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Activation of the hippocampal dopamine 1-class receptors (D1R
and D5R) are implicated in contextual fear conditioning (CFC).
However, the specific role of the D1R versus D5R in hippocampal
dependent CFC has not been investigated. Generation of D1R- and
D5R-specific in situ hybridization probes showed that D1R and D5R
mRNA expression was greatest in the dentate gyrus (DG) of the
hippocampus. To identify the role of each receptor in CFC we
generated spatially restricted KO mice that lack either the D1R or
D5R in DG granule cells. DG D1R KOs displayed significant fear
memory deficits, whereas DG D5R KOs did not. Furthermore, D1R
KOs but not D5R KOs, exhibited generalized fear between two
similar but different contexts. In the familiar home cage context,
c-Fos expression was relatively low in the DG of control mice, and
it increased upon exposure to a novel context. This level of c-Fos
expression in the DG did not further increase when a footshock
was delivered in the novel context. In DG D1R KOs, DG c-Fos levels
in the home cage was higher than that of the control mice, but it
did not further increase upon exposure to a novel context and
remained at the same level upon a shock delivery. In contrast, the
levels of DG c-Fos expression was unaffected by the deletion of DG
D5R neither in the home cage nor upon a shock delivery. These results
suggest that DG D1Rs, but not D5Rs, contribute to the formation of
distinct contextual representations of novel environments.

dopamine 1 receptor | dopamine 5 receptor | Pavlovian fear conditioning |
memory generalization

The hippocampus is crucial for aversive Pavlovian condition-
ing, such as contextual fear conditioning (CFC) (1, 2). In

CFC, the conditioned stimulus (context) is paired with the un-
conditioned stimulus (footshock), and after pairing, the context
serves as a cue to predict a potential footshock (3, 4). Although
the role of dopamine has been studied in the context of reward
learning (5), evidence suggests that midbrain dopaminergic neu-
rons are also important for aversive Pavlovian conditioning (6–9).
In line with this evidence, hippocampal encoding of novel and
contextual information is linked to dopamine release via excitation
of dopamine neurons of the midbrain (5, 10, 11). Additionally,
delivery of aversive stimuli, such as a footshock, results in increased
dopaminergic neuron activity (12). Moreover, inactivation of hip-
pocampal D1Rs and D5Rs attenuates contextual fear memory
(13). Thus, it follows that delivery of an aversive stimulus activates
midbrain dopamine neurons that project to the hippocampus,
which is crucial for encoding novel contextual cues (12, 14, 15).
Activation of hippocampal D1Rs and D5Rs may then strengthen
the encoding of novel contextual information during CFC.
The precise role of subregion-specific D1R or D5R activation

in hippocampal-dependent learning and memory is unknown.
This is in part due to the inability to discriminate between and
spatially restrict D1R from D5R function (16–18), which is an
important caveat because each receptor is involved in modulat-
ing distinct neuronal processes (19–22). Indeed, there is a lack of
consensus of D1R and D5R expression patterns in the rodent
hippocampus (23–27). Moreover, pharmacological findings are
at odds with D1R and D5R global KO studies, which show that

neither D1Rs nor D5Rs are required for fear conditioning (16,
17). Therefore, to reconcile these disparate findings and to test
the necessity of D1R and D5R activation for CFC, it is necessary
to functionally isolate and spatially restrict hippocampal D1R
and D5R activity.
In this study, we found that D1Rs and D5Rs exhibit over-

lapping expression in dentate gyrus (DG) granule cells. DG D1R
activation is necessary to increase c-Fos expression in the DG and
CA3 to enhance novel contextual encoding. Moreover, DG D1R
activation decreases generalization of the conditioned fear re-
sponse to novel contexts. However, we found no role for DGD5Rs
in modulating DG c-Fos expression or contextual fear learning and
memory. In using our subregion-specific KO mice, we show that
the hippocampal dopamine signal plays a definitive role in CFC.

