MIT
Libraries | D>pace@MIT

MIT Open Access Articles

CrowdCam: Instantaneous Navigation
of Crowd Images Using Angled Graph

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Arpa, Aydin, Luca Ballan, Rahul Sukthankar, Gabriel Taubin, Marc Pollefeys, and
Ramesh Raskar. “CrowdCam: Instantaneous Navigation of Crowd Images Using Angled Graph.”
2013 International Conference on 3D Vision (June 2013), Seattle, Washington, USA, 29 June - 1
July 2013.

As Published: http://dx.doi.org/10.1109/3DV.2013.62
Publisher: Institute of Electrical and Electronics Engineers (IEEE])
Persistent URL: http://hdl.handle.net/1721.1/92456

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/92456
http://creativecommons.org/licenses/by-nc-sa/4.0/

CrowdCam: Instantaneous Navigation of Crowd Images using Angled Graph

Aydin Arpa' Luca Ballan? Rahul Sukthankar® Gabriel Taubin®* Marc Pollefeys? Ramesh Raskar!

MIT, 2ETH Zurich, 3CMU, *Brown University

Abstract

We present a near real-time algorithm for interactively
exploring a collectively captured moment without explicit
3D reconstruction. Our system favors immediacy and lo-
cal coherency to global consistency. It is common to rep-
resent photos as vertices of a weighted graph, where edge
weights measure similarity or distance between pairs of
photos. We introduce Angled Graphs as a new data struc-
ture to organize collections of photos in a way that enables
the construction of visually smooth paths. Weighted an-
gled graphs extend weighted graphs with angles and angle
weights which penalize turning along paths. As a result, lo-
cally straight paths can be computed by specifying a photo
and a direction. The weighted angled graphs of photos used
in this paper can be regarded as the result of discretizing the
Riemannian geometry of the high dimensional manifold of
all possible photos. Ultimately, our system enables every-
day people to take advantage of each others’ perspectives
in order to create on-the-spot spatiotemporal visual expe-
riences similar to the popular bullet-time sequence. We
believe that this type of application will greatly enhance
shared human experiences spanning from events as per-
sonal as parents watching their children’s football game to
highly publicized red carpet galas.

1. Introduction

All of us like going to public events to see our favourite
stars in action, our favourite sports team playing or our
beloved singer performing. Attending these events in first
person at the stadium, or at the concert venue, provides a
great experience which is not comparable to watching the
same event on television.

While television typically provides the best viewpoint
available to see each moment of the event (decided by a
director), when experiencing the event in first person at
the stadium, the viewpoint of the observer is restricted to
the seat assigned by the ticket, or his/her visibility is con-
strained by the crowds gathered all around the performer,
trying to get a better view of the event.

In this paper, we describe a solution to this problem by
providing the user with the possibility of using his/her cell-
phone or tablet to navigate specific salient moments of an
event right after they happened, generating bullet time ex-
periences of these moments, or interactive visual tours. To
do so, we exploit the known fact that, important moments
of an event are densely photographed by its audience us-
ing mobile devices. All of these photos are collected on a
centralized server, which sorts them spatiotemporally, and
sends back results for a pleasant navigation on mobile de-
vices. (see Figure 1)

To promote immediacy, and interactivity, our system
needs to provide a robust, lightweight solution to the orga-
nization of all the visual data collected at a specific moment
in time. Today’s tools that address spatiotemporal organi-
zation mostly starts with a Structure From Motion (SFM)
operation [13], and largely assumes accurate camera poses.
However this assumption becomes an overkill when imme-
diacy and experience is more important than the accuracy
on these estimations. Furthermore, SFM is a computation-
ally heavy operation, and does not work in a number of sce-
narios including non-Lambertian environments.

