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Abstract

Prior to the advent of high energy pulsed femtosecond lasers, the field of terahertz (THz)
spectroscopy was stagnated by the lack of both high power THz sources and sensitive THz
detectors. Over the past few years, it has become more 'routine' to generate and detect THz
radiation between 0.1-10 THz, but there remains much room for improvement. In this work,
I describe recent developments in THz detection methodology, both in a waveguide platform
and in a more typical free space geometry. In the waveguide approach, THz generation, de-
tection, and manipulation is self-contained in an on-chip system that we term the polaritonics
platform, which simply consists of a single slab of an electro-optic (EO) crystal called lithium
niobate. Due to the experimental geometry, we can conduct time-resolved phase-sensitive
imaging of the propagating THz waves in the crystal. Alternatively, more conventional THz
spectroscopy requires free space propagation between generation and detection such that a
sample could be interrogated if placed between them.

Within this thesis, I present improvements in spatial resolution and signal-to-noise (S/N)
to two time-resolved THz imaging instruments on the polaritonics platform: phase contrast
imaging and polarization gating imaging. Across both techniques, we attained a best image
resolution of less than 1.5 pm (< A/100 at 0.5 THz), which is needed for studying very fine
structures and near-fields in the THz regime, and a lowest noise floor of 0.12%, which is
attractive for measuring small signals. We used THz imaging to explore wave behavior in
metal-clad waveguide systems by employing indium tin oxide (ITO), which is a conductor at
THz frequencies, but transparent at visible frequencies. We deemed ITO to behave similarly
to an ideal metal, despite its low electrical conductivity. This presents the possibility of
fabricating transparent THz-resonant metallic microstructures for near-field studies. Fur-
thermore, we studied leaky wave behavior in the metal-clad waveguides, which presents a
means for coupling THz radiation out of the waveguide.
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Lastly, I describe recent developments in free space THz detection, which traditionally
consists of a time-intensive optically gated measurement in a pump-probe geometry called
EO sampling. Unfortunately, this method is not conducive to measurements of irreversible
processes or measurements that involve resolving an additional time axis such as in two-
dimensional (2D) spectroscopy experiments. In the new methodology that is discussed here,
we instead acquire a THz time trace in a single laser pulse using a pair of transmission-mode
glass echelon optics. We demonstrate that this single-shot method is a robust alternative
to conventional scanning EO sampling that can quantitatively record THz field temporal
profiles with the same S/N approximately 20 times faster than the conventional method.
As a prototype 2D measurement, we applied the single-shot method to an optical pump-
THz probe study of a indirect bandgap semiconductor, tin sulfide (SnS), which is currently
being investigated as a material for solar cell technology. The 2D measurement made it
possible to characterize carrier lifetimes and photoconductivity at THz frequencies as a
function of carrier relaxation time. This initial demonstration is only the beginning of future
exploration of a wide variety of systems, where we intend to extend the technique towards
2D Fourier transform THz spectroscopy to unravel behavior too complex to be resolved by
linear spectra.

Thesis Supervisor: Keith A. Nelson
Title: Professor of Chemistry
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Chapter 1

Introduction to Terahertz Imaging

and Spectroscopy

I I I I
100MHz 1GHz 10GHz 100GHz

Figure 1-1: The electromagnetic spectrum. The
electronics and photonics regimes.

I I I
10THz 100THz 1PHz

THz gap (0.1-10 THz) is shown to lie between the

In the electromagnetic spectrum, there is a region between electronics and photonics

called "the terahertz (THz) gap". This gap, ranging from 0.1-10 THz (1 THz = 1 ps = 300

pm = 33 cm- 1 = 4.1 meV = 47.6'K), faces many technological challenges in terms of efficient

generation and sensitive detection. For THz generation, the output power of electronic

oscillators decreases at higher frequencies due to higher heat dissipation from the electrons,

while the emission of photons from a blackbody drops precipitously at lower frequencies

according to Planck's law. Similarly, because THz radiation occurs on picosecond timescales,
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the rapidly oscillating THz fields are too fast for electronics to respond, but simultaneously

too slow for optical technologies. The field of THz spectroscopy has consequently lagged

appreciably behind its counterparts across the electromagnetic spectrum. However, shortly

after the advent of high energy pulsed femtosecond lasers, D. H. Auston and coworkers

showed that it was possible to generate ultrafast broadband THz pulses by propagating

femtosecond optical pulses in electro-optic (EO) materials in 1984 [1].

The development of technologies at THz frequencies has been spurred by its fundamental

importance in many physical, chemical, and biological processes. For example, there exists

an abundance of resonances within the THz range such as molecular rotations in gases,

vibrational transitions in molecular crystals, or electronic resonances in quantum wells and

quantum dots. Currently, THz spectroscopy has been used in the identification of chemical

or biological materials by taking advantage of a material's unique THz resonance(s) or for

studying semiconductor or protein dynamics that occur on picosecond timescales. THz

radiation has also made an appearance in higher resolution airport security body scanners

and biomedical sensing. However, there is still much development and understanding needed

of processes occurring in the THz regime.

With the increasing bandwidth demands of a technologically-driven society, there has

also been an impetus to develop THz telecommunications since only a small portion of the

electromagnetic spectrum is currently allocated (radio frequencies from 9 kHz to 275 GHz).

The development of THz technologies is also motivated by the impending deviation from

Moore's law within this decade, which postulates the doubling of the number of transistors

per integrated circuit every two years. The deviation results from the physical limitations

of electronic-based transistors, with atomic-level features being the final stop for electronic

computing, all the while assuming that they can be efficiently fabricated. Alternatively,

all-optical computing has been vetted as a promising next-generation technology, in which

electron signal carriers are superseded by photons that move at the speed of light; in this

respect, moving to the THz range is a natural initial step. For example, significant ma-
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nipulation of the polarization of THz light was observed as it propagated through a thin

mercury telluride film under an applied external magnetic field at room temperature [2].

This resulted in a giant Faraday effect, which suggests its application in fast modulation

optical transistors by simply tuning the gate voltage and/or magnetic field.

