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Figure 1: Using our custom time of flight camera, we are able to visualize light sweeping over the scene. In this scene, multipath effects
can be seen in the glass vase. In the early time-slots, bright spots are formed from the specularities on the glass. Light then sweeps over the
other objects on the scene and finally hits the back wall, where it can also be seen through the glass vase (8ns). Light leaves, first from the
specularities (8-10ns), then from the stuffed animals. The time slots correspond to the true geometry of the scene (light travels 1 foot in a
nanosecond, times are for round-trip). Please see http://media.mit.edu/∼achoo/lightsweep for animated light sweep movies.
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Figure 2: Recovering depth of transparent objects is a hard problem in general and has yet to be solved for Time of Flight cameras. A
glass unicorn is placed in a scene with a wall behind (left). A regular time of flight camera fails to resolve the correct depth of the unicorn
(center-left). By using our multipath algorithm, we are able to obtain the depth of foreground (center-right) or of background (right).

Abstract

Time of flight cameras produce real-time range maps at a relatively
low cost using continuous wave amplitude modulation and demod-
ulation. However, they are geared to measure range (or phase) for
a single reflected bounce of light and suffer from systematic errors
due to multipath interference.

We re-purpose the conventional time of flight device for a new goal:
to recover per-pixel sparse time profiles expressed as a sequence of
impulses. With this modification, we show that we can not only ad-
dress multipath interference but also enable new applications such
as recovering depth of near-transparent surfaces, looking through
diffusers and creating time-profile movies of sweeping light.

Our key idea is to formulate the forward amplitude modulated light
propagation as a convolution with custom codes, record samples
by introducing a simple sequence of electronic time delays, and
perform sparse deconvolution to recover sequences of Diracs that
correspond to multipath returns. Applications to computer vision
include ranging of near-transparent objects and subsurface imaging
through diffusers. Our low cost prototype may lead to new insights
regarding forward and inverse problems in light transport.

∗achoo@mit.edu
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1. Introduction

Commercial time of flight (ToF) systems achieve ranging by am-
plitude modulation of a continuous wave. While ToF cameras pro-
vide a single optical path length (range or depth) value per pixel the
scene may actually consist of multiple depths, e.g., a transparency
in front of a wall. We refer to this as a mixed pixel. Our goal is to re-
cover the sequence of optical path lengths involved in light reaching
each pixel expressed as a time profile. To overcome the mixed pixel
problem and to enable new functionality, we repurpose the device
and change the computation in two ways. First, we emit a custom
code and record a sequence of demodulated values using successive

http://doi.acm.org/10.1145/2508363.2508428
http://portal.acm.org/ft_gateway.cfm?id=2508428&type=pdf


electronic delays. Second, we use a sparse deconvolution procedure
to recover a sequences of Diracs in the time profile corresponding
to the sequence of path lengths to multipath combinations.

1.1. Contributions

Our key contribution:

• The idea of using a single-frequency, coded illumination ToF
camera to turn time profile recovery into a well-conditioned
sparse deconvolution problem.

Secondary technical contributions:

• Evaluation of different modulation codes and sparse pro-
grams.

• A tailored sparse deconvolution model using a proximity-
based approach to matching pursuit.

These technical contributions lead to four applications for time of
flight cameras:

1. Light Sweep Imaging.1

2. Obtaining depth of translucent objects.

3. Looking through diffuse media.

4. Increasing the accuracy of depth maps by solving and correct-
ing for multipath reflections.

In addition, we provide quantitative evaluations of our methods,
suggest directions for future work, and discuss the benefits and lim-
itations of our technique in the context of existing literature.

Scope: In this paper, we construct a low-cost prototype camera
from a bare sensor; however, our method can be implemented on
commercial time of flight cameras by reconfiguring the proprietary,
on-board FPGA software. Constructing a similar prototype to our
camera would cost 500-800 dollars. In this paper, we consider re-
covery of a discretized time profile, which means that our technique
cannot resolve closely spaced optical paths that mix into 1 time slot,
such as the numerous interreflections from a corner.

2. Related Work
Time Profile Imaging dates back to the work of Abramson in
the late 70’s. Abramson’s technique, so-called “light in flight”, uti-
lized holographic recordings of a scene to reconstruct the wave-
front of light [Abramson 1980]. In 2011 the nascent field of femto-
photography was introduced in the vision and graphics community.
Key papers include: reflectance capture using ultrafast imaging
[Naik et al. 2011], frequency analysis of transient light transport
[Wu et al. 2012], looking around corners [Velten et al. 2012], and
femto-photography [Velten et al. 2013]. While a photonic mixer
device has been proposed for low-budget transient imaging [Heide
et al. 2013], this technique requires data at hundreds of frequencies
of modulation, to recover a time profile. In contrast, we imple-
ment a radically simple single-frequency, time shifted capture that
addresses sparsity in optical path lengths as well as multipath.