Results
D1R and D5R Expression Exhibits Greatest Overlap in Dentate Gyrus
Granule Cells. The expression patterns of D1Rs and D5Rs have
remained unclear, making it difficult to identify the function of
these receptors in the modulation of hippocampal dependent
learning and memory. Because D1Rs and D5Rs carry a high
level of similarity in their amino acid sequence (18, 24), the use
of antibodies to identify region specific D1R and D5R expres-
sion has not been effective (28). To overcome this issue, we have
created D1R- and D5R-specific mRNA probes for in situ hy-
bridization (ISH) experiments. We validated the specificity of
each riboprobe by generating D1R−/− and D5R−/− mouse lines
and tested each probe on brains slices of these constitutive KO
mice (Fig. S1 B–E). Using the D1R-specific probe, we have
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shown that D1R mRNA is present throughout the cortical layers
and expressed strongly in the striatum, olfactory tubercle (OT),
olfactory bulb, and the DG (Fig. 1 A and B). The D5R mRNA is
expressed strongly in the DG, CA3, and CA1 (Fig. 1D) and
weakly in the paraventricular nucleus of the thalamus (Fig. S1D),
cortex, the cerebellum, the striatum, and OT (Fig. 1C). These
data are consistent with previous ISH studies (23, 24, 29). We
have revealed, to our knowledge for the first time, that in the
hippocampus, the DG is the area where both D1Rs and D5Rs
are robustly expressed.

Comparison of Forebrain Restricted D1R and D5R KO Mice to Pharma-
cological Antagonist Studies. Prior studies investigating the role of
D1Rs and D5Rs in learning and memory have relied on phar-
macological antagonists (13, 30). However, these antagonists
block both D1Rs and D5Rs due to their high structural similarity
(28). To connect prior literature using D1R/D5R antagonists,
we generated mice lacking both D1Rs and D5Rs by crossing
CaMKII-Cre mice (31) with floxed (flx) D1R/D5R mice, which
resulted in forebrain-wide D1R and D5R deletion (D1R/D5R
KO) (Fig. 1 E and G). Receptor deletion in the D1R/D5R KOs
was quantified by measuring the grayscale gradient of the ISH
image within each region of interest (32). Significant reduction
of the D1R mRNA occurred in the DG (unpaired t test, P <
0.0001) and striatum (unpaired t test, P < 0.0001) (Fig. 1 E, F,
and I) in the mutant mice. The DG D1R mRNA signal was
nearly absent by 16 wk of age. The DG (unpaired t test, P < 0.0001)
and CA1 (unpaired t test, P < 0.0001) D5R mRNA signal was
significantly reduced in D1R/D5R KO mice, with near complete
deletion by 28 wk of age (Fig. 1 G, H, and J). The levels of D5R
mRNA expression were unaltered in the CA3 area of the KO
animals compared with control mice (unpaired t test, P = 0.362)
(Fig. 1J).
D1R/D5R deletion in the DG was also confirmed by observed

deficits in synaptic plasticity at the medial perforant path (mPP)-
DG synapse in KO animals. Previous studies have shown that
pharmacological blockade of D1R/D5Rs inhibits mPP-DG late
phase long term potentiation (L-LTP) (33); therefore, we assessed
synaptic transmission and L-LTP at the mPP-DG synapse using an
anesthetized in vivo preparation. An input–output curve was gen-
erated by stimulation of the mPP, with the recording electrode
placed in the hilus of the DG. There was no significant difference
between genotypes [two-way ANOVA, F(1, 13) = 0.4413, P =
0.5181] (Fig. 1K). A theta burst protocol was used to induce L-LTP
at the mPP-DG synapse in flx and mutant mice (Fig. 1L). D1R/D5R
KO mice showed initial potentiation (paired t test, 25–30 min,
113.1% ± 3.3%, P < 0.05). However, the slope of the fEPSP
returned to baseline (paired t test, 175–180 min, 95.9% ± 4.7%,
P = 0.492), whereas flx D1R/D5R mice exhibited robust L-LTP
(paired t test, 175–180 min, 125.4% ± 10.0%, P < 0.05).
D1R/D5R KO mice show deficits in CFC. When given a 24-h

fear memory test, D1R/D5R KO mice exhibited fear memory
deficits as measured by reduced freezing levels in KO animals
(unpaired t test, P < 0.05) (Fig. 1 M and N). The observed
phenotype in mutant mice was not due to differences in pain
sensitivity, gross motor dysfunction, or altered anxiety levels (Fig.
S2 A–D). Because the amygdala is pivotal in processing fear
memory, we trained mice on an amygdala-dependent cued-fear
conditioning protocol where a discrete auditory cue predicts and
coterminates with an aversive foot shock. D1R/D5R KO mice
showed normal conditioning to tone (unpaired t test, P = 0.5533),
suggesting that contextual fear memory deficits in the KO mice are
not due to altered amygdalar function (Fig. S3A).