In this thesis, the central thrust that fueled the projects that I will be discussing was in the

development of THz detection technologies; not only for the purpose of making the current

types of measurements easier, but to extend our capabilities to measurements that were not

possible just a few years ago. Firstly, it is important to understand why THz detection must

be viewed as a new challenge compared to well-established detection technologies in the

optical and microwave spectral ranges. In the THz regime, the relatively large wavelengths

make it difficult to use regular optical components such as mirrors or lenses or to even

use our intuitive sense of Gaussian beam propagation since it is impractical to treat THz

beams as collimated over large propagation distances. By definition, a beam is said to be

collimated if it has a Rayleigh length (z, = 7rw/A, where wo is the beam radius and A is

the wavelength) that is much longer than its propagation distance. For visible wavelengths,

a collimated beam typically has a 1 mm beam waist and so the ratio of the Rayleigh length

to the wavelength varies from 5 to 20 million. Scaling this ratio to the terahertz regime for

300 pm wavelength (i.e. 1 THz), even on the lower end of the ratio, means that the beam

radius has to be 40 cm! Manufacturing and working with optics on this length scale is not

practical, which has fundamentally stalled the development of a THz spectrometer device

comparable to optical spectrometers in terms of its ease of use and compactness.

As a solution, THz waves are detected by encoding the THz signal onto optical frequency

light, where electronic and optical components can be taken advantage of. However, this

requires a time-intensive process through a pump-probe measurement in the time domain

and subsequent Fourier transforming of the temporal waveform to obtain the THz spectrum.

Of course, the development of THz detection goes hand in hand with that of THz generation,

which is- another strong focus of ongoing progress and development in the Nelson lab. Chap-
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ter 2 describes current methodologies used for ultrafast, pulsed THz generation, which rely

on the use of an amplified laser system and a nonlinear process called optical rectification

in various electro-optic generation crystals. In Chapter 3, I approach THz detection from

two distinct fronts: THz imaging in waveguided platforms and more conventional free space

THz spectroscopy.

(a) (b)
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Figure 1-2: Polaritonics platform for waveguided THz waves: (a) A thin slab of LiNbO 3 allows for the
generation, control, and detection of THz waves. Focusing an ultrafast near-infrared pump pulse through
the slab generates THz waves that are waveguided laterally down the slab. (b) A snapshot of an image
recorded using phase contrast imaging with magnification of 17x and shows a 530 GHz wave interacting
with a resonant antenna pair (masked in black for clarity).

In the waveguide platform, called the polaritonics platform [3], THz waveguide modes

are generated and detected directly in a single 30-50 pm thick crystal of lithium niobate

(LiNbO 3) as seen in Fig. 1-2(a). This effectively circumvents any of the technical issues for

THz optics previously described and the added difficult of guiding the THz waves into or out

of the waveguide. Lithium niobate is an electro-optic crystal, which means that an applied

E-field changes the index of refraction of the crystal. Subsequently, the index change induces

a phase shift in an optical probe beam that also passes through the crystal, which can be

detected by using a phase-sensitive detection scheme. Unique and convenient to this platform

is the fact that the THz wave, generated by a focused optical pump beam, travels laterally

in the slab and hence allows us to conduct time-resolved imaging of its lateral propagation

with an ultrafast, expanded optical probe beam.
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Recently, I have improved the spatial resolution and signal-to-noise (S/N) ratio of two

THz imaging techniques called phase contrast imaging and polarization gating imaging [4].

In phase contrast imaging, I developed an imaging system that is capable of resolving features

with subwavelength resolution of less than 1.5 pm (< A/100 at 0.5 THz) and a 0.2% noise

floor; this represents a 4-fold improvement in resolution compared to other methods [5].

Figure 1-2(b) shows an example of the propagation of a THz wave at one instance of time,

interacting with a metal antenna structure deposited on the surface of lithium niobate. This

system presents new opportunities for studying very fine structures and near-fields in the

THz regime. In addition, I further improved another technique called polarization gating

imaging that is typically employed for more quantitative measurements since it has a lower

noise floor of 0.12%, an improvement of up to 5-fold over previous designs, and also more

than sufficient spatial resolution better than 5 pm.
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Figure 1-3: ITO metallic slab waveguides: (a) A time series of images of a TE mode THz electric field,
collected using polarization gating imaging. The left side of the dashed line shows plain slab LN, where
the THz waves are generated. The right side of the dashed line shows a region that has been coated with
THz-transparent metallic ITO layer, where the waves are observed to propagate underneath. (b) Waveguide
dispersion curve for TE waves in a LN waveguide (thickness f = 54 pm) with ITO deposited on one surface.
Dispersion of air and bulk LN extraordinary (eo) and ordinary (o) waves are shown in yellow. Analytical
solutions in dashed red are overlaid on the experimentally observed results. Inset: calculated Ez-field profiles
of the two lowest order TE modes at 1 THz.

Following the development of these high-resolution and low-noise THz imaging tech-

niques, I wanted to further exploit advantages of the compact, on-chip platform. In addition

to the simultaneous generation and detection of THz waves on a single chip, the platform
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is capable of manipulating and furthering our understanding of 'itHz wave behavior and its

propagation characteristics under different conditions. In Chapter 4, I studied a system

composed of a metal clad planar waveguide, where the 'metal' used was a wide bandgap

semiconductor, indium tin oxide (ITO). The key property that makes ITO an attractive

material in our system is the fact that it is transparent to visible light (i.e. the optical

imaging probe beam), but opaque (or metallic) at THz frequencies. Figure 1-3(a) shows

an example of the visibility of a propagating THz wave in lithium niobate underneath the

ITO layer, as given by the experimental geometry in Fig. 1-2(a). We confirmed that ITO

behaves similarly to an ideal metal by comparing its waveguide dispersion to that provided

by analytical theory [6], in which the measured dispersion curves in Fig. 1-3(b) showed good

agreement.