Multipath Interference occurs when multiple light-paths hit the
ToF sensor at the same pixel. This results in a measured range
that is a non-linear mixture of the incoming light paths. Dorring-
ton demonstrated the seminal method to resolve multiple on com-
mercial ToF cameras by using multi-frequency measurements [Dor-
rington et al. 2011; Bhandari et al. 2013]. Godbaz continued this

1Light Sweep Imaging is a visualization of the per-pixel time profile at
70 ps time resolution achieved by sweeping through the time profile solved
with the Tikhonov program. The output is analogous to a temporally en-
coded depth map, where the multipath problem has been solved. Figure 1
illustrates the distinction where a proper time profile movie handles mixing
on the pixel-level from the vase and wall behind.

work by finding a closed-form mathematical model method to mit-
igate multifrequency multipath [Godbaz et al. 2012]. The work by
Heide et al. investigates multipath in the context of global illumina-
tion, which was proposed in [Raskar and Davis 2008]. A number of
methods of separating out multiple returns based on the correlation
waveform shape were explored by Godbaz. Specifically, this in-
cluded investigations into sparse spike train deconvolution via gra-
dient descent, the Levy-Fullagar algorithm, and a waveform shape
fitting model to accurately model. Godbaz concluded that the cor-
relation function in standard AMCW is not designed for harmonic
content, which limits all current methods [Godbaz et al. 2013]. Pre-
vious attempts only address multipath in the context of mitigating
range errors. In this paper, we recover multipath returns by demul-
tiplexing at a single modulation frequency.

Custom Codes have been recently proposed within the time of
flight community to reduce interference from an array of multiple
time of flight cameras. While the standard code is a simple square
pulse, Buttgen et al. and Whyte et al. have proposed custom codes
in the specific context of simultaneous camera operation: based on
these research lines, a patent was granted to Canesta Inc [Buttgen
and Seitz 2008; Whyte et al. 2010; Bamji et al. 2008]. However,
custom camera codes have not been explored for the case of single
camera operation. Although, coding in time with carefully cho-
sen binary sequences is used for motion deblurring in conventional
cameras [Raskar et al. 2006], for ToF cameras, we show that they
can be used to resolve multipath returns.

Sparse Deconvolution was first introduced in the context of
seismic imaging. While Weiner deconvolution was the prevalent
approach until an ‖·‖`1 penalty term (where ‖x‖`1 =

∑
k |xk|) in

context of sparsity inducing decovolution was introduced by Clear-
bout and Muir [Claerbout and F 1973] in 1970s. Taylor et al. [Tay-
lor et al. 1979] worked on a variation to seek the solution to the
problem Jλ (x) = ‖Ax− b‖`1 + λ‖x‖`1 . [Santosa and Symes
1986] recast the least–squares deconvolution problem with sparse
penalty term, Jλ (x) = ‖Ax− b‖2`2 +λ‖x‖`1 . Since then a num-
ber of modifications have been proposed for both the cost function
Jλ, for example see [O’Brien et al. 1994] as well as the problem of
accelerating the optimization problem with `1 penalty term [Darche
1989; Daubechies et al. 2004] with Lasso and Basis–pursuit being
notable examples. These problems are now discussed under the
general theme of sparsity and compressed sensing [CSm 2008].

Depth Imaging of Translucent Objects is an active problem in
range imaging. In the context of structured light, Narasimhan et
al. were able to obtain the range of objects in scattering media by
using five separate illumination locations [Narasimhan et al. 2005].
For stereo imaging, Tsin et al. were able to show that their stereo
matching algorithm was able to range through translucent sheets
[Tsin et al. 2006]. A recent paper from [Gupta et al. 2013] delivered
a practical approach to 3D scanning in the presence of different
scattering effects. Despite the increasing popularity of time of flight
technology, ranging of transparent objects remains an open problem
for the time of flight community.

Subsurface Rendering and Imaging has been a cornerstone in
the computer graphics and computer vision communities. It is well
known that accurate modelling of global illumination is integral to
realistic renderings [Jensen et al. 2001]. Approaches for imaging
through a diffuser have included time-resolved reconstruction [Naik
et al. 2013] and a sparse, spatial coding framework [Kadambi et al.
2013]. In this paper, we look through a diffuser by coding in time
with ToF camera hardware.
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Figure 3: Why use a Custom, Coded Camera? (top row) When
using a conventional time of flight camera the correlation wave-
form is sinusoidal (red curve). When this is convolved with the
environment response, the resulting measurement (black curve) is
also sinusoidal. This creates a problem in unicity. (bottom row)
When using custom codes, the correlation waveform shows a dis-
tinct peak that is non-bandlimited. Therefore, when convolved with
the environment, the output measurement has 2 distinct peaks. The
diracs can be recovered by a deconvolution, specifically, a sparse
deconvolution. This is the crux of our paper.

3. Time of Flight Preliminaries
3.1. Overview of Conventional Time of Flight

A ToF camera is, for the most part a regular camera, with a time-
coded illumination circuit. Concretely, in common, commercial
implementations, an LED is strobed with a high-frequency square
pulse (often 30-50 MHz). Light hits an object in the scene and then
returns to the camera. Sampling the optical signal in time reveals
a shifted version of the original signal, where the amount of shift
encodes the distance that light has travelled. One approach to calcu-
lating the shift is to simply cross-correlate the reference waveform
with the measured optical signal and find the peak.

