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ON GAUSSIAN BEAMS DESCRIBED BY JACOBI’S EQUATION∗

STEVEN T. SMITH†

Abstract. Gaussian beams describe the amplitude and phase of rays and are widely used to
model acoustic propagation. This paper describes four new results in the theory of Gaussian beams.
(1) A new version of the Červený equations for the amplitude and phase of Gaussian beams is devel-
oped by applying the equivalence of Hamilton–Jacobi theory with Jacobi’s equation that connects
Riemannian curvature to geodesic flow. Thus the paper makes a fundamental connection between
Gaussian beams and an acoustic channel’s so-called intrinsic Gaussian curvature from differential
geometry. (2) A new formula π(c/c′′)1/2 for the distance between convergence zones is derived
and applied to the Munk and other well-known profiles. (3) A class of “model spaces” are intro-
duced that connect the acoustics of ducting/divergence zones with the channel’s Gaussian curvature
K = cc′′ − (c′)2. The model sound speed profiles (SSPs) yield constant Gaussian curvature in which
the geometry of ducts corresponds to great circles on a sphere and convergence zones correspond
to antipodes. The distance between caustics π(c/c′′)1/2 is equated with an ideal hyperbolic cosine
SSP duct. (4) An intrinsic version of Červený’s formulae for the amplitude and phase of Gaussian
beams is derived that does not depend on an extrinsic, arbitrary choice of coordinates such as range
and depth. Direct comparisons are made between the computational frameworks used by the three
different approaches to Gaussian beams: Snell’s law, the extrinsic Frenet–Serret formulae, and the
intrinsic Jacobi methods presented here. The relationship of Gaussian beams to Riemannian curva-
ture is explained with an overview of the modern covariant geometric methods that provide a general
framework for application to other special cases.

Key words. paraxial ray, Gaussian beam, acoustic ray, Jacobi’s equation, Gaussian curvature,
Riemannian curvature, Hamilton–Jacobi equation
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Notation and SI units.

t Time [s]
s Arclength [m]
T Ray travel-time [s]

x = (r, z)T Range and depth [m]
c(z) Sound speed profile [m/s]
c′ = d

dz c(z) Derivative of SSP [1/s]

ẋ = d
dtx Velocity vector [m/s]

T = d
dsx Unit tangent vector [1]

N Unit normal vector [1]
g(ẋ, ẋ), gij Riemannian metric [1, s2/m2]
θ0 Initial elevation angle [rad]
L Lagrangian function [1]
H Hamiltonian function [1]
κ Extrinsic curvature [1/m]
δq Ray distance along N [m]
δp = ∂T/∂δq Conjugate momentum of δq [s/m]

δq̃ = c−1 δq Travel-time along N [s]
δp̃ = c δp Conjugate momentum of δq̃ [1]

q = lim δq
δθ0

Extrinsic geom. spreading [m/rad]

p = lim δp
δθ0

Conj. momentum of q [s/m/rad]

q̃ = c−1q Intrinsic geom. spreading [s/rad]
p̃ = cp Conjugate momentum of q̃ [1/rad]
� = q̃ Intrinsic geom. spreading [s/rad]

�̇ = (d/dt)� First derivative of � [1/rad]

δte = 1
2

p
q δq2 Extrinsic ray tube phase [s]

δti =
1
2

�̇
� δq̃2 Intrinsic ray tube phase [s]

T = ẋ Ray tangent vector [m/s]
V = �Y Variation vector [m/rad]

Y Unit parallel vector [m/s]
K Gaussian curvature [1/s2]
R(V ,T ) Riemannian curvature [1]

Ri
jkl R. curvature coefficients [1/m2]

∇T Covariant differentiation [1]

Γk
ij Christoffel symbols [1/m]
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1638 STEVEN T. SMITH

1. Introduction. This paper uses Jacobi’s equation to derive new formulae for
the geometric spreading loss and phase through Gaussian beams and thus provides an
alternate method for paraxial ray tracing [5, 4, 10, 11, Chapter 4; 18, 19, 21, 24, 17,
Chapter 3]. The new formulation, though mathematically equivalent to well-known
expressions, provides new geometric insight into the physical and intrinsic geometric
characteristics of Gaussian beams and their relationship to the Gaussian and Rieman-
nian curvature of the propagation medium. Thus the expressions introduced in this
paper establish the connection between Gaussian beams and the intrinsic geometry of
the propagation medium. Four new geometrically motivated ideas for ducting are pre-
sented: (1) the Červený equations for the amplitude and phase of Gaussian beams are
expressed in a new form using the equivalence of the Hamilton–Jacobi equations that
involves the Hamiltonian and Jacobi’s equation that involves Riemannian curvature;
(2) a new formula π(c/c′′)1/2 for the distance between convergence zones is derived,
where c(z) is the sound speed profile (SSP); (3) the intrinsic geometry of acoustic
ducting is shown to be equivalent to great circles on a sphere with convergence zones
corresponding to antipodes; and (4) a coordinate-free “intrinsic” version of Červený’s
formulae for the amplitude and phase of Gaussian beams is presented.

Paraxial ray methods are generally known as “Gaussian beams” because each
ray is treated as representing a volume or ray tube in which the ray’s amplitude and
phase in the transverse plane perpendicular to the ray’s tangent is determined by a
Gaussian density. Transversely along the ray, Jacobi’s equation determines the geo-
metric spreading loss, expressed using Riemannian or sectional curvatures, or, in the
case of two-dimensional rays, the Gaussian curvature. Tangentially, the relative time
lag of nearby rays determines the phase of the Gaussian beam, which themselves are
described by complex solutions Aej ϕ to the Hamilton–Jacobi equations, where A is
the beam amplitude, ϕ is the beam phase, and j =

√−1. Therefore, the name “Gaus-
sian beam” is highly suitable because Gaussian beams are completely determined by
Gauss’s eponymous curvature.

One interesting example of a new physical insight derived from Jacobi’s equation
is a simple formula for the distance between caustics: it is shown that the half-
wavelength distance is about π(c/c′′)1/2, a quantity that depends entirely on the SSP.
It will be proved that the distance between convergence zones for a Munk profile
with parameter ε and scaled depth W meters is about πε−1/2W meters. For SSPs
with an idealized hyperbolic cosine profile c(z) = c0 cosh(z − z0)/W , this distance is
shown to equal exactly πW meters for all rays. Caustics arise with positive Gaussian
curvature; when the curvature is negative, rays diverge and Jacobi’s equation quan-
tifies their divergence, or transmission loss. For example, for linear SSPs with slope
c′ the geometric spreading at time t � c′−1 is about ct+ 1

6c(c
′)2t3. These results are

both a direct consequence of the fact that the Gaussian curvature of the propagation
medium equals K = cc′′ − (c′)2. Classifying the SSP by its Gaussian curvature will
allow for the introduction of model spaces for convergent ducts whose curvature is
constant positive, divergence zones with constant negative curvature, and simple non-
refractive spreading with vanishing curvature. Another feature arising from this work
is an accounting of the additional spreading loss for either reflected or transmitted
rays at an interface, at which point the Gaussian curvature is not defined.

Direct comparisons are made between the computational frameworks derived from
the three different approaches to Gaussian beams: (1) Snell’s law [6, p. 374; 22,
7; 8, p. 141; 13, Chapter 3; 17, 33], (2) a variant of the extrinsic Frenet–Serret
established by Červený and colleagues [10, 11], and (3) the new intrinsic methods
presented here. Bergman [1, 2, 3], apparently the first to recognize the application
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ON GAUSSIAN BEAMS DESCRIBED BY JACOBI’S EQUATION 1639

of Jacobi’s equation to ray tracing, recently adopted methods from general relativity
to address the problem of computing ray amplitudes in a relativistic acoustic field.
The nonrelativistic intrinsic results developed in this paper are equivalent to many of
Bergman’s if one uses the space-like part of his pseudo-Riemannian Lorentz metric.