Identification of DG-Specific D1R and D5R Function in Contextual Fear
Conditioning and Subregion-Specific c-Fos Activation. We generated
DG specific D1R KO and D5R KOs by crossing POMC-Cre
mice (34) with flx D1R mice or flx D5R mice, respectively. D1R

gene recombination was restricted to DG granule cells of the
hippocampus. The D1R mRNA signal was nearly absent by 16 wk
of age in D1Rmutants (Fig. 2 A and B). Quantification of the D1R
ISH signal in flx and KOmice showed significant reduction of D1R
mRNA expression in the DG (unpaired t test, P = 6.27 × 10−8)
with normal DGD5 mRNA expression (unpaired t test, P = 0.309)
(Fig. 2 C–E). DG D5RKO animals exhibited maximum deletion of
DG D5Rs (unpaired t test, P = 3.86 × 10−6) by 13 wk of age and
showed normal D1R mRNA expression in the DG (unpaired t test,
P = 0.250) (Fig. 2 F–J).
DG D1R deletion impairs CFC, whereas DG D5R deletion

does not. When mice were trained on a CFC paradigm, D1R
KOs exhibited impaired fear memory compared with control
mice [two-way ANOVA (time × genotype), F(9, 801)time = 9.963,
P < 0.0001; F(1, 89)genotype = 20.36, P < 0.0001]. Bonferroni
multiple comparisons test also shows deficits at multiple time
points (Fig. 2K). DG D5R KO mice exhibited normal contextual
fear memory when average freezing levels were compared be-
tween the mutant and control mice (unpaired t test, P = 0.908)
(Fig. 2N). We also tested the necessity of DG D1Rs for short-
term memory (1 and 3 h after training) and observed no fear
memory deficits (unpaired t test, 1 h, P = 0.5584; 3 h, P = 0.3337)
(Fig. S3B). DG D1R KOs showed normal cued fear conditioning
during tone presentation (unpaired t test, P = 0.4877) (Fig. S3C).
Moreover, neither the DG D1R KO nor the DG D5R KO mice
exhibited gross differences in pain sensitivity, motor function, or
anxiety (Fig. S2 E–L).
DG D1R, but not D5R, deletion impairs DG and CA3 c-Fos

expression to novel contextual exposure and CFC. We used c-Fos
expression levels to measure hippocampal subregion encoding of
novel contextual information (35–38). Wemeasured c-Fos+ neurons
of the DG and CA3 in response to the animals’ home cage, expo-
sure to a novel context or novel contextual exposure plus footshock
(i.e., mice receiving CFC). Flx D1R controls showed a robust in-
crease in the number of c-Fos+ neurons when exposed to a novel
context (unpaired t test, P < 0.0005) or given CFC (unpaired t test,
P < 0.0005), in comparison with the home cage group. Moreover,
there was no significant difference in DG c-Fos+ neurons in flx
D1R mice, when the context and CFC groups were compared (flx:
unpaired t test, P < 0.599) (Fig. 2L). In contrast, compared with the
control mice, D1R KOs showed significantly reduced c-Fos+ ex-
pression in DG granule cells to both the novel context exposure
(unpaired t test, P < 0.01) and CFC (unpaired t test, P < 0.01) (Fig.
2L). Interestingly, in the home cage group, D1R KOs showed sig-
nificantly enhanced c-Fos+ DG granule cells, compared with flx
control (unpaired t test, P < 0.01) (Fig. 2L). No significant differ-
ence was found in the number of c-Fos+ neurons between the home
cage group and novel context exposure (unpaired t test, P = 0.148)
or between the home cage group and fear-conditioned groups in
the D1R KOs (unpaired t test, P = 0.058) (Fig. 2L). However,
a noticeable trend toward significance was observed between the
home cage and fear-conditioned groups.
In both flx control and DG D1R KOs, the presentation of