Our motivation to study THz waves in this metallic clad geometry was two-fold. Firstly,

in a previous study of ours, we deposited a pair of THz-resonant gold dipole antennas sepa-

rated by a small gap, similar to that shown in Fig. 1-2(b), on the surface of lithium niobate

and quantitatively studied the THz near-field enhancement that was primarily localized in

the subwavelength gap [7]. However, the near-fields cannot be measured underneath gold, as

it is opaque to the optical probe light, but measurement of the near-fields would be accessible

in resonant microstructures fabricated out of ITO. Secondly, because coupling light into and

out of the waveguide is very difficult, a required mechanism if the chip were designed as a

signal modulation component in a device, it was natural to study leaky wave behavior. As

opposed to bound waveguide modes that make up the propagating solutions to Maxwell's

equations, leaky waves are unbound and as given by their name, leak or couple out of the

waveguide.

In the second area of focus for the development of THz detection methodology, I returned

back to the idea of a THz spectrometer where the THz waves propagate in free space (as

opposed to in a waveguide). As I previously stated, because of the speed limitations of

electronic instrumentation, THz detection is a time domain method, called electro-optic
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sampling, that requires an iterative process to map out the temporal THz waveform by

measuring it at many sequential time points. In other words, in the pump-probe geometry,

an ultrafast optical probe is used to 'gate' the THz electric field and so we can resolve the field

with time resolution on the order of the pulse duration of the optical probe (typically 100 fs

or less). The underlying assumption here is that the process being measured is reversible and

repeatable since effectively, the experiment is repeated over and over again, but measured at

a different moment in time. Following a Fourier transform of the time domain data, the THz

pulse's spectral content is attained, and so free space THz spectroscopy becomes analogous

to frequency domain methods such as those used in optical or near-infrared detection.

The fact that the detection requires a time-intensive process becomes a problem in the

measurement of processes that are irreversible since it may only be feasible to use a limited

number of probe pulses (i.e. a very short observation window with little to no averaging)

before the material has changed significantly through processes such as an irreversible chem-

ical reaction, degradation, or complete destruction. Even in systems that are reversible, the

time-intensive nature of the measurement negatively impacts any two-dimensional (2D) spec-

troscopy measurement that involves resolving a second time-axis. While there is a wealth of

information that can be learnt from linear THz spectra, much of this information is often dif-

ficult to interpret. 2D measurements can help to untangle potentially convoluted responses

in linear spectra by adding another axis by which we can observe the system's response as

a result of an additional applied perturbation. In one aspect, 2D measurements aid in the

understanding of the correlation between different degrees of freedom in a system; for exam-

ple, in studying how excitonic states couple to low-lying phonon states, or how mechanical

energy is transferred to high-frequency molecular bond vibrations in energetic materials.

However, these kinds of experiments require substantial scaling up of experimental time (i.e.

1D scan: ~-, n time points, 2D scan: ~, n 2 time points, etc.), and are only practical with

faster acquisition techniques.

As a way of circumventing the time-intensive process, I developed and evaluated two de-

29



tection schemes that acquired a THz time trace in a single probe pulse, which means that no

iterative mapping out of the THz waveform is needed. To date, there exist several single-shot

THz detection techniques, but while they have demonstrated the ability to measure a THz

waveform, they have mainly been developed towards the purpose of diagnostics. In Chap-

ter 5, I surveyed the single-shot techniques for ones that could be adapted to quantitatively

measure THz electric fields with good S/N, with the end goal of surpassing conventional

electro-optic sampling in terms of acquisition time. Of the two methods I tested, only one

method was successful, based on a pair of transmission-mode glass stair-step optics called

echelons (see Fig. 1-4(a)). When the probe beam passes through a thin and a thick echelon,

each with m steps, it is split into an array of tiny 'beamlets' that are delayed incrementally

in time relative to one another. The more glass a beamlet passes through, the longer the

time delay. Each beamlet derived from a single probe pulse measures a different temporal

slice of the THz electric field. Figure 1-4(b) shows a direct comparison of the THz time

traces acquired from both the single-shot method and the conventional scanning delay-line

method, which demonstrates good agreement in both amplitude and spatiotemporal wave-

form. The corresponding THz spectra in Fig. 1-4(c) corroborate these findings with near to

identical spectral content. Most importantly, the system was optimized to acquire low-noise

traces by careful selection and implementation of optical and hardware components. Overall,

the single-shot system was capable of attaining the same S/N as that of the conventional

scanning method in only 1 / 2 0 th the number of laser pulses, which poses a significant source

of time-saving.

Although the single-shot THz detection system is not as compact in size as an optical

spectrometer, there is still an obvious benefit to its significant reduction in acquisition time.

The last study discussed in Chapter 6 was conducted with the aim of fully integrating the

THz single-shot detection technique into a 2D measurement and evaluating its efficiency

in a real scenario. This initial measurement serves as a prototype for future 2D Fourier

transform THz spectroscopy, in which we intend to use a THz pump, and probe a system
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Figure 1-4: Single-shot THz detection: (a) A schematic of the pair of transmission-mode glass echelons.
A probe beam is passed through the crossed echelons and split into a train of small beamlets that are delayed
incrementally in time relative to one another. (b) A direct comparison of THz time traces between the dual
echelons method and scanning delay-line method. (c) Fourier transforms of the time traces given in (b).

with responses that may have very strong frequency-dependence in the THz regime.

Time domain measurements, where both the amplitude and phase of the THz electric

field are obtained, have an important added value since it allows us to measure complex

optical properties (e.g., index of refraction, conductivity) of materials. The 2D measurement

consisted of an optical pump-THz probe experimental setup, which was capable of measuring

the minority carrier lifetime and photoconductivity of a thin-film semiconductor, tin sulfide

(SnS), at THz frequencies. The carrier lifetime, the average time it takes for the carriers to

relax to the bottom of the conduction band, is an important metric for characterizing the

carrier dynamics in solar cell materials such as SnS [8]. In these indirect band gap semi-

conductors, defect sites contribute significantly to the carrier lifetime, which has important

consequences on device efficiency.

Generally speaking, the development of new techniques opens the door to new varieties

of measurements. Naturally, it is important to ask: what are the immediate potential sys-

tems and physics readily accessible to us as a result of the techniques developed thus far?