It is perhaps noteworthy that Jacobi’s equation and its full implications for Gaus-
sian beams has, apparently, not yet appeared in the acoustical literature. This lacuna
might be defended by a few historical observations. Lord Rayleigh was initially dis-
missive of the practical applications for acoustic refraction, noting in 1877, “almost
the only instance of acoustical refraction, which has practical interest, is the devia-
tion of sonorous rays from rectilinear course due to the heterogeneity of the atmo-
sphere” [26, p. 129]. Though the foundations of non-Euclidean geometry had been
established by this time, differential and Riemannian geometry remains relatively lit-
tle known in engineering applications to this day, although covariant analysis is the
natural approach to many physical and engineering problems, as will be seen in its
application to Gaussian beams here.

In section 2 the ray equations are developed using the classical Euler–Lagrange,
Frenet–Serret, and Hamilton–Jacobi formulations, followed by the amplitude and
phase along a specific ray using Červený’s Hamilton–Jacobi approach. This standard
development is then recast using an intrinsic parameterization that will be shown
equivalent to Jacobi’s equation. Section 3 develops an intrinsic formulation of Gaus-
sian beams based on Jacobi’s equation and explores the physical consequences of this
approach, including a computation of the distance between convergence zones and a
classification of SSPs using “model spaces” of constant Gaussian curvature.

2. Gaussian beams in horizontally stratified isotropic media. The sim-
plest and most frequently encountered case of acoustic rays in a horizontally
stratified isotropic medium will be analyzed. As usual, denote the three spatial co-
ordinates by the variables x, y, and z, time by t, the spatial infinitesimal arclength
by ds2 = dx2 + dy2 + dz2, and the depth-dependent SSP by c(z), differentiable ex-
cept at a discrete set of points where either c(z) itself is discontinuous (e.g., Snell’s
law) or its first derivative c′(z) = dc/dz is discontinuous (e.g., method of images
at a boundary). Paths x(t) =

(
r(t), φ(t), z(t)

)T
are expressed using cylindrical co-

ordinates, with r =
√
x2 + y2, φ = tan−1(y/x), and z (pointing down), so that

ds2 = dr2 + r2 dφ2 + dz2. The physical solution is independent of these coordinates.
The time required to travel along an arbitrary continuous path equals

(2.1) T [x(t)] =

∫
dt =

∫
1

c(z)

ds

dt
dt =

∫
c−1(z)(ṙ2 + r2φ̇2 + ż2)1/2 dt,

where ẋ(t) = dx/dt and ds/dt = c(z). The Fermat metric is represented by the
quadratic function g(ẋ, ẋ) = c−2(z)(ṙ2 + r2φ̇2 + ż2), whose square-root appears in
(2.1). This Riemannian metric has coefficientsG = (gij) and induces an inner product

〈ẋ, ẏ〉 = g(ẋ, ẏ) = c−2(z)(ṙ1ṙ2+r2φ̇1φ̇2+ ż1ż2) and norm ‖ẋ‖2 = g(ẋ, ẋ) on the space
of tangent vectors (ṙ, φ̇, ż)T at each point (r, φ, z)T.

Before the main results of the paper involving the geometry of acoustic ducting
and divergence are presented, a concise background of ray theory is provided in sub-
sections 2.1 and 2.2 using the Euler–Lagrange, Frenet–Serret, and Hamilton–Jacobi
formulations. Subsection 2.3 derives the amplitude and phase along a specific ray using
Červený’s Hamilton–Jacobi approach. Červený’s equations are recast in section 2.4
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1640 STEVEN T. SMITH
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Fig. 1. Rays for the Munk SSP [17] with with parameter ε = 0.00737, scaled depth z̄ =
(z − z0)/W with W = 650m, and (nonconstant) Gaussian curvature K = εc20/W

2 at z0, yielding

convergence zones at about every πε−1/2W = 23.8 km (Theorem 3.5) as illustrated by the red dots
(•). The rays are computed using a standard fourth-order Runge–Kutta ODE solver.
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Fig. 2. Rays for the hyperbolic cosine SSP c(z) = c0 cosh(z − z0)/W with z0 = W = 1 km.
This SSP yields a space of constant positive curvature, resulting in a duct with convergent rays and
caustics independent of any initial elevation angle θ0 at ranges πW = 3.14159 . . . km (Theorem 3.6),
illustrated by the red dots (•). The rays are computed using a standard fourth-order Runge–Kutta
ODE solver.

using an intrinsic parameterization that will be shown in section 3 to yield Jacobi’s
equation expressed in a form that yields geometric insight into acoustic ducting.

2.1. Ray equations: Euler–Lagrange and Frenet–Serret. Fermat’s princi-
ple implies that rays satisfy the Euler–Lagrange equation, (d/dt)(∂L/∂ẋ)−(∂L/∂x) =
0, with either initial conditions or boundary conditions for eigenrays. Attention is
restricted to the (r, z)-plane because radial symmetry implies that φ(t) ≡ φ0. The
Euler–Lagrange equations with Lagrangian L(t; r, z; ṙ, ż) = c−1(z)(ṙ2 + ż2)1/2 and
radial symmetry φ̇ ≡ 0 yield the well-known differential ray (Christoffel) equations

(2.2) r̈ − 2(c′/c)ṙż = 0, z̈ + (c′/c)(ṙ2 − ż2) = 0.

Figures 1 and 2 illustrate computed rays determined by the Munk and hyperbolic
cosine SSPs. Parameterization by travel-time t is said to be “natural” or “intrinsic”
because rays minimize travel-time. It is often computationally convenient to param-
eterize rays by “extrinsic” arclength ds = (dr2 + dz2)1/2, in which case (2.2) becomes
the first Frenet–Serret formula (d2/ds2)(r, z)T = (c′/c)(dr/ds)(dz/ds,−dr/ds)T, i.e.,
dT/ds = κN, where T = (dr/ds, dz/ds)T is the ray’s tangent vector, N = (dz/ds,
−dr/ds)T is its normal (always defined in the same direction), and κ = (c′/c)×
(dr/ds) = −cn/c is the ray’s extrinsic curvature, and cn = (∂c/∂x)·N = −c′(dr/ds)
is the first derivative of the SSP c in the normal direction. The quadratic coeffi-
cients for the tangent vector (first derivative) terms that appear in the ray equations

D
ow

nl
oa

de
d 

12
/2

3/
14

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON GAUSSIAN BEAMS DESCRIBED BY JACOBI’S EQUATION 1641

(equation (2.2)) are called Christoffel symbols of the second kind [12, Chapter 1;
15, 27, 29] and are crucial in quantifying the amplitude and phase along the ray
caused by geometric spreading. A continuous version of Snell’s law [6, 8, 13, 17, 33]
yields the integral solution

(2.3) r(z; θ0) =

∫ z

z0

ac(z′)(
1− a2c2(z′)

)1/2 dz′,

in which a = c−1(z0) cos θ0 is the Snell invariant with initial conditions
(
r(0), z(0)

)
=

(0, z0) and
(
ṙ(0), ż(0)

)
= c(z0)(cos θ0,− sin θ0).