a footshock significantly increased the number of c-Fos+ neurons
in CA3, compared with novel context exposure (flx: unpaired
t test, P < 0.05; D1 KO: unpaired t test, P < 0.01) (Fig. 2M).
Nevertheless, DG D1R deletion results in a significant decrease
of c-Fos+ CA3 neurons in both the novel context exposure
(unpaired t test, P < 0.05) and CFC groups (unpaired t test, P <
0.05), compared with control mice (Fig. 2M). Fear-conditioned
DG D5R KOs did not exhibit any significant differences in c-Fos
expression in the DG (unpaired t test, P = 0.406) or CA3 (un-
paired t test, P = 0.568) compared with control mice (Fig. 2 O
and P).
DG D1R deletion results in contextual generalization. Given

the deficits in DG c-Fos expression in DG D1R KOs (Fig. 2L)
and the observed CFC deficits in these mice (Fig. 2K), we hy-
pothesized that the KOs have impaired encoding of contextual
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information. Thus, DG D1R KOs should confound contextual
cues that accurately predict the delivery of a potential footshock.
To test the role of DG D1R activation in using specific contex-
tual cues as a predictor of shock, we trained mice in a contextual
shift design task (4). Mice were trained on a CFC paradigm; 24 h
after training, one group was placed back into the training con-
text (context A) and a second group was placed into a unique but
similar context (context B) (Fig. 3A). On the following day, mice
that were first tested in context A were tested in context B, and
mice first tested in context B were tested in context A. DG D1R
KOs again showed an impairment in fear memory to context A
compared with control mice (unpaired t test, P < 0.0005). In
addition, control mice froze significantly more to context A than
to context B, while DG D1R KOs froze equally to both contexts
[two-way ANOVA (context × genotype), F(1, 35)interaction = 9.972,
P < 0.0033] (Fig. 3B).

Discussion
DG D1Rs Contribute to the Formation of Novel Contextual Represen-
tations. In this study we found that the overlapping expression of
D1Rs and D5Rs is greatest in the DG of the hippocampus among
all brain regions. The strong expression of DG D1Rs and D5Rs
highlights the significance of the dopamine signal in hippocampal
dependent memory processing. Additionally, we have shown that
the loss of either both receptors or one of the two receptors in the
DG results in an impairment of L-LTP at the mPP-DG synapse.
Furthermore, we found that DG D1R deletion, but not D5R de-
letion, increases DG c-Fos expression in a familiar environment
(i.e., home cage). However, D1R deletion decreases DG and CA3
c-Fos expression when the animal was exposed to a novel context or
when they are fear conditioned in a novel context. Moreover, DG
D1R KO deletion impairs contextual fear conditioning. The lack of
enhanced c-Fos levels in DG D1R KOs to novel but not familiar
contextual exposure supports the specific role of DG D1Rs in
encoding novel contextual information. In addition, the observed
enhancement of context generalization in the KO animals further
supports the role of DG D1Rs in accurately encoding novel con-
textual information. It is likely that the freezing deficit observed in
DG D1R KOs is due to this impairment in forming contextual
representation.
Recent work, however, showed that DG-to-CA3 transmission