3.2. Notation

Throughout this discussion, we use f (·) for functions with continu-
ous argument and f [·] as their discrete counterparts. Also, a major
part of our discussion relies on the definition of cross–correlation
between continuous functions and discrete sequences. Given two
functions a (t) and b (t), we define the cross–correlation as

ca,b (τ) = lim
∆→∞

1

2∆

∫ +∆

−∆

a∗ (t) b (t+ τ) dt⇔ (a⊗ b) (t) ∀t ∈ R

where a∗ denotes complex–conjugate of a and⊗ denotes the cross–
correlation operator. Cross–correlation is related to the convolution
operator by:

(a⊗ b) (t) = (a∗ ∗ b) (t)

where ā(t) = a(−t) and ‘∗’ denotes the linear convolution opera-
tor.

The definition of cross–correlation leads to a natural extension for
discrete sequences:

ca,b [τ ] =
1

K

K−1∑
k=0

a∗ [k] b [τ + k]⇔ (a⊗ b) [τ ]

where a [k] = a (kT ) and b [k] = b (kT ) , ∀k ∈ Z and for some
sampling step T > 0.

A ToF camera uses an illumination control waveform iω(t) with a
modulation frequency ω to strobe the light source. In practice, it is

often the case that the illumination waveform is a periodic function
such that:

iω (t+ T0) = iω (t)

where T0 is the time–period of repetition. Since we use a homo-
dyne setting, for the sake of notational simplicity, we will drop the
subscript ω and use i = iω . The TOF camera measurements are
obtained by computing cm,r (τ) where,

•m(t): optical signal from the light source, and,
• r(t) : reference signal.

In typical implementations the illumination control signal and ref-
erence signal are the same, that is, i(t) = r(t). The phase which
is encoded in the shift τ? = arg maxτcm,r [τ ], can be obtained a
number of ways.

In commercial implementations, for example the PMD or the Mesa
TOF cameras, 2 to 4 samples of the correlation function cm,r[τ ]
suffice for the computation of the phase. For many modulation
functions, a sample on the rising edge and another on the falling
edge are sufficient to find the peak. Another technique for com-
puting the phase involves oversampling of the correlation function.
There on, it is possible to interpolate and analyse the Fourier spec-
trum or simply interpolate the peak directly. The oversampling case
is germane to the problem of multipath as the correlation function
(for a custom code) can become distorted. The final calculation
from phase to distance is a straightforward linear calculation. For
a Photonic Mixer Device that uses square wave modulation and a
sinusoidal form for cm,r[τ ], the conversion is simply:

d =
cφ

4πfω
, c = 3× 108 m/s .

It is important to note that time of flight cameras can theoretically
operate at different modulation frequencies, which means that the
distance is constant at different modulation frequencies and thus the
ratio φ

fω
is constant, that is, doubling the modulation frequency will

double the phase for a single-path scene.

3.3. Custom Codes

Conventional implementations use a sinusoidal correlation func-
tion. This approach works for conventional range imaging, but can-
not deal with multipath objects. In figure 3, we see that the two
reflected sine waves from the red and blue objects add to produce
a sinusoidal measurement (black curve). The phase of this mea-
sured sinusoid is in-between the phases of the component red and
blue sinusoids, which creates a problem of unicity. Concretely, it is
unclear whether two component sine waves are really in the envi-
ronment, or if only one component exists (with the mixed phase).

We now turn to using custom codes. Figure 3 illustrates that it
is desirable to change the correlation waveform to avoid problems
with unicity. This can be done by selecting appropriate binary se-
quences for r(t) and i(t), which we detail in Section 6 and Figure
5. In Section 4 we show that the code selection also ties in with the
conditioning of our inverse problem.

3.4. Benefits of Single Frequency

An alternate approach introduced by the Waikato Range Imaging
group is to acquire range maps at different modulation frequencies
and then solve a fitting problem to resolve multipath—this is also
the method used by Heide et al. Unfortunately, the problem of ex-
ponential fitting is known to be ill-conditioned and the implementa-
tion is often challenging—it is time consuming, requires additional
hardware for multi-frequency, and most important, the frequency
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Figure 4: The environment profile function ξ[t] is simply a dis-
cretized time profile. For the case of one opaque wall, the environ-
ment profile will appear as a single spike. For a transparency in
front of a wall, the environment profile appears as a pair of spikes.
In the case of scattering media, the time profile may not be sparse.
For most applications of time of flight a sparse formulation of ξ[t]
is desired.

response calibration varies from shot to shot. In this paper, multi-
path recovery is performed using only a single frequency ToF cam-
era. Such a camera can be built with reprogramming of the FPGA
on PMD and Mesa cameras.