2.2. Ray equations: Hamilton–Jacobi equation. Rays satisfy the canonical
form of the Euler–Lagrange equations z′ = ∂H/∂ζ, ζ′ = −∂H/∂z with Hamiltonian
H(r; z; ζ) = ζz′ − L(r; z; z′) and ζ = ∂L/∂z′. The travel-time T of (2.1) satis-
fies the Hamilton–Jacobi equation (∂T/∂r) + H(r; z; ∂T/∂z) = 0, which reduces to
the well-known eikonal equation (∂T/∂r)2 + (∂T/∂z)2 = c−2(z) for the Hamiltonian

H(r; z; ζ) = −(c−2(z)− ζ2
)1/2

corresponding to the Lagrangian in section 2.1.

2.3. Paraxial ray equations: Hamilton–Jacobi form. Ray amplitude is
determined by the spreading of nearby rays, and phase away from the ray is de-
termined by time differences, so that rays are viewed as tubes or beams possessing
both amplitude and phase rather than the skeletal objects determined by (2.2). As
first established by Červený and colleagues [10, 11, 18, 24, 17], the equations for the
amplitude and phase along a ray tube are given by the canonical equations after a
convenient change of variables involving the ray itself. Let s be the arclength along
the ray and let δq be the small or infinitesimal distance away from the ray, measured
perpendicularly along the normal N at arclength s such that

(2.4)

(
r(s, δq)

z(s, δq)

)
=

(
r(s)

z(s)

)
+ δq

(
dz/ds

−dr/ds

)
,

and let

(2.5) δp = ∂T/∂δq

be the small or infinitesimal derivative of travel-time w.r.t. δq from the ray along
the line N, all illustrated in Figure 3. Thus, δq quantifies the spread of nearby rays
and therefore determines the ray’s amplitude, and as shown by Červený [11] the
conjugate momentum δp appears in the difference in time-of-travel nearby rays along
N and thus determines the ray’s phase. Following Červený [11] (also see Wolf and
Krötzsch [34]) Hamilton–Jacobi theory is used to determine the governing equations
for δq and δp.

By the chain rule ∂T/∂(s, δq) = ∂T/∂(r, z)·J , where J = ∂(r, z)/∂(s, δq) =(
hT,N

)
is the Jacobian matrix along the ray at distance s at δq = 0 with scale

factor h(s, δq) = 1 − ((c′/c)(dr/ds))|δq=0 δq = 1 + (cn/c)|δq=0 δq. The eikonal equa-
tion expressed in the ray-centered coordinates s and δq is h−2(s, δq)(∂T/∂s)2 +
(∂T/∂δq)2 = c−2(s, δq), corresponding to the Hamiltonian H(s; δq; δp) = −h(s, δq)×(
c−2(s, δq)− δp2

)1/2
. For small δq and δp up to second-order,
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δθ0

T

N

δq

(r(s),z(s))

T = const.
½c (p/ q) δq2

(0,z(0))

δθ

SSP c(z)

Fig. 3. Ray tube in a horizontally stratified medium. The azimuthal component, not shown,
is perpendicular to the page. All distances in the figure represent actual, extrinsic Euclidean dis-
tance. The extrinsic distance between nearby rays along the normal vector N is denoted as δq,
and the nearby ray’s additional length equals 1

2
c(δp/δq) δq2 = 1

2
c(p/q) δq2, where q = lim δq/δθ0 is

the extrinsic geometric spreading, and δp = ∂T/∂δq and p = ∂T/∂q are the conjugate momenta
corresponding to δq and q.

1

c(s, δq)
=

1

cs
− cn

c2s
δq − 1

2

(
cnn
c2s

− 2
c2n
c3s

)
δq2 + · · · ,(2.6)

H(s; δq; δp) = −hc−1(s, δq)

(
1− 1

2
c2s δp

2

)
+ · · ·(2.7)

= −c−1
s +

cnn
2c2s

δq2 +
1

2
cs δp

2 + · · · ,(2.8)

where cs = c
(
z(s)

)
and cnn = c′′

(
z(s)

)
(dr/ds)2 is the second derivative of the SSP in

the direction of the ray normal.
Applying Hamilton’s equations of motion dδq/ds = ∂H/∂δp, dδp/ds = −∂H/∂δq

to (2.8) yields the paraxial ray tracing equations, a system of ordinary differential
equations [5, 10, 11, 17, 18, 19, 21, 24, 28]

dδq

ds
= cs δp, δq(0) = 0,(2.9)

dδp

ds
= −cnn

c2s
δq, δp(0) = c−1

0 δθ0,(2.10)

the initial conditions arising from the facts that the spread of rays separated by a
small angle δθ0 is zero at s = 0, and the differential time equals δT = c−1

0 δq δθ0.

2.4. Paraxial ray equations: Sturm–Liouville form. Before explaining the
full significance of the complete second-order terms in the paraxial ray equations in
the next section, it will be helpful to express (2.9)–(2.10) as a single second-order
differential equation using the natural or intrinsic parameters of the problem. Con-
sistent with much of existing literature on paraxial rays, rays are parameterized using
the arclength s. However, physically rays minimize not arclength but travel-time t,
and therefore the paraxial ray’s underlying physical and geometric properties will be
revealed by using the intrinsic parameterization dt = c−1 ds. Also the variables δq
and δp = ∂T/∂δq are expressed using arclength or distance; the corresponding intrin-
sic variables arise by converting distance δq to travel-time δq̃ and slowness δp to the
dimensionless δp̃ using the sound speed c:

(2.11) δq̃
def
= c−1 δq and δp̃

def
= c δp.
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Note that δq̃ is the travel-time between nearby rays and δp̃ = ∂T/∂δq̃ is the travel-
time derivative along a straight-line path normal. The geometric significance of these
intrinsic coordinates is made clear by the following new theorem.

Theorem 2.1. Let δq and δp satisfy (2.9)–(2.10). Then these extrinsic first-
order paraxial ray equations are equivalent to the intrinsic second-order paraxial ray
equation

(2.12) δ ¨̃q +
(
cc′′ − (c′)2

)
δq̃ = 0,

where δq̃ = c−1 δq, δp̃ = c δp, δ ¨̃q = (d2/dt2)δq̃, and the coefficient cc′′ − (c′)2 is the
Gaussian curvature of the propagation medium w.r.t. to the Fermat metric of (2.1).

The proof involves parameterizing by travel-time t and expressing the Hamilton
form of the paraxial ray equations of (2.9)–(2.10) as the coupled first-order system,

δ ˙̃q = −c′(dz/ds) δq̃ + δp̃, δq̃(0) = 0,(2.13)

δ ˙̃p = −ccnn δq̃ + c′(dz/ds) δp̃, δp̃(0) = δθ0.(2.14)

Taking another derivative of (2.13) yields δ ¨̃q +K δq̃ = 0 with K = cc′′ − (c′)2. The
theorem is thus proved by demonstrating that this expression for K is precisely the
Gaussian curvature w.r.t. the Fermat metric of (2.1). Given an arbitrary metric g on
a two-dimensional manifold with coefficients gij = g(Xi,Xj) w.r.t. a basis {Xi }, the
Gaussian curvature is determined [27, 29] by the expression K = R1212/(g11g22− g212)
in whichRijkl =

∑
n ginR

n
jkl, R

i
jkl =(∂Γi

lj/∂x
k)−(∂Γi

kj/∂x
l)+
∑

n(Γ
n
ljΓ

i
kn − Γn

kjΓ
i
ln)

are the coefficients of the Riemannian curvature tensor R, and the Christoffel symbols
(of the second kind) Γk

ij = 1
2

∑
l g

kl
(
(∂gil/∂x

j) + (∂gjl/∂x
i) − (∂gij/∂x

l)
)
appear in

the quadratic coefficients in the ray (geodesic) equations

(2.15) ẍk +
∑

ij
Γk
ij ẋ

iẋj = 0

with (gkl) = (gij)
−1 representing the matrix inverse of the matrix of metric coefficients

