol permeability as low as 9.7 x 10-8 cm2/sec, indicating a 

membrane selectivity of 7.2 x 107 mS•sec/cm3; this is over five times greater than the selectivity 

of Nafion. The composite proton exchange membranes were also tested in an operational direct 

methanol fuel cell.  These results show the potential for higher OCVs (270 mV vs. 257 mV) and 

comparable cell resistances when compared to Nafion when using Pt/Pt catalyst for both the 

anode and the cathode. 
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Data and plots of membrane solidity as a function of thermal annealing of the EF mat, tensile 
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