4. Coded Deconvolution
4.1. Forward Model of Environment Convolution

We start by relating the optically measured signal m[t] to the dis-
crete illumination control signal i[t]:

m [t] = (i ∗ ϕ ∗ ξ) [t] . (1)

Here, the illumination signal i[t] is first convolved with a low–pass
filter ϕ[t]. This represents a smoothing due to the rise/fall time
of the electronics. Subsequent convolution with an environment
response ξ[t] returns the optical measurement m[t].

The function ξ[t] is a scene-dependent time profile function (Figure
4). For a single opaque object, ξ[t] appears as a Kronecker Delta
function: δ[t− φ] where φ represents the sample shift that encodes
path-length and object depth. In the multipath case, without scat-
tering, the environment function represents a summation of discrete
Dirac functions:

ξ[t] =

K−1∑
k=1

αkδ[t− tk],

where {αk, τk}K−1
k=0 denotes amplitude scaling and phases, respec-

tively.

We now turn to a definition of the measured cross-correlation func-
tion in the presence of the environment function:

cr,i∗ϕ∗ξ [τ ] = (r ⊗ (i ∗ ϕ ∗ ξ)) [τ ]

= (r ⊗ i)︸ ︷︷ ︸
ζ[t]

∗ϕ ∗
∑K−1

k=0
αkδ [· − tk]︸ ︷︷ ︸

Sparse Environment Response

= ζ ∗ ϕ ∗
∑K−1

k=0
αkδ [· − tk]. (2)

This is the key equation in our forward model where our measure-
ments cr,i∗ϕ∗ξ [τ ] are the cross-correlations in presence of an un-
known, parametric environment response, ξ[t]. In this paper, we
have written the measurement as a convolution between the envi-
ronment and the deterministic kernel, ζ [t] = (r ⊗ i) [t] and the
low pass filter, ϕ.

Conditioning the Problem Note that Equation 2 can be devel-
oped as:

(ζ ∗ ϕ)︸ ︷︷ ︸
h

∗ξ [t] = (h ∗ ξ) [t] (3)

where h[t] is the convolution kernel resulting from low–pass filter-
ing of ζ.

In vector–matrix form the convolution is simply a circulant Toeplitz
matrix acting on a vector:

y = (h ∗ ξ)︸ ︷︷ ︸
Hx

[t]⇔ Hd×d︸ ︷︷ ︸
Toeplitz

: xd×1 7→ yd×1 = Hx (4)

where y ∈ Rd is measurement vector which amounts to the sam-
pled version of the correlation function where d represents the num-
ber of samples. The convolution matrix H ∈ Rd×d is a circu-
lant Toeplitz matrix, where each column is a sample–shift of h[t].
Since h implicitly containts a low–pass filter ϕ. Finally, the vector
x ∈ Rd is the vector corresponding to the environment ξ[t],

x = [ξ [0] , ξ [1] , . . . , ξ [d− 1]]> .

Given y, since we are interested in parameters of ξ, the key re-
quirements on the convolution matrix H is that its inverse should
be well defined. Equation 4 is a classic linear system. Provided that
H is well conditioned, it can be inverted in context of linear inverse
problems. Since H has a Toeplitz structure, it is digonalized by
the Fourier matrix and the eigen–values correspond to the spectral
components of h.

Controlling the condition number of H amounts to minimizing
the ratio of highest to lowest Fourier coefficients of h[t] or eigen–
values of H. This is the premise for using binary sequences with
a broadand frequency response. Figure 5 outlines several common
codes as well as their spectrums.

In this paper, we assess different code strategies in section 6.

4.2. Sparse Formulation

Since ξ[t] is completely characterized by {αk, τk}K−1
k=0 , in the mul-

tipath case, our goal is to estimate these parameters. For given set
of measurements y,

y [τ ] =

K−1∑
k=0

αkh [τ − tk]⇔ y = Hx

and knowledge of h, the problem of estimating ξ boils down to,

arg min
{αk,tk}

∣∣∣∑K−1

k=0
y [t]−

∑K−1

k=0
αkh [t− tk]

∣∣∣2.
There are many classic techniques to solve this problem in time or
in frequency domain, including a pseudoinverse or even Tikhonov
regularization. However, since we know that ξ is a K–sparse sig-
nal, in this paper we begin with a sparsity promoting optimiza-
tion scheme. The problem falls into the deconvolution framework
mainly because of the low–pass nature of h or the smearing effect
of H. In this context, the sparse deconvolution problem results in
the following problem:

arg min
x

||Hx− y||22 such that ||x||0 ≤ K,

where ‖x‖0 is the number of non-zero entries in x. Due to non–
convexity of ‖x‖0 and mathematical technicalities, this problem
is intractable in practice. However, a version of the same which
incoporated convex relaxation can be cast as:

arg min
x

||Hx− y||22 such that ||x||1 ≤ K,
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Figure 5: Evaluating custom codes. We compare three different codes: conventional square, broadband code from [Raskar et al. 2006],
and our m-sequence. The spectrum of the codes (magenta) affects the condition number in our linear inverse problem. The autocorrelation
function (black) is simply the autocorrelation of the bit sequences shown in blue. In the context of physical constraints, a low pass filter
smoothens out the response of the correlation function to provide the measured autocorrelation shown in red. Note that the spectrum of the
magenta curve contains nulls (please zoom in PDF).