[15, 27, 29]. The Christoffel symbols expressed as quadratic forms

(2.16) (Γ1
ij) =

(
0 −c′/c

−c′/c 0

)
, (Γ2

ij) =

(
c′/c 0

0 −c′/c

)

can be read directly from the ray equations of (2.2); these along with the matrix

(gij) = c−2
(1 0
0 1

)
can be used directly with the preceding equations to compute the

Gaussian curvature K = cc′′ − (c′)2. As will be proved, (2.12) is precisely Jacobi’s
equation; therefore, the Hamiltonian form of the paraxial ray equations (2.9)–(2.10)
is mathematically and physically equivalent to the intrinsic Jacobi’s equation. This
equivalence between Červený’s formulation of Gaussian beams and Jacobi’s equation
is a new result. The functional form of the Gaussian curvature will be used to derive
the distance between convergence zones and “model spaces” of constant curvature for
the SSP.
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1644 STEVEN T. SMITH

3. Intrinsic geometry of Gaussian beams.

3.1. Transverse amplitude of a Gaussian beam. This section contains an
analysis of Gaussian beams that use Jacobi’s equation to quantify their amplitude
and phase. All the results obtained so far have been for rays and infinitesimal vari-
ations around them. In contrast, Gaussian beams have real, finite physical width
that must be accounted for in the plane transverse to the ray. The physical width
has different implications for the Gaussian beam’s amplitude and phase. The am-
plitude is determined by both the geometric spreading loss along the ray and the
initial amplitude distribution in the transverse plane. The phase is determined by
the differential change in travel-time along the transverse plane. Mathematically, the
scaled normal vector δqN represents the infinitesimal change in ray position as a func-
tion of the take-off angle for a fixed path length s. Gauss’s lemma implies that this
travel-time is fixed to first-order but says nothing about the second-order terms, i.e.,
x(s; θ0)+δqN = x(s; θ0 + δθ0)+O(δθ20) for δθ0 > 0. This ray-front curvature effect is
seen in Euclidean space by holding a ruler next to a circle or cylinder and observing the
size of gap—a circle of radius R has a gap size of R sec δθ −R = (R/2)δθ2 +O(δθ4).
The second-order travel-time difference is often physically significant because it is of
the order of several wavelengths at a broad range of frequencies f0 and therefore does
contribute to the Gaussian beam’s phase 2πf0t. Because the travel-time difference in
the transverse plane is quadratic, the phase of the Gaussian beam necessarily has a
Gaussian distribution. Furthermore, these second-order effects are already accounted
for in the Riemannian curvature terms determining the Gaussian beam’s amplitude,
so the Gaussian beam’s amplitude in the transverse plane is determined by the effect
of geometric spreading on initial conditions. In this subsection we will quantify the
impact of the initial conditions on the amplitude and the second-order travel-time dif-
ferences on the phase. Both quantities are determined by the ray distance δq, which
will now be formalized for both extrinsic and intrinsic geometric spreading.

Definition 3.1 (geometric spreading). Let x(s; θ0) =
(
r(s; θ0), z(s; θ0)

)T
be

a ray parameterized by arclength s with initial conditions x(0; θ0) = (0, z0)
T and

(d/ds)x(0; θ0) = (cos θ0,− sin θ0)
T in a horizontally stratified media with SSP c(z).

The extrinsic geometric spreading q(s) along the ray caused by a change in elevation
angle θ0 is defined to be

(3.1) q(s) = ‖(∂x(s; θ0)/∂θ0)s‖2,

where ‖·‖2 denotes the standard 2-norm and the standard notation (∂/∂θ0)s means
partial differentiation w.r.t. θ0 while holding arclength s constant.

Theorem 3.2 (geometric spreading for horizontally stratified media [17]). Let
x(s) =

(
r(s; θ0), z(s; θ0)

)T
be a ray in a horizontally stratified medium with a twice-

differentiable SSP c(z) parameterized by arclength s and with initial elevation angle
θ0. The extrinsic geometric spreading q and the corresponding canonical variable
p = ∂T/∂q along the ray are determined by

(3.2) q = lim
δθ0→0

δq/δθ0, p = lim
δθ0→0

δp/δθ0

and satisfy the Hamilton equations

dq/ds = cp, q(0) = 0,(3.3)

dp/ds = −(cnn/c
2)q, p(0) = c−1

0 .(3.4)
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ON GAUSSIAN BEAMS DESCRIBED BY JACOBI’S EQUATION 1645

The proof is a trivial application of the definition of the small or infinitesimal
difference δq defined in (2.4). The theorem follows immediately by dividing (2.9)–
(2.10) by δθ0 and taking the limit. Thus we have a complete description of the
extrinsic geometric spreading for Gaussian beams, including the complete second-
order terms introduced in (2.10). To appreciate the geometric significance of the
spread, we will define the intrinsic geometric spreading and equate this concept with
Jacobi’s equation first encountered in Theorem 2.1, expressed in a new theorem.

Definition 3.3 (intrinsic geometric spreading for horizontally stratified me-
dia). Let

(
r(t; θ0), z(t; θ0)

)
be a ray in a horizontally stratified medium with a twice-

differentiable SSP c(z) as in Theorem 3.2, but parameterized by path time t. The
intrinsic geometric spreading �(t) along the ray is defined to be

(3.5) �(t) = lim
δθ0→0

δq̃

δθ0
= c−1q(t) = q̃(t),

where δq̃ is the travel-time between nearby rays separated by δθ0 at their initial point
defined in (2.11), and q(t) is the extrinsic geometric spreading parameterized by time.
(Intrinsic geometric spreading is denoted by the Arabic letter ‘ayn (�, pronounced
like the end of “nine” spoken with a strong Australian accent) in recognition of the
mathematician Ibn Sahl, who discovered Snell’s law of refraction around 984. Ibn
Sahl used the symbol � to denote the center of a lens [25].)

The intrinsic geometric spreading is a consequence of an obvious corollary to
Theorem 3.2 arising from (2.13)–(2.14) for the intrinsic variables

(3.6) q̃ = c−1q = lim
δθ0→0

δq̃/δθ0 = �, and p̃ = cp = lim
δθ0→0

δp̃/δθ0 = �̇ + c′ sin θ�.

Note that the path time derivative p̃ = ∂T/∂q̃ w.r.t. distances along the extrinsic path
normal N is not exactly equal to the derivative �̇ = (d/dt)� of the intrinsic geometric
spreading; the geometric reason for this difference will be explained in section 3.7. We
are now ready to introduce Jacobi’s equation and thereby compute the ray’s amplitude
determined by the geometric spreading, as well as a Gaussian beam’s phase in the
transverse plane perpendicular to the ray’s tangent.

Theorem 3.4 (intrinsic geometric spreading for horizontally stratified media).
Let

(
r(t; θ0), z(t; θ0)

)T
be a ray in a horizontally stratified medium with a twice-

differentiable SSP c(z) parameterized by path time t and with initial elevation angle
θ0. The intrinsic geometric spreading �(t) along the ray satisfies the Sturm–Liouville
equation

(3.7) �̈ +K(t)� = 0; �(0) = 0, �̇(0) = 1,

where

(3.8) K = cc′′ − (c′)2

is the acoustic Gaussian curvature of the Fermat metric g(ẋ, ẋ) = c−2(z)(ṙ2 + ż2) of
(2.1).

