
New Approaches for Integrating Revenue and
Supply Chain Management

by

Adam Nabil Elmachtoub

B.S., Cornell University (2009)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

c○ Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Sloan School of Management

August 15, 2014

Certified by. .
Retsef Levi

J. Spencer Standish (1945) Professor of Management
Professor of Operations Management

Thesis Supervisor

Accepted by .
Dimitris Bertsimas

Boeing Professor of Operations Research
Co-director of Operations Research Center

2

New Approaches for Integrating Revenue and Supply Chain

Management

by

Adam Nabil Elmachtoub

Submitted to the Sloan School of Management
on August 15, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

First, we describe a general framework called online customer selection that describes
natural settings where suppliers must actively select which customer requests to serve.
Unlike traditional revenue management models that have sunk costs, we assume there
are supply chain costs that depend on the demand being served. Specifically, cus-
tomers arrive in an online manner, each with a set of requirements and associated
revenue, and are either accepted or rejected upon arrival. Rejected customers in-
cur a lost-sales cost, while accepted customers are satisfied with minimum possible
production cost. The goal of the supplier is to minimize the total cost of lost sales
and production. We provide algorithms with strong performance guarantees that are
based on new variants of repeated optimization as well as concepts from mechanism
design.

Second, we study the use of opaque products in a retail setting. A product is said
to be opaque when one or more of its attributes are hidden until the transaction is
complete. Opaque products have been used in the hotel and airline industry where
customers purchase rooms or airfare without a priori knowledge of the brand name.
In this work, we propose the use of opaque product selling in the retail industry,
where there are nonperishable goods and supply chain costs. We show that a small
amount of opaque selling can achieve significant ordering and holding costs savings
for the supply chain. Moreover, we describe settings when a stationary opaque selling
strategy can outperform a common dynamic pricing strategy.

Third, we focus on a variant of the joint replenishment problem, which arises in the
previous two parts as well as in inventory management, logistics, and maintenance
scheduling. In this problem, there are multiple item types that each has a given
time-dependent sequence of demands that need to satisfied. Every time an order of
item types is placed, there is an associated fixed setup cost that is submodular in the
subset of item types ordered. The overall goal is to minimize the total fixed ordering
costs plus inventory holding costs. We provide a variety of approximation algorithms
for this problem and some special cases.

3

Thesis Supervisor: Retsef Levi
Title: J. Spencer Standish (1945) Professor of Management
Professor of Operations Management

4

Acknowledgments

The first person I must acknowledge is my advisor, Retsef Levi. Retsef has been

an amazing source of personal and academic support throughout the years, and has

pushed me to levels I never thought I could achieve. On numerous occasions when

I thought my research could go no further, Retsef has always been able to provide

me with the optimism and motivation for me to continue further. His enthusiasm,

passion, creativity, and endless effort are truly inspiring, and I hope to match that

throughout my own life ... within a factor of two.

I would also like to thank the other members of my thesis committee, David

Shmoys and Vivek Farias. David has been an incredible source of support since

my time at Cornell, and has been a wonderful mentor and coauthor since. He truly

believed in me from the day we met, and has given me invaluable advice and help over

the years. Although I have not had the pleasure to work directly with Vivek (yet),

I have always been impressed by his seemingly endless knowledge and excitement.

Besides being a great teacher, he also has the ability to always provide a unique

perspective on research.

There are many other faculty and staff at MIT that need to be thanked. Georgia

Perakis has been a great source of support on numerous occasions and a wonderful

person to be around. I have also cherished my interactions with Itai Ashlagi, Robert

Freund, David Gamarnik, James Orlin, Tauhid Zaman, and Karen Zheng around

Sloan over the years. The ORC Co-Directors Dimitris Bertimas and Patrick Jaillet

have always been available for me, and have done a great job in guiding the ORC

over the years. Finally, thank you to Laura Rose and Andrew Carvalho who have

made this process as smooth as possible.

I would also like to thank the faculty at Cornell who were my original role models

and sources of encouragement. Charlie van Loan and Leslie Trotter worked with me

as an undergraduate, and they made research a fun and rewarding experience. Bob

Bland and Mike Todd provided excellent guidance for me while I was at Cornell, and

played a large role in encouraging me to pursue academia.

5

This thesis has also relied on the support of very generous sponsors. For my first

three years, I was funded by a National Defense Science and Engineering Graduate

(NDSEG) fellowship from the Air Force of Scientific Research. Later on I also received

support from the Center for Biomedical Innovation at MIT, and I would specifically

like to thank Gigi Hirsch for her support.

During my time at MIT, I have met some amazing people and lifelong friends. Ross

Anderson, Fernanda Bravo, Andre Calmon, Florin Ciocan, Maxime Cohen, David

Goldberg, Vishal Gupta, Angie King, Kris Johnson, Aileen Malloy, Allison O’hair,

Anna Papush, David Relethford, Stefano Traca, and Yehua Wei have made this jour-

ney so fun and meaningful, and thankfully have learned to tolerate me over the years.

Ross was a roommate of mine for three years during which we had countless laughs,

too much caffeine, and an unusual amount of venison. Aileen, Anna, David R., and

Stefano have also been great roommates that made living in Cambridge feel like home.

Andre and I went through almost everything together, which made it all a lot more

fun. David G. and I spent many late nights at the ORC, and he has inspired me with

his extreme passion for research. Florin, Vishal, Angie, Kris, and Allison are just

wonderful friends that I have relied on and shared many great experiences with over

they years and hopefully many more. Yehua is not only a friend but a great coauthor

for our work on opaque products, which is included in this thesis. Maxime and Paul

have been tremendous officemates who are always willing to listen to my thoughts

and go on coffee runs with me. Last, but certainly not least, Fernanda has been an

invaluable friend, to an extent that I did not know was possible.

Finally, I would like to thank my parents Nabil and Daad, and my siblings Najla,

Ryan and Sarah. My father, Nabil, has always been a role model and taught me the

meaning of hard work and using my brain above all else. My mother, Daad, has been

a constant source of support and love and has given me the common sense I need to

navigate my life. My sister Najla is an amazingly talented person who is always able

to outwit me and show me how to be a cooler person. My brother Ryan is the most

sincere person I know, and is always reminding me that there is more to life than

books (and that I need to work out more). My sister Sarah is the type of person

6

that can brighten anyone’s day, and she is a constant source of positivity and fashion

advice. My family has always been my biggest supporters, and therefore I dedicate

this thesis to them.

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

Contents

1 Introduction 17

2 Supply Chain and Logistics Models with Online Customers Selec-

tion 21

2.1 Introduction . 21

2.1.1 Contributions . 23

2.1.2 Literature Review . 25

2.2 General Model . 27

2.2.1 Model Applications . 29

2.3 Examples . 31

2.3.1 Submodular Cost Problems with Online Customer Selection . 31

2.3.2 Economic Lot Sizing Problem with Online Customer Selection 32

2.3.3 Joint Replenishment Problem with Online Customer Selection 33

2.3.4 Facility Location Problem with Online Customer Selection . . 34

2.3.5 Network Design Problems with Online Customer Selection . . 35

2.4 Results . 36

2.5 Copycat Algorithm . 37

2.6 StablePair Algorithm . 40

2.6.1 StablePair Implementation . 43

2.7 Performance of Copycat and StablePair 46

2.7.1 Submodular Analysis with Arbitrary Rejection Costs 46

2.7.2 ELS Analysis with Fixed Rejection Costs 47

2.7.3 ELS Analysis Including Online Production 49

9

2.7.4 JR Analysis with Fixed Rejection Costs 50

2.7.5 FL Analysis with Fixed Rejection Costs 53

2.7.6 Improving FL Analysis via Scaling 54

2.7.7 Computational Results . 56

2.8 FairShare Algorithm . 58

2.8.1 Analysis . 61

2.8.2 Extensions for Online Market Selection 67

2.9 Lower Bounds . 68

2.9.1 Submodular, ELS, JR, and FL with Fixed Rejection Costs . . 68

2.9.2 FL and ELS with Arbitrary Rejection Costs 69

2.10 Conclusion . 74

3 Retailing with Opaque Products 77

3.1 Introduction . 77

3.1.1 Literature Review . 80

3.2 The Opaque Product Model . 81

3.2.1 Computing the Inventory Cost 83

3.2.2 Profitability of Opaque Selling 84

3.3 Inventory Cost Savings with Opaque Selling 86

3.3.1 Numerical Results . 87

3.3.2 Theoretical Analysis . 88

3.4 Estimating Demand for Opaque Selling Strategies 94

3.4.1 Customer Choice Model . 94

3.4.2 Profit, Revenue, and Costs under a

Linear Demand Model . 97

3.5 Comparison to a Dynamic Pricing Strategy 99

3.6 Extensions . 101

3.6.1 Asymmetric demand . 102

3.6.2 𝑁 transparent products . 103

3.6.3 𝑘-opaque products . 104

10

3.6.4 Future Directions . 105

4 The Submodular Joint Replenishment Problem 107

4.1 Introduction . 107

4.1.1 Literature Review . 111

4.2 Submodular JRP . 112

4.2.1 Model . 112

4.2.2 Integer Programming Formulation 114

4.3 Tree Joint Replenishment Problem 117

4.3.1 LP Rounding Algorithm . 120

4.3.2 Analysis . 121

4.4 Laminar Joint Replenishment Problem 124

4.4.1 Dynamic Programming Formulation 125

4.5 Cardinality Joint Replenishment Problem 127

4.5.1 A Linear Program . 127

4.5.2 Labeling Algorithm . 130

4.5.3 Analysis . 131

4.6 Conclusion . 135

A Chapter 2 Appendix 137

A.1 Examples . 137

A.2 Proofs . 141

A.3 Figures . 145

B Lower Bound for Steiner Tree with Online Customer Selection 147

C Chapter 3 Appendix 153

C.1 Additional Proofs . 153

C.1.1 Proof of Theorem 1 - Optimal Fulfillment Policy 153

C.1.2 Proof of Theorem 2 . 155

C.1.3 Proof of Theorem 3 . 156

C.1.4 Proof of Lemma 4 . 158

11

C.1.5 Proof of Lemma 22 . 160

C.1.6 Preservation of Stochastic Dominance in Theorem 5 160

C.2 Computing E[𝑁∞] and E[𝑁 ′
∞] in Theorem 5 161

C.3 Additional Figures . 163

12

List of Figures

2-1 Demands near an optimal order 𝑠𝑗. 49

2-2 Constructing the set 𝑇 𝑖. 51

2-3 Serving the customers in 𝒜𝑖. 52

2-4 Serving the customers in 𝒜. 55

2-5 Experimental results of Copycat and StablePair on ELS example. . . 57

2-6 Example of the tree metric and a customer sequence. 71

3-1 Ordering cost savings relative to 𝑞 = 0. 87

3-2 Holding cost savings relative to 𝑞 = 0. 88

3-3 Relative savings for 𝑐 = 100. 93

3-4 Valuation graph for products 1 and 2. 95

3-5 Substitutable demand model with 𝑎 = 10, 𝑏 = 1, 𝑑 = 0.5, 𝑐 = 50, ℎ = 1. 98

3-6 Ordering cost savings for imbalanced demand. 103

3-7 Ordering cost savings for 𝑞 = 0.1. 104

3-8 Ordering cost savings for 𝑞 = 0.1. 105

4-1 Joint setup cost examples for Tree JRP 118

4-2 LP Rounding example for Tree JRP 122

4-3 Example of equivalent laminar families 125

4-4 Example of partitioning procedure for Cardinality JRP 131

4-5 Example of labeling procedure for Cardinality JRP 132

B-1 Example of the Steiner tree problem with online customer selection. 148

B-2 Example of the Steiner tree problem with online customer selection. . 148

13

B-3 Example of the Steiner tree problem with online customer selection. . 149

B-4 Example of the Steiner tree problem with online customer selection. . 149

C-1 Substitutable demand model with 𝑎 = 10, 𝑏 = 1, 𝑑 = 0.1, 𝑐 = 50, 𝐻 = 1. 163

14

List of Tables

2.1 Results for fixed rejection costs . 37

2.2 Results for arbitrary rejection costs 37

3.1 Expressing demand in terms of valuation graph. 96

A.1 Conservative Scenario . 145

A.2 More Demands Scenario . 146

A.3 Large Orders First Scenario . 146

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

Chapter 1

Introduction

In this thesis, we study new models that integrate revenue management and supply

chain management decisions. Revenue management has historically been motivated

by the airline and hotel industries. In these contexts, there is a typically a fixed

amount of given capacity (seats/rooms) that needs to be sold, and the goal is to get as

much value as possible from this capacity. Since generating the capacity occurs far in

advance from when sales are generated, the costs are assumed to be sunk and the focus

is solely on maximizing revenue. The goal of traditional revenue management has

been to design tactics that obtain as much revenue as possible from a given capacity,

using techniques such as dynamic pricing, bid-price controls, protection levels, and

promotions. In traditional supply chain management, the goal is to serve a set of

demand as efficiently as possible. The demand is typically assumed to be provided

exogenously and is either described deterministically or via a probability distribution.

The supplier has to make corresponding inventory, capacity, and logistics decisions in

order to meet the demand accordingly with minimum cost to the supply chain.

In combining revenue and supply chain management systems in one framework,

where applicable, we would like to simultaneously optimize both the revenues and

supply chain costs required to satisfy the demand . In particular, revenue management

decisions affect the revenue and demand, which consequently also impacts the supply

chain costs. For example, dynamic pricing has been one of the primary vehicles to

bridge revenue and supply chain management together (for example, see Chen and

17

Simchi-Levi [22], Federgruen and Heching [32], and Petruzzi and Dada [69]).

In this thesis, we will use two other ideas inspired by revenue management prac-

tices to influence demand and thus integrate our revenue and supply chain cost de-

cisions: online customer selection and opaque selling. In online customer selection,

different customers arrive and we must immediately accept or reject their request

upon arrival. In traditional revenue management, customers request an itinerary

that uses up some capacity and customers are linked together since they are vying

for the same capacity. In the context we consider, a customer request incurs supply

chain costs if accepted, and customer are linked together because they will implicitly

share the supply chain costs due to economies of scale. Specifically, customers arrive

in an online manner, each with a set of requirements and associated revenue, and are

either accepted or rejected upon arrival. Rejected customers incur a lost-sales cost,

while accepted customers are satisfied with minimum possible production cost. The

goal of the supplier is to minimize the total cost of lost sales and production. We

provide algorithms with strong performance guarantees that are based on new vari-

ants of repeated optimization as well as concepts from mechanism design. This work

is detailed in Chapter 2 and the papers Elmachtoub and Levi [27] and Elmachtoub

and Levi [26].

In the second part of the thesis, we study the use of opaque products in an on-

line retail setting. A product is said to be opaque if one or more attributes of the

product is hidden until the transaction is complete. In traditional revenue manage-

ment applications, opaque products have been used in the hotel and airline industry

where customers can purchase discount rooms or airfare without a priori knowledge of

the brand name. For example, Hotwire.con and Priceline.com sell discounted rooms

and flights without revealing the brand name. This allows the hotels and airlines

to increase revenues and capacity utilization without cannibalizing their fully priced,

transparent products. In this work, we propose the use of opaque product selling in

the retail industry, where there are nonperishable goods and supply chain costs. We

show that opaque selling strategies can always lead to more profit, without neces-

sarily losing revenue. In particular, we derive simple expressions for estimating the

18

costs, demand, and revenue under an opaque selling strategy. Using computational

and theoretical evidence, we also show that a small amount of opaque selling can

achieve significant ordering and holding costs savings for the supply chain. We also

compare opaque selling strategies to a class of dynamic pricing policies and show that

opaque selling can be more profitable under some restrictions. Finally, we describe a

generalization of opaque products that provides a natural tradeoff between customer

choice and supply chain performance. This work is detailed in Chapter 3 and the

paper Elmachtoub and Wei [28].

In the third part of the thesis, we analyze in detail a multi-item inventory problem

with joint setup costs. These type of problems arise naturally in many settings such

as those in the previous two parts of the thesis. Specifically, we describe a problem

where there is a known demand for several item types, and each demand must be

served by an order for that item type before its due date. The costs are composed of

joint ordering costs and holding costs. Typically a simple structure is used to describe

the joint ordering costs, and in our work we generalize the cost structure to allow any

cost that is a submodular function over the item types ordered. We provide a variety

of formulations and approximation algorithms for this problem and special cases of

it. This work is detailed in Chapter 4 and the paper Cheung et al. [23].

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

Chapter 2

Supply Chain and Logistics Models

with Online Customers Selection

2.1 Introduction

Supply chain management theory provides many streamlined optimization models

where the goal is to satisfy an exogenous deterministic or stochastic sequence of

customers over a specified planning horizon at minimum cost. More recent practice

and research trends in supply chain management have led to broader models that

consider decisions on the supply side as well as on the demand side. More specifically,

the customers to which the supply chain should respond and commit to are not

entirely exogenous parameters, but may be influenced by endogenous decisions such

as pricing, promotions, and other strategic marketing-based factors. In particular, a

supplier should strive to optimally match demand to the supply chain’s production

capabilities. A fundamental aspect of this issue is the choice of customers to which

the supplier commits to serving, and how these customers are implicitly, or explicitly,

chosen. These decisions regarding which customers to serve often depend on the

customer’s associated revenue as well as the marginal costs expected to be incurred

if the customer is satisfied.

We study a broad class of supply chain models that capture situations in which

customers arrive to the supply chain sequentially, each with specific requirements and

21

an associated revenue. Our core model has decisions that are made in two phases.

First, there is a selection phase where the decision maker has to decide in real-time

which customers to accept and which ones to reject, without assuming any knowledge

of future customer arrivals. We refer to this process as online customer selection.

After the selection decisions are made, there is a production phase where the decision

maker must serve all of the accepted customers with minimum production cost. Each

of the rejected customers incurs a rejection cost that can be associated with lost

revenue or a fee paid to a third-party supplier to serve the “rejected” customer. The

goal is to minimize the total rejection cost of rejected customers plus the production

cost of satisfying the accepted customers.

The current standard for making customer selection decisions involves the use of

available-to-promise (ATP) strategies. When evaluating whether or not to accept an

order, the ATP function will typically check to see if the order is feasible by checking

on-hand inventory and/or manufacturing capacity. In this work, we attempt to take

ATP to the next step by checking whether or not an order will be profitable. Given

that an order is feasible, deciding whether or not to accept the order based on the

cost of satisfying the order versus the associated revenue is what we seek to answer.

Since production costs of different customers’ orders are typically non-separable, the

task of defining the cost of a customer order can be challenging and thus motivates

this work.

The online customer selection models studied in this work attempt to capture real-

life operational situations of a make-to-order supplier or service provider. Typically,

decisions are broken up into phases (weeks, quarters, years). In each phase, the

supplier receives customer orders (requests) due in some time period in future phases,

and needs to immediately (or by the end of the current phase) decide which customers

to serve as their requests arrive. During the same phase, the supplier is also serving the

customers that were accepted in previous phases with minimum production cost. In

many of these settings, it is often extremely challenging to form a reliable probability

distribution of future demands. The challenge stems from various potential sources

such as market volatility, lack of reliable data, and the fact that customers have very

22

different needs for customized products (or services). In light of these issues, the

assumption that the supplier has minimal knowledge about future customer arrivals

could lead to more robust policies. (Alternatively, wrong assumptions on the demand

distribution could be very adversarial.)

2.1.1 Contributions

The major contributions in this work are two-fold. First, we introduce a general class

of models for online customer selection problems that captures several important set-

tings. Similar to yield management, we aim to select an optimal set of customers

to maximize our profitability, although in this setting we do not have sunk costs

or perishable inventory. In particular, we study policies in settings where there are

economies of scale to serving customers, and determining the marginal cost of a

single customer is highly dependent on the other customers that are selected. Sec-

ond, we propose three novel online algorithms for making decisions in general online

customer selection models. The performance of the proposed online algorithms is

evaluated using the well-known competitive ratio framework, which is widely used in

many optimization settings. In particular, the online policies are compared to the

optimal offline solution that can be obtained if one has upfront knowledge on the

specific customer arrivals and their demands. Moreover, the assumption is that the

customer arrivals can be generated by a worst-case adversary, who aims to maximize

the ratio between the cost of the online and optimal offline solutions. Under realistic

assumptions, our online policies obtain small competitive ratios for a broad array of

supply chain models with online customer selection. That is, the cost of the online

policies is guaranteed to be within a predetermined factor of the optimal offline policy

for any sequence of customers and their demands.

Two of the online algorithms we propose, Copycat and StablePair, are based on

a new application of repeated re-optimization. A very common heuristic frequently

used to make decisions in practice is to re-optimize in every period based on the

current state of the system and the decisions made so far. Empirically, these types

of heuristics perform well in certain settings and poorly in others. In contrast to

23

this approach, Copycat and StablePair re-optimize assuming that previously made

decisions can be changed, and use the resulting outcome to guide the online decisions

in the current period. (As we shall show, the resulting online policy is still feasible.)

Specifically, these algorithms make decisions for the online customer selection problem

based on solving a problem with offline customer selection defined with respect to all

the customers that arrived thus far and assuming that no selection decisions have yet

been made. StablePair looks at several subproblems, but is actually computationally

more efficient than Copycat which looks at one large problem that can possibly be

NP-hard. The resulting offline solution is then used to make a decision regarding the

selection (rejection) of the customer that just arrived. Although these re-optimization

heuristics ignore previously made decisions, the accept/reject decisions that have been

made cannot be reversed. Both algorithms have small constant competitive ratios and

perform well in computational experiments for a variety of online customer selection

problems.

The third online algorithm, FairShare, is based on repeatedly simulating what

is known as a cost sharing mechanism. In a cost sharing mechanism, 𝑁 “players”

each submit a bid representing how much they would like to be served. Then, the

mechanism decides which set of players to serve and how much each player should

pay according to a cost sharing method. For the algorithm, all previously observed

customers are the players and their associated revenues are the bids. If the cost

sharing mechanism decides to serve the current customer, then FairShare accepts

that customer and otherwise rejects. The cost sharing methods we consider satisfy

several nice properties such as competitiveness, cost recovery, and cross-monotonicity.

Competitiveness implies that the sum of the cost shares assigned to the selected

players is no more than the total cost of service for those players, while cost recovery

implies that the sum of the cost shares covers a large fraction of the actual cost to serve

the accepted players. Cross-monotonicity means that the cost shares of each player

decreases as more players receive service. These three properties together imply that

cost sharing methods provide a very good way to share the costs of production fairly

across customers so that good selection decisions can be made. Leveraging these

24

properties and previous results on the social welfare of cost sharing mechanisms, we

are able analyze the performance of FairShare. We believe that our use of game

theory mechanisms in an online optimization setting has potential for many more

applications.

2.1.2 Literature Review

Supply chain models with customer selection have recently gained interest (for a

broader literature on order acceptance problems, see the survey of Slotnick [80]). Xu

et al. [93] considers a stochastic periodic-review inventory model with lead time and

the possibility of sales rejection. Bhaskaran et al. [8] considers an inventory model

with convex cost structure and the ability to backlog or refuse demand. Charikar

et al. [20] provide an approximation algorithm for the facility location problem with

offline customer selection. Some models considered offline market selection, where a

market is a sequence or collection of demands requested by a customer over time (or

in multiple locations) that must be either fully accepted or rejected. Van den Heuvel

et al. [86] show that it is NP-hard to approximate the profit maximization variants

of these models within any constant. This motivates the focus on cost minimiza-

tion variants that we and others have studied. Geunes et al. [39] develop a general

linear programming rounding framework to approximately solve several supply chain

problems with offline market selection and stochastic demand. Their framework gives

constant factor approximations to the ELS, JR, and FL problems with offline market

selection. In contrast, in this paper we consider markets that consist only of a single

period (or location), but the market/customer selection decisions are made online

with no information about the future. Earlier work on the offline prize-collecting

traveling salesman problem and the prize-collecting Steiner tree problem studied by

Bienstock et al. [11] and Goemans and Williamson [40], respectively, also falls into

our customer selection framework.

There has also been a stream of literature on customer selection in the context of

admission control problems. For example, Carr and Duenyas [17] and Caldentey and

Wein [16] both consider a make-to-stock queue that is committed to serving long term

25

contracts, but also has a spot market from which it needs to accept and reject orders.

In Plambeck et al. [70] and Gallien et al. [36], there is a queue that admits customers

based on their revenue and amount of capacity available for their order. The major

difference between this literature and our work is that we are not inherently limited by

a capacity, which is the major factor for rejecting customers in these models. Instead,

in our work customers are linked together due to the economies of scale in production,

and a customer may be rejected based on his own projected profitability.

Only recently has the concept of online optimization been used to study models in

operations management, although thus far only to problems without market selection.

In Van den Heuvel and Wagelmans [85], the competitive ratio of the online economic

lot sizing problem is shown to have a lower bound of two, matching the best known

guarantee achieved in Axsater [2]. More general single item models are considered in

Wagner [90]. In Buchbinder et al. [14], an online primal-dual algorithm is proposed

for a make-to-order variant of the online joint replenishment problem which has a

competitive ratio of three. Fotakis [34] provides a lower and matching upper bound

depending on the number of customers for the online facility location problem. The

work of Meyerson [62] provides a constant competitive algorithm for a variant of the

online facility location problem with a mild assumption on the customer arrivals. In

Ball and Queyranne [4], booking policies are found that achieve small competitive

ratios for online revenue management problems. In Keskinocak et al. [53], online

algorithms are developed for scheduling problems with lead time quotations. Finally,

Jaillet and Lu [47] propose algorithms for the online traveling salesman problem with

online customer selection. The ideas used in all these papers are very different than

the ones used in this work.

The area of cooperative game theory, which focuses on how to fairly allocate costs

among players, has gained recent interest in operations management (see Cachon [15],

Nagarajan and Sosic [65], Bhaskaran and Krishnan [9], Kim and Netessine [55]). Of

main interest to this paper are the cost sharing mechanisms for inventory management

(Xu and Yang [91]), facility location (Pál and Tardos [68]) and Steiner tree (Jain and

Vazirani [48]) problems. Roughgarden and Sundararajan [73] developed a notion

26

called summability, which was used to study the social welfare of the previously

mentioned mechanisms. Our paper is the first to leverage cost sharing mechanisms

directly in an online optimization setting.

2.2 General Model

Next we describe the details of the core model, and discuss different extensions and

applications in Section 2.2.1. The models studied in this paper involve decisions

that are made in two phases. First, there is a selection phase in which customers

arrive sequentially in an online manner. In stage k of the selection phase, customer 𝑘

arrives with requirements 𝐼𝑘 and rejection cost 𝑟𝑘. Requirements (information) 𝐼𝑘 may

include demand quantities, due dates, and locations needed by the customer. After

customer 𝑘 arrives, the supplier needs to decide whether to accept or reject customer 𝑘

using only the information regarding the first 𝑘 customers. If customer 𝑘 is accepted,

then he must be served according to his requirements during the production phase. If

customer 𝑘 is rejected, a cost of 𝑟𝑘 is incurred, which may represent lost revenue or a

price paid to a third-party supplier. Since the cost of each customer is not necessarily

separable due to the economies of scale in production, evaluating the marginal cost

of a customer a priori is challenging and thus makes the selection problem nontrivial.

The selection phase completes when the supplier stops observing new customers. At

this point the customers that arrived have been partitioned into accepted and rejected

sets denoted by 𝒜 and ℛ, respectively.

The second phase is the production phase, where the accepted customers are served

accordingly to meet their requirements. Let 𝒬 be the set of production options that

are available to the supplier. The production options may represent potential order

dates, locations of facilities, or just a single production setting. For a nonempty set of

production options 𝑄 ⊆ 𝒬 and a set of customers 𝑇 , 𝑃 (𝑄, 𝑇) denotes the minimum

possible production cost to serve the customers in 𝑇 using only the production options

in 𝑄. The function 𝑃 (𝑄, 𝑇) typically represents the cost of an optimal solution to a

minimization problem. The production cost for the accepted set of customers 𝒜 is

27

then denoted by 𝑃 (𝒬,𝒜), which implies that the supplier could potentially use all

options available to serve the accepted customers. We make the natural assumptions

that 𝑃 (𝒬, 𝑇) is nondecreasing in 𝑇 and 𝑃 (𝒬, ∅) = 0. The overall goal is to minimize

the total production costs of the accepted customers plus the rejection costs of the

rejected customers. This two phase problem is generally referred to as an online

customer selection problem. In Section 3 we will describe specific applications of the

model by specifying definitions for 𝐼𝑘, 𝑟𝑘, 𝒬, and 𝑃 (·, ·).

We now outline convenient notation used throughout the paper. Let 𝑁 be the

number of customers that arrived (unknown a priori), 𝑈 be the full set of customers

{1, . . . , 𝑁} and 𝑈𝑘 be the first 𝑘 customers {1, . . . , 𝑘}, implying that 𝑈 = 𝑈𝑁 . When

referring to the final stage 𝑁 , the subscript may be dropped for simplicity. The

rejection cost of a subset of customers 𝑇 ⊆ 𝑈 is defined as 𝑅(𝑇), i.e., 𝑅(𝑇) =∑︀
𝑘∈𝑇 𝑟𝑘. The notation 𝒜𝑘 and ℛ𝑘 denote the customers that were accepted and

rejected, respectively, by the online algorithm through the first 𝑘 stages. Note that

𝒜𝑘 ∪ℛ𝑘 = 𝑈𝑘, 𝒜𝑘 ∩ℛ𝑘 = ∅, 𝒜𝑘−1 ⊆ 𝒜𝑘, and ℛ𝑘−1 ⊆ ℛ𝑘 for all 𝑘.

If all information 𝐼1, . . . , 𝐼𝑁 and 𝑟1, . . . , 𝑟𝑁 is known upfront, then the offline cus-

tomer selection problem is defined as OPT(𝒬, 𝑈) = min𝐴⊆𝑈 𝑃 (𝒬, 𝐴) +𝑅(𝑈∖𝐴). Let

𝒜*
𝑘 and ℛ*

𝑘 denote an optimal pair of accepted and rejected sets in the offline problem

OPT(𝒬, 𝑈𝑘). Note that 𝒜*
𝑘 ∪ ℛ*

𝑘 = 𝑈𝑘 and 𝒜*
𝑘 ∩ ℛ*

𝑘 = ∅ for all 𝑘, but monotonicity

does not necessarily hold since an offline solution may change its selection decisions

as the stages progress. If there are multiple optimal solutions, we will assume that 𝒜*
𝑘

is a maximal one, which means it is not contained in another optimal set of accepted

customers.

The optimal offline cost through stage 𝑘 is denoted by 𝐶*(𝑈𝑘), which can be

expressed as 𝐶*(𝑈𝑘) = 𝑃 (𝒬,𝒜*
𝑘) + 𝑅(ℛ*

𝑘). The value 𝐶(𝑈𝑘) denotes the total cost

incurred by the online algorithm through stage 𝑘, i.e., 𝐶(𝑈𝑘) = 𝑃 (𝒬,𝒜𝑘) + 𝑅(ℛ𝑘).

Using these definitions, it follows that for any online algorithm and any stage 𝑘,

𝐶*(𝑈𝑘) ≤ 𝐶(𝑈𝑘). Finally, we will sometimes drop the production options input from

𝑃 and OPT which implies that we are using the entire set 𝒬, i.e., 𝑃 (𝒬, ·) = 𝑃 (·) and

OPT(𝒬, ·) = OPT(·).

28

The performance of an online algorithm is evaluated using the notion of competitive

ratio. An algorithm has a competitive ratio of 𝛼 and is called 𝛼-competitive if 𝐶(𝑈) ≤

𝛼𝐶*(𝑈) for any online sequence of customers 𝑈 and their respective characteristics.

In other words, the cost of the algorithm is guaranteed to be at most 𝛼 times the cost

of an optimal offline solution for any customer sequence.

2.2.1 Model Applications

Traditionally, customer selection decision are made based on available-to-promise

strategies, which basically attempt to determine the feasibility of an order based on

available inventory or capacity. In our framework, we implicitly assume that the

order has already passed a feasibility check, and we now are interested in whether

the order will be profitable. For clarity purposes, the core model described only has

two phases. However, our model and results can be easily extended to the scenario

where there are multiple consecutive phases of selection and production, as long as the

customer orders corresponding to a certain production phase arrive before that phase

begins. For example, if each month is considered to be a distinct production phase,

the corresponding selection phase is any time before that month begins. If customer

lead times are at least a month, which is very common in many applications, then

when every month begins the exact demand is known and a minimum cost production

plan can be created for that month. In addition, if we can defer selection decisions,

then this actually makes the problem easier since it provides greater flexibility for the

decision maker.

Specifically, the core model described above captures various settings, in which

(i) customer order selection is a common practice or suppliers have the flexibility to

satisfy customer orders from either internal resources or spot markets/third parties;

(ii) customer ‘patience’ is short (not necessarily immediate) relative to the typical

requested/acceptable lead time to satisfy customer requests; and (iii) the underlying

supply/production cost structure is characterized by economies of scale that make the

selection decisions for different customer orders highly dependent. Under this type of

cost structure, production is typically planned well in advance.

29

The steel, glass and construction industries are examples that fit the characteristics

described above. For example, consider a supplier that sells construction materials.

When customers, i.e., contractors, request products with specific due dates, the sup-

plier may decide that the quantity ordered does not cover the costs of materials and

delivery. Note that this decision might depend on the requests of previous customers

since their orders might have already covered some fixed costs. Since the contractors

have deadlines to complete their projects, an instantaneous, i.e., ‘online’, decision

is typically required to allow them to plan accordingly. Typically the supplier will

communicate to the customer that they are out of stock as a way to reject the cus-

tomer if necessary. The production cost functions for this type of application can be

modeled by submodular or inventory control problems which we discuss in Sections

2.3.1, 2.3.2, and 2.3.3.

The model also captures typical scenarios in the service industry. For example,

consider a service provider that serves customers through a physical infrastructure.

Typically, customers will request service from the provider and the provider will need

to decide whether to serve each customer or not. In order to serve a customer, the

proper infrastructure or facility must be setup near the customer. If the infrastructure

needs to be improved or expanded at a relatively large cost for the customer to receive

service, then he might be rejected by the provider (“out of network”). Otherwise, the

customer is accepted and incurs a cost corresponding to his usage of the service. The

production cost function in this setting could be modeled with the facility location

problem or network design problems in Sections 2.3.4 and 2.3.5.

Other scenarios that can be captured by our models are when the ‘rejection’ cost

represents a fee paid to a third-party supplier/logistics company or the use of spot

markets (versus internal capacity) to satisfy the customer order. This situation can

arise when the cost of serving customers using external resources is sometimes cost

effective. For example, a local company may prefer to do some bulk shipping of their

own but may rely on national companies to ship smaller or more long-distance pack-

ages. The use of third party logistics (3PL) is becoming increasingly commonplace

and operationally advantageous.

30

The model can also be used as a tool to enhance available-to-promise strategies, in

which companies interact with customers regarding their desired orders and delivery

dates. Our model can be used as a support tool for negotiating with customers.

For example, rather than rejecting a customer, a supplier may ask the customer

to modify his requirements in order to create a mutually beneficial deal. This may

include increasing the demand quantity, being more flexible with the due date, and/or

reducing the variety of the order. Specifically, one could increase the demand quantity

until the customer selection algorithm accepts the order in order to find a new deal

to counteroffer to the customer. Alternatively, given the demand information of the

customer, one can find all the due dates for which the customer selection algorithm

would lead to accepting that order, and then present these options to the customer.

In other important settings, where the lead time of customers is short relative to

the production phase, the selection phase and the corresponding production phase

could overlap. The online customer selection model can easily be applied to these

situations, but one would need to use, in addition to the online selection algorithm,

an online production algorithm to solve the production problem since not all the

accepted customers are known in advance. Although these problems are important,

they are also much more complex. In fact, for many of the models discussed in this

paper, just the online production problem with no customer selection is hard in the

sense that there is no online algorithm with a constant competitive ratio.

2.3 Examples

2.3.1 Submodular Cost Problems with Online Customer Se-

lection

In this section, we consider the case where the production cost function is submodular

and there is only one production option, i.e., |𝒬| = 1. Furthermore, the rejection

cost for each customer 𝑘, denoted by 𝑟𝑘, can be an arbitrary nonnegative number

independent of his requirements, 𝐼𝑘. A function 𝑃 (·) is submodular if for all 𝑆 ⊆ 𝑇 ⊆

31

𝑈 and 𝑖 /∈ 𝑇 , 𝑃 (𝑆 ∪ {𝑖})− 𝑃 (𝑆) ≥ 𝑃 (𝑇 ∪ {𝑖})− 𝑃 (𝑇). Equivalently, a function 𝑃 (·)

is submodular if for all 𝑆, 𝑇 ⊆ 𝑈 , 𝑃 (𝑆) + 𝑃 (𝑇) ≥ 𝑃 (𝑆 ∩ 𝑇) + 𝑃 (𝑆 ∪ 𝑇).

Submodular functions with online customer selection are simply online customer

selection problems where the production cost function 𝑃 (·) is submodular. Nonde-

creasing submodular functions arise naturally in many applications where there are

economies of scale. We provide several examples below, all of which naturally have

|𝒬| = 1.

Example 1 (To Build or Not to Build). Consider the function 𝑃 (𝑇) = 𝐾 if |𝑇 | > 0,

and 𝑃 (∅) = 0. This function essentially builds or implements a project if there is any

customer that needs to be served. When a customer 𝑘 arrives online, his willingness

to pay, 𝑟𝑘, is revealed. Due to the simplicity of 𝑃 (·), 𝐼𝑘 has no particular meaning.

Example 2 (Multicast Routing). Consider a tree 𝒯 with root 𝑣. Each edge 𝑒𝑗 ∈ 𝒯

has a cost 𝑐𝑗 ≥ 0. Let 𝑇 be a subset of nodes and 𝑃 (𝑇) be the cost of connecting the

nodes in 𝑇 to the root 𝑣 using only edges in 𝒯 . Then 𝑃 (𝑇) is clearly nondecreasing

and submodular and is referred to as the multicast routing problem (Deering and

Cheriton [25]). The information 𝐼𝑘 for customer 𝑘 would be his node location, and

𝑟𝑘 is his willingness to pay for service from that node.

Example 7 in Appendix A.1 describes another application regarding polymatroid

optimization and a continuous inventory replenishment problem.

2.3.2 Economic Lot Sizing Problem with Online Customer Se-

lection

The Economic Lot Sizing (ELS) problem is a single item, discrete time inventory

model. There is a set of customers, each with a due date and demand quantity,

that need to be served by a sequence of production orders over a planning horizon

of a fixed number of periods. Each order incurs a setup cost 𝐾. Each customer

can only be served by an order prior to his due date. If a customer with due date

𝑡 and demand 𝑑 is satisfied by an order at time 𝑠 < 𝑡, then a per unit holding cost

32

ℎ > 0 is incurred for every period and every unit of demand carried in inventory from

period 𝑠 to 𝑡. Without loss of generality we can assume that each customer is served

from the latest order prior to his due date. The objective is to minimize the total

setup ordering cost plus holding cost. The ELS problem can be solved efficiently via

dynamic programming (Wagner and Whitin [89]).

If the supplier has an option to not serve customers, or to subcontract customers to

a third party, then we say the supplier can reject customers (or select only some of the

customers). Let 𝑟𝑘 be the rejection cost of customer 𝑘. In this full information model,

the goal is to decide which customers to select and how to serve these customers. The

objective is to minimize the rejection cost of the rejected customers plus the ELS setup

and holding costs to satisfy the the selected customers. This is called the Economic

Lot Sizing problem with Offline Customer Selection, which can be solved efficiently

(Geunes et al. [37]).

We will focus on the Economic Lot Sizing problem with Online Customer Selection.

Customers arrive in an online manner and the supplier needs to make an immediate

selection decision before new customers arrive. When a customer 𝑘 arrives, he specifies

𝐼𝑘 = (𝑑𝑘, 𝑡𝑘), where 𝑑𝑘 is the quantity and 𝑡𝑘 is the due date. If the rejection cost

per unit is fixed at 𝑟, then the rejection cost of customer 𝑘 is then 𝑟𝑘 = 𝑟𝑑𝑘. (For

convenience, we assume 𝑟 is an integer multiple of ℎ.) The set of production options

𝒬 is the set of possible order dates. The production cost 𝑃 (𝑄, 𝑇) is then the optimal

cost of the ELS problem on a subset of customers 𝑇 using only the potential order

dates 𝑄 ⊆ 𝒬.

2.3.3 Joint Replenishment Problem with Online Customer Se-

lection

The Joint Replenishment (JR) problem is a natural extension of the ELS problem

with multiple item types, indexed 1, . . . ,𝑀 . The goal is to serve a set of customers,

each with a quantity, due date, and item type, by a sequence of production orders

over a planning horizon of a fixed number of periods. Each order incurs a joint setup

33

cost of 𝐾0. In addition, for each item type 𝑖 ordered, an item setup cost of 𝐾𝑖 is

incurred. Each customer can only be served by orders that contain his item type and

are before his due date. As with the ELS problem, there is also a per unit holding

cost ℎ. The objective is to minimize the total setup ordering cost plus holding cost.

This problem was shown to be NP-hard in Arkin et al. [1], and admits a current best

approximation guarantee of 1.80 due to Levi et al. [58]. More general JR problems

are considered in Cheung et al. [23].

When the supplier does not have to serve all the customers, but can now reject

customers at a per unit cost 𝑟𝑘, then the problem becomes even more complex. The

supplier must now decide on the optimal set of customers to select and decide how to

serve them. Specifically, the goal is to minimize the total rejection costs plus the cost

of the JR problem on the accepted customers. This is called the Joint Replenishment

Problem with Offline Customer Selection. This problem was first studied in Geunes

et al. [39] who gave a 2.35-approximation for the market selection variant.

In this work, we focus on the Joint Replenishment Problem with Online Customer

Selection. Like the previous models, customers arrive one after the other and must be

either accepted or rejected immediately. Specifically, when a customer 𝑘 arrives, his

requirements 𝐼𝑘 = (𝑑𝑘, 𝑡𝑘, 𝑖𝑘) are observed, where 𝑑𝑘 specifies the quantity, 𝑡𝑘 specifies

the due date, and 𝑖𝑘 specifies the item type. If the rejection cost per unit is fixed

at 𝑟, then the rejection cost for customer 𝑘 is then 𝑟𝑘 = 𝑟𝑑𝑘. (For convenience, we

assume 𝑟 is an integer multiple of ℎ.) We again define the set of production options

𝒬 as the set of potential order dates. The production cost function 𝑃 (𝑄, 𝑇) is now

the optimal cost of the JR problem with production options 𝑄 and customers 𝑇 .