where ‖x‖1 =
∑
k |xk| is the `1–norm. This is commonly known

as the LASSO problem. Several efficient solvers exist for this prob-
lem. We use SPGL1 and CVX for the same. An alternative approach
to utilizes a modified version of the greedy, orthogonal matching
pursuit algorithm (OMP) that approximates the `0 problem. In par-
ticular, we propose two modifications to the OMP formulation:

1. Non-negativity Constraints, and,

2. Proximity Constraints

Non-negativity requires two modifications to OMP: (a) when
searching for the next atom, consider only positive projections or in-
ner products, and (b) when updating the residual error, use a solver
to impose a positivity constraint on the coefficients. Detailed analy-
sis including convergence bounds can be found in [Bruckstein et al.
2008].

Our second proposition which involves proximity constraints is
similarly simple to incorporate. For the first projection, we al-
low OMP to proceed without modifications. After the first atom
has been computed, we know that the subsequent atom must be in
proximity to the leading atom in the sense that the columns are near
one another in the matrix H. In practice, this involves enforcing a
Gaussian penalty on the residual error. This can be formulated as a
maximum a posteriori (MAP) estimation problem:

arg max
x

p (x|y) ∝ arg max
x

p (y|x)︸ ︷︷ ︸
likelihood

p (x)︸︷︷︸
prior

where p(y|x) is the likelihood which is a functional form of the
combinatorial projection onto the dictionary, and p(x) is a prior,
modelled as,

p(x) ∈ N (x;µ, σ2) where µ = xK=1

where N is the usual Normal Distribution with mean and variance
µ and σ2, respectively. Here, xK=1 represents the column index of
the first atom.

In our case, the prior is a physics–inspired heuristic that can be
carefully chosen in the context of binary codes and by extension
the knowledge of our convolution kernel.

4.3. Deconvolution for Time Profile Movies

In a transient movie each pixel can be represented as a time profile
vector which encodes intensity as a function of time. We recognize
that for a time of flight camera, the analogue is a phase profile vec-
tor, or in other words the environment function ξ[t]. In the previous
case, we considered ξ[t] to be a sparse function resulting from a few
objects at finite depths. However, in the case of global illumination

Figure 6: Our prototype implementation uses a Stratix FPGA with
high-frequency laser diodes interfaced with a PMD19k-2 sensor.
Similar functionality can be obtained on some commercial ToF
cameras with reconfiguration of the FPGA programs.

and scattering, the environment response is a non-sparse function
(see Figure 4). To create a transient movie in the context of global
illumination we use Tikhonov regularization for our deconvolution
problem. Specifically, we solve the problem in the framework of
Hodrick–Prescott filtering [Hodrick and Prescott 1997] which can
be thought of Tikhonov regularization with a smoothness prior:

arg min
x
‖y −Hx‖22 + λ ‖Dx‖22 ,

where D is a second order difference matrix with circulant Toeplitz
structure and λ is the smoothing parameter. We use Generalized
Cross-Validation to select the optimal value of λ.

5. Implementation
Because we use a single modulation frequency, the hardware pro-
toype requires only a reconfiguration of the on-board FPGA located
on commercial ToF cameras. However, on such cameras, the FPGA
is surface mounted and the HDL code is proprietary.

Therefore, we validate our technique using a prototype time of
flight camera designed to send custom codes at arbitrary shifts (see
Figure 6). For the actual sensor, we use the PMD19k-2 which has a
pixel array size of 160× 120. This sensor is controlled by a Stratix
III FPGA operated at a clock frequency of 1800 MHz. For illumi-
nation we use Sony SLD1239JL-54 laser diodes that are stable at
the modulation frequency we use (50 MHz). The analog pixel val-
ues converted to 16bit unsigned values by an ADC during the pixel
array readout process. A photo of the assembled camera is shown
in figure 6. For further details please refer to [Whyte et al. 2010]
and [Carnegie et al. 2011] for the reference design.

Time Resolution: The Stratix III FPGA allows for rapid sweeps
between the reference and illumination signal. In our implementa-
tion, the modulation signals are generated on the phase lock loop
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Figure 7: Comparing different deconvolution algorithms using a mixed pixel on the unicorn dataset (Figure 2). (a) The measured cross
correlation function is a convolution between the two diracs and the kernel in (c). (b) The measured and reconstructed cross-correlation
function for various classes of algorithms. (d) The deconvolution using a simple pseudoinverse when compared to the ground truth in red.
(e) Tikhonov regularization is close to the peak although the solution is not sparse. (f) The Lasso approach hits the peaks but must be tuned
carefully to select the right amount of sparsity (g) Finally, our proposed approach is a slightly modified variant of Orthogonal Matching
Pursuit. It is able to find the Diracs. This result is from real data.