is absent: There are no observed deficits in contextual fear condi-
tioning (39). Our present results (Fig. 2K) seemingly go against
these earlier findings. However, given that the DG D1R KOs ex-
hibit a significant enhancement of baseline c-Fos activity, which
does not significantly increase to novel context exposure or to fear
conditioning (Fig. 2L), we propose that KO mice may transmit
corrupt contextual information from the DG to CA3. Thus, CA3 is
likely processing abnormal information from the DG resulting in
disrupted encoding of novel contextual information leading to
contextual fear memory deficits in DG D1R KO mice. Our rea-
soning is in line with hippocampal c-Fos activation and hippocam-
pal lesion studies. First, hyperactivation of c-Fos expression in the
DG results in impaired contextual fear memory (40). Second, hip-
pocampal lesions result in the disruption of encoding contextual
information and not the context–footshock association (1, 2, 41, 42).
However, unlike the lesions studies, our DG D1R deletion does not
simply lead to loss of function, but rather to a gain of impairment.
That is, DG D1R deletion impairs the ability to build a distinct
contextual representation of similar contexts because D1R deletion
increases the transfer of inaccurate contextual information to CA3,
which in turns results in CFC deficits.
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Spatially Restricted KO Animals Clarify the Discrepancies Between
Pharmacological and Global KO Studies. Until now, experimental
manipulations have been unable to adequately address the in-
dividual functions of D1Rs and D5Rs in hippocampal dependent
memory. Pharmacological studies have provided evidence that
both D1Rs and D5Rs or one of the two, are necessary for CFC,
which has been at odds with D1R−/− and D5R−/− mutant studies
that showed that neither D1Rs nor D5Rs were required for fear
conditioning (13, 16, 17). There are several potential reasons for
these discrepancies. First, the D1R/D5R antagonists used can
alter other neuromodulatory receptor activity known to affect
synaptic plasticity (43–47). Because there are functional differ-
ences between D1Rs and D5Rs, the pharmacological data may
not accurately depict the necessity of D1R/D5Rs in hippocampal
memory formation. Second, the lack of an observed fear condi-
tioning phenotype in the D1R−/− and D5R−/− mice, may be due
compensatory mechanisms (e.g., receptor up-regulation) of D1Rs
and D5Rs in D5R−/− and D1R−/− mice, respectively. We have
observed that D1R−/− mice generated in our laboratory lack
motivation to seek food and water. These mice died soon after
weaning unless food was directly and easily accessible, which is in
agreement with previous studies reporting similar behavioral
abnormalities (16, 48). Therefore, the global KO studies may not
have provided data that is a true function of D1Rs or D5Rs in
hippocampal dependent memory formation. Given these issues,
it has been difficult to reconcile pharmacological and global KO
studies, hindering the ability to accurately determine D1R from
D5R function. Nonetheless, our current findings are in agree-
ment with some of the pharmacological data, because we find
that forebrain D1Rs or D5Rs, or both are required for fear
memory and L-LTP at the mPP-DG synapse (Fig. 1 L and M).
The genetic tools used in our current study have provided
a unique advantage over the pharmacological studies by allowing
us to investigate the precise role of each receptor subtype in
the DG.

Experimental Procedures
Animal Sex. All experimental animals in this manuscript are male.