Equation (3.7) is simply the intrinsic Jacobi’s equation in two dimensions encoun-
tered above in (2.12). The theorem follows immediately by dividing (2.12) by δθ0 and
taking the limit. In general, Jacobi’s equation for an arbitrary Riemannian manifold
is

(3.9) ∇2
TV +R(V ,T )T = 0,
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1646 STEVEN T. SMITH

where ∇2
TV is the second covariant derivative along the ray’s tangent vector T =

(ṙ, ż)T of the variation vector V = δx/δθ0 = �Y along the unit vector Y = −(ż,−ṙ)T,
and the Riemannian curvature tensor equals

(3.10) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

where [X,Y ] = XY − YX is the Lie bracket [12, 15, 29]. Note that the orthonormal
frame (T , Y ) is parallel along the ray, i.e.,∇TT = 0 (equation (2.2)) and∇TY = 0 so
that ∇TV = �̇Y + �∇TY = �̇Y . Furthermore, [T ,V ] ≡ 0 because the vector fields
T and V are defined as independent partial derivatives of the ray x(t; θ0); therefore,
∇TV = ∇V T by the property ∇XY −∇Y X = [X,Y ] of covariant differentiation.
Taking another covariant derivative w.r.t. T and computing an inner product with Y
along with the definition for Gaussian curvature [12, 15, 29]

(3.11) K = g
(
R(Y ,T )T ,Y

)
/
(
g(T ,T )g(Y ,Y )− g(T ,Y )2

)
yields Jacobi’s equation of (3.7).

Jacobi’s equation provides a physically appealing description of Gaussian beams;
indeed, interpretations of Jacobi’s equation and Gaussian curvature provide the fol-
lowing new insights into the problem of ray acoustics. At depths where the SSP c(z)
is concave, i.e., a sound duct below which rays refract upward and above which they
refract down, cc′′ > 0, c′ ≈ 0, and the acoustic Gaussian curvature is positive, yield-
ing a sinusoidal behavior with wavelength—the distance between caustics—of about
πcK− 1

2 for the geometric spreading, as expected and encountered with caustics in
sound duct (Figures 1 and 2). Note that caustics, defined to be points where the ge-
ometric spreading vanishes (these are called “conjugate points” in the mathematical
literature), will occur at integer multiples of the range

(3.12)
half-wavelength

distance
≈ πcK−1/2 ≈ π(c/c′′)1/2

(the last approximation valid when the SSP’s second derivative dominates). At depths
where the SSP c(z) is convex, i.e., divergent zones below which rays refract downward
and above which they refract up, or at depths with a linear SSP, cc′′ ≤ 0, (c′)2 > 0,
and the acoustic Gaussian curvature is negative, yielding an exponentially growing
solution to geometric spreading with length constant of about (−K)−1/2, and therefore
a large spreading loss. Constant SSPs imply that the acoustic Gaussian curvature is
zero, yielding geometric spreading that simply grows linearly with the path length, as
expected. At interfaces where the SSP or its first derivative are discontinuous, such as
the bottom or surface where the method of images is used to model reflections, (3.7)
can be integrated using the standard modifications, provided below, necessitated by
the Dirac delta function. These observations will all be formalized in section 3.4 below.
It also shown below that the known extrinsic formulae for the geometric spreading loss
based on Snell’s law and variants of the extrinsic Frenet–Serret formulae [10, 11, 24, 17]
satisfy Jacobi’s equation.

Equation (3.7) may be proved directly via the second variation, but this direct
approach, which involves a long, messy computation that provides almost no geo-
metric insight, motivates introduction of the cleaner and simpler modern covariant
approach. Nevertheless, direct computation establishes one important result for read-
ers without backgrounds in covariant differentiation and Riemannian geometry, so we
will provide a sketch in this paragraph. Gauss’s lemma assures us that nearby rays
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ON GAUSSIAN BEAMS DESCRIBED BY JACOBI’S EQUATION 1647

are perpendicular to a given ray’s tangent vector (ṙ, ż)T [14, Chapter 5; 15, 29]; there-
fore, nearby rays all take the form δx =

(�(t)ż δθ0,−�(t)ṙ δθ0
)T

for the geometric
spreading function �(t) along the ray. It can be shown using the Hessian matrix of the
Fermat metric of (2.1) w.r.t. (x, ẋ), and application of the Christoffel equation (2.2),
that the second variation [14] of the travel-time of (3.14) equals

δ2L[δx] = L[x+ δx]− L[x]− δL[δx]− o(‖δx‖2)
(3.13)

= δθ20

∫ tend

0

((− c−2(cc′′ − (c′)2
)
+ (c′/c)z̈

)�2 + �̇2
+ 2(c′/c)ż� �̇) dt.

Because these second-order terms necessarily satisfy the Euler–Lagrange equation for
nearby extremals x + δx, the function δx must satisfy the Euler–Lagrange equation
for the second variation, known as Jacobi’s equation. Applying the Euler–Lagrange
equation for the unknown function �(t) to the function appearing in the second vari-
ation of (3.13) yields Jacobi’s equation of (3.7). This establishes Theorem 3.4, but
it does not provide any immediate connection to the problem’s geometry or intrinsic
curvature, nor does it suggest a method to generalize the result to three (or more)
dimensions. These connections will now be established within the broadly general
framework of covariant differentiation.

3.2. Properties of geometric spreading. In this section we will review, in
the context of the results presented above, some simple properties about geometric
spreading. First, the geometric spreading q(t) quantifies the distance of nearby rays
from the ray x(t), parameterized by its initial elevation angle θ0. Second, in the trivial
case of a constant SSP, geometric spreading simply equals range, q(t) = ct (constant
SSP). Third, and crucially for understanding the results presented in this paper,
the direction of geometric spreading is perpendicular to the ray’s (extrinsic) tangent
vector, T = dx/ds, and is therefore also perpendicular to the ray’s intrinsic tangent
vector ẋ = (dx/ds)(ds/dt) = c(z)T. This orthogonality property, called Gauss’s
lemma because it is among of the first key observations by Gauss in his establishment
of the intrinsic theory of surfaces, is also a straightforward consequence of Euler’s first
variation of the functional L[x(t)] =

∫ tend
0 F (t,x, ẋ) dt (as in (2.1)) along an extremal

x(t) with only the initial endpoint fixed. The first variation formula for an arbitrary
functional variation δx(t) such that δx(0) = 0 is

δL[δx] = L[x+ δx]− L[x](3.14)

=

∫ tend

0

(
∂F

∂x
− d

dt

∂F

∂ẋ

)
δx dt+

∂F

∂ẋ
δx

∣∣∣∣
tend

0

= (∂F/∂ẋ) δx(tend) = 0,

where the integral vanishes because x is assumed to be an extremal and satisfies
the Euler–Lagrange equation, and δx(0) = 0 because the starting point is fixed.
The first variation must vanish necessarily for arbitrary functions δx(t); therefore,
(∂F/∂ẋ) δx(tend) = 0. In our specific case of minimum travel-time rays, F (t,x, ẋ) =
c−1(z)(ṙ2 + ż2)1/2 and δx = (∂x/∂θ0)t δθ0, and Gauss’s lemma follows immediately
from (3.14) for the case of acoustic rays:

(3.15) c−2(z)

((
dr

dt

)
θ0

(
∂r

∂θ0

)
t

+

(
dz

dt

)
θ0

(
∂z

∂θ0

)
t

)
= 0,
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1648 STEVEN T. SMITH

Note that this basic argument holds for all extremal paths, whether or not they are
minimizing or pass through a conjugate point, also known as a caustic. Consequently
from Gauss’s lemma, a fourth property is that the geometric spreading depends on
both ṙ- and ż-components of the ray’s tangent vector. Fifth, there is a geometric
spreading term in the range-azimuthal (r, φ)-plane, which, by symmetry, is trivially
∂q(t)/∂φ0 = r(t). This intuitively obvious fact will be proved as an illustration of
the covariant formalism introduced below. Sixth, and finally, geometric spreading
as defined here is physically extrinsic (relative to the metric of travel-times between
points) because pressure transducers integrate power over a physical area, which is
why the Euclidean or 2-norm appears in Definition 3.1. Nonetheless, a simple change
of scale (multiplication by 1/c(z)) converts the problem of geometric spreading to an
intrinsic framework that depends only upon the travel-time between points, i.e., only
on rays.