(PLL) inside the Stratix III FPGA with a configurable phase and
frequency from a voltage controlled oscillator, which we operate
at the maximum 1800 MHz. The theoretical, best-case time res-
olution, is calculated at 69.4 ps from the hardware specs—please
see the supplementary website. From a sampling perspective, this
limit describes the spacing between two samples on the correlation
waveform.

Future Hardware: The latest Kintex 7 FPGA from Xilinx sup-
ports frequencies up to 2133MHz, which would theoretically allow
for a time resolution of 58.6ps. It is expected that newer generations
of FPGA technology will support increasingly high oscillation fre-
quencies, improving the time resolution of our method.

6. Assessment

6.1. Custom Codes

We now turn to the selection of codes for r(t) and i(t). For sim-
plicity, we consider symmetric coding strategies—we pick the same
code for r(t) and i(t). Because the smearing matrix in equation 4
is Toeplitz, its eigenvalues correspond to spectral amplitudes. Since
the condition number relates the maximal and minimal eigenvalues,
a low condition number in this context corresponds to a broadband
spectrum.

Square Codes are used in the typical commercial implementa-
tions and lead to a sinusoidal correlation function. This is a double-
edged sword. While sinusoidal correlation functions allow a neat
parametric method to estimate the phase—one only needs 3 sam-
ples to parametrize a sinusoid—they lead to problems of unicity

and are thus not suitable for multipath scenarios (Figure 3).

Delta Codes seem promising for deconvolution as their spectrum
is broadband. However, aside from the obvious issue of SNR, it is
not possible to generate a true Delta code in hardware. The best
you can do is a narrow box function. In Fourier domain this is
a sinc function with characteristic nulls which makes the problem
poorly conditioned.

Maximum-length sequences are in the class of pseudorandom
binary sequences (PN-sequences). PN-sequences are deterministic,
yet have a flat spectrum typical of random codes. In particular, the
m-sequence is generated recursively from primitive polynomials.
The main advantage of m-sequences is that they are equipped with
desirable autocorrelation properties. Concretely, let us consider an
m-sequence stored in vector z with a period of P :

a[z,z](k)⇔
∑
i

ziz̄i−k =

{
1 k = 0
1
P

0 < k < P − 1

}
(5)

where a[z,z] defines the autocorrelation operator. As the period
length P increases the autocorrelation approaches an impulse func-
tion, which has an ideal broadband spectral response. As a bonus,
m-sequences are easy to generate, deterministic, and spectrally flat.

6.1.1. Simulations

In Figure 5 we show three different codes along with their spec-
trums, autocorrelation, and ”‘measured autocorrelation”’ (after the
low-pass operator). the spectra of the square code has many nulls,
leading to an ill-conditioned problem. Moreover, the autocorre-
lation of a square code (black curve) smoothens into a sinusoidal



correlation function, which brings the unicity problem from Figure
3 into context. In contrast, the Broadband code from [Raskar et al.
2006], has been optimized to have a very low condition number and
flat frequency response.

To summarize: based on the spectrum, either the broadband or m-
sequence codes lead to a potentially well-conditioned inverse prob-
lem for equation 4. While the Broadband code does have a slightly
lower condition number—it has been optimized in that aspect—the
m-sequence offers two critical advantages: (i) the code length is
easy to adjust and (ii) the autocorrelation function is nearly zero
outside of the peak (Equation 5). The length of the m-sequence is
critical: too short of a sequence and the autocorrelation will be high
outside the peak and too long of a code leads to a longer acquisition
time. The code we used is a m-sequence of length 31 (m=5).2,3

6.2. Assessing Sparse Programs

In Figure 7 we outline various deconvolution strategies for a mixed
pixel on the unicorn in Figure 2. We expect two returns in this
scene—one from the surface of the near-transparent unicorn and
one from the wall 2 meters behind. From Figure 4 it would seem
that two Dirac functions would form a reasonable time profile that
convolve with a kernel to provide the measurement. The ground
truth is shown as red dirac deltas in Figure 7d-g. The modified vari-
ant of orthogonal matching pursuit that we propose seems to per-
form the best in the sense of sparsity, while Lasso seems to approx-
imate the peaks and amplitudes well. Whichever method is chosen,
it is clear that all schemes, including a naive pseudoinverse, lead
to a reasonable reconstruction of ŷ, substantiating our belief that
data fidelity combined with sparsity is appropriate for our context
(Figure 7b).

7. Results

7.1. Applications

1. Time Profile Imaging: Please see the supplemental website
for movie versions. In Figure 1 we see light sweeping first over the
vase, then mario, then the lion, and finally to the wall behind. The
key idea is that we solve for multipath effects, e.g., the interactions
of the translucent vase and back wall. In Figure 8 we see light first
sweeping over the teddy bear in the scene, and at later time slots,
over its reflection in the mirror.