Our solution instead focuses on immediacy and local
coherency, as opposed to the global consistency provided
by full 3D reconstruction. We propose to exploit sparse
feature flows in-between neighbouring images, and create
graphs of photos using distances and angles. Specifically,
we build Weighted Angled Graphs on these images, where
edge weights describe similarity between pairs of images,
and angle weights penalize turning on angles while travers-
ing paths in the subjacent graph. In scenarios where the
number of images is large, computational complexity of
finding neighbours is reduced by employing visual dictio-
naries. If the event of interest has a focal object, we let
the users enter this region of interest via simple gestures.
Afterwards, we propagate features from user provided re-
gions to all nodes in the graph, and stabilize all flows that
has the target object. In order to globally calculate opti-
mum smoothest paths, we project our graph to a dual space
where triplets become pairs, and angle costs are projected to
edge costs and therefore can simply be calculated via short-

(@

(b)
Figure 1. Imagine you are at a concert or sports event and, along with the rest of the crowd, you are taking photos (a). Thanks to other
spectators, you potentially have all possible perspectives available to you via your smart phone (b). Now, almost instantly, you have access
to a very unique spatiotemporal experience (c).

est path algorithms.
1.1. Contributions
In this paper, our contributions are as follows:

e Novel way to collaboratively capture and interactively
generate spatiotemporal experiences of events using
mobile devices

e Novel way to organize captured images on an Angled
Graph by exploiting the intrinsic Riemannian structure

e A way to compute the geodesics and the globally
smoothest paths in an angled graph

e An optional object based view stabilization via collab-
orative segmentation

2. Related Work

Large Collections of Images: There is an ever-increasing
number of images on the internet, as well as research pur-
suing storage [6] and uses for these images. However, in
contrast with exploring online collections, we focus on tran-
sient events where the images are shared in time and space.
Photo Tourism [22] uses online image collections in com-
bination with structure from motion and planar proxies to
generate an intuitively and browsable image collection. We
instead do not aim at reconstructing any structure, shape, or
geometry of the scene. All the processing is image based.
[21, 20, 18] achieved smooth navigation between distant
images by extracting paths through the camera poses esti-
mated on the scene. Similar techniques were used to cre-
ate tourist maps [9], photo tours [13], and interactive ex-
ploration of videos [2, 24]. Along with the same line of
research, we also present, in this paper, how to navigate be-
tween the images. In contrast to prior work however, we do
not require expensive pre-processing steps for scene recon-
struction. The relationship between images is calculated in
near-real time. Other works using large image collections
to solve computer vision problems include scene recogni-
tion [19, 25] and image completion [11].

b (©

Computing Shortest Paths: Finding the shortest path be-
tween two points in a continuous curved space is a global
problem which can be solved by writing the equation for
the length of a parameterized curve over a fixed one dimen-
sional interval, and then minimizing this length using the
calculus of variations. Computing a shortest path connect-
ing two different vertices of a weighted graph is a well stud-
ied problem in graph theory which can be regarded as the
discrete analog of this global continuous optimization prob-
lem. A shortest path is a path between the two given vertices
such that the sum of of the weights of its constituent edges
is minimized. In a finite graph a shortest path always exists,
but it may not be unique. A classical example is finding the
quickest way to get from one location to another on a road
map, where the vertices represent locations, and the edges
represent segments of roads weighted by the time needed
to travel them. Many algorithms have been proposed to
find shortest paths. The best known algorithms for solving
this problem are: Dijkstra’s algorithm [7], which solves the
single-pair, single-source, and single-destination shortest
path problems; the A* search algorithm [10], which solves
for single pair shortest path using heuristics to try to speed
up the search; Floyd-Warshall algorithm [8], which solves
for all pairs shortest paths; and Johnson’s algorithm [12],
which solves all pairs shortest paths, and may be faster than
Floyd-Warshall on sparse graphs.

Organizing Images: Existing techniques use similarity-
based methods to cluster digital photos by time and image
content [4], or other available image metadata [26, 16]. For
image based matching, several features have been proposed
in literature, namely, KLT [23], SIFT [14], GIST [17] and
SUREF [3]. Each of these features have its own advantages
and disadvantages with respect to speed and robustness. In
our method, we propose to use SIFT features, extracted
from each tile of the image, and to individually quantized
them using a codebook in order to generate a bag-of-words
representation [5].