The transmission loss along a ray tube caused by geometric spreading is given

by the infinitesimal area at a standard reference range (rref
def
= 1m) divided by the

infinitesimal area of the ray tube at an arbitrary distance t, both scaled by the inverse
sound speed along the ray [17]:

(3.16) TL (geom.) = lim
δφ,δθ→0

csr
2
ref cos θ0 δθ δφ

c0rq(t) δθ δφ
=

cs cos θ0
c0rq

(re 1m2).

When the density also varies with depth, Newton’s second law must be included:

(3.17) TL (geom.) =
ρscs cos θ0
ρ0c0rq

(re 1m2).

3.3. Transverse phase of a Gaussian beam. The differential time δte per-
pendicular to the ray (extrinsic) determines the differential phase ej δϕ of the Gaussian
beam, where δϕ = 2πfc δte, fc is the center or carrier frequency of the sound prop-
agating along the ray, and j =

√−1. In terms of the extrinsic geometric spreading
variables q and p = ∂T/∂q, the differential time a distance δη along the ray normal
at
(
r(s), z(s)

)T
is given by the formulae [11, 17]

(3.18) δte =
1

2

p

q
δη2 =

1

2

(
�̇
� + c′ sin θ

)
δμ2,

T(r(t),z(t))

T = const.

δθ

δq = q δθ0

N

½c (p/ q) δq2

δθ0

Fig. 4. Phase of the Gaussian beam along the ray’s extrinsic normal N = dT/ds. The dif-
ferential time δte a distance δη along the normal is given by the quadratic δte = 1

2
(p/q) δη2 =

1
2
c−2( �̇/� + c′ sin θ) δη2. All distances in the figure represent extrinsic Euclidean distances.
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ON GAUSSIAN BEAMS DESCRIBED BY JACOBI’S EQUATION 1649

where δμ = c−1 δη. This fact is illustrated in Figure 4. To compare this extrinsic
formula with the intrinsic results developed in section 3.7, it is worthwhile to give a
brief geometric proof of (3.18). By inspection, or formally by Gauss’s lemma of (3.15),
the differential path time along the ray normal is a quadratic function of distance up
to second order, i.e.,

(3.19) δte =
1

2
Qe δη

2

for some quadratic coefficient Qe to be determined. As seen in Figure 4, the slope of
this quadratic function at δη equals δθ, the differential change in angle:

(3.20) δθ = cd(δte)/d(δη)|δη=δq=q δθ0 = cQe δq = cqQe δθ0.

However, δθ may be computed directly via an inner product along with (3.3),

(3.21) δθ = 〈N, (d/ds)x(s; θ0 + δθ0)〉 =
〈
N, (d/ds)

(
x(s; θ0) + q δθ0 N

)〉
= cp δθ0.

Equating δθ from (3.20) and (3.21) yields Qe = p/q, from which (3.19) becomes the
first equality of (3.18). Applying (2.13) to (3.18) yields

(3.22) c2
p

q
=

�̇
� + c′ sin θ

and the second equality.
Summarizing the results of the previous sections, the transverse amplitude and

phase of a Gaussian beam emanating a distance δη normal to the ray and with initial
source level (SL) and azimuth end elevation angle fan widths δφ0 and δθ0 is given by

P (s; θ0; δμ) =

[
SL·cs cos θ0

c0rq

] 1
2

exp

[
j2πfc

(
t(s) +

p

2q
δη2
)]

,(3.23)

=

[
SL·a
r�

] 1
2

exp

[
j2πfc

(
t+

1

2

(
�̇
� + c′ sin θ

)
δμ2

)]
.(3.24)

Note that Gaussian beam is an appropriate name for rays with this functional form.
A Gaussian distribution of amplitude is typically introduced through the initial con-
ditions for the Gaussian beam.

3.4. Munk, linear, and SSPs with constant curvature.

3.4.1. Munk profile. The distance between convergence zones/cycle distances
for the Munk profile c(z) = c0

(
1+ε(z̄+e−z̄−1)

)
with z̄ = (z − z0)/W can be computed

directly via (3.12). At z = z0, the Gaussian curvature K = cc′′ − (c′)2 = εc20/W
2,

proving the new theorem.
Theorem 3.5. The cycle distance of the Munk profile approximately equals

(3.25)
Munk profile

CZ distance
≈ πε−1/2W.

For example, for the nominal parameters ε = 0.00737 and W = 650m, this yields
a distance of 23.8 km (Figure 1).
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1650 STEVEN T. SMITH

3.4.2. Linear SSPs. The ideas developed to this point are nicely illustrated
using the example of Gaussian beams in medium with linear SSP c(z) = c0 + γz, in
which case rays are simply circles in (r, z)-space [17]:

r(θ) = z0γ sec θ0
(
sin θ0 + sin(θ − θ0)

)
,(3.26)

z(θ) = −c0γ
−1 + z0γ sec θ0 cos(θ − θ0),(3.27)

where the ray emanates from (0, z0) with initial elevation angle θ0, and z0γ = z0 + c0γ
−1.

Arclength is given by s = z0γθ, and eigenrays to (r, z) are determined by the angles

θ0 = 2 atan2
(
2rz0γ − (r2 + (z0γ − z)2

)(
r2 + (z0γ + z)2

)
, z20γ − z2 − r2

) 1
2 ,(3.28)

θ = atan2(r − z0γ tan θ0, z + c0γ
−1) + θ0,(3.29)

with travel-time

(3.30) t =
1

γ
log

⎛
⎝ tan 1

2 sin
−1 cos θ0

tan 1
2 sin

−1
(

c0+γz
c0+γz0

cos θ0

)
⎞
⎠ ,

assuming no caustics along the ray. Because cnn ≡ 0, the Hamilton equations (3.3)–
(3.4) are easily solved in closed form,

(3.31) q = z0γ sec
2 θ0

((
1− a2(c0 + γz)2

)1/2 − | sin θ0|
)
, and p =

1

c0 + γz0
.

Likewise, because the Gaussian curvature K ≡ −γ2 is constant (the propagation
medium is a space of constant negative curvature, i.e., it is a hyperbolic space),
Jacobi’s equation (3.7) has the closed-form solution �(t) = γ−1 sinh γt, or

�(t) ≈ t+ 1
6γ

2t3 for t � γ−1, yielding q = cγ−1 sinh γt ≈ ct(1 + 1
6γ

2t2), a much sim-
pler expression than (3.31). The expression for the relative delay is

(3.32) p/q ≈ c−1
1 c−1t−1

(
1− 1

6
γ2t2

)
,

a new result.