Now we consider global illumination (due to internal scattering). In
Figure 2 a transparent acrylic unicorn (thickness 5 mm) is placed
10 centimeters away from the co-located camera and light source.
Approximately 2 meters behind the unicorn is an opaque white
wall. We expect two returns from the unicorn—a direct reflection
off the acrylic unicorn and a reflection from the back wall pass-
ing through the unicorn. The first frame of Figure 9 is acquired
at 0.1 ns, where we begin to see light washing over the unicorn.
Step forward 200 picoseconds, and we see a similar looking frame,
which represents internal reflections. We verify that intensities at
this frame exclude surface reflections from the acrylic by observing
that the leg, which was specular at 0.1 nanoseconds (Figure 9), has
now decreased in intensity. In summary, our technique seems to
be able to distinguish direct and global illumination by solving the
multipath deconvolution problem. This experiment underscores the
link between multipath resolution and time profile imaging (Figure
4).

We turn to physically validating the time resolution of our proto-
type. In Figure 10 we create a time profile movie of the angled

2The specific m-sequence: 0101110110001111100110100100001.
3See http://media.mit.edu/˜achoo/lightsweep/ to gen-

erate your own m-sequences.

1ns 2ns 3ns 4ns 5ns

6ns 7ns 8ns 9ns 10ns

Figure 10: Sample frames of Light Sweep Imaging on the angled
wall from Figure 11. Since the laser is orthogonal to the normal
of the wall, light seems to sweep across the wall. In the best case
scenario we are able to obtain a time resolution on the order of
700-1000 picoseconds. Colors represent frames at different times
according to the rainbow coloring scheme. The first frame occurs
at 1 ns after light has entered the scene and subsequent frames
are sampled at every nanosecond. Since light travels 30 cm in a
nanosecond we use the geometry of the scene to verify our imaging
modality.
0ps ~100ps ~200ps ~300ps

Figure 11: Quantifying the time resolution of our setup on an an-
gled wall with printed checkers. From the knowledge of the geome-
try relating the camera, light source and wall as well as the checker
size, we calculate the a 6cm optical path length across the large
checkers. We show 4 successive frames at approximately 100 pi-
cosecond intervals. Within the four frames, light has moved one
checker, suggesting that our practical time resolution is approxi-
mately on the order of 2 cm or 700-1000 picoseconds. This agrees
with our theoretical calculations in Section 5.

wall. In this setup, the laser beam is nearly orthogonal to the nor-
mal of the wall, i.e,. the light strikes nearly parallel along the wall.
Using this fact and accounting for the camera position and checker
size, we have a calibrated dataset to measure our time resolution:
light propagation across the largest square represents 6 cm of round
trip light travel (the square is approximately 3 cm). In Figure 11, we
show four consecutive frames of the recovered time profile. It takes
approximately three frames for the wavefront to propagate along
one checker, which suggests we can resolve light paths down to 2
cm. This agrees with the theoretical best case calculated in Section
5. We have verified that the time profile frames correspond with the
geometry of the scene.

2. Ranging of Transparent Objects For the unicorn scene, Fig-
ure 2 depicts the amplitude and range images that a conventional
time of flight camera measures. Because the unicorn is made of
acrylic and near-transparent, the time of flight camera measures an
incorrect depth for the body of the unicorn. By using sparse decon-
volution and solving the multipath problem, we are able to select
whether we want to obtain the depth of the unicorn or the wall be-
hind. Our method generalizes to more than two objects. In Figure
13 we show a mixed pixel of 3 different path-lengths. In practice,
2 path lengths are more common and intuitive and are the focus for
our applications. Of course, this method is limited by the relative
amplitude of foreground and background objects—at specularities
there is very little light coming from the back wall.

3. Looking Through Diffusing Material In Figure 12, a diffuser
is placed in front of a wall containing printed text. With the regular

http://media.mit.edu/~achoo/lightsweep/


Mirror 0ns 1ns 2ns 4ns 6ns

10ns 12ns 15ns 17ns8ns

Figure 8: A light sweep scene where a teddy bear is sitting on a chair with a mirror placed in the scene. We visualize light sweeping, first
over the teddy bear (0-6 ns), then to its mirror reflections (8-17 ns). Light dims from the real teddy bear (15 ns) until finally only the reflection
persists (17ns). Please see the webpage for the light sweep movie.

12ns 12.5ns0.1ns 0.2ns 4ns 8ns

Figure 9: A light sweep scene with a near-transparent acrylic unicorn 2 meters in front of a wall. In particular, note the large gap between
light sweeping over the unicorn and the back wall. The number “13” printed on the back wall, is only visible at later time-slots, while
the body of the unicorn is opaque at early time slots. Between the first two frames, the specularities have dissapeared and only the global
illumination of the unicorn persists.

Measured Amplitude Component Amplitude

Figure 12: We present an implementation scenario of a time of
flight camera looking through a diffuser. When solving the sparse
deconvolution problem and selecting the furthest return, we are
able to read the hidden text.

amplitude image that the camera observes, it is challenging to make
out the text behind. However, by deconvolving and visualizing the
amplitude of the Dirac from the back wall, we can read the hidden
text.

4. Resolving Ranging Errors We present a simple example of
resolving ranging errors. In Figure 14 we take a time of flight
capture of a checkerboard grating where mixed pixels occur along
edges. We show the original slice along the image as well as the
corrected slice which has two discontinuous depths. While a sim-
ple TV norm would also suffice, this toy example demonstrates that
deconvolution, in addition to application scenarios, can help miti-
gate standard multipath time of flight ranging errors.