NN,

FF,

NNy

FEy

-

* *
7 5\

N

Figure 2. A set of input images (I) are converted to a set of SIFT features (F). In case of a large number of the images, a visual dictionary
(D) is employed to represent every image via a high dimensional vector (C). Nearest Neighbours (NN) are found for each image, and sparse
feature flow (FF) vectors are extracted. If there is a object of interest, and few users have manually entered its region, this input is used to
stabilize (S) the views. A graph (G) is generated where nodes are images and edges represent distances. In this graph, angles are present
but only on triplets. The graph (G) is then projected to a dual graph (G*), where edges have both distance and angle costs. Then given the
desired Navigation (N) mode from user, the system creates the smoothest path (P), and generates a rendering (R).

3. Algorithm Overview

Our approach starts with users taking photos on their
mobile devices using our web-app. As soon these photos
are taken, they are uploaded to a central server along with
metadata consisting of time and location, if available. Af-
terwards, applying a coarse spatiotemporal filtering using
this metadata provides us the initial “event” cluster to work
on. Event clusters are sets of images taken at similar time
and location (Section 4).

Sparse feature flows within neighbouring images are
then estimated. For large event clusters, computational
complexity of calculating feature flow for each pair of im-
ages is drastically reduced by employing visual dictionaries
(Section 4.1).

The computed feature flows are then used to build a
Weighted Angled Graph on these images (Section 5). Each
acquired image is represented as a node in this graph. Edge
weights describe similarity or distance between pairs of
photos, and angle weights penalize turning on angles while
traversing paths in the subjacent graph.

Once a user swipes his finger towards a direction, the
system computes the smoothest path in that direction and
starts the navigation. This results in a bullet time experi-
ence of the captured moment. Alternatively user can pick a
destination photo, and the system finds the smoothest path
in between.

The algorithm ensures that the generated paths lie on a
geodesic of the Riemannian manifold of the collected im-
ages. This geodesic is uniquely identified by the initial
photo (taken by the user) and the finger swiping direction.
To this end, Section 5.2 introduces the novel concept of
straightness and of minimal curvature in this space (Sec-
tion 5.4), and propose an efficient algorithm to solve for
it. In particular, to simplify the calculations and to ensure
near realtime performances, in finding the globally opti-
mum smoothest path, we project our graph to a dual space

where triplets become pairs, and angle costs are projected
to edge costs. Then Dijkstra’s shortest path algorithm is ap-
plied to give us globally optimum smoothest path.

For each event cluster, if there is a focal object of inter-
est, the user can enter the object’s region via a touch ges-
ture. Our algorithm propagates the features from user pro-
vided regions to all the nodes in the graph, and stabilize all
the flows related to the target object. Figure 2 shows an
overview of the proposed pipeline.

4. Coarse Spatiotemporal Sorting

Photos are uploaded continuously to the server, as soon
as they are taken. The server performs an initial clustering
of these images based on the location and time informa-
tion stored in the image metadata. Depending on the event,
and the type of desired experience, users can interactively
select the spatiotemporal window within which to perform
the navigation. For instance, for a concert and a sports
event, users might prefer large spatial windows whereas, for
a street performance, small spatial windows are preferred.
Concerning the time dimension, this can go between 1 or
2 seconds for very fast events, to 10 seconds in case of al-
most static scenarios or very slow events, like an orchestra
performance.

In terms of temporal resolution, cellphone time is quite
accurate thanks to indirect syncing of its internal clock to
the atomic clocks installed in satellites and elsewhere. How-
ever, spatial information provided by sensors needs extra
care as it is too coarse to be used in smooth visual navi-
gation. Its accuracy drastically decreases in case of indoor
events. In order to attain better spatial resolution, we ex-
ploit sparse feature flows in between neighbouring photos,
as described in the following sections.