3.4.3. SSPs with constant curvature. The linear SSP example above is an
example of a medium with constant (negative) Gaussian curvature—a hyperbolic
space. In general, it is worthwhile to ask which SSPs yield spaces of constant positive
or negative curvature, because these SSPs serve as models for both convergent and
divergent ray propagation. Solving the second-order nonlinear differential equation
cc′′ − (c′)2 = K for constant K yields

c(z) = c0 cosh(z − z0)/W, K = c20/W
2 > 0,(3.33)

c(z) = c0 sinh(z − z0)/W, K = −c20/W
2 < 0,

c(z) = c0 cos(z − z0)/W, K = −c20/W
2 < 0,

c(z) = c0 sin(z − z0)/W, K = −c20/W
2 < 0,

c(z) = c0 + γz, K = −γ2 ≤ 0,

of which only the first has constant positive curvature.
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The hyperbolic cosine SSP c(z) = c0 cosh(z − z0)/W ≈ c0 +
1
2c0W

−2(z − z0)
2 is

the solution for an acoustic duct, which traps rays near depth z0. Regions modeled
by hyperbolic cosine SSPs are described in the literature with increasing frequency
[30, p. 156; 9, 31, 35, 23, 20, 3, 32, 16, p. 354]; Bergman [3] observes that this
profile yields constant curvature. The solution to Jacobi’s equation for intrinsic ge-
ometric spreading in Theorem 3.4 equals �(t) = K− 1

2 sinK
1
2 t, with half-wavelength

travel-time between caustics determined by πK− 1
2 = πW/c0 (cf. (3.12)). The range

between caustics equals c0 times the travel-time for all small initial elevation angles
θ0; therefore, by invariance, the range between caustics for all initial elevation angles
necessarily equals πW , yielding the following new and useful theorem [30, 9, 31, 3].

Theorem 3.6. Let c(z) = c0 cosh(z − z0)/W be an SSP with hyperbolic cosine
profile. Then for any initial elevation angle θ0, speed c0, and depth z0, the range
between caustics and focusing regions is given by the constant

(3.34)
half-wavelength

range
= πc0K

−1/2 = πW.

This theorem is illustrated in Figure 2 over a large range of initial elevation an-
gles. Porter [23] uses a value of W−1 = 0.0003m−1 for his hyperbolic cosine SSP
and observes without explanation that “the rays refocus perfectly at distances of
about every 10 km.” Indeed, Theorem 3.6 establishes that all rays refocus perfectly
every π/0.0003 = 10.47km, precisely as shown in Porter’s Figure 8 on p. 2020 [23].
This is also verified by the closed-form functional form of rays with SSP, available

from Snell’s law, cosh(z − z0)/W = sec θ0
(
1− sin2 θ0 cos

2(r/W )
) 1

2 ; the property of
constant curvature also yields simple solutions for the intrinsic geometric spreading
�(t) = (c0/W ) sin(c0t/W ) and both the intrinsic phase �̇/� = (W/c0) cot(c0t/W ) and

the extrinsic phase p/q via (3.22). In practice, it is the quadratic term cosh z ≈ 1 + 1
2z

2

of the hyperbolic cosine profile that dominates ray behavior in a duct, and ducting
regions with quadratic SSPs and approximately constant positive curvature are quite
common. This establishes the approximate distance between caustics in a duct given
in (3.12).

In all other solutions with physical positive speed c(z) > 0, the Gaussian curvature
is a negative constant, and rays diverge from each other according to the intrinsic geo-
metric spreading �(t) = K− 1

2 sinhK
1
2 t ≈ t+ 1

6Kt3, which equals t+ 1
6 (c

2
0/W

2)·t3 for
the downward refracting SSP c(z) = c0 sinh(z − z0)/W and the trigonometric SSPs
c(z) = c0 cos(z − z0)/W with divergence zones. The trigonometric SSPs of constant
negative curvature with convergent ducts (such that c′′ > 0) are in fact nonphysical
because the sound speed must be negative at such depths; physical ducting behavior
with positive sound speed is described by the first hyperbolic cosine solution. The
case of linear SSPs, whose constant curvature is negative, was treated in the previ-
ous subsection. Finally, SSPs with vanishing constant curvature K ≡ 0 and intrinsic
geometric spreading �(t) = t are obviously given by the SSP with constant speed c0.

3.5. Beam amplitude and phase based upon Snell’s law. From Figure 5
it is graphically obvious that the geometric spreading q(t) = ‖(∂x(t; θ0)/∂θ0)t‖2 sat-
isfies the trigonometric relationships

(3.35) q = c� =

((
∂r

∂θ0

)2

t

+

(
∂z

∂θ0

)2

t

)1/2

=

(
∂r

∂θ0

)
z

sin θ = −
(

∂z

∂θ0

)
r

cos θ,
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x(t; θ0)

(δr/δθ0)t δθ0

δθ0

(δz/δθ0)t δθ0

δq = q δθ0 = c  ع δθ0

x(t; θ0+δθ0)

Fig. 5. Geometric spreading expressed using ray-centered and extrinsic range and depth coor-
dinates. All distances in the figure represent extrinsic Euclidean distances.

where θ = tan−1(ż/ṙ) is the elevation angle of the ray at point t. This figure is drawn
using an implicit assumption Gauss’s lemma, namely, that the tangent vectors ẋ and
(∂x/∂θ0)t are perpendicular. It is therefore instructive in establishing the relationship
between Snell’s law and the intrinsic approach to show how Gauss’s law implies (3.35).
An additional benefit will be an equation for the transverse phase of a Gaussian beam
expressed in Snell’s law form.

The first-order Taylor series expansion of the expressions r(t; θ0) and z(t; θ0) yields

(3.36) δr = ṙ δte + (∂r/∂θ0)t δθ0 and δz = ż δt+ (∂z/∂θ0)t δθ0.

Fixing the variables z and r, i.e., δz = 0 and δr = 0, respectively, yields the relation-
ships

(3.37) (∂r/∂θ0)z = − cot θ · (∂z/∂θ0)r = (∂r/∂θ0)t − cot θ · (∂z/∂θ0)t

between partial derivatives. Gauss’s lemma (equation (3.15)) provides the additional
relationship

(3.38) (∂r/∂θ0)t + tan θ · (∂z/∂θ0)t = 0

that along with (3.37) yields (3.35). The conclusion is that the intrinsic geometric
spreading

(3.39) � = c−1(∂r/∂θ0)z sin θ = −c−1(∂z/∂θ0)r cos θ

in Snell’s law form satisfies Jacobi’s equation (3.7), where r(z; θ0) is given by Snell’s
law (equation (2.3)).

A benefit of this intrinsic viewpoint of Snell’s law is a new expression for the
transverse phase of a Gaussian beam, obtained by direct application of (3.22) to
(2.3) and (3.35). Differentiating the first equality of (3.35) w.r.t. s and applying the
identities dz/ds = sin θ the Frenet–Serret equations of section 2.1 yield

(3.40) p/q =
1

c

(
∂r

∂θ0

)−1

z

(
∂r

∂θ0

)′

z

sin θ +
c′

c2
cos2 θ

sin θ
,
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where (∂r/∂θ0)
′
z = (d/dz)(∂r/∂θ0)z as usual. These terms are immediately available

via (2.3): (
∂r

∂θ0

)
z

= − sin θ0
c(z0)

∫ z

z0

c(z′)(
1− a2c2(z′)

)3/2 dz′,(3.41)

(
∂r

∂θ0

)′

z

= − sin θ0
c(z0)

c(z)(
1− a2c2(z)

)3/2 .(3.42)

Likewise, differentiating the first equality of (3.39) w.r.t. t yields �̇/� = c2p/q−c′ sin θ,
consistent with (3.6) and (3.22).

3.6. Beam amplitude and phase based upon ray angle. The derivation of
the phase of a Gaussian beam above leads to another formulation of the amplitude
of a Gaussian beam, which has been used in Gaussian beam applications. Equations
(3.3) and (3.21) imply that up to second-order in δθ0,

(3.43) q(s) =

∫ s

0

(∂θ/∂θ0)s′ ds′,

a formula that has been used by others to compute the extrinsic geometric spreading.
The transverse phase of a Gaussian beam, up to second-order, is then given by

(3.44)
cp

q
=

(∫ s

0

(
∂θ

∂θ0

)
s′

ds′

)−1(
∂θ

∂θ0

)
s

and (3.18).