Generation of the D1/D5 Receptor KO Mice. To generate inbred C57BL/6 mouse
lines with the dopamine D1R and D5R flanked by loxP sites, we made targeting
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Fig. 2. Characterization of DG-specific D1R and D5R KO lines. (A and B) D1R mRNA expression in D1 KO line. (C) D5R mRNA expression in D1 KO line. (D and E)
Quantification of D1R (flx, n = 4; KO, n = 4; D) and D5R mRNA (flx, n = 4; KO, n = 3; E) expression in the DG. (F and G) D5R mRNA expression in D5 KO line. (H)
D1R mRNA expression in D5 KO line. (I and J) Quantification of D5R (flx and KO, n = 4 for all subregions; I) and D1R mRNA (flx, n = 4; KO, n = 4; J) expression in
the DG. (K) D1R KO line, contextual fear memory test (flx, n = 51; KO, n = 40). (L andM) D1R KO line, quantification of c-Foc+ neurons in the DG (L) and CA3 (M)
neurons (DG and CA3; HC flx and KO, n = 3; CTX flx and KO, n = 5; FC flx and KO, n = 4). (N) DG D5R KO line, contextual fear memory test (flx, n = 9; KO, n = 11).
(O and P) D5R KO line, quantification of c-Foc+ neurons in the DG (O) and CA3 (P) neurons (DG and CA3; HC flx, n = 3; KO, n = 2; FC flx and KO, n = 3). CTX,
context exposure; FC, fear conditioning; HC, home cage.
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Fig. 3. Contextual shift design task. (A) Schematic of training and testing
schedule. (B) Contextual fear memory test in training context and non-
training context (flx = 20, KO = 17).
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constructs from BAC clones obtained from a mouse C57BL/6 genomic library
(Fig. S1A). For both loci, the entire coding regions were flanked by two loxP
sites, and a third loxP site was inserted with antibiotic resistance selection
markers. The targeting constructs were introduced into C57BL/6 ES cells, and
desired clones were selected by Southern blot analysis using external 3′ and
5′ probes. Two independent homologous recombination events for each con-
struct were chosen for transfection with a plasmid carrying the Cre recombinase
gene, and BALB/c blastocysts were injected with and clones in which the whole
coding region was deleted, or clones in which the intact coding sequence was
flanked by two loxP sites (i.e., floxed). Germ-line transmission was obtained
when crossing chimaeras to B6 breeders. Crossing floxedmice to the CaMKII-Cre
line (31), which expresses a transgene for cre recombinase in the adult fore-
brain, resulted in region and cell type specific deletion of the targeted genes.
Mice were genotyped by PCR (Fig. S1B). Mice with a global deletion of both
D1Rs and D5Rs did not survive past 2–4 wk of age. All experiments described in
this paper were performed with flx D1R/D5R mice expressing the cre recom-
binase transgene, and their flx littermates as controls. The controls as well as
their mutant littermates were viable, and showed no abnormalities in weight,
general aspect, grooming, activity, breeding, and social behavior. All experi-
ments with Forebrain D1R/D5R KOs and the control littermate’s occurred be-
tween the ages of 28 and 40 wk of age. All experiments with DG specific D1R
or D5R KOs occurred between 16 and 24 wk of age.

ISH. See ref. 34 for general ISH protocol.
D1R mRNA probe:
5′-ACAAAAGCACAATGGTGTTCCATCAGGAGCATCTCCATAGCAATCCAAG
CCATACCAGGAAGAGAGCCGCTTGCTTTCCACCTGTCTTCTGGGTTCAGTGC-

TCCAGGTCGCTGTTCCCTGGCATCCGCTGTCCCTAGATTCCCCAAGGAATCATA-
GGCTTTTAAGCATACTCTAAGAGTCTGGGGCCTCTTCCTGGTCAATCTCAGTCA-
CTTTTGGGGATGCTGCCTCTTCTTCTGAGACACAGCCTAAAATACATGCATTTCT-
CCTTCAAGCCCCTGGTGCCACATCTCTCCAA ATGCC-3′

D5RmRNA probe:
5′-CCAAAATCCTGCTGTCTTCCAAGAGCACTGGCACTTGTGGTTTCTCTAGG
AGAAACACTGAGCACCAACTGGCAAAGCAAAGGTGACTGCCCCTCCTCCC-

AGCCACAAATGAATGTACTGTGCGCTTATGGAAACCACAACAAATCAGGGAG-
AAATCCCGGCCACAGGAAAGACCCTTCAACCTGCACTAAAGCAGCAGCCCGA-
GAACAGGGGGCTATGGTCCCAAAGTCTAGAAAGTCACAGACCATACCAGC-
AATTGCCACTCAGACCTGTCATTTAAAAAGCAACCCAGGTGCAAGTCACAGA-
ACAAGCCTCTGTTAGAAAGGGTAAATTGAGGTGTACTTCTTAAAGGACCAGGT
TCCACTTTCTCGTCTCTAAAGGGAACTCT-3′

Quantification of Receptor Deletion. Quantification of hippocampal receptor
deletion was measured from ISH images. The change of the 8-bit grayscale
value gradient of these images was measured. Each region was quantified by
the grayscale values described above using the software application ImageJ.
The area of interest (e.g., the DG) was measured, and the mean grayscale
value was calculated. The mean grayscale value depicts the concentration of
the receptor. These values were normalized to the image background, within
each image (32).