4.1. Efficiently Finding Neighbours with Visual Dic-
tionaries

Naively, the computational complexity of calculating the
feature flow for each pair of images would be O(N?), and
therefore posits infeasible when the number N of photos in
the cluster is large. In these cases, we reduce the computa-
tional complexity by employing a visual dictionary [5], and
near-neighbor search algorithms [15]. By doing this, we re-
duce the complexity to O(K N) where K is the number of
neighbours.

Dictionaries can be catered for specific venues, or spe-
cific events. They can be created on the fly, or can be re-
utilized per location. For instance, in a fixed environment
like a basketball stadium, it is really advisable to create a
dictionary for the environment beforehand and cache it for
that specific location. For places where the environment is
unknown, and the number of participants is large, it is ad-
visable that a dictionary is created on the fly at the very be-
ginning of the event, and shared by all. For the samples we
used, our rule of thumb was that we employed a dictionary
if the number of photos were more than 50.

5. Weighted Angled Graph

In mathematics a geodesic is a generalization of the no-
tion of a straight line to curved spaces. In the presence of
a Riemannian metric, geodesics are defined to be locally
the shortest path between points in the space. In Rieman-
nian geometry geodesics are not the same as shortest curves
between two points, though the two concepts are closely re-
lated. The main difference is that geodesics are only locally
the shortest path between points. The local existence and
uniqueness theorem for geodesics states that geodesics on
a smooth manifold with an affine connection exist, and are
unique. More precisely, but in simple terms, for any point
p in a Riemannian manifold, and for every direction vector
¥ away from p (¢ is a tangent vector to the manifold at p)
there exists a unique geodesic that passes through p in the
direction of ¥.

A weighted graph can be regarded as a discrete sampling
of a Riemannian space. The vertices correspond to point
samples in the Riemannian space, and the edge weights to
some of the pairwise distances between samples. However,
this discretization neither allows us to define a discrete ana-
log of the local geodesics with directional control, nor the
notion of straight line. Given two vertices of the graph con-
nected by an edge, we would like to construct the straight-
est path, i.e. the one that starts with the given two vertices
in the given order, and continues in the same direction with
minimal turning.

To define a notion of straight path in a graph we augment
a weighted graph with angles and angle weights. An angle
of a graph is a pair of edges with a common vertex, i.e., a

(a) Path in
weighted graph

(b) Path in
angled graph

(c) Convert angled
graph to weighted
graph G*

— Ao 4 (1-0)s,4 Ad
Woi= 5 (1-N 5

Figure 3. The angled graph is converted to a weighted graph in
order to simplify the computation of the global shortest path.

path of length 2. Angle weights are non-negative numbers
which penalizes turning along the corresponding angle.

Graph angles are related to the intuitive notion of angle
between two vectors defined by an inner product. This defi-
nition extends the relation between edges and edge weights
in a natural way to angles and angle weights. In a Rieman-
nian space, using the inner product derived from the Rie-
mannian metric, the angle o between two local geodesics
passing through a point p with directions defined by tangent
vectors U and @ is well defined. In fact, the cosine of the
angle (0 < a <) is defined by the expression

(0,)
os(@) = Tl M
where (¥,) is the inner product of ¢ and in the met-
ric, and ||7]| denotes the length (Lo norm) of the vector @.
Within this context, angle weights can be defined as a non-
negative function s(«) > 0 defined on the angles.

A graph G = (V, E) comprises a finite set of vertices
V, and a finite set E of vertex pairs (7, j) called edges. A
weighted graph G = (V, E, D) is a graph with edge weights
D, an additional mapping D : E — R which assigns an
edge weight d;; > 0 to each edge (i,7) € E. An Angled
Graph G = (V,E, A) is a graph augmented with a set of
angles A. Given a path (i, j, k), an angle is defined as the
high dimensional rotation between edges (i, ;) and (j, k).
Finally, a Weighted Angled Graph G = (V,E, D, A, S) is
an weighted graph augmented with a set of angles A and
and angle weights S, a mapping S : A — R which as-
signs an angle weight s;; > 0 to each angle (3, j, k) € A.
Since edges (7, 4) and (j, i) are considered identical, angles
(4,4, k) and (k, j,¢) are considered identical as well.

