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 

Abstract—In this paper, we propose a new technique to achieve 

accurate decomposition of process variation by efficiently 

performing spatial pattern analysis. We demonstrate that the 

spatially correlated systematic variation can be accurately 

represented by the linear combination of a small number of 

“templates”. Based upon this observation, an efficient sparse 

regression algorithm is developed to accurately extract the most 

adequate templates to represent spatially correlated variation. In 

addition, a robust sparse regression algorithm is proposed to 

automatically remove measurement outliers. We further develop a 

fast numerical algorithm that may reduce the computational time 

by several orders of magnitude over the traditional direct 

implementation. Our experimental results based on both synthetic 

and silicon data demonstrate that the proposed sparse regression 

technique can capture spatially correlated variation patterns with 

high accuracy and efficiency. 

Index Terms—Process Variation, Integrated Circuit, Variation 

Decomposition, Spatial Variation 

I. INTRODUCTION 

ith the continued scaling of CMOS technology, process 

variation has become a critical issue for design and 

manufacture of integrated circuits [1]. Large-scale performance 

variability has been observed for integrated circuits fabricated 

at advanced technology nodes, resulting in significant 

parametric yield loss. For this reason, accurate process 

characterization and modeling is required in order to fully 

understand the sources of variation. 

Variation decomposition is an important tool to achieve this 
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goal. Different variation components indicate different physical 

variation sources. From a geometrical perspective, process 

variation can be decomposed into lot-to-lot variation, 

wafer-to-wafer variation, wafer-level variation and within-die 

variation. Once the geometrical level of variation is known, it 

narrows down the underlying variation sources [2]. To further 

narrow down the physical sources of variation, we would like to 

further decompose process variation into systematic and 

random components. It has been demonstrated in the literature 

that systematic variation often presents a unique spatial pattern 

[2]. Namely, systematic variation is often spatially correlated. 

For example, it has been observed in [4] that the spatial 

correlation in gate length is partially caused by the systematic 

variation due to lithography.  

A number of prior works [2]-[6] have been proposed for 

modeling spatially correlated variation. Some of them such as 

[6] represent the spatially correlated variation as random 

variables and their correlation is modeled as a function of 

distance. These methods do not fit the needs of our application 

for variation decomposition, because they do not explicitly 

separate spatially correlated systematic variation from random 

variation. Other works [2]-[5] model the spatially correlated 

systematic variation by a small number of pre-determined 

“templates” (e.g., linear and quadratic functions). However, the 

optimal templates for spatial variation modeling may vary over 

different processes and/or designs. If few templates are 

considered, the spatially correlated systematic variation cannot 

be accurately captured. On the other hand, applying a large 

number of templates also leads to inaccurate modeling results 

due to over-fitting [25]. 

Motivated by these observations, we propose a novel sparse 

regression technique to perform spatial pattern analysis. Our 

goal is to accurately model spatially correlated systematic 

variation and separate it from uncorrelated random variation. 

To apply sparse regression, only a dictionary of templates is 

needed, which includes all possible patterns of spatially 

correlated systematic variation. The optimal templates to model 

the spatially correlated variation of a given wafer/die will be 

automatically selected by the sparse regression algorithm. We 

have constructed a physical dictionary which contains a number 

of templates based on common physical variation sources. To 

model variation sources that are not covered by the physical 

dictionary, a general dictionary containing Discrete Cosine 
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Transform (DCT) [26] functions can be further applied to 

complement the physical dictionary because of the unique 

sparse structure of spatially correlated variation in frequency 

domain [7]-[9]. After the optimal templates are selected, they 

are provided to a linear mixed model [24] to perform variation 

decomposition using standard variance components techniques. 

Another important contribution of this paper is to develop a 

robust solver to accurately select the templates and remove 

measurement outliers. Silicon measurement data are usually 

error-prone. Substantial error can be introduced to variation 

decomposition if outliers are not appropriately considered. To 

address this issue, we borrow the Simultaneous Orthogonal 

Matching Pursuit (S-OMP) method from the statistics 

community [10] and further make it insensitive to outliers based 

on the concept of robust regression [27]. Several new numerical 

algorithms are further developed to substantially reduce the 

computational time of the proposed solver for large-scale 

wafer/chip-level data analysis. 

The proposed variation decomposition technique has been 

validated by several synthetic data sets and silicon measurement 

data from advanced CMOS processes. As will be demonstrated 

by the experimental results in Section VI, the proposed variation 

decomposition technique accurately models the spatially 

correlated systematic variation in presence of outliers. In 

addition, our improved algorithm implementation achieves 

about 200 speed-up over the traditional S-OMP 

implementation for a large-scale problem. 

The remainder of this paper is organized as follows. In 

Section II, we set up the mathematical formulation for the 

variation decomposition problem. Next, we introduce the 

dictionaries of templates in Section III and describe the robust 

S-OMP algorithm in Section IV. We develop several numerical 

techniques to implement the robust S-OMP algorithm in Section 

V. The efficacy of the proposed method is demonstrated by 

examples in Section VI. Finally, we conclude in Section VII. 

II. VARIATION DECOMPOSITION 

To decompose process variation from a geometrical 

perspective, the overall variation can be first represented by the 

following nested model [3]: 

1      jklikljlkllkji
b    (1) 

where blkji indicates the overall variation, τl is the l-th lot 

variation, θk(l) is the k-th wafer variation within the l-th lot, γj(kl) 

is the jth die variation within the k-th die and l-th wafer, and 

finally εi(jkl) is the i-th within-die variation within the j-th die, the 

k-th wafer, and the l-th lot. For wafer-level and within-die 

variation, we further extract the spatially correlated variation by 

the linear combination of a set of pre-defined basis functions: 
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Each basis function can be viewed as a particular “template” to 

model the spatially correlated variation. The wafer-level 

spatially correlated variation is represented by λ1 basis functions 

{Awafer,m(xdie, j, ydie, j); m = 1, 2, …, λ1}, where (xdie, j, ydie, j) is the 

location of the j-th die on the wafer, and γ
r
j(kl) represents the 

wafer-level random variation. Similarly, the within-die spatially 

correlated variation is represented by λ2 basis functions 

{Adie,m(xsite, i, ysite, i); m = 1, 2, …, λ2}, where (xsite, i, ysite, i) is the 

location of the i-th measurement site on the die, and ε
r
i(jkl) 

represents the within-die random variation. 

By combining (1)-(3), we obtain the following representation 

of the overall variation: 
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where the overall variation is decomposed into six components: 

lot-to-lot variation, wafer-to-wafer variation, wafer-level 

spatially correlated variation, wafer-level random variation, 

within-die spatially correlated variation and within-die random 

variation. Eq. (4) is referred to as a linear mixed model [24] in 

statistics, which is most commonly estimated using the 

Restricted Maximum Likelihood (REML) method [24], 

yielding the coefficients {αm; m = 1, 2, …, λ1} and {βm; m = 1, 2, 

…, λ2} for wafer-level and within-die spatially correlated 

variation, and the variances σ
2
lot, σ

2
wafer, σ

2
die,r and σ

2
site,r for 

lot-to-lot,  wafer-to-wafer, wafer-level random and within-die 

random variation respectively. In order to compare the 

contributions of spatially correlated variations with the random 

variation components, we also estimate the variance for 

spatially correlated wafer-level and within-die variation by the 

following sample variance estimation: 
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where var() stands for the sample variance, Ndie is the number 

of dies on the wafer, and Nsite is the number of measurement sites 

in a die. The contribution of a particular component is then 

estimated by dividing its variance value with the sum of 

variance for all components. This allows the process engineers 

to prioritize their goals in improving yield and focus their efforts 

on variation components that have stronger impact on overall 

variability. Note that in practice, due to the limitation of 

measurements, we may only be able to estimate part of these 

variance values. For example, in early-stage yield learning, 

there may be only one wafer and only a single performance 

value is obtained from each die. In this case, we are only able to 

extract the wafer-level spatially correlated and random 

components. The contribution of wafer-level spatially 

correlated variation can be calculated by σ
2

die,s/(σ
2
die,s+ σ

2
die,r), 

and the contribution of wafer-level random variation can be 

calculated by σ
2

die,r/(σ
2
die,s+ σ

2
die,r). 

An important problem in applying the linear mixed model (4) 

is that the appropriate basis functions must be selected to model 

the spatially correlated variation. Traditionally, only a small 
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number of simple linear or quadratic basis functions are 

employed [2]-[5]. These simple basis functions are only capable 

of modeling a limited amount of variation sources and are not 

sufficient for modern manufacturing processes. For example, an 

important problem of modern processes is that edge dies on a 

wafer can have significantly lower yield than other parts of the 

wafer [1]. Since the outer 20mm of a 300mm wafer can contain 

up to 25% of the dies on a wafer [13], the aforementioned edge 

effect can lead to substantial impact to the overall yield. 

Therefore, non-trivial basis functions are needed to capture the 

systematic variation sources such as those related to the edge 

effect. In Section III, we will propose our basis function 

dictionaries to address this issue. 

III. BASIS FUNCTION DICTIONARIES 

For both wafer-level variation and within-die variation, we 

need to construct a dictionary of basis functions in order to 

capture the spatial patterns that can be produced by a large 

number of potential physical effects. In this sub-section, we 

propose two possible dictionaries of basis functions. The first 

dictionary includes basis functions based on actual physical 

effects, and the second dictionary is constructed by the basis 

functions from Discrete Cosine Transform (DCT). 

A. Physical Dictionary 

We first introduce the physical basis function dictionary. For 

the sake of simplicity, we simply use x and y to designate the 

spatial location of a die on a wafer or a measurement site within 

a die. The actual physical meaning of x and y will be explained 

in the context. 

It has been shown that a large number of wafer-level and 

within-die physical effects can be modeled using a quadratic 

model of x and y: 

7   xyayaxayaxaayxf
quad 6

2

5

2

4321
,  . (7) 

This model corresponds to six physical basis functions: 

{1, x,  y,  x
2
,  y

2
,  xy}. A quadratic wafer-level pattern has been 

observed for a large number of physical effects such as 

post-exposure baking (PEB) temperature related critical 

dimension (CD) variation [14], etch temperature related CD 

variation [14] and deposition rate variation of chemical vapor 

deposition (CVD) [15]. It is shown in [4] that within-die gate 

CD variation can be modeled using a quadratic function and 

such a pattern can be explained by the along-slit and along-scan 

variation of the scanner [21]. Therefore, the quadratic basis 

functions are included in the physical dictionary of both 

wafer-level and within-die variation. 

For wafer-level variation associated with several process 

steps such as etching [13][16] and rapid thermal annealing 

[17][18], it is observed that edge dies are often substantially 

different from other parts of the wafer [13], in addition to the 

effects that can be modeled using a quadratic function. We 

capture the edge effect by supplementing quadratic functions 

with the following indicator functions: 

8  
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where E is a pre-defined subset of dies that belong to the edge 

region of a wafer. For example, an edge basis function can be 

intuitively defined according to Fig 1(a), where a die is 

considered to be an edge die if one or more of its neighbors are 

not a valid die on the wafer. Since the edge effect may affect 

multiple layers of dies, we define the edge dies corresponding to 

Fig 1(a) as the depth 1 edge of a wafer, and recursively define 

that a die belongs to the depth i edge of a wafer, if itself or one of 

its neighbors belongs to the depth i1 edge of a wafer. An 

example of the depth 2 edge of the same wafer is shown in 

Fig 1(b). Edge basis functions with different depth can be 

included in the physical dictionary, and the actual basis function 

that optimally matches a particular process can be automatically 

selected by the sparse regression algorithm (i.e., Algorithm 2) in 

Section IV. 
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Fig 1.  (a) Depth 1 edge of a wafer and (b) depth 2 edge of a wafer, where edge 

dies are marked in red. 
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Fig 2.  Two different methods that partition the depth 1 edge into 4 regions. 
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Fig 3.  Four different center region definitions of the same wafer, where center 

dies are marked in red. 

At wafer level, edge effect is non-uniform: we may only 

observe edge effect from a portion of the edge dies, and edge 

effect at different regions of a wafer can be different. In order to 

accurately the capture edge effect under such non-uniformity, 

we further partition the edge dies of a wafer into multiple 

regions, and construct an individual basis function for each 

region of the wafer. For example, two different methods to 

partition the depth 1 edge into 4 regions are shown in Fig 2, 

yielding 8 basis functions in total. Similar partitioning can be 



IEEE Trans. CAD Manuscript 

 

4 

performed for other depths and the resulting basis functions are 

all included in the physical basis function dictionary. 

Other than the quadratic and edge effects, the center region of 

a wafer can be significantly different from other parts of the 

wafer. Such a center effect can occur due to several variation 

sources, e.g., photoresist spinning and ion implantation. We 

construct the following indicator functions for the center effect: 

9  
 
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yxf
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where C is a pre-defined subset of dies that belong to the center 

region of a wafer. Since it is difficult to uniquely define the 

center region in advance, we include multiple basis functions 

that correspond to different center definitions. For example, Fig 

3 shows four different definitions of the center region for a 139 

wafer. If the center effect exists, the most suitable basis function 

will be automatically selected from these candidates by the 

sparse regression algorithm (i.e., Algorithm 2) in Section IV. 

For within-die variation, measurements may be collected 

from test structures with different layout, in order to capture the 

layout-dependent variation. One possible method of modeling 

layout dependent variation is again by the indicator functions: 
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where Li is a set of measurements collected from the test 

structures with the layout style i. Suppose that there are N 

different layout styles for the within-chip test structures, N 

different basis functions can be used to model the systematic 

difference in performance caused by different layout styles. 

B. DCT Dictionary 

While several physical variation sources can be modeled by 

the previously defined physical dictionary, it is by no means 

complete in modeling all variation sources for today's 

complicated manufacturing process. More physical basis 

functions can be defined and included in the physical basis 

function dictionary, once we understand more physical variation 

sources. On the other hand, another dictionary of discrete cosine 

transform (DCT) basis functions borrowed from the image 

processing literature can be applied to complement the physical 

dictionary to model the variation sources that are not well 

understood. In what follows, we will first construct the DCT 

dictionary, and then explain why it can be used to decompose 

spatially correlated and random variation. 

Let b(x, y) be a two-dimensional function representing the 

spatial variation of interest, where x and y denote the coordinate 

of a spatial location within the two-dimensional plane. In 

practice, the spatial variation b is obtained from measurements 

at a finite number of spatial locations. Without loss of generality, 

the spatial coordinates x and y can be labeled as integer numbers: 

x  {1, 2, ..., P} and y  {1, 2, ..., Q}, as shown in [7]-[9]. If the 

spatial variation b is obtained from multiple wafers and/or dies, 

it can be represented by a set of two-dimensional functions: 

{b(l)(x, y); l = 1, 2, …, L}, where L denotes the total number of 

wafers/dies. The discrete cosine transform (DCT) is a 

two-dimensional orthogonal linear transform that maps the 

spatial variation {b(l)(x, y); x = 1, 2, ..., P, y = 1, 2, ..., Q} to the 

frequency domain [26]: 
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In (11), {D(l)(u, v); u = 1, 2, ..., P, v = 1, 2, ..., Q} represents the 

DCT coefficients (i.e., the frequency-domain components) of 

the spatial variation function b(l)(x, y). Equivalently, the function 

{b(l)(x, y); x = 1, 2, ..., P, y = 1, 2, ..., Q} can be represented as 

the linear combinations of {D(l)(u, v); u = 1, 2, ..., P, v = 1, 2, ..., 

Q} by applying inverse discrete cosine transform (IDCT): 
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We construct the DCT dictionary by including the PQ basis 

functions in (13). 

Next, we will explain why the decomposition of spatially 

correlated variation and random variation can be achieved by 

using the DCT dictionary. We first decompose b(l)(x, y) by the 

following equation: 

14           Llyxryxsyxb
lll

,,2,1,,,   (14) 

where s(l)(x, y) and r(l)(x, y) stand for the spatially correlated 

variation and the uncorrelated random variation, respectively. 

Due to the linearity of DCT [26], the decomposition (14) can be 

equivalently performed in the frequency domain: 

15           LlvuRvuSvuD
lll

,,2,1,,,   (15) 

where S(l)(u, v) and R(l)(u, v) denote the DCT coefficients of the 

spatially correlated variation s(l)(x, y) and the uncorrelated 

random variation r(l)(x, y) defined in (14). Once S(l)(u, v) and 

R(l)(u, v) are found, s(l)(x, y) and r(l)(x, y) can be determined by 

IDCT. As is demonstrated in [7]-[9], the DCT coefficients S(l)(u, 

v) (corresponding to spatially correlated variation) are typically 

sparse, i.e., many of these coefficients are close to 0. In other 

words, there exist a small number of (say, λ where λ << PQ) 

dominant DCT coefficients to satisfy: 
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where Ω denotes the set of the indices of the dominant DCT 

coefficients for S(l)(u, v). Eq. (16) simply implies that the total 

energy of all DCT coefficients {S(l)(u, v); u = 1, 2, ..., P, v = 1, 2, 

..., Q} are almost equal to the energy of the dominant DCT 

coefficients {S(l)(u, v); (u, v)  Ω}. On the other hand, 

uncorrelated random variation can be characterized as white 

noise [26] and evenly distributed among all frequencies. Hence, 

given the set of indices Ω, the following equation holds: 
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Because of the inequality λ << PQ, we have λ/PQ << 1 in (17). If 

the value of λ is sufficiently small (i.e., the DCT coefficients of 

spatially correlated variation are sufficiently sparse), the 

left-hand side of (17) is approximately zero and the following 

inequality holds: 
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Based on (16) and (18), the DCT coefficients S(l)(u, v) 

(corresponding to spatially correlated variation) can be simply 

approximated by the dominant DCT coefficients {D(l)(u, v); 

(u, v)  Ω} with negligible error. Applying the DCT dictionary 

requires knowing the set Ω of the indices of dominant DCT 

coefficients. This set can be identified by using the sparse 

regression method introduced in the next section. 

It should be noted that other dictionaries that offer sparsity 

for spatially correlated variation, such as the wavelet basis 

functions [26], can be adopted as well to complement the 

physical dictionary. However, we find that DCT often 

outperforms wavelet when modeling spatial variation patterns. 

The fundamental reason is because wavelet basis functions are 

localized in the spatial domain. In practice, many physical 

sources of process variation will impact the whole wafer and/or 

die. To model these variation sources with long correlation 

distance, DCT can be more effective than wavelet. 

There are two dictionaries proposed in this section. Since the 

physical dictionary is constructed from actual physical sources, 

it provides useful insights for process engineers. Therefore, as 

will be discussed in the next section, we will prioritize the 

physical dictionary over the DCT dictionary when selecting the 

basis functions. On the other hand, while the DCT basis 

functions do not have clear physical meaning, it is still possible 

to identify the variation sources by inspecting the spatial pattern 

represented by DCT basis functions and comparing it with those 

produced by various process steps/equipments. The DCT 

dictionary contains a large number of basis functions, which 

greatly increases the algorithm complexity. We will discuss this 

issue in detail in Section V. 

IV. ROBUST S-OMP ALGORITHM 

In this section, we will first formulate a sparse regression 

problem for basis function selection and then describe the 

robust S-OMP algorithm to solve the problem. 

A. Basis Selection via Sparse Regression 

In the previous section, we have developed two dictionaries 

that contain a large number of possible basis functions to model 

spatially correlated variation. For a particular process or design, 

the actual basis functions should be selected from the 

dictionaries to achieve accurate modeling and avoid 

over-fitting. In this sub-section, we will show that this basis 

selection problem can be solved by applying sparse regression. 

It has been shown in (14) that for any wafer or die, the spatial 

variation b(l)(x, y) can be represented as the summation of the 

spatially correlated variation s(l)(x, y) and the random variation 

r(l)(x, y). We first model the spatially correlated variation using 

the basis functions from the physical dictionary. The physical 

dictionary is prioritized over the DCT dictionary, because its 

basis functions carry the physical meaning that can be further 

utilized to analyze the physical variation sources. To this end, 

we represent s(l)(x, y) as a linear combination of all basis 

functions from the physical dictionary: 
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where the spatially correlated variation is represented by all 

Mphys basis functions {Aphys,j(x, y); j = 1, 2, …, Mphys} in the 

physical dictionary with the coefficients {ηphys(l),j; j = 1, 2, …, 

Mphys}. Since we aim to identify the subset of basis functions 

that are relevant to a particular process/design, the coefficients 

are required to be sparse. In other words, lots of the coefficients 

must be 0 in (19). 

To solve the model in (19), the spatial variation b(l)(x, y) is 

measured at a finite number of spatial locations {b(l)(xi, yi); i = 1, 

2, …, N(l)}, and we want to estimate the sparse coefficients 

{ηphys(l),j; j = 1, 2, …, Mphys} from such measurement data. 

Therefore, we formulate the sparse regression problem: 
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where B(l) = [b(l)(x1, y1)  b(l)(x2, y2) … b(l)(xN(l)
, yN(l)

)]
T
 is a vector 

of spatial variation measurements, ηphys(l) = [ηphys(l),1 ηphys(l),2 … 

ηphys(l),M phys
]

T
 is a vector of coefficients for physical basis 

functions, and Aphys(l) is a matrix where Aphys(l),ij represents the 

value of the j-th physical basis function at the i-th measurement 

location. The symbol ||||2 stands for the L2-norm (i.e., the square 

root of the summation of the squares of all elements) of a vector, 

and ||||0 stands for the L0-norm (i.e., the number of non-zeros) 

of a vector. The cost function indicates that we would like to fit 

the measurement data with least-squares error. On the other 

hand, the constraint controls the sparsity of η(l), which means 

that out of all possible Mphys candidates in the dictionary, there 

exists a small subset of λphys basis functions that are applied to 

model the spatially correlated variation. Therefore, the meaning 

of (20) is to optimally select λphys basis functions to model the 

spatially correlated variation. The numerical solver for the 

problem, as well as the cross-validation method to determine 

λphys, will be discussed in the next sub-section. The optimization 

(20) is solved to select the basis functions for wafer-level and 

within-die spatially correlated variations respectively, and then 

the linear mixed model (4) is formulated using these selected 

basis functions and solved using the REML method. 

As discussed in Section III.B, it may not be sufficient to 

model the spatially correlated variation using the physical basis 

functions only. Therefore, the DCT dictionary is used to 

complement the physical dictionary and check if there is any 

significant spatial pattern that has been missed by the physical 

basis functions. Towards this goal, we further represent s(l)(x, y) 

as a linear combination of the selected physical basis functions 
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and all DCT basis functions: 
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where Ωphys represents the subset of physical basis functions 

selected by solving (20). In addition, the spatially correlated 

variation is further represented by all basis functions {Adct,j(x, y); 

j = 1, 2, …, PQ} in the DCT dictionary with coefficients {ηdct(l),j; 

j = 1, 2, …, PQ}. Again, the DCT coefficients are required to be 

sparse, leading to the following sparse regression problem: 
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where Aphys(l),Ω phys
 is a sub-matrix of Aphys(l) containing the 

columns that belong to Ωphys, ηphys(l),Ω phys  is a vector of the 

corresponding coefficients for physical basis functions, ηdct(l) = 

[ηdct(l),1 ηdct(l),2 … ηdct(l),PQ]
T
 is a vector of coefficients for all DCT 

basis functions, and Aphys(l) is a matrix where Aphys(l),ij represents 

the value of the j-th DCT basis function at the i-th measurement 

location. The optimization (22) optimally selects λdct DCT basis 

functions to model the spatially correlated variation. The linear 

mixed model (4) is then formulated using the selected basis 

functions and solved using the REML method. 

B. Simultaneous Orthogonal Matching Pursuit 

In the previous sub-section, we have formulated two sparse 

regression problems (20) and (22) to select the basis functions 

to represent the spatially correlated variation. Both problems 

follow the general mathematical formulation: 
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where Ω0 represents a set of basis functions that are pre-selected, 

and nnz() stands for the number of non-zeros within a set. 

Eq. (20) is a special case of (23) where A(l) = Aphys(l), η(l) = ηphys(l), 

λ = λphys and Ω0 = . Eq. (22) is a special case of (23) where 
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λ = λdct and Ω0 = {1, 2, …, λphys}. In general, solving the 

optimization (23) is not trivial, since the problem is NP-hard. 

Several efficient solvers for (23) have been discussed in the 

statistics literature, such as Group Lasso (GL) [11] and 

Simultaneous Orthogonal Matching Pursuit (S-OMP) [10]. We 

select S-OMP as the numerical solver for the sparse regression 

problem in this paper. S-OMP is a greedy algorithm to 

approximate the solution of (23) when Ω0 = . An important 

reason for choosing S-OMP is its simplicity, which allows us to 

easily adapt the algorithm for several practical needs, such as 

pre-determined basis functions, outlier detection and fast 

computation with the DCT dictionary. In what follows, we will 

first briefly review the major steps of the S-OMP algorithm. 

Then, we will further extend the S-OMP algorithm to solve (23) 

when Ω0 is non-empty. 

The key idea of S-OMP is to iteratively use the inner product 

to identify a small number of important basis functions. To this 

end, we re-write the matrix A(l) by its column vectors: 

26         
Mllll

AAAA
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where each column vector A(l),i can be conceptually viewed as a 

basis vector associated with the i-th basis function. The inner 

product <B(l), A(l),i> measures the “correlation” between the 

measurement data B(l) and the basis vector A(l),i. A strong 

correlation between B(l) and A(l),i implies that the basis vector 

A(l),i (hence, the i-th basis function) is an important component 

to approximate B(l). Since we would like to identify a common 

set of basis functions for all wafers/dies, the following linear 

combination of inner products serves as a quantitative criterion 

for initial basis vector selection: 
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Eq. (27) is expected to be more accurate than directly 

maximizing the inner product for any individual wafer/die, since 

it is less sensitive to the random noise caused by uncorrelated 

random variation and/or measurement error. In other words, by 

adding the inner products over L wafers/dies, the impact of 

random noise is reduced and the spatial pattern associated with 

systematic variation can be accurately detected.  

We use the set Ω to denote the set of basis functions that have 

been selected. The set Ω consists of a single basis function after 

applying (27). Next, the coefficients associated with Ω are 

solved by least-squares fitting: 
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Solving (28) results in the residuals {e(l); l = 1, 2, ..., L}, which 

represent the spatial variation that cannot be represented by Ω: 
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In the next iteration, S-OMP further identifies the next 

important basis function by the largest total magnitude of inner 

product with the residual: 
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Once the new basis function is selected, it is added to the set Ω 

and Eq. (28) is solved again to update the coefficients. If 

additional basis functions are needed, S-OMP will repeatedly 

select the optimal basis function according to (29) and then 

re-evaluate all coefficients by (28), until λ basis functions are 

selected in total. 

Based on the aforementioned process, it is straightforward to 

extend the S-OMP algorithm when Ω0 is non-empty. Suppose 

that Ω0 contains λ0 basis functions. We conceptually consider 

that λ0 S-OMP iterations have been performed and the basis 

functions selected are in the set Ω0. Therefore, we only need to 

“resume” S-OMP from this starting point. The flow of the 

extended algorithm is summarized in Algorithm 1. 
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Algorithm 1: Extended S-OMP 

1. Start from the optimization problem in (23) with a given 

integer λ specifying the total number of basis vectors. 

2. Initialize the set Ω = Ω0, and the iteration index p = 1. 

3. If Ω = , initialize the residuals e(l) = B(l). Otherwise, 

initialize the residuals by applying (28)-(29). 

4. Select the new basis vector s according to (30). 

5. Update Ω by Ω = Ω∪{s}. 

6. Solve the least-squares fitting problems by (28). 

7. Calculate the residuals {e(l); l = 1, 2, ..., L} by (29). 

8. If p < λ, p = p + 1 and go to Step 4. 

9. For any i  Ω, set (l),i = 0. 

Algorithm 1 relies on a user defined parameter λ to control 

the number of basis functions that should be selected. An overly 

small λ will not adequately fit the spatially correlated variation, 

while an overly large λ will fit a significant portion of 

uncorrelated random variation as spatially correlated. In 

practice, we must accurately estimate the modeling error for 

different λ values and then find the optimal λ with minimum 

error. To this end, we adopt the cross-validation method [25]. 

An F-fold cross-validation partitions the entire data set into F 

groups. Modeling error is estimated according to the cost 

function in (23) from F independent runs. In each run, one of the 

F groups is used to estimate the modeling error and all other 

groups are used to calculate the model coefficients. Note that 

the training data for coefficient estimation and the testing data 

for error estimation are not overlapped. Hence, over-fitting can 

be detected. In addition, different groups should be selected for 

error estimation in different runs. As such, each run results in an 

error value εf (f = 1, 2, ..., F) that is measured from a unique 

group of data. The final modeling error is computed as the 

average of {εf; f = 1, 2, ..., F}, i.e., ε = (ε1 + ε2 + ... + εF)/F. 

C. Robust S-OMP 

In real-world measurement data, outliers typically exist 

because of manufacturing defects or measurement errors. For 

example, wafer probe test may produce incorrect measurement 

results due to probe misalignment [22]. Once outliers occur, 

they present themselves as abnormal data that significantly 

deviate from the regular range of parametric variation. 

Substantial error can be introduced by outliers if they are not 

appropriately detected and removed. Namely, sparse regression 

may not select the correct basis functions to model the spatially 

correlated variation. A few outliers can result in an extremely 

strong random variation component, thereby underestimating 

the spatially correlated component. 

Traditionally, outlier detection can be performed by 

pre-processing all measurement data with the Interquartile 

Range (IQR) method [27]. The IQR is defined as: 

31 
13

QQIQR   (31) 

where [Q1 Q2 Q3] are the three values in ascending order which 

divide the sorted data into four equal parts. Next, for each 

measurement point, it is considered as an outlier, if its value is 

outside the following variation range:  

32 ]3,3[
31

IQRQIQRQR
IQR

  (32) 

where the scaling factor 3 is decided empirically by the statistics 

community. If the measurement data is normally distributed, the 

IQR method removes the data outside the 4.7σ range. 

In practice, we find the IQR method ineffective in detecting 

outliers for our application. The fundamental reason is that 

modern manufacturing processes suffer from a lot of variation 

sources. When directly viewing all measurement data, the 

accumulation of these variation sources will result in a very 

large variation range. Therefore, even if the outcome of a 

particular process step is strongly distorted by defects, such a 

distortion may not be significant compared to the natural 

variation range of all process steps, making outliers difficult to 

detect. Motivated by these observations, we propose a new 

outlier detection algorithm that aims to define the variation 

range based on uncorrelated random variation only. As such, the 

variation range for normal data can be significantly reduced, 

thereby making normal data and outliers easily separable. We 

introduce the proposed algorithm by first re-writing the matrix 

A(l) in (23) into a row matrix: 
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where each row corresponds to the value of basis functions at a 

particular measurement point. For each measurement point, we 

obtain the following residual after solving (23): 
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where b(l),i is the i-th element of the vector B(l). Therefore, we 

can re-write the sparse regression problem (23) as: 
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where 
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Based on the M-estimate theory in statistics [27], the 

regression problem (35) is sensitive to outliers, since the  

function (36) is not robust. To understand this concept, we plot 

the function (36) in Fig 4(a). It can be seen that as the residual 

moves away from zero, the objective function increases rapidly. 

Therefore, if there exist large outliers, even if they are few in 

number, they can significantly influence the cost function (36) 

and strongly bias the result. For this reason, we adopt a robust 

error function named bisquare function [27] as shown in 

Fig 4(b). Intuitively, since the value of a bisquare function stops 

growing after a certain threshold, it would prevent a small 

number of outliers from significantly biasing the result. 

Mathematically, the bisquare  function is defined as: 
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where k is a tuning constant specifying the cut-off threshold in 
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Fig 4(b). The following tuning constant is often used [27]: 
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where madi(e(l),i) means the median absolute deviation of the 

residuals {e(l),i; i = 1, 2, …, N(l)}: 
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When the residual is normally distributed, the cut-off threshold 

k(l) corresponds to 4.685σ variation, which is similar to that in 

(32) based on 3∙IQR. 
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Fig 4.  (a) The L2-norm  function, and (b) the bisquare  function. 

We formulate the robust sparse regression problem as: 
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where the definition of BS is in (37)-(39). We borrow the 

iteratively reweighted least squares method [27] from statistics 

to solve this problem. With the solution of (35) as a starting 

point, the algorithm first calculates the weight for each 

measurement point at each iteration step, according to a weight 

function derived from the error function (37). Next, it solves an 

optimization problem with a weighted L2-norm cost function. 

These steps are summarized in Algorithm 2. 

Algorithm 2: Robust S-OMP 

1. Apply Algorithm 1 to calculate the coefficients {η(l); l = 1, 

2, …, L}. 

2. Calculate the weight for each measurement point according 

to the following weight function [27]: 
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where k(l) is defined in (38)-(39). 

3. Apply Algorithm 1 to solve the following problem: 
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where W(l) is an diagonal matrix with W(l),ii = wBS(e(l), i). 

4. If the change of coefficients {η(l); l = 1, 2, …, L} is 

sufficiently small compared to the previous iteration step, 

stop iteration. Otherwise go to Step 2. 

Since Algorithm 1 is applied to solve a sparse regression 

problem in each iteration step, its computational cost is 

approximately equal to the runtime of Algorithm 1 multiplied 

by the number of iterations. We observe that Algorithm 2 will 

converge within 10 iterations in most cases, even though the 

global convergence is not proven. Therefore, the computational 

time increases by about 2-10 compared to Algorithm 1. After 

performing Algorithm 2, the measurement points for which the 

residual exceeds the cut-off threshold in (38) will have zero 

weight in (41). These points are identified as outliers and 

removed before solving the mixed model (4). 

V. IMPLEMENTATION DETAILS 

As discussed in the previous section, the computational cost 

of Algorithm 2 is proportional to that of performing 

Algorithm 1. The computational cost of Algorithm 1 depends 

on the size of the dictionary, which is typically small when the 

physical dictionary is applied only. However, when the DCT 

dictionary is applied, the total number of basis functions can be 

extremely large for wafers with small die size or test chips with 

a large number of test structures. Studying Algorithm 1, we 

observe that its computational cost is dominated by two steps: 

the inner product computation in Step 4 and the least-squares 

fitting in Step 6. We will discuss the numerical algorithm to 

speed up these two steps in this section. 

A. Inner Product Computation  

When applying Algorithm 1 to solve (42) with physical and 

DCT dictionaries, in order to select the basis vectors using (30), 

we will need to compute the following inner product values: 
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where λ
0
 is the number of selected physical basis functions, PQ 

is the number of DCT basis functions, and 
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A straightforward implementation first directly computes Aw(l) 

by (44), and then calculates (43) by vector-vector 

multiplications. The computational cost is in the order of 

O(LPQ(λ
0
+PQ)). Note that the computational cost quadratically 

increases with the DCT dictionary size PQ. Hence, this 

implementation can quickly become computationally 

intractable, as the problem size increases. To derive an efficient 

algorithm, we first re-write (43) as: 
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For each l  {1, 2, …, L}, we need to calculate (43) for each 

basis vector, i.e., j  {1, 2, …, λ
0
+PQ}. The results can be 

expressed by the following matrix-vector multiplications: 

46 

   

   

   

     ll

T

ll

T

lw

Mlwl

lwl

lwl

eWAeA

Ae

Ae

Ae























)()(

,

2,

1,

,

,

,


.  (46) 

In other words, by calculating the matrix-vector multiplications 

in (46), we are able to obtain the inner product values for all 

λ
0
 + PQ basis vectors. Since W(l) is a diagonal matrix, the 

matrix-vector multiplication W(l)∙e(l) can be first simply 

performed with linear complexity: 

47    lllw
eWe 

)(
. (47) 

Next, we need to efficiently compute the matrix-vector product 

A
T

 (l)∙ ew(l), which can be re-written into the following form: 
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48  

 

 




















lw

T

ldct

lw

T

l

lw

T

l

eA

eA
eA

)(

)(

)(

0

 (48) 

where AΩ0(l) contains the columns of A(l)  that correspond to the 

λ
0
 pre-selected physical basis functions, and Adct(l) contains the 

columns of A(l)  that correspond to all PQ DCT basis functions. 

Since the number of all DCT basis functions should be much 

larger than the number of pre-selected physical basis functions, 

the key bottleneck for computing (48) is the second term 

A
T

dct(l)∙ew(l). We observe that if the measurement of the l-th 

wafer/die does not contain any missing data, the matrix Adct(l) 

represents the IDCT matrix and it is a full-rank square matrix. In 

this case, since DCT/IDCT is an orthogonal transform [26], 

A
T

dct(l) = A
1

dct(l) is exactly the DCT matrix. Namely, calculating 

the matrix-vector product A
T

dct(l)∙ew(l) is equivalent to performing 

DCT on ew(l). Similar to fast Fourier transform (FFT), there exist 

a number of fast algorithms for DCT/IDCT. The computational 

cost of these fast algorithms is in the order of O(PQlog(PQ)) 

[26]. Therefore, by using a fast DCT algorithm, the 

computational cost for Step 4 of Algorithm 1 is reduced from 

O(LPQ(λ
0
+PQ)) to O(LPQ(λ

0
+log(PQ))). It, in turn, brings 

significant speedup, since λ
0
 should be much smaller than PQ. 

The aforementioned fast DCT algorithm is applicable only if 

there is no missing data. If a number of missing data exist (e.g., 

due to measurement error), we can construct an augmented 

vector e
*
w(l)  R

PQ
 where its elements corresponding to missing 

data are simply filled with zeros. Mathematically, the 

augmented vector e
*

w(l) can be represented as: 

49    
 










0

* lw

llw

e
Ze  (49) 

where Z(l) is a permutation matrix to map ew(l) and the zero vector 

to the appropriate elements in e
*

w(l). Applying DCT to the 

augmented vector e
*

w(l) yields: 

50  
 










0
)(

*** lw

l

T

lw

T
e

ZAeA  (50) 

where A
*
 represents the IDCT matrix and, hence, A

*T
 is the DCT 

matrix. Remember that the matrix Adct(l) contains N(l) rows taken 

from the IDCT matrix A
*
. Hence, if Z(l) is appropriately chosen, 

the matrix A
*T
Z(l) in (50) can be re-written as: 

51       T

ldct

T

ldctl

T AAZA ~
*   (51) 

where the matrix Adct(  ) contains the PQ  N(l) rows of A
*
 that are 

not included in Adct(l) due to missing data. Substituting (51) into 

(50), we have: 

52         
   lw

T

ldct

lwT

ldct

T

ldctlw

T eA
e

AAeA 









0
~

**
. (52) 

Note that the DCT results in (52) are exactly equal to the second 

matrix-vector product in (48). It, in turn, demonstrates that by 

filling the missing data with zeros, we can efficiently calculate 

the inner product values by using a fast DCT algorithm. In this 

case, the computational cost for Step 4 of Algorithm 1 is again 

reduced from O(LPQ(λ
0
+PQ)) to O(LPQ(λ

0
+log(PQ))). 

In addition to the reduction in computational cost, the fast 

algorithm based on DCT can also efficiently reduce the memory 

consumption. Note that the direct matrix-vector multiplication 

in (46) requires to explicitly form a dense matrix A(l) with about 

PQ(λ
0
+PQ) entries. While it is possible to calculate each inner 

product in (46) one by one without forming the matrix A(l), such 

an approach leads to large computational time since each 

column of A(l) must be repeatedly formed during the iterations of 

Algorithm 1. For these reasons, the direct approach based on 

matrix-vector multiplication or vector-vector multiplication is 

expensive in either memory consumption or computational time. 

On the other hand, our proposed method only needs to form the 

sub-matrix AΩ0(l)  with PQ∙λ
0 entries. A fast DCT algorithm can 

be applied to e
*
w(l) without explicitly building the DCT matrix 

Adct(l) in memory, thereby significantly reducing the memory 

consumption for large-scale problems. 

B. Least-Squares Fitting 

In addition to inner product computation, least-squares fitting 

is another computationally expensive operation that is required 

by Step 6 of Algorithm 1. For the l-th wafer/die at the p-th 

iteration step, the following optimization problem needs to be 

solved: 

53 
   

         

2

2
,,)(

,

minimize
lplpll

BAW
pl

 


 (53) 

where the matrix A(l),(p) contains λ
0
 + p column vectors selected 

from A(l) and the vector η(l),(p) contains the coefficients 

corresponding to these selected basis vectors. Similarly, we can 

re-write A(l),(p) into the following: 

54    
)(),()()(, 0 pldctlpl

AAA


  (54) 

where the matrix Adct(l),(p) contains p column vectors selected 

from Adct(l). The relation between Adct(l),(p) and Adct(l) can be 

further expressed as: 

55             
pldctpldctpldct

AAZA ~,,
  (55) 

where Z(p) is a permutation matrix, and the matrix Adct(l),(  ) 

contains the DCT basis vectors that are not included in Adct (l),(p). 

The least-squares solution η(l),(p) of (53) satisfies the 

following normal equation [28]: 

56                   
)(,)(,,)(,)( lw

T

pllplpll

T

pll
BAWAWAW   . (56) 

Traditionally, the solution η(l),(p) of (56) is solved by QR 

decomposition [28]. The computational cost is in the order of 

O(N(l)∙(λ0
+p)

2
), which is prohibitively expensive for large-scale 

problems. An alternative way to solve (56) is based on an 

iterative algorithm that is referred to as the LSQR method [12]. 

LSQR relies on the bi-diagonalization of the matrix A(l),(p). 

During its iterations, LSQR generates a sequence of solutions to 

approximate η(l),(p). The solutions are exactly identical to the 

results calculated by the conjugate gradient method [28] for the 

normal equation (56), but LSQR achieves better numerical 

stability than the conjugate gradient method. The details of 

LSQR can be found in [12]. 

When applying LSQR, it is not necessary to explicitly form 

the matrix A(l),(p). Instead, in each iteration, only two operations 

need to be performed, W(l)∙A(l),(p)∙α and A
T

(l),(p)∙W(l)∙β, where α is 
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a (λ
0
+p)-by-1 vector and β is an N(l)-by-1 vector. Similar to 

Section V.A, these matrix-vector multiplications can be 

efficiently calculated by applying a fast numerical algorithm 

based on fast DCT/IDCT transform. 

To efficiently compute W(l)∙A(l),(p)∙α, we only need to 

efficiently compute A(l),(p)∙α, and the multiplication with the 

matrix W(l) is a simple vector-vector product, similar to (47). 

Therefore, we re-write A(l),(p)∙α into the following equation: 

57     dctpldctlpl
AAA  

 )(),()(, 00
 (57) 

where αΩ0
 is an λ

0
-by-1 vector and αdct is a p-by-1 vector. We are 

able to efficiently compute Adct(l),(p)∙αdct by constructing an 

augmented vector α
*
dct  R

PQ
: 

58   









0

* dct

pdct
Z


  (58) 

where Z(p) is the permutation matrix defined in (55). If we 

conceptually consider αdct as a vector of selected DCT 

coefficients, α
*
dct represents all DCT coefficients with the 

unselected DCT coefficients filled by 0. We then apply IDCT to 

the augmented vector α
*

dct: 

59   









0

*** dct

pdct
ZAA


  (59) 

where A
*
 denotes the IDCT matrix as defined in (50). On the 

other hand, we can derive the following equation from (51): 

60  

 

 












ldct

ldct

l A

A
ZA

~

*
. (60) 

Substituting (60) into (59) yields: 

61  

   

   



























0~

** dct

pldct

pldct

ldct ZA

ZA
ZA


 . (61) 

In (61), Adct(l)Z(p) can be represented as two sub-matrices as 

shown in (55). If we similarly re-write Adct(  )Z(p) as two 

sub-matrices: 

62            
 

pldctpldctpldct
AAZA ~,

~
,

~~ 

,

 (62) 

Eq. (61) becomes: 

63  

       

       
 

   

    





































dctpldct

dctpldct

l

dct

pldctpldct

pldctpldct

l A

A
Z

AA

AA
Z





,
~

,

~,
~

,
~

~,,

0
. (63) 

Since Z(l) is a permutation matrix, Eq. (63) is equivalent to: 

64 
   

   
 

**

,
~

,

dct

T

l

dctpldct

dctpldct

AZ
A

A






















. (64) 

Eq. (64) reveals an important fact that the matrix-vector 

multiplication Adct(l),(p)∙αdct can be efficiently computed by 

applying IDCT to the augmented vector α
*
dct. The value of 

Adct(l),(p)∙αdct is determined by selecting the appropriate elements 

from the IDCT result A
*
∙α

*
dct. If a fast IDCT algorithm is 

applied [26], the computational cost of this matrix-vector 

multiplication is in the order of O(PQlog(PQ)). Therefore, the 

computational cost of the operation W(l)∙A(l),(p)∙α is 

O(PQ(λ
0
 + log(PQ))). 

Next, we consider the other matrix-vector multiplication 

A
T

(l),(p)∙W(l)∙β that is required by the LSQR algorithm. Similar to 

the computation in (46)-(47), W(l)∙β can be first computed with 

linear complexity: 

65   )(lw W . (65) 

Next, we re-write A
T

(l),(p)∙βw into the following equation: 

66  
  





















w

T

pldct

w

T

l

w

T

pl
A

A
A






),(

)(

),(

0
. (66) 

We are able to efficiently compute A
T

dct(l),(p)∙βw by first 

constructing an augmented vector β
*
w  R

PQ
: 

67   









0

* w

lw
Z


  (67) 

where Z(l) is the permutation matrix defined in (49). Similar to 

(49), if we conceptually consider βw as a vector of available 

measurements, β
*

w represents all measurements with the missing 

data filled by 0. We then apply DCT to the augmented vector 

β
*
w: 

68   









0

*** w

l

T

w

T ZAA


  (68) 

where A
*T

 is the DCT matrix as defined in (50). Substituting 

(60) into (68) yields: 

69            w

T

ldct

w

l

T

l

T

ldct

T

ldctw

T AZZAAA 


 









0
~

**
. (69) 

Based on (55), Eq. (69) can be further re-written as: 

70 
   

   
 

**

~,

,

w

TT

p

w

T

pldct

w

T

pldct
AZ

A

A


















. (70) 

Hence, the matrix-vector multiplication A
T

dct(l),(p)∙βw can be 

calculated by applying DCT to the augmented vector β
*
w. The 

value of A
T

dct(l),(p)∙βw is determined by selecting the appropriate 

elements from the DCT result A
*T

∙β
*

w. The computational cost is 

in the order of O(PQlog(PQ)). Therefore, the computational 

cost of the operation A
T

(l),(p)∙W(l)∙β is also O(PQ(λ
0
+log(PQ))). 

Finally, it is worth mentioning that similar to other iterative 

solvers, a good initial guess should be provided to LSQR to 

achieve fast convergence. If the initial guess is close to the 

actual solution, LSQR can reach convergence in a few iterations 

[12]. In this paper, LSQR is required at each iteration step of 

Algorithm 1. For each iteration step, the solution from the 

previous iteration step can serve as a good initial guess for the 

current iteration step. By adopting such a heuristic, LSQR 

typically converges in only 2-3 iterations in our tested examples. 

It should be noted that the aforementioned fast 

implementation is mainly based on fast matrix-vector product, 

which is an elementary operation in many algorithms. Therefore, 

it is possible to apply the same idea to speedup other sparse 

regression algorithms, such as group lasso [11]. 

VI. NUMERICAL EXPERIMENTS 

In this section, we demonstrate the accuracy and 

computational efficiency of our proposed variation 

decomposition algorithm using several examples. All numerical 

experiments are performed on a 2.8GHz Linux server. 
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A. Synthetic Data 

We first consider a synthetic example where the systematic 

variation contains quadratic, edge and center effects created 

with 5 basis functions. The quadratic pattern is created by: 

71   221, yxyxs   (71) 

where x and y are the coordinates on the wafer with range 

normalized to [1 1]. Eq. (71) creates a decreasing radial 

pattern. The edge effect only occurs at the bottom edge of the 

wafer, and the center effect is created by the basis function in 

Fig 3(b). The magnitude of the edge and center effects is 

adjusted such that each effect contributes to one third of the 

variance in systematic variation. The systematic wafer map is 

shown in Fig 5(a). The synthetic data is created by adding extra 

random variation distributed as N(0, 0.4
2
), which is shown in 

Fig 5(b). After adding the random variation, the systematic 

variation contributes to 65.9% of the total variance. 
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Fig 5.  (a) Systematic variation of the synthetic wafer. (b) Synthetic data 

created by adding extra random variation. 
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Fig 6.  (a) Spatially correlated variation extracted by quadratic basis functions 

only. (b) Spatially correlated variation extracted by the physical dictionary 

without sparse regression. (c) Spatially correlated variation extracted by the 

proposed method with the physical dictionary.  

We first apply REML with only the quadratic basis functions 

in (7). Fig 6(a) shows the extracted spatially correlated 

variation. It can be intuitively seen that the edge and center 

effects are not adequately captured. The estimated spatially 

correlated variation is 43.2%, which underestimates the true 

systematic variation by a large amount. Next, we apply the 

proposed physical dictionary, which contains the quadratic 

basis functions in (7), all the depth 1 and 2 edge basis functions 

with the different partitions in Fig 2, and the center basis 

functions in Fig 3. Fig 6(b) shows the spatially correlated 

variation extracted by REML with all basis functions from the 

physical dictionary. The estimated spatially correlated variation 

is 74.7%.  It can be seen that while the results are more accurate 

than Fig 6(a), it over-estimates the spatially correlated variation 

due to over-fitting. Fig 6(c) shows the spatially correlated 

variation extracted by the proposed method with the physical 

dictionary, which applies REML to the basis functions selected 

by Algorithm 2 only. The proposed method identifies 11 basis 

functions from the dictionary, and the estimated spatially 

correlated variation is 70.1%. Although the proposed method 

does not completely remove over-fitting, the spatial pattern is 

intuitively more accurate than Fig 6(b) and the estimation is 

much closer to the actual percentage. It, in turn, demonstrates 

that the proposed sparse regression method significantly 

reduces the inaccuracy caused by over-fitting. 

We further examine the efficacy of the proposed outlier 

detection technique by randomly adding 3 outliers at 3 random 

locations in Fig 5(b). The resulting wafer map is shown in Fig 7. 

For each location, the outlier is created by adding 3∙IQR of the 

wafer to its original value, where IQR is defined in (31). 
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Fig 7.  Synthetic data after adding 3 outliers. 

2 4 6 8 101214

5

10

X Axis

Y
 A

x
is

 

 

0

1

2

2 4 6 8 101214

5

10

X Axis

Y
 A

x
is

 

 

0

1

2

2 4 6 8 101214

5

10

X Axis

Y
 A

x
is

 

 

0

1

2

 
                         (a)                               (b)                               (c) 

Fig 8.  (a) Spatially correlated variation extracted by sparse regression using the 

physical dictionary without outlier detection. (b) Spatially correlated variation 

extracted by sparse regression using the physical dictionary with traditional 

outlier detection. (c) Spatially correlated variation extracted by the proposed 

method based on robust sparse regression using the physical dictionary. 

Fig 8(a) shows the extracted spatially correlated variation 

with 6 basis functions by directly applying Algorithm 1. The 

estimated spatially correlated variation is 48.3%, which 

significantly underestimates the spatially correlated variation. 

Examining Fig 8(a), it can be seen that it does not contain the 

radial pattern produced by the quadratic basis functions in 

Fig 5(a). Next, the traditional outlier detection method detects 

only the outlier located in the center of the wafer, and the 

extracted spatially correlated variation is shown in Fig 8(b). The 

estimated spatially correlated variation is 49.0%. Examining 

Fig 8(b), it can be seen that the same basis functions are selected 

and therefore it fails to capture the radial pattern. In other words, 

no significant improvement has been achieved. Finally, the 

robust sparse regression method correctly detects all 3 outliers. 

The extracted spatially correlated variation is shown in Fig 8(c). 

The estimated spatially correlated variation is 71.5%. 

Compared to Fig 6(c), the same basis functions are selected with 

no significant accuracy loss. 

Besides the variation sources modeled by the physical 

dictionary, there exist other sources that are not well understood. 

In this case, the DCT dictionary can be applied to discover any 

significant spatial pattern that has been missed by the physical 

dictionary. For wafer-level variation, one possible scenario is 

the spatial variation caused by multiple heat sources [19] or a 

heat source with complicated shape [20]. For within-die 

variation, an example is the mask error. One possible outcome 

of mask error is that there may exist significant mean shift 

between two portions of a die. We construct a systematic 

within-die variation map in Fig 9(a), which has a significant 

mean shift at x = 8. The synthetic data is created by adding extra 
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random variation distributed as N(0, 0.3
2
), which is shown in 

Fig 9(b). After adding the random variation, the systematic 

variation contributes to 73.1% of the total variance. 
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Fig 9.  (a) Systematic variation of the synthetic die. (b) Synthetic data created 

by adding extra random variation. 
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Fig 10.  (a) Spatially correlated variation extracted by the proposed method 

with the physical dictionary. (b) Spatially correlated variation extracted by the 

proposed method with the physical and DCT dictionaries. 

Fig 10(a) shows the spatially correlated variation extracted 

by the proposed method with the physical dictionary, which 

contains quadratic basis functions. In this example, 3 basis 

functions are identified, and the estimated spatially correlated 

variation is only 54.1%. Fig 10(b) shows the spatially correlated 

variation extracted by the proposed method with the physical 

and DCT dictionaries. Here, 6 DCT basis functions are selected, 

and the estimated spatially correlated variation is 70.7%. 

Comparing Fig 10(b) with Fig 10(a), it can be seen that the mean 

shift is clearly revealed, which serves as a good basis for helping 

the process engineers to identify the source of variation. 

B. Silicon Measurement Data 

From the previous experiments, we observe that by applying 

robust sparse regression, we are able to accurately find the basis 

functions and detect the outliers for the synthetic data. This 

sub-section presents the results of performing variation 

decomposition on several data sets of silicon measurements. 

We first consider the transistor drain saturation current (Idsat) 

measurements taken from the scribe line test structures from 8 

wafers of a commercial CMOS process below 90nm. Fig 11 

shows one of the representative wafers. Intuitively, the 

measurement data contain significant random variation. Table I 

compares the variation components estimated by three methods: 

(i) REML with quadratic basis functions, (ii) the proposed 

method with the physical dictionary, and (iii) the proposed 

method with the physical and DCT dictionaries. Fig 12 

compares the spatially correlated variation extracted by these 

three methods. From Table I, it can be seen that compared to 

REML using the quadratic basis functions only, robust sparse 

regression with the physical dictionary explains a significantly 

larger amount of variation as wafer-level spatially correlated 

variation. From Fig 12(b), it can be intuitively seen that more 

obvious edge and center effect patterns are modeled than 

Fig 12(a). Therefore, it reveals that edge and center effects 

contribute significantly to the wafer-level variation in this 

example. After adding the DCT basis functions, we do not 

observe significant increase in wafer-level spatially correlated 

variation, and Fig 12(c) does not clearly show any additional 

meaningful pattern compared to Fig 12(b). Therefore, we 

believe that the physical dictionary is sufficient in modeling the 

spatially correlated variation in this example. 
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Fig 11.  Idsat measurement data (normalized) from one of the 8 wafers. 

TABLE I 

VARIATION COMPONENTS OF IDSAT MEASUREMENT DATA 

Method 
Wafer-to

-wafer 

Wafer-level 

spatially correlated 

Wafer-level 

random 

Quadratic 30.2% 45.2% 24.6% 

Proposed physical 28.2% 53.8% 17.9% 

Proposed physical+DCT 30.3% 54.8% 14.9% 
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                (a)                                    (b)                                  (c) 

Fig 12.  (a) Spatially correlated variation extracted by directly applying 

quadratic basis functions. (b) Spatially correlated variation extracted by the 

proposed method with the physical dictionary. (c) Spatially correlated variation 

extracted by the proposed method with the physical and DCT dictionaries. 
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Fig 13.  (a) Spatial distribution of different contact layout patterns in the test 

chip. (b) Measured contact resistance (normalized) from one of the test chips. 

TABLE II 

VARIATION COMPONENTS OF CONTACT RESISTANCE MEASUREMENT DATA 

Method 
Wafer- 

level 

Within-die 

spatially correlated 

Within-die 

random 

Proposed physical 51.5% 30.9% 17.6% 

Proposed physical+DCT 51.5% 31.5% 17.0% 

 
                 (a)                                     (b)                                    (c) 

Fig 14.  (a) Spatially correlated variation extracted by the physical dictionary. 

(b) Spatially correlated variation extracted by the physical and DCT 

dictionaries. (c) Spatially correlated variation represented by the quadratic and 

DCT components. 

Next, we consider the contact plug resistance measurement 

data collected from 24 test chips in a 90 nm CMOS process. 

Each chip contains 36,864 test structures (i.e., contacts) 
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arranged as a 144256 array [23]. Contacts with 55 different 

layout patterns are regularly distributed over the entire chip. 

The spatial distribution of different layout patterns is shown in 

Fig 13(a). Fig 13(b) shows the measured contact plug resistance 

(normalized) from one of the 24 test chips. Studying Fig 13(b), 

we would notice that there is a unique spatial pattern due to 

layout dependency. However, the spatial pattern is not clearly 

visible because of the large-scale uncorrelated random variation 

in this example. 

We first extract the spatially correlated variation by robust 

sparse regression with the physical dictionary. In addition to the 

quadratic basis functions, since we know that the different 

layout patterns must be an important component of spatial 

variation, we construct 55 indicator basis functions according to 

(10) in the physical dictionary and pre-select them in the sparse 

regression process. The extracted spatially correlated variation 

is shown in Fig 14(a). It closely matches the layout pattern 

distribution in Fig 13(a), which shows that the layout-dependent 

variation is the dominant variation source. To examine whether 

there exists any significant variation source that is not captured, 

we further perform sparse regression after adding the DCT 

dictionary. To avoid high computational cost, we simply apply 

Algorithm 1 after removing the outliers detected in the previous 

step. Fig 14(b) shows the spatially correlated variation extracted 

by sparse regression with the physical and DCT dictionaries. 

From Table II, it can be seen that the variation percentages are 

not significantly different from the previous experiment, 

meaning that there do not exist additional significant variation 

sources. However, comparing Fig 14(b) with Fig 14(a), we 

notice that there is a subtle left-to-right transition at around x = 

100. This transition becomes obvious if we plot only the 

quadratic and DCT components in Fig 14(c). This sharp 

transition may be caused by mask error, which is a common 

source for within-die variation. Although this component is not 

significant in this example, it demonstrates that this type of 

variation can be revealed by applying our proposed sparse 

regression algorithm to the DCT dictionary. 

TABLE III 

COMPUTATIONAL TIME OF SPARSE REGRESSION FOR A SINGLE CHIP 

Inner product Least-squares fitting CPU time (Hours) 

Direct Direct 514.9 

Fast Direct 5.6 

Fast Fast 2.6 

 

In this example, since each test chip contains 36,864 test 

structures, the numerical algorithms developed in Section V 

become extremely critical. To demonstrate the efficiency of the 

proposed fast numerical algorithms, we implement three 

versions of Algorithm 1 where the inner product and the 

least-squares fitting are calculated by different methods. In the 

first implementation, the inner product is directly computed by 

(43) and the least-squares fitting is directly computed by QR 

decomposition. In the second implementation, the traditional 

inner product calculation is replaced by the fast algorithm 

proposed in Section V.A. Finally, in the third implementation, 

both the inner product and the least-squares fitting are 

calculated by the fast algorithms proposed in Section V. For 

testing and comparison purposes, we first run Algorithm 1 with 

the aforementioned three implementations for a single die in 

Fig 13(a), and Table III shows the computational time. Note 

that the fast algorithm for inner product computation achieves 

91 speed-up and the fast least-squares fitting further brings 

2.2 speed-up. The overall speed-up achieved by our proposed 

fast algorithms is 199, compared to the traditional direct 

implementation. 

Next, we apply Algorithm 1 to all 24 test chips and Table IV 

compares the computational time for two different 

implementations. Once Algorithm 1 is applied to all test chips, 

the computational time increases significantly. The simple 

implementation with direct inner product calculation and 

least-squares fitting is not computationally feasible. Hence, its 

result is not shown in Table IV. In this example, the proposed 

fast algorithm for least-squares fitting achieves 2.1 speed-up 

over the direct implementation. This observation is consistent 

with the speedup in Table III. In addition, we infer that if the 

simple implementation with direct inner product calculation and 

least-squares fitting is adopted in this example, it would take 

more than one year to obtain the results, which makes 

Algorithm 1 inapplicable. Therefore, by applying the proposed 

fast implementation, we are able to extend Algorithm 1 to large 

problems. 

TABLE IV 

COMPUTATIONAL TIME OF SPARSE REGRESSION FOR 24 CHIPS 

Inner product Least-squares fitting CPU time (Hours) 

Fast Direct 135.8 

Fast Fast 65.3 

VII. CONCLUSION 

In this paper, we propose a new technique to achieve accurate 

decomposition of process variation by performing efficient 

spatial pattern analysis. The proposed technique applies sparse 

regression to accurately extract the most adequate basis 

functions to represent spatially correlated variation. Moreover, 

a robust sparse regression algorithm is proposed to 

automatically remove measurement outliers, and fast numerical 

algorithms are developed to reduce the computational time by 

several orders of magnitude over the traditional direct 

implementation. The effectiveness of the proposed technique is 

demonstrated by experimental results based on both synthetic 

and silicon data. For future research, we plan to further expand 

the physical dictionary to model additional physical effects, and 

extend the proposed approach to model wafer-to-wafer 

variation. 
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