In Vivo Physiology. Mice underwent mPP-DG L-LTP experiments and received
isoflurane during the duration of recordings. A rectal thermometer was used
to maintain the animal at 37 °C using a heating blanket. Two holes were
made using a dental drill with the recording electrode placed into the hilus
of the dentate gyrus (2 mm posterior from bregma and 1.5 mm lateral to the
midline) and the stimulating electrode placed into the mPP (3 mm lateral
from lambda) ipsilaterally to the recording electrode. Each electrode low-
ered to ∼1.5 mm from the brain surface. Recordings primarily occurred in
the right hemisphere. However, when responses in the right hemisphere
were not strong enough the recording and stimulating electrodes were

placed in the left hemisphere. In each experiment, an input-output curve
was assessed from 0 μA through 460 μA with 20-μA steps. Three recordings
were taken at each step and averaged. A population spike of at least 5 mV
was necessary for experimentation. L-LTP was induced by a theta burst
protocol where six trains were given at 5 Hz, each train consisted of six
pulses at 400 Hz, this was repeated six times with a 30-s interval.

c-Fos Experiments.Micewere anesthetizedwith an overdose of avertin 60min
after contextual fear conditioning. The fully anesthetized animals were
perfused transcardially with PBS, followed by 4% paraformaldehyde (PFA) in
PBS. Brains were stored in fixative [4% (wt/vol) PFA in PBS] overnight at 4 °C,
and then incubated overnight in 30% (wt/vol) sucrose. A cryostat was used
to collect sagittal sections of 60-μm thickness. Sagittal sections were blocked
with PBST (PBS with 0.3% Triton X-100) with 5% (vol/vol) normal goat serum
for 1 h and then incubated with primary antibody at 4 °C for 24 h (rabbit
anti-c-Fos 1:500, Santa Cruz; mouse anti-NeuN 1:1,000, Millipore). Slices then
underwent three wash steps for 15 min each in PBST, followed by 3-h in-
cubation with secondary antibody (1:200 AlexaFluor 488 anti-mouse, Invi-
trogen; 1:200 AlexFluor546 anti-rabbit, Invitrogen). Slices were then incubated
for 30 min with NeuroTrace 640∕660 for Deep-Red Fluorescent Nissl Stain
(Invitrogen), and underwent three more wash steps of 15 min each in PBS,
followed by mounting and coverslipping on microscope slides. For quantifi-
cation analysis of number of c-Fos–positive cells in DG and CA3 region in mice,
sampling of c-Fos–positive cells was conducted throughout the dorsal DG. Ten
sagittal hippocampal sections were used to count c-Fos–positive cells in DG and
hippocampal CA3 region in a genotype- and treatment-blinded manner.

Behavioral Batteries. Pain sensitivity.A heating block with high walls was set to
50 °C. Mice were placed onto the heating block one at a time. The time from
being set onto the heating block to the time the mouse rubs its paws was
used as the index for pain sensitivity.
Open field activity.Mice were handled for three consecutive days for 2 min per
cage before the first day of open field test. Activity was measured by IR beam
interruption and recorded in 1-min intervals over a 10-min period in a novel
chamber (Digiscan apparatus, Accuscan Instruments). This was conducted for 3
consecutive days.
Rotarod.Mice were placed on a rotating platform that increases in the rate of
rotation over a 300-s window. The time fromwhen themicewere placed onto
the apparatus to the time they fell off was recorded.

Fear Conditioning. All experiments were conducted using FreezeView soft-
ware. Animals received either a single 0.5-mA or 0.75-mA unsignaled foot-
shock at 118 s with a 2-s duration in a novel chamber. Mice remained in the
chamber for 60 s after footshock. One, 3, or 24 h after CFC, mice were re-
turned to same conditioning chamberswhere freezingwas assessed for 5min.
In the contextual shift design task, mice were placed in either the training
context 24 h after training or in a novel context (context B). Twenty-four
hours after the first test, mice placed in the training context were then placed
in context B and vise versa. In cue feared conditioning, mice received a single
paired conditioned stimulus tone and unconditioned stimulus (30 s, 5 kHz,
75 dB, 0.75 mA, 2 s duration). Twenty-four hours after training, mice were
placed into a similar context as comparewith the training context and explored
the context for 2 min, after which a tone presentation was given for 3 min.
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