5.1. Angles as Navigation Parameters

We are more interested in minimizing the path energy
one step at a time, i.e. within the neighborhood of each ver-
tex: if (¢, j) is an edge, the vertex k in the first order neigh-
borhood of j which makes the path (4, j, k) straightest is

the one that minimizes s; ;3. The local straightest path is the
path with the lowest energy to the next node with respect to
edge and angle weights. This energy is written as a linear
combination of both measurements:

Adij + (1 = X) skij 2

Where node k is the previous node in the path. The pa-
rameter A is chosen by the user, or globally optimized, as
described in the next section. Section 5.3 describes how to
compute the image-space distances d;;, while Section 5.4
describes how to compute the angle weights sy;;.

5.2. Computing Global Smoothest Paths

A path in a weighted graph cannot be regarded as pa-
rameterized by unit length because the length of the edges
vary. If traversed at unit speed, the edge lengths are propor-
tional to the time it would take to traverse them. Given a
path m = (i1,12,...,in) the following expressions are the
length of the path, and the lack of straightness

N-1

L(ﬂ-) = Z diziz+1

1=

N-1
K(m) = Sisivigyr - 3)
=1

Given a scalar weight 0 < A < 1, we consider the follow-
ing path energy

E(m)=AL(m)+ (1 =X K(x). 4)

The problem is to find a minimizer for this energy, amongst
all the paths of arbitrary length which have the same end-
points (ig,in). For A = 1 the angle weights are ignored,
and the problem reduces to finding a shortest path in the
original weighted graph. But for 0 < A, in principle it is
not clear how the problem can be solved. We present a so-
lution which reduces to finding a shortest path in a derived
weighted graph which depends on the pair (ig, ix). To sim-
plify the notation it is sufficient to consider path (0, 1, 2, 3)
of length three. It will be obvious to the reader how to ex-
tend the formulation to paths of arbitrary length. For a path
of length three, the energy function is

E(m) = A(do1 + di2 +das) + (1 — A) (so12 + s123) (5)

Rearranging terms we can rewrite it as

E(m) = uo1 + wor2 + w23 + ug3 (6)
where
Uo1 = ()\/2) do1
W12 = ()\/2) do1 + (1 —)\) So12 + ()\/2) dis
W13 = ()\/2) di2 + (1 —)\) S123 + (/\/2) dos
u23 = (/\/2) da3

(7

s s

Figure 4. (Top) Three neigbouring images A, B and C. (Middle)
Feature flows computed between the images A, B and C after be-
ing stabilized with respect to the object of interest in the scene (the
person with blue T-shirt). (Bottom) Zoom of the image AB.

Now we create a weighted directed graph G* (more pre-
cisely G* (4o, i) composed of the edges (i, j) of G as ver-
tices, the angles (i, 7, k) of G (regarded as pairs of edges
((,7), (4, k))) as edges, and the following value as the
((4,7), (4, k))-edge weight:

wijr = (A\/2)dij + (1 = A) siji. + (A\/2) dj 8)

We still need an additional step to account for the two values
ug1 and w3 of the energy. We augment the graph G* by
adding the two vertices 0 and 3 of the original path as new
vertices. For each edge (0, ¢) of the original graph, we add
the weight

ug; = (A/2) do;)

to the edge (0, (0, 7)), and similarly for the other end point.
Now, minimizing the energy E(7) amongst all the paths in
G™* from 0 to 3 is equivalent to solving the original problem.
This conversion is demonstrated in Figure 3.