In the near future, we intend to explore the electronic-phonon coupling in other optically-

pumped systems such as organic crystals and quantum dots. As THz generation techniques

continue to improve, there exists the possibility for even stronger driving of nonlinear THz
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responses, which will help in the elucidation of the nature of vibrational couplings in molecu-

lar systems. Additionally in the polaritonics platform, it may be possible to measure surface

plasmon phonon-polaritons by studying the modified dispersion curves, for example as a re-

sult of the coupling between surface plasmons in graphene and phonon-polaritons in LN [9].

These are just a few possibilities of systems worth investigating; further understanding of

the capabilities and limits of these new techniques will help guide the way towards other

interesting and unexplained phenomena.
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Chapter 2

Terahertz Generation in Bulk and

Waveguided Systems

2.1 Introduction

The strong drive to developing THz spectroscopy was aided by the discovery that THz

radiation with suitable spectral brightness could be generated, propagated in free-space,

and then separately detected [10, 11]. The significance of this simple scheme was that a

sample could be placed between the generation and detection components and consequently

it provided a means for spectroscopic characterization of materials in the THz regime. This

was the era dominated by the photoconductive antenna, where an ultrafast laser pulse is

used to generate carriers in the conduction band of a semiconductor between a pair of

antennas under a voltage bias. The acceleration of carriers across the biased antenna creates

a time-varying electric current that consequently reradiates electromagnetic radiation in the

form of a THz pulse. The requisite generation source is a Ti:sapphire non-amplified laser (an

oscillator with -, 10 nJ/pulse) that has been shown to provide a bandwidth up to 5 THz [12],

but the resonant nature of bandgap excitation poses restrictions on the bandwidth of the
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excitation pulse; additionally, the resulting bandwidth of the THz pulse is associated with

the characteristic response time of the carriers instead of the excitation pulse duration.

With the shift to amplified lasers with higher pulse energies (~ 1 mJ/pulse), photocon-

ductive antennas in the geometry described above are no longer feasible since these focused

pulses would destroy the material. This led to the development of large-aperture antennas

that had much larger gaps (~,, 3 orders of magnitude) between the antenna electrodes and so

non-focused excitation pulses could be used, but this consequently required much larger bias

voltages since the THz field strength scales directly with gap size. This approach yielded

almost 1 jpJ/pulse [13]. However, a more practical system for attaining higher bandwidths

uses a nonlinear process called optical rectification in an electro-optic (EO) crystal, which

more fully utilizes the short pulse durations available fron femtosecond lasers without the

need of an applied voltage. These nonlinear crystals have an instantaneous optical response

(compared to the dependence on the rise time of the photo-induced current in photocon-

ductive antennas), where THz generation occurs through nonresonant second-order optical

nonlinearities [14].

Over the past decade, there has been significant improvement in the efficiency of tabletop

THz generation sources. Higher efficiency sources are important for linear THz spectroscopy

and even more for the coherent control of materials and nonlinear THz spectroscopy. In

contrast to more easily implemented collinear optical rectification in zincblende crystals like

zinc telluride (ZnTe) and gallium phosphide (GaP), commonly used as THz probes in time-

domain THz spectroscopy, optical rectification in the ferroelectric crystal lithium niobate

(LiNbO 3, LN) has proven fruitful for high field THz generation by exploiting its large nonlin-

ear optical parameters. Noncollinear optical rectification by using a tilted optical pump pulse

front has reported pulse energies of 10-30 gJ/pulse [15,16] with relatively high pump-to-THz

energy conversion efficiencies. In LN, there is strong coupling between THz electromagnetic

waves and select polar lattice vibrational modes involved in the ferroelectric phase transition.

The result is the generation of THz phonon-polaritons, quasiparticle analogs to alternating
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current signal carriers in electronics or electromagnetic waves in photonics, which propagate

at the speed of light in the material. More recently, the magnitudes of peak THz fields have

even made it possible to "do chemistry" by obtaining sufficiently large field amplification

in the gaps of THz resonant microstructures [7] to change the properties of materials (e.g.,

insulator-to-metal phase transition in vanadium dioxide [17]), a significant advancement to

measurements previously limited to a material's intrinsic THz response.

An alternate to the free-space THz generation described thus far, called the polaritonics

platform [3], was developed in the Nelson group for generation, control, and detection of THz

waves on a single LN sample. Due to the large difference in the index of refraction at THz

frequencies compared.to the optical spectral range, the THz phonon-polariton waves travel

primarily in the lateral direction. As a result, the different propagation directions allow

for easy separation of the optical pump beam and the THz signal beam. Additionally, the

sample thickness can be scaled down to the subwavelength regime to create a THz waveguide

that confines the THz wave and hence creates propagating waveguide modes. Applications of

this integrated platform include a means for signal processing, an architecture or testbed for

photonic devices and optical components, integration of bandgap or homogenized materials,

long THz-sample interaction lengths, and waveguide spectroscopy.

In this chapter, I will firstly detail broadband THz generation in bulk materials resulting

from collinear and noncollinear optical rectification in ZnTe and LN, respectively, and their

experimental implementation. Subsequently, I will discuss the general scheme of the polari-

tonics platform in the waveguide regime including analytical calculations of the generated

THz waveguide modes in various geometries and polarizations, and experimental broadband

and narrowband THz generation.
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2.2 Terahertz Generation in Bulk Materials

2.2.1 Optical Rectification

Generally, a nonlinear optical process may be viewed from the macroscopic polarization of

a medium as a function of the light-matter interactions'

P(w) = o(X1)E(w) + X(2)E 2 (W) + X(3)E3(w) + ... )(2.1)
= P(')(w) + PNL(W)

where co is the permittivity in free space, X) is the ith-order susceptibility tensor, E(w)

is the incident E-field , P) is the linear polarization term, and PNL(w) is the collective

sum of all nonlinear polarization terms. Optical mixing is a nonlinear process where waves

of two frequencies w, and w 2 combine to yield new frequency components [18]; only with

high-intensity pulses, such as those from amplified lasers, must the higher order terms in

(2.1) that make up the nonlinear responses be considered. In a nonlinear medium, these

light waves mix to generate sum-frequency generation, W 1 + w2, and difference-frequency

generation, wi - w 2 (among other nonlinear optical processes). For two light interactions at

the same frequency, w, = W 2 , the resulting wave mixing gives second-harmonic generation

(SHG) and direct current (dc) pulses. In the case of an ultrafast pulse, the wave mixing

may occur within the pulse's broad spectral bandwidth itself, where the Fourier components

of the driving optical spectrum interfere to create a beating polarization at the difference

frequency. This is a special case of difference-frequency generation called optical rectification.

The difference-frequency generation process that produces a pulse at THz frequency Q

can be described by the following second-order nonlinear polarization created by two optical
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pump fields:

p( ) = CO (( = W, - w2)E1(wi)E2(w2 ) (2.2)

= EoX(2)(Q)E(wopt + Q)E*(wopt) (2.3)

whereXy 2) is the second-order nonlinear susceptibility tensor and Ej(wi) = E(w0 pt + Q)

and E2 (w2 ) = E(wpt) are the pump fields at optical frequencies spanning wopt to w0pt + Q.

Difference-frequency mixing generates pulses with frequencies that lie in the range of dc to

, where for ultrafast near-infrared pump pulses, the bandwidth Q lies in the THz range.

Consequently, the polarization of the difference-frequency pulse corresponds only to the

envelope of the optical pump fields and no information of the pump phases is retained. It is

important to note that difference-frequency generation is only relevant for a crystal without

inversion symmetry since this is an even-order process. The lowest order nonlinear response

for a crystal with inversion symmetry would be a x(3 )-response; it is not the main mechanism

for THz generation and so its treatment is omitted here.

The nonlinear interaction of the pump fields creates an oscillation of dipole moments

throughout the atoms in the medium with a component at frequency Q. The resulting

nonlinear polarization, p(2)(Q), serves as the source term in Maxwell's equations, where

the generation and propagation of the THz E-field may be given by the wave equation for

nonlinear optical media [19]. In the frequency-domain, the wave equation is:

E~)-Q2(1 Q2

V x V x E(r,) - 2= (Q))E(r, Q) = 2 P(2)(r, ), (2.4)
C EOC

where =(1) (Q) = O( + X()()) and c is the speed of light in vacuum. A solution to

the wave equation yields the THz spectrum, E(Q), which is determined by the material

properties contained in the dielectric function =(l) (Q). In the time-domain, if we assume an

37



isotropic medium, the wave equation simplifies to:

E(1) 82 E(r, t) 1 02 p(2) (r, t)V x VxE(r,t) + -- -t ~ 0
2  0 2  

,(2.5)
C2 t2 EOc2 &t2

where E(l) is a scalar quantity. The wave equation in the time-domain shows that the THz

E-field is the second time derivative of the optically induced nonlinear polarization, which

resembles the envelope of the optical pump fields. Because the time-dependent optical pump

E-fields can be represented by Gaussian envelopes, the THz waveform resembles the second

derivative of a Gaussian function.

2.2.2 Collinear Phase-matched THz Generation in Zinc Telluride

2.2.2.1 The Phase Matching Condition and Coherence Length in ZnTe

For broadband optical rectification in ZnTe in a collinear geometry, higher signal generation

calls for longer interaction lengths of the pump fields in the crystal, but a closer inspection of

the phase matching condition is required in bulk crystals compared to generation in very thin

EO crystals [20,21] . In this case, the wave equation in (2.4) must be satisfied in particular

for the difference-frequency component: Q = w, - W2. Physically, the dipole moments of

the atoms in the medium are oscillating with a phase that is dependent on the phase of

the incident pulses; only when the dipoles oscillate in phase (in accordance with the phase

matching condition to be determined) will the emitted fields interfere constructively and the

overall magnitude of emission at Q increase directly with the number of radiating atoms.

A trial solution to (2.4) when a nonlinear source term is present is a plane wave at

frequency Q propagating along the +z-direction (i.e. along the medium's thickness, L):

E3 (z, Q) = A 3 (z, Q)ei(k3z-nt) + c.c., (2.6)

where k3 = f2n3/c is the wavevector and n3 = ( (non-magnetic) is the index of refraction
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at Q. The nonlinear source term can be represented as:

Pa2 (z, 2) = p3()ei(ki-k2)ze-i't + c.c., (2.7)

where p3(Q) = EoV2)(f)A1(wi)A*(w 2). The behavior of how the amplitude of the THz E-

field changes as it propagates along +z is given by the first derivative of A 3 (z, Q) with respect

to z, which is found by substituting E3 (z, Q) in the wave equation'

dA3 _ 2_
SQ2p 3()eiAkz (2.8)

dz 2Eon3c

where

Ak = k- k2-k3
(2.9)

Ak = k(wopt + Q) - k(wpt) - k(Q)

Ak is called the wavevector mismatch and so the difference frequency generation is maximized

(or "phase matched") when Ak = 0.

The importance of the phase matching condition is more easily seen by the dependence

of the intensity of E3 (z, Q) on Ak when it propagates through a nonlinear medium of length

L. Firstly, the amplitude at z = L is found by integrating (2.8) from z = 0 to z = L:

Q2 Lil
A 3 (L, Q) = p3(- ) e Akzdz (2.10)

Q2 eiAkL_

= -P3(0) . , (2.11)

'This requires simplification of the wave equation such that V x V x E = V(V - E) - V2 E -V 2E. The
contribution from V.E is negligible as a result of invoking the slowly varying amplitude approximation [18,19]:

1!d2 < Ik3 z -
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then the intensity is calculated as follows:

|A3(L, Q)12 = Q2P3(Q) 2L 2sinC2(AL2EonAco 2 (2.12)
13 (L, Q) = 13c(L, Q) sinc2

2

According to (2.12), only when Ak = 0 is the intensity of the THz field component at Q

maximized after propagating a length L.

However, this condition assumes a constant phase relationship between the generated and

propagating waves. In reality, the process is not perfectly phase matched since the driving

polarization at Q goes in and out of phase repeatedly with the generated field E3(z, Q) =

ETHZ(Z, ) and the conversion efficiency oscillates as sin(AkL/2) instead. The non-phase-

matched case is described by a characteristic length called the coherence length:

Lcoh = ir/Ak. (2.13)

The efficiency of broad-bandwidth generation through optical rectification in nonlin-

ear crystals is dominated by material properties and not the spectral bandwidth available

from the optical pump. In ZnTe, it is not possible to phase match across the entire THz

spectrum due to strong phonon resonances at THz frequencies that cause significant dis-

persion. Consequently, there is a large difference between the index of refraction at optical

(n0 pt(800 nm) = 2.85) and THz (nTHZ > 3 from 0-4 THz) frequencies . However, the dis-

persion in the optical refractive index can be taken advantage of to achieve longer coherence

lengths by matching the phase velocity of the THz wave, Vph,THz, with the group velocity of

the optical pump, vgr,0 pt [14]. The coherence length for optical rectification can be given by:

7rco
Lcoh ( ) = 2 Ingr,opt(Aopt) - nTHz(0) (2.14)
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Figure 2-1: Phase matching and coherence lengths in optical rectification in ZnTe. (a) The index

of refraction at optical and THz frequencies and also the optical group index. The optical indices at 800

nm are indicated on the plots. Due to a THz phonon resonance at 4 THz, the THz index experiences large

dispersion such that phase matching with the optical index is too difficult, but collinear phase matching

with the optical group index is feasible. (b) The coherence length in ZnTe as a function of THz frequency

by phase matching the phase velocity of the THz wave with the group velocity of the optical pump at 800

nm. With a 1 mm thick ZnTe crystal, there is adequate phase matching up to 2.4 THz before the generation

efficiency quickly diminishes.

where

ngr,opt = nopt (AOpt) - AOpt dr Apt (2.15)

is the optical group index and nTHz = C/Vph,THz is the THz index of refraction. The optical

[22] and THz [23] refractive indices of ZnTe have been measured as the following:

2 = 4.27 + 3 - 0.142), (2.16)

where A is the optical wavelength in pm.

(2.17)nTHz = (289.27 - 6f Hz)/(29.16 - f6Hz)'

where fTHZ = Q/21r is the frequency in THz. The optical and THz refractive indices and

optical group index are plotted in Fig. 2-1(a), where it is clear that while there is a large

refractive index mismatch at THz frequencies compared to the optical pump at 800 nm, the
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optical group index at 800 nm demonstrates adequate group velocity dispersion to match

the THz index over a broader range of frequencies. Because it is not useful to generate THz

fields with an EO crystal thicker than the coherence length, it can be seen in Fig. 2-1(b)

that a 1 mm thick ZnTe crystal has optimal phase matching between the THz index and

the optical group index for a bandwidth of 2.4 THz; even at 2 mm thickness, the bandwidth

is only reduced slightly to 2.2 THz but the generation intensity is estimated to increase by

4-fold according to (2.12). Beyond this bandwidth, the dispersion in the THz index becomes

too large to be compensated by the optical group velocity dispersion.

2.2.2.2 Experimental Setup for Optical Rectification in ZnTe

Experimental implementation of optical rectification in ZnTe is straightforward since it re-

quires a collinear phase matched geometry between the optical 800 nm pump beam and

emitted THz beam. We directed a collimated, s-polarized ultrafast laser pulse (800 nm cen-

ter wavelength, -'0.76 mJ/cm 2 , 50-fs transform-limited pulse duration) to overfill a 2 mm

(110) ZnTe generation crystal (~-.- 1 cm beam diameter) and rejected the outgoing optical light

with a piece of teflon and black polypropylene. THz generation was optimized by tuning the

azimuthal angle of the crystal [24]. The THz beam was then focused with a pair of parabolas

into a 1 mm ZnTe detection crystal, where the THz signal is measured by a technique called

EO-sampling. This detection method will be discussed in the next chapter. Figure 2-2(a)

shows an example of a THz time trace recorded with ZnTe, where a strong THz pulse is seen

followed by smaller, fast oscillations; these oscillations are the free-induction decay resulting

from THz absorption of ambient water vapor. The THz spectrum in Fig. 2-2(b) is simply

the Fourier transform of the time trace in (a), where 10% of the maximum bandwidth is at

~,-2.2 THz as estimated from the coherence length previously calculated in Fig. 2-1(b).

With an amplified ultrafast laser, optical rectification in zincblende crystals is typically

the easiest route to obtaining moderate field strengths for a relatively broad bandwidth of 2.5
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Figure 2-2: Experimental THz generation in ZnTe. (a) Percent signal modulation time trace of a THz
signal generated by collinear phase matching in 2 mm of (110) ZnTe crystal. The fast oscillations following
the main THz pulse is the free-induction decay (FID) due to THz absorption by the rotational modes of
ambient water vapor. (b) The THz spectrum of (a) with 10% of the maximum bandwidth at ~2.2 THz as
estimated 'from the coherence length previously. The narrow resonances (giving rise to the long ringing of
the FID) of water correspond to the sharp drops in the spectral intensity across the generated bandwidth.

THz. However, the overall optical-to-THz conversion efficiency and attainable bandwidth are

determined by the inherent properties of ZnTe. For example, it is difficult to maintain a large

coherence length by optical group and THz phase velocity matching near the optic phonon

resonance at 4 THz. The relevant effective nonlinear optical coefficient, although reasonably

high in ZnTe (d14 = 61 pm/V in ZnTe vs. d33 = 154 pm/V in LN [25]), strongly affects

the generation efficiency. However, the potential of these high nonlinear constants has not

been fully realized since at moderately high optical pump fluences (> 0.5 mJ/cm 2 [26,27]),

there is saturation of THz generation in ZnTe due to a two-photon absorption process at

800 nm in the narrow bandgap (~ 2.25 eV) semiconductor; consequently a red shift is

observed in the THz spectrum. This has a two-fold effect: the generation of free carriers

leads to absorption at THz frequencies, and the two-photon absorption depletes the optical

pump (although not to a large extent) [27]. Three-photon and four-photon absorption have

similarly been observed to limit generation in GaP and LN, respectively. As a result, large-
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aperture nonlinear crystals have been used to reduce pump fluence and suppress saturation

from these multi-photon and free carrier absorptions. A larger THz spot size also can be

focused more tightly at the sample for higher localized field strengths [28]. There have been

studies however that show that the free carrier generation via two-photon absorption process

can saturate such that at even higher pump fluence (> 6.3 mJ/cm2 ), THz generation resumes

quadratic dependence on pump fluence [26]. In general, optical rectification in zincblende

crystals has served as a good THz probe but its relatively low field strengths (up to 10s of

kV/cm) have prohibited its further use as a THz pump for nonlinear THz spectroscopy.

2.2.3 Phonon-Polariton Generation in Lithium Niobate

The term optical rectification is a broad, macroscopic description of how THz radiation is

generated from nonlinear light-matter interactions. With the expansion of THz generation

methods to optical rectification, came the search for the 'perfect' nonlinear crystal that has

both reasonably broad THz bandwidth and high efficiency THz generation. The collinear

generation scheme in zincblende crystals is experimentally convenient, but these crystals

do not have the highest known nonlinear coefficients. THz generation methods have since

been developed for optical rectification in ferroelectrics such as LN and lithium tantalate

(LiTaO 3) that possess much larger nonlinear coefficients. Initially, these ferroelectrics were

not exploited since they had extremely high dielectric constants (or indices) at THz frequen-

cies and thus the phase velocity of the generated THz waves were far too slow to match the

group velocity of the optical pump for sufficiently long coherence lengths.

In 2007, Yeh and coworkers [16] developed a non-collinear generation scheme in LN that

used a tilted optical intensity front [29] for velocity matching of the optical pump and gen-

erated THz waves. This technique yielded an optical-to-THz energy conversion efficiency

of 6.Ox1i04 and THz pulse energies of 10 pJ, an order of magnitude in improvement over

optical rectification in zincblende crystals. As a result, there has been rapid development

44



in THz nonlinear spectroscopies due to more accessible high power tabletop THz sources

compared to the alternative of accelerator-based sources (up to 100 pLJ/pulse [30]). In fer-

roelectrics, which possess large spontaneous polarizations, the dominant contribution to the

nonlinear susceptibility is due to the ionic lattice displacements, with very little electronic

contribution [31,32]. In these ionic crystals, optical rectification near an optic phonon res-

onance strongly affects the frequency content and damping rate of the THz radiation. The

THz wave propagates as a highly coupled entity called a phonon-polariton wave.

2.2.3.1 Macroscopic Model of Phonon-Polaritons in Ferroelectrics

A polariton is a quasiparticle that results from strong coupling between electromagnetic

radiation and a collective excitation of an elementary degree of freedom (charge, spin, or lat-

tice) in the material, with the interaction mediated through an electric or magnetic dipole.

Materials have a variety of resonances such as the collective excitations of electron-hole pairs

(excitons), the collective excitations of the electrons' spinsin a lattice (magnons), or the col-

lective excitations of polar vibrational modes in a lattice (phonons). Mixed species have been

observed as exciton-polaritons in semiconductors at visible frequencies, magnon-polaritons

in ferromagnetic crystals at microwave frequencies, and of particular interest here, phonon-

polaritons in ferroelectric crystals at far-infrared frequencies. The propagation of a polariton

through a material can be described at times as having more photon character (light-like) or

more material character (electronic-, magnetic-, or phononic-like), or a combination of both,

depending on the regime of coupling.

In the case of phonon-polaritons in LN, there is a transverse optical (TO) phonon

(wT/27r = 7.4 THz along the extraordinary axis) within the bandwidth (Q ~ 10 THz)

of our 800 nm optical pump pulse). In the ferroelectric phase in LN, the charge separation

of the positively-charged lithium and niobium ions and negatively-charged oxygen ions gives

rise to a spontaneous electric polarization for each unit cell in the crystal, which can couple
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to the THz-frequency electromagnetic radiation. Consequently, optic phonons in these ionic

crystals can be excited by a far-infrared E-field . The polar vibrations consist of positive

and negative ions moving in opposite directions (i.e. out-of-phase oscillations) relative to

each other and hence create a time-varying electric dipole moment. Additionally, the optic

phonons can be excited by optical light through coherent Raman scattering processes, here

by impulsive stimulated Raman scattering (ISRS), a second-order nonlinear process [33].

The ionic lattice displacements makes up the majority of the X(2) response with very small

electronic contribution (less than 10%) [31]. The propagating THz phonon-polariton waves

are both infrared and Raman active, which is allowed since LN is noncentrosymmetric.

In the limit where the wavelength of the optical lattice vibrations is much larger than the

lattice constant, we can use a macroscopic description. This treatment of the polar lattice

vibrations follows closely with the notation described in [34,35] for diatomic ionic crystals.

Firstly, the displacement of each unit cell is modeled as a driven, damped Lorentz oscillator

with displacements given by Q(r, t). Because the electromagnetic and mechanical vibrations

are not separable, the solutions to the coupled photon-phonon admixture must satisfy both

Maxwell's equations and the lattice equations. The coupled differehtial equations can be

represented by the following [34]:

S1 [bi b1 2 ] Q] (2.18)
P J [b2 1 b22 J[ EJ

where Q and Q are the first and second time-derivatives of Q, respectively, r is a phe-

nomenological damping constant, E is the electric field, and the b-coefficients are constants

to be determined that represent physical properties of the system. The expression can be

expanded to give:

Q(r, t) + PQ(r, t) - buQ(r, t) = bi2 E(r, t) (2.19)

P(r, t) = b2 1Q(r, t) + b22E(r, t) (2.20)
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Time-harmonic trial solutions to (2.18) can be used to determine the constants of interest:

Q = Qo exp(-iwt) and E = E0 exp(-iwt). (2.19) is simplified and Fourier transformed to

give:
bi2 E(r, w)Q(r,w) = (w + w ) (2.21)

-(W2+ i]Pw + bul)

Similarly, the frequency-dependent polarization is the Fourier transform of (2.20) and sub-

stitution of Q in (2.21) yields:

P(r, w) = [ b21b12 + + b2 2 E(r, w) (2.22)
- (W2+ i]Fw + bul) I

Because P = eoXE and E/co = 1 + X, we can determine the frequency-dependent relative

dielectric function 2

6r(W) -+ e1 bi[ + b22  (2.23)
Eo eo -(w 2 + iw + b) j

where co is the permittivity in free space. The coupling b-coefficients can determined by

taking the low and high frequency limits of (2.23), which have been experimentally measured.

The dielectric function In the high frequency limit as w -+ oo is:

E= +
6o (2.24)

-> b2 2 = co(eoo - 1)

In the absence of damping, w 2 -+ -b 1 at the TO resonant frequency, WT, and so -bl = w2 .

The dielectric function In the low frequency limit as w -+ 0 is:

1 rb21 b12E0 = 1+ ~ [ 2 +b 221 (2.25)
Eo LW'-T i

2LN and LT are uniaxial crystals, where the principle axes directly map onto one extra-ordinary axis and
two ordinary axes. Consequently, the dielectric tensor is diagonal and can be separately cast into expressions
for the extraordinary and ordinary components
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Since conservation of energy requires reciprocity between the coupling of the electromagnetic

field to the lattice and the lattice's contribution to the polarization, then b12 = b21 (see proof

in Appendix V of Born and Huang [35]). Appropriate substitution and simplification of

(2.25) yields:

b2 WTV (o- 00)(2.26)

where f = w2(,o - Eo) represents the strength of coupling between a particular TO optic

phonon mode and the electric field (and consequently also the lattice's contribution to the

polarization).

2.2.3.2 Phonon-Polariton Dispersion

Mathematically, a non-zero coupling between two eigenstates acts as an external perturbation

on the two-state Hamiltonian. Diagonalizing the modified Hamiltonian of the system yields

new coupled eigenstates that cannot be degenerate (i.e. an avoided crossing), where the

energy of one of the eigenstates is lowered compared to the initially unperturbed eigenen-

ergy. If the energy difference between the original eigenstates is too large, then the new

eigenenergies will simply approach those of the unperturbed states.

The dispersion of phonon-polaritons is described by the dispersion relation: k = wn(w)/co.

The index of refraction for a nonmagnetic material is n(w) = / Firstly, the dielectric

function in (2.23) can be recast in terms of the physical measurable constants:

where eo, is the dielectric at all other frequencies below and above the lowest phonon fre-

quency of interest, WT, and 60 = er(O) is the static dielectric constant that can be measured
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Figure 2-3: Phonon-polariton dispersion in LN along extraordinary axis. (a) Dispersion relation of
LN with and without damping, F, showing the lower- and upper-polariton branches. The lower-polariton
branch approaches the lowest-frequency transverse optic phonon at WT/27r=7.4 THz at high wave vector.
The upper-polariton branch approaches the lowest-frequency longitudinal optic phonon at wL/27r=11.9 THz
at zero wave vector. (b) The real and imaginary parts of the dielectric function when F = 0.63. (c) The real
and imaginary parts of the index of refraction when F = 0.63.

at zero frequency. The wave vector k can then be rewritten as:

W2(60 - e6)
+ 2 .W - iFw (2.28)

If the damping term is ignored (F = 0), then it is possible to explicitly write expressions that

correspond directly to the lower- and upper-polariton branches. In this case, we determine

w for given values of k that are real and positive.

k2 cT + ow, /(k 2c2 + EowT) 2 - 4(k2c2T2)
2e, (2.29)

The dispersion curves of the phonon-polaritons in LN are shown in Fig. 2-3(a), where

49

15

(a)

c/n

-n

c/no

- % - ----- -

-17=0

-- =0.63

CU
Cr
0

10

W T

5

(b)

17=0.63

-Real
-- Imag.

1111

k = - 00
co



the introduction of damping leads to a non-asymptotic feature around WT compared to an

undamped system. In using (2.28), extra care must be taken to ignore solutions where

e, < 0. There is an avoided crossing between the lower- and upper-polariton branches,

where no modes are allowed between frequencies WT to wL. The dielectric function is shown

in Fig. 2-3(b) in the presence of damping, where the real part shows a dispersive line shape

(without damping, the real part would asymptotically approach wT) and the imaginary part

is an absorptive Lorentzian line shape (without damping, no imaginary component exists).

The dispersive line shape gives rise to the behavior of the dispersion relation in Fig. 2-3(a).

Because the optical waves are transverse, they can only excite the transverse phonons in LN

and not the orthogonal longitudinal phonons; as a result, the dielectric function must go to

zero at WL. This longitudinal phonon resonance can be calculated by setting (2.27) to zero

in the absence of damping:

WL = WTV6/1/00o(2.30)

The index of refraction is plotted in Fig. 2-3(c), where an important observation is the near-

constant index from 0-2.5 THz; this is the range for optimal phase matching for optical

rectification in LN. In our experiments, we use the lower-polariton branch where material

dispersion is minimized with an almost linear dispersion relation; at lower frequencies, the

phonon-polariton behaves like light (lies along the light line in LN along the appropriate

crystal axis, here the extraordinary axis) and at higher frequencies, the phonon-polariton

behaves like a collective vibration in LN (approaches the transverse optic phonon at wT).

2.2.3.3 Cherenkov Radiation and Tilted Pulse Front

The nonlinear polarization given by (2.3) forms the source term for THz generation and

varies in time with the group velocity of the optical pump pulse's envelope. In LN, however,

the strong interaction between the displacements of the normal modes in the lattice and the

generated THz E-field adds another component, derived from the low-frequency transverse
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optic phonon resonance, to the polarization (see (2.20)), and consequently the group veloc-

ity of the optical pump source moves faster than the phase velocity of the generated THz

radiation. This phenomenon draws strong parallels to Cherenkov radiation from a charged

particle moving much faster than the velocity of the radiation it generates, except here the

source is a radiating dipole moment. The emitted radiