
MIT Open Access Articles

Understanding speech in interactive
narratives with crowd sourced data

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Orkin, Jeff and Deb K. Roy. "Understanding speech in interactive narratives with
crowd sourced data." in Eighth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. October 8-12, 2012, Stanford University, Palo Alto, California. AAAI.

As Published: http://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/view/5457/5697

Publisher: Association for the Advancement of Artificial Intelligence (AAAI)

Persistent URL: http://hdl.handle.net/1721.1/92453

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/92453
http://creativecommons.org/licenses/by-nc-sa/4.0/

Understanding Speech in Interactive Narratives with Crowdsourced Data

Jeff Orkin and Deb Roy

MIT Media Lab

75 Amherst St.

Cambridge, MA 02139

{jorkin, dkroy}@media.mit.edu

Abstract

Speech recognition failures and limited vocabulary coverage
pose challenges for speech interaction with characters in
games. We describe an end-to-end system for automating
characters from a large corpus of recorded human game
logs, and demonstrate that inferring utterance meaning
through a combination of plan recognition and surface text
similarity compensates for recognition and understanding
failures significantly better than relying on surface
similarity alone.

Introduction

In today's world of speech-enabled technologies (e.g. Siri,
Watson, Kinect), characters in games are begging for us to
talk to them. Yet, understanding spoken natural language
remains a challenge. The most robust speech recognition
solutions, trained on enormous corpora, running on the
cloud, can be hampered by background noise, microphone
quality, speaking volume, speaking styles, or other factors.
Even with perfect recognition, characters may find words
or phrases unfamiliar or ambiguous.

Non-player characters (NPCs) require adequate
coverage of all utterances they might be expected to
understand. Thus, understanding language is subject to the
same authoring bottleneck that plagues generation of
behavior and dialogue. In the age of big data, where it is
increasingly easy to record, store, and process data from
players interacting online, we can revisit this problem.

We describe a system that leverages a corpus of
thousands of recorded human interactions to not only
address the coverage problem, but to also compensate for
speech recognition failure by exploiting narrative context.
Speech is understood by mapping player input to an
utterance in our corpus -- a two-step process. Like a search
engine, the system first retrieves a list of relevant
utterances from the corpus, semantically similar to the
input, possibly expressed with different words. Next, the

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Intelligent interface compensates for misrecognition.

single best match must be selected from the retrieved list.
Here we focus on the first step, and leave the second step
to the player. We present an intelligent interface that
dynamically populates a list of dialogue options based on
speech input, and allows the player to select what s/he is
actually trying to say. Including a human in the selection
process allows us to measure the quality of our search
results, in terms of the rank of the selected utterance, and
the frequency of aborting, when the player can find no
satisfactory option.

We have integrated this interface into The Restaurant

Game (TRG), and observed human customers interacting
with waitress NPCs. TRG is a long-term project working
toward data-driven NPCs who understand and generate
language by exploiting a large corpus of human
demonstrations. We have previously described automating
NPC-NPC interactions with statistical models (Orkin &
Roy 2009). This paper describes and evaluates an end-to-
end system for automating human-NPC interactions from
annotated data, with integrated speech recognition.

 We present results from an experiment comparing three

different means of retrieving and filtering dialogue options,

and find that combining text surface similarity with plan

recognition is 18% more likely to find a relevant dialogue

option than relying on surface similarity alone, and can

often provide relevant options even in the event of

complete speech recognition failure. Findings suggest that

leveraging contextual knowledge provided by recorded

demonstrations to compensate for language understanding

failures can significantly improve the viability of speech

interaction in interactive narratives.

Collective A.I. for Interactive Narratives

Collective A.I. refers to an end-to-end process for

recording online games, discovering patterns in data, and

automating data-driven NPCs. The intelligent interface

supporting speech input relies on the same machinery that

drives NPC behavior. We give an overview of the process,

followed by a description of how the system supports

human interaction. More details about data collection,

annotation, and pattern discovery are available in previous

publications (Orkin & Roy 2007; 2010). To date we have

recorded 10,027 logs, and annotated 1,000 logs. This study

evaluates humans interacting with an NPC driven by a 100

game subset of the annotated logs.

Crowdsourced Data Collection

TRG anonymously pairs humans online as customers and

waitresses in a restaurant (using Torque 3D for Windows

and OSX). Players can converse via typed text, and interact

with 47 types of objects in the 3D environment through a

point-and-click interface. Games generate text-based logs

of time-coded actions, state changes, and utterances.

Data Interpretation by Humans

While powerful algorithms exist for learning patterns from

data, we choose to rely on human interpretation. Our

motivation for recording humans online is to capture the

nuance and variety of behavior and language, subtleties

that wash away statistically due to sparse data. By

employing humans to interpret data, we can capture valid

examples of interaction that may have only been observed

in few games, or even only once.
We hire non-experts online to interpret and generate

abstract representations of data. Annotators use browser-
based tools (AS3/Flex) to view game logs as timelines of
nodes representing actions and utterances, and tag them
with four varieties of meta-data: events, event hierarchies,
causal chains, and references. Annotators draw boxes
around sequences of nodes to tag events, and draw bigger
boxes around multiple events to tag event hierarchies.
Events may contain actions and utterances, arbitrarily

intermixed. We have 31 low-level events (e.g. GET_SEATED,

ORDER, PAY_BILL), grouped into five higher-level events

(e.g. BEGIN_DINING, CONCLUDE_DINING, FULFILL_ORDER). A
domain expert defines the list of event labels, and provides
examples for annotators. Based on a ten game subset, we
found substantial agreement between event annotations of
an expert and five novice annotators (mean kappa 0.81).
Arrows from one node to another tag causal chains

(forward) and references (backward). Causal chains
explain that the customer asking for steak caused the
waitress to bring back a steak from the kitchen. A
reference explains that a waitress who asks “How was your
lobster?” is referring to the previously served lobster.

Annotators do not require specialized skills, aside from
English fluency. We hired people from the Philippines,
India, Pakistan, and the U.S. via oDesk.com. Seven people
completed annotation of 1,000 logs in 415 hours total, for
about $3,000. We manually spot checked tags for quality,
iterating on corrections with annotators. Work was spread
over two months, but seven people working 40 hours/week
could complete 415 hours of work in 1.5 weeks.

Once logs have been annotated, we extract all unique
utterances included in events, and have humans cluster
them semantically by dragging utterances that serve the
same purpose into folders. An annotator might drag “Hi”
and “Hello” into one folder, and “I’m ready for the bill”
and “Check please” into another folder. Prior to clustering,
we collapse variables based on a hand-crafted, domain-
specific ontology (e.g. “Can I have steak?” and “Can I

have salmon?” merge into “Can I have [FOOD]?”).
Manually grouping utterances can be accomplished with
minimal training or specialized knowledge, and allows for
flexible, fine-grained groupings. We are clustering in-
house, but plan to outsource this in the future.

Automatic Pattern Discovery

We learn a dictionary of discreet sequences, representing
events, from the annotations. This process first requires
actions and utterances from the text-based logs to be
transformed into discreet tokens, stored in an Action

Lexicon (AL) and Dialogue Library (DL).
We generate the AL by recording every unique action in

the entire corpus of 10,027 logs. Actions are context-
sensitive and role-dependent, stored with pre- and post-
conditions based on observed state changes (e.g.
<pickup(waitress, pie), pre: on(counter, pie),

post: holding(waitress, pie)>). Our AL has 10,198
unique actions. We refer to indices into the AL as Action
IDs (ACTIDs).

The DL stores unique utterances as sequences of key

words -- any word observed in at least 25 games. We prune
non-keys from the previously clustered utterances, and
refer to resulting key word strings as signatures. A folder
of signatures is a signature set, given a unique ID (SSID).

Using the AL and DL, we compile logs into discreet
sequences of time-coded ACTID and SSIDs. Fluidly
intermixing physical and dialogue actions as a common
currency is inspired by the concept of speech acts
(Austin1962). Time codes associate annotations with
tokens in compiled logs, allowing extraction of each
unique event pattern. Low-level events are stored in the
Event Dictionary (ED) as sequences of ACTIDs and
SSIDs. Higher-level events are stored as sequences of
event start points. Our 100 game subset includes 135

Figure 2: Revising the Plan Recognizer’s inferred event hierarchy: before (left) and after (right) observing “can I get a menu?”

patterns for high-level events, and 1,161 for low-level
events, composed of 1,051 unique ACTIDs, and 406
SSIDs representing 1,552 unique utterances.

The compiled logs and ED are stored in the Event Log
Index (ELI), along with a lookup table indicating the start
points of events within log files. The table maps specific
event patterns to instances within logs, allowing an NPC to
efficiently find logs that match observation sequences at
runtime. The ELI also stores associated meta-data, such as
references and causal chains.

Data-Driven Episodic Planning

NPCs are driven by an Episodic Planner, which selects
actions and utterances through a process that combines
plan recognition (Kautz & Allen 1986) with case-based
planning (CBP) (Hammond 1990). Cases refer to entire
recorded episodes, in the form of annotated logs, indexed
by events within. The NPC observes actions and
utterances, infers an event hierarchy, proposes games with
similar event histories, and critiques proposals until one is
found with a valid next action.

For each NPC that exists in the world, an associated
agent is running on an AI server (Java), networked with the
game engine. As the game engine logs players’ actions,
resulting state changes, and utterances to a file, the engine
broadcasts the same data over the network. The agent uses
the AL and DL to process incoming data into discreet
observations – ACTIDs and SSIDs. Agents process all
observations through the same channel, regardless of
whether they are associated with another player or the
agent itself. Based on these observations, the agent makes
decisions about what to do next, which are transmitted to
the NPC in the game engine for execution.

The agent tries to understand each new observation
within the context of what it has observed previously,
using the Plan Recognizer (PR) to infer how new
information extends the event hierarchy recognized so far.
The PR maintains a hierarchy of token sequences
representing events, some of which may be incomplete. A
sequence is complete if it exactly matches a pattern in the
ED. The agent strives to complete incomplete sequences. A
new observation may (in order of preference): extend an
incomplete sequence, extend a subsequence of an
incomplete sequence, start a new sequence, or extend a

complete sequence. We refer to each potentially modified
sequence as a candidate.

The PR iterates over candidates, and enters an
exhaustive, recursive process of trying to apply and
validate each. A candidate is applied by truly extending the
candidate’s corresponding sequence in the hierarchy, or
inserting a new sequence into the hierarchy. Possible event
labels for a candidate are determined by matching patterns
in the ED. Based on the possible labels, the PR tries to use
the candidate event to extend, or insert a new, higher-level
parent event. Labels are non-committal, and may be
disambiguated as new information arrives (figure 2). Each
level of the modified hierarchy is validated by matching
patterns in the ED. If the entire structure is validated for a
candidate, the process is complete -- the observation has
been recognized, and the modified structure of the
hierarchy persists. Otherwise, the modification is reversed,
and the process continues until a candidate is validated, or
the observation is discarded as unrecognizable.

Once an observation has been recognized, the agent
selects the next action by either advancing the current plan,
or searching for a new plan. A plan is a compiled log, and
the agent continues following the same plan as long as new
observations continue to match the next token in the log,
and are validated by the PR. If the observation does not
match the next token, or is unrecognizable, the plan is
invalidated and the agent re-plans.

Planning begins by iterating over a set of prioritized
interaction goals. Goals employ a variety of strategies to
propose plans that will move the interaction forward
coherently. Using the ELI, goals retrieve proposals –
pointers into logs that begin after a particular sequence of
tokens, or at the start of a specified type of event.

G_RespondToSequence finds logs that contain the most
recently extended sequence, and points to the subsequent

token. G_ExtendStructure finds logs with events that
could extend an incomplete higher-level event.

G_CompleteCausalChain finds logs with events that could
complete an initiated, but unresolved, causal chain (e.g.

SERVE_FOOD or SERVE_DRINK if open orders exist). We have
implemented eight goals.

For each goal, the agent iterates over the proposals, and
re-runs the PR, treating the proposed next action as an
imagined observation. Proposals with next actions that

cannot be recognized are rejected. Remaining proposals
must be validated by a set of critic processes. Planning is
complete when a proposal is found that is approved by all
critics, or when all goals have been evaluated, and no valid
proposal has been found. In the case of failure, the agent
repeats the process, iterating the focus of attention
backward in time to respond to earlier observations.

Critic processes ensure future actions maintain
coherence, with respect to past observations. We have

implemented nine critics. C_Reference leverages meta-
data to invalidate utterances that refer to events which have
not been observed (e.g. do not say “How’s your steak?” if

steak was never served). C_ResourceConflict prevents
beginning an event that requires a resource already in use
(e.g. the waitress cannot serve beer if her hands are full

with steak). C_InvalidAction prevents repeatedly trying to
execute an action that the game engine reports has failed.

Critics are domain independent, with the exception of

C_Domain, which can invalidate a proposal based on
domain-specific validation functions stored in the Domain
Knowledge Manager. Each event type may optionally have
procedural preconditions which constrain when that type of
event may be initiated or extended. Domain-specific
knowledge may be necessary for two reasons: (1) sparse
data (e.g. we do not have examples of serving every
combination of food, so we encode domain knowledge to
ensure we serve entrees before desserts), and (2)
discrepancies between NPC and human behavior. Our
corpus captures examples of human behavior that we do
not want NPCs to execute. Programmatically restricting
these behaviors allows them to remain in the corpus for
recognition, without risk of execution.

Human Interaction

The interface for human interaction re-uses the previously
described planner. When a human controls a player, there
is still an associated agent running in the background on
the AI server. This agent runs the PR, but does not perform
action selection. When the human interacts in the game
world, physical actions are broadcast as usual, but human
utterances are flagged for further processing by the
human's agent, and are ignored by the NPC's agent. Human
utterances originate from the text output of the Windows
speech recognizer, running with a language model
generated from our corpus.

The human's agent is responsible for selecting a list of
dialogue options from the corpus, semantically similar to
the flagged human utterance. The agent begins by pruning
non-key words from the utterance. Next, the agent retrieves
a list of SSIDs from the DL for all signature sets that
include an utterance containing the key words. The PR
generates candidate sequences for all SSIDs that can be
recognized as the next action. The agent then iterates over
the candidates, applies each, and retrieves proposed plans
from the ELI (which point to the SSIDs as the next action).

C: Can I get table for one?

W: Sure right this way

W: would you like a drink to start?

C: can I get some water please

W: ok

W: would you like more time or

are you ready to order?

C: can I have a menu?

. . .
W: our specials tonight are salmon,

a vegtable soup, and a nectarine tart

C: ill have grilled salmon

please

Human said: “can I have a menu please?”

Speech Rec heard: “banana nine yep”

Dialogue Options:

• “can ican i have a cobb salad please”

• “yes nectarine tarts sound good for desert”

• “maybe I should just start with the soup”

• “can I have another water, please?”

• “can I have a menu?”

• “I'll have the lobster and cheesecake”

• “and with that some spaghetti”

• “May i please have the Filet please?”

• “I'll have the... uh seafood I mean, salmon”

• “may i get the soup of the day please”

Human said: “can I have a menu please?”

Speech Rec heard: “banana nine yep”

Dialogue Options:

• “can ican i have a cobb salad please”

• “yes nectarine tarts sound good for desert”

• “maybe I should just start with the soup”

• “can I have another water, please?”

• “can I have a menu?”

• “I'll have the lobster and cheesecake”

• “and with that some spaghetti”

• “May i please have the Filet please?”

• “I'll have the... uh seafood I mean, salmon”

• “may i get the soup of the day please”

Human said: “I’ll have grilled salmon”

Speech Rec heard: “of grilled salmon”

Dialogue Options:

• “may i get the grilled salmon of the day please”

• “yes the grilled salmon”

• “a grilled salmon please”

• “ill have grilled salmon please”

• “and with that some grilled salmon”

• “can have grilled salmon and soup”

• “Ill start with the grilled salmon”

• “beery pie beer and grilled salmon”

• “I think grilled salmon sounds lovely”

• “can i have some grilled salmon?”

Human said: “I’ll have grilled salmon”

Speech Rec heard: “of grilled salmon”

Dialogue Options:

• “may i get the grilled salmon of the day please”

• “yes the grilled salmon”

• “a grilled salmon please”

• “ill have grilled salmon please”

• “and with that some grilled salmon”

• “can have grilled salmon and soup”

• “Ill start with the grilled salmon”

• “beery pie beer and grilled salmon”

• “I think grilled salmon sounds lovely”

• “can i have some grilled salmon?”

Actual transcript excerpt and

dialogue options from

human customer with

waitress NPC.

Selected utterance in bold.

Actual transcript excerpt and

dialogue options from

human customer with

waitress NPC.

Selected utterance in bold.

Figure 3: Top 10 dialogue options found for speech inputs.

Finally, the agent runs the critique process, but rather than
stopping at the first approved proposal, the agent continues
critiquing, collecting a list of all approved proposals.

If this process fails to generate at least five proposals
(possibly zero if speech recognition fails), the agent uses
context to compensate for failure to understand. The agent
falls back to action selection driven by interaction goals,
like an NPC, as described in the last section. All proposals
from all goals are collected that are not rejected by critics.

The agent now has a list of proposals for utterances
deemed valid by the PR and critics. This list is sorted by
the count of overlapping words with recognized human
input (if any), and the top five utterances are sent to the
game engine, for display to the player as dialogue options
(figure 3, shows top 10). The human can repeatedly click

MORE to retrieve the next five options, or CANCEL to abort if
none of the options are satisfactory. When the human
selects a dialogue option for execution, the selected
utterance is broadcast as an ordinary unflagged utterance,
for processing by agents through ordinary channels.

Evaluation

Our evaluation quantifies how different utterance retrieval
methods respond to speech recognition failures and limited
coverage. We observed 15 people (with no previous
exposure to TRG) playing as a customer, using speech to
interact with an NPC waitress.

We divided subjects into three groups of five, each
playing under one of three conditions for populating the
list of dialogue options: (1) text+context, (2) text-only, (3)
context-only. Text+context refers to the system described
previously, which selects SSIDs based on key words from
speech input, and falls back to interaction goals to
compensate for failure to find valid proposals. Text-only
presents a sorted list of all utterances in the corpus that
match any of the words in the speech input, without using
the plan recognizer or critics for filtering. Context-only
completely ignores human input, and only relies on the
inferred event hierarchy and interaction goals to select the

Figure 4: SSIDs observed in 1st 10 inputs of 5 text+context runs.

list of relevant utterances.
Subjects were told to have dinner, and took ~10 minutes

to play from entering, through getting seated, having a
meal, paying the bill, and departing. Each time the subject
spoke to the waitress, s/he was asked to flag as relevant all
dialogue options that had the same meaning as what s/he
was trying to say. We recorded these flags, the rank in the
list of the subject’s actual selection, and a count of aborted
interactions when no option was selected.

Results and Discussion

The number of speech inputs varies per game. We look at
the first 10 in each game, 50 total per condition, for a fair
comparison. Table 1 reports that text-only yields the
highest percentage of relevant options (total for 50 inputs),
and the lowest mean rank of the selected option (closest to
the top of the list). However, this is not the whole story.
When the speech recognizer fails completely, text-only has
no other means of selecting utterances, giving the subject

only a failure message, and CANCEL. In the text-only
condition, subjects aborted 18% more often than
text+context (44% vs. 26%, despite similar numbers of
recognition failures), due to dissatisfaction with options, or
lack of any options. Also, there were two instances where
text-only allowed the subject to select an utterance that the
plan recognizer could not understand in the current
context(due to sparse data), while this never happens in the
other conditions where options are filtered by critics.

 text+context text-only context-only

mean selection rank 4.95 2.11 6.76

% of opts flagged relevant 38.53 45.22 23.48

% of interactions aborted 26.00 44.00 32.00

of plan rec. failures 0 2 0

of speech rec. failures 13 10 5

Table 1: Comparing 3 methods for populating dialogue options.

Text+context performs better than context-only, validating
that the words are important in this scenario, but context
can compensate for failure to understand words.

For any speech input, figure 5 plots the likelihood that
the subject’s selected option will be rank N or less. Text-
only delivers the highest likelihood of providing the
desired selection at rank five or less, and plateaus shortly
thereafter. If the spoken words are recognized correctly,
and a similar utterance exists in the corpus, text-only is
most likely to provide a desirable option near the top of the
list. For each method, the remaining likelihood in the space
above the plateau represents the likelihood of aborting. The
conditions leveraging context have a higher likelihood of
providing a desirable option later in the list, rather than no
satisfactory options at all, leading to fewer aborted
interactions.

Figure 5: Likelihood of selecting dialogue option rank N or less.

Related Work

Combining crowdsourced content creation, CBP, and

speech distinguishes our system from previous interactive

narrative systems (Riedl & Young 2003; Cavazza et al.

2002; Magerko 2005). Façade accepts typed text input,

employing hand-crafted templates to map text to dialogue

acts (Mateas & Stern 2004), and compensates for

understanding failure with two cleverly designed, self-

absorbed NPCs, who can move the narrative forward,

ignoring the player when necessary. In an effort to support

speech input while playing as the main character, who the

story cannot progress without, our system proposes

contextually appropriate alternatives for unrecognized

input by mining data from previous players.

The surprising variability of spontaneous word choice in

applications has been documented by Furnas et al. (1987),

finding that two people favor the same word < 20% of the

time. Inspired by the success of the How May I Help You

Actual dialogue paths

taken by five human

customers (C) with

waitress NPCs (W).

(Semantically similar

utterances clustered into

SSIDs labeled with

exemplars for clarity).

system (Gorin et al. 1997) in coping with varied input by

leveraging data from 10,000 customer service calls, TRG

was designed to collect examples of restaurant interaction.

Other crowdsourcing efforts have collected text-based

commonsense data and stories (Singh et al. 2002; Li et al.

2012, Swanson & Gordon 2010), but not at the granularity

of actions and utterances required for moment-to-moment

interaction with humans.

Hand-crafted representations of situations have enabled

inferences required to understand stories (Schank &

Abelson 1977); supported plan recognition to improve

speech understanding (Gorniak & Roy 2005; Fleischman

& Hovy 2006); and powered NPC collaboration and

dialogue generation (Hanson & Rich 2010). Learning event

hierarchies from annotated logs captures variety and nuance

that hand-crafted models are likely to miss.

CBP has been applied to simulation and strategy games

(Fasciano 1996; Ortanon et al. 2007). We focus on

planning for collaboration with humans. EM-ONE (Singh

2005) employed CBP to model social interaction in a

collaborative task. Cases were hand-crafted for one

prescribed interaction between NPCs, rather than

crowdsourced for interaction with humans.

Corpus-based approaches have been applied to

automating chat bots, dialogue generation, and inferring a

player’s affective state (Huang et al. 2007; Lin & Walker

2011; McQuiggan & Lester 2006). Our work differs in

using a data-driven system for both understanding and

generation of behavior and dialogue for an embodied NPC,

playing a role in a narrative collaboratively with a human.

Conclusion and Future Work

We have evaluated speech interaction with an NPC, and

demonstrated that exploiting crowdsourced data and

inferred context can compensate for recognition and

understanding failures. Future work will focus on scaling

up, generalizing, and selecting the single best dialogue

option. Migrating all 1,000 annotated logs should decrease

text+context’s 26% likelihood of aborting, at the risk of

introducing new challenges searching and critiquing in

real-time. We will evaluate generalization with existing

data sets from a virtual sci-fi film set, and a human-robot

interaction. Automatic selection of the best option may be

able to leverage utterance likelihoods, and data from

previous human selections.

Acknowledgements

This research is supported by a grant from the Singapore-

MIT GAMBIT Game Lab.

References

Austin, J.L. 1962. How to Do Things with Words. Oxford U. Press.

Cavazza, M., et al. 2002. Interacting with Virtual Characters in
Interactive Storytelling. In Proc. of AAMAS.

Fasciano, M. 1996. Real-time Case-based Reasoning in a
Complex World. Technical Report TR-96-05. U. of Chicago

Fleischman, M. and Hovy, E. 2006. Taking Advantage of the
Situation: Non-Linguistic Context for Natural Language
Interfaces to Interactive Virtual Environments. In Proc. of IUI.

Furnas, G., et al. 1987. The Vocabulary Problem in Human-
System Communications. Communications of the ACM, 30.

Gorin, A., et al. 1997. How may I help you? Speech
Communication, 23(1-2).

Gorniak, P., and Roy, D. 2005. Probabilistic Grounding of
Situated Speech using Plan Recognition and Reference
Resolution. In Proc. of ICMI.

Hammond, K.F. 1990. Case Based Planning: A Framework for
Planning from Experience. Cognitive Science, 14(3).

Hanson, P. and Rich, C. 2010. A Non-Modal Approach to
Integrating Dialogue and Action. In Proc. of AIIDE.

Huang, J. et al. 2007. Extracting Chatbot Knowledge from Online
Discussion Forums. In Proc. of IJCAI.

Kautz, H. and Allen, J. 1986. Generalized Plan Recognition. In
Proc. of Natl. Conf. on AI.

Li, B. et al. 2012. Learning Sociocultural Knowledge via
Crowdsourced Examples. In Proc. of HCOMP.

Lin, G. and Walker, M. 2011. All the World’s a Stage: Learning
Character Models from Film. In Proc. of AIIDE.

Magerko, B. 2005. Story Representation and the Interactive
Drama. In Proc. of AIIDE.

Mateas, M., and Stern, A. 2004. Natural Language Understanding
in Façade: Surface-text Processing. In Proc. of TIDSE.

McQuiggan, S., and Lester, J. 2006. Learning Empathy: A Data-
driven Framework for Modeling Empathetic Companion Agents.
In Proc. of AAMAS.

Orkin, J. and Roy, D. 2007. The Restaurant Game: Learning
social behavior and language from thousands of players online.
Journal of Game Development, 3(1).

Orkin, J. and Roy, D. 2009. Automatic Learning and Generation
of Social Behavior from Collective Human Gameplay. In Proc. of
AAMAS.

Orkin, J., Smith, T., and Roy, D. 2010. Behavior Compilation for
AI in Games. In Proc. of AIIDE.

Ortanon, S., et al. 2007. Case-based Planning and Execution for
Real-time Strategy Games. In Proc. of ICCBR.

Riedl, M. and Young, R.M. 2003. Character-Focused Narrative
Planning for Execution in Virtual Worlds. In Proc. of ICVS.

Schank, R., and Abelson, R. 1977. Scripts, Plans, Goals, and
Understanding. Lawrence Erlbaum Associates.

Singh, P., et al. 2002. Open Mind Common Sense: Knowledge
Acquisition from the General Public. In Proc. of ODBASE.

Singh, P. 2005. EM-ONE: An Architecture for Reflective
Commonsense Thinking. Ph.D. dissertation. MIT.

Swanson, R., and Gordon, A. 2010. A Data-Driven Case-Based
Reasoning Approach to Interactive Storytelling. In Proc. of ICIDS.