2.3.4 Facility Location Problem with Online Customer Selec-

tion

The metric Facility Location (FL) problem is a well studied NP-hard problem. The

goal is to serve a set of customers, each with a specified demand quantity and lo-

cation, by opening a set of facilities. There are 𝑀 potential facilities, indexed by

34

𝑗 = 1, . . . ,𝑀 . The opening cost of facility 𝑗 is 𝑓𝑗. Each customer 𝑘 is served by

the nearest open facility, and pays a service cost 𝑐(𝑗, 𝑘) per unit if served by facility

𝑗. The assumption is that 𝑐(·, ·) induces a metric (symmetric and satisfies triangle

inequality) over the facilities and customers. The goal is to serve all the customers

so as to minimize the total facility costs plus service costs. The first constant fac-

tor approximation algorithm was given by Shmoys et al. [79], and the current best

approximation factor is 1.488 due to Li [60].

When the supplier does not have to serve all the customers, but can now reject

customers at a cost 𝑟𝑘, then the problem becomes even more complex. The supplier

must now decide on the optimal set of customers to accept and decide how to serve

them. Specifically, the goal is to minimize the total rejection costs plus the cost

of the FL problem on the accepted customers. This is called the Facility Location

Problem with Offline Customer Selection. The first approximation algorithm was

given by Charikar et al. [20] (who call this FL with outliers), and the current best

approximation factor of 1.85 is due to Xu and Xu [92]. Geunes et al. [39] gives a

2.06-approximation algorithm for the market selection variant of this problem.

Here we focus on the Facility Location Problem with Online Customer Selection.

When a customer 𝑘 arrives online, we observe 𝐼𝑘 = (𝑑𝑘, 𝑙𝑘), where 𝑑𝑘 specifies the

quantity and 𝑙𝑘 specifies the location. If the rejection cost per unit is fixed at 𝑟, the

the rejection cost for customer 𝑘 is then 𝑟𝑘 = 𝑟𝑑𝑘. Let 𝒬 denote the potential set of

facilities. The production cost function 𝑃 (𝑄, 𝑇) is now the optimal cost of the FL

problem for a given set of customers 𝑇 that can only use the facilities in 𝑄.

2.3.5 Network Design Problems with Online Customer Selec-

tion

The Steiner tree problem is a network design model where we are a given a graph

𝐺 = (𝑉,𝐸) and subset of nodes 𝑆 ⊂ 𝑉 that needs to be connected with a tree. The

cost of the tree is the sum of the cost of each edge used in the tree. Extensions of

this problem include the Steiner forest problem (need to connect set of node pairs),

35

the Single Source Rent-or- Buy (SSROB) problem (connect nodes + each edge either

rented per use or bought for fixed price), and the Multi-commodity Rent or Buy

(MROB) problem (connect node pairs + each edge either rented per use or bought

for fixed price).

When nodes (node pairs) can be rejected, these are typically referred to as prize-

collecting problems. We focus on the Network Design Problems with Online Customer

Selection where customers arrive online and the information 𝐼𝑘 for customer 𝑘 is his

node location/pair and rejection cost 𝑟𝑘. The production cost 𝑃 (𝑇) is the optimal

cost of the network design problem to serve the customers in 𝑇 . (We do not need to

use the notion of production options for this example.)

2.4 Results

There are two main set of results in this paper, depending on the structure of the

rejection costs. If the rejection cost per unit is fixed, then Copycat and StablePair

perform quite well, as seen in Table 1 below. The first column denotes the problem,

the second and third columns denote the competitive ratio guarantees we can get

with Copycat and StablePair respectively, and the fourth column is a lower bound

on the best competitive ratio. In Sections 2.5 and 2.6, we will show general theorems

for the Copycat and StablePair Algorithms. In Section 2.7, we will demonstrate how

to exactly get the competitive ratio guarantees for the submodular, ELS, FL, and JR

problems with online customer selection. Note that the submodular results also hold

for arbitrary per unit rejection costs! In Section 2.9.1, we will show how we obtained

the lower bound of 2 for all the problems in Table 2.1.

Table 2.2 below summarizes the results using the FairShare algorithm, which we

use for problems with aribitrary per-unit rejection costs. For simplicity, we now

assume every customer requests one unit of demand. (All the results hold with

multiple unit requests by replacing 𝑁 with the total number of units demanded.)

The first column denotes the production cost problem. The second column denotes

the competitive ratio achieved by using FairShare. The third column shows lower

36

Table 2.1: Competitive ratio guarantees for problems with fixed per unit rejection
costs.

Problem Copycat StablePair Lower Bound
Submodular* 2 2 2

Economic Lot Sizing 3 3 2
Joint Replenishment 4 3 2

Facility Location 4 2.41 2

bounds on the best possible competitive ratio. In Section 2.8, we will show how to

obtain the competitive ratios from FairShare. In Section 2.9.2 we will demonstrate

how to obtain the lower bound for the FL problem with online customer selection.

Table 2.2: Results for problems with arbitrary per unit rejection costs.

Problem FairShare Lower Bound

Economic Lot Sizing 𝑂(
√

log𝑁) Ω
(︁√︁

log𝑁
log log𝑁

)︁
Facility Location 𝑂(

√
log𝑁) Ω

(︁√︁
log𝑁

log log𝑁

)︁
Network Design 𝑂(log𝑁) Ω(

√
log𝑁)

Machine Scheduling 𝑂(
√

log𝑁) open

Note that these results rely on methods and results from other papers, combined

with our analysis in Section 2.8. Those papers include [91], [68], [48], [56], [42], [74],

[73], [21], and Brenner and Schäfer [13]. We note that our competitive ratio guarantee

for the Steiner tree problem with online customer selection was also achieved in Qian

and Williamson [71], however in there version they also had to solve the Steiner tree

problem online as well. All of the other network design problems with online customer

selection previously had no known results we are aware of.

2.5 Copycat Algorithm

We now provide a framework to solve problems with online customer selection which

we call the Copycat Algorithm. Simply put, for every customer arrival 𝑘, the offline

37

problem OPT(𝑈𝑘) is solved to obtain an optimal offline solution𝒜*
𝑘. Then the arriving

customer 𝑘 is accepted if and only if customer 𝑘 is accepted in the respective optimal

solution (i.e., 𝑘 ∈ 𝒜*
𝑘). Otherwise, 𝑘 ∈ ℛ*

𝑘 and customer 𝑘 is rejected. This is called

the Copycat Algorithm because it simply copies the optimal offline solution’s decision

at each customer arrival.

Copycat Algorithm: Accept current customer 𝑘 if and only if 𝑘 ∈ 𝒜*
𝑘.

Although Copycat appears naive, it can be shown that it performs well for the class

of problems considered in this paper. Note that fixing our previously made decisions

when we re-optimize will result in most customers getting rejected and an overall poor

performance. See Example 3 in Appendix A.1 for a detailed example. We next show

a surprising property of this algorithm that only requires the monotonicity of 𝑃 (·).

Specifically, the next lemma asserts that the rejection cost for Copycat will never be

too large for any problem with online customer selection.

Lemma 1. Assume that 𝑃 (·) is nondecreasing. Then the total rejection costs of the

Copycat Algorithm at each stage 𝑘 is at most the respective optimal offline cost, i.e.,

𝑅(ℛ𝑘) ≤ 𝑅(ℛ*
𝑘) + 𝑃 (𝒜*

𝑘) = 𝐶*(𝑈𝑘) for all 𝑘. Specifically, the final rejection cost

𝑅(ℛ) ≤ 𝐶*(𝑈).

Proof. The proof is by induction. Start with the base case 𝑘 = 1, where

𝑅(ℛ1) = 𝑅(ℛ*
1) ≤ 𝑅(ℛ*

1) + 𝑃 (𝒜*
1) = 𝐶*(𝑈1).

The first equality follows from the fact that ℛ1 = ℛ*
1 since the selection decision

made by OPT(𝑈1) is copied. The inequality follows from the nonnegativity of 𝑃 (·).

The last equality follows directly from the definition of 𝐶*(·).

Now assume the inductive hypothesis that 𝑅(ℛ𝑘−1) ≤ 𝐶*(𝑈𝑘−1). Consider the

following two cases depending on whether customer 𝑘 was accepted or rejected in the

solution of OPT(𝑈𝑘).

38

Case 1) If customer 𝑘 is accepted in the solution of OPT(𝑈𝑘) (i.e., 𝑘 ∈ 𝒜*
𝑘), then

𝑅(ℛ𝑘) = 𝑅(ℛ𝑘−1) ≤ 𝐶*(𝑈𝑘−1) ≤ 𝐶*(𝑈𝑘).

The first equality holds because 𝑘 ∈ 𝒜*
𝑘 which implies that Copycat accepted 𝑘, and

thus ℛ𝑘 = ℛ𝑘−1. The inequality follows from the inductive hypothesis. The last

inequality follows from the fact that any solution to OPT(𝑈𝑘) induces a solution to

OPT(𝑈𝑘−1) with cost at least 𝐶*(𝑈𝑘−1).

Case 2) If customer 𝑘 is rejected in the solution of OPT(𝑈𝑘) (i.e., 𝑘 ∈ ℛ*
𝑘), then

𝑅(ℛ𝑘) = 𝑅(ℛ𝑘−1) + 𝑟𝑘 ≤ 𝐶*(𝑈𝑘−1) + 𝑟𝑘 = 𝐶*(𝑈𝑘).

The first equality holds since 𝑘 ∈ ℛ*
𝑘 which implies that Copycat also rejected 𝑘.

The inequality follows from the inductive hypothesis. The last equality holds by

the linearity of 𝑅(·) and the fact that there is an optimal solution to OPT(𝑈𝑘) that

rejected customer 𝑘.

Using Lemma 1, it is clear that if the production costs of Copycat are no more

than 𝛽 times the optimal offline cost, a competitive ratio of 𝛽 + 1 is obtained. This

is stated precisely in the following theorem.

Theorem 1. Let 𝒜 be all the customers that the Copycat Algorithm accepts and let

𝛽 be a positive scalar. If 𝑃 (𝒜) ≤ 𝛽𝐶*(𝑈), then Copycat is (𝛽 + 1)-competitive.

Interestingly, we can also show that the Copycat Algorithm works well if the

sequence of optimal solutions satisfies a certain property. Specifically, if satisfying

∪𝑘𝑖=1𝒜*
𝑖 has cost at most 𝛽𝐶*(𝑈𝑘), then the same holds for satisfying 𝒜 since 𝒜 ⊆

∪𝑘𝑖=1𝒜*
𝑖 by definition of the Copycat Algorithm. Combining this fact with Lemma 1,

we obtain the following lemma.

Lemma 2. If 𝑃 (∪𝑘𝑖=1𝒜*
𝑖) ≤ 𝛽𝐶*(𝑈𝑘), then the Copycat Algorithm is

(𝛽 + 1)- competitive.

39

In the subsequent sections, we shall show how to obtain bounds like the one in

Theorem 1 above for several interesting problems and cases. However, one potential

major flaw with the Copycat Algorithm is that it requires an exact solution to the

offline problem in each stage. Even worse, the offline problem may sometimes be

NP-hard such as in the JR and FL applications described in Sections 2.3.3 and 2.3.4,

respectively. Motivated by these issues, we present another algorithm in the next

subsection that is efficiently computable these applications.

2.6 StablePair Algorithm

We now provide another algorithm for online customer selection called the StablePair

Algorithm. For a nonempty subset of production options 𝑄 ⊆ 𝒬 and customers

𝑇 ⊆ 𝑈 , we call (𝑄, 𝑇) a stable pair if there exists an optimal solution to the respective

offline customer selection problem defined on 𝑄 and 𝑇 , denoted by OPT(𝑄, 𝑇), that

accepts all of the customers in 𝑇 . The StablePair Algorithm accepts a given customer

𝑘 if and only if there exists a stable pair (𝑄, 𝑇) ⊆ (𝒬, 𝑈𝑘), such that 𝑘 ∈ 𝑇 .

StablePair Algorithm: Accept current customer 𝑘 if and only if there exists

a stable pair (𝑄, 𝑇) ⊆ (𝒬, 𝑈𝑘) such that 𝑘 ∈ 𝑇 .

As we shall show, the StablePair Algorithm has two main benefits. First, a

stronger bound on the rejection costs can be obtained, and second, the selection

phase can be implemented in polynomial time for many interesting problems that we

consider. The stability name arises from the fact that if a customer was accepted by

StablePair, then he would also be accepted if he had arrived at a later date. (This is

not necessarily true for the Copycat Algorithm.) Moreover, in the next lemma it is

shown that the StablePair Algorithm is less conservative than the Copycat Algorithm

in that each customer accepted by Copycat is also accepted by StablePair. (We let

the superscripts 𝐶 and 𝑆 refer to the Copycat and StablePair Algorithms decisions,

respectively.)

40

Lemma 3. The accepted set of customers by StablePair is at least that of Copycat,

i.e., 𝒜𝐶 ⊆ 𝒜𝑆.

Proof. Consider a customer 𝑘 ∈ 𝒜𝐶 and let 𝒜*
𝑘 be the optimal solution induced by

OPT(𝒬, 𝑈𝑘). Since 𝑘 was accepted by the Copycat Algorithm, then 𝑘 ∈ 𝒜*
𝑘. This

implies that (𝒬,𝒜*
𝑘) is a stable pair for 𝑘 since there is a solution to OPT(𝒬,𝒜*

𝑘)

that accepts all of 𝒜*
𝑘. Therefore 𝑘 ∈ 𝒜𝑆 and 𝒜𝐶 ⊆ 𝒜𝑆.

We now give another useful way of characterizing a stable pair which follows

immediately from the definition. The pair (𝑄, 𝑇) is stable if and only if

𝑅(𝑆) ≥ 𝑃 (𝑄, 𝑇)− 𝑃 (𝑄, 𝑇∖𝑆) ∀ 𝑆 ⊆ 𝑇. (2.1)

Note that (2.1) above is equivalent to not having any solution to the offline problem

defined on 𝑄 and 𝑇 that is strictly better than accepting 𝑇 . As already mentioned,

the StablePair Algorithm achieves a stronger bound for the rejection costs 𝑅(ℛ).

Specifically, compared to Lemma 1, in Lemma 4 below the term 𝑅(𝒜 ∩ ℛ*) is no

longer needed in the bound, which will later lead to better overall competitive ratios

than Copycat.

Lemma 4. Assume that 𝑃 (·) is nondecreasing. The StablePair Algorithm for online

customer selection problems has rejection cost 𝑅(ℛ) ≤ 𝑅(ℛ ∩ ℛ*) + 𝑃 (ℛ ∩ 𝒜*) ≤

𝑅(ℛ∩ℛ*) + 𝑃 (𝒜*), for any offline optimal solution (𝒜*,ℛ*).

Proof. We first show that for all 𝑋 ⊆ ℛ, 𝑅(𝑋) ≤ 𝑃 (𝑋). Let 𝑋 ⊆ ℛ and assume for

contradiction that

𝑅(𝑋) > 𝑃 (𝒬, 𝑋) = 𝑃 (𝑋). (2.2)

Let 𝑘 be the last arriving customer in 𝑋. Since 𝑘 was rejected by StablePair, it follows

that (𝒬, 𝑋) is not a stable pair for customer 𝑘. Thus, by Eq. (2.1) there exists a set

𝑆 ⊆ 𝑋 such that

𝑅(𝑆) < 𝑃 (𝒬, 𝑋)− 𝑃 (𝒬, 𝑋∖𝑆) = 𝑃 (𝑋)− 𝑃 (𝑋∖𝑆). (2.3)

41

Note that 𝑆 ̸= ∅ or else 0 < 0. Subtracting (2.3) from (2.2) yields

𝑅(𝑋∖𝑆) > 𝑃 (𝑋∖𝑆). (2.4)

Now reset 𝑋 ← 𝑋∖𝑆 and repeat the analysis above until 𝑋 = ∅. This will eventually

give a contradiction that 0 > 0. Now let (𝒜*,ℛ*) be any optimal offline solution and

let 𝑋 = ℛ∩𝒜*. From the previous argument, it follows that

𝑅(ℛ∩𝒜*) ≤ 𝑃 (ℛ∩𝒜*). (2.5)

Adding 𝑅(ℛ∩ℛ*) to both sides of (2.5) completes the proof.

Copycat and StablePair are different in at least three ways. First, Example 4

in Appendix A.1 demonstrates that the Copycat Algorithm is indeed strictly weaker

with respect to bounding the rejection costs. Second, Example 5 in Appendix A.1

shows that Copycat can “regret” accepting customers, where as StablePair never has

regret since once a customer is accepted, there is always a stable pair (i.e., the original

one) that would accept him later on. Finally, Example 6 in Appendix A.1 shows that

StablePair can accept customers that would never be accepted by 𝒜*
𝑘 for any 𝑘.

Using Lemma 4 (which holds for any optimal solution), it is clear that if we can

obtain a bound on the production costs of StablePair, then we can obtain strong

competitive ratios that can be strictly better than Copycat. This is made precise in

the following theorem.

Theorem 2. Let 𝒜 be all the customers that the StablePair Algorithm accepts and let

𝛽 and 𝛾 be positive scalars. If there exists an optimal offline solution (𝒜*,ℛ*) such

that 𝑃 (𝒜) ≤ 𝛽𝑃 (𝒜*) + 𝛾𝑅(ℛ*) + 𝑅(𝒜 ∩ℛ*), then StablePair is max(𝛽 + 1, 𝛾 + 1)-

competitive.

Since Theorem 2 can be used by showing the bound for just one optimal solution,

for the rest of the paper we will always assume that we are using a solution 𝒜*
𝑘 that

is maximal. This means that no optimal set of accepted customers to OPT(𝑈𝑘) is a

strict superset of 𝒜*
𝑘.

42

Although the online customer selection decisions can be done efficiently with Sta-

blePair, the decision maker still needs to calculate 𝑃 (𝒜) in the production phase,

which might be NP-hard to solve. In most practical settings, 𝑃 (𝒜) can be calculated

via integer programming or other methods. Indeed, if one desires to solve the pro-

duction phase using a 𝑐-approximation algorithm (an algorithm that finds a solution

in polynomial time that is no more than 𝑐 times the optimal cost), then the theoret-

ical competitive ratio would simply increase multiplicatively with 𝑐. The following

theorem makes this statement precise and follows directly from the definition of an

approximation algorithm and Lemma 4.

Theorem 3. Let 𝒜 be the customers that StablePair accepted and let 𝛽, 𝛾, and 𝑐 > 1

be positive scalars. Assume there exists an optimal offline solution (𝒜*,ℛ*) such that

the optimal cost of serving 𝒜 is 𝑃 (𝒜) ≤ 𝛽𝑃 (𝒜*) + 𝛾𝑅(ℛ*) + 𝑅(𝒜 ∩ℛ*). Then the

StablePair Algorithm is max(𝑐𝛽 + 1, 𝑐(𝛾 + 1))-competitive when a 𝑐-approximation

algorithm for 𝑃 (·) is used to serve 𝒜.

Note that the previous theorem also holds if we use a 𝑐-competitive online al-

gorithm for solving 𝑃 (𝒜). This may be useful if one wishes to merge the online

customer selection and production phases together, which we do in Section 2.7.3.

The remainder of this paper focuses on how to implement the StablePair Algorithm

efficiently and how to bound the production costs of StablePair for several inventory

and logistics problems. Since 𝒜𝐶 ⊆ 𝒜𝑆 and 𝑃 (·) is nondecreasing, then these pro-

duction bounds will hold for the Copycat Algorithm as well. Not surprisingly, the

production bounds we obtain are highly dependent on the combinatorial structure of

the production problems.

2.6.1 StablePair Implementation

Submodular Implementation

The proof of Lemma 8 below will imply that the Copycat and StablePair Algorithms

are identical if Copycat always outputs the maximal optimal solution. This trivially

43

happens if there is always a unique optimal solution, which can be achieved via a ran-

dom perturbation. Interestingly enough, it turns out that the Copycat Algorithm can

be implemented efficiently for submodular production problems with online customer

selection. For any set of customers 𝑇 ,

OPT(𝑇) = min
𝐴⊆𝑇

𝑃 (𝐴) + 𝑅(𝑇∖𝐴) = min
𝐴⊆𝑇

𝑃 (𝐴) + 𝑅(𝑇)−𝑅(𝐴) = min
𝐴⊆𝑇

𝑃 (𝐴)−𝑅(𝐴).

Since 𝑅(·) is modular, then 𝑃 (·) − 𝑅(·) is also submodular. Therefore, OPT(𝑇) is

just the solution to a submodular minimization problem, which can be solved in poly-

nomial time (McCormick [61]). Thus Copycat (and StablePair) can be implemented

efficiently.

ELS Implementation

Although the Copycat Algorithm for the ELS problem with online customer selection

can be implemented in polynomial time by using dynamic programming, we describe

the StablePair implementation since it is faster and also serves as a foundation for

how to implement StablePair for the JR variant. Lemma 5 below, proved in Appendix

A.2, describes an exact method for implementing the StablePair Algorithm. The idea

is that one can reduce the search space for stable pairs by only considering those with

one production option (order date).

Lemma 5. The StablePair Algorithm accepts customer 𝑘 if and only if there exists

a stable pair (𝑄, 𝑇) with 𝑘 ∈ 𝑇 such that

1. 𝑄 consists of one order date, i.e. 𝑄 = {𝑡} for some time 𝑡.

2. 𝑇 includes exactly all customers that can be served from 𝑡 with at most 𝑟 per

unit in holding cost, i.e. 𝑇 = {𝑗 ∈ 𝑈𝑘|𝑡𝑗 ∈ [𝑡, 𝑡 + 𝑟/ℎ]}.

3. The rejection costs of 𝑇 exceed the production costs of serving 𝑇 from an order

at 𝑡, i.e. 𝑅(𝑇) ≥ 𝐾 +
∑︀

𝑗∈𝑇 ℎ(𝑡𝑗 − 𝑡)𝑑𝑗.

Note that without loss of generality, one only needs to consider the potential order

dates that correspond to due dates of 𝑈𝑘 (since zero-inventory ordering policies are

44

optimal). Thus, the maximum number of candidate stable pairs is at most 𝑁 . Since

checking stability of each pair takes 𝑂(𝑁) time, then this characterization of the

StablePair Algorithm provides an efficient implementation.

JR Implementation

Implementing Copycat problem for the JR problem with online customer selection

requires solving an NP-hard problem. However, StablePair can be implemented effi-

ciently in time polynomial in the number of customers and items. Lemma 6 below,

proved in Appendix A.2, shows that a stable pair exists if and only if there is a stable

pair using only one order date that satisfies the properties below.

Lemma 6. The StablePair Algorithm accepts customer 𝑘 if and only if there exists

a stable pair (𝑄, 𝑇) with 𝑘 ∈ 𝑇 such that

1. 𝑄 consists of one order date, i.e. 𝑄 = {𝑡} for some time 𝑡.

2. If 𝑇 contains customers of type 𝑖, then it contains exactly all type 𝑖 customers

with due dates in [𝑡, 𝑡 + 𝑟/ℎ]. Let 𝑇 𝑖 = {𝑗 ∈ 𝑈𝑘|𝑡𝑗 ∈ [𝑡, 𝑡 + 𝑟/ℎ] and 𝑖𝑗 = 𝑖} and

let ℐ be a subset of item types. This property is equivalent to the property that

𝑇 = ∪𝑖∈ℐ𝑇 𝑖.

3. The set of item types in 𝑇 are those who can pay for their item ordering cost

plus the holding costs, i.e. ℐ = {𝑖|𝑅(𝑇 𝑖) ≥ 𝐾𝑖 +
∑︀

𝑗∈𝑇 𝑖 ℎ(𝑡𝑗 − 𝑡)𝑑𝑗}.

4. The total rejection costs of 𝑇 are at least the production costs of serving 𝑇 from

𝑡, i.e. 𝑅(𝑇) ≥ 𝐾0 +
∑︀

𝑖∈ℐ

(︁
𝐾𝑖 +

∑︀
𝑗∈𝑇 𝑖 ℎ(𝑡𝑗 − 𝑡)𝑑𝑗

)︁
.

This lemma provides an efficient implementation of StablePair since the set of

potential stable pairs is at most 𝑁 , and checking the four properties for each pair

takes 𝑂(𝑀𝑁) time.

FL Implementation

Using the Copycat Algorithm for the FL problem with online customer selection

will be inefficient since solving the offline problem is NP-hard. Implementing the

45

StablePair Algorithm, however, can be implemented efficiently in time polynomial in

the number of customers and facilities. Lemma 7 below, proved in Appendix A.2,

shows that a stable pair exists if and only if there is a stable pair with one facility

with the properties below.

Lemma 7. The StablePair Algorithm accepts customer 𝑘 if and only if there exists

a stable pair (𝑄, 𝑇) containing 𝑘 such that

1. 𝑄 consists of one facility location, i.e. 𝑄 = {𝑗} for some facility 𝑗.

2. 𝑇 are all customers that can be served from 𝑗 using at most 𝑟 in service cost

per unit, i.e. 𝑇 = {𝑖 ∈ 𝑈𝑘|𝑐(𝑖, 𝑗) ≤ 𝑟}.

3. The rejection costs of 𝑇 exceed the production costs of serving 𝑇 from facility

𝑗, i.e. 𝑅(𝑇) ≥ 𝑓𝑗 +
∑︀

𝑖∈𝑇 𝑐(𝑖, 𝑗)𝑑𝑖

Since the number of possible stable pairs is at most 𝑀 , and checking the conditions

takes at most 𝑂(𝑁), then clearly this lemma provides an efficient way to implement

the StablePair Algorithm.

2.7 Performance of Copycat and StablePair

2.7.1 Submodular Analysis with Arbitrary Rejection Costs

The following theorem bounds the production costs incurred by StablePair for all

submodular problems with online customer selection. From Lemma 3, this bound

holds for Copycat as well.

Lemma 8. If the StablePair (or Copycat) Algorithm is used for submodular problems

with online customer selection, then 𝑃 (𝒜𝑘) ≤ 𝑃 (𝒜*
𝑘) for all 𝑘.

Proof. By the monotonicity of 𝑃 (·), it is sufficient to show that 𝒜𝑘 ⊆ 𝒜*
𝑘, for each

𝑘. Therefore, it is now sufficient to prove that the StablePair Algorithm accepts 𝑘 if

and only if 𝑘 ∈ 𝒜*
𝑘.

46

Clearly if 𝑘 ∈ 𝒜*
𝑘, then (𝒬,𝒜*

𝑘) is a stable pair that StablePair can use to accept

𝑘. Now assume that 𝑘 was accepted by the StablePair Algorithm, and let (𝒬, 𝑇) be

the stable pair that accepted 𝑘. Then

𝑅(𝑇∖𝒜*
𝑘) ≥ 𝑃 (𝑇)− 𝑃 (𝑇 ∩ 𝒜*

𝑘) ≥ 𝑃 (𝑇 ∪ 𝒜*
𝑘)− 𝑃 (𝒜*

𝑘).

The first inequality follows from (2.1) which is a property of a stable pair. The second

inequality follows from the submodularity of 𝑃 (·). This implies that accepting 𝒜*
𝑘∪𝑇

is at least as cheap as only accepting 𝒜*
𝑘 and rejecting 𝑇∖𝒜*

𝑘. Since we chose 𝒜*
𝑘 to

be a maximal optimal solution, this implies that 𝑇 ⊆ 𝒜*
𝑘 and thus 𝑘 ∈ 𝒜*

𝑘.

Combining Theorems 1 and 2 and Lemma 8 obtains the following main result.

Theorem 4. The Copycat and StablePair Algorithms for submodular problems with

online customer selection is 2-competitive.

In Theorem 12, we show that the competitive ratio for any deterministic online

algorithm is at least two, and thus Copycat and StablePair achieve the best possible

result.

2.7.2 ELS Analysis with Fixed Rejection Costs

In this section, we provide a bound on the total production costs incurred by the Sta-

blePair Algorithm when applied to the ELS problem with online customer selection.

It is well known that the optimal solution for the ELS problem has a zero inven-

tory ordering (ZIO) property (Wagner and Whitin [89]). This means that orders are

placed only when the on-hand inventory level is zero. This implies that each order

covers all demands with due dates between the order date and the due date of the last

customer served by the order. We refer to this range of due dates as the respective

setup interval of the order. We now prove two simple lemmas, proved in Appendix

A.2, regarding the structure of an optimal offline solution.

Lemma 9. Let (𝑄, 𝑇) ⊆ (𝒬, 𝑈) be a stable pair. Each setup interval induced by the

ELS solution to 𝑃 (𝑄, 𝑇) must have a length of at most 𝑟/ℎ periods.

47

Lemma 10. Let (𝑄, 𝑇) ⊆ (𝒬, 𝑈) be a stable pair and let [𝑎, 𝑏] be a setup interval

from the ELS solution for 𝑃 (𝑄, 𝑇). Then the interval [𝑎, 𝑏] must contain the due date

of a customer in 𝒜*. Therefore, [𝑎, 𝑏] must intersect a setup interval from the ELS

solution for 𝑃 (𝒜*).

Using Lemmas 9 and 10, it is next shown that the StablePair Algorithm incurs

production cost at most twice the optimal offline cost. From Lemma 3, this also holds

for the Copycat Algorithm.

Lemma 11. The production cost incurred by StablePair (Copycat) Algorithm for the

ELS problem is within twice the optimal offline cost, specifically, 𝑃 (𝒜) ≤ 2𝑃 (𝒜*) +

2𝑅(𝒜 ∩ℛ*) ≤ 2𝐶*(𝑈).

Proof. We will explicitly construct a feasible production plan that serves all of the

customers in 𝒜 and show that its cost is at most twice the optimal offline cost 𝐶*(𝑈).

This will also clearly hold for the optimal (minimum cost) production plan to serve

the customers in 𝒜. Let 𝑠1, . . . , 𝑠𝑚 denote the order periods in the ELS solution to

𝑃 (𝒜*), i.e., the optimal production plan for customers accepted by the optimal offline

solution. Let 𝐾* and 𝐻* represent the setup costs and holding costs, respectively,

induced by 𝑃 (𝒜*). Consider a production plan that places orders at times 𝑠1, . . . , 𝑠𝑚

as well as 𝑠1− 𝑟/ℎ, . . . , 𝑠𝑚− 𝑟/ℎ. The total cost of these orders is exactly 2𝐾*. Now

serve all customers in 𝒜 ∩ 𝒜* by the same order that they were served in the ELS

solution for 𝑃 (𝒜*). The resulting total holding costs for these customers is at most

𝐻*. The only customers left to be served are those in 𝒜 ∩ℛ*.

Next, consider each customer 𝑘 ∈ 𝒜∩ℛ*, i.e., a customer accepted by StablePair

but not by the optimal offline solution. The claim is that there exists some optimal

order 𝑠𝑗 such that customer 𝑘’s due date 𝑡𝑘 ∈ [𝑠𝑗 − 𝑟/ℎ, 𝑠𝑗 + 2𝑟/ℎ]. (See Figure 2-1

for an example of the accepted customers near an optimal order 𝑠𝑗.) Now consider

the stable pair (𝑄, 𝑇) that made StablePair accept customer 𝑘. Lemma 10 implies

that the setup interval within the production plan for 𝑃 (𝑄, 𝑇) that contained 𝑘 also

contains some customer 𝑘′ ∈ 𝒜*. Let 𝑠𝑗 be the order from which customer 𝑘′ is served

in the production plan for 𝑃 (𝒬,𝒜*). By Lemma 9, the lengths of the setup intervals in

48

sj sj + r/h sj + 2 r/h sj - r/h

Figure 2-1: The triangles denote optimal orders and the circles denote due dates
of customers. The first two customers will be served by the extra order placed at
𝑠𝑗 − 𝑟/ℎ. The next two customers are in 𝒜* and are served by the order at 𝑠𝑗. The
last customer will also be served by the order at 𝑠𝑗 with holding cost at most 2𝑟 per
unit.

any ELS solution are at most 𝑟/ℎ. It then follows that 𝑡𝑘 ∈ [𝑠𝑗−𝑟/ℎ, 𝑠𝑗+2𝑟/ℎ]. In the

construction, customer 𝑘 is served from the order 𝑠𝑗−𝑟/ℎ if 𝑡𝑘 ∈ [𝑠𝑗−𝑟/ℎ, 𝑠𝑗) and from

𝑠𝑗 if 𝑡𝑘 ∈ [𝑠𝑗, 𝑠𝑗 +2𝑟/ℎ]. In either one of these cases, the per unit holding cost incurred

by 𝑘 is at most 2𝑟. However, customer 𝑘 was rejected by the optimal offline solution

and incurred a cost 𝑟. It follows that the total holding cost incurred by customers in

𝒜∩ℛ* is at most 2𝑅(𝒜∩ℛ*). Summing up all the production costs yields an upper

bound on 𝑃 (𝒜) of 2𝐾* + 𝐻* + 2𝑅(𝒜∩ℛ*) ≤ 2𝑃 (𝒜*) + 2𝑅(𝒜∩ℛ*) ≤ 2𝐶*(𝑈).

Combining Theorems 1 and 2 with Lemma 11, we obtain the following main result.

Theorem 5. The Copycat and StablePair Algorithms for the Economic Lot Sizing

problem with Online Customer Selection are both 3-competitive.

Example 8 in Appendix A.1 demonstrates that the analysis above is tight for both

algorithms. We note that the analysis of the Copycat and StablePair Algorithms can

be extended easily for non-decreasing setup costs 𝐾𝑡 and more general holding cost

structure. Specifically, if the cost of holding a unit from period 𝑠 to 𝑡 is ℎ𝑠𝑡, then the

analysis holds if ℎ𝑠𝑡 is subadditive (for any 𝑠 ≤ 𝑢 ≤ 𝑡, ℎ𝑠𝑡 ≤ ℎ𝑠𝑢 + ℎ𝑢𝑡).

2.7.3 ELS Analysis Including Online Production

One extension of the ELS problem with online customer selection is when the online

customer selection phase and production phase overlap. In this scenario, the supplier

learns about each customer 𝑘 at their arrival time 𝑒𝑘, which may be after the due

dates of other customers. The information for each customer 𝑘 is now 𝐼𝑘 = (𝑒𝑘, 𝑑𝑘, 𝑡𝑘),

where 𝑑𝑘 and 𝑡𝑘 are the respective demand quantity and due date for customer 𝑘. If

49

customer 𝑘 is accepted, he must be satisfied by an order in the time window [𝑒𝑘, 𝑡𝑘].

Naturally we assume that 𝑒𝑘 ≤ 𝑡𝑘 and the arrival dates are chronological. The ELS

problem with online customer selection and online production is more difficult, and

in fact, Example 9 in Appendix A.1 demonstrates that we cannot obtain a constant

competitive ratio for this problem, even when the optimal offline solution must also

respect the arrival times.

However, if the due dates of the customers are in chronological order, then we

can obtain a positive result as stated in the following theorem which is proved in

Appendix A.2.

Theorem 6. Consider the Economic Lot Sizing Problem with Online Customer Se-

lection and Online Production. Assume that the due dates for the customers are in

chronological order, i.e., 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑁 . Then the Copycat Algorithm combined

with a 2-competitive heuristic of Axsater [2] for the online ELS problem obtains an

overall competitive ratio of 3.

2.7.4 JR Analysis with Fixed Rejection Costs

In this subsection, we shall bound the production costs incurred by the StablePair

Algorithm for the JR problem with online customer selection. For now, assume that

there exists a black box to run the StablePair Algorithm. Again the setup interval of

an order is defined as the range of due dates that the order serves, regardless of item

type. Lemmas 9 and 10 both still hold with the same proofs for the JR problem with

online customer selection. The following lemma describes the worst-case production

costs that will be incurred.

Lemma 12. If the StablePair (Copycat) Algorithm is used for the JR problem with

online customer selection, then 𝑃 (𝒜) ≤ 2𝑃 (𝒜*) + 𝑅(𝑅*) + 2𝑅(𝒜 ∩ℛ*) ≤ 3𝐶*(𝑈).

Proof. The proof is similar in spirit to the proof of Lemma 11, but requires a more

involved construction and analysis. Let 𝑠1, . . . , 𝑠𝑚 denote the times of the orders in

the optimal production plan for 𝑃 (𝒜*). The cost of the optimal production plan can

be decomposed into the total setup costs, 𝐾*, and the total holding costs, 𝐻*. Let

50

 r/h r/h r/h

Figure 2-2: The six squares represent the order dates that make up 𝑇 𝑖. The solid
squares represent the order dates that make up 𝑇 𝑖 and the hollow squares represent
the dates that were pruned. By default, the first square must be solid. Then all
squares within 𝑟/ℎ are pruned and the process is repeated.

𝒜𝑖 simply denote the customers with item type 𝑖 that are in 𝒜. For each customer

𝑘 ∈ 𝒜𝑖, let 𝑎𝑘 be the order date that serves customer 𝑘 in the stable pair solution

that StablePair used to accept customer 𝑘, and let 𝑇 𝑖 denote the set of these order

dates sorted from earliest to latest. Construct 𝑇 𝑖 ⊆ 𝑇 𝑖 by processing 𝑇 𝑖 in order

from earliest to latest, and remove any order date that is within 𝑟/ℎ periods of the

previous order date that was not removed. (See Figure 2-2 for an example of this

construction.) Now consider the following two sets, 𝑋 𝑖 and 𝑌 𝑖. The set 𝑋 𝑖 is defined

to be the set of all type 𝑖 customers that have due date within [𝑡, 𝑡 + 𝑟/ℎ] for some

𝑡 ∈ 𝑇 𝑖. Note that 𝑋 𝑖 is not necessarily contained in the set 𝒜𝑖. The set 𝑌 𝑖 is then

defined to be 𝒜𝑖∖𝑋 𝑖.

To construct a solution that serves all the customers in 𝒜, we first create the same

sequence of orders as in 𝑃 (𝒜*) in periods 𝑠1, . . . , 𝑠𝑚 and incur setups costs of 𝐾*.

Note that the item orders are replicated as well. All the customers in 𝒜∩𝒜* are then

served in the the same way as in the production plan for 𝑃 (𝒜*), and thereby incur

holding costs of at most 𝐻*. Now we create a sequence of duplicate orders shifted

back by time 𝑟/ℎ, i.e. at periods 𝑠1 − 𝑟/ℎ, . . . , 𝑠𝑚 − 𝑟/ℎ, and incur another 𝐾*.

Next, consider each item type 𝑖 separately. Assume for now that for each order

date 𝑡 ∈ 𝑇 𝑖, there exists an order 𝑠𝑗 in the production plan for 𝑃 (𝒜*), such that

either 𝑠𝑗 ∈ [𝑡 − 𝑟/ℎ, 𝑡] or 𝑠𝑗 − 𝑟/ℎ ∈ [𝑡 − 𝑟/ℎ, 𝑡]. Moreover, order 𝑠𝑗 (or 𝑠𝑗 − 𝑟/ℎ)

includes item 𝑖. Assuming this property holds, one can bound the holding costs for

the customers in 𝒜𝑖 ∩ℛ*. Specifically, the property ensures that all type 𝑖 customers

with due dates in [𝑡, 𝑡+ 𝑟/ℎ] can be served with holding cost at most 2𝑟 per unit. By

definition of 𝑋 𝑖, this means that the customers in 𝑋 𝑖 ∩ 𝒜𝑖 ∩ ℛ* will be served with

total holding costs at most 2𝑟 per unit. The remaining customers left to be served are

51

sj sj - r/h

i

 r/h

sj+1 – r/h

i i
sj+1

 r/h

Figure 2-3: In this figure, the triangles are orders, the circles are due dates for cus-
tomers in 𝒜𝑖, the solid squares are times in 𝑇 𝑖, and the hollow squares are times in
𝑇 𝑖 that were pruned. In this picture, only the orders with an 𝑖 written contain an
order of type 𝑖. The first pair of orders is associated with Case 2 and the second pair
of orders is associated with Case 1. The first two demands are in 𝑋 𝑖 ∩𝒜𝑖 ∩ℛ*. The
next two demands are in 𝑘 ∈ 𝑌 𝑖 ∩ℛ*. The last demand is in 𝒜*.

those in 𝑌 𝑖 ∩ ℛ*. Consider customer 𝑘 ∈ 𝑌 𝑖 ∩ ℛ*. By construction of 𝑇 𝑖, it follows

that there exists a 𝑡 ∈ 𝑇 𝑖 such that 𝑡 ≤ 𝑎𝑘 ≤ 𝑡 + 𝑟/ℎ ≤ 𝑎𝑘 + 𝑟/ℎ. In addition, from

the definition of 𝑎𝑘 and Lemma 9, it follows that 𝑡𝑘 ∈ [𝑎𝑘, 𝑎𝑘 + 𝑟/ℎ]. By the property

assumed above, there exists an order that includes item type 𝑖 within 𝑟/ℎ before 𝑡.

The holding cost from that order to 𝑡, 𝑡 to 𝑎𝑘, and 𝑎𝑘 to 𝑡𝑘 are each at most 𝑟 per

unit. Thus, customer 𝑘 can be served with a holding cost of at most 3𝑟 per unit. (See

Figure 2-3 for an example.)

It is now sufficient to ensure that indeed for each 𝑡 ∈ 𝑇 𝑖, there exists an order

of type 𝑖 within 𝑟/ℎ time periods earlier than 𝑡. To achieve this, extra item orders

will be added to the construction. From Lemma 10, it follows that the setup interval

corresponding to 𝑡 intersected some optimal setup interval starting at 𝑠𝑗. (If there is

a choice of intersections, choose 𝑠𝑗 that contains an item order of type 𝑖 if one exists.)

From Lemma 9, it follows that 𝑠𝑗 − 𝑟/ℎ ≤ 𝑡 ≤ 𝑠𝑗 + 𝑟/ℎ. We now consider two cases

and show how to enforce the property in each case.

Case 1: There is a type 𝑖 customer in 𝒜* with due date in [𝑡, 𝑡+𝑟/ℎ]. By

construction, this implies that there are type 𝑖 orders at 𝑠𝑗 and 𝑠𝑗− 𝑟/ℎ, respectively.

Case 2: There is no type 𝑖 customer in 𝒜* with due date in [𝑡, 𝑡 + 𝑟/ℎ].