7.2. Pitfalls

Failure cases occur when multiple light paths with a similar optical
length smear into a single time slot. In Figure 15 the deconvolved
slice of the corner is no better than the phase of the Fourier harmon-
ics. Such cases remain an open problem.
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Figure 13: Proximal matching pursuit generalizes to more
bounces. 2 transparencies are placed at different depths in front
of a wall, resulting in mixed pixels of three optical paths.

Another pitfall occurs when there is an amplitude imbalance be-
tween the returns. In Figure 2, the leg on the glass unicorn in the
Amplitude Image (upper-left) is specular. Very little light passes
through the glass and back to the unicorn, and the measurement
primarily consists of the specular return. As such, the background
depth image (upper-right) still uncludes remnants of the specular
leg. Similarly, in Figure 1 it is not possible to see through the spec-
ularities on the glossy vase to reveal the checkered wall behind.

8. Discussion

8.1. Comparisons

Our prototype camera combines the advantages of a sparsity based
approach with custom codes. Using data acquired at a single modu-
lation frequency we are able to obtain time profile movies of a scene
at 70 picoseconds of resolution with simple hardware. Although
the state-of-the art by Velten et al. obtains 2 picosecond time reso-
lution, their approach uses laboratory grade equipment and is out of
reach for most research labs. While a low-budget solution has been
recently proposed by Heide et al, our method does not require spe-
cial hardware for multi-frequency capture and avoids a lengthy cal-
ibration protocol. In addition, we document our achieved time res-
olution and observe that our approach minimizes the gap between
theoretical and practical limits.
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Figure 14: A simple result, where we show that deconvolution pro-
duces a ”‘sharper”’ depth map. The scene is a checkerboard grat-
ing in front of a wall. In the regular phase image of a checker-
board pattern, the edges have a characteristic mixed pixel effect on
the edges. This is clear when plotting a horizontal slice along the
checkerboard (red curve). After deconvolving, we obtain a cleaner
depth discontinuity (green curve).
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Figure 15: Failure Case. Our results are inconclusive on a corner
scene: the time profile is non-sparse and reflections smear into one
time slot.

Part of our work is focused on applications that extend time of flight
technology to a broader context. Despite the increasing popularity
of time of flight imaging, to our knowledge, resolving translucent
objects for this modality is unexplored. In this paper, we also in-
crease the accuracy of time of flight range measurements by re-
moving multipath contamination. Finally, while looking through a
diffuser is a well characterized problem, we have tailored it to time
of flight technology.

8.2. Limitations

In our experiments, we approach the theoretical time limit of 70
picoseconds set by the FPGA clock. In the future, this limitation
can be addressed by using readily available FPGA boards that have
higher clock limits. The low spatial resolution of our Light Sweep
Imaging technique is inherent to current time of flight cameras.
State of the art time of flight cameras have four times the resolution
of our prototype: we expect this to be less of a factor in coming
years.

8.3. Future Improvements

Reducing the sampling period would increase the time resolution of
our method. This is possible on currently available FPGA boards,
including the Kintex 7 FPGA from Xilinx which supports voltage
oscillations up to 2100 MHz. In addition, the direction of time of
flight technology is heading toward increased modulation frequen-
cies and higher spatial resolution, both of which can improve our
time profile imaging.

8.4. Real-Time Performance

By using a single modulation frequency our technique opens up
the potential for real-time performance. The method proposed by
Heide et al. requires 6 hours to capture the correlation matrix:
our approach–after calibration–requires only 4 seconds to capture
the data required for a time profile movie of the scene. We ex-
pect that using shorter m-sequences or a compressed sensing ap-
proach to sampling time profiles would reduce the acquisition time.
On the hardware side, using the on-board FPGA from Mesa and
PMD cameras would cut down on our read-out times and lead to a
production-quality camera.

9. Conclusion
Time of Flight cameras can be used for more than depth. The prob-
lem of multipath estimation has gained recent interest within the
time of flight community, but is germane to computer vision and
graphics contexts. Recent solutions to solving the multipath prob-
lem hinge upon collecting data at multiple modulation frequencies.
In this paper, we show that it is possible to use only one modulation
frequency when coupled with sparsity based approaches. Compar-
ing between different time profile imaging systems is challenging;
however, we offer analysis of our proposed method and find it to
be on the order of 70 picoseconds in the best case. By solving the
multipath problem, we have demonstrated early-stage application
scenarios that may provide a foundation for future work.
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Appendix: Building a Coded ToF Camera To build your own
coded ToF camera you will need 3 components:

1. A pulsed light source with 50 MHz bandwidth
2. A lock-in CMOS ToF sensor
3. A microcontroller or FPGA

The software on the microcontroller or FPGA handles the read-out
from the sensor and strobes the illumination in a coded pattern. To
sample the correlation waveform the FPGA software quickly shifts
either the reference or illumination codes.