3.7. Intrinsic transverse amplitude and phase of a Gaussian beam. The
amplitude and phase of a Gaussian beam has been fully developed in section 3 for
the computationally practical case of a Gaussian beam defined extrinsically along a
straight line normal to the ray. In this section, it is explained how Jacobi’s equa-
tion quantifies precisely the same construct intrinsically if the extrinsic straight line
in (r, z)-space is replaced with an intrinsic geodesic normal to the ray. Figure 6

δθ0

T

Y

(r(t),z(t))

T = const.

(0,z(0))

δθ
SSP c(z)

δq = ع δθ0
~

N

.δq2 (ع/ع) ½ ~

Fig. 6. Intrinsic view of ray tube in a horizontally stratified medium, in the tangent plane at
the point (0, z(0)). The azimuthal component, not shown, is perpendicular to the page. All distances
in the figure represent travel-time, not Euclidean distance. Note that the extrinsic ray normal
N = dT/ds—the straight line in extrinsic coordinates used to define δq in (2.4)—is not straight using
intrinsic coordinates and diverges a small amount from the time-minimizing geodesic in the normal
direction, shown here as the vector Y . The extrinsic normal vector N is preferred for numerical
computation of the differential path time δte = 1

2
(p/q) δη2; however, the intrinsic normal vector Y ,

from which the differential travel-time is given by δti = 1
2
(c−2 �̇/�) δη2 = 1

2
(p/q − c′ sin θ), δη2,

appears in the intrinsic formulation of Gaussian beam. The path time along either intrinsic Y or
extrinsic N equals δq̃ = � δθ0 to first-order.
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illustrates the difference: because “straight lines” in (r, z)-space are actually curved
intrinsically—they are not time-minimizing geodesics—there is a small difference be-
tween the differential path times. This accounts for the extra term c′ sin θ seen in
(3.6), (3.22), and (3.24). Though computationally impractical, the following new the-
orem connects Jacobi’s equation with the differential path time along rays normal to
the ray at the center of the Gaussian beam.

Theorem 3.7 (intrinsic transverse phase of a Gaussian beam, two-dimensional
case). Let δti be the travel-time difference between the surface of constant travel-time
t and an intrinsic distance δμ along the intrinsic transverse plane (i.e., defined by
geodesics) to the ray at point x(t; θ0), and let �(t) be the solution to Jacobi’s equation
(3.7) along the ray. Then

(3.45) δti =
1

2

�̇
� δμ2 +O(δμ3).

The proof of Theorem 3.7 involves another application of Gauss’s lemma and a
Taylor series expansion about x(t; θ0) and is comparable to the proof of (3.18) above.
Consider the change of elevation angle θ(t) = tan−1(ż/ṙ) of the ray: let δθ be the
difference between θ and the slope of the ray x(t; θ0 + δθ) intersecting the transverse
plane at distance δμ = � δθ0 along a geodesic emanating perpendicularly from the ray
with initial unit tangent vector Y , i.e., g(Y ,Y ) = 1 and g(T ,Y ) = 0. This definition
of δθ equates to the relation

(3.46) δθ = 〈Y , τ−1
δμ ẋ(t; θ0 + δθ)− ẋ(t; θ0)〉,

where τ−1
δμ is the inverse parallel translation along the geodesic between the points

x(t; θ0) and x(t; θ0 + δθ) in direction Y . A straightforward Taylor series analysis
of the differential equations describing parallelism [15] shows that for any arbitrary
vector field X(δμ), τ−1

δμ X(δμ) = X(0)+O(δμ2)—the proof involves so-called normal
coordinates defined so that at the single point where δμ = 0, gij(0) = δij and rays
in the direction Y have the coordinates (tY 1, tY 2), implying that Γk

ij(0) = 0. The
implication of this local analysis about the point x(t; θ0) is that

(3.47) δθ = �̇ δθ0 +O(δθ20)

because, up to second-order,

ẋ(t; θ0 + δθ) = (d/dt)
(
x(t; θ0) + �(t)Y (t)

)
= ẋ(t; θ0) + �̇Y + �∇TY(3.48)

= ẋ(t; θ0) + �̇Y

by the parallelism of Y along the ray. Now the change in slope δti of the ray is equal
to the slope of the quadratic function δti = (1/2)Qi δμ

2 +O(δμ3) for some coefficient
Qi that is implied by Gauss’s lemma. The slope of this function at δμ equals

(3.49) δθ +O(δθ3) = tan δθ = d(δti)/d(δμ) = Qi δμ = Qi� δθ0.

Equating (3.47) and (3.49), we conclude that Qi = �̇/�, establishing the theorem.

The quadratic coefficient �̇/� for the phase is physically consistent with two easily
imagined examples. For flat space where the Gaussian curvature vanishes, �(t) ≡ t,

�̇(t) ≡ 1, and the wavefront of constant t is a circle of radius t, in which case the

gap size equals δti − t sec δθ0 − t = (t/2)(δθ0)
2 +O(h4) = (1/2)(1/t)(δμ)2 +O(h4),
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as predicted by Theorem 3.7. For the second example, consider acoustic propagation
in a space of constant positive curvature K = R−2, e.g., S-waves emanating from a
(geologically unlikely) earthquake on the north pole of the earth. In this case the rays
are all great circles on the sphere that intersect at the north pole, i.e., longitudinal
lines. At every point around the equator, equivalently, in the plane transverse to every
ray at the equator, all rays have equal travel-time to the north pole; therefore, δti = 0
around the equator. Indeed, solving Jacobi’s equation (3.7) yields �(t) = sin(t/R)

for which �̇ = cos(12π) = 0 at the equator, an easily obtained intuitive result that is
again consistent with Theorem 3.7.

4. Conclusions. Paraxial ray theory is an essential and useful component of
modern acoustic modeling. There are deep and important connections between the
classically derived paraxial ray equations for the amplitude and phase along a Gaus-
sian beam and the second-order variation—called Jacobi’s equation—along geodesics
encountered in differential geometry. This paper demonstrates how known results
in paraxial ray theory correspond to their counterparts in differential geometry and
shows how both new equations and new insights into the properties of acoustic rays
are obtained from an intrinsic, differential geometric point of view. It is shown how
the intrinsic Gaussian curvature affect the spreading of Gaussian beams and how the
specific form of this intrinsic curvature (K = cc′′ − (c′)2 for a horizontally stratified
medium with SSP c(z)) allows one to easily compute the distance between caustics
within a duct, as well as the geometric spreading for either a duct or a region with
linear SSP. These results allow the introduction of SSPs yielding constant Gaussian
curvature, which serve as model spaces for convergent acoustic ducts (positive curva-
ture), divergence zones (negative curvature), and nonrefractive spreading (zero cur-
vature). It is proved for the model of a hyperbolic cosine SSP that the range between
caustics is constant for all rays. Intrinsic versions of the amplitude and Gaussian
beams are introduced. The intrinsic geometric spreading is shown to be equivalent
to its extrinsic counterpart after scaling by the position-dependent sound speed. The
intrinsic phase of a Gaussian beam, which is the phase along geodesics, not straight
lines, emanating in a normal direction from the ray, is shown to be equivalent up to a
small additive term to the phase of a paraxial ray as it is typically defined. Because
the differential geometric approach is quite general, all results may be generalized to
three dimensions, and in all cases, the connection is made with known results derived
from Snell’s law, Hamilton’s equations, or the Frenet–Serret formulae. The results
may also be applied to other special cases of applied interest, such as a spherically
stratified sound speed.

Acknowledgment. The author thanks Arthur Baggeroer for his encouragement
and critiques of this paper.
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