If 𝑠𝑗 − 𝑟/ℎ ≤ 𝑡 < 𝑠𝑗, then we place an extra item order of type 𝑖 at the joint order

located at time 𝑠𝑗 − 𝑟/ℎ. Otherwise, 𝑠𝑗 ≤ 𝑡 ≤ 𝑠𝑗 + 𝑟/ℎ and we place the extra order

of type 𝑖 at 𝑠𝑗. Since 𝑡 corresponds to a setup interval from a stable pair solution, it

follows from (2.1) that there exists a set of customers with due dates in [𝑡, 𝑡 + 𝑟/ℎ]

whose rejection costs are greater than 𝐾𝑖. Under the case assumption, the type 𝑖

52

demands with due dates in [𝑡, 𝑡+ 𝑟/ℎ] are all in ℛ*. Furthermore, all customers with

due dates in [𝑡, 𝑡 + 𝑟/ℎ] are in 𝑋 𝑖. Thus, the extra item orders have cost at most

𝑅(𝑋 𝑖 ∩ℛ*). Each customer in 𝑋 𝑖 ∩ℛ* can be used at most once to pay for an extra

item order by the spacing of the times we enforced in the construction of 𝑇 𝑖.

The total cost incurred by the construction is 𝐾* +𝐻* +𝐾* +
∑︀𝑀

𝑖=1(𝑅(𝑋 𝑖∩ℛ*)+

2𝑅(𝑋 𝑖 ∩𝒜𝑖 ∩ℛ*) + 3𝑅(𝑌 𝑖 ∩ℛ*)) ≤ 2𝑃 (𝒜*) +𝑅(ℛ*) + 2𝑅(𝒜∩ℛ*) which completes

the proof.

Combining Theorems 1 and 2 with Lemma 12 obtains the following main result.

Theorem 7. The Copycat and StablePair Algorithms for the Joint Replenishment

problem with Online Customer Selection are 4-competitive and 3-competitive, respec-

tively.

Note that the analysis is tight for the StablePair Algorithm by Example 8 in Ap-

pendix A.1 since JR is a generalization of ELS. Theorem 8 below, proved in Appendix

A.2, gives a slightly weaker result for the case when each item type 𝑖 has a specific

per unit rejection cost 𝑟𝑖 and a specific per unit holding cost ℎ𝑖.

Theorem 8. The Copycat and StablePair Algorithms for the JR problem with Online

Customer Selection and item-specific holding and rejection costs are (3+ max𝑖𝑟𝑖/ℎ𝑖

min𝑖𝑟𝑖/ℎ𝑖)-

competitive and (2+ max𝑖𝑟𝑖/ℎ𝑖

min𝑖𝑟𝑖/ℎ𝑖)-competitive, respectively.

2.7.5 FL Analysis with Fixed Rejection Costs

Now we will bound the production costs incurred by the StablePair Algorithm for

the FL problem with online customer selection. This will require the two following

lemmas which are proved in Appendix A.2 and are similar in spirit to Lemmas 9 and

10.

Lemma 13. Let (𝑄, 𝑇) be a stable pair. For each customer 𝑘 ∈ 𝑇 , the per unit

service cost incurred by the FL solution to 𝑃 (𝑄, 𝑇) is at most 𝑟.

53

For each customer 𝑘 ∈ 𝒜 accepted by the StablePair Algorithm, define (𝑄𝑘, 𝑇𝑘) to

be the stable pair used by StablePair to accept 𝑘. Let 𝑆𝑘 ⊆ 𝑇𝑘 be the set of customers

served by the same facility as 𝑘 in 𝑃 (𝑄𝑘, 𝑇𝑘) and let 𝑞𝑘 denote this shared facility.

Lemma 14. For each 𝑘 ∈ 𝒜, the set 𝑆𝑘 ∩ 𝒜* is nonempty.

We now proceed to bound the production costs of StablePair and therefore Copy-

cat.

Lemma 15. If the StablePair (Copycat) Algorithm is used for the FL problem with

online customer selection, then 𝑃 (𝒜) ≤ 𝑃 (𝒜*) + 3𝑅(𝒜 ∩ℛ*) ≤ 3𝐶*(𝑈).

Proof. We will construct a feasible solution to serve the customers in 𝒜 with cost at

most three times the optimal offline cost 𝐶*(𝑈). We simply open all the facilities in

the FL solution to 𝑃 (𝒜*) and serve all the customers in 𝒜 by the nearest facility.

By construction, the facility costs plus the service costs for 𝒜 ∩ 𝒜* is bounded

by 𝑃 (𝒜*). Now consider a customer 𝑘 ∈ 𝒜 ∩ ℛ*. From Lemma 14, it follows that

there exists a customer 𝑙 ∈ 𝑆𝑘 ∩ 𝒜*. Let 𝑞*𝑙 denote the facility from which customer

𝑙 is served in 𝑃 (𝒜*). Lemma 13 implies that 𝑐(𝑘, 𝑞𝑘), 𝑐(𝑞𝑘, 𝑙), and 𝑐(𝑙, 𝑞*𝑙) are all at

most 𝑟. Since 𝑐 is a metric, it follows that 𝑐(𝑘, 𝑞*𝑙) ≤ 𝑐(𝑘, 𝑞𝑘) + 𝑐(𝑞𝑘, 𝑙) + 𝑐(𝑙, 𝑞*𝑙) ≤ 3𝑟.

Thus, the per unit service cost for customer 𝑘 is at most 3𝑟. (See Figure 2-4 for an

example.) This completes the proof since the construction has cost at most 𝑃 (𝒜) ≤

𝑃 (𝒜*) + 3𝑅(𝒜 ∩ℛ*) ≤ 3𝐶*(𝑈).

Combining Theorems 1 and 2 with Lemma 15 obtains the following main result.

Theorem 9. The Copycat and StablePair Algorithms for the Facility Location prob-

lem with Online Customer Selection are 4-competitive and 3-competitive, respectively.

2.7.6 Improving FL Analysis via Scaling

The results for FL with online customer selection can be improved via a scaling

technique to get a competitive ratio of 1 +
√

2. In particular, the rejection costs are

scaled by a factor 𝛼 > 0, and then the StablePair Algorithm is applied to the scaled

54

Figure 2-4: In this figure, the squares represent facilities and the circles represent
locations for customers in 𝒜. The solid squares represent open facilities and the
hollow squares are closed facilities. The circle around each facility represents the
service area where the service cost per unit is at most 𝑟 from the respective facility.
The customers in the circles corresponding to open facilities are in 𝒜 ∩ 𝒜*. The
remaining customers in the circles corresponding to closed facilities are in 𝒜∩ℛ* and
are no more than 3𝑟 away from an open facility.

input. The purpose of this idea is to “hedge” against the future by giving a different

weighting to the rejection costs. Drop the superscript 𝑆 and denote 𝒜𝛼 and ℛ𝛼 as

StablePair’s decisions under the scaled input. In Lemma 16 below, we obtain a new

bound for the rejection costs. The proof is in Appendix A.2.

Lemma 16. The StablePair Algorithm with the rejection costs scaled by a parameter

𝛼 has total rejection cost 𝑅(ℛ𝛼) ≤ 𝑅(ℛ𝛼 ∩ℛ*) + 1
𝛼
𝑃 (ℛ𝛼 ∩ 𝒜*).

Note that the bound on production costs in Lemma 15 is unbalanced. By scaling

down the rejection costs by a factor 𝛼 < 1, we can obtain the following lemma which

we prove in Appendix A.2.

Lemma 17. The StablePair Algorithm with scaling for the FL problem with online

customer selection has production costs 𝑃 (𝒜𝛼) ≤ 𝑃 (𝒜*) + (2𝛼+ 1)𝑅(𝒜𝛼 ∩ℛ*) when

𝛼 < 1.

Combining Lemmas 16 and 17 obtains the following theorem, whose analysis is

tight according Example 10 in Appendix A.1.

Theorem 10. The StablePair Algorithm with scaling for the Facility Location problem

with online customer selection is (1 +
√

2)-competitive when 𝛼 = 1√
2
.

55

2.7.7 Computational Results

In this section, we present the results of computational experiments that test the

typical empirical performance of our algorithms on the Economic Lot Sizing Problem

with Online Customer Selection. We carried out three different scenarios of the same

experiment. The parameters for each scenario were 𝐾 = 100, ℎ = 1, and 𝑟 = 5. The

time horizon was for one month with periods from 1 to 30. There were 𝑁 = 500

customer arrivals simulated for each scenario. Copycat, StablePair, and StablePair

with scaling factor of two (the rejection cost of each customer is weighted double

the true value) were each tested for the same sequence of customer arrivals. After

every customer 𝑘, the performance ratio, 𝐶(𝑈𝑘)/𝐶*(𝑈𝑘), was calculated. Note that

we are comparing ourselves to the optimal offline solution, which is a benchmark that

is impossible to achieve. For all three scenarios, the due dates of the customers were

drawn uniformly at random across the time horizon. We believe this distribution is

the worst case for the supplier since she can never make a meaningful estimate of

where the next customer’s due date will be. In the first scenario, ‘Conservative’, the

demands of each customer comprise of one unit (𝑑𝑘 = 1). In the second scenario,

‘More Demands’, the demand quantity is drawn uniformly at random from 1 to 10.

Finally, in the third scenario, ‘Large Orders First’, the customers also have a random

demand quantity between 1 and 10 but the first three orders are very large orders

placed every two weeks, i.e. at times 1, 15, and 29, representing the realistic situation

where the supplier has at least one major routine customer. For each scenario, the

results were averaged over 100 different customer sequences. The results are in Figure

2-5.

Based on these experiments, we see that even in the ‘Conservative’ scenario, the

costs of Copycat and StablePair are at most 1.5 times larger than the optimal offline

cost (which is not achievable in practice). The upper bound of 1.5 held up in all 25

runs of the scenario. Note that the performance ratios are much lower than the theo-

retical guarantee of 3. The ‘Conservative’ graph in Figure 2-5 indicates that Copycat

and StablePair start out perfect since both OPT and the algorithms are rejecting

56

0 50 100 150 200 250 300 350 400 450 500
1

1.2

1.4

1.6

1.8

Number of Customers

P
e

rf
o
rm

a
n
ce

 R
a

tio

Conservative Scenario

Copycat
StablePair
StablePair with Scaling

0 50 100 150 200 250 300 350 400 450 500
1

1.1

1.2

1.3

1.4

1.5

Number of Customers

P
e

rf
o

rm
a
n

ce
 R

a
tio

More Demands Scenario

Copycat
StablePair
StablePair with Scaling

0 50 100 150 200 250 300 350 400 450 500
1

1.05

1.1

1.15

1.2

Number of Customers

P
e
rf

o
rm

a
n

ce
 R

a
tio

Large Orders First Scenario

Copycat
StablePair
StablePair with Scaling

Figure 2-5: Three experiments detailing the actual performance ratio of three algo-
rithms on the ELS problem with online customer selection.

everything because there are not enough customers to warrant production. Then

around 125 customer arrivals OPT begins accepting some customers while Copycat

and StablePair do the same and therefore begin incurring lots of fixed costs on top

of the rejection costs. Eventually, as the number of customers gets very large, OPT,

Copycat, and StablePair begin to accept everything and the performance ratios sta-

bilize. (Note that 𝐶*(𝑈𝑘) converges to 𝑇𝐾 while the costs of the algorithms are 𝑇𝐾

plus some initial rejection costs.) Since StablePair accepts a superset of what Copy-

cat accepts, then StablePair outperforms Copycat as the number of customers gets

large. StablePair with scaling does poorly in the beginning since it accepts customers

before OPT does, but later on it significantly outperforms the other algorithms.

Similar observations hold for the ‘More Demands’ and ‘Large Orders First’ graphs

in Figures 2-5, except that the benefits of scaling are not as significant since more

customers were accepted early on which makes it more difficult to make errors. Specif-

ically, Copycat/StablePair accept more customers when they come in larger batches,

57

so as the number of customers gets large this improves the performance ratio signifi-

cantly. If there is some information known about the customer process, this can help

decide on a reasonable choice for the scaling factor. The more customers one antici-

pates, the larger the scaling factor should be. Also note that in addition to StablePair

being computationally much faster than Copycat, it typically outperforms Copycat.

In Appendix A.3, we provide tables describing the performance of our algorithms for

the same scenarios but with different values of 𝑟.

2.8 FairShare Algorithm

The FairShare Algorithm is based on the repeated simulation of specific cost sharing

mechanisms. Suppose we are given a set of players 𝑈 and a cost function 𝑃 (·). A

cost-sharing mechanism is a mechanism that first collects bids from each player in

𝑈 , and then decides which subset of players to serve. In addition, the mechanism

assigns a cost share (price) to each serviced player. If the mechanism chooses to serve

𝑇 ⊆ 𝑈 , then we let 𝜒(𝑖, 𝑇) denote the cost share assigned to player 𝑖 ∈ 𝑇 for service.

We refer to the function 𝜒 as a cost sharing scheme (or method), which can possibly

take on some of the properties discussed later on. In the next section we describe

several useful cost sharing methods for various production cost functions of interest.

Given a set of customers 𝑇 , a cost-sharing scheme 𝜒, and a scalar 𝑐, we let

𝑀(𝜒, 𝑇, 𝑐) denote the set of customers output by the following procedure, known

as a Moulin mechanism (Moulin [63]). A Moulin mechanism is a class of cost sharing

mechanisms where every player begins by receiving service, and players are iteratively

removed if their cost share is higher than their (scaled) bid. The mechanism termi-

nates when every remaining player has a cost share less than or equal to his (scaled)

bid, which we denote by 𝑟𝑖 for player 𝑖 for convenience.

58

Moulin Mechanism: 𝑀(𝜒, 𝑇, 𝑐)

1. Collect bids 𝑟𝑖 from each player 𝑖 ∈ 𝑇 .

2. If 𝑐𝑟𝑖 ≥ 𝜒(𝑖, 𝑇) for all 𝑖 ∈ 𝑇 , halt and output 𝑇 .

3. Else, let 𝑗 ∈ 𝑇 be a player with 𝑐𝑟𝑗 < 𝜒(𝑗, 𝑇). Set 𝑇 := 𝑇∖{𝑗}.

4. Go to Step 2.

Now we can define our general online customer selection algorithm, which we call

FairShare, according to the following procedure. FairShare relies on a cost sharing

method 𝜒 and a scalar 𝑐, where 𝑐 is a cost scaling parameter chosen to optimize

performance. The cost sharing method 𝜒 must be specific for the production cost

function 𝑃 (·) being considered in the application, and will act as a proxy for how

much each customer is contributing to the overall production cost of the accepted

customers. For example, we will use the facility location cost sharing method of Pál

and Tardos [68] for running the FairShare on the facility location problem with online

customer selection. For the current customer 𝑘, the FairShare algorithm is simulating

a Moulin mechanism with 𝜒 as the cost sharing method, the entire set of observed

customers so far 𝑈𝑘 as the players, and their respective rejection costs as their bids.

If the simulated mechanism accepts customer (player) 𝑘, then so does FairShare and

vis versa.

FairShare Accept current customer 𝑘 if and only if 𝑘 ∈𝑀(𝜒, 𝑈𝑘, 𝑐).

Clearly the FairShare algorithm converges in at most 𝑁 iterations since there is

at least one person removed in every iteration except for the very last one. Further-

more, since all of the cost sharing schemes we consider can be computed efficiently in

59

polynomial time, then FairShare is generally an efficient algorithm. We now define

some desirable properties for 𝜒. A cost sharing scheme 𝜒 is

1. cross-monotonic if 𝜒(𝑖, 𝑆) ≥ 𝜒(𝑖, 𝑇) for all 𝑖 ∈ 𝑆 ⊆ 𝑇 ⊆ 𝑈 .

2. (𝛽, 𝛾)-budget balanced if 𝑃 (𝑇)
𝛾
≤
∑︀

𝑖∈𝑇 𝜒(𝑖, 𝑇) ≤ 𝛽𝑃 (𝑇)

3. 𝛼-summable for a monotonically increasing function 𝛼(·) if
∑︀|𝑇 |

𝑙=1 𝜒(𝑖𝑙, 𝑇𝑙) ≤

𝛼(|𝑇 |)𝑃 (𝑇) for every ordering 𝜎 of 𝑈 and every set 𝑇 ⊆ 𝑈 , where 𝑇𝑙 denotes

the set of the first 𝑙 demands in 𝑇 and 𝑖𝑙 denotes the 𝑙th demand of 𝑇 (with

respect to 𝜎).

The cross-monotonicity property simply states that if the number of players re-

ceiving service grows, then the cost share of each individual will not increase. In other

words, if we remove a player, then the cost share of all remaining players can only

increase. In the mechanism design setting, if 𝜒 is cross-monotonic, then the Moulin

mechanism will induce truthful bidding (Moulin and Shenker [64]).

The (𝛽, 𝛾)- budget balanced property ensures that the sum of the cost shares is

no more than 𝛽 times the associated cost, but also recovers at least 1/𝛾 of the cost.

A (1, 𝛾)-budget balanced is said to be competitive while a (𝛽, 1)-budget balanced

mechanism is said to be no-deficit. Although 𝜒 is providing a specific approximation

to 𝑃 (·), we use the exact value of 𝑃 (·) computing the values of 𝐶*(·) and 𝐶(·).

Finally, the 𝛼-summable property is a measure of the efficiency (social welfare),

of the Moulin mechanism, as described by Roughgarden and Sundararajan [73]. To

see this, pick an arbitrary order 𝜎 of 𝑇 ⊆ 𝑈 , and let each player 𝑙’s valuation, and

therefore bid, be 𝜒(𝑙, 𝑇𝑙) − 𝜖 for some arbitrarily small 𝜖. If we run the Moulin

mechanism 𝑀(𝜒, 𝑇, 1), then no player will be chosen, since they will be eliminated in

reverse order by construction. Therefore the total cost of the system will be roughly∑︀|𝑇 |
𝑙=1 𝜒(𝑖𝑙, 𝑇𝑙), where the optimal cost would be just 𝐶(𝑈). If 𝜎 is chosen adversarily,

then 𝛼(·) represents the worst possible situation that we can construct using the

previous example. (A more rigorous analysis is in Roughgarden and Sundararajan

[73].) We note that contrary to 𝛽 and 𝛾, 𝛼 is typically not a scalar but rather a

function that depends on the number of customers being served.

60

Given a cost sharing scheme 𝜒 that satisfies these three properties, we can intu-

itively explain why we can expect the FairShare algorithm to perform well. First,

the cross-monotonicity implies that once a player is accepted by FairShare, he will

always be accepted in every simulated output of the Moulin mechanism after his ar-

rival. Thus, the current set of accepted customers is always a subset of the current

output of the Moulin mechanism, whose costs can be bounded by the other two prop-

erties. In essence, cross-monotonicity implies that 𝜒 is a fair way to share the costs

among the customers, since as more customers are added, the less each customer

is ‘charged’ for service. Due to the (𝛽, 𝛾)-budget balanced property, we can expect

that the production costs for serving the accepted customers will be not too large.

Finally, motivated by the previous example, the 𝛼-summability directly characterizes

how much we will expect to incur in rejection costs. In the next section, we formally

provide theoretical guarantees on the cost of the FairShare algorithm. We explicitly

characterize the competitive ratio of FairShare as a function of 𝛼, 𝛽, 𝛾, 𝑐, and 𝑁 . In

the next section, we discuss specific cost sharing methods from the literature that

yield relatively small competitive ratios.

2.8.1 Analysis

In this section, we will provide explicit bounds on both the production and rejection

costs incurred by FairShare. We assume that we have a (𝛽, 𝛾)-budget balanced, 𝛼-

summable, cross-monotonic, cost sharing scheme 𝜒 for the production cost function

𝑃 (·). Remember that 𝑈𝑘 refers to the first 𝑘 customers that have arrived. We will

let 𝒜𝑀
𝑘 = 𝑀(𝜒, 𝑈𝑘, 𝑐) and ℛ𝑀

𝑘 = 𝑈𝑘∖𝑀(𝜒, 𝑈𝑘, 𝑐) for a given choice of parameter 𝑐

to be optimized later. A set with no subscript simply refers to the final customer

𝑁 . We first prove a key lemma which says that the the sets 𝒜𝑀
𝑘 are monotonically

increasing in 𝑘. Intuitively, the reason for this is that as more customers are added,

the better off everyone is due to the cross-monotonicity of 𝜒. This will be key to

prove our production bound in Lemma 19.

Lemma 18. The accepted set of customers by 𝑀(𝜒, 𝑈𝑘, 𝑐) is monotonically increasing

61

in 𝑘, i.e., 𝒜𝑀
1 ⊆ 𝐴𝑀

2 ⊆ . . . ⊆ 𝐴𝑀
𝑁 .

Proof. We will prove the lemma by induction. The base case is trivial since we start

the problem with no customers. Assume 𝒜𝑀
1 ⊆ 𝐴𝑀

2 ⊆ . . . ⊆ 𝐴𝑀
𝑘 and we want to

show that 𝒜𝑀
𝑘 ⊆ 𝒜𝑀

𝑘+1. Assume for contradiction that a customer 𝑗 ∈ 𝒜𝑀
𝑘 was not in

𝒜𝑀
𝑘+1. In case there are multiple choices for 𝑗, we choose the 𝑗 that was first removed

by the Moulin mechanism for 𝑀(𝜒, 𝑈𝑘+1, 𝑐). Let 𝑆𝑗 denote the set of players that

had not been rejected by the Moulin mechanism for 𝑀(𝜒, 𝑈𝑘+1, 𝑐) just before 𝑗 was

removed. By construction, 𝑗 ∈ 𝑆𝑗. Then we know that

𝑐𝑟𝑗 < 𝜒(𝑗, 𝑆𝑗) ≤ 𝜒(𝑗,𝒜𝑀
𝑘) ≤ 𝑐𝑟𝑗.

The first inequality follows from the fact that 𝑗 was removed by the mechanism

𝑀(𝜒, 𝑈𝑘+1, 𝑐) when the current remaining set at the time was 𝑆𝑗. The second in-

equality follows from the cross-monotonicity of 𝜒 and the fact that by definition

𝒜𝑀
𝑘 ⊆ 𝑆𝑗 by construction. The last inequality follows from the fact that the set 𝒜𝑀

𝑘

was previously output by the Moulin mechanism. Thus, we arrived at a contradiction,

which implies that each 𝑗 ∈ 𝒜𝑀
𝑘 is also in 𝒜𝑀

𝑘+1, and thus 𝒜𝑀
𝑘 ⊆ 𝒜𝑀

𝑘+1.

Using this lemma, we can now prove a bound on the production costs of FairShare.

Lemma 19. The production costs of the FairShare algorithm are

𝑃 (𝒜) ≤ 𝛾 (𝑐𝑅(ℛ*) + 𝛽𝑃 (𝒜*)).

62

Proof. The production cost of serving the accepted customers is

𝑃 (𝒜) ≤ 𝑃 (𝒜𝑀)

≤ 𝛾
∑︁
𝑘∈𝒜𝑀

𝜒(𝑘,𝒜𝑀)

≤ 𝛾

(︃ ∑︁
𝑘∈𝒜𝑀∩ℛ*

𝜒(𝑘,𝒜𝑀) +
∑︁

𝑘∈𝒜𝑀∩𝒜*

𝜒(𝑘,𝒜𝑀 ∩ 𝒜*)

)︃

≤ 𝛾

(︃ ∑︁
𝑘∈𝒜𝑀∩ℛ*

𝜒(𝑘,𝒜𝑀) + 𝛽𝑃 (𝒜𝑀 ∩ 𝒜*)

)︃

≤ 𝛾

(︃ ∑︁
𝑘∈𝒜𝑀∩ℛ*

𝜒(𝑘,𝒜𝑀
𝑘) + 𝛽𝑃 (𝒜𝑀 ∩ 𝒜*)

)︃

≤ 𝛾

(︃ ∑︁
𝑘∈𝒜𝑀∩ℛ*

𝑐𝑟𝑘 + 𝛽𝑃 (𝒜𝑀 ∩ 𝒜*)

)︃

= 𝛾
(︀
𝑐𝑅(𝒜𝑀 ∩ℛ*) + 𝛽𝑃 (𝒜𝑀 ∩ 𝒜*)

)︀
≤ 𝛾 (𝑐𝑅(ℛ*) + 𝛽𝑃 (𝒜*)) .

The first inequality follows since Lemma 18 implies 𝒜 ⊆ 𝒜𝑀 and 𝑃 (·) is mono-

tonic. The second inequality follows from 𝜒 being (𝛽, 𝛾)-budget balanced. The third

inequality follows from cross-monotonicity of 𝜒. The fourth inequality follows from

𝜒 being (𝛽, 𝛾)-budget balanced. The fifth inequality follows Lemma 18 which im-

plies 𝒜𝑀
𝑘 ⊆ 𝒜𝑀 and the cross-monotonicity of 𝜒. The sixth inequality follows from

the fact that 𝒜𝑀
𝑘 is an output of the Moulin mechanism. The equality follows from

the definition of 𝑅(·). The last inequality follows from the monotonicity of 𝑅(·) and

𝑃 (·).

We now show that any subset of the rejected customers of FairShare will be

rejected by the Moulin mechanism as well. Intuitively this is also due to the cross-

monotonicity of 𝜒 since these customers were already being rejected when they were

in consideration with an even larger set of customers. This result will be useful in

proving our rejection cost bound in Lemma 21.

Lemma 20. For any subset of customers 𝑄 ⊆ ℛ, the Moulin mechanism for

63

𝑀(𝜒,𝑄, 𝑐) outputs the empty set.

Proof. Assume for contradiction that the Moulin mechanism for 𝑀(𝜒,𝑄, 𝑐) outputs

𝑇 ̸= ∅. Let 𝑘 be the last customer that arrived in 𝑇 . Consider the first time a

customer 𝑗 ∈ 𝑇 was removed by 𝑀(𝜒, 𝑈𝑘, 𝑐) and let 𝑇𝑗 denote the players remaining

just before 𝑗 was removed. Note since 𝑘 ∈ ℛ that 𝑗 and 𝑇𝑗 are well-defined. Then

we know that

𝑐𝑟𝑗 < 𝜒(𝑗, 𝑇𝑗) ≤ 𝜒(𝑗, 𝑇) ≤ 𝑐𝑟𝑗.

The first inequality from the fact 𝑗 was removed by the Moulin mechanism for

𝑀(𝜒, 𝑈𝑘, 𝑐) when the current remaining set at the time was 𝑇𝑗. The second inequality

follows from the fact that 𝑇 ⊆ 𝑇𝑗 by construction and the cross-monotonicity of 𝜒.

The last inequality follows from the fact that 𝑇 is an output of the Moulin mechanism.

Thus we arrived at a contradiction and conclude that 𝑇 must be indeed empty.

Using the previous lemma, we can now obtain a bound the rejection costs of the

FairShare algorithm.

Lemma 21. The rejection costs of the FairShare algorithm are 𝑅(ℛ) ≤ 𝑅(ℛ*) +

𝛼(𝑁)
𝑐

𝑃 (𝒜*).

Proof. Let 𝑄 = ℛ ∩ 𝒜* which is the set of customers that FairShare rejected but

the optimal offline solution accepted. From Lemma 20, we know that 𝑀(𝜒,𝑄, 𝑐)

returns the empty set. For each 𝑗 ∈ 𝑄, let 𝑄𝑗 be the remaining set of customers just

before customer 𝑗 was rejected in the Moulin mechanism for 𝑀(𝜒,𝑄, 𝑐). Then by

construction we know that

𝑐𝑟𝑗 < 𝜒(𝑗,𝑄𝑗).

64

Then we can show that

𝑅(ℛ∩𝒜*) = 𝑅(𝑄)

<
∑︁
𝑗∈𝑄

𝜒(𝑗,𝑄𝑗)

𝑐

≤ 𝛼(|𝑄|)
𝑐

𝑃 (𝑄)

≤ 𝛼(𝑁)

𝑐
𝑃 (𝒜*).

The first equality follows from the definition of 𝑄. The first inequality follows from

the previous inequality we derived. The second inequality follows from 𝛼-summability

of 𝜒. The last inequality follows from the monotonicity of 𝛼(·) and 𝑃 (·). Adding

𝑅(ℛ∩ℛ*) ≤ 𝑅(ℛ*) to both side of the inequality completes the proof.

Using the bounds we have obtained for the FairShare algorithm, we can now easily

prove the general theorem below.

Theorem 11. Given a (𝛽, 𝛾)-budget balanced, 𝛼-summable, cross-monotonic cost

sharing scheme 𝜒 for a production problem 𝑃 with online customer selection, the

FairShare algorithm is max(1 + 𝛾𝑐, 𝛼(𝑁)
𝑐

+ 𝛾𝛽)-competitive.

Proof. We have that

𝐶(𝑈) = 𝑅(ℛ) + 𝑃 (𝒜)

≤ 𝑅(ℛ*) +
𝛼(𝑁)

𝑐
𝑃 (𝒜*) + 𝑃 (𝒜)

≤ 𝑅(ℛ*) +
𝛼(𝑁)

𝑐
𝑃 (𝒜*) + 𝛾 (𝑐𝑅(ℛ*) + 𝛽𝑃 (𝒜*))

≤ max(1 + 𝛾𝑐,
𝛼(𝑁)

𝑐
+ 𝛾𝛽)(𝑅(ℛ*) + 𝑃 (𝒜*))

= max(1 + 𝛾𝑐,
𝛼(𝑁)

𝑐
+ 𝛾𝛽)𝐶*(𝑈).

The first equality follows from the definition of 𝐶(·). The first inequality follows

from Lemma 21. The second inequality follows from Lemma 19. The third inequality

is combining terms. The last equality follows from the definition of 𝐶*(·) which

65

completes the proof.

The following corollary states what happens if we want to use an approximation

algorithm or online algorithm for 𝑃 .

Corollary 1. If a 𝑑-approximation or 𝑑-competitive algorithm is used to compute

𝑃 (·), then the FairShare algorithm is max(1 + 𝛾𝑐𝑑, 𝛼(𝑁)
𝑐

+ 𝛾𝛽𝑑)- competitive.

Finally, if the number of customers is known up to a constant factor, then 𝑐 can

be chosen to be Θ(
√︀

𝛼(𝑁)) which optimizes the bound in Theorem 11. In particular,

knowing 𝑁 approximately allows for a substantial improvement in the competitive

ratio from 𝑂(𝛼(𝑁)) to 𝑂(
√︀

𝛼(𝑁)).

Corollary 2. If 𝑁 is known up to constant factors, and 𝛽 and 𝛾 are scalars, then

choosing 𝑐 = Θ(
√︀

𝛼(𝑁)) makes the FairShare algorithm 𝑂(
√︀
𝛼(𝑁))-competitive.

We now provide an example on how to apply these results. (See Table 2 in Section

4 for more results.) Consider the FL problem with online customer selection. [68]

provided a cross-monotonic, (3,1)-budget balanced cost sharing scheme for the facility

location problem. [74] shows that the summability factor 𝛼(N) = log(𝑁). Setting

𝑐 =
√

log𝑁 and using Corollary 2 gives an overall competitive ratio of 𝑂(
√

log𝑁).

The table below summarizes the results for some problems with arbitrary rejection

costs. We will make the assumption that each customer requests only one unit, and

discuss how to relax this assumption in the next section. This assumption is due to

the fact that the cost sharing schemes we use also make this single unit per customer

assumption. The first column denotes the production cost problem along with the

citation of the cost sharing method that we use in FairShare. The second column

displays the summability function 𝛼 for the corresponding problem along with the

paper that showed this. The third and fourth columns show the 𝛽 and 𝛾 factors

that were shown in the corresponding cost-sharing method paper. The fifth column

denotes the optimal choice for 𝑐. The sixth column denotes the competitive ratio

achieved by using FairShare with the corresponding cost sharing method and choice

of 𝑐 (we assume we know Θ(𝑁) and use Corrollary 2). Note that the results for

facility location and economic lot sizing assuming each customer requests one unit,

66

we discuss extensions in Section 2.8.2. The final column shows lower bounds on the

best possible competitive ratios, shown in Section 2.9.2 and Appendix B.

Problem 𝛼 𝛽 𝛾 c FairShare Lower Bound

FL [68] log𝑁 [74] 3 1
√
log𝑁 𝑂(

√
log𝑁) Ω

(︁√︁
log𝑁

log log𝑁

)︁
ELS [91] log𝑁 [74] max(𝑏ℎ ,

ℎ
𝑏) 1

√
log𝑁 𝑂(

√
log𝑁) Ω

(︁√︁
log𝑁

log log𝑁

)︁
ST [48] Θ(log2𝑁) [73] 2 1 log𝑁 𝑂(log𝑁) Ω(

√
log𝑁)

SF [56] Θ(log2𝑁) [21] 2 1 log𝑁 𝑂(log𝑁) Ω(
√
log𝑁)

SSROB [42] Θ(log2𝑁) [74] 4.6 1 log𝑁 𝑂(log𝑁) Ω(
√
log𝑁)

MROB [74] Θ(log2𝑁) [74] 𝑂(1) 1 log𝑁 𝑂(log𝑁) Ω(
√
log𝑁)

Based on the results of Brenner and Schäfer [13] and Bleischwitz and Schoppmann

[12], we can also get 𝑂(
√

log𝑁) competitive ratios with FairShare for the machines

scheduling problems with online customer selection using identical and related ma-

chines, respectively. Finally, it is worth noting that using the cost sharing method

of Moulin and Shenker [64] we can get 𝑂(
√

log𝑁) competitive ratios for submodular

problems with online customer selection, although this does not match the optimal

guarantee of 2 in Elmachtoub and Levi [27]. To the best of our knowledge, the results

in the last two columns are the first of their kind with one exception in that Qian and

Williamson [71] found a similar guarantee for the Steiner tree problem with online

customer selection.

2.8.2 Extensions for Online Market Selection

In this section, we consider a more typical scenario where each customer actually has a

multi-unit request that can even be across multiple time periods or locations. We refer

to this type of customer as a market, which requires special consideration since cost

sharing schemes have typically only been developed with single demand customers in

mind. Geunes et al. [38] gives a 2.06-approximation algorithm for several problems

with offline market selection. In order to handle online market selection, we simply

67

create a new cost sharing scheme that is based on summing up the cost shares for

each demand when the original cost sharing scheme is used.

For example, assume we have a cross-monotonic, (𝛽, 𝛾)-budget balanced,

𝛼-summable cost sharing scheme �̂�. However, �̂� assumes that each player has one

demand request. If customers have multiple demand requests, which create markets,

and they only want to be served if their entire market of demands can be served,

then we need to come up with a new cost sharing scheme. Specifically, for each

customer 𝑗, let 𝑇𝑗 be the set of demands that customer 𝑗 wants. We will define

the new cost sharing scheme 𝜒 as 𝜒(𝑗, ·) =
∑︀

𝑘∈𝑇𝑗
�̂�(𝑘, ·). Clearly 𝜒 maintains the

cross-monotonicity and (𝛽, 𝛾)-budget balanced properties. It remains 𝛼 summable,

but the input to 𝛼(·) is now the total number of demands, rather than the number

of customers. Thus, the competitive ratios achieved by FairShare are now dependent

on the total number of units of demand requested. In addition, our lower bounds

also have the feature that the lower bound will also depend on the the total number

of units of demand request. Specifically, all our results are trivially extended by just

replacing 𝑁 by the total number of demands requested.

2.9 Lower Bounds

2.9.1 Submodular, ELS, JR, and FL with Fixed Rejection

Costs

In this section we show that no deterministic algorithm has a competitive ratio better

than two for any of the online customer selection problems that we have considered

under the Copycat and StablePair Algorithms.

Theorem 12. The competitive ratio for any deterministic algorithm used to solve

submodular, ELS, FL, or JR problems with online customer selection is at least 2.

Proof. Consider the To Build or Not to Build problem with online customer selection,

as explained in Example 1. Let 𝐾 = 1 and assume that the rejection cost for each

customers 𝑘 is 𝑟𝑘 = 𝜖 for some 𝜖 > 0. It can be seen that this is a special case of a

68

submodular, ELS, JR, or FL problem with online customer selection. Any nontrivial

deterministic algorithm for this problem simply specifies how many arrivals have to

occur before it starts accepting customers. We denote ALG𝑞 as the algorithm which

rejects the first 𝑞 − 1 customers and then accepts all remaining customers starting

with customer 𝑞. Thus, all algorithms can be parameterized by 𝑞 ∈ Z+ ∪ {∞}. Now

focus on the worst-case adversary strategy given a fixed 𝑞.

Case 1 If 𝑞 > 2/𝜖, then the adversary generates 2/𝜖 arrivals. Thus ALG𝑞 will

reject all 𝑞 customers and incur a total cost of 2, while the optimal offline cost is

clearly 1.

Case 2 If 1/𝜖 < 𝑞 ≤ 2/𝜖, then the adversary generates exactly 𝑞 arrivals. Thus

ALG𝑞 incurs a cost of 1 + (𝑞 − 1)𝜖, while the optimal offline cost is just 1.

Case 3 If 𝑞 ≤ 1/𝜖, then the adversary generates exactly 𝑞 arrivals. Thus ALG𝑞

incurs a cost of 1 + (𝑞 − 1)𝜖, while the optimal offline cost is 𝑞𝜖 ≤ 1.

The competitive ratio in all three cases is at least 2 or arbitrarily close to 2 as 𝜖

approaches 0.

2.9.2 FL and ELS with Arbitrary Rejection Costs

In this section, we provide lower bounds on the competitive ratio for any algorithm,

deterministic or randomized, for the facility location problems with online customer

selection. The proof for the economic lot sizing problem is almost identical and there-

fore omitted. In Appendix B, we provide the proof for the Steiner tree problem which

has many similar features to the proof below. The technique relies on constructing

an instance similar to the one used in the lower bound proof for the online facility

location problem without customer selection in Fotakis [34]. However, we modify the

demand instance and add rejection costs in order to obtain a worst case adversary.

Theorem 13. The competitive ratio for any deterministic or randomized algorithm

for the facility location problem with online customer selection is Ω
(︁√︁

log𝑁
log log𝑁

)︁
.

Proof. To show this lower bound, we need to specify an instance of the problem such

that no algorithm can come with in a factor of Ω
(︁√︁

log𝑁
log log𝑁

)︁
of the optimal offline

69

cost, where 𝑁 is the total number of customers. The proof is by construction, and we

start by building a hierarchically well-separated binary tree (Bartal [5]) of depth ℎ

(Figure 2-6), where ℎ will be specified later. The root node will be level 0, its children

will be level 1, and so on. There is a potential facility at each leaf in the tree, each

with a facility cost 𝑓 . The distance from a level-𝑖 node to its children will be 𝐷/𝑚𝑖,

where 𝐷 and 𝑚 will also be specified later. For a node 𝑣 in the tree, we define 𝑇𝑣 to

be the subtree rooted at 𝑣. We now state two easily verifiable facts about the tree.

1. Let 𝑣 be a level-𝑖 node. Then the distance from 𝑣 to a node not in 𝑇𝑣 is at least

𝐷/𝑚𝑖−1.

2. Let 𝑣 be a level-𝑖 node. Then the distance from 𝑣 to any node in 𝑇𝑣 is at most

𝐷/(𝑚𝑖−1(𝑚− 1)).

We will now provide a distribution of customer sequences and give a lower bound

of Ω
(︁√︁

log𝑁
log log𝑁

)︁
on the competitive ratio of any deterministic algorithm. Using Yao’s

principle (Yao [94]), this achieves the desired result. The distribution can be described

according to the following procedure. See Figure 2-6 for an example. The sequence

𝑣1, . . . , 𝑣ℎ denotes the locations of where the customers’ locations will occur, and 𝑣 is

simply keeping track of how to move along the tree. We will assign each 𝑣𝑖 to either

𝑉 𝒜 or 𝑉 ℛ̂ depending on whether we will accept or reject it in the feasible offline

solution we will consider.

70

D

Level

D/m3

D/m2

D/m

0

1

2

3

4

v1

v2

v3

v4

Figure 2-6: In this figure, each circle represents a node, and the lines represent where
the node can travel to. The black nodes denote a random path that the 𝑣 node took in
the demand sequence construction. In this example, 𝑉 𝐴 = {𝑣1, 𝑣4} and 𝑉 �̂� = {𝑣2, 𝑣3}.

1. Let 𝑣 :=root, 𝑖 := 0, 𝑉 𝒜 = ∅ and 𝑉 ℛ̂ = ∅.

2. Let 𝑖 = 𝑖+1. Set 𝑣𝑖 :=left child of 𝑣. Generate 𝑚𝑖−1 consecutive demands

at 𝑣𝑖 each with rejection cost of 𝑟𝑖 = 𝐷/(𝑚𝑖−1
√
𝑚).

3. With probability 1−1/
√
𝑚, set 𝑣 :=left child of 𝑣 and let 𝑉 𝒜 = {𝑣𝑖}∪𝑉 𝒜.

Otherwise, with probability 1/
√
𝑚, set 𝑣 :=right child of 𝑣 and 𝑉 ℛ̂ =

{𝑣𝑖} ∪ 𝑉 ℛ̂.

4. If 𝑖 < ℎ, go to Step 2. Else, Stop.

We now compute an upper bound on the expected cost of the optimal offline

solution, E[OPT], by constructing a feasible solution for any sample path. Let 𝒜

denote all the customers located at a node in 𝑉 𝒜 and let ℛ̂ denote all the customers

located at a node in 𝑉 ℛ̂. In our feasible solution, we will accept 𝒜 and reject ℛ̂. Note

71

that there is a common facility in the subtrees of all the nodes that have customers

in 𝐴, which is where how they will be served in this feasible solution. We call this

facility 𝐹 . We can then show that

E[OPT] ≤ E[𝑃 (𝐴) + 𝑅(�̂�)]

≤ 𝑓 +
𝐷

𝑚− 1
E[|𝑉 𝐴|] + 𝑅(�̂�)

≤ 𝑓 +
𝐷

𝑚− 1
E[|𝑉 𝐴|] +

𝐷√
𝑚
E[|𝑉 �̂�|]

= 𝑓 +
𝐷

𝑚− 1

ℎ
√
𝑚− ℎ√
𝑚

+
𝐷√
𝑚

ℎ√
𝑚

≤ 𝑓 + 2
ℎ𝐷

𝑚− 1

The first inequality follows from optimality. From Fact 2, it follows that for each

location 𝑣𝑖 ∈ 𝑉 𝒜, the service cost for all the customers at 𝑣𝑖 to 𝐹 is 𝑚𝑖−1 𝐷
𝑚𝑖−1(𝑚−1)

=

𝐷
𝑚−1

, which implies the second inequality. For each location 𝑣𝑖 ∈ 𝑉 �̂�, the rejection

cost for all the customers at 𝑣𝑖 will be 𝑚𝑖−1 𝐷
𝑚𝑖−1

√
𝑚

= 𝐷√
𝑚

, which implies the third

inequality. The fourth line follows from Step 3 of the customer sequence construction

and the fact that there are ℎ levels in total(probability of 𝑣𝑖 ∈ 𝑉 𝐴 is 1 − 1/
√
𝑚 for

all 𝑖). The last inequality follows from simple algebra.