5.3. Defining Image-Space Distance & Angle Mea-
sures

Sparse SIFT flow is employed to compute the spatial dis-
tances between image pairs, and to compute the angles be-
tween image triplets. An example of SIFT flow computed
for two representative pairs of images is shown in Figure 4.
The spatial distance J;; between image ¢ and image j is
computed as the median of the L2 norms of all the flow vec-
tors between these two images. The image-space distance d
between ¢ and j is then computed as

dij = 5ij + ﬁ‘tl — tj| (10)

where 0;; denotes the spatial distance between ¢ and j, and
|t; — t;| denotes the time difference in which these two im-
ages were taken. [is a constant used to normalize these
two quantities. The angle between a triplet of images ¢, j
and k is defined as the normalized dot product of the aver-
age vector flows in these two pairs of images, 7; and 7,
respectively. Formally,

Tij - Tik
1755 1175
5.4. Defining The Angle Weights S

As introduced in Section 5 and Section 5.2, the angle
weight function S : A — R needs to provide an accurate
notion of lack of straightness for each chosen triplet (4, j, k)
in A, such that the term K (7) of Equation 3 represents the
overall lack of straightness of the selected path . We for-
malize this concept as the total curvature of a smooth curve
passing through all the vertices of the path 7. Let v denotes
this curve, its total curvature is defined as

Y

0;j1 = arccos

/ I ()| de. (12)

We define the curve « to be a piecewise union of quadratic
Bézier curves having as control points the vertices 7;_1, %;
and 7;41, for each index [along the path 7. Therefore, its
total curvature corresponds to the sum of all the total curva-
tures corresponding to each Bézier curved segment, which,
for a given triplet (4, j, k), corresponds to

Sijk = dfj + d?k + dijdjk cos (71' — Gijk) (13)

where 6, is defined as in Equation 11. We therefore use
Equation 13 to define the cost of choosing a specific edge
in the angle graph, s;;,. See supplementary material for the
details on this calculation.

6. Semi-Automatic View Stabilization and Col-
laborative Segmentation

If a focal object is present, and view stabilization is de-
sired, we exploit the possibility of an optional collaborative
labeling of the region of interest from the users. In fact,
after taking a photo, the user can choose to label the ob-
ject of interest on the screen for the image just taken. This
information is sent to the central server also. This is an op-
tional step, and it is not mandatory. However, if a label is
present, this allows the system to generate animations sta-
bilized with respect to the object of interest.

This is performed by propagating SIFT features from the
selected regions to the other nodes, where such information
is not present. In cases where there are not enough SIFT
features, we rely on color distribution of the region. In case,
multiple users label the object of interest, this information

(stabilized images)

(original images)

Figure 5. (Left) Four neighbouring images. (Right) Same images
stabilized in scale and position with respect to the object of interest
in the scene (red rectangles).

is propagated in the graph, and fused with the information
collected from other users as well.

We observed that, in order to achieve the best visual
quality results, a label has to be entered at least every 60
degrees or in cases of zoomed levels above 100% in scale
factor. To increase the accuracy of the selected region, we
employed graph cut techniques which also greatly simplify
user input by requiring only a simple stroke.

After establishing the region of interest for the focal ob-
ject, the photo is stabilized to a canonical view where the
object of interest is at the same position and have the same
size in all photos (see Figure 5). This is accomplished by
applying an affine transform to all images. This step effects
all parameters down the stream, including feature flows, dis-
tances, and angles (see Figure 2).

7. Results

We evaluated our system on 18 real world scenarios
spanning events like street performers, basketball games,
and talks with a large audience. For each experiment, we
asked few people to capture specific moments during these
events using their cellphones and tablets. iPhones, iPads,
and Nokia and Samsung phones were used for these experi-
ments. The captured images were then uploaded to the cen-
tral server which performed the spatiotemporal ordering.

Figure 6 and Figure 7 (top row), show two navigation
paths computed using our approach. The obtained results

can be better appreciated in the supplementary video. Here
we will address, one by one, the different scenarios shown
in the video.

In the indoor scenario, where a person was throwing a
ball in the air, the moment was captured using 7 cellphones.
The time difference between the different shots was in the
order of half a second. Despite this temporal misalign-
ment, the overall animation in pleasant to experience. In
this scene, the obtained graph was linear since the cameras
were recording all around the performer.

The basketball scenarios were captured from 16 differ-
ent perspectives. In one of the examples, three people were
performing. The usage of the performer stabilization in this
case drastically increased the visual quality of the resulting
animation, and made it more pleasant to visualize. To prove
this fact, we provide in the video a side by side compari-
son between the results obtained using our algorithm with
and without performer stabilization. This can also be seen
partially in Figure 5.

In order to evaluate the effectiveness of our angled graph
approach, we compared it with a naive approach where only
image similarities were considered, see Figure 7 (bottom
row). This corresponds to setting A equals to 1 in Equation
4. The obtained result was quite jagged. It is visible that
for some frames (marked with red rectangles), the camera
motion seems to be moving back and forth. Using the angle
graph instead (A = 0.5), the resulting animation is more
smooth, see Figure 7 (top row). This comparison was run
on a dataset of 235 images inside a lecture room. These
results can also be seen in the submitted video.

The properties of the angled graph allow for an intuitive
navigation of the image collection. The hall scene in the
video demonstrates this feature. The user simply needs to
specify the direction of movement and our algorithm en-
sures that the generated path lies on a geodesic of the Rie-
mannian manifold embedding all the collected images. The
paths shown in the video were 36 photos long.

Time Performance: The client interface was imple-
mented in HTMLS and accessible by the mobile browser.
The server architecture consisted of a 4 core machine work-
ing at 3.4GHz. On the server side, the computational time
required to perform the initial coarse sorting, using the dic-
tionary, was on an average less than 50 milliseconds. To
compute the sparse SIFT flow, we used the GPU implemen-
tation described in [27], which took around 100 millisec-
onds per image. Feature matching took instead almost a
second for a graph with an average connectivity of 4 neigh-
bours. Both these tasks however are highly parallelizable.
Computing the shortest path instead is a very fast operation,
and took on an average less than 100 milliseconds. Con-
cerning the uploading time, this depends on the size of the
collected images and the bandwidth at disposal. To opti-
mize this time, the images were resized on the client side to

9 Source 10 Source 11 Source 12

Source 13 Source 14 Source 15 Source 16

£ £'n-m

Figure 6. Example of smooth path generated by our algorithm.

2

960x720. Using a typical 3G connection, the upload opera-
tion took under a second to be completed.

Comparison with prior approaches: In the context of
photo collection navigation, the work most similar to ours is
Photo Tours [13]. This method first employs structure form
motion (SFM), and then computes the shortest path between
the images. To compare our approach with respect to this
method, we run SFM on our sequences. In particular, we
used a freely available implementation of SFM from [22
As a result, for an average of 80% of the images it was not
possible to recover the pose, due to sparse imagery, lack of
features, and/or reflections present in the scene.

Compared to our approach, SFM is computationally
heavier. As an example, the implementation provided
by [1], used a cluster of 500 cores. The overall operation
took about 5 minutes per image. In [13] instead, 1000 CPUs
were used, and it took more than 2 minutes per image.

Since our aim is to create smooth navigation in the im-
age space, we do not need to care about global consistency.
This drastically simplifies the solution. In essence, we fa-
vor visually smooth transitions and near-realtime results to
global consistency.

8. Conclusions

In this paper, we presented a near real-time algorithm
for interactively exploring a collectively captured moment
without explicit 3D reconstruction. Through our approach,
we are allowing users to visually navigate a salient moment
of an event within seconds after capturing it.

To enable this kind of navigation, we proposed to orga-
nize the collected images in an angled graph representation
reflecting the Riemannian structure of the collection. We
introduced the concept of geodesics for this graph, and we
proposed a fast algorithm to compute visually smooth paths
exploiting sparse feature flows.

Figure 7. (Top row) Transition obtained using our approach. (Bottom row) Transition obtained using a simpler approach accounting only

for image similarities without angles.

In contrast to past approaches, which heavily rely on
structure from motion, our approach favors immediacy and
local coherency as opposed to the global consistency pro-
vided by a full 3D reconstruction, making our approach
more robust to challenging scenarios.

Ultimately, our system enables everyday people to take
advantage of each others’ perspectives in order to create on-
the-spot spatiotemporal visual experiences. We believe that
this type of application will greatly enhance shared human
experiences spanning from events as personal as parents
watching their children’s football game to highly publicized
red carpet galas.

Acknowledgment: The research leading to these results
has received funding from the ERC grant #210806 4DVideo
under the ECs 7th Framework Programme (FP7/2007-
2013), the Swiss National Science Foundation, and the
Draper Laboratory (award #020985-018).

References

[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,
S. M. Seitz, and R. Szeliski. Building rome in a day. Com-
munications of the ACM, 2011.

[2] L. Ballan, G. J. Brostow, J. Puwein, and M. Pollefeys. Un-
structured video-based rendering: Interactive exploration of
casually captured videos. ACM SIGGRAPH, 2010.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up
robust features (SURF). CVIU, pages 346359, 2008.

[4] M. Cooper, J. Foote, A. Girgensohn, and L. Wilcox. Tem-
poral event clustering for digital photo collections. In ACM
Multimedia, pages 364-373, 2003.

[5] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.
Visual categorization with bags of keypoints. In Proceedings
of ECCV Workshop, 2004.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In IEEE CVPR, 2009.

[7]1 E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269-271, 1959.

[8] R. W. Floyd. Algorithm 97: Shortest path. Communications
of the ACM, 5(6):345, 1962.

[9] F. Grabler, M. Agrawala, R. W. Sumner, and M. Pauly. Au-
tomatic generation of tourist maps. In ACM SIGGRAPH,
2008.

[10] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. /JEEE TSSC,
4(2):100 —-107, 1968.

[11] J. Hays and A. A. Efros. Scene completion using millions of
photographs. ACM SIGGRAPH, 26(3), 2007.

[12] D. B. Johnson. Efficient algorithms for shortest paths in
sparse networks. Journal of the ACM, 1977.

[13] A. Kushal, B. Self, Y. Furukawa, D. Gallup, C. Hernandez,
B. Curless, and S. M. Seitz. Photo tours. In 3DImPVT, 2012.

[14] D. Lowe. Object recognition from local scale-invariant fea-
tures. In IEEE ICCV, 1999.

[15] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Inferna-
tional Conference on Computer Vision Theory and Applica-
tion VISSAPP’09), pages 331-340. INSTICC Press, 2009.

[16] M. Naaman, Y. J. Song, A. Paepcke, and H. Garcia-Molina.
Automatic organization for digital photographs with geo-
graphic coordinates. In JCDL, 2004.

[17] A. Oliva and A. Torralba. Modeling the shape of the scene:
A holistic representation of the spatial envelope. IJCV, 2001.

[18] V. Popescu, P. Rosen, and N. Adamo-Villani. The graph
camera. ACM SIGGRAPH ASIA, pages 1-8, 2009.

[19] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. Labelme: A database and web-based tool for image
annotation. IJCV, 77:157-173, 2008.

[20] J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and W. Freeman.
Creating and exploring a large photorealistic virtual space.
In IEEE WIV, 2008.

[21] N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski. Finding
paths through the world’s photos. ACM SIGGRAPH, 2008.

[22] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-
ploring photo collections in 3d. In ACM SIGGRAPH, 2006.

[23] C. Tomasi and T. Kanade. Detection and tracking of point
features. Technical Report CMU-CS-91-132, Carnegie Mel-
lon University, 1991.

[24] J. Tompkin, K. Kim, J. Kautz, and C. Theobalt. Videoscapes:
Exploring sparse, unstructured video collections. In ACM
SIGGRAPH, 2012.

[25] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene
recognition. IEEE PAMI, 2008.

[26] K. Toyama, R. Logan, and A. Roseway. Geographic location
tags on digital images. In ACM MULTIMEDIA, 2003.

[27] C. Wu. SiftGPU: A GPU implementation of scale invari-
ant feature transform (SIFT). http://cs.unc.edu/
~ccwu/siftgpu, 2007.

http://cs.unc.edu/~ccwu/siftgpu
http://cs.unc.edu/~ccwu/siftgpu