We now focus on the cost of an arbitrary deterministic algorithm, ALG, on this

input. Let us again refer to 𝒜 and ℛ as the accepted and rejected customers by ALG.

Let 𝑉 𝒜 ⊆ {𝑣1, . . . , 𝑣ℎ} be the locations where at least half of the customers are in 𝒜

72

and let 𝑉 ℛ be the remaining locations. The expected cost of ALG is then

E[ALG] = E[𝑃 (𝒜) + 𝑅(ℛ)]

≥ E[𝑃 (𝒜 ∩ ℛ̂)] + E[𝑅(ℛ∩𝒜)]

≥ min{𝑓,𝐷/2}E[|𝑉 𝒜 ∩ 𝑉 ℛ̂|] + E[𝑅(ℛ∩𝒜)]

≥ min{𝑓,𝐷/2}E[|𝑉 𝒜 ∩ 𝑉 ℛ̂|] +
𝐷

2
√
𝑚
E[|𝑉 ℛ ∩ 𝑉 𝒜|]

≥ min{𝑓,𝐷/2}E[|𝑉 𝒜|]√
𝑚

+
𝐷

2
√
𝑚

√
𝑚𝐸[|𝑉 ℛ|]− 𝐸[|𝑉 ℛ|]√

𝑚

≥ min{𝑓,𝐷/4}E[|𝑉 𝒜|]√
𝑚

+
𝐷

4
√
𝑚
𝐸[|𝑉 ℛ|]

The first inequality follows from monotonicity of 𝑃 (·) and 𝑅(·). Note that to serve

the customers in 𝒜, we need to serve at least half of the customers at each location

𝑣𝑖 ∈ 𝑉 𝒜 ∩ 𝑉 ℛ̂. By construction of 𝑉 �̂�, none of the subtrees of the nodes in 𝑉 𝐴 ∩ 𝑉 �̂�

intersect. Thus, for each 𝑣𝑖 we must either construct a facility in 𝑇𝑣𝑖 or serve the

customers from another facility which, by Fact 1, will cost 𝑚𝑖−1

2
𝐷

𝑚𝑖−1 = 𝐷
2
. Thus, the

second inequality follows from the lower bound just derived of serving the accepted

customers at 𝑉 𝐴 ∩ 𝑉 �̂�. The third inequality follows from the fact that we need to

reject at least half of the customers located at 𝑉 𝑅 ∩ 𝑉 𝐴. For a given location, this

will cost 𝑚𝑖−1

2
𝐷

𝑚𝑖−1
√
𝑚

= 𝐷
2
√
𝑚

. The fourth inequality follows from the fact that the

probability that any node 𝑣𝑖 is in 𝑉 𝐴 is 1 − 1/
√
𝑚 by Step 3 of the construction,

regardless of the fact that 𝑣𝑖 ∈ 𝑉 𝑅 as well. The last inequality follows when 𝑚 ≥ 4.

Now we will carefully set ℎ := 𝑚 and 𝐷 := 4𝑓 . Then the competitive ratio of

ALG on this instance will be

73

E[ALG]

E[OPT]
≥

min{𝑓,𝐷/4}E[|𝑉
𝐴|]√
𝑚

+ 𝐷
4
√
𝑚
𝐸[|𝑉 𝑅|]

𝑓 + 2 ℎ𝐷
𝑚−1

=

E[|𝑉 𝐴|]√
𝑚

+ 1√
𝑚
𝐸[|𝑉 𝑅|]

1 + 8 𝑚
𝑚−1

=

√
𝑚

1 + 8 𝑚
𝑚−1

= Ω(
√
𝑚)

The first inequality follows directly from the two bounds we derived above. The

first equality follows from canceling out 𝑓 terms. The second equality follows from

the fact that the expected total number of locations is 𝑚 by construction.

Finally, we need to determine 𝑚. Since there are 1 +𝑚+ . . .+𝑚𝑚−1 ≈ 𝑚𝑚 total

units of demand, then the most 𝑚 can be is Θ(log𝑁
log log𝑁

). Thus, the competitive ratio

for any algorithm is at least Ω
(︁√︁

log𝑁
log log𝑁

)︁
.

2.10 Conclusion

In this chapter, we introduced a general framework for online customer selection

problems. These problems are important in industries where customers must be

either explicitly or implicitly rejected. We showed that a relatively simple approach,

named the Copycat Algorithm, which mimics the optimal offline solution in each stage

resulted in strong worst case guarantees for several supply chain models. Then we

proposed the more sophisticated StablePair Algorithm, which could be implemented

in polynomial time and resulted in stronger guarantees. We provided a third algorithm

called FairShare for this class of problems that is based on cost sharing mechanisms

developed for cooperative games. These cost sharing mechanisms aim to naturally

distribute the cost of production to the “players” in the cooperative game in such

a way that the allocation is fair and recovers most of the cost. FairShare provides

poly-logarithmic competitive ratio guarantees for a variety of problems with online

74

customer selection with no restriction on the rejection cost structure. We also showed

that these guarantees are close to best possible by constructing customer sequences

that result in poly-logarithmic competitive ratios for all algorithms. We believe that

the problems and algorithms generated in this paper might have applications in other

areas.

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

Chapter 3

Retailing with Opaque Products

3.1 Introduction

In this chapter, we study the potential impact of offering opaque products in online

retail environments. An opaque product is defined as a product where the consumer

only learns of all the product’s attributes after the purchase has been made. In the

context we consider, when a customer purchases an opaque product he or she agrees

to accept any product from a pre-specified list of products. Once the purchase of

an opaque product is complete, the seller decides which one of the products from

the pre-specified list to give to the customer. Opaque products have been almost

exclusively used and studied in the travel industry, where consumers can buy airline

tickets, hotel rooms, and car rentals without knowing exactly which company they

will receive, as well as possibly the type of flight, room, or car. Priceline.com and

Hotwire.com are two of the major third-party channels for selling opaque products.

Opaque selling allows airlines to offer lower priced airfare to customers via third party

channels, without cannibalizing the original posted prices. Thus, opaque products

allow airlines to take advantage of price differentiation and increase overall revenues,

with a percentage of the opaque sales given to the third-party channel.

The goal of our work is to show that selling opaque products in the retail industry

could be beneficial from both a revenue and cost perspective. For example, an opaque

product may be a household item with two different color possibilities, and the con-

77

sumer only learns the color they will receive after the purchase is complete (upon

delivery). Based on our findings in this work, we believe that online retailers can and

should implement the sales of opaque products, a practice that currently exists in

very limited applications to the best of our knowledge. One major difference is that

we propose that online retailers sell opaque products directly alongside transparent

(original) products. Specifically, we focus on the scenario where the transparent prod-

ucts are highly substitutable and have the same basic functionality, but may vary in

a stylistic feature such as shape, color, or design. For an appropriate incentive, we

believe that there are customers that would be willing to buy an opaque product if

he is practically indifferent between the transparent options. Although this incentive

could take on many forms, we will specifically focus on a price discount incentive for

purchasing an opaque product.

In our work we show that selling opaque products can offer significant improve-

ments for the retailer’s supply chain costs. When a customer purchases an opaque

product, the retailer can provide the product that puts him in the best inventory

position afterwards. We show that this can result in significant savings on holding

and ordering costs. By having customers who purchase opaque products, the retailer

is essentially reducing the volatility of demand, and thus driving down costs. Specif-

ically, we can leverage the use of opaque products to delay necessary replenishments

and reduce the average inventory on hand by a significant amount. Moreover, we only

require a small percentage of customers to purchase the opaque product to achieve

major cost savings advantages. Our analysis relies on studying a key metric: the ex-

pected number of customers between replenishments. Based on this metric, we derive

closed-form expressions for the holding and ordering cost rates as a function of the

fraction of customers that purchase opaque products. Furthermore, when there are

only two transparent products we provide theoretically results on these rates that are

asymptotically tight.

We also address the issue of estimating the demand under an opaque selling strat-

egy. Given a demand model for the products under a traditional selling strategy (no

opaque products), and assuming customers are risk-averse, we can exactly character-

78

ize the demand under the opaque selling strategy with closed-form expressions. This

characterization allows us to accurately compute the demand rates for transparent

and opaque products for a given price structure, and therefore study the overall im-

pact of an opaque selling strategy. As we will show, the optimal opaque strategy may

sometimes result in less revenue but a better overall profit due to the cost savings

(contrary to the travel industry). We do however show that under minor conditions,

it is possible to improve both revenue and profit, which may be a desirable situation

for a retailer.

We also compare our opaque selling strategy to a certain class of dynamic pricing

policies for a traditional selling model. Specifically, this class of dynamic pricing

policies must always sell one product at a given full price, and the other at some

discount. Under some conditions, we are able to show that our opaque selling strategy

can outperform this class of dynamic pricing policies. In fact, we show that the costs

are identical, and the revenue of the opaque strategy is superior. We believe that

this result suggests that opaque selling strategies can be used as an alternative to

dynamic pricing, or at least should be considered as an alternate mechanism for

managing inventory.

Finally, we also consider cases where there are more than two transparent prod-

ucts, in which case the cost savings from opaque selling increases even further. More-

over, we introduce a generalization of opaque selling called 𝑘-opaque products. In

this setting, the customer first chooses 𝑘 options, and then the retailer will choose

one out of the 𝑘 options. For example, if the retailer had 10 transparent options

and sold 2-opaque goods, then customers choose their favorite two and then the re-

tailer chooses one of those two. Surprisingly, our computational results suggest that

2-opaque strategies are nearly as effective as selling fully opaque products. To the

best of our knowledge, we are not aware of any current practice of selling 𝑘-opaque

products.

79

3.1.1 Literature Review

Opaque products have been primarily studied in industries with perishable inventory

such as airline tickets, hotel rooms, and cruise ships ([49]). [29] described the notion

of a probabilistic good, which is similar to an opaque product except that the retailer

specifies the probability of receiving each traditional product. [50] analyze opaque

selling in a two-stage model with competition, and compare this to last-minute selling

strategies. [35] looks at revenue management of flexible products, which is when the

details of the product are revealed to the consumer close to the time of consumption

(i.e. the day before a reservation).

Our work is fundamentally different than previous research as we focus on nonper-

ishable retail goods and the impact that selling opaque products has on supply chain

costs, in addition to revenue. Although previous research focused on pricing issues,

here opaque sales may be achieved by other means such as rewards points, preferred

shipping methods, or even no incentives for consumers who dislike choices and enjoy

surprises. However, we also contribute a new way to estimate opaque demand levels

when customers respond to price incentives, which may also be useful for traditional

applications of opaque products.

Our work is also related with multi-item inventory-pricing problems with joint

replenishment costs and substitutable demand. Due to the so-called curse of di-

mensionality, it has been well documented that even for simple multi-item inventory

problems without pricing and substitutable demand, optimal policies are prohibitively

difficult to find and may not yield simple solution form (see [3] and [45]). Therefore,

in our work, we fix our inventory policy and propose a simple model that captures the

cost of inventory imbalance caused by the stochastic nature of the demand, and use

the propose model to analyze the benefit of opaque selling. For computing optimal

inventory-pricing policies under production or inventory ordering systems, we refer

the readers to [81], [96], and [18].

This chapter proceeds as follows. In Section 3.2, we present the opaque selling

80

model and a preliminary analysis for the case of two transparent products with sym-

metric demand. In Section 3.3, we analyze in depth the supply chain cost savings

from a computational and theoretical perspective. In Section 3.4, we derive a method

to estimate demand and apply the techniques to a linear demand model for substi-

tutable goods. In Section 3.5, we compare our opaque selling strategy to a class of

dynamic pricing policies. Finally, in Section 3.6 we discuss extensions to our model

that include asymmetric demand and 𝑘-opaque products.

3.2 The Opaque Product Model

Model Dynamics. In our model, we consider an online retailer selling non- per-

ishable products over an infinite time horizon. The retailer offers two types of sub-

stitutable products, product 1 and product 2, at prices 𝑝1 and 𝑝2 respectively. We

assume that these products come from the same supplier and vary in a stylistic fea-

ture such as color or shape. Unless specified otherwise (e.g., Section 3.6.1), we will

assume that the demand and prices for products 1 and 2 are identical, and thus we

will refer to their price as 𝑝 = 𝑝1 = 𝑝2. In addition to offering products 1 and 2

for sale, the retailer offers an opaque option, which means a consumer will receive

either product 1 or product 2, at the retailer’s discretion. The price of the opaque

product is 𝑝− 𝛿, where the discount 𝛿 rewards the customer for sacrificing his choice.

For clarity purposes, we will refer to products 1 and 2 as transparent products, and

the opaque option as an opaque product. Furthermore, we refer to this model as an

opaque selling strategy. If the retailer sells only transparent products, we will refer

to it as a traditional selling strategy.

For a given 𝑝 and 𝛿, we model the demand by a stochastic arrival process with

independent and identically distributed inter-arrival times with mean 1/𝜆. Alterna-

tive, 𝜆 can be thought of as the demand per time unit. When a customer arrives,

he purchases a transparent product with probability 1 − 𝑞, and an opaque product

with probability 𝑞. Since the demand and prices for products 1 and 2 are identical,

when a customer purchases a transparent product he chooses from products 1 and

81

2 uniformly at random, each with probability 1/2. When a customer chooses the

opaque product, the retailer can fulfill the purchase with either product 1 or product

2. Note that both the demand rate 𝜆 and the opaque selection probability 𝑞 are

dependent on the price 𝑝 of the transparent products and opaque product discount 𝛿.

When necessary, we will use 𝜆(𝑝, 𝛿) and 𝑞(𝑝, 𝛿) to denote these dependencies. When

the demand rate, opaque selection probability, and prices are known, the revenue per

time unit can be expressed as

𝜆((1− 𝑞)𝑝 + 𝑞(𝑝− 𝛿)).

To satisfy demand, the retailer continuously orders products 1 and 2 from its

supplier and satisfies the demand from its on-hand inventory. For each order, there is

a joint ordering cost 𝐾 for ordering (replenishing) inventory, which is motivated by

the fact that the products are from the same supplier. Moreover, there is a holding

cost 𝐻 for holding one item for one time unit. For simplicity, we assume that there

is no order lead time, backlogging, or lost sales. This assumption implies that under

the optimal inventory policy, an order is triggered immediately when the inventory

level for any product drops to zero. Every time a replenishment order occurs, the

inventory of each product is replenished up to a reorder level 𝑐. One can think of 𝑐 as

either the retailer’s maximum capacity for each product, or the reorder level chosen

by the retailer. (Note that here we assume the inventory policy will always remain

fixed, although in practice one may gain further savings by reoptimizing the inventory

policy under an opaque selling strategy.)

Fulfillment of the Opaque Product. Under the opaque product model we have

described, we can characterize retailer’s optimal fulfillment strategy when a customer

chooses the opaque product. Due to the demand symmetry between products 1 and

2, intuitively the retailer should always attempt to have a balanced inventory position

to prepare himself for future demand. This is exactly what the fulfillment strategy in

Theorem 1 (proof in Appendix C.1.1) is trying to accomplish when a customer buys

an opaque product.

82

Proposition 1. Under symmetric demand for transparent products, it is always op-

timal for the retailer to fulfill an opaque product request with the transparent product

that has the highest on-hand inventory at the time.

In the rest of the chapter, we will assume this optimal fulfillment strategy is always

applied when an opaque product is sold.

3.2.1 Computing the Inventory Cost

Next, we analyze the retailer’s average cost rate under our inventory model and

demonstrate that the cost can be expressed as a function of the expected number of

customers served between consecutive replenishments. We use the random variable

𝑅(𝑞, 𝑐) to denote the number of customers served between consecutive replenishments

when the fraction of opaque customers is 𝑞 and the reorder level is 𝑐. For example,

𝑅(1, 𝑐) represents the fully opaque setting where all customers purchase the opaque

product, while 𝑅(0, 𝑐) represents the traditional setting where no customers purchases

the opaque product. Note that 𝑅(1, 𝑐) = 2𝑐− 1 with probability 1, since the retailer

will alternate between products 1 and 2 until the inventory of one product reaches

zero, at which there must be 1 unit of inventory left for the other product and a

replenishment order is triggered.

Our analysis of the inventory costs will heavily rely on the expected value of

the number of customers served between consecutive replenishments, i.e., E[𝑅(𝑞, 𝑐)].

Theorem 2 (proof in Appendix C.1.2) characterizes the ordering costs and holding

costs in terms of this quantity. The proposition also shows how much savings we get

compared to the traditional strategy where there is no opaque selling, i.e. 𝑞 = 0. In

addition, we also describe the relative savings achieved when comparing to a fully

opaque setting (𝑞 = 1), which is a “best case” scenario where we can save the most in

supply chain costs.

Proposition 2. For any 0 ≤ 𝑞 ≤ 1 and integer 𝑐 ≥ 1,

(a) the ordering cost rate is 𝜆𝐾
E[𝑅(𝑞,𝑐)]

.

83

(b) the ordering cost savings compared to the traditional setting (no opaque)

is 1− E[𝑅(0,𝑐)]
E[𝑅(𝑞,𝑐)]

.

(c) the relative ordering cost savings compared to all opaque selling

is E[𝑅(1,𝑐)](E[𝑅(𝑞,𝑐)−𝑅(0,𝑐)])
E[𝑅(𝑞,𝑐)](E[𝑅(1,𝑐)−𝑅(0,𝑐)])

.

(d) the holding cost rate is (4𝑐−E[𝑅(𝑞,𝑐)]+1)𝐻
2

.

(e) the holding cost savings compared to the traditional setting (no opaque)

is 1− 4𝑐−E[𝑅(𝑞,𝑐)]+1
4𝑐−E[𝑅(0,𝑐)]+1

.

(f) the relative holding cost savings compared to all opaque selling

is E[𝑅(𝑞,𝑐)−𝑅(0,𝑐)]
E[𝑅(1,𝑐)−𝑅(0,𝑐)]

.

Theorem 2 implies that once the value of E[𝑅(𝑞, 𝑐)] is known, it is easy to compute

retailer’s costs in both absolute and relative terms.Interestingly, while our model is

continuous time, 𝑅(𝑞, 𝑐) can be computed by analyzing a simple discrete-time 2-

dimensional Markov chain with 𝑂(𝑐2) states. Each state corresponds to the inventory

remaining of the two products. If 𝑖 ≥ 𝑗 ≥ 2, the probability of moving from state

(𝑖, 𝑗) to (𝑖, 𝑗− 1) is (1− 𝑞)/2 and to (𝑖− 1, 𝑗) is (1− 𝑞)/2 + 𝑞. Any state with 𝑖 = 0 or

𝑗 = 0 is an absorbing state, and E[𝑅(𝑞, 𝑐)] is equivalent to the expected absorption

time if we start at state (𝑐, 𝑐). The value of E[𝑅(𝑞, 𝑐)] can also be computed fairly

easily via simulation, which may be preferable under more general models.

Finally, we note that parts (b),(c),(e), and (f) of Theorem 2 not only allow us

to compute the savings of different opaque levels, but also demonstrate that these

relative savings are independent of the cost parameters and the demand rate. In

the subsequent sections, this property would allow us to analyze the potential cost

savings and obtain generally applicable insights without the exact values of the cost

parameters.

3.2.2 Profitability of Opaque Selling

In this subsection, we analyze the benefit of moving from the traditional selling model

to the opaque selling model. In particular, we will show that moving from a traditional

84

selling strategy to an opaque selling strategy is always beneficial, for the appropriate

choice of 𝛿. We will consider a retailer under the traditional selling model with prices

for both transparent products equal to 𝑝, and analyzes the retailer’s change in profit

when it introduces an opaque product with discount 𝛿 ≥ 0. This is motivated by a

retailer’s potential unwillingness or inability to change 𝑝, but would consider selling

an opaque product. We will prove that even if the retailer does not change the price

of the transparent products, there always exists a discount 𝛿 ≥ 0 such that the opaque

selling enables the retailer to strictly improve its profit under very general conditions.

We will also show that under some conditions, the retailer may not even need to

sacrifice revenue in order to achieve this improvement.

Without loss generality, we assume in this subsection that 𝑝 = 1. For notational

simplicity, we use 𝑞(𝛿) to replace 𝑞(1, 𝛿) and 𝜆(𝛿) to replace 𝜆(0, 𝛿). Note that if

the customers behave rationally, then the customer arrival rate should not decrease

for any positive discount offered at the opaque product. Therefore, throughout the

section, we assume 𝜆(𝛿) ≥ 𝜆(0), ∀𝛿 ≥ 0. Moreover, to avoid unnecessary derivations

under unrealistic settings, we assume 𝜆(0) is equal to the customer arrival rate under

the traditional selling model, 𝜆(0) > 0, and 𝑞(0) = 0. (Note that if 𝑞(0) > 0, then

our profit improves for free.)

The profit rate for an opaque selling strategy with discount 𝛿 will be denoted by

Π(𝛿), which can be expressed as:

Π(𝛿) := 𝜆(𝛿)(1− 𝑞(𝛿)𝛿)− 𝜆(𝛿)𝐾

E[𝑅(𝑞(𝛿), 𝑐)]
− (4𝑐− E[𝑅(𝑞(𝛿), 𝑐)] + 1)𝐻

2
, (3.1)

where the first part of the equation represents the revenue rate, while the second and

third part of the equation represent the ordering and holding cost rates.

Next, we demonstrate that under some mild conditions, a retailer changing from

the traditional selling model to the opaque selling model will always receive a strict

increase in profit if the opaque product discount is chosen correctly. We also study the

impact of the opaque product to the retailer’s revenue. Note that while the opaque

product may increase the overall demand rate, it may cause the revenue to decrease

85

if too many customers are choose the opaque product over the transparent products.

Proposition 3. Suppose the right derivative of 𝑞(𝛿) at 0 exists and is strictly positive,

the following results hold:

(a) There always exists some 𝛿0 > 0 such that when the opaque product is introduced

at discount 𝛿0, the increase in retailer’s profit is strictly greater than 0.

(b) Suppose in addition, the right derivative of 𝜆(𝛿) at 0 exists and is strictly pos-

itive. Then there exists some 𝛿0 > 0 such that when the opaque product is

introduced at discount 𝛿0, the increase in both retailer’s profit and revenue are

strictly greater than 0.

The proof of Theorem 3 can be found in Appendix C.1.3. We note that the

conditions where the right derivatives of 𝑞(𝛿) and 𝜆(𝛿) is strictly positive essentially

imply that there is a positive rate of increase in the number of opaque purchases as

well as the demand rate when a small discount is offered. In the next section, we will

provide an in-depth analysis on the cost, and potential savings, of an opaque selling

strategy. We will show that even a small fraction of opaque sales can provide a lot of

cost savings, which refines our intuition for Theorem 3. Then in Section 3.4, we will

show how to estimate 𝜆(𝑝, 𝛿) and 𝑞(𝑝, 𝛿) and we will study in-depth the profit of an

opaque selling strategy for a particular demand model.

3.3 Inventory Cost Savings with Opaque Selling

In this section, we focus on the costs of an opaque selling strategy. For this purpose,

we will assume that 𝜆 remains unchanged for different values of 𝑞, the opaque selection

probability. These results will allow us to describe the value of converting 𝑞 fraction

of the demand from a traditional model into opaque customer. We will study the cost

savings for different values of 𝑞 and 𝑐. Note that by Theorem 2, the relative ordering

and holding cost savings are independent of 𝜆, 𝐾, and 𝐻.

The analysis of the cost savings in the section is divided into two subsections. In

Section 3.3.1, we provide some numerical examples to demonstrate the cost advantages

86

of the opaque product and develop some intuitions. In Section 3.3.2, we develop

several theoretical properties on the cost savings of the opaque product, which allows

us to refine the intuition developed in Section 3.3.1 and provide important insights.

3.3.1 Numerical Results

We now provide numerical evidence that describes the cost advantages of opaque

selling. In the next two figures, we compute the ordering cost savings and holding

cost savings for the model described in Section 3.2, for various opaque levels 𝑞 and

reorder levels 𝑐. The savings refer to the amount of money saved in comparison to a

traditional setting where there are no opaque sales (𝑞 = 0) and 𝜆 is the same. These

computations can be computed via simulation or more direct methods as described

in the previous section.

Figure 3-1: We compute the ordering cost savings achieved for different values of 𝑞
and 𝑐, assuming that 𝜆 remains fixed.

From Figure 3-1, we observe several interesting facts. First, in an ideal setting

when all customers purchase opaque products, i.e. 𝑞 = 1, the retailer can save at

most 18% in ordering costs, and up to 5% savings for large values of the reorder level

𝑐. However, when only 10% of customers purchase opaque products, the savings is up

to 3%, even for large values of 𝑐. This implies that there is a nonlinear relationship

between the cost savings and the opaque level 𝑞. This nonlinearity is advantageous

since it implies that only a small fraction of customers need to purchase the opaque

87

Figure 3-2: We compute the holding cost savings achieved for different values of 𝑞
and 𝑐, assuming that 𝜆 remains fixed.

product in order to achieve significant cost savings. In Theorem 5, we analytically

explain this behavior. From Figure 3-1, we can also observe that the savings all

approach 0 as 𝑐 goes to ∞, which we can also prove in the next section. Note

however that the convergence is very slow, and for very reasonable and practical

levels of 𝑐 there are significant cost savings. A similar analysis also holds for the

holding cost savings depicted in Figure 3-2. Remember that the holding costs are

reduced because opaque products sales result in less on-hand inventory when orders

occur, and therefore less average on-hand inventory.

3.3.2 Theoretical Analysis

To enhance the observations made in Section 3.3.1, we now analytically compare the

traditional selling (no opaque) strategy versus the opaque selling strategy for different

values of 𝑞. For our analysis, we will make use of the following definitions. Let 𝑛𝑖
𝑡(𝑞)

be the number of product 𝑖 purchased given 𝑡 purchasing customers have arrived since

the last replenishment. Let 𝑀𝑡(𝑞) be the absolute value of the difference between the

amount of product 1 and the amount of product 2 consumed after 𝑡 customers have

arrived, i.e, 𝑀𝑡(𝑞) := |𝑛1
𝑡 (𝑞) − 𝑛2

𝑡 (𝑞)|. Note that 𝑛𝑖
𝑡(𝑞) and 𝑀𝑡(𝑞) are discrete time

stochastic processes. For the sake of succinctness, when 𝑞 and 𝑐 are fixed without

ambiguity, we will sometimes use 𝑅, 𝑛𝑖
𝑡 and 𝑀𝑡 in place of 𝑅(𝑞, 𝑐), 𝑛𝑖

𝑡(𝑞), and 𝑀𝑡(𝑞).

88

First, we show that E[𝑅(1, 𝑐) − 𝑅(0, 𝑐)] is on the order of
√
𝑐, implying that we

serve on the order of
√
𝑐 more customers between replenishments when all customers

purchase the opaque product.

Proposition 4. As the reorder level 𝑐 goes to infinity, E[𝑅(1,𝑐)−𝑅(0,𝑐)]√
2𝑐

approaches
√︁

2
𝜋
.

In the proof of Theorem 4, we first show that E[𝑅(1, 𝑐)−𝑅(0, 𝑐)] can be rewritten

as the expected absolute value of a sum of 2𝑐 IID random variables. Then we scale

E[𝑅(1, 𝑐)−𝑅(0, 𝑐)] by
√

2𝑐 and apply the Central Limit Theorem together to obtain

the limit as 𝑐 approaches infinity. The formal proof is provided in Appendix C.1.4.

Theorem 4 provides us with a formula to accurately estimate E[𝑅(1, 𝑐)−𝑅(0, 𝑐)]

when the re-order level 𝑐 is large. Moreover, with Theorem 4, we have

1− E[𝑅(0, 𝑐)]

E[𝑅(𝑞, 𝑐)]
≤ E[𝑅(1, 𝑐)−𝑅(0, 𝑐)]

E[𝑅(1, 𝑐)]
→ 0, (3.2)

and 1− 4𝑐− E[𝑅(𝑞, 𝑐)] + 1

4𝑐− E[𝑅(0, 𝑐)] + 1
≤ E[𝑅(1, 𝑐)]−𝑅(0, 𝑐)]

4𝑐− E[𝑅(0, 𝑐)] + 1
→ 0, (3.3)

as 𝑐→∞. Recall that from Theorem 2, 1− E[𝑅(0,𝑐)]
E[𝑅(𝑞,𝑐)]

and 1− 4𝑐−E[𝑅(𝑞,𝑐)]+1
4𝑐−E[𝑅(0,𝑐)]+1

represent the

ordering and holding cost savings relative to the costs under the traditional setting.

Therefore, Equations 3.2 and 3.3 implies that for any 0 < 𝑞 ≤ 1, the value of opaque

selling converges to 0 as 𝑐 gets large. However, since the convergence is on the order of
1√
𝑐
, the value of opaque selling goes to 0 at an extremely slow rate. Indeed, in Figures

3-1 and 3-2, one can see that the ordering and holding cost savings is significantly

above 0 for large values of 𝑐.

Next, we would like to understand how much of the relative savings are captured

with 𝑞 fraction of our customers being opaque compared to the ideal setting when all

customers are opaque (see parts (c) and (f) of Theorem 2). From the computational

results, one can see that there is a nonlinear relationship between 𝑞 and the relative

savings captured, and we aim to describe that behavior in this section.

To analyze the relative savings, we first state a lemma which establishes the rela-

tionship between 𝑅(𝑞, 𝑐) and 𝑀𝑡(𝑞).

89

Lemma 22. Fix 𝑞 and 𝑐. For any positive integer 𝑐 ≤ 𝑥 ≤ 2𝑐, P[𝑅(𝑞, 𝑐) ≤ 𝑥] =

P[𝑀𝑥(𝑞) ≥ 2𝑐 − 𝑥]. Equivalently, we have that for any positive integer 1 ≤ 𝑑 ≤ 𝑐,

P[2𝑐−𝑅(𝑞, 𝑐) ≥ 𝑑] = P[𝑀2𝑐−𝑑(𝑞) ≥ 𝑑].

In Theorem 5 below, we prove that for any 𝑞 > 0, the difference between the

expected replenishment time of fully opaque demand and the expected replenishment

time of fractional opaque demand can be uniformly bounded for any re-order level 𝑐.

More specifically, our depends solely on the value of 𝑞. This will help us provide a

simple lower bound for E[𝑅(𝑞, 𝑐)], as well as to estimate the relative savings of opaque

selling compared to an ideal situation where all customers purchase opaque products.

Proposition 5. For any 0 < 𝑞 ≤ 1, E[𝑅(1, 𝑐) − 𝑅(𝑞, 𝑐)] ≤ 1−𝑞
2𝑞

. Equivalently,

E[𝑅(𝑞, 𝑐)] ≥ 2𝑐− 1− 1−𝑞
2𝑞

.

Proof. Throughout the proof, we will fix some arbitrary 𝑞 > 0, and use 𝑀𝑥 to denote

𝑀𝑥(𝑞). Recall that 𝑅(1, 𝑐) = 2𝑐 − 1 with probability 1. By Lemma 22, and the fact

that 0 ≤ 𝑅(1, 𝑐)−𝑅(𝑞, 𝑐) ≤ 𝑐− 1,

E[𝑅(1, 𝑐)−𝑅(𝑞, 𝑐)] = −1 + E[2𝑐−𝑅(𝑞, 𝑐)]

= −1 +
𝑐∑︁

𝑑=1

P[2𝑐−𝑅(𝑞, 𝑐) ≥ 𝑑]

= −1 +
𝑐∑︁

𝑑=1

P[𝑀2𝑐−𝑑 ≥ 𝑑]. (3.4)

Now observe that P[𝑀𝑖+1 = 1|𝑀𝑖 = 0] = 1, P[𝑀𝑖+1 = 𝑀𝑖− 1|𝑀𝑖 > 0] = 1
2
(1 + 𝑞), and

P[𝑀𝑖+1 = 𝑀𝑖 + 1|𝑀𝑖 > 0] = 1
2
(1− 𝑞). Since 𝑀𝑖 is periodic, we will decompose it into

two aperiodic Markov chains 𝑁 and 𝑁 ′. We define the stochastic processes {𝑁𝑖 :=

𝑀2𝑖 : 𝑖 = 0, 1, ...} and {𝑁 ′
𝑖 := 𝑀2𝑖−1 : 𝑖 = 1, 2, ...}. In particular, {𝑁𝑖 : 𝑖 = 0, 1, ...} is

90

the Markov chain such that

P[𝑁𝑖+1 = 2|𝑁𝑖 = 0] =
1

2
(1− 𝑞),

P[𝑁𝑖+1 = 0|𝑁𝑖 = 0] =
1

2
(1 + 𝑞)

P[𝑁𝑖+1 = 𝑁𝑖 − 2|𝑁𝑖 > 0] =
(1 + 𝑞)2

4
,

P[𝑁𝑖+1 = 𝑁𝑖 + 2|𝑁𝑖 > 0] =
(1− 𝑞)2

4

P[𝑁𝑖+1 = 𝑁𝑖|𝑁𝑖 > 0] = 1− (1 + 𝑞)2

4
− (1− 𝑞)2

4
=

1− 𝑞2

2
.

We note that {𝑁𝑖 : 𝑖 = 0, 1, ...} is aperiodic, and has a steady state probability vector

𝜋 computed in Appendix C.2. We will use 𝑁∞ to denote the steady state distribution

of {𝑁𝑖; 𝑖 = 0, 1, 2, ...}.

Moreover, the transition probabilities of {𝑁𝑖 : 𝑖 = 0, 1, ...} preserves stochastic

dominance (a rigorous proof on this result can be found in Appendix C.1.6). More

specifically, given two random variables 𝐷 and 𝐷′ with non-negative integer supports

such that P[𝐷 ≥ 𝑘] ≥ P[𝐷′ ≥ 𝑘] for all integers 𝑘 ≥ 0, and random variables

𝑋 := (𝑁1|𝑁0
𝑑
= 𝐷) and 𝑌 := (𝑁1|𝑁0

𝑑
= 𝐷′), we must have that P[𝑋 ≥ 𝑘] ≥ P[𝑌 ≥ 𝑘].

Due to the preservation of stochastic dominance, then we have that 𝑁∞ =

(𝑁𝑖|𝑁0
𝑑
= 𝑁∞) stochastically dominates (𝑁𝑖|𝑁0 = 0). Therefore,

𝑐/2∑︁
𝑘=1

P[𝑀2𝑐−2𝑘 ≥ 2𝑘] =

𝑐/2∑︁
𝑘=1

P[𝑁𝑐−𝑘 ≥ 2𝑘|𝑁0 = 0]

≤
∞∑︁
𝑘=1

P[𝑁𝑐−𝑘 ≥ 2𝑘|𝑁0 = 0]

≤
∞∑︁
𝑘=1

P[𝑁∞ ≥ 2𝑘]

(since P[𝑁∞ ≥ 2𝑘] = P[𝑁∞ ≥ 2𝑘 − 1]) =
1

2

∞∑︁
𝑘=1

P[𝑁∞ ≥ 𝑘]

= E[𝑁∞]/2

=
(1− 𝑞)(1 + 𝑞)

4𝑞

91

where the last equality is derived by computing the expected state of the Markov

chain 𝑁𝑖 (shown in Appendix C.2).

Now consider the stochastic process {𝑁 ′
𝑖 := 𝑀2𝑖−1 : 𝑖 = 1, 2, ...}. Like {𝑁𝑖 : 𝑖 =

0, 1, ...}, {𝑁 ′
𝑖 := 𝑀2𝑖−1 : 𝑖 = 1, 2, ...} is aperiodic, positive recurrent and preserves

stochastic dominance. Let E[𝑁 ′
∞] be the steady state distribution of (𝑁 ′

𝑖), and we

have

𝑐/2∑︁
𝑘=1

P[𝑀2𝑐−2𝑘+1 ≥ 2𝑘 − 1] =

𝑐/2∑︁
𝑘=1

P[𝑁 ′
𝑐−𝑘+1 ≥ 2𝑘 − 1|𝑁 ′

1 = 1]

≤
∞∑︁
𝑘=1

P[𝑁 ′
𝑐−𝑘+1 ≥ 2𝑘 − 1|𝑁0 = 𝑁∞]

=
∞∑︁
𝑘=1

P[𝑁 ′
∞ ≥ 2𝑘 − 1]

(since P[𝑁 ′
∞ ≥ 2𝑘 + 1] = P[𝑁 ′

∞ ≥ 2𝑘]) =
1

2

∞∑︁
𝑘=2

P[𝑁 ′
∞ ≥ 𝑘] + P[𝑁 ′

∞ ≥ 1]

=
E[𝑁 ′

∞]

2
+

P[𝑁 ′
∞ ≥ 1]

2

=
1 + 𝑞2 + 2𝑞

4𝑞
,

Combining the inequalities on
∑︀𝑐/2

𝑘=1 P[𝑀2𝑐−2𝑘 ≥ 2𝑘] and
∑︀𝑐/2

𝑘=1 P[𝑀2𝑐−2𝑘+1 ≥ 2𝑘−

1], we have that
∑︀𝑐

𝑘=1 P[𝑀2𝑐−𝑘 ≥ 𝑘] ≤ (1−𝑞)(1+𝑞)
4𝑞

+ 1+𝑞2+2𝑞
4𝑞

= 1+𝑞
2𝑞

. And substituting

this inequality into Equation 3.4, we get E[𝑅(1, 𝑐) − 𝑅(𝑞, 𝑐)] =
∑︀𝑐

𝑘=1 P[𝑀2𝑐−𝑘 ≥

𝑘]− 1 ≤ 1−𝑞
2𝑞

.

Combining Theorems 4 and 5, we obtain

E[𝑅(𝑞, 𝑐)−𝑅(0, 𝑐)]

E[𝑅(1, 𝑐)−𝑅(0, 𝑐)]
≥ E[𝑅(1, 𝑐)−𝑅(0, 𝑐)]− (1− 𝑞)/2𝑞

E[𝑅(1, 𝑐)−𝑅(0, 𝑐)]

= 1− 1− 𝑞

2𝑞E[𝑅(1, 𝑐)−𝑅(0, 𝑐)]

→ 1−
√
𝜋(1− 𝑞)

4𝑞
√
𝑐

, as 𝑐→∞.

Therefore, by Theorem 2, if 𝑞 fraction of customers purchases the opaque product,

then the relative savings on both the ordering and holding cost compared to all

92

customers buying opaque product is at least 1 −
√
𝜋(1−𝑞)
4𝑞

√
𝑐

as 𝑐 is large. While the

expression is an asymptotic result, E[𝑅(𝑞,𝑐)−𝑅(0,𝑐)]
E[𝑅(1,𝑐)−𝑅(0,𝑐)]

in facts converges to 1−
√
𝜋(1−𝑞)
4𝑞

√
𝑐

very

quickly (see Figure 3-3). Therefore, 1 −
√
𝜋(1−𝑞)
4𝑞

√
𝑐

can be used as a formula to quickly

estimate the value of opaque selling, for 𝑐 > 20.

Figure 3-3: We compute the relative savings of the ordering cost when 𝑐 = 100 and
compare it to the lower bound found in Theorem 5.

The bound we derived above on the relative savings has several interesting fea-

tures. First, we observe that as 𝑐 gets very large, any non-negative value of opaque

selling gives us the same magnitude of savings as having all of the customers buying

opaque products. Moreover, the bound implies that the relative savings of opaque

selling level 𝑞 grows very quickly in 𝑞 since the negative part goes to 0 at a rate of 1
𝑞

which is very fast. This explains why only a small fraction of opaque sales is necessary

to achieve significant cost savings advantages. Therefore, these observations provide

us with an important insight: when the retailer has a high reorder level, a tiny frac-

tion of opaque customers will give him most of the possible cost savings. This implies

that a large discount 𝛿 may not be necessary, or the retailer may even use other means

such as reward points to incentivize some customer to purchase opaque products. In

the next section, we describe in detail how to estimate the demand based on 𝑝 and 𝛿.

93

3.4 Estimating Demand for Opaque Selling Strate-

gies

In the previous sections, we have focused our effort in understanding the cost savings

achieved from opaque selling. However, one also needs to be concerned about ensuring

that the overall opaque sales strategy is still profitable. As previous literature has

shown, one can actually use opaque products as a mechanism for price differentiation

and thus increase overall revenue. However, in the optimal price configuration under

the opaque strategy there may be both a revenue and cost decreases, revenue and cost

increases, or a revenue increase and cost decrease. Hence, it is essential to understand

how to estimate opaque demand in order to evaluate the overall revenue and profit

of opaque selling.

We will again focus on the scenario with two transparent products, namely product

1 and product 2, and an opaque product. If we sell products 1 and 2 at an arbitrarily

fixed price 𝑝 and the opaque product at price 𝑝 − 𝛿, then we would like to estimate

the arrival rates for each product, namely 𝜆1(𝑝, 𝛿), 𝜆2(𝑝, 𝛿), and 𝜆𝑜(𝑝, 𝛿). The opaque

fraction can then be computed as 𝑞(𝑝, 𝛿) = 𝜆𝑜(𝑝, 𝛿)/(𝜆1(𝑝, 𝛿) + 𝜆2(𝑝, 𝛿) + 𝜆𝑜(𝑝, 𝛿).

3.4.1 Customer Choice Model

We will now describe a choice model for how customers make decisions. Specifically,

we assume each customer has a (possibly different) valuation 𝑣1 for product 1 and 𝑣2

product 2, although the distribution of (𝑣1, 𝑣2) is unknown. The utility for purchasing

follows a traditional quasi-linear behavior. A customer gets a utility of 𝑣1 − 𝑝 for

buying product 1, 𝑣2 − 𝑝 for buying product 2, and 0 for no purchase. When an

opaque product is available, we assume that customers are risk-averse and will value

the opaque product at min(𝑣1, 𝑣2). If they purchase the opaque product, they receive

a utility of min(𝑣1, 𝑣2)−(𝑝−𝛿). Customers will purchase the product that provides the

highest nonnegative utility, or make no purchase at all if no such product exists. Our

assumption of risk-averseness may represent customer behavior well if the retailer

94

does not give any guarantee on which product will be provided. In this setting,

customers are likely to assume the worst when deciding whether or not to buy an

opaque product in order to make robust decisions. Even if the retailer does guarantee

an equal probability, many customers may be unwilling to trust the retailer.

In Figure 3-4, we provide a useful illustration of the domain of all possible valu-

ations that a customer may have, although the actual probability distribution over

this area is unknown. In the figure, we have named six regions of importance. For

example, region I refers to all customers with valuations in [𝑝− 𝛿, 𝑝]× [0, 𝑝− 𝛿].

Product 1 Valuation

Pr
od

uc
t 2

 V
al

ua
tio

n

p

p p- ±

p- ±
II

I

IV

III

V VI

0

Figure 3-4: This graph represent all possible valuations for customers. We have
divided up the first quadrant into different segments to be used in our analysis.

Under this choice model, we can exactly characterize the customers corresponding

to 𝜆1(𝑝, 𝛿), 𝜆2(𝑝, 𝛿), and 𝜆𝑜(𝑝, 𝛿) using Figure 3-4. Specifically, 𝜆1(𝑝, 𝛿) corresponds to

the customers in region III, 𝜆2(𝑝, 𝛿) corresponds to region IV, and 𝜆𝑜(𝑝, 𝛿) corresponds

to regions V and VI combined. To see this, first note that any customer who does not

value either product more than 𝑝−𝛿 will not purchase anything. Moreover, customers

in regions I and II will not purchase anything because the transparent products are

too expensive, and the opaque product will result in a negative utility due to their risk

averseness. However, customers who have utilities in [𝑝−𝛿, 𝑝]× [𝑝−𝛿, 𝑝] will purchase

the opaque product since they are guaranteed a nonnegative utility. The boundary

between regions III and V corresponds to the indifference between purchasing product

95

1 and the opaque product. Specifically, this indifference occurs when 𝑣1 > 𝑣2 and

𝑣1 − 𝑝 = 𝑣2 − (𝑝− 𝛿). A similar analysis holds for the boundary between regions IV

and VI.

Figure 3-4 can also be used to represent the demands of products 1 and 2 under a

traditional selling model without opaque products, which we will use in our estimate of

the demand rates under opaque selling. Namely, define 𝑑1(𝑝1, 𝑝2) and 𝑑2(𝑝1, 𝑝2) to be

the demand rates of products 1 and 2 when sold at prices 𝑝1 and 𝑝2. From the figure,

we can see that 𝑑1(𝑝, 𝑝 − 𝛿) corresponds to the customers in region III. Specifically,

all customers in region III prefer to buy product 1 over product 2 at prices 𝑝 and

𝑝− 𝛿, respectively, and the boundary between regions III and V is where consumers

are indifferent between product 1 and 2. Customers with 𝑣1 ≤ 𝑝 and 𝑣2 ≤ 𝑝− 𝛿 will

not purchase at all, and the remaining customers in regions II, IV, V, and VI will

purchase product 1. Table 3.1 summarize other useful demand characterizations at

different price points.

Prices (𝑝1, 𝑝2) 𝑑1(𝑝1, 𝑝2) 𝑑2(𝑝1, 𝑝2)
(𝑝, 𝑝− 𝛿) III II, IV, V, VI
(𝑝− 𝛿, 𝑝) I, III, V, VI IV

(𝑝− 𝛿, 𝑝− 𝛿) I, III, V II, IV, VI

Table 3.1: For each pair of prices (no opaque product), we describe the regions that
correspond to demand for products 1 and 2.

From Table 3.1, we can actually exactly compute 𝜆1(𝑝, 𝛿), 𝜆2(𝑝, 𝛿) and 𝜆𝑜(𝑝, 𝛿) if

we know the demand arrival rates, under the traditional selling model, at price points

(𝑝, 𝑝− 𝛿), (𝑝− 𝛿, 𝑝), and (𝑝− 𝛿, 𝑝− 𝛿). For example, 𝑑1(𝑝, 𝑝− 𝛿) corresponds exactly

to the region of customers represented by 𝜆1(𝑝, 𝛿). The complete characterization is

stated formally in the proposition below, which is trivial to prove using Table 3.1

and our previous description of the regions that correspond to 𝜆1(𝑝, 𝛿), 𝜆2(𝑝, 𝛿) and

𝜆𝑜(𝑝, 𝛿).

96

Proposition 6. Assume customers are risk averse and the demand functions 𝑑1(·, ·)

and 𝑑2(·, ·) are known at price points (𝑝, 𝑝− 𝛿), (𝑝− 𝛿, 𝑝), and (𝑝− 𝛿, 𝑝− 𝛿). Under

the opaque selling model with a discount 𝛿, the arrival rates are exactly

∙ 𝜆1(𝑝, 𝛿) = 𝑑1(𝑝, 𝑝− 𝛿)

∙ 𝜆2(𝑝, 𝛿) = 𝑑2(𝑝− 𝛿, 𝑝)

∙ 𝜆𝑜(𝑝, 𝛿) = 𝑑1(𝑝− 𝛿, 𝑝) + 𝑑2(𝑝, 𝑝− 𝛿)− 𝑑1(𝑝− 𝛿, 𝑝− 𝛿)− 𝑑2(𝑝− 𝛿, 𝑝− 𝛿).

Note that although we do not know the distribution over customer valuations,

knowing the demand arrival rates 𝑑1(·, ·) and 𝑑2(·, ·) at just 3 price points is enough to

estimate the arrival rates in the opaque selling model for a given 𝑝 and 𝛿. In practice,

these demand functions may be readily available in many settings, particularly when

retailers tend to experiment with pricing on a continual basis. Moreover, if 𝛿 is small,

then these demand rates may be easily estimated using the price and cross-price

elasticities of demand. We also note that Theorem 6 holds even if the valuations

for product 1 and 2 are not symmetric. In the next subsection, we will consider an

additive demand model and study the impact of opaque selling in this setting.

3.4.2 Profit, Revenue, and Costs under a

Linear Demand Model

In this subsection, we will implement our results from the previous sections to see how

opaque selling affects cost, revenue, and overall profit. In our experiments, we will

first find the optimal price, 𝑝*, for the traditional selling strategy. Then, we consider

two opaque sells strategies, Opaque1 and Opaque2. Opaque1 will keep the prices of

both transparent products at 𝑝*, and then optimize over 𝛿, which models the scenario

where the retailer cannot change the actual price of the original products. Opaque2

will optimize over both 𝑝 and 𝛿, and thus is a dominant strategy over Opaque1. Our

optimization procedure was to simply use a brute force line search over the entire

variable space.

97

We will model the demand using a linear demand model for substitutable goods

of the form 𝑑1(𝑝1, 𝑝2) = 𝑎− 𝑏𝑝1 + 𝑑𝑝2 and 𝑑2(𝑝1, 𝑝2) = 𝑎− 𝑏𝑝2 + 𝑑𝑝1. The ratio of 𝑑/𝑏

reflects the degree of substitutability, with a higher ratio implying a higher degree of

substitutability. We will let 𝑎 = 10, 𝑏 = 1, and 𝑑 = 0.5. (In Figure C-1 of Appendix

C.3, we report similar results for the same setup except with 𝑑 = 0.1.) For the supply

chain parameters, we set the reorder level 𝑐 = 50 and holding cost parameter 𝐻 = 1.

We test over different values of 𝐾 until a positive profit is no longer achievable. In

Figure 3-5, we report the profit, opaque levels, percent change in cost, and percent

change in revenue under these parameters.

Figure 3-5: The black lines correspond to the optimal traditional strategy, the blue
lines to the optimal Opaque1 strategy, and the green lines to the optimal Opaque2
strategy. The graphs correspond to the profits, opaque levels, percent change in cost,
and percent change in revenue.

From Figure 3-5, there are several interesting phenomena that occur. First, the

Opaque1 strategy tends to consistently provide a cost savings of about 2.5% while los-

ing just less than 0.5% in revenue. The opaque level 𝑞 remains roughly between 7-8%.

The actual profit percent improvement is increasing in 𝐾 since the profits of tradi-

tional selling are tending towards zero, while the Opaque1 profit remains above the

traditional profit. In fact, there are regimes where the traditional strategy makes no

98

profit while the opaque strategies are still profitable. Meanwhile the Opaque2 strat-

egy provides a lot more value, due to its ability to retain almost the same amount of

revenue, within 1.5%, but with less customers. The Opaque2 strategy is essentially

using price differentiation to capture more revenue from picky customers, less cus-

tomers overall, and a higher ratio of opaque customers. As the fixed ordering cost

increases, the ability to price differentiate is crucial to capture the smaller potential

set of customers. However, we should be aware of the fact that a linear demand model

may not accurately reflect consumer price sensitivity as prices increase. Nevertheless,

given appropriate demand models, a similar analysis can be performed by a retailer

to determine the best form of opaque sales strategies and the corresponding potential

improvements.

3.5 Comparison to a Dynamic Pricing Strategy

In this section, we will compare our opaque selling strategy to a particular class of dy-

namic pricing strategies. Most online retailers currently implement dynamic pricing

strategies for reasons such as seasonality effects, competition, and inventory position-

ing. However, one major challenge of dynamic pricing is the difficulty to compute

optimal policies, particularly in the presence of multiple products and inventory costs.

To the best of our knowledge, there are no standard methodologies or analytical re-

sults for these scenarios. In addition, dynamic pricing strategies are often susceptible

to strategic customers that may wait for their desired product to decrease in price

before purchasing. In this section, we show that our opaque selling strategy, under

some assumptions, can outperform a natural class of dynamic pricing policies for a

traditional selling model. Although our theoretical result has limitations, we believe

that it provides strong justification for an opaque selling strategy to be considered as

a potential alternative to dynamic pricing.

Remember that we define an opaque sales strategy as selling two products at

a price 𝑝, and an opaque product at price 𝑝 − 𝛿. We will refer to this policy as

OS(𝛿). Note that 𝑝 is assumed to be fixed, although 𝛿 may vary over time. Since

99

an optimal dynamic pricing is difficult to compute, we will instead of focus on the

following natural class of dynamic pricing policies. At any point in time, one of the

two products is sold at price 𝑝, and the other product is sold at a price 𝑝− 𝛿. We will

refer to this policy as DP(𝛿). Again, note that 𝑝 is assumed to be fixed, although 𝛿

may vary over time. This policy is motivated by that fact that many products have

a standard price, and occasionally go on sale. The major restriction that we have

placed is that at least one of the products is always at full price.

We will assume customers make decisions according to the same choice model as

in Section 3.4, and the definitions of 𝑑1(𝑝1, 𝑝2) and 𝑑2(𝑝1, 𝑝2) are also the same. We

also will define 𝑑(𝑝1, 𝑝2) = 𝑑1(𝑝1, 𝑝2) + 𝑑2(𝑝1, 𝑝2). In the next proposition, we show

that if there are no picky and cheap (𝑑(𝑝, 𝑝 − 𝛿) = 𝑑(𝑝 − 𝛿, 𝑝 − 𝛿)) customers, then

the profit of OS(𝛿) is greater than DP(𝛿). In fact, OS(𝛿) has a revenue and cost at

least as good as DP(𝛿). Our assumption of no picky and cheap customers essentially

means that once one product goes on a discount 𝛿, all cheap customers will buy and

no further customers are expected if the other product goes on a discount.

Proposition 7. Assume that 𝑑1(·, ·) = 𝑑2(·, ·) (symmetric demand) and 𝑑(𝑝, 𝑝− 𝛿) =

𝑑(𝑝 − 𝛿, 𝑝 − 𝛿) (no picky and cheap customers). Then the cost, revenue, and profit

rates of OS(𝛿) are at least as good as DP(𝛿). Moreover, the result is independent of

the inventory dynamics and policy.

Proof. Without loss of generality, assume that DP(𝛿) prices product 1 at 𝑝 and prod-

uct 2 at 𝑝− 𝛿. By definition, the demand rates for products 1 and 2 under DP(𝛿) is

equal to 𝑑1(𝑝, 𝑝− 𝛿) and 𝑑2(𝑝, 𝑝− 𝛿). The total demand rate is just 𝑑(𝑝, 𝑝− 𝛿).

Now consider OS(𝛿), the demands for the products is provided by Theorem 6.

Namely, the demand rate for product 1 is 𝑑1(𝑝, 𝑝 − 𝛿), 𝑑2(𝑝 − 𝛿, 𝑝) for product 2,

and 𝑑1(𝑝 − 𝛿, 𝑝) + 𝑑2(𝑝, 𝑝 − 𝛿) − 𝑑1(𝑝 − 𝛿, 𝑝 − 𝛿) − 𝑑2(𝑝 − 𝛿, 𝑝 − 𝛿) for the opaque

product. The total demand rate is then 𝑑(𝑝, 𝑝 − 𝛿) + 𝑑(𝑝, 𝑝 − 𝛿) − 𝑑(𝑝 − 𝛿, 𝑝 − 𝛿),

which is equivalent to 𝑑(𝑝, 𝑝− 𝛿) based on our assumptions. If a customer purchases

an opaque product, we will fulfill the order using product 2 (not necessarily optimal

strategy), and thus the effective demand rates for product 1 and 2 becomes exactly

100

𝑑1(𝑝, 𝑝− 𝛿) and 𝑑2(𝑝, 𝑝− 𝛿).

We have now shown that DP(𝛿) and OS(𝛿) have the exact same effective demand

rates for products 1 and 2. Therefore, one can easily see that the cost rate of these

systems is exactly equal. In fact, using a coupling argument for customer arrivals,

clearly the cost is the same regardless of the underlying inventory dynamics and policy

being used.

Finally, we can easily that the revenue rate of DP(𝛿) is 𝑝𝑑(𝑝, 𝑝− 𝛿)− 𝛿𝑑2(𝑝, 𝑝− 𝛿)

and the revenue rate of OS(𝛿) is 𝑝𝑑(𝑝, 𝑝−𝛿)−𝛿(𝑑1(𝑝−𝛿, 𝑝)+𝑑2(𝑝, 𝑝−𝛿)−𝑑1(𝑝−𝛿, 𝑝−

𝛿)−𝑑2(𝑝−𝛿, 𝑝−𝛿)). Thus, the OS(𝛿) policy makes 𝛿(𝑑(𝑝−𝛿, 𝑝−𝛿)−𝑑1(𝑝−𝛿, 𝑝)) more

revenue. This is directly due to the fact that only cheap customers get a discount in

OS(𝛿), where as all customers of product 2 get a discount in DP(𝛿). The profit rate

of OS(𝛿) is clearly better as well since it dominates on both revenue and cost.

This proposition implies opaque selling can outperform a particular class of dy-

namic pricing policies under a specific set of assumptions we have made. Specifically,

if one were restricted to a dynamic pricing policy as described by DP(𝛿), where 𝛿 is

chosen dynamically, then a strictly better policy would be to just use OS(𝛿), where

the 𝛿 values are chosen dynamically exactly the same way. Therefore, the class of

policies described by OS(·) dominate those of DP(·) under our assumptions. One

other advantage of OS(𝛿) policy is that it less immune to strategic customers who

have a strong preference. Specifically, in the DP policy, strategic customers can wait

until their preferred item is discounted, where as in the OS policy this could never

happen. Although a more thorough investigation is needed, we believe Theorem 7

provides strong justification to consider opaque selling as a potential alternative to

dynamic pricing.

3.6 Extensions

In this section, we describe several extensions to the basic model described in Section

3.2. We first consider the case where the demand for the products is not identical. We

then look at the scenario where there are more than two transparent products. Finally,

101

we develop a generalization of the opaque product called the 𝑘-opaque product that

allows the consumers to face less uncertainties. In all of these settings, we analyze

the impact on the supply chain cost savings, and our results are consistent with those

of the basic model in Section 3.3.

3.6.1 Asymmetric demand

Thus far we have assumed that the demand between the two products is identical.

Naturally, it is of interest to consider the scenario when one product has more demand

than the other. In this setting, the optimal fulfillment strategy for opaque products

is no longer obvious, and we must rely on a dynamic program to make the optimal

decisions. Let 𝑞1 be the fraction of customers who prefer product 1 over product 2.

With probability 𝑞, a customer will buy the opaque product. Furthermore, the reorder

level for the two products may not be identical, and we shall refer to them as 𝑐1 and

𝑐2. In this setting, we can use a dynamic program to compute the expected number of

customers that arrive between replenishments, and then use the same formulas from

Theorem 2 to compute the supply chain costs.

For a given 𝑞1 and 𝑞, let 𝐽(𝑥1, 𝑥2) denote the expected number of customers that

arrive between replenishments, under an optimal fulfillment policy. If 𝑥1 or 𝑥2 is 0,

then clearly 𝐽(𝑥1, 𝑥2) = 0. Otherwise,

𝐽(𝑥1, 𝑥2) = 1+𝑞1(1−𝑞)𝐽(𝑥1−1, 𝑥2)+(1−𝑞1)(1−𝑞)𝐽(𝑥1, 𝑥2−1)+𝑞max(𝐽(𝑥1−1, 𝑥2), 𝐽(𝑥1, 𝑥2−1)).

Using dynamic programming, we can compute all the values of 𝐽 by using backwards

induction on the total inventory remaining. In Figure 3-6, we look at 4 cases of

asymmetric demand and compute the ordering cost savings. Specifically, we look at

the cases where 𝑞1 = 0.6 and 𝑞1 = 0.8. The reorder levels are either 𝑐1 = 𝑐2 = 50 or

𝑐1 = 100𝑞1 and 𝑐2 = 100(1− 𝑞1). Our choices for the reorder levels are motivated by

the scenarios where the supplier wants to have equal reorder levels or wants them to

be in proportion to the imbalance in demand.

There are several interesting observations about Figure 3-6. First, the value of

102

Figure 3-6: We compute the ordering cost savings achieved when the demand is
imbalanced between the two products. The blue lines represent the scenario where
60% of customers prefer product 1, and the green line represents the scenario where
80% of customers prefer product 1. The solid lines are for the cases where the reorder
levels are proportional to the arrival rates, and the dashed lines are for the case where
the reorder levels are identical between the two products.

opaque selling gets larger as 𝑞1 gets larger, independent of the reorder levels. This

seems to suggest that the more imbalanced the demand may be, even if it is unknown

a priori, the more crucial opaque products will be for reducing supply chain costs.

Second, we can see that if the reorder levels are the same for products 1 and 2, this

results in a large imbalance in the system and thus opaque selling has more value in

this setting. When the reorder levels are proportional to the arrival rates, we observe

a behavior similar to the symmetric demand case, with savings on a similar order of

magnitude. Overall, this graph strongly implies that opaque products have a similar,

if not greater, impact when demand is imbalanced.

3.6.2 𝑁 transparent products

The model we proposed in this work can be easily extended to 𝑁 transparent products,

for any integer 𝑁 > 2. Under the setting where the retailer is selling 𝑁 transparent

products with identical demand and one opaque product, it is simple to check that

it is still optimal to fulfill an opaque product with the product of the highest on-

103

hand inventory at the time. Moreover, it is easy to check that similar to Theorem 2,

both the ordering and holding cost savings can be computed by evaluating E[𝑅(𝑞, 𝑐)],

the expected number of customers served between consecutive replenishments when

the fraction of opaque customers is 𝑞 and the reorder level is 𝑐. Therefore, given

any integers 𝑐 and 𝑁 > 2, we can numerically compute the cost savings of having 𝑞

fraction of customers purchasing the opaque product.

In Figure 3-7, we consider the scenario where there are 𝑁 products with identical

demand and evaluate the cost savings achieved for different values of 𝑐 and 𝑁 . We

focus only on the ordering cost savings, as the holding cost savings have similar

characteristics. From Figure 3-7, we observe that the value of opaque product selling

increases significantly as the number of products gets larger. Note that we focus on

the scenario when the opaque level is 10%, i.e. 𝑞 = 0.1, as this is a relatively practical

scenario. When there are 10 products, which is not unusual when products vary by

color, the savings can be up to 7% which is quite significant.

Ordering Cost Savings (N=2,3,5,10)g g (, , ,)

Ordering Cost Savings of p=0.1

7%

8%

gs 5%

6%

7%

N=2

Sa
vi

n

2%

3%

4% N=3
N=5
N=10

0%

1%

2%

C
0 20 40 60 80 100

Figure 3-7: We compute the ordering cost savings achieved for different values of 𝑁
and 𝑐 when 𝑞 = 0.1.

3.6.3 𝑘-opaque products

We now introduce a generalization of opaque products called a 𝑘-opaque product. If

a customer purchases a 𝑘-opaque product, then the customer can first choose 𝑘 out

of the 𝑁 products they are willing to receive, and then the retailer provides them

104

with one of the 𝑘 chosen products. Therefore, a 1-opaque product is equivalent to no

opaque selling, and an 𝑁 -opaque product is equivalent to a regular opaque product.

The choice of 𝑘 allows the supplier to give more choice to the customer (and therefore

a smaller discount), at the expense of having less flexibility for allocating opaque

products.

In Figure 3-8, we evaluate the impact of 𝑘-opaque products when 𝑁 = 5 and the

opaque level is 𝑞 = 0.1 for two different reorder levels corresponding to 𝑐 = 20 and

𝑐 = 100. For simplicity, we assume that all subsets of size 𝑘 are equally likely to be

chosen. Observe that the savings of 2-opaque products and 𝑁 -opaque products is only

different by about 1%. This implies that if we allow customers to have more choice,

then we can still capture most of the potential savings compared to the scenario where

customers get any one of the 𝑁 products at random. By offering 2-opaque products

to customers, this means we can reduce 𝛿 without sacrificing much of cost savings.

Ideally, a retailer could optimize over 𝑝, 𝛿, and 𝑘 when implementing an opaque sales

strategy.

0%1%2%3%4%5%6%7%

2 3 4 5

S=20S=100c = 20c = 100
k-opaque Product for Varying k

Figure 3-8: We compute the ordering cost savings when using 𝑘-opaque products for
different values of 𝑘 and two reorder levels 20 and 100.

3.6.4 Future Directions

We believe this work has provided strong evidence and tools for using opaque products

in an online retail environment. Consequently, there are a variety of potential research

105

directions to consider. For example, one may need to consider alternative inventory

policies than the ones used here, as well as how to compute optimal inventory policies

with opaque products. In addition, it would be of value to consider alternative ways to

estimate 𝑞, and even do real-life experimentation to observe the behavior of customers

with opaque products. Finally, it would interesting to generalize our theoretical

results when demand is asymmetric or there are more than two products.

106

Chapter 4

The Submodular Joint Replenishment

Problem

4.1 Introduction

Inventory models with deterministic and non-stationary demand have a long and rich

history in supply chain management, beginning with the seminal paper of Wagner

and Whitin [89]. One of the main features of these models is to capture the tradeoff

between holding costs and fixed setup costs. Setup costs typically represent, among

others, the use of machines, trucks, and/or laborers. When multiple item types are

ordered in the same period, some of the fixed costs are typically shared among the

different item types. In most inventory management models, the economies of scale

are traditionally captured by a joint setup cost structure, and the problem is generally

known as a joint replenishment problem (JRP). The JRP has been used in many

applications including inventory management, maintenance scheduling, logistics, and

transportation problems.

The most traditional JRP model uses the additive joint setup cost structure. In

this model, there is a joint setup cost if any item type is ordered, in addition to

an individual item setup cost for each item type ordered. The additive joint setup

cost structure is clearly very limited in some cases, yet there is a surprising lack of

results for models with more complex joint setup cost structures when demand is

107

non-stationary. This in stark contrast to Queyranne [72], Federgruen and Zheng [31],

and Teo and Bertsimas [84] which gave near-optimal algorithms for inventory models

with a very general setup cost structure but with constant demand. In this work,

we consider several generalizations of the deterministic, non-stationary joint replen-

ishment problem beyond the additive cost structure that capture many interesting

settings in practice. Since joint replenishment problems with non-stationary demand

are typically NP-hard, even for the additive model (Arkin et al. [1]), it is computa-

tionally intractable to find optimal solutions quickly. However, our algorithms can

efficiently find solutions that are provably close to optimal, and in the worst case are

guaranteed to be within a fixed constant factor of the optimal cost.

In the models studied in this work, there are multiple item types, each with a

sequence of demands over a discrete time horizon of finitely many periods. That is,

there is a specified demand quantity for each item type due in each time period. Each

demand must be completely satisfied by an order at or prior to its due date period,

which means neither backlogging nor lost sales are allowed. The cost of satisfying the

demand is composed of fixed setup costs and holding costs. The joint setup cost for

ordering in any time period is a function of the specific subset of item types ordered.

The setup cost function we study satisfies two natural properties known as mono-

tonicity and submodularity. The monotonicity property simply means that as more

item types are ordered, the total setup cost increases. The submodularity property

captures the economies of scale in ordering more item types, i.e., the marginal cost of

adding any specific item type to a given order decreases as the given order increases.

The holding cost for each demand point depends on the item type and the length

of time the inventory was held. We assume no capacity constraints and stationary

per unit variable costs. One can easily show that zero-inventory ordering policies are

optimal in this model, and thus every demand of a given item type is satisfied by

the latest order of that item prior to its due date period. The goal is to satisfy all

the demands on time by a sequence of orders that minimizes the total setup costs

plus holding costs. We refer to this problem as the submodular joint replenishment

problem.

108

For the submodular JRP, we show that a simple greedy algorithm achieves an

approximation ratio that is logarithmic in the total number of demands. In addition,

we also describe an integer programming formulation whose linear programming re-

laxation can be solved efficiently and has special structure for the optimal solution.

We then consider three special cases of the submodular JRP with non-stationary de-

mand that capture a wide range of applications. These cases are called the tree JRP,

laminar JRP, and the cardinality JRP, none of which have any clear mathematical

relation with the other.

In the tree JRP case, we are given a rooted tree where every node represents a

process that incurs a setup cost, and the leaves of the tree represent the item types.

The joint setup cost of ordering any subset of item types is the cost of all the nodes on

the paths from the root to the leaves corresponding to the item types being ordered.

The tree JRP model captures situations where each item type requires a chain of

processes to be performed, and several of those processes are shared by other item

types. One application of the tree JRP is in maintenance scheduling problems (Levi

et al. [59]) for aircraft engines. Each module of the engine corresponds to a node in the

tree, and to get to a certain engine part requires removing all necessary modules. The

tree with only a root and leaves is identical to the additive joint setup cost structure,

and thus this problem is also NP-hard. We provide an approximation algorithm that

is no more than three times the optimal offline cost. This algorithm is similar in spirit

to Levi et al. [58], which only considered the additive JRP. Specifically, the algorithm

is based on solving a linear program, and then successively rounding the variables

corresponding to the nodes in the tree in a particular fashion. Specifically, we start

by opening orders containing the root process, and work our way down the tree using

a breadth-first search. For each node, we round the corresponding variables to a time

where the parent node has been ordered, thus ensuring that all necessary processes

for an item type are accounted for when it is ordered.

In the laminar JRP case, the submodular cost function is specified through a

laminar family of subsets of item types, each with an associated cost. The family

can be modeled as a tree where the nodes are the subsets, and the children of each

109

node must partition the corresponding subset of item types belonging to that node.

This captures situations where there are machines (or laborers) with varying degrees

of specialization. Any two machines have the property that either they cannot make

any of the same item types, or that one machine has strictly more capabilities than

the other. The joint setup cost for ordering a set of item types is simply the setup

cost of the cheapest machine that is capable of producing all the item types being

ordered. In other words, the cost of ordering a subset of items is equal to the cost

associated with the node in the tree corresponding to the minimal subset that includes

the ordered items. For the laminar JRP, we are surprisingly able to solve the problem

to optimality with an efficient dynamic program, which means that this variant is not

NP-hard. The subproblems of the dynamic program are finding the optimal cost of

serving the demands in a specific interval, given that a specific machine will be in

use at the beginning of the interval. The proof of correctness relies on our ability to

decompose the item types into groups based on which machines they can be processed

on.

Finally, the cardinality JRP is the case where the joint setup cost function has the

property that the cost of ordering a subset of items types is simply a function of the

cardinality of the subset being ordered. The submodularity in this case implies that

the setup cost is concave in the cardinality of the set of item types being ordered. A

natural application of this model is when all the item types are very similar, but vary

in only one aspect such as color or size. Although the cardinality JRP is NP-hard,

which was shown indirectly in Arkin et al. [1], we provide an efficient algorithm with

a worst-case approximation ratio of five. This algorithm is based on an innovative

iterative rounding procedure that uses the variables from a linear relaxation of a novel

integer programming formulation of the cardinality JRP. Our algorithm carefully

builds up orders based on their size, while ensuring that the cost of any particular

order can be paid for using the primal objective costs. The holding costs are accounted

for using a property of the respective dual linear program.

110

4.1.1 Literature Review

Joint replenishment problems are infamous for being intractable, and thus have been

typically studied via the notion of approximation algorithms. An approximation al-

gorithm is an algorithm that finds a feasible solution efficiently, and guarantees that

its cost is always within a certain factor of the respective optimal cost. This factor

is called the approximation ratio. When demand is assumed to be stationary and

continuous for the additive JRP, Schulz and Telha [76] showed that this problem is

as hard as integer factorization. For this problem, Roundy [75] showed that “power-

of-two” policies have approximation ratios of 1.06 and 1.02, depending on whether

the base planning period is fixed or not. In Teo and Bertsimas [84], an improved ap-

proximation ratio of 1.04 was obtained for the additive JRP with fixed base planning

periods. When the time horizon is finite, Segev [77] and Nonner and Sviridenko [67]

provide quasi-polynomial and efficient polynomial time approximation schemes, re-

spectively. In Federgruen and Zheng [31], the results of Roundy [75] were generalized

for the submodular JRP with constant demand. Other stationary inventory models

with submodular costs were considered in Federgruen et al. [33], Herer and Roundy

[44], and Viswanathan [88].

The literature for the submodular JRP with non-stationary demand has focused

primarily on the additive joint setup cost structure, which was shown to be NP-

hard in Arkin et al. [1]. Nonner and Souza [66] further showed that this problem is

APX-hard when holding costs are nonlinear with respect to time, which is the case

for the models we consider. Several heuristics for the non-stationary additive JRP

have been proposed with varying degrees of theoretical performance guarantees in

Veinott Jr [87], Zangwill [95], Kao [52], Joneja [51], Federgruen and Tzur [30], Levi

et al. [57], and Stauffer et al. [82]. The current best approximation algorithms for the

additive JRP with non-stationary demand are due to Levi et al. [58], which has an

approximation ratio of 1.80, and Bienkowski et al. [10] which has an approximation

ratio of 1.791. Becchetti et al. [6] and Khanna et al. [54] have considered special cases

of the tree JRP with assumptions on the holding cost structure. Chan et al. [19] show

111

that zero-inventory policies are near-optimal for joint replenishment problems with

piecewise linear costs, however their conditions do not imply submodularity.

In Section 4.2, we give a precise mathematical description of the submodular JRP

along with a greedy approximation algorithm and an integer programming formula-

tion. We also explore some properties regarding the linear programming relaxation.

We then consider the tree, laminar, and cardinality JRPs in Sections 4.3, 4.4, and 4.5.

Finally, we offer some concluding remarks and possible research directions in Section

4.6.

4.2 Submodular JRP

4.2.1 Model

In this section, we describe the submodular joint replenishment problem. There are

𝑁 item types in total denoted by the set 𝒩 := {1, . . . , 𝑁}. For each item type 𝑖 ∈ 𝒩 ,

there are demands that need to be satisfied over a planning horizon of 𝑇 periods. The

demand for each item type 𝑖 ∈ 𝒩 and time period 𝑡 = 1, . . . , 𝑇 is denoted by 𝑑𝑖𝑡 ≥ 0

. Each demand point (𝑖, 𝑡) with positive demand needs to be served by an order of

item type 𝑖 placed no later than 𝑡. The two components to the total cost incurred

are the fixed ordering cost and holding cost.

We let 𝐾(𝑆) denote the joint setup cost of ordering the set of item types in 𝑆 in

any given period. 𝐾(·) is assumed to be nonnegative, non-decreasing and submodular.

The non-decreasing assumption means that for every 𝑆1 ⊆ 𝑆2 ⊆ 𝒩 , 𝐾(𝑆1) ≤ 𝐾(𝑆2).

The submodularity assumption means that for every set 𝑆1, 𝑆2 ⊆ 𝒩 , 𝐾(𝑆1)+𝐾(𝑆2) ≥

𝐾(𝑆1∪𝑆2)+𝐾(𝑆1∩𝑆2). This definition can be shown to be equivalent to the following:

for every set 𝑆1 ⊆ 𝑆2 ⊆ 𝒩 and any item type 𝑖 ∈ 𝒩 , 𝐾(𝑆1 ∪ {𝑖}) − 𝐾(𝑆1) ≥

𝐾(𝑆2 ∪ {𝑖})−𝐾(𝑆2). This alternative definition more clearly conveys the economies

of scale interpretation of submodularity, i.e., that the marginal cost of adding an

item type to a given order is decreasing as more item types are included in the given

order. In the traditional additive JRP, the joint setup cost function is defined as

112

𝐾(𝑆) := 𝐾0 +
∑︀

𝑖∈𝑆 𝐾𝑖. It is easy to see that this satisfies the monotonicity and

submodularity properties, hence the additive JRP is a special case of the submodular

JRP.

We let ℎ𝑖
𝑠𝑡 be the per unit holding cost of item 𝑖 from period 𝑠 to 𝑡. We assume

ℎ𝑖
𝑠𝑡 is nonnegative and non-increasing in 𝑠 for a fixed 𝑖 and 𝑡. For convenience, we

also denote the cost of holding inventory for demand (𝑖, 𝑡) from an order in period 𝑠

as 𝐻 𝑖
𝑠𝑡 := 𝑑𝑖𝑡ℎ

𝑖
𝑠𝑡.

In Theorem 14, we provide an 𝑂(log(𝑁𝑇))-approximation algorithm to the sub-

modular JRP. The proof relies on framing it as an example of the set cover problem,

which is similar in spirit to a reduction in Svitkina and Tardos [83] for a facility lo-

cation type problem. [78] have recently been able to show a 𝑂(log𝑁)-approximation

algorithm for the same problem.

Theorem 14. There exists an 𝑂(log(𝑁𝑇))-approximation algorithm for the submod-

ular JRP by using a greedy algorithm for the set cover problem.

Proof. We will reduce the submodular JRP to the set cover problem. In the set cover

problem, there are 𝑚 objects that need to be covered, and 𝑛 subsets of those objects

that each have a different cost. The goal is to cover the 𝑚 objects using the cheapest

collection of available subsets. Chvatal [24] showed that a simple greedy algorithm

is an 𝑂(log𝑚)-approximation algorithm to this problem. The algorithm works by

iteratively adding the subset who has the smallest ratio of its cost over the number

of uncovered objects in the subset.

To model the submodular JRP as a set cover problem, we let each demand point be

an object, which means there are 𝑁𝑇 in total. Let 𝒟 be the set of all demand points.

Then the possible subsets we may use in the cover is denoted by 𝒰 := {1, . . . , 𝑇}×2𝒟.

The cost of a subset (𝑡, 𝑈) ∈ 𝒰 , denoted by 𝑐(𝑡, 𝑈), is simply the cost of serving the

demand points in 𝑈 from time 𝑡 in the submodular JRP. More specifically, 𝑐(𝑡, 𝑈) =∞

if 𝑈 contains a demand point with due date before 𝑡. Otherwise, if we let 𝐼(𝑈) denote

the subset of item types in 𝑈 , then 𝑐(𝑡, 𝑈) = 𝐾(𝐼(𝑈)) +
∑︀

(𝑖,𝑢)∈𝑈 𝐻 𝑖
𝑡𝑢. Notice that

𝑐(𝑡, 𝑈) is a submodular function in 𝑈 for a fixed 𝑡 due to the submodularity of 𝐾(·)

113

and the fact that the holding costs are separable.

Now we need to show that we can find a set (𝑡, 𝑈) ∈ 𝒰 whose ratio of 𝑐(𝑡, 𝑈)

over the number of uncovered demand points is smallest. Since the number of such

possible sets is exponential, we cannot enumerate and thus need to define an efficient

procedure. To find the set to add to the cover, we first find the set who has the

smallest ratio for each time period 𝑡, and then choose the cheapest among them.

Let 𝑤(𝑖,𝑡) = 1 if demand point (𝑖, 𝑡) is still uncovered and let it be 0 otherwise. For

a specific time period 𝑡, we aim to find a set 𝑈 ∈ 2𝒟 that minimizes 𝑐(𝑡,𝑈)∑︀
(𝑖,𝑡)∈𝑈 𝑤(𝑖,𝑡)

.

This problem is equivalent to finding the minimum 𝛼, via binary search, for which

there exists a set 𝑈 ∈ 2𝒟 such that 𝑐(𝑡,𝑈)∑︀
(𝑖,𝑡)∈𝑈 𝑤(𝑖,𝑡)

≤ 𝛼. Equivalently, we can write this

inequality as 𝑐(𝑡, 𝑈)− 𝛼
∑︀

(𝑖,𝑡)∈𝑈 𝑤(𝑖,𝑡) ≤ 0. Since the left hand side of this expression

is clearly submodular, we can find a set 𝑈 that satisfies this inequality for a given

𝛼 by solving a submodular minimization problem, which is known to be efficiently

solvable ([61]). Therefore, we have now proved the main theorem.

4.2.2 Integer Programming Formulation

The following is an integer programming formulation of the submodular JRP. The

binary variable 𝑦𝑆𝑠 is 1 if the subset of item types 𝑆 is ordered in period 𝑠 and is 0

otherwise. The binary variable 𝑥𝑖
𝑠𝑡 is 1 if demand (𝑖, 𝑡) is satisfied using an order from

period 𝑠 and is 0 otherwise.

minimize
∑︁
𝑆⊆𝒩

𝑇∑︁
𝑠=1

𝐾(𝑆)𝑦𝑆𝑠 +
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝐻 𝑖
𝑠𝑡𝑥

𝑖
𝑠𝑡 (IP)

subject to
𝑡∑︁

𝑠=1

𝑥𝑖
𝑠𝑡 = 1, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇 (4.1)

𝑥𝑖
𝑠𝑡 ≤

∑︁
𝑆:𝑖∈𝑆⊆𝒩

𝑦𝑆𝑠 , 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . 𝑡 (4.2)

𝑥𝑖
𝑠𝑡, 𝑦

𝑆
𝑠 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . 𝑡, 𝑆 ⊆ 𝒩

We first argue that this is indeed a valid formulation for the submodular JRP.

114

Constraint (4.1) ensures that each demand (𝑖, 𝑡) is completely served by an order at

some time 𝑠 ≤ 𝑡. Constraint (4.2) ensures that if any demand (𝑖, 𝑡) is served by an

order at time 𝑠, then there must be a subset ordered at time 𝑠 that includes 𝑖. By

submodularity, the optimal solution will only set at most one 𝑦 variable to 1 in any

time period 𝑠. Next we get the natural LP relaxation of (IP) by relaxing the integer

constraints on the variables.

minimize
∑︁
𝑆⊆𝒩

𝑇∑︁
𝑠=1

𝐾(𝑆)𝑦𝑆𝑠 +
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝐻 𝑖
𝑠𝑡𝑥

𝑖
𝑠𝑡 (P)

subject to
𝑡∑︁

𝑠=1

𝑥𝑖
𝑠𝑡 = 1, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇 (4.3)

𝑥𝑖
𝑠𝑡 ≤

∑︁
𝑆:𝑖∈𝑆⊆𝒩

𝑦𝑆𝑠 , 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . 𝑡 (4.4)

𝑥𝑖
𝑠𝑡, 𝑦

𝑆
𝑠 ≥ 0, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . 𝑡, 𝑆 ⊆ 𝒩

The following lemma shows that there exists an optimal solution to (P), such that

in any given time period, the set of 𝑦 variables that are positive have a very special

structure. This lemma will be used later to provide better formulations for the special

cases of the submodular JRP that we consider.

Lemma 23. There exists an optimal solution (𝑥, 𝑦) to (P) such that for any given

period 𝑡 and any two subsets 𝑅 ⊆ 𝒩 and 𝑆 ⊆ 𝒩 , if 𝑦𝑅𝑡 > 0 and 𝑦𝑆𝑡 > 0 then they are

nested, i.e., either 𝑅 ⊆ 𝑆 or 𝑆 ⊆ 𝑅.

Proof. Given an arbitrary optimal solution (�̂�, 𝑦) to (P), we will construct an another

optimal solution (𝑥, 𝑦) with the desired property. Fix a time period 𝑡. Let 𝑍𝑖
𝑡 :=∑︀

𝑆:𝑖∈𝑆 𝑦
𝑆
𝑡 be the sum of the fractional number of sets ordered in period 𝑡 that contains

item type 𝑖. Now consider the following auxiliary optimization problem which has a

variable 𝑟𝑆𝑡 for every set 𝑆 ⊆ 𝒩 .

115

minimize
∑︁
𝑆⊆𝒩

𝐾(𝑆)𝑟𝑆𝑡 (AUX-t)

subject to
∑︁
𝑆:𝑖∈𝑆

𝑟𝑆𝑡 ≥ 𝑍𝑖
𝑡 , 𝑖 = 1, . . . , 𝑁 (4.5)

𝑟𝑆𝑡 ≥ 0 𝑆 ⊆ 𝒩

Recall 𝐾(𝑆) is the cost of ordering the item types in 𝑆 and thus (AUX-t) exactly

captures the cheapest way for ordering items so that each item 𝑖 is ordered at least

𝑍𝑖
𝑡 . Since 𝐾(𝑆) is a submodular function, then (AUX-t) is the dual of polymatroid

where the greedy algorithm finds an optimal solution (see Bertsimas and Weismantel

[7]). Specifically, assume without loss of generality that the items are indexed such

that 𝑍1
𝑡 ≥ 𝑍2

𝑡 ≥ . . . ≥ 𝑍𝑁
𝑡 and let 𝑆(𝑖) := {1, . . . , 𝑖}. Then an optimal solution to

(AUX-t) is given by 𝑟
𝑆(𝑁)
𝑡 = 𝑍𝑁

𝑡 , and 𝑟
𝑆(𝑖)
𝑡 = 𝑍𝑖

𝑡 − 𝑍𝑖+1
𝑡 for 𝑖 = 1, . . . , 𝑁 − 1, and

𝑟𝑆𝑡 = 0 for all other 𝑆. Note that by construction 𝑆(𝑖) has the desired nested property.

Thus, setting 𝑥 = �̂� and 𝑦𝑆𝑡 = 𝑟𝑆𝑡 , where 𝑟𝑆𝑡 is the optimal solution to (AUX-t), gives

a feasible solution to (P) where every demand is served in exactly the same manner.

Thus, the holding costs are identical for the two solutions, and the setup costs of

(𝑥, 𝑦) are no more than that of (�̂�, 𝑦) since each 𝑦𝑆𝑡 gives a feasible solution to (AUX-

t). Therefore, (𝑥, 𝑦) is also an optimal solution, and in addition satisfies the desired

nested property.

Now we consider the dual program of (P). Let 𝑏𝑖𝑡 and 𝑙𝑖𝑠𝑡 be the dual variable

corresponding to first and second set of constraints in (P), respectively, then the dual

program of (P) is:

116

maximize
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑏𝑖𝑡 (D)

subject to 𝑏𝑖𝑡 ≤ 𝐻 𝑖
𝑠𝑡 + 𝑙𝑖𝑠𝑡, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . , 𝑡 (4.6)∑︁

𝑖∈𝑆

𝑇∑︁
𝑡=𝑠

𝑙𝑖𝑠𝑡 ≤ 𝐾(𝑆), 𝑠 = 1, . . . , 𝑇, 𝑆 ⊆ {1, . . . , 𝑁} (4.7)

𝑙𝑖𝑠𝑡 ≥ 0 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . , 𝑡

Note that (P) contains an exponential number of variables and (D) contains an

exponential number of constraints. One can solve the dual (and therefore the pri-

mal) using the ellipsoid method, since there is an efficient separation oracle by using

submodular function minimization to find violated constraints. However, we focus

on special cases of the submodular JRP that have polynomial-size LP relaxations.

This also allows us to give very efficient LP-based approximation algorithms for these

cases.

4.3 Tree Joint Replenishment Problem

In this section, we consider the tree JRP, where the joint setup cost structure is

represented by a tree 𝒯 with a root 𝑟. Specifically, there is a fixed cost 𝐾𝑗 associated

for each node 𝑗 in the tree, and each item type 𝑖 corresponds to a leaf in the tree.

For every node 𝑗 ∈ 𝒯 , let 𝑝𝑎𝑡ℎ(𝑗) denote the unique path from node 𝑗 to the root

of the tree. The cost of ordering a subset of item types 𝑆 ∈ 𝒩 is then equal to∑︀
𝑗∈∪𝑖∈𝑆𝑝𝑎𝑡ℎ(𝑖)

𝐾𝑗, i.e., the cost of all nodes that belong to the paths from 𝑟 to the

leaves corresponding to the set 𝑆. (See Figure 4-1 for an example.)

Note that this captures the additive JRP as a special case since the additive

joint setup cost structure can be viewed as a tree. Specifically, there is a root node

connected to 𝑁 leaves, one for each item. The cost of the root node is 𝐾0, the

joint setup cost, and the cost of each leaf 𝑖 corresponds to the item setup cost 𝐾𝑖.

In the remainder of this section, we advance the ideas of Levi et al. [58] to give a

117

r

4

1

2 3

5

4

1

3

11

7

8

r

1 2 3 4 7 12

6

5 1

Figure 4-1: These two trees represent two examples of the tree joint setup cost struc-
ture. The leaves are labeled according to the item type they represent and the root
node is labeled with an 𝑟. The number next to each node denotes the cost of that
node. The left tree is the special case of an additive joint setup cost structure. In the
right tree, the cost of ordering item types 1 and 3 is 5+3+4+11+7 = 30.

3-approximation algorithm for the tree-JRP via LP rounding.

The following is the natural LP relaxation of an IP formulation for the tree JRP.

We use the binary variable 𝑦𝑗𝑠 to indicate if the node 𝑗 is ordered in period 𝑠, and

binary variable 𝑥𝑖
𝑠𝑡 to indicate whether the demand 𝑑𝑖𝑡 was served from period 𝑠.

minimize
∑︁
𝑗∈𝒯

𝑇∑︁
𝑠=1

𝐾𝑗𝑦
𝑗
𝑠 +

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝐻 𝑖
𝑠𝑡𝑥

𝑖
𝑠𝑡 (P-T)

subject to
𝑡∑︁

𝑠=1

𝑥𝑖
𝑠𝑡 = 1, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇 (4.8)

𝑥𝑖
𝑠𝑡 ≤ 𝑦𝑗𝑠, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . 𝑡, 𝑗 ∈ 𝑝𝑎𝑡ℎ(𝑖) (4.9)

𝑥𝑖
𝑠𝑡, 𝑦

𝑗
𝑠 ≥ 0, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . 𝑡, 𝑗 ∈ 𝒯

The correctness of (P-T), and in particular for constraint (4.9) follows from the

fact that in order to place an order for item 𝑖, one has to pay
∑︀

𝑗∈𝑝𝑎𝑡ℎ(𝑖) 𝐾𝑗. Next, we

show that (P-T) is just as strong as (P), the LP relaxation for the submodular JRP.

We denote 𝑍𝑃𝑇 and 𝑍𝑃 as the optimal values of (P-T) and (P), respectively.

Lemma 24. For the tree JRP, (P-T) is equivalent to (P), i.e., 𝑍𝑃𝑇 = 𝑍𝑃 .

Proof. First we show that we can convert an optimal solution (𝑥, 𝑦) of (P-T) to a

feasible solution (�̂�, 𝑦) of (P). We start by observing some properties about the

118

optimal solution of (P-T).

1. For each node 𝑗 in the tree that is not a leaf, let 𝐶(𝑗) be the set of children of

𝑗. Then for each time period 𝑠, we know 𝑦𝑗𝑠 = max𝑘∈𝐶(𝑗) 𝑦
𝑘
𝑠 or otherwise we can

decrease 𝑦𝑗𝑠 without affecting feasibility.

2. Consider any nodes 𝑗 and 𝑗′ such that 𝑗′ ∈ 𝑝𝑎𝑡ℎ(𝑗). Then for each time period

𝑠, we know that 𝑦𝑗𝑠 ≤ 𝑦𝑗
′

𝑠 . This follows directly from the previous fact.

3. For any time period 𝑠 and any node 𝑖 that is a leaf in the tree (i.e., 𝑖 corresponds

to an actual item type), we know 𝑦𝑖𝑠 = max𝑡 𝑥
𝑖
𝑠𝑡 since otherwise we can decrease

the value of 𝑦𝑖𝑠 without affecting feasibility.

Given the properties above, we can determine the set of orders that are induced by

the optimal solution (𝑥, 𝑦). In a particular time period 𝑠, let 𝜎(·) be an ordering of the

items {1, . . . , 𝑁} such that 𝑦𝜎(1)𝑠 ≥ 𝑦
𝜎(2)
𝑠 ≥ . . . ≥ 𝑦

𝜎(𝑁)
𝑠 . Then the sets that are ordered

in period 𝑠 are of the form 𝑆(𝑖), 𝑖 = 1, . . . , 𝑁 , where 𝑆(𝑖) = {𝜎(1), 𝜎(2), . . . , 𝜎(𝑖)}.

Notice that as in Lemma 23, the sets ordered here are nested, i.e., 𝑆(1) ⊂ 𝑆(2) ⊂

. . . ⊂ 𝑆(𝑁).

Now we are ready to describe the conversion of an optimal solution (𝑥, 𝑦) of (P-T)

to a feasible solution (�̂�, 𝑦) of (𝑃). Let �̂� = 𝑥 and let 𝑦𝑆𝑠 = 0 except for 𝑦𝑆(𝑁)
𝑠 = 𝑦

𝜎(𝑁)
𝑠 ,

𝑦
𝑆(𝑖)
𝑠 = 𝑦

𝜎(𝑖)
𝑠 − 𝑦

𝜎(𝑖+1)
𝑠 for 𝑖 = 1, . . . , 𝑁 − 1. Notice by construction the item type

𝜎(𝑖) is in set 𝑆(𝑖), . . . , 𝑆(𝑁) and using a telescoping sum it is easy to verify that∑︀
𝑆:𝜎(𝑖)∈𝑆 𝑦

𝑆
𝑠 = 𝑦

𝜎(𝑖)
𝑠 . Hence constraint (4.4) in (𝑃) is satisfied due to constraint (4.9)

of (P-T). The proof is completed by noticing that the cost of (�̂�, 𝑦) in (P) is the same

as (𝑥, 𝑦) in (P-T) by construction.

For the converse, we describe how to convert an optimal solution (�̂�, 𝑦) of (P) to

a feasible solution (𝑥, 𝑦) of (P-T). To construct a feasible solution for (P-T), we first

let 𝑥 = �̂�. By Lemma 23, for every time period 𝑠 we may assume that the subsets 𝑆

where 𝑦𝑆𝑠 > 0 are nested. Without loss of generality, we index the item types so that

all sets ordered at time 𝑠 are of the form 𝑆(𝑖) := {1, . . . , 𝑖} for 𝑖 = 1, . . . , 𝑁 . Now for

each leaf node 𝑖 (which corresponds to an item type), we let 𝑦𝑖𝑠 =
∑︀𝑁

𝑘=𝑖 𝑦
𝑆(𝑘)
𝑠 , which

119

are all the subsets ordered in (P) that include item 𝑖. Now, for each node 𝑗 that is

not a leaf, let 𝐶(𝑗) be the set of children of 𝑗. Then set 𝑦𝑗𝑠 = max𝑘∈𝐶(𝑗) 𝑦
𝑘
𝑠 . It is easy

to check (𝑥, 𝑦) is feasible for (P-T) and that the corresponding cost is the same as

the cost of (�̂�, 𝑦) for (P). This completes the proof since we have demonstrated that

there is a one-to-one mapping between (P) and (P-T).

Next we describe the dual of (P-T), which will be used in the analysis of our LP

rounding algorithm. Let 𝑏𝑖𝑡 and 𝑙𝑖𝑗𝑠𝑡 be the dual variables corresponding to constraints

(4.8) and (4.9) in (P-T) respectively. The dual of the (P-T) is then:

maximize
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑏𝑖𝑡 (D-T)

subject to 𝑏𝑖𝑡 ≤ 𝐻 𝑖
𝑠𝑡 +

∑︁
𝑗∈𝑝𝑎𝑡ℎ(𝑖)

𝑙𝑖𝑗𝑠𝑡, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . , 𝑡 (4.10)

∑︁
𝑖:𝑗∈𝑝𝑎𝑡ℎ(𝑖)

𝑇∑︁
𝑡=𝑠

𝑙𝑖𝑗𝑠𝑡 ≤ 𝐾𝑗, 𝑠 = 1, . . . , 𝑇, 𝑗 ∈ 𝒯 (4.11)

𝑙𝑖𝑗𝑠𝑡 ≥ 0, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . , 𝑡, 𝑗 ∈ 𝒯

4.3.1 LP Rounding Algorithm

We will show how to round the optimal solution to (P-T), denoted by (𝑥, 𝑦) to a

feasible solution to the tree JRP problem with cost at most 3 times the optimal value

of (P-T), thus obtaining a 3-approximation algorithm.

Our rounding procedure considers each node in the rooted tree one at a time,

starting at the root node. The nodes can be processed in any order, as long as node 𝑗

is processed last among all nodes in 𝑝𝑎𝑡ℎ(𝑗) (i.e., the nodes on the path from 𝑗 to the

root). Hence one can use Breadth First Search (BFS) or Depth First Search (DFS)

starting from the root node.

We first describe the processing of the root node, where we decide in which time

period to place orders. The rounding procedure is based on the values of 𝑦01, . . . , 𝑦0𝑇 ,

which are the variables corresponding to fractional orders of the root node in (P-

120

T). We place an order of the root node in period 𝑠 if (
∑︀𝑠−1

𝑡=1 𝑦
0
𝑡 ,
∑︀𝑠

𝑡=1 𝑦
0
𝑡] contains

an integer. Now for each node 𝑗, assume we have already processed all other nodes

in 𝑝𝑎𝑡ℎ(𝑗), including the parent node 𝑗′. We place a tentative order in period 𝑠 for

node 𝑗 if (
∑︀𝑠−1

𝑡=1 𝑦
𝑗
𝑡 ,
∑︀𝑠

𝑡=1 𝑦
𝑗
𝑡] contains an integer. Motivated by the fact that we can

only order 𝑗 if 𝑗′ has been ordered, we place actual orders of 𝑗 via a two-sided push

procedure as follows. If there is a tentative order of 𝑗 at period 𝑠, then place an

actual order of 𝑗 at the first order point of 𝑗′ in (𝑠, 𝑇] and place another actual order

of 𝑗 at the latest order point of 𝑗′ ∈ [1, 𝑠] (if such orders of 𝑗′ exist). Notice that

by construction, the orders are synchronized. See Figure 4-2 for an example of the

rounding procedure. The pseudo-code for the algorithm is given below.

Algorithm 1: LP Rounding Algorithm for the tree JRP
Solve (P-T)
Generate order points for the root node
// Process the rest of the nodes in BFS or DFS order
for each node 𝑗 do

Generate tentative order points for node 𝑗
for each time period 𝑠 that contains a tentative order of 𝑗 do

if ∃ an order of 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗) in (𝑠, 𝑇] then
Place an order for node 𝑗 at the earliest order point of 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗) in
(𝑠, 𝑇]

if ∃ an order of 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗) in [1, 𝑠] then
Place an order for node 𝑗 at the latest order point of 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗) in
[1, 𝑠]

Serve each demand point (𝑖, 𝑡) from the latest order up to time 𝑡 that includes
item type 𝑖

4.3.2 Analysis

We first prove a structural lemma on the algorithm which is key to the subsequent

performance analysis. We will refer to (𝑥, 𝑦) as the optimal solution to (𝑃 − 𝑇) in

the following analysis.

Lemma 25. For each node 𝑗 and time interval of periods [𝑠, 𝑡] where
∑︀𝑡

𝑟=𝑠 𝑦
𝑗
𝑟 ≥ 1,

the algorithm places an order for node 𝑗 somewhere in [𝑠, 𝑡].

121

1 2 3 4 5 6 7 8 9

r r rr(a)
1.0 0.3 0.6 0.4 0.1 0.2 0.7 0.5 0.5

r r rr
j' j'

(b)
0.0 0.3 0.6 0.4 0.1 0.0 0.5 0.5 0.0

1 2 3 4 5 6 7 8 9

j' j' j'

()

1 2 3 4 5 6 7 8 9

r r rr
j j j

(c)

r r rr
j' j' j'

j

(d)
0.0 0.0 0.5 0.4 0.1 0.0 0.0 0.0 0.0

j j

1 2 3 4 5 6 7 8 9
(d)

1 2 3 4 5 6 7 8 9

r r rr
j' j' j'

(e)

Figure 4-2: This figure demonstrates our LP rounding procedure for the first three
successive nodes of the tree, which we call node r (root), node 𝑗′, and node 𝑗. There
are 9 time periods in this example. In (a), each circle denotes an order placed for the
root node. The values on the interval correspond to the values of 𝑦𝑟𝑡 . In (b), each
dotted circle denotes a tentative order placed for node 𝑗′. The values on the interval
correspond to the values of 𝑦𝑗

′

𝑡 . In (c), we do a two sided push for the tentative
orders of 𝑗′, which results in actual orders of 𝑗′ at periods 4, 7, and 9. In (d), the
dotted circle denotes a tentative order placed for node 𝑗. The values on the interval
correspond to the values of 𝑦𝑗𝑡 . In (e), we do a two sided push for the tentative orders
of 𝑗, which results in actual orders of 𝑗 at periods 4 and 7.

122

Proof. The proof is by induction on 𝑝𝑎𝑡ℎ(𝑗), starting from the root. The induction

argument uses a monotonicity property of the optimal solution (𝑥, 𝑦) mentioned in

Lemma 24. Namely, for any time period 𝑟 and for each pair of nodes 𝑗 and 𝑗′ such

that 𝑗′ ∈ 𝑝𝑎𝑡ℎ(𝑗), then 𝑦𝑗𝑟 ≤ 𝑦𝑗
′

𝑟 .

Base case (root node): For any time interval [𝑠, 𝑡] where
∑︀𝑡

𝑟=𝑠 𝑦
0
𝑟 ≥ 1, the interval

(
∑︀𝑠−1

𝑟=1 𝑦
0
𝑡 ,
∑︀𝑡

𝑟=1 𝑦
0
𝑡] must contain an integer. By construction of the algorithm, an

order for the root node must then exist somewhere in [𝑠, 𝑡].

Inductive case: Consider node 𝑗 and any time interval [𝑠, 𝑡] where
∑︀𝑡

𝑟=𝑠 𝑦
𝑗
𝑟 ≥ 1.

Let 𝑗′ be the parent of 𝑗. By the monotonicity property of 𝑦, we know 𝑦𝑗
′

𝑡 ≤ 𝑦𝑗𝑡 and

hence
∑︀𝑡

𝑟=𝑠 𝑦
𝑗′
𝑟 ≥ 1. Using the induction hypothesis, we know there is an order for

node 𝑗′ in [𝑠, 𝑡], namely at period 𝑢′. Also, by a similar reasoning as in the base

case, we know there is a tentative order for node 𝑗 in [𝑠, 𝑡], namely at period 𝑢. We

assume 𝑢′ was chosen to be the closest order of 𝑗′ to 𝑢 that is in [𝑠, 𝑡]. Now since

the algorithm opens order of 𝑗 by a two sided push to the two closest orders of 𝑗′ in

opposite directions, then 𝑗 will be ordered at 𝑢′ as well. Thus we have proven the

inductive case and the claim follows.

The correctness of the algorithm follows from Lemma 25 above. Specifically, for

each demand point (𝑖, 𝑡), it follows from constraints (4.8) and (4.9) in (P-T) that∑︀𝑡
𝑠=1 𝑦

𝑖
𝑠 ≥ 1. Thus, we know that for each node 𝑗 ∈ 𝑝𝑎𝑡ℎ(𝑖) there is an order placed

in [1, 𝑡] from Lemma 25. Hence, for each demand point (𝑖, 𝑡) there is an order of item

𝑖 no later then time 𝑡 that can serve the demand. This implies that the solution is

indeed feasible.

Next we analyze the cost of the solution produced by the algorithm. We start by

considering the ordering cost. Since the number of orders made is at most ⌊
∑︀𝑇

𝑟=1 𝑦
0
𝑟⌋

for the root node and 2⌊
∑︀𝑇

𝑟=1 𝑦
𝑗
𝑟⌋ for all other nodes 𝑗 (we make up to two orders for

every tentative order of 𝑗), the next lemma follows directly.

Lemma 26. The total ordering cost for the solution by the algorithm is at most

2
∑︀𝑇

𝑠=1

∑︀
𝑗∈𝒯 𝐾𝑗𝑦

𝑗
𝑠.

Finally we analyze the holding cost incurred by the constructed solution by the

123

algorithm. We will show that the total holding cost incurred is at most
∑︀𝑁

𝑖=1

∑︀𝑇
𝑡=1 𝑏

𝑖
𝑡,

the optimal value of (D-T).

Lemma 27. The total holding cost for the solution by the algorithm is at most∑︀𝑁
𝑖=1

∑︀𝑇
𝑡=1 𝑏

𝑖
𝑡.

Proof. For any demand point (𝑖, 𝑡), consider the set of orders 𝑠 that serve (𝑖, 𝑡) frac-

tionally in the optimal solution for (P-T), i.e., 𝑥𝑖
𝑠𝑡 > 0. Let 𝑠1 be the earliest of such

orders and we define [𝑠1, 𝑡] as the active interval for demand (𝑖, 𝑡), specifically 𝑥𝑖
𝑠1𝑡

> 0

and
∑︀𝑡

𝑠=𝑠1
𝑥𝑖
𝑠𝑡 = 1. Since 𝑥𝑖

𝑠1𝑡
> 0, by the complementary slackness conditions, the

corresponding dual constraint must be tight, i.e., 𝑏𝑖𝑡 = 𝐻 𝑖
𝑠1𝑡

+
∑︀

𝑗∈𝑝𝑎𝑡ℎ(𝑖) 𝑙
𝑖𝑗
𝑠1𝑡. This ex-

pression, combined with the nonnegativity constraints on 𝑙𝑖𝑗𝑠1𝑡, implies that 𝑏𝑖𝑡 ≥ 𝐻 𝑖
𝑠1𝑡

.

However, we also assume that the holding cost 𝐻 𝑖
𝑠𝑡 is non-increasing in 𝑠. It follows

that for any time 𝑠 in the active interval, we have that 𝑏𝑖𝑡 ≥ 𝐻 𝑖
𝑠𝑡. Hence, it suffices

to show that there exists an order for 𝑖 in the active interval for (𝑖, 𝑡). However, by

the definition of active interval and constraints (4.8) and (4.9) in (P-T), we have that∑︀𝑡
𝑠=𝑠1

𝑦𝑖𝑠 ≥ 1. Thus, using Lemma 25 for the interval [𝑠1, 𝑡] shows that there exists

an order of item 𝑖 in the active interval of (𝑖, 𝑡), as desired.

By Lemmas 26 and 27, and the fact that the optimal value of (P-T) and (D-T)

are both lower bounds to the value of the optimal solution to the tree JRP, we obtain

the following result.

Theorem 15. The LP Rounding algorithm is a 3-approximation algorithm for the

tree JRP.

4.4 Laminar Joint Replenishment Problem

In this section, we study the laminar joint replenishment problem. This is a special

case of the submodular JRP, where the setup cost function corresponds to a laminar

family. A laminar family ℱ is a collection of subsets of {1, . . . , 𝑁} such that for any

𝑆1, 𝑆2 ∈ ℱ , either 𝑆1 ∩ 𝑆2 = ∅, 𝑆1 ⊆ 𝑆2, or 𝑆2 ⊆ 𝑆1. The setup cost of ordering any

subset 𝑆 ∈ ℱ is 𝐾𝑆. In the laminar JRP, the cost of ordering a set of items 𝑆 in any

124

1 2 3 4 5
1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 4

5

2 3 4 1

3

8 14

7

7

9 3

5

22

9 5 3

14

7 12

8

Figure 4-3: These two graphs represent two laminar families that are equivalent. Each
box represents a machine that can produce the item types inside of it. The number
to the right of each box is the fixed cost of the machine. The dashed lines denote
which machines are strictly more capable than the others. The left representation is
a typical input to this problem, and the right representation is a transformation to a
binary tree graph. In both representations, the cost of ordering any subset of items
is the cost of the cheapest machine containing those items.

time period is the cost of the smallest element of ℱ that contains 𝑆. More formally,

𝐾(𝑆) = min𝐹∈ℱ 𝐾𝐹 s.t. 𝑆 ⊆ 𝐹 .

A laminar family can be represented by a tree graph such as in Figure 4-3. The

root node consists of all item types. Then the item types in each node are split

amongst the children nodes. In order for the laminar family to correspond to a

proper submodular joint setup cost function, then clearly (i) the cost of every node

is at least the cost of each of its children (monotonicity) and (ii) the cost of every

node is no more than the total cost of its children (submodularity). Without loss of

generality, one can always represent a laminar family with a binary tree as in Figure

4-3. We will make this assumption for the remainder of this section.

4.4.1 Dynamic Programming Formulation

We now give a polynomial-size dynamic programming formulation to solve the laminar

JRP. For each node/subset 𝐹 ∈ ℱ such that |𝐹 | ≥ 2, let 𝑐1(𝐹) and 𝑐2(𝐹) be its

children nodes. Let 𝐽(𝐹, 𝑠, 𝑡) be the optimal cost of serving the demands from 𝑠

to 𝑡 for all of the item types in 𝐹 . When computing 𝐽(𝐹, 𝑠, 𝑡), we assume that

the item types in 𝐹 have been ordered at time 𝑠. Thus, the optimal overall cost is

𝐽({1, . . . , 𝑁}, 0, 𝑇), and we are assuming without loss of generality that there is an

125

order at artificial time 0. This will require that we define 𝑑𝑖0 = 0 and 𝐻 𝑖
0𝑡 =∞ for all

𝑖 and 𝑡. Now we present the dynamic programming equation when |𝐹 | ≥ 2,

𝐽(𝐹, 𝑠, 𝑡) = min(𝐽(𝑐1(𝐹), 𝑠, 𝑡)+𝐽(𝑐2(𝐹), 𝑠, 𝑡),

min
𝑢=𝑠+1,...,𝑡

𝐽(𝐹, 𝑠, 𝑢− 1) + 𝐾𝐹 + 𝐽(𝐹, 𝑢, 𝑡)).

The first term in the outer min is the case where no extra order of 𝐹 occurs

between 𝑠 and 𝑡. The other case is that we order 𝐹 at some point 𝑢 between 𝑠 and

𝑡. The cost in this case is the cost of 𝐹 between 𝑠 and 𝑢− 1 plus the fixed order cost

at 𝑢 plus the remaining cost of 𝐹 from 𝑢 to 𝑡. When |𝐹 | = 1, we account for the

holding cost of the corresponding item. To solve this base case, we essentially solve

a standard economic lot sizing problem as in Wagner and Whitin [89]. The dynamic

programming equation is given by

𝐽(𝐹, 𝑠, 𝑡) = min(
𝑡∑︁

𝑣=𝑠

𝐻𝐹
𝑠𝑣, min

𝑢=𝑠+1,...,𝑡
𝐽(𝐹, 𝑠, 𝑢− 1) + 𝐾𝐹 + 𝐽(𝐹, 𝑢, 𝑡)).

The first term in the outer min denotes the case where no further orders of 𝐹 are

placed between 𝑠 and 𝑡, and thus we now know the holding costs for all the demand

points between 𝑠 and 𝑡 for the item type corresponding to 𝐹 . The second case is when

an extra order of 𝐹 is placed in between 𝑠 and 𝑡 and the problem is then decomposed

into two subintervals, with an additional fixed ordering cost.

In order to solve the complete dynamic program, we start at the leaves of the

laminar tree and work up towards the root. At each leaf, solve the intervals of length

1, 2, and so on. One can easily show that the dynamic program provides an optimal

solution due to the natural decomposition of the tree: the cost of 𝐽(𝐹, 𝑠, 𝑡) only

depends on the cost of the children of 𝐹 from 𝑠 to 𝑡. In addition, we account for all

the orders as we place them, and account for the holding costs exactly when we stop

placing orders in a given interval. Finally, since ℱ can have at most size 2𝑁 , then

there are at most 𝑂(𝑁𝑇 2) values of 𝐽 . Since each 𝐽 is computed in 𝑂(𝑇) time, this

126

gives an overall runtime of 𝑂(𝑁𝑇 3). Thus, we obtained the following theorem.

Theorem 16. There exists a polynomial-time dynamic programming algorithm to

solve the laminar JRP.

4.5 Cardinality Joint Replenishment Problem

In this section, we consider the cardinality JRP, which is a special case of the sub-

modular JRP where the joint setup cost is a function of the cardinality of the subset

of item types being ordered. By the submodularity property, this function must be

concave. Formally, we let 𝑔(𝑘) be a nondecreasing, concave function which denotes

the cost of ordering 𝑘 item types in any given period. Thus the cost of ordering the

item types in 𝑆 in any given period is 𝐾(𝑆) = 𝑔(|𝑆|). In the following subsection, we

will give a polynomial-size formulation for the cardinality JRP.

4.5.1 A Linear Program

In the following formulation, we let 𝑥𝑖
𝑠𝑡 have the same interpretation as formulation

(IP) for the submodular JRP. In addition, the variable 𝑧𝑖𝑠 will be 1 if an order with

item type 𝑖 is placed in period 𝑠 and 0 otherwise. Finally, the variable 𝑞𝑘𝑠 will be 1 if

there was an order in period 𝑠 of size at least 𝑘 and 0 otherwise.

minimize
𝑇∑︁

𝑠=1

𝑁∑︁
𝑘=1

(𝑔(𝑘)− 𝑔(𝑘 − 1))𝑞𝑘𝑠 +
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝐻 𝑖
𝑠𝑡𝑥

𝑖
𝑠𝑡 (IP-C)

subject to
𝑡∑︁

𝑠=1

𝑥𝑖
𝑠𝑡 = 1 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇 (4.12)

𝑥𝑖
𝑠,𝑡 ≤ 𝑧𝑖𝑠 𝑖 = 1, . . . , 𝑁, 𝑠 = 1, . . . , 𝑇, 𝑡 = 𝑠, . . . , 𝑇 (4.13)

𝑞𝑘+1
𝑠 ≤ 𝑞𝑘𝑠 𝑘 = 1, . . . , 𝑁 − 1, 𝑠 = 1, . . . , 𝑇 (4.14)
𝑁∑︁
𝑘=1

𝑧𝑘𝑠 ≤
𝑁∑︁
𝑘=1

𝑞𝑘𝑠 , 𝑠 = 1, . . . , 𝑇 (4.15)

𝑥𝑖
𝑠𝑡, 𝑧

𝑖
𝑠, 𝑞

𝑘
𝑠 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑠 = 1, . . . , 𝑇, 𝑡 = 𝑠, . . . , 𝑇, 𝑘 = 1, . . . , 𝑁

127

Lemma 28. (IP-C) is a correct integer programming formulation for the cardinality

JRP.

Proof. First, we show that there is a one-to-one correspondence between solutions of

(IP-C) and the cardinality JRP. Given a solution to (IP-C), we simply order and serve

demand according to the variables 𝑥𝑖
𝑠𝑡. Conversely, given a solution to the cardinality

JRP, we let 𝑥𝑖
𝑠𝑡 be defined as it is served in the solution. For every 𝑠 = 1, . . . , 𝑇 ,

if there are 𝑘 item types ordered in 𝑠, we let 𝑧𝑖𝑠 = 1 for those 𝑘 item types and

otherwise set 𝑧𝑖𝑠 = 0. Also we set 𝑞1𝑠 = . . . = 𝑞𝑘𝑠 = 1 and 𝑞𝑘+1
𝑠 = . . . = 𝑞𝑁𝑠 = 0. Next

we check that all constraints are satisfied. First, since every demand point is served

by some order, constraint (4.12) is clearly satisfied. Next, a demand point of item

type 𝑖 cannot be served without an order of item type 𝑖 being placed, then constraint

(4.13) is satisfied. By construction of 𝑞𝑘𝑠 above, constraint (4.14) is also satisfied. By

construction, constraint (4.15) is satisfied with equality.

Now we just need to show that the cost of a solution to (IP-C) correctly models

the cost of a solution of the cardinality JRP. The holding cost is modeled by the

second term of the objective of (IP-C), and is clearly accurate for some solution 𝑥.

For a solution 𝑥, we know that the (IP-C) will set as few of the 𝑧 variables as possible

to 1 since this will require as few as possible 𝑞 variables to be 1. This property holds

due to the fact that 𝑔(𝑘)− 𝑔(𝑘− 1) is always nonnegative due to the monotonicity of

𝑔. Constraint (4.14) ensures that if 𝑘 item types are ordered in period 𝑠, then only

𝑞1𝑠 = . . . = 𝑞𝑘𝑠 = 1. Thus the fixed order cost in this time period is exactly equal to

𝑔(𝑘) due to the telescoping sum. Thus, the overall cost of this formulation correctly

captures the actual cost.

Let (P-C) be the natural LP-relaxation of (IP-C) where the binary constraints

on the variables are relaxed to nonnegativity constraints. Next, we will show that

the formulation (P-C) is equivalent to the original formulation (P) in the case of the

cardinality JRP. We denote 𝑍𝑃−𝐶 and 𝑍𝑃 as the optimal values of (P-C) and (P),

respectively.

Lemma 29. For the cardinality JRP, (P-C) is equivalent to (P), i.e., 𝑍𝑃−𝐶 = 𝑍𝑃 .

128

Proof. The proof follows the same outline as in Lemma 24. First we show how to

convert an optimal solution (�̂�, 𝑧, 𝑞) of (P-C) to a solution (𝑥, 𝑦) of (P). We first set

𝑥 = �̂�. Next we set the values of 𝑦. Fix a time period 𝑠, and we first establish an

ordering 𝜎(𝑖) of the items from the optimal solution of (P-C) so that 𝑧
𝜎(1)
𝑠 ≥ 𝑧

𝜎(2)
𝑠 ≥

. . . ≥ 𝑧
𝜎(𝑁)
𝑠 . Next define the sequence of sets 𝑆(𝑖) := {𝜎(1), . . . , 𝜎(𝑖)}, 𝑖 = 1, . . . 𝑛. We

let 𝑦
𝑆(𝑁)
𝑠 = 𝑧

𝜎(𝑁)
𝑠 , 𝑦𝑆(𝑖)𝑠 = 𝑧

𝜎(𝑖)
𝑠 − 𝑧

𝜎(𝑖+1)
𝑠 for 𝑖 = 1, . . . , 𝑛 − 1, and 𝑦𝑆𝑠 = 0 for all other

set 𝑆. It is easy to check that this solution is feasible for (P), and the objective value

is also the same by construction. Thus we have shown that 𝑍𝑃−𝐶 ≥ 𝑍𝑃 .

For the converse, we show that we can convert an optimal solution (�̂�, 𝑦) to (P)

to a solution (𝑥, 𝑧, 𝑞) to (P-C) with the same cost. Let (�̂�, 𝑦) satisfy the conditions of

Lemma 23 , which implies that for each 𝑡, there is an ordering of 𝑁 such that the only

sets that can be positive are 𝑦∅𝑡 , 𝑦
𝑆1
𝑡 , . . . , 𝑦𝑆𝑁

𝑡 where ∅ ⊂ 𝑆1 ⊂ 𝑆2 ⊂ . . . ⊂ 𝑆𝑁 = 𝒩 .

We first set 𝑥 = �̂�. We now let 𝑧𝑖𝑠 = max{𝑥𝑖
𝑠𝑡 : 𝑡 = 𝑠 . . . 𝑇} and 𝑞𝑖𝑡 =

∑︀𝑛
𝑘=𝑖 𝑦

𝑆𝑘
𝑡 . One

can check that all of the constraints of (P-C) are satisfied. The holding costs of the

solutions are clearly the same. The ordering cost of the the solution (𝑥, 𝑧, 𝑞) is:

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

(𝑔(𝑖)− 𝑔(𝑖− 1))𝑞𝑘𝑡 =
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

(𝑔(𝑖)− 𝑔(𝑖− 1))
𝑁∑︁
𝑘=𝑖

𝑦𝑆𝑘
𝑡

=
𝑇∑︁
𝑡=1

𝑁∑︁
𝑘=1

𝑘∑︁
𝑖=1

(𝑔(𝑖)− 𝑔(𝑖− 1))𝑦𝑆𝑘
𝑡

=
𝑇∑︁
𝑡=1

𝑁∑︁
𝑘=1

𝑦𝑆𝑘
𝑡

𝑘∑︁
𝑖=1

(𝑔(𝑖)− 𝑔(𝑖− 1))

=
𝑇∑︁
𝑡=1

𝑁∑︁
𝑘=1

𝑦𝑆𝑘
𝑡 𝑔(𝑘)

Thus the two solutions have equal cost. Since (�̂�, 𝑦) was optimal for (P), then we

have shown that 𝑍𝑃−𝐶 ≤ 𝑍𝑃 which completes the proof.

Now we consider the dual of (P-C), which we call (D-C). Let 𝑏𝑖𝑡, 𝑙𝑖𝑠𝑡, 𝑣𝑘𝑠 and 𝑤𝑖
𝑠

be the dual variables corresponding to constraints (4.12), (4.13), (4.14), and (4.15) in

129

(P-C), respectively. The dual of (P-C) is:

max
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑏𝑖𝑡 (D-C)

s.t. 𝑏𝑖𝑡 ≤ 𝐻 𝑖
𝑠𝑡 + 𝑙𝑖𝑠𝑡, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . , 𝑡 (4.16)

𝑣𝑘𝑠 − 𝑣𝑘−1
𝑠 +

𝑁∑︁
𝑖=𝑘

𝑤𝑖
𝑠 ≤ 𝑔(𝑘)− 𝑔(𝑘 − 1), 𝑘 = 2, . . . , 𝑁 − 1, 𝑠 = 1, . . . , 𝑇 (4.17)

− 𝑣𝑁−1
𝑠 + 𝑤𝑁

𝑠 ≤ 𝑔(𝑁)− 𝑔(𝑁 − 1), 𝑠 = 1, . . . , 𝑇 (4.18)

𝑣1𝑠 +
𝑁∑︁
𝑖=1

𝑤𝑖
𝑠 ≤ 𝑔(1), 𝑠 = 1, . . . , 𝑇 (4.19)

𝑇∑︁
𝑡=𝑠

𝑙𝑖𝑠𝑡 −
𝑛∑︁

𝑘=𝑖

𝑤𝑘
𝑠 ≥ 0, 𝑖 = 1, . . . , 𝑁, 𝑠 = 1, . . . , 𝑇 (4.20)

𝑙𝑖𝑠𝑡, 𝑣
𝑘
𝑠 , 𝑤

𝑖
𝑠 ≥ 0, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, 𝑠 = 1, . . . , 𝑡, 𝑘 = 1, . . . , 𝑁 − 1

Following the same strategy as was used in the previous section, we will use (D-C)

to bound the holding cost incurred by our algorithm.

4.5.2 Labeling Algorithm

We now describe the LP rounding algorithm for the cardinality JRP. This algorithm

will rely on the optimal solution to (P-C), which we denote by (𝑥, 𝑧, 𝑞). For each item

type 𝑖, we will partition the interval (1, 𝑇 + 1] into subintervals, each with a weight

of exactly 0.5. For every period 𝑡 = 1, . . . , 𝑇 , the weight of the region (𝑡, 𝑡 + 1] will

be exactly 𝑧𝑖𝑡, which is spread uniformly across this time period. The partition of

(1, 𝑇 + 1] is done by myopically adding subintervals of weight 0.5 starting from time

1. Specifically, let 𝑃 denote the collection of subintervals. Initially set 𝑎 = 1. Let 𝑏

be the time in (1, 𝑇 + 1] where the weight of (𝑎, 𝑏] is exactly 0.5. Add (𝑎, 𝑏] to 𝑃 , set

𝑎 := 𝑏 and repeat until no further subintervals can be added. See Figure 4-4 for an

example of this procedure.

Now let 𝑃 denote the set of all (sub)intervals generated using the procedure pre-

130

1 2 3 4 5 6 7 8 9

0.3 0.4 0.3 1.0 0.1 0.4 0.0 0.5 0.0

Figure 4-4: This figure represents one item type 𝑖 for a problem with 9 time periods.
The values on the time interval correspond to the values of 𝑧𝑖𝑠. The partitioned
rectangle above the time interval denotes the corresponding subintervals, each with a
weight of 0.5, that would be added to 𝑃 ; namely, (1, 2.5], (2.5, 4], (4, 4.5], (4.5, 5], (5, 7],
and (7, 9].

viously described on all the item types. We denote interval 𝑗 of 𝑃 by (𝑎𝑗, 𝑏𝑗]. For

convenience, we assume that 𝑃 is sorted by the values of 𝑏𝑗, with ties broken arbi-

trarily. The item corresponding to interval 𝑗 is denoted by 𝑖𝑗. Finally, each interval

𝑗 will be given a label 𝑙𝑗, which can take the values from 1, . . . , 𝑁 . The labels will

correspond to how large an order was after the item type 𝑖𝑗 corresponding to interval

𝑗 was added to an order. Specifically, we will start by labeling intervals with the label

1, then label 2, and so on. For every round of labeling 𝑘, we process 𝑃 in increasing

order of the 𝑏𝑗 values. If the current interval 𝑗 in 𝑃 does not have a label, and there

does not exists an order of size 𝑘 in (𝑎𝑗, 𝑏𝑗], then 𝑖𝑗 is ordered at the latest order of

size 𝑘 − 1 in (𝑎𝑗, 𝑏𝑗] and 𝑙𝑗 is set to 𝑘. Note that in labeling round 1, when an order

is placed it always occurs at 𝑏𝑗 since “orders of size 0” exist everywhere. Finally, after

all the labeling, we round every order at at time 𝜏 to ⌊𝜏 − 𝜖⌋. All the demands are

then served myopically. See Figure 4-5 for an example of the algorithm. Below is the

pseudocode for the algorithm.

4.5.3 Analysis

We will use the labels of the orders made by the algorithm to bound its cost versus

the optimal value of (P-C). We begin by proving several properties of the labeling

algorithm, including its correctness.

Lemma 30. Every interval 𝑗 ∈ 𝑃 receives a label.

Proof. Assume there exists 𝑗 ∈ 𝑃 without a label. Let 𝑘 be the size of the largest

131

Item 1 12 2 23
1 1

1 1 1
2 2

23
3(a) Item 2

Item 3 1

1 2 3 4 5 6 7 8 9

2 2 3 3 31
1 1 2 2 3 1

3 1 2

(b)

1 2 3 4 5 6 7 8 9

2 2 3 3 31(b)

2 2 3 3 31
1 1 2 2 3 1

3 1 2

(c)

1 2 3 4 5 6 7 8 9

Figure 4-5: This figure shows an example of the LP rounding algorithm. In (a), each
rectangle correspond to an interval in 𝑃 . Each row of intervals corresponds to an
item type. The intervals were generated using the partition procedure depicted in
Figure 4-4. The number in each rectangle/interval corresponds to the label it was
given using Algorithm 2. In (b), we show how these labels correspond to orders. The
number inside each circle denotes the item type that was ordered. The height of each
circle corresponds to its label. In (c), we show how to round each order down to the
nearest integral point.

132

Algorithm 2: Labeling Algorithm for cardinality JRP
Solve (P-C)
// Generate intervals of 𝑃

for 𝑖 ∈ 𝒩 do
Initialize 𝑎:=1 and let the weight of period 𝑡 be 𝑧𝑖𝑡 on the region [𝑡, 𝑡 + 1]
Choose 𝑏, if it exists, so that weight of (𝑎, 𝑏] is 0.5
Add (𝑎, 𝑏] to 𝑃 and repeat with 𝑎 := 𝑏

// Generate orders and labels

for 𝑘 ← 1 to 𝑁 do
for 𝑗 ← 1 to |𝑃 | do

if 𝑗 is unlabeled and ̸ ∃ an order of size k in (𝑎𝑗, 𝑏𝑗] then
Order 𝑖𝑗 at the latest order of size 𝑘 − 1 in (𝑎𝑗, 𝑏𝑗]
Set label 𝑙𝑗 = 𝑘

Round ever order at time 𝜏 to ⌊𝜏 − 𝜖⌋
Serve every demand point (𝑖, 𝑡) from the latest order up to time 𝑡 that includes
item type 𝑖;

order in (𝑎𝑗, 𝑏𝑗]. We know 𝑘 ̸= 𝑁 or else 𝑖𝑗 is in the order and 𝑗 was labeled. We

also know that this order existed in the (𝑘 + 1)𝑠𝑡 labeling round of the algorithm by

construction. This implies that 𝑗 should have been added to that order, or another

order of size 𝑘 in (𝑎𝑗, 𝑏𝑗], according to the algorithm. Either way, 𝑗 would be labeled,

which is a contradiction.

As in the analysis of the algorithm for tree JRP, we define the active interval for

demand point (𝑖, 𝑡) to be [𝑠1, 𝑡], where 𝑠1 is be the earliest time period where 𝑥𝑖
𝑠𝑡 > 0.

Lemma 31. Every demand (𝑖, 𝑡) is served from its active interval [𝑠1, 𝑡].

Proof. Consider a demand point (𝑖, 𝑡) and its active interval [𝑠1, 𝑡]. From feasibility

of 𝑥, we know that there must be at least one interval 𝑗 of item type 𝑖 in 𝑃 such that

(𝑎𝑗, 𝑏𝑗] ⊆ [𝑠1, 𝑡 + 1]. Therefore, by Lemma 30, we must have had an order of item

type 𝑖 in [𝑠1, 𝑡 + 1]. Since the orders are rounded down in time, we guarantee that

the order is in [𝑠1, 𝑡], which completes the proof.

Lemma 32. For any time 𝜏 ∈ (1, 𝑇 + 1] and 𝑘 ∈ 1, . . . , 𝑁 , there are at most 2

intervals in P that contain 𝜏 and are both labeled 𝑘.

133

Proof. First we show that we cannot have two intervals 𝑗 and 𝑗′ with labels 𝑘 such

that (𝑎𝑗, 𝑏𝑗] ⊆ (𝑎𝑗′ , 𝑏𝑗′]. If 𝑏𝑗 < 𝑏𝑗′ , then (𝑎𝑗, 𝑏𝑗] is processed first. Then when we are

processing 𝑗′ in the 𝑘𝑡ℎ labeling round, there exists an order of size 𝑘 in the interval

for 𝑗′. Therefore, the algorithm would skip interval 𝑗′ in the 𝑘𝑡ℎ round. If 𝑏𝑗 = 𝑏𝑗′ ,

then there are two cases depending on what is processed first. If 𝑗 is processed first,

then the same logic holds. If 𝑗 is processed second, then it must be the case that

the order where 𝑖𝑗′ was added occurred in (𝑎𝑗′ , 𝑎𝑗], or else there is an order size 𝑘 in

𝑗’s interval and it would be skipped. However, since 𝑖𝑗 was added to an order of size

𝑘 − 1 in its interval, then it must be that 𝑗′ could have been ordered at a later point

in time which is what the algorithm mandates.

Now assume for contradiction that there are three orders 𝑗, 𝑗′ and 𝑗′′ with label

𝑘, all of which contain some 𝜏 in their interval. From the previous argument, we can

assume that 𝑎𝑗 < 𝑎𝑗′ < 𝑎𝑗′′ ≤ 𝜏 ≤ 𝑏𝑗 < 𝑏𝑗′ < 𝑏𝑗′′ . Observe that the order where 𝑖𝑗

was added must occur in (𝑎𝑗, 𝑎𝑗′], or else there would be a size 𝑘 order in the interval

of 𝑗′, and thus it would get passed over in the 𝑘𝑡ℎ labeling round. Now consider the

following two cases of where the order of 𝑗′ occurred. If it occurs in (𝑎𝑗′ , 𝑏𝑗), this

implies that 𝑗 did not order at the latest possible order of size 𝑘 − 1. If the order of

𝑗′ occurred within [𝑏𝑗, 𝑏𝑗′], this implies that 𝑗′′ is processed when there is an order of

size 𝑘 in its interval, and so the algorithm would skip it in the 𝑘𝑡ℎ labeling round.

Therefore, we cannot give a label of 𝑘 to 𝑗′, which is a contradiction.

Using the previous lemmas, we are now we are ready to prove the main result.

Theorem 17. The labeling algorithm is a 5-approximation algorithm for the cardi-

nality JRP.

Proof. We first bound the holding cost for each demand (𝑖, 𝑡) by 𝑏𝑖𝑡, the dual variable

of (D-C). By Lemma 31, (𝑖, 𝑡) is served by an order 𝑠 such that 𝑥𝑖
𝑠𝑡 > 0. From

complementary slackness, this implies that 𝑏𝑖𝑡 = 𝐻 𝑖
𝑠𝑡 + 𝑙𝑖𝑠𝑡. Since 𝑙𝑖𝑠𝑡 ≥ 0, then the

holding cost paid by (𝑖, 𝑡) is 𝐻 𝑖
𝑠𝑡 ≤ 𝑏𝑖𝑡. This implies the holding cost is at most the

optimal cost, since the sum of 𝑏𝑖𝑡 over all demand points gives the dual objective.

134

Now we proceed to bound the ordering cost of our solution. For every interval

𝑗 ∈ 𝑃 , we assigned it a label 𝑙𝑗 = 𝑘 for some 𝑘. This means that item type 𝑖𝑗 is the

𝑘𝑡ℎ item type added to some (unrounded) order in the interval (𝑎𝑗, 𝑏𝑗]. Thus, this

interval needs to pay 𝑔(𝑘)− 𝑔(𝑘− 1) in order to account for itself. We therefore want

to take at most the 𝑘𝑡ℎ slice, 𝑔(𝑘) − 𝑔(𝑘 − 1), of the ordering costs corresponding

to interval 𝑗. This amounts to using the variable 𝑞𝑘𝑡 wherever 𝑧
𝑖𝑗
𝑡 > 0. We can also

use lower slices, i.e., 𝑞1𝑡 , . . . 𝑞
𝑘−1
𝑡 due to the concavity of 𝑔. If we are able to do this

such that no slice gets counted for twice, then we ensure that we can pay for at least

half the ordering costs, since the weight of every interval is 0.5, and by Lemma 30

every interval corresponds to an item type being ordered. The exact charging scheme

is as follows. For every 𝜏 ∈ (1, 𝑇 + 1], we give the cost of 𝑞1𝜏𝑔(1) to the two item

types whose interval contains 𝜏 and has the smallest labels. Then we give the cost of

𝑞2𝜏 (𝑔(2)−𝑔(1)) to the two item types whose intervals contain 𝜏 and have the third and

fourth smallest labels and so on. From Lemma 32, this procedure guarantees that

every interval 𝑗 is given slices of 𝑔 across (𝑎𝑗, 𝑏𝑗] that are at most the 𝑙𝑡ℎ𝑗 slice. Thus,

we need twice the optimal fractional ordering cost to pay for half of the marginal

ordering cost incurred by any interval 𝑗 ∈ 𝑃 in our solution, and so we need at most

4 times the optimal fractional ordering cost in total to pay for the orders.

Combining the two bounds yields the result.

4.6 Conclusion

We believe that this work advances the existing research for an important class of

interesting inventory management problems with non-stationary demand. The sub-

modular JRP and the special cases we consider can capture a wide variety of real

world problems and allows for substantially more modeling flexibility. Since most

variants of the JRP are NP-hard, it is intractable to compute the optimal solutions

efficiently. Our algorithms are computationally efficient and provide theoretical worst

case guarantees. Moreover, we provided strong and polynomial size LP formulations

for the tree and cardinality JRP which may be useful for solving the IP formulations

135

in practice. One major open question which we have left unanswered is whether or

not there exists a constant factor approximation algorithm for the submodular JRP.

136

Appendix A

Chapter 2 Appendix

A.1 Examples

Example 3. Consider the online algorithm where we solve the offline optimal solution

with respect to the first 𝑘 customers, and the decisions for the first 𝑘 − 1 customers

are fixed, i.e., they cannot be changed from what we have already decided. Then this

will result in most customers being rejected if each customer on his own is not enough

to warrant production.

For example, consider the To Build or Not To Build problem as explained in

Example 1. If the rejection cost of each customer is less than 𝐾, then clearly the

algorithm we just described will reject everyone in an online fashion. The competitive

ratio will be 𝑅(𝑈)/𝐾 which can be arbitrarily poor.

Example 4. Consider the ELS problem with online customer selection from Section

2.3.2. Let ℎ = 1, 𝐾 = 11, and 𝑟 = 10. Consider the input sequence 𝐼1 = (1, 8), 𝐼2 =

(1, 14), 𝐼3 = (1, 1), and 𝐼4 = (100, 1), where each tuple represents demand quantity

and due date, respectively. Let the set of potential order dates be 𝒬 = {1, 2, . . . , 15}.

One can easily show that 𝒜* = {1, 3, 4}, 𝑃 (𝒜*) = 19, ℛ* = {2}, and 𝑅(ℛ*) = 10.

The Copycat Algorithm will lead to ℛ𝐶 = {1, 3} with 𝑅(ℛ𝐶) = 20. StablePair will

only have ℛ𝑆 = {1} with 𝑅(ℛ𝑆) = 10. Note that ℛ𝐶 ∩ℛ* = ℛ𝑆 ∩ℛ* = ∅. Thus,

𝑅(ℛ𝑆) < 𝑃 (𝒜*) + 𝑅(ℛ𝐶 ∩ℛ*) < 𝑅(ℛ𝐶) < 𝑃 (𝒜*) + 𝑅(ℛ*)

137

This demonstrates that there are cases in which StablePair can be strictly less conser-

vative than Copycat in that it accepts customers that were rejected by Copycat.

Example 5. Consider the ELS problem with online customer selection from Section

2.3.2. Let ℎ = 1, 𝐾 = 11, and 𝑟 = 10. Let the set of potential order dates be

𝒬 = {1, 2, . . . , 15}. Consider the input sequence 𝐼1 = (2, 4), 𝐼2 = (1, 11), and 𝐼3 =

(100, 1), where each tuple represents demand quantity and due date, respectively. One

can easily see that 𝒜*
1 = {1}, 𝒜*

2 = {1, 2}, and 𝒜*
3 = {1, 3}. This implies that

𝒜𝐶
3 = {1, 2, 3}. Here we see that Copycat “regrets” accepting customer 2 after stage 3

since the optimal offline solution in stage 3 rejects customer 2.

Example 6. Consider the ELS problem with online customer selection from Section

2.3.2. Let ℎ = 1, 𝐾 = 11, and 𝑟 = 10. Let the set of potential order dates be 𝒬 =

{1, 2, . . . , 10}. Consider the input sequence 𝐼1 = (2, 10) and 𝐼2 = (1, 3), where each

tuple represents demand quantity and due date, respectively. Clearly 𝒜*
1 = 𝒜*

2 = {1}

and the optimal offline cost is 𝐶*({1, 2}) = 11 + 10 = 21. However, 𝒜𝑆
2 = {1, 2}.

StablePair accepts customer 1 with stable pair (𝒬, {1}), where 𝒬 represents all possible

time periods to create a setup. However, unlike the optimal offline solution, StablePair

also accepts customer 2 with stable pair ({3}, {1, 2}). If we can only create an order

at time 3, then the optimal strategy is to accept both customers 1 and 2. If we can

order at any time, then we would only order at time 10 and reject customer 2.

Example 7 (Polymatroid Optimization). Let 𝑈 be a ground set and 𝑓(·) be a rank

function, i.e., a nondecreasing submodular function with 𝑓(∅) = 0. Then the poly-

hedron 𝐹 (𝑈, 𝑓) = {x ∈ R|𝑈 | :
∑︀

𝑖∈𝑇 𝑥𝑖 ≤ 𝑓(𝑇), 𝑇 ⊆ 𝑈, x ≥ 0} is referred to as a

polymatroid. Now for each 𝑖 ∈ 𝑈 , let 𝑔𝑖 : R → R be a concave function. Then for

any set 𝑇 ⊆ 𝑈 the production cost function is defined as

𝑃 (𝑇) = max
∑︁
𝑖∈𝑇

𝑔𝑖(𝑥𝑖) s.t. x ∈ 𝐹 (𝑇, 𝑓).

[43] showed that 𝑃 (𝑇) is indeed nondecreasing and submodular.

An application of this result, as shown in [43], is the stationary joint replenishment

138

problem. In this problem the “customers” are actually products. Each product 𝑘

arrives with 𝐼𝑘 = {𝑑𝑘, ℎ𝑘} where 𝑑𝑘 is the stationary continuous demand rate and ℎ𝑘

is the holding cost rate. The rejection cost 𝑟𝑘 is the revenue rate generated by producing

product 𝑘. Demand for accepted products is satisfied by a sequence of orders, where an

order for the item types in 𝑇 ⊆ 𝑈 has fixed costs 𝐾(𝑇). 𝐾(·) is assumed to be a rank

function. All demands are served by their nearest setup and also incur the appropriate

holding costs. In [31] it was shown that the optimal policy for the stationary JRP can

be approximated well by only considering “power-of-two” (Po2) polices. Indeed, the

problem of finding the best Po2 policy then reduces to a polymatroid maximization

problem with a separable concave objective. The best of such Po2 policies is at most

2% suboptimal. [43] also shows a similar result for the continuous one-warehouse

multi-retailer problem. In our online customer selection model, products arrive online

to a supplier, who decides whether to accept or reject them, and then computes the

best Po2 policy to serve them.

Example 8. Let ℎ = 1, 𝑟 = 2𝑀, and 𝐾 = 2𝑀2 + 1. Let the set of potential

order dates be 𝒬 = {1, 2}. Let 𝑆 = {1, 2, 3} and 𝐼1 = (𝑀, 2), 𝐼2 = (1, 1), and

𝐼3 = (100𝐾, 2), where the tuples represent quantity and due date, respectively. Observe

that OPT(𝑈1) will reject customer 1 since the setup cost is greater than the rejection

cost of 2𝑀2. Then OPT(𝑈2) will accept both customers 1 and 2, and the total cost

will be 2𝑀2 + 1 + 𝑀 , which is less than rejecting both customers at cost 2𝑀2 + 2𝑀 .

Finally, OPT(𝑈3) will clearly accept customers 1 and 3, while rejecting customer 2.

The optimal offline cost will be 𝐶*(𝑈) = 𝑃 ({1 ∪ 3}) + 𝑅({2}) = 2𝑀2 + 1 + 2𝑀 .

The cost of Copycat and StablePair will both be 𝐶(𝑈) = 𝑃 ({2 ∪ 3}) + 𝑅({1}) =

2(2𝑀2 + 1) + 2𝑀2 = 6𝑀2 + 2. Thus, the competitive ratio is asymptotically close to

3 as M goes to ∞.

Example 9. Let ℎ = 0 and 𝑑𝑘 = 1 for all customers. Let 𝐼1 = (0, 1, 𝑇). Clearly a

good online algorithm must reject customer 1 or else the competitive ratio would be

𝐾/𝑟 after the first arrival. Now we repeat the following algorithm to generate a worst

case adversary.

139

0. Initialize 𝑠 := 0, 𝑡 := 𝑇/2, 𝑢 = 𝑇 , and 𝑘 = 2. Let 𝐼1 = (0, 1, 𝑇).

1. Let 𝐼𝑘 = (𝑠, 1, 𝑡− 𝜖).

2. If online algorithm accepts 𝑘, then go to Step 3. Else, go to Step 4.

3. Set 𝑠 := 𝑡, 𝑡 := 𝑠 + (𝑢− 𝑠)/2, and 𝑢 := 𝑢. Go to Step 1.

4. Set 𝑠 := 𝑠, 𝑡 := 𝑠 + (𝑢− 𝑠)/4, and 𝑢 := 𝑠 + (𝑢− 𝑠)/2. Go to Step 1.

Let this adversary generate 𝑁 arrivals and let 𝑛 be the number of customers that

the algorithm accepts. From the construction, it is clear that the algorithm must

satisfy each customer with separate orders. Thus, the cost incurred by the algorithm

is 𝑛𝐾+(𝑁−𝑛)𝑟. A good feasible solution to the sequence would be the exact opposite

of what the algorithm did. By construction, all the customers that the algorithm

rejected (at least one since it must reject customer 1) can be satisfied by one order.

Thus the cost of this feasible solution is 𝐾 +𝑛𝑟. The competitive ratio is then at least

𝑛𝐾 + (𝑁 − 𝑛)𝑟

𝐾 + 𝑛𝑟
≥ min{𝑁𝑟

𝐾
,
𝐾 − 𝑟

𝑟
}.

For a given 𝐾 and 𝑟, if we take 𝑁 to be large enough, then the competitive ratio

is at least 𝐾/𝑟− 1 which is not a constant. One can extend the proof to discrete time

by making 𝑇 large enough.

Example 10. Consider a single facility with cost 𝑓 . Let 𝑟 =
√

2𝑓 − 𝜖. Let the first

customer that arrives request 1 unit at the facility, so the service cost would be 0. Then

StablePair with scaling factor 𝛼 = 1√
2

rejects customer 1. Let the second customer be

identical to the first, and so StablePair with scaling accepts customer 2. Clearly the

optimal solution is to serve both customers and incur cost 𝑓 , while StablePair incurs

a cost of (1 +
√

2)𝑓 − 𝜖. Therefore, the competitive ratio can be arbitrarily close to

1 +
√

2 as 𝜖 goes to 0.

140

A.2 Proofs

Proof of Lemma 9. Assume there is a setup interval [𝑎, 𝑏] in the solution to 𝑃 (𝑄, 𝑇)

such that 𝑏 − 𝑎 > 𝑟/ℎ. By the ZIO property, there must be an order at 𝑎. This

means there exists a customer 𝑘 with due date at time 𝑏 that pays a per unit holding

cost greater than 𝑟. This implies that the optimal solution of OPT(𝑄, 𝑇) is better

off rejecting 𝑘 and keeping everything else the same, which is a contradiction to the

stability of (𝑄, 𝑇).

Proof of Lemma 10. Assume that [𝑎, 𝑏] does not contain the due date of any cus-

tomers in 𝒜*. By the stability of (𝑄, 𝑇), the rejection cost of the customers served

by the order at 𝑎 are greater than the production costs incurred in the interval [𝑎, 𝑏].

This implies that 𝒜* could be augmented to include all customers having due dates

in [𝑎, 𝑏] without increasing the overall cost. Since we chose 𝒜* to be maximal, then

this is a contradiction.

Proof of Theorem 6. We will show that 𝒜𝐶 ⊆ 𝒜* and thus 𝑃 (𝒜𝐶) ≤ 𝑃 (𝒜*). Since

we will be using the 2-competitive heuristic of [2] for the online ELS problem, then

the production costs will be at most 2𝑃 (𝒜𝐶) ≤ 2𝑃 (𝒜*). From Theorem 3, this gives

a 3-competitive algorithm.

In fact, we will show that there is a sequence of solutions such that 𝒜*
1 ⊆ . . . ⊆ 𝒜*

𝑁

which implies 𝒜𝐶 ⊆ 𝒜*. Consider a customer 𝑘 in 𝒜*
𝑘. Let 𝑘′ ≥ 𝑘 be the first 𝑘′ such

that 𝑘 /∈ 𝒜*
𝑘′ . Then the our production horizon can be partitioned into 𝑇1 = [𝑡1, 𝑡𝑘]

and 𝑇2 = (𝑡𝑘, 𝑡
′
𝑘]. No customers with due dates in 𝑇2 are served by an order in

𝑇1 since customer 𝑘 was rejected and the rejection cost per unit is the same for all

customers. Therefore, the offline optimal solution can be decoupled to solving the

respective problems for the customers with due dates in 𝑇1 and 𝑇2 and then merging

the solutions together. Since the due dates of the customers are chronological, then

the customers corresponding to 𝑇1 are exactly 𝑈𝑘. Therefore, we know there is an

optimal offline solution for 𝑈𝑘 that accepts 𝑘, and thus we can use that to find an

optimal solution to OPT(𝑈𝑘′) that accepts 𝑘.

141

Proof of Lemma 5. Let (𝑄𝑘, 𝑇𝑘) be the stable pair that accepted customer 𝑘. Con-

sider the order that serves customer 𝑘 in the ELS production plan for 𝑃 (𝑄𝑘, 𝑇𝑘), and

call this order date 𝑡. Define 𝑄 = {𝑡} and 𝑇 ′ to be all the customers that are served by

the order at time 𝑡 in 𝑃 (𝑄𝑘, 𝑇𝑘). Clearly (𝑄, 𝑇 ′) ⊆ (𝑄𝑘, 𝑇𝑘) and 𝑘 ∈ 𝑇 ′. The first prop-

erty holds by construction. Note that (𝑄, 𝑇 ′) is a stable pair since (𝑄𝑘, 𝑇𝑘) is stable.

The stability property from (2.1) directly implies that 𝑅(𝑇 ′) ≥ 𝐾+
∑︀

𝑗∈𝑇 ′ ℎ(𝑡𝑗− 𝑡)𝑑𝑗.

Now let 𝑇 = {𝑗 ∈ 𝑈𝑘|𝑡𝑗 ∈ [𝑡, 𝑡 + 𝑟/ℎ]}, which is exactly the second property. Lemma

9 implies that 𝑇 ′ ⊆ 𝑇 . It follows that for all 𝑗 ∈ 𝑇 , 𝑟𝑑𝑗 ≥ ℎ(𝑡𝑗 − 𝑡)𝑑𝑗. There-

fore, the rejection costs of 𝑇 are also greater than the production costs 𝑃 (𝑄, 𝑇), i.e.

𝑅(𝑇) ≥ 𝐾 +
∑︀

𝑗∈𝑇 ℎ(𝑡𝑗 − 𝑡)𝑑𝑗, which is the third property. Properties 1, 2, and 3 are

sufficient conditions for (𝑄, 𝑇) to be a stable pair. Thus (𝑄, 𝑇) is a stable pair with

𝑘 ∈ 𝑇 that satisfies all three properties. The other direction is trivial.

Proof of Theorem 8. The proof is very similar to the proof of Lemma 12, but requires

a more involved construction and analysis. Let 𝑠1, . . . , 𝑠𝑚 denote the times of the

orders in the optimal production plan for 𝑃 (𝒜*). The cost of the optimal production

plan can be decomposed into the total setup costs, 𝐾*, and the total holding costs,

𝐻*. Let 𝒜𝑖 simply denote the customers with item type 𝑖 that are in 𝒜. For each

customer 𝑘 ∈ 𝒜𝑖, let 𝑎𝑘 be the order date that serves customer 𝑘 in the stable pair

solution that StablePair used to accept customer 𝑘, and let 𝑇 𝑖 denote the set of these

order dates sorted from earliest to latest. Construct 𝑇 𝑖 ⊆ 𝑇 𝑖 by processing 𝑇 𝑖 in order

from earliest to latest, and remove any order date that is within 𝑟𝑖/ℎ𝑖 periods of the

previous order date that was not removed. Now consider the following two sets, 𝑋 𝑖

and 𝑌 𝑖. The set 𝑋 𝑖 is defined to be the set of all type 𝑖 customers that have due

date within [𝑡, 𝑡 + 𝑟𝑖/ℎ𝑖] for some 𝑡 ∈ 𝑇 𝑖. Note that 𝑋 𝑖 is not necessarily contained

in the set 𝒜𝑖. The set 𝑌 𝑖 is then defined to be 𝒜𝑖∖𝑋 𝑖. For convenience, let us define

∆ = max𝑖𝑟
𝑖/ℎ𝑖 and 𝛿 = min𝑖𝑟

𝑖/ℎ𝑖.

To construct a solution that serves all the customers in 𝒜, we first create the same

sequence of orders as in 𝑃 (𝒜*) in periods 𝑠1, . . . , 𝑠𝑚 and incur setups costs of 𝐾*.

Note that the item orders are replicated as well. All the customers in 𝒜∩𝒜* are then

served in the the same way as in the production plan for 𝑃 (𝒜*), and thereby incur

142

holding costs of at most 𝐻*. Now we create a sequence of duplicate orders shifted

back by time ∆, i.e. at periods 𝑠1 −∆, . . . , 𝑠𝑚 −∆, and incur another 𝐾*.

Next, consider each item type 𝑖 separately. Assume for now that for each order

date 𝑡 ∈ 𝑇 𝑖, there exists an order 𝑠𝑗 in the production plan for 𝑃 (𝒜*), such that either

𝑠𝑗 ∈ [𝑡−∆, 𝑡] or 𝑠𝑗 −∆ ∈ [𝑡−∆, 𝑡]. Moreover, order 𝑠𝑗 (or 𝑠𝑗 −∆) includes item 𝑖.

Assuming this property holds, one can bound the holding costs for the customers in

𝒜𝑖 ∩ ℛ*. Specifically, the property ensures that all type 𝑖 customers with due dates

in [𝑡, 𝑡 + 𝑟𝑖/ℎ𝑖] can be served with holding cost at most (∆ + 𝑟𝑖/ℎ𝑖)ℎ𝑖 per unit. By

definition of 𝑋 𝑖, this means that the customers in 𝑋 𝑖 ∩ 𝒜𝑖 ∩ ℛ* will be served with

total holding costs at most (∆/𝛿 + 1)𝑅(𝑋 𝑖 ∩𝒜𝑖 ∩ℛ*). The remaining customers left

to be served are those in 𝑌 𝑖 ∩ℛ*. Consider customer 𝑘 ∈ 𝑌 𝑖 ∩ℛ*. By construction

of 𝑇 𝑖, it follows that there exists a 𝑡 ∈ 𝑇 𝑖 such that 𝑡 ≤ 𝑎𝑘 ≤ 𝑡+𝑟𝑖/ℎ𝑖 ≤ 𝑎𝑘 +𝑟𝑖/ℎ𝑖. In

addition, from the definition of 𝑎𝑘 and Lemma 9, it follows that 𝑡𝑘 ∈ [𝑎𝑘, 𝑎𝑘 + 𝑟𝑖/ℎ𝑖].

By the property assumed above, there exists an order that includes item type 𝑖 within

∆ before 𝑡. The total holding cost from that order to 𝑡, 𝑡 to 𝑎𝑘, and 𝑎𝑘 to 𝑡𝑘 is at

most (∆ + 2𝑟𝑖/ℎ𝑖)ℎ𝑖 per unit.

It is now sufficient to ensure that indeed for each 𝑡 ∈ 𝑇 𝑖, there exists an order of

type 𝑖 within ∆ time periods earlier than 𝑡. To achieve this, extra item orders will be

added to the construction. From Lemma 10, it then follows that the setup interval

corresponding to 𝑡 intersected some optimal setup interval starting at 𝑠𝑗. (If there is

a choice of intersections, choose 𝑠𝑗 that contains an item order of type 𝑖 if one exists.)

From Lemma 9, it follows that 𝑠𝑗 −∆ ≤ 𝑡 ≤ 𝑠𝑗 + ∆. We now consider two cases and

show how to enforce the property in each case.

Case 1: There is a type 𝑖 customer in 𝒜* with due date in [𝑡, 𝑡+𝑟𝑖/ℎ𝑖]. By

construction, this implies that there are type 𝑖 orders at 𝑠𝑗 and 𝑠𝑗 −∆, respectively.

Case 2: There is no type 𝑖 customer in 𝒜* with due date in [𝑡, 𝑡 + 𝑟𝑖/ℎ𝑖].

If 𝑠𝑗 − ∆ ≤ 𝑡 < 𝑠𝑗, then we place an extra item order of type 𝑖 at the joint order

located at time 𝑠𝑗 −∆. Otherwise, 𝑠𝑗 ≤ 𝑡 ≤ 𝑠𝑗 + ∆ and we place the extra order of

type 𝑖 at 𝑠𝑗. Since 𝑡 corresponds to a setup interval from a stable pair solution, it

follows from (2.1) that there exists a set of customers with due dates in [𝑡, 𝑡 + 𝑟𝑖/ℎ𝑖]

143

whose rejection costs are greater than 𝐾𝑖. Under the case assumption, the type 𝑖

demands with due dates in [𝑡, 𝑡 + 𝑟𝑖/ℎ𝑖] are all in ℛ*. Furthermore, all customers

with due dates in [𝑡, 𝑡 + 𝑟𝑖/ℎ𝑖] are in 𝑋 𝑖. Thus, the extra item orders have cost at

most 𝑅(𝑋 𝑖 ∩ℛ*). Each customer in 𝑋 𝑖 ∩ℛ* can be used at most once to pay for an

extra item order by the spacing of the times we enforced in the construction of 𝑇 𝑖.

The total cost incurred by the construction is 𝐾* +𝐻* +𝐾* +
∑︀𝑀

𝑖=1(𝑅(𝑋 𝑖∩ℛ*)+

(∆/𝛿 + 1)𝑅(𝑋 𝑖 ∩ 𝒜𝑖 ∩ ℛ*) + (∆/𝛿 + 2)𝑅(𝑌 𝑖 ∩ ℛ*)) ≤ 2𝑃 (𝒜*) + 𝑅(ℛ*) + (∆/𝛿 +

1)𝑅(𝒜∩ℛ*). Combining Theorems 1 and 2 with this bound completes the proof.

Proof of Lemma 6. The proof is analogous to the proof of Lemma 5. Let (𝑄𝑘, 𝑇𝑘) be

the stable pair that the StablePair Algorithm used to accept customer 𝑘. Let 𝑡 be

the order that serves customer 𝑘 in the JR solution of 𝑃 (𝑄𝑘, 𝑇𝑘). Define 𝑄 = {𝑡}, 𝑇 ′

to be all the customers served by the order at 𝑡, and ℐ ′ to be the set of items ordered

at 𝑡 in the solution of 𝑃 (𝑄𝑘, 𝑇𝑘). Note that (𝑄, 𝑇 ′) must be stable pair with 𝑘 ∈ 𝑇 ′.

Define 𝑇 𝑖, ℐ, and 𝑇 according to Properties 1, 2, and 3. Note that 𝑇 ′ ⊆ 𝑇 by Lemma

9 and Property 2. Since 𝑅(𝑇 ′) ≥ 𝐾0 +
∑︀

𝑖∈ℐ′ 𝐾𝑖 +
∑︀

𝑗∈𝑇 ′ ℎ(𝑡𝑗 − 𝑡)𝑑𝑗 by (2.1), then it

is easy to see that 𝑅(𝑇) ≥ 𝐾0 +
∑︀

𝑖∈ℐ 𝐾𝑖 +
∑︀

𝑗∈𝑇 ℎ(𝑡𝑗 − 𝑡)𝑑𝑗, satisfying Property 4.

Therefore, (𝑄, 𝑇) is a stable pair with 𝑘 ∈ 𝑇 that satisfies all four properties. The

other direction is trivial.

Proof of Lemma 13. If there is a customer paying more than 𝑟, then the solution

OPT(𝑄, 𝑇) can be improved by rejecting that customer and keeping everything else

the same. This would contradict the stability of (𝑄, 𝑇).

Proof of Lemma 14. Assume that 𝑆𝑘 ∩ 𝒜* = ∅. This means that the solution to

OPT(𝑈) rejected the entire set of customers in 𝑆𝑘. However, by stability of (𝑄𝑘, 𝑇𝑘)

and (2.1) it follows that 𝑃 ({𝑞𝑘}, 𝑆𝑘) ≤ 𝑅(𝑆𝑘). Therefore, adding the customers in 𝑆𝑘

to 𝒜* will not increase the total cost. This is a contradiction since we chose 𝒜* to be

a maximal solution.

Proof of Lemma 16. As in Lemma 4, we can show that 𝛼𝑅(ℛ𝛼 ∩𝒜*) ≤ 𝑃 (ℛ𝛼 ∩𝒜*).

Adding 𝛼𝑅(ℛ𝛼 ∩ℛ*) and dividing by 𝛼 completes the proof.

144

Proof of Lemma 17. We use the same notation defined in Section 2.7.5. Lemma 13

now holds for 𝛼𝑟. Lemma 14 still holds because the rejection costs are scaled down,

so (𝑞𝑘, 𝑆𝑘) must be a stable pair under the original rejection costs as well.

Similar to Lemma 15, we will construct a solution with bounded costs. Specifically,

open all of the facilities in the production plan for 𝑃 (𝒜*) and serve each customer

in 𝒜𝛼 by the nearest facility to its location. Consider customer 𝑘 ∈ 𝒜𝛼 ∩ ℛ*. By

the stability of (𝑞𝑘, 𝑆𝑘) under the scaling and Lemma 13, it follows that 𝑐(𝑘, 𝑞𝑘) and

𝑐(𝑞𝑘, 𝑙) are both at most 𝛼𝑟. It also follows that 𝑐(𝑙, 𝑞*𝑙) ≤ 𝑟 by stability of the optimal

solution and using Lemma 13 with the unscaled costs. Thus, 𝑐(𝑘, 𝑞*𝑙) ≤ (2𝛼 + 1)𝑟,

which completes the proof.

Proof of Lemma 7. Assume 𝑘 was accepted by StablePair, and let 𝑗 be the facility

that served 𝑘 in the corresponding production plan. Now define 𝑄 and 𝑇 as described

in the lemma. The rest of the proof is almost identical to the proof of Lemma 5 and

thus we omit it.

A.3 Figures

Conservative Scenario
Maximum performance ratio Final performance ratio

r Copycat StablePair StablePair(2) Copycat StablePair StablePair(2)
1 1 1 1 1 1 1
5 1.51 1.50 1.86 1.45 1.40 1.11
10 1.52 1.50 2.29 1.24 1.23 1.06

Table A.1: For each value of 𝑟, we do 100 experiments, each with 𝑁 = 500 customer
arrivals (𝐾 = 100 and ℎ = 1). We report the maximum performance ratio observed
over all experiments and customer arrivals. We also report the average final perfor-
mance ratio after the final customer has arrived. StablePair(2) denotes the StablePair
Algorithm with a scaling factor of 2.

145

More Demands Scenario
Maximum performance ratio Final performance ratio

r Copycat StablePair StablePair(2) Copycat StablePair StablePair(2)
1 1.40 1.40 1.75 1.21 1.21 1.25
5 1.73 1.73 2.64 1.26 1.23 1.04
10 1.73 1.73 2.5 1.11 1.05 1

Table A.2: For each value of 𝑟, we do 100 experiments, each with 𝑁 = 500 customer
arrivals (𝐾 = 100 and ℎ = 1). We report the maximum performance ratio observed
over all experiments and customer arrivals. We also report the average final perfor-
mance ratio after the final customer has arrived. StablePair(2) denotes the StablePair
Algorithm with a scaling factor of 2.

Large Orders First Scenario
Maximum performance ratio Final performance ratio

r Copycat StablePair StablePair(2) Copycat StablePair StablePair(2)
1 1.31 1.31 1.56 1.19 1.19 1.18
5 1.26 1.24 1.21 1.15 1.06 1
10 1.11 1.06 1.03 1 1 1

Table A.3: For each value of 𝑟, we do 100 experiments, each with 𝑁 = 500 customer
arrivals (𝐾 = 100 and ℎ = 1). We report the maximum performance ratio observed
over all experiments and customer arrivals. We also report the average final perfor-
mance ratio after the final customer has arrived. StablePair(2) denotes the StablePair
Algorithm with a scaling factor of 2.

146

Appendix B

Lower Bound for Steiner Tree with

Online Customer Selection

In this section, we derive a lower bound on the competitive ratio for the Steiner tree

problem with online customer selection. The proof is similar in spirit to Imase and

Waxman [46] who provided a lower bound for the online Steiner problem without

customer selection. Note that this proof also holds for the Steiner forest, single-

commidity rent-or-buy problem, and multi-commodity rent-or-buy problems with

online customer selection since they are all generalizations.

Theorem 18. The competitive ratio for any deterministic or randomized algorithm

for the Steiner tree problem with online customer selection is Ω
(︀√

log𝑁
)︀
.

Proof. We begin by constructing the same graph as in Imase and Waxman [46]. The

procedure to build graph 𝐺𝑘 is as follows. Begin with two nodes, 𝑣0 (bottom) and 𝑣1

(top) connected by an edge of length 1, and call this graph 𝐺0. Now to create graph

𝐺𝑘, take every edge in 𝐺𝑘−1 and replace it by 2 paths, each consists of 2 new edges

and 1 new node. The lengths of the 4 new edges will each be half of the length of the

original edge, so their length is 2𝑘. The new nodes are called level 𝑘 nodes, and each

pair of new nodes created are called 𝑘-adjacent to each other. See Figure B-1, B-2,

B-3, and B-4 for an example of 𝐺3 (nodes are labeled according to their level, each

edge is of length 1/8).

147

Figure B-1: In this figure, 𝑉 𝒜 = {0, 1, 2, 3}.

Figure B-2: In this figure, 𝑉 𝒜 = {0}.

148

Figure B-3: In this figure, 𝑉 𝒜 = {0, 2, 3}.

Figure B-4: In this figure, 𝑉 𝒜 = {0, 1, 3}.

149

The procedure below demonstrates how we will generate customers. We begin

by having 1 customer at level 1, 2 customers at level 2, 4 customers at level 3,

and so on until we have 2𝑘−1 customers at level 𝑘. The rejection cost of a level 𝑖

customer is 𝑟𝑖 = 1/(2𝑖−1
√
𝑘). 𝑉 𝒜 and 𝑉 ℛ̂ denote the node levels that are accepted

and rejected, respectively, by the feasible solution we will consider. See Figures B-1-

B-4 for examples on 𝐺3 of the customer sequence.

1. Let 𝑉 := 𝑣0, 𝑖 := 0, 𝑉 𝒜 = {0} and 𝑉 ℛ̂ = ∅. Let the first two customers

be 𝑣0 and 𝑣1, each with infinite rejection cost (must accept).

2. Let 𝑖 = 𝑖 + 1. Set 𝑉𝑖 :=left i-level nodes of 𝑉 . Generate 2𝑖−1 customers,

one at each node in 𝑉𝑖, each with rejection cost of 𝑟𝑖 = 1/(2𝑖−1
√
𝑘).

3. With probability 1−1/
√
𝑘, set 𝑉 := 𝑉𝑖 and let 𝑉 𝒜 = {𝑖}∪𝑉 𝒜. Otherwise,

with probability 1/
√
𝑘, set 𝑉 :=i-adjacent nodes of 𝑉𝑖 and 𝑉 ℛ̂ = {𝑖}∪𝑉 ℛ̂.

4. If 𝑖 < 𝑘, go to Step 2. Else, Stop.

By construction, it’s clear that all the customer nodes with levels in 𝑉 𝒜 can be

connected by a single path of length 1. The cost of rejecting all the nodes at any given

level is 2𝑖−1𝑟𝑖 = 2𝑖−1(1/(2𝑖−1
√
𝑘)) = 1/

√
𝑘. The expected number of levels that are

rejected is E[|𝑉 ℛ̂|], which we can compute to be (1/
√
𝑘)𝑘 =

√
𝑘 since the probability

that any level is in 𝑉 ℛ̂ is 1/
√
𝑘. The total cost of the feasible solution implied by 𝒜

and ℛ̂ is then 1 + E[|𝑉 ℛ̂|]/
√
𝑘 = 2.

Now let 𝑉 𝒜 be the levels where an online algorithm accepted at least half of the

customers, and let 𝑉 ℛ be the levels where an online algorithm rejected at least half of

the customers. By construction, in expectation 1/
√
𝑘 of the levels in 𝑉 𝒜 will be in 𝑉 ℛ̂

due to the random customer distribution. By construction, nodes in level 𝑖 ∈ 𝑉 ℛ̂ can

only be connected to any other nodes if they each pay a cost of at least 1/2𝑖. Therefore,

the cost of connecting half the nodes in any level of 𝑉 ℛ̂ is (1/2)(2𝑖−1)(1/2𝑖) = 1/4.

150

Since on average 1/
√
𝑘 of levels in 𝑉 𝒜 are in in 𝑉 ℛ̂, then the cost of serving nodes in

levels of 𝑉 𝒜 is at least E[|𝑉 𝒜|]/4
√
𝑘. The cost of rejecting half of the nodes in levels

of |𝑉 ℛ| is computed similarly as before, and is E[|𝑉 ℛ|]/2
√
𝑘. Therefore the total cost

of the online algorithm is at least E[|𝑉 𝒜|]/4
√
𝑘 + E[|𝑉 ℛ|]/4

√
𝑘 =
√
𝑘/4.

Thus, the cost ratio between the online and feasible solution is 𝑂(
√
𝑘). So if we

have 2 + 20 + 21 + . . . + 2𝑘 = 𝑁 total customers, then 𝑘 is at most Θ(log𝑁) which

completes the result.

151

THIS PAGE INTENTIONALLY LEFT BLANK

152

Appendix C

Chapter 3 Appendix

C.1 Additional Proofs

C.1.1 Proof of Theorem 1 - Optimal Fulfillment Policy

Here we prove Theorem 1 under a more general setting, where the retailer is selling

𝑁 transparent products and an opaque product. All of the transparent products are

assumed to have the same demand rate. (Symbols W and W+ denote the sets of

integers and strictly positive integers, respectively. The set of integers from 1 to 𝑛 is

denoted by [𝑛].)

For each inventory position x ∈W𝑁 , where 𝑥𝑖 denote the number of inventories of

product 𝑖 on hand, let 𝐽(x) denote the expected number of products sold before the

next replenishment under the optimal inventory control policy. Then, by definition,

𝐽(x) = 0 if 𝑥𝑖 = 0, for some 𝑖 ∈ [𝑁]. If x ∈ (W+)𝑁 , then

𝐽(x) = 1 +
1− 𝑞

𝑁

𝑁∑︁
𝑖=1

𝐽(x− e𝑖) + 𝑞max
𝑖∈[𝑁]

𝐽(x− e𝑖), (C.1)

where e𝑖 is the 𝑖-th standard basis vector in ℛ𝑁 , i.e., 𝑒𝑖𝑖 = 1, 𝑒𝑖𝑗 = 0 for all 𝑗 ∈

[𝑁], 𝑗 ̸= 𝑖. Therefore, the optimal inventory policy can be formulated as a discrete-

time stochastic dynamic program, where 𝐽(·) is the value function. Next, we establish

two properties of the value function which will allow us to the establish the optimal

153

inventory policy.

Lemma 33. 𝐽(.) is symmetric. That is, for any x ∈ (W+)𝑁 , and any 𝜎 that is a

permutation of [𝑁], 𝐽(x) = 𝐽(x𝜎), where x𝜎 = [𝑥𝜎(1), 𝑥𝜎(2), ..., 𝑥𝜎(𝑁)].

Proof. For any x ∈W𝑁 ∖ (W+)𝑁 , 𝐽(x) = 0 and is hence symmetric in W𝑁 ∖ (W+)𝑁 .

For any x ∈ (W+)𝑁 , since the recursive definition of 𝐽(x) is symmetric, we must have

that 𝐽(.) is symmetric under (W+)𝑁 .

Lemma 34. For any x ∈ (W+)𝑁 and for any 𝑖, 𝑗 where 𝑥𝑖 ≤ 𝑥𝑗, 𝑖 ̸= 𝑗, 𝐽(x) >

𝐽(x− e𝑖 + e𝑗).

Proof. We will prove Lemma 34 by induction on
∑︀𝑁

𝑘=1 𝑥𝑘. If
∑︀𝑁

𝑘=1 𝑥𝑘 = 𝑁 , we

must have 𝑥𝑘 = 1 for all 𝑘 ∈ [𝑁] and by definition, 𝐽(x) = 1, while for any 𝑖 ̸= 𝑗,

𝐽(x− e𝑖 + e𝑗) = 0.

Suppose Lemma 34 is true for any x where
∑︀𝑁

𝑘=1 𝑥𝑘 ≤ 𝑡. Consider an arbitrary

vector x where
∑︀𝑁

𝑘=1 𝑥𝑘 = 𝑡 + 1, and an pair of distinct integers 𝑖, 𝑗 where 𝑥𝑖 ≤ 𝑥𝑗.

For notational simplicity, we let x̂ = x− e𝑖 + e𝑗.

Now, the difference between 𝐽(x)− 𝐽(x̂) can be expressed as

𝐽(x)− 𝐽(x̂) =
1− 𝑞

𝑁

𝑁∑︁
𝑘=1

(𝐽(x− e𝑘)− 𝐽(x̂− e𝑘)) + 𝑞(max
𝑘∈[𝑁]

𝐽(x− e𝑘)− max
𝑘∈[𝑁]

𝐽(x̂− e𝑘)).

(C.2)

For any 𝑘 ∈ [𝑁], if 𝑘 ̸= 𝑗, because 𝑥𝑖−𝑒𝑘𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑗 = 𝑥𝑗−𝑒𝑘𝑗 , and
∑︀𝑁

𝑙=1(𝑥𝑙−𝑒𝑘𝑙) = 𝑡,

by induction hypothesis, we have

𝐽(x− e𝑘) > 𝐽(x̂− e𝑘),∀𝑘 ∈ [𝑁] ∖ {𝑗}. (C.3)

For 𝑘 = 𝑗, if 𝑥𝑖 = 𝑥𝑗, then x̂− e𝑗 = x− e𝑖 is a permutation of x− e𝑗, and by Lemma

33, 𝐽(x − e𝑗) = 𝐽(x̂ − e𝑗); if 𝑥𝑖 < 𝑥𝑗, then 𝑥𝑖 − 𝑒𝑗𝑖 = 𝑥𝑖 ≤ 𝑥𝑗 − 1 = 𝑥𝑗 − 𝑒𝑗𝑗 and by

induction hypothesis, 𝐽(x− e𝑗) ≥ 𝐽(x̂− e𝑗). Therefore, we have

𝐽(x− e𝑗) ≥ 𝐽(x̂− e𝑗). (C.4)

154

Let 𝑘* be such that 𝐽(x̂− e𝑘
*
) = max𝑘∈[𝑁] 𝐽(x̂− e𝑘). Then by Inequalities (C.3)

and (C.4), we have that 𝐽(x− e𝑘
*
) ≥ 𝐽(x̂− e𝑘

*
). This implies

max
𝑘∈[𝑁]

𝐽(x− e𝑘) ≥ 𝐽(x− e𝑘
*
) ≥ max

𝑘∈[𝑁]
𝐽(x̂− e𝑘). (C.5)

Combining Inequalities (C.3)-(C.5) with Equation (C.2), we obtain that 𝐽(x)−𝐽(x̂) >

0.

Note that if 𝑥𝑖 > 𝑥𝑖, we must have 𝑥𝑖 − 1 ≥ 𝑥𝑗, and by Lemma 34, we have

𝐽(x − e𝑖) > 𝐽(x − e𝑗). This in turn implies that 𝑘′ ∈ arg max𝑘∈[𝑁] 𝐽(x − e𝑘) if and

only if 𝑘′ ∈ arg max𝑘∈[𝑁] 𝑥𝑘. Therefore, the optimal inventory policy when an opaque

customer arrives is always to assign the customer with a product with the highest

number of inventories, which proves Theorem 1.

C.1.2 Proof of Theorem 2

Proof. For part (a), observe that we can model the replenishments according to a

renewal process. The length of each renewal period is the sum of 𝑅(𝑞, 𝑐) interarrivals,

each with mean time 1/𝜆. Since 𝑅(𝑞, 𝑐) is a random variable, then Wald’s equality

implies that the time between orders is exactly E[𝑅(𝑞, 𝑐)]/𝜆. (Note that whether or

not the customer chooses an opaque product is independent of his interarrival time,

and thus Wald’s equality still holds.) Therefore, the ordering cost rate is 𝐾 divided

by the average length of the time between replenishments.

For part (b), the savings is evaluated by looking at (cost of no opaque - cost of

opaque level 𝑞)/(cost of no opaque).

For part (c), the relative savings is evaluated by looking at (cost of no opaque -

cost of opaque level 𝑞)/ (cost of no opaque - cost of all opaque).

For part (d), we compute the average inventory in the system and multiply by 𝐻.

The initial inventory at the beginning of every renewal is 2𝑐. The ending inventory

just before a renewal occurs is 2𝑐 − 𝑅(𝑞, 𝑐) + 1, and thus the average inventory on

hand is (4𝑐 + 1− E[𝑅(𝑞, 𝑐)])/2.

For parts (e) and (f), we use the same idea as in parts (b) and (c).

155

C.1.3 Proof of Theorem 3

First, we establish a simple lemma that lower bounds the change in the expected

number of customers served between consecutive replenishments, E[𝑅(𝑞, 𝑐)], when we

increase 𝑞 from 0 to a strictly positive real number.

Lemma 35. For any 𝑐 > 1, 𝑞 > 0, E[𝑅(𝑞, 𝑐)] − E[𝑅(0, 𝑐)] > P[𝑅(0, 𝑐) < 2𝑐 − 1]𝑞.

Moreover,

lim
𝑞→0+

E[𝑅(𝑞, 𝑐)]− E[𝑅(0, 𝑐)]

𝑞
> 0.

Proof. For any 𝑞 > 0, consider the following opaque fulfillment policy: the retailer

randomly selects product to fulfills the opaque purchase if the assignment does not

trigger a replenishment, and fulfills the opaque purchase with the product of the

highest inventory otherwise. We call this the “delayed-opaque” policy because it does

not take advantage of opaque purchases unless it would result in an order. Under

the “delayed-opaque” policy, let the number of customers served between consecutive

replenishments be 𝑅′(𝑞, 𝑐). By Theorem 1, we must have that E[𝑅(𝑞, 𝑐)] ≥ E[𝑅′(𝑞, 𝑐)].

Observe that under the “delayed-opaque” policy, the retailer’s inventory position

behaves exactly the same as the traditional selling strategy. When the retailer is forced

to replenish under traditional selling, the “delayed-opaque” policy would prolong the

replenishment by at least one customer if the last customer buys a opaque product,

and the retailer has more than 1 unit of inventory for one of its product. Therefore,

we have

E[𝑅′(𝑞, 𝑐)] =

P[𝑅(0, 𝑐) = 2𝑐− 1](2𝑐− 1) + P[𝑅(0, 𝑐) < 2𝑐− 1]E[𝑅′(𝑞, 𝑐)|𝑅(0, 𝑐) < 2𝑐− 1]

≥ P[𝑅(0, 𝑐) = 2𝑐− 1](2𝑐− 1) + P[𝑅(0, 𝑐) < 2𝑐− 1](E[𝑅(0, 𝑐)|𝑅(0, 𝑐) < 2𝑐− 1] + 𝑞)

= E[𝑅(0, 𝑐)] + P[𝑅(0, 𝑐) < 2𝑐− 1]𝑞.

Note that for a fixed 𝑐, the expected value of 𝑅(𝑞, 𝑐), E[𝑅(𝑞, 𝑐)] can expressed as

a polynomial of 𝑞. Therefore, the partial derivative of E[𝑅(𝑞, 𝑐)] at 𝑞 always exists.

156

And because P[𝑅(0, 𝑐) < 2𝑐− 1] > 0, we have

lim
𝑞→0+

E[𝑅(𝑞, 𝑐)]− E[𝑅(0, 𝑐)]

𝑞
≥ lim

𝑞→0+

P[𝑅(0, 𝑐) < 2𝑐− 1]𝑞

𝑞
> 0.

Proof of Theorem 3. For the part(a), by Lemma 35, 𝑞(0) = 0, and the condition that

lim𝛿→0+
𝑞(𝛿)−𝑞(0)

𝛿
exists and is strictly positive, we have that

lim
𝛿→0+

E[𝑅(𝑞(𝛿), 𝑐)]− E[𝑅(0, 𝑐)]

𝛿
≥ lim

𝛿→0+

P[𝑅(0, 𝑐) < 2𝑐− 1]𝑞(𝛿)

𝛿
> 0. (C.6)

By definition

Π(𝛿) = 𝜆(𝛿)(1− 𝑞(𝛿)𝛿 − 𝐾

E[𝑅(𝑞(𝛿), 𝑐)]
− (4𝑐− E[𝑅(𝑞(𝛿), 𝑐)] + 1)𝐻

2𝜆(𝛿)
)

≥ 𝜆(0)(1− 𝑞(𝛿)𝛿 − 𝐾

E[𝑅(𝑞(𝛿), 𝑐)]
− (4𝑐− E[𝑅(𝑞(𝛿), 𝑐)] + 1)𝐻

2𝜆(0)
). (C.7)

Define Π1(𝛿) := 1 − 𝑞(𝛿)𝛿, Π2(𝛿) := 𝐾
E[𝑅(𝑞(𝛿),𝑐)]

, and Π3(𝛿) := (4𝑐−E[𝑅(𝑞(𝛿),𝑐)]+1)𝐻
2𝜆(0)

.

Then we have

Π(0) = 𝜆(0)(Π1(0)− Π2(0)− Π3(0)).

Combine this with Equation C.7, we have

Π(𝛿)− Π(0) ≥ 𝜆(0)(Π1(𝛿)− Π1(0)− (Π2(𝛿)− Π2(0))− (Π3(𝛿)− Π3(0))).

Therefore, the right derivative of Π(𝛿) at 0 is lower-bounded by

𝜆(0)(lim
𝛿→0+

Π1(𝛿)− Π1(0)

𝛿
− lim

𝛿→0+

Π2(𝛿)− Π2(0)

𝛿
− lim

𝛿→0+

Π3(𝛿)− Π3(0)

𝛿
).

Now,

lim
𝛿→0+

Π1(𝛿)− Π1(0)

𝛿
= lim

𝛿→0+

1− 𝑞(𝛿)𝛿 − 1− 0

𝛿
= lim

𝛿→0+
𝑞(𝛿) = 0, (C.8)

157

lim
𝛿→0+

Π2(𝛿)− Π2(0)

𝛿
= lim

𝛿→0+

𝐾E[𝑅(0, 𝑐)]−𝐾E[𝑅(𝑞(𝛿), 𝑐)]

𝛿E[𝑅(𝑞(𝛿), 𝑐)]E[𝑅(0, 𝑐)]

=
𝐾

E[𝑅(0, 𝑐)]2
lim
𝛿→0+

E[𝑅(0, 𝑐)]− E[𝑅(𝑞(𝛿), 𝑐)]

𝛿
< 0, (C.9)

and lim
𝛿→0+

Π3(𝛿)− Π3(0)

𝛿
= lim

𝛿→0+

𝐻(E[𝑅(0, 𝑐)]− E[𝑅(𝑞(𝛿), 𝑐)])

𝜆(0)𝛿
< 0, (C.10)

where the Inequalities in Equations C.9 and C.10 hold because of Equation C.6.

Combine Equations (C.8-C.10), we obtain

𝜆(0)(lim
𝛿→0+

Π1(𝛿)− Π1(0)

𝛿
− lim

𝛿→0+

Π2(𝛿)− Π2(0)

𝛿
− lim

𝛿→0+

Π3(𝛿)− Π3(0)

𝛿
) > 0,

which implies that the right derivative of Π(𝛿) is strictly positive.

With the formula above, we immediately get that there exists some 𝛿0 where
Π(𝛿0)−Π(0)

𝛿
> 0, and therefore Π(𝛿0)− Π(0).

For the second part of Theorem 3, because 𝑞(0) = 0 and lim𝛿→0+
𝑞(𝛿)−𝑞(0)

𝛿
exists,

lim𝛿→0+ 𝑞(𝛿) = 𝑞(0) = 0. Therefore, we get that the right derivative of the revenue

rate is

= lim
𝛿→0+

𝜆(𝛿)(1− 𝑞(𝛿)𝛿)− 𝜆(0)

𝛿
= lim

𝛿→0+

𝜆(𝛿)− 𝜆(0)

𝛿
− lim

𝛿→0+
𝜆(𝛿)𝑞(𝛿)

= lim
𝛿→0+

𝜆(𝛿)− 𝜆(0)

𝛿

> 0.

Then there must exist some 𝛿0 > 0 where 𝜆(𝛿)(1−𝑞(𝛿)𝛿)−𝜆(0)
𝛿

and Π(𝛿0)−Π(0)
𝛿0

> 0. This

implies that Π1(𝛿0)) > Π1(0) and Π(𝛿0) > Π(0).

C.1.4 Proof of Lemma 4

Proof. Observe that 𝑛1
𝑡 (0)−𝑛2

𝑡 (0) =
∑︀𝑡

𝑖=1 𝑋𝑖, where 𝑋𝑖 are IID random variables that

equal to 1 and -1 with probability 0.5 (and therefore mean of 0 and standard deviation

of 1). Also, note that for any integer 𝑥 that is between 𝑐 and 2𝑐−1, if 𝑅(0, 𝑐) = 𝑥, then

158

𝑀𝑥(0) = |𝑛1
𝑥(0)−𝑛2

𝑥(0)| = 𝑐− (𝑥− 𝑐) = 2𝑐−𝑥 since we know we sold exactly 𝑐 of one

product for a replenishment to occur. Because 𝑀2𝑐(0) = |𝑛1
𝑥(0)− 𝑛2

𝑥(0) +
∑︀2𝑐

𝑖=𝑥+1 𝑋𝑖|

and P[|
∑︀2𝑐

𝑖=𝑥+1 𝑋𝑖| ≤ 2𝑐− 𝑥] = 1, we thus know that

E[𝑀2𝑐(0)|𝑀𝑥(0) = 2𝑐− 𝑥] = E[|2𝑐− 𝑥 +
2𝑐∑︁

𝑖=𝑥+1

𝑋𝑖|] = E[2𝑐− 𝑥 +
2𝑐∑︁

𝑖=𝑥+1

𝑋𝑖] = 2𝑐− 𝑥.

Therefore, we know that E[𝑀𝑥(0)|𝑅(0, 𝑐) = 𝑥] = E[𝑀2𝑐(0)|𝑅(0, 𝑐) = 𝑥] for any

integer 𝑥 that is between 𝑐 and 2𝑐 − 1. Now since P[𝑐 ≤ 𝑅(0, 𝑐) ≤ 2𝑐 − 1] = 1 and

𝑅(1, 𝑐) = 2𝑐− 1, we have that

E[𝑀2𝑐(0)] = E[𝑀𝑅(0,𝑐)(0)] = 2𝑐− E[𝑅(0, 𝑐)] = 1 + E[𝑅(1, 𝑐)−𝑅(0, 𝑐)]. (C.11)

By Central Limit Theorem (CLT),
∑︀2𝑐

𝑖=1 𝑋𝑖√
2𝑐

converges in distribution 𝑁(0, 1), the

normal distribution with zero mean and standard deviation of 1. Because

E[(

∑︀2𝑐
𝑖=1𝑋𝑖√

2𝑐
)2] =

∑︀2𝑐
𝑖=1 E[𝑋2

𝑖] +
∑︀

1≤𝑖<𝑗≤2𝑐 E[𝑋𝑖𝑋𝑗]

2𝑐
= E[𝑋2

1] = 1,

it implies (see Example 5 on pg. 351 of [41]) that the sequence of random variables,

{
∑︀2𝑐

𝑖=1 𝑋𝑖√
2𝑐

: 𝑐 ≥ 1} is uniformly integrable. By Skorokhod’s representation theorem, we

can find random variables such that 𝑌𝑐 converges almost surely to 𝑌 , 𝑌𝑐 has the same

distribution as
∑︀2𝑐

𝑖=1 𝑋𝑖√
2𝑐

for any positive integer 𝑐, and 𝑌 has the same distribution as

𝑁(0, 1). Because {𝑌𝑐 : 𝑐 ≥ 1} is uniformly integrable, by Theorem 3 on pg. 351 of

[41], we have

lim
𝑐→∞

E[|
∑︀2𝑐

𝑖=1𝑋𝑖√
2𝑐
|] = lim

𝑐→∞
E[|𝑌𝑐|] = E[|𝑌 |] = E[|𝑁(0, 1)|] =

√︂
2

𝜋
. (C.12)

Finally, combining Equations C.11 and C.12, we have

lim
𝑐→∞

E[𝑅(1, 𝑐)−𝑅(0, 𝑐)]√
2𝑐

= lim
𝑐→∞

E[−1 + 𝑀2𝑐(0)]√
2𝑐

= lim
𝑐→∞

−1 + E[|
∑︀2𝑐

𝑖=1𝑋𝑖|]√
2𝑐

=

√︂
2

𝜋
.

159

C.1.5 Proof of Lemma 22

Proof. Given 𝑐 ≤ 𝑥 ≤ 2𝑐 − 1, if 𝑀𝑥(𝑞) ≥ 2𝑐 − 𝑥, then either 𝑛1
𝑥 − 𝑛2

𝑥 ≥ 2𝑐 − 𝑥 or

𝑛2
𝑥−𝑛1

𝑥 ≥ 2𝑐−𝑥. By definition, 𝑛1
𝑥 +𝑛2

𝑥 = 𝑥, and thus, we have 2𝑛1
𝑥 ≥ 2𝑐 or 2𝑛2

𝑥 ≥ 2𝑐.

This implies that a replenishment which implies that 𝑅(𝑞, 𝑐) ≤ 𝑥.

On other hand, assume 𝑅(𝑞, 𝑐) ≤ 𝑥 and let 𝑥′ = 𝑅(𝑞, 𝑐). Note that by definition of

𝑅(𝑞, 𝑐), max{𝑛1
𝑥′ , 𝑛2

𝑥′} = 𝑐 and min{𝑛1
𝑥′ , 𝑛2

𝑥′} = 𝑥′−𝑐. Thus, we have 𝑀𝑥′(𝑞) = 2𝑐−𝑥′.

Now, because 𝑀𝑡+𝑠(𝑞) ≥ 𝑀𝑡(𝑞) − 𝑠, then we have that 𝑀𝑥(𝑞) = 𝑀𝑥′+(𝑥−𝑥′)(𝑞) ≥

𝑀𝑥′(𝑞)− (𝑥− 𝑥′) = 2𝑐− 𝑥′ − (𝑥− 𝑥′) = 2𝑐− 𝑥.

Thus, we have that for any fixed random instance, 𝑅(𝑞, 𝑐) ≤ 𝑥 if and only if

𝑀𝑥(𝑞) ≥ 2𝑐− 𝑥, and therefore

P[𝑅(𝑞, 𝑐) ≤ 𝑥] = P[𝑀𝑥(𝑞) ≥ 2𝑐− 𝑥].

C.1.6 Preservation of Stochastic Dominance in Theorem 5

To complete the gap in the proof of Theorem 5 we want to prove that for any two

non-negative random variables 𝐷, 𝐷′ with positive probability at only even integers,

if 𝐷 stochastically dominates 𝐷′, then 𝑋 = (𝑁1|𝑁0
𝑑
= 𝐷) stochastically dominates

𝑌 = (𝑁1|𝑁0
𝑑
= 𝐷′).

Proof. Let 𝑝2𝑖 = P[𝐷 = 2𝑖], 𝑝′2𝑖 = P[𝐷′ = 2𝑖] for each non-negative integer 𝑖. For each

integer 𝑘 ≥ 2, we have

P[𝑋 ≥ 2𝑘] = 𝑝2𝑘−2
(1− 𝑞)2

4
+ 𝑝2𝑘(1− (1 + 𝑞)2

4
) +

∞∑︁
𝑖=𝑘+1

𝑝2𝑖

P[𝑌 ≥ 2𝑘] = 𝑝′2𝑘−2

(1− 𝑞)2

4
+ 𝑝′2𝑘(1− (1 + 𝑞)2

4
) +

∞∑︁
𝑖=𝑘+1

𝑝′2𝑖.

Because (1− (1+𝑞)2

4
)− (1−𝑞)2

4
= 2−2𝑞2

4
= 1−𝑞2

2
≥ 0, and 1− (1− (1+𝑞)2

4
) = (1+𝑞)2

4
≥ 0 we

160

have

P[𝑋 ≥ 2𝑘] =
(1− 𝑞)2

4

∞∑︁
𝑖=𝑘−1

𝑝2𝑖 + (
1− 𝑞2

2
)

∞∑︁
𝑖=𝑘

𝑝2𝑖 +
(1 + 𝑞)2

4

∞∑︁
𝑖=𝑘+1

𝑝2𝑖

P[𝑌 ≥ 2𝑘] =
(1− 𝑞)2

4

∞∑︁
𝑖=𝑘−1

𝑝′2𝑖 + (
1− 𝑞2

2
)

∞∑︁
𝑖=𝑘

𝑝′2𝑖 +
(1 + 𝑞)2

4

∞∑︁
𝑖=𝑘+1

𝑝′2𝑖.

Thus, we have P[𝑋 ≥ 2𝑘] ≥ P[𝑌 ≥ 2𝑘], as
∑︀∞

𝑖=𝑡 𝑝2𝑖 ≥
∑︀∞

𝑖=𝑡 𝑝
′
2𝑖 for any non-negative

integer 𝑡 due to the fact that 𝐷 stochastically dominates 𝐷′.

For 𝑘 = 1, we have

P[𝑋 ≥ 2] = 𝑝0
1− 𝑞

2
+ 𝑝2(1−

(1 + 𝑞)2

4
) +

∞∑︁
𝑖=𝑘+1

𝑝2𝑖

P[𝑌 ≥ 2] = 𝑝′0
1− 𝑞

2
+ 𝑝′2(1−

(1 + 𝑞)2

4
) +

∞∑︁
𝑖=𝑘+1

𝑝′2𝑖.

Because (1− (1+𝑞)2

4
)− 1−𝑞

2
= 1−𝑞2

4
≥ 0, and 1− (1− (1+𝑞)2

4
) = (1+𝑞)2

4
≥ 0 we can apply

the similar argument above and have P[𝑋 ≥ 2] ≥ P[𝑌 ≥ 2].

Finally, by definition, P[𝑋 ≥ 0] = P[𝑌 ≥ 0] = 1, and therefore we have that

P[𝑋 ≥ 2𝑘] ≥ P[𝑌 ≥ 2𝑘] for all non-negative integer 𝑘. Because 𝑋 and 𝑌 are defined

to have only positive probabilities on non-negative even integers, we have that 𝑋

stochastically dominates 𝑌 .

C.2 Computing E[𝑁∞] and E[𝑁 ′∞] in Theorem 5

Computing E[𝑁∞]. Let 𝜋 be the vector such that

𝜋0 =
2𝑞

1 + 𝑞
, 𝜋2𝑖 =

4𝑞(1− 𝑞)2𝑖−1

(1 + 𝑞)2𝑖+1
, 𝜋2𝑖−1 = 0, ∀𝑖 = 1, 2, ...

161

Suppose P[𝑁* = 𝑖] = 𝜋𝑖, note that

∞∑︁
𝑖=1

𝜋2𝑖 =
4𝑞(1− 𝑞)

(1 + 𝑞)3

∞∑︁
𝑖=0

(1− 𝑞)2𝑖

(1 + 𝑞)2𝑖
=

4𝑞(1− 𝑞)

(1 + 𝑞)3
1

1− (1−𝑞
1+𝑞

)2
=

4𝑞(1− 𝑞)

(1 + 𝑞)3
1
4𝑞

(1+𝑞)2

=
1− 𝑞

1 + 𝑞
.

and therefore,
∑︀∞

𝑖=0 𝜋𝑖 = 2𝑞
1+𝑞

+ 1−𝑞
1+𝑞

= 1. Moreover,

P[𝑁1 = 0|𝑁0
𝑑
= 𝑁*] = 𝜋0 ·

1 + 𝑞

2
+ 𝜋2 ·

(1 + 𝑞)2

4
=

2𝑞

1 + 𝑞
,

P[𝑁1 = 2𝑖|𝑁0
𝑑
= 𝑁*] = 𝜋2𝑖

1− 𝑞2

2
+ 𝜋2(𝑖−1)

(1− 𝑞)2

4
+ 𝜋2(𝑖+1)

(1 + 𝑞)2

4

=
4𝑞(1− 𝑞)2𝑖−1

(1 + 𝑞)2𝑖+1
, ∀𝑖 ≥ 1.

Therefore, 𝜋 is indeed the steady state vector of 𝑁𝑖 and 𝑁∞
𝑑
= 𝑁*. Now

E[𝑁*] =
∞∑︁
𝑖=1

2𝑖 · 𝜋2𝑖 =
8𝑞(1− 𝑞)−1

(1 + 𝑞)

∞∑︁
𝑖=1

𝑖(
(1− 𝑞)2

(1 + 𝑞)2
)𝑖

=
8𝑞

(1 + 𝑞)(1− 𝑞)

(1− 𝑞)2

(1 + 𝑞)2
1

(1− (1−𝑞)2

(1+𝑞)2
)2

=
(1− 𝑞)(1 + 𝑞)

2𝑞
.

Computing E[𝑁 ′
∞]. Let 𝜋 be the vector such that

𝜋2𝑖+1 =
4𝑞(1− 𝑞)2𝑖

(1 + 𝑞)2𝑖+2
, 𝜋2𝑖 = 0, ∀𝑖 = 0, 2, ...

Suppose P[𝑁* = 𝑖] = 𝜋𝑖, note that

∞∑︁
𝑖=0

𝜋2𝑖+1 =
∞∑︁
𝑖=0

4𝑞(1− 𝑞)2𝑖

(1 + 𝑞)2𝑖+2
=

4𝑞

(1 + 𝑞)2
1

1− (1−𝑞)2

(1+𝑞)2

= 1

P[𝑁 ′
1 = 1|𝑁 ′

0
𝑑
= 𝑁*] = 𝜋1 ·

(1 + 𝑞)(3− 𝑞)

4
+ 𝜋3 ·

(1 + 𝑞)2

4
=

4𝑞

(1 + 𝑞)2
,

P[𝑁 ′
1 = 2𝑖 + 1|𝑁 ′

0
𝑑
= 𝑁*] = 𝜋2𝑖

1− 𝑞2

2
+ 𝜋2(𝑖−1)

(1− 𝑞)2

4
+ 𝜋2(𝑖+1)

(1 + 𝑞)2

4

=
4𝑞(1− 𝑞)2𝑖

(1 + 𝑞)2𝑖+2
, ∀𝑖 ≥ 1.

162

Therefore, 𝜋 is the steady state vector of 𝑁 ′
𝑖 and 𝑁 ′

∞
𝑑
= 𝑁*. Now we can show that

E[𝑁*] = 1+𝑞2

2𝑞
.

C.3 Additional Figures

Figure C-1: The black lines correspond to the optimal traditional strategy, the blue
lines to the optimal Opaque1 strategy, and the green lines to the optimal Opaque2
strategy.

163

THIS PAGE INTENTIONALLY LEFT BLANK

164

Bibliography

[1] E. Arkin, D. Joneja, and R. Roundy. Computational complexity of uncapacitated
multi-echelon production planning problems. Oper. Res. Lett., 8(2):61–66, 1989.
ISSN 0167-6377.

[2] S. Axsater. Worst case performance for lot sizing heuristics. EJOR, 9(4):339–343,
1982. ISSN 0377-2217.

[3] Joseph L Balintfy. On a basic class of multi-item inventory problems. Manage-
ment Science, 10(2):287–297, 1964.

[4] M.O. Ball and M. Queyranne. Toward robust revenue management: Competitive
analysis of online booking. Oper. Res., 57(4):950–963, 2009. ISSN 0030-364X.

[5] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic ap-
plications. In Foundations of Computer Science, 1996. Proceedings., 37th Annual
Symposium on, pages 184–193. IEEE, 1996.

[6] L Becchetti, P Korteweg, A Marchetti-Spaccamela, M Skutella, L Stougie, and
A Vitaletti. Latency constrained aggregation in sensor networks. Springer, 2006.

[7] Dimitris Bertsimas and Robert Weismantel. Optimization over integers, vol-
ume 13. Dynamic Ideas Belmont, 2005.

[8] S. Bhaskaran, K. Ramachandran, and J. Semple. A dynamic inventory model
with the right of refusal. Management Science, 56(12):2265–2281, 2010.

[9] Sreekumar R Bhaskaran and Vish Krishnan. Effort, revenue, and cost sharing
mechanisms for collaborative new product development. Management Science,
55(7):1152–1169, 2009.

[10] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, and Jiri Sgall.
Better approximation bounds for the joint replenishment problem. arXiv preprint
arXiv:1307.2531, 2013.

[11] D. Bienstock, M.X. Goemans, D. Simchi-Levi, and D. Williamson. A note on
the prize collecting traveling salesman problem. Mathematical Programming, 59
(1):413–420, 1993.

165

[12] Y. Bleischwitz and F. Schoppmann. New efficiency results for makespan cost
sharing. Information Processing Letters, 107(2):64–70, 2008.

[13] J. Brenner and G. Schäfer. Cost sharing methods for makespan and completion
time scheduling. STACS 2007, pages 670–681, 2007.

[14] N. Buchbinder, T. Kimbrelt, R. Levi, K. Makarychev, and M. Sviridenko. Online
make-to-order joint replenishment model: primal dual competitive algorithms.
Oper. Res., page Forthcoming, 2014.

[15] G.P. Cachon. Supply chain coordination with contracts. Handbooks in operations
research and management science, 11:229–340, 2003.

[16] R. Caldentey and L. M. Wein. Revenue management of a make-to-stock queue.
Oper. Res., 54(5):859–875, 2006.

[17] S. Carr and I. Duenyas. Optimal admission control and sequencing in a make-
to-stock/make-to-order production system. Oper. Res., 48(5):709–720, 2000.

[18] Oben Ceryan, Ozge Sahin, and Izak Duenyas. Dynamic pricing of substitutable
products in the presence of capacity flexibility. Manufacturing & Service Oper-
ations Management, 15(1):86–101, 2013.

[19] L.M.A. Chan, A. Muriel, Z.J.M. Shen, D. Simchi-Levi, and C.P. Teo. Effective
zero-inventory-ordering policies for the single-warehouse multiretailer problem
with piecewise linear cost structures. Management Science, pages 1446–1460,
2002.

[20] M. Charikar, S. Khuller, D.M. Mount, and G. Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 642–651. Society for Industrial and
Applied Mathematics, 2001.

[21] S. Chawla, T. Roughgarden, and M. Sundararajan. Optimal cost-sharing mech-
anisms for steiner forest problems. Internet and Network Economics, pages 112–
123, 2006.

[22] Xin Chen and David Simchi-Levi. Coordinating inventory control and pricing
strategies with random demand and fixed ordering cost: The finite horizon case.
Operations Research, 52(6):887–896, 2004.

[23] M. Cheung, A.N. Elmachtoub, R. Levi, and D.B. Shmoys. The submodular joint
replenishment problem. Mathematical Programming, 2014.

[24] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
operations research, 4(3):233–235, 1979.

[25] S.E. Deering and D.R. Cheriton. Multicast routing in datagram internetworks
and extended LANs. ACM Transactions on Computer Systems (TOCS), 8(2):
85–110, 1990. ISSN 0734-2071.

166

[26] A.N. Elmachtoub and R. Levi. From cost sharing mechanisms to online selection
problems. Mathematics of Opeartions Research, 2014.

[27] A.N. Elmachtoub and R. Levi. Supply chain management with online customer
selection. Unpublished Manuscript, 2014.

[28] A.N. Elmachtoub and Y. Wei. Retailing with opaque products. Unpublished
Manuscript, 2014.

[29] Scott Fay and Jinhong Xie. Probabilistic goods: A creative way of selling prod-
ucts and services. Marketing Science, 27(4):674–690, 2008.

[30] A. Federgruen and M. Tzur. The joint replenishment problem with time-varying
costs and demands: Efficient, asymptotic and 𝜀-optimal solutions. Operations
Research, pages 1067–1086, 1994.

[31] A. Federgruen and Y.S. Zheng. The joint replenishment problem with general
joint cost structures. Operations Research, 40(2):384–403, 1992. ISSN 0030-364X.

[32] Awi Federgruen and Aliza Heching. Combined pricing and inventory control
under uncertainty. Operations research, 47(3):454–475, 1999.

[33] Awi Federgruen, Maurice Queyranne, and Yu-Sheng Zheng. Simple power-of-
two policies are close to optimal in a general class of production/distribution
networks with general joint setup costs. Mathematics of Operations Research, 17
(4):951–963, 1992.

[34] D. Fotakis. On the competitive ratio for online facility location. Algorithmica,
50(1):1–57, 2008.

[35] Guillermo Gallego and Robert Phillips. Revenue management of flexible prod-
ucts. Manufacturing & Service Operations Management, 6(4):321–337, 2004.

[36] J. Gallien, Y. Le Tallec, and T. Schoenmeyr. A model for make-to-order revenue
management. Technical report, Citeseer, 2004.

[37] J. Geunes, H.E. Romeijn, and K. Taaffe. Requirements planning with pricing
and order selection flexibility. Oper. Res., 54(2):394, 2006.

[38] J. Geunes, R. Levi, H.E. Romeijn, and D.B. Shmoys. Approximation algorithms
for supply chain planning and logistics problems with market choice. Mathemat-
ical Programming, pages 1–22, 2009. ISSN 0025-5610.

[39] J. Geunes, R. Levi, H.E. Romeijn, and D.B. Shmoys. Approximation algorithms
for supply chain planning and logistics problems with market choice. Mathemat-
ical programming, 130(1):85–106, 2011.

[40] M.X. Goemans and D.P. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

167

[41] G. R. Grimmett and D. R. Stirzaker. Probability and Random Process. Oxford
University Press, New York, 2nd edition, 1992.

[42] A. Gupta, A. Srinivasan, and É. Tardos. Cost-sharing mechanisms for network
design. Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, pages 139–150, 2004.

[43] S. He, J. Zhang, and S. Zhang. Polymatroid optimization, submodularity, and
joint replenishment games. Operations Research, 60(1):128–137, 2012.

[44] Yale Herer and Robin Roundy. Heuristics for a one-warehouse multiretailer distri-
bution problem with performance bounds. Operations Research, 45(1):102–115,
1997.

[45] Edward Ignall. Optimal continuous review policies for two product inventory
systems with joint setup costs. Management Science, 15(5):278–283, 1969.

[46] M. Imase and B.M. Waxman. Dynamic steiner tree problem. SIAM Journal on
Discrete Mathematics, 4:369, 1991.

[47] Patrick Jaillet and Xin Lu. Online traveling salesman problems with rejection
options. Technical report, Working paper, Operations Research Center, Mas-
sachusetts Institute of Technology, 2013.

[48] K. Jain and V.V. Vazirani. Equitable cost allocations via primal-dual-type algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, pages 313–321. ACM, 2002.

[49] Kinshuk Jerath, Serguei Netessine, and Senthil K Veeraraghavan. Selling to
strategic customers: Opaque selling strategies. Consumer-Driven Demand and
Operations Management Models, pages 253–300, 2009.

[50] Kinshuk Jerath, Serguei Netessine, and Senthil K Veeraraghavan. Revenue man-
agement with strategic customers: Last-minute selling and opaque selling. Man-
agement Science, 56(3):430–448, 2010.

[51] D. Joneja. The joint replenishment problem: new heuristics and worst case
performance bounds. Oper. Res., 38(4):711–723, 1990. ISSN 0030-364X.

[52] E.P.C. Kao. A multi-product dynamic lot-size model with individual and joint
set-up costs. Operations Research, pages 279–289, 1979.

[53] P. Keskinocak, R. Ravi, and S. Tayur. Scheduling and reliable lead-time quota-
tion for orders with availability intervals and lead-time sensitive revenues. Man-
agement Science, 47(2):264–279, 2001.

[54] Sanjeev Khanna, Joseph Seffi Naor, and Dan Raz. Control message aggregation
in group communication protocols. In Automata, Languages and Programming,
pages 135–146. Springer, 2002.

168

[55] Sang-Hyun Kim and Serguei Netessine. Collaborative cost reduction and com-
ponent procurement under information asymmetry. Management Science, 59(1):
189–206, 2013.

[56] J. Könemann, S. Leonardi, and G. Schäfer. A group-strategyproof mechanism
for steiner forests. In Proceedings of the sixteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 612–619. Society for Industrial and Applied
Mathematics, 2005.

[57] R. Levi, R.O. Roundy, and D.B. Shmoys. Primal-Dual Algorithms for Determin-
istic Inventory Problems. Mathematics of Operations Research, 31(2):267–284,
2006.

[58] R. Levi, R. Roundy, D. Shmoys, and M. Sviridenko. A Constant Approximation
Algorithm for the One-Warehouse Multiretailer Problem. Management Science,
54(4):763, 2008.

[59] R. Levi, T.L. Magnanti, E.J. Zarybnisky, et al. Maintenance scheduling for
modular systems-models and algorithms. PhD thesis, Massachusetts Institute of
Technology, 2011.

[60] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Automata, Languages and Programming, pages 77–88, 2011.

[61] S.T. McCormick. Submodular function minimization. In K. Aardal, G.L.
Nemhauser, and R. Weismantel, editors, Handbooks in Operations Research and
Management Science: Discrete Optimization, volume 12, pages 321–391. Else-
vier, 2006.

[62] A. Meyerson. Online facility location. In Proceedings of 42nd IEEE Sympo-
sium on Foundations of Computer Science, pages 426–431. IEEE, 2002. ISBN
0769511163.

[63] H. Moulin. Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare, 16(2):279–320, 1999.

[64] H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget
balance versus efficiency. Economic Theory, 18(3):511–533, 2001.

[65] M. Nagarajan and G. Sosic. Game-theoretic analysis of cooperation among sup-
ply chain agents: Review and extensions. European Journal of Operational Re-
search, 187(3):719–745, 2008.

[66] Tim Nonner and Alexander Souza. A 5/3-approximation algorithm for joint
replenishment with deadlines. In Combinatorial Optimization and Applications,
pages 24–35. Springer, 2009.

169

[67] Tim Nonner and Maxim Sviridenko. An efficient polynomial-time approxima-
tion scheme for the joint replenishment problem. In Integer Programming and
Combinatorial Optimization, pages 314–323. Springer, 2013.

[68] M. Pál and É. Tardos. Group strategy proof mechanisms via primal-dual algo-
rithms. In Foundations of Computer Science, 2003. Proceedings. 44th Annual
IEEE Symposium on, pages 584–593. IEEE, 2003.

[69] Nicholas C Petruzzi and Maqbool Dada. Pricing and the newsvendor problem:
A review with extensions. Operations Research, 47(2):183–194, 1999.

[70] E. Plambeck, S. Kumar, and J. M.l Harrison. A multiclass queue in heavy traffic
with throughput time constraints: Asymptotically optimal dynamic controls.
Queueing Systems, 39(1):23–54, 2001.

[71] J. Qian and D. Williamson. An o (logn)-competitive algorithm for online con-
strained forest problems. Automata, Languages and Programming, pages 37–48,
2011.

[72] M Queyranne. A polynomial-time, submodular extension to roundy’s 98% effec-
tive heuristic for production/inventory. In Robotics and Automation. Proceed-
ings. 1986 IEEE International Conference on, volume 3, pages 1640–1640. IEEE,
1986.

[73] T. Roughgarden and M. Sundararajan. New trade-offs in cost-sharing mecha-
nisms. In Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing, pages 79–88. ACM, 2006. ISBN 1595931341.

[74] T. Roughgarden and M. Sundararajan. Optimal efficiency guarantees for net-
work design mechanisms. Integer Programming and Combinatorial Optimization,
pages 469–483, 2007.

[75] R. Roundy. 98%-effective integer-ratio lot-sizing for one-warehouse multi-retailer
systems. Management science, pages 1416–1430, 1985.

[76] Andreas S Schulz and Claudio Telha. Approximation algorithms and hardness re-
sults for the joint replenishment problem with constant demands. In Algorithms–
ESA 2011, pages 628–639. Springer, 2011.

[77] Danny Segev. An approximate dynamic-programming approach to the joint
replenishment problem. Mathematics of Operations Research, 2013.

[78] David Shmoys and Chaoxu Tong. Private communivation, 2013.

[79] D.B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility
location problems. In Proceedings of the twenty-ninth annual ACM Symposium
on Theory of Computing, pages 265–274. ACM, 1997. ISBN 0897918886.

170

[80] Susan A Slotnick. Order acceptance and scheduling: a taxonomy and review.
European Journal of Operational Research, 212(1):1–11, 2011.

[81] Jing-Sheng Song and Zhengliang Xue. Demand management and inventory con-
trol for substitutable products. Working paper, 2007.

[82] G. Stauffer, G. Massonnet, C. Rapine, and J.P. Gayon. A simple and fast 2-
approximation algorithm for the one-warehouse multi-retailers problem. In Pro-
ceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2011.

[83] Z. Svitkina and E. Tardos. Facility location with hierarchical facility costs. ACM
Transactions on Algorithms (TALG), 6(2):37, 2010.

[84] C.P. Teo and D. Bertsimas. Multistage lot sizing problems via randomized round-
ing. Operations Research, pages 599–608, 2001.

[85] W. Van den Heuvel and A.P.M. Wagelmans. Worst-case analysis for a general
class of online lot-sizing heuristics. Operations research, 58(1):59–67, 2010.

[86] W. Van den Heuvel, O.E. Kundakcioglu, J. Geunes, H.E. Romeijn, T.C. Sharkey,
and A.P.M. Wagelmans. Integrated market selection and production planning:
complexity and solution approaches. Mathematical programming, 134(2):395–
424, 2012.

[87] A.F. Veinott Jr. Minimum concave-cost solution of leontief substitution models
of multi-facility inventory systems. Operations Research, pages 262–291, 1969.

[88] S Viswanathan. An algorithm for determining the best lower bound for the
stochastic joint replenishment problem. Operations research, 55(5):992–996,
2007.

[89] H.M. Wagner and T.M. Whitin. Dynamic Version of the Economic Lot Size
Model. Management Science, 5(1):89–96, 1958. ISSN 0025-1909.

[90] M.R. Wagner. Fully distribution-free profit maximization: the inventory man-
agement case. Math. of Oper. Res., 35(4):728–741, 2010.

[91] D. Xu and R. Yang. A cost-sharing method for an economic lot-sizing game.
Operations Research Letters, 37(2):107–110, 2009.

[92] G. Xu and J. Xu. An improved approximation algorithm for uncapacitated
facility location problem with penalties. Journal of combinatorial optimization,
17(4):424–436, 2009.

[93] Y. Xu, A. Bisi, and M. Dada. A periodic-review base-stock inventory system
with sales rejection. Operations research, 59(3):742–753, 2011.

[94] A. C. Yao. Probabilistic computation: towards a unified measure of complexity.
In IEEE Symposium on Foundations of Computer Science, pages 222–227, 1977.

171

[95] W.I. Zangwill. A backlogging model and a multi-echelon model of a dynamic
economic lot size production system-a network approach. Management Science,
pages 506–527, 1969.

[96] Kaijie Zhu and Ulrich W Thonemann. Coordination of pricing and inventory
control across products. Naval Research Logistics (NRL), 56(2):175–190, 2009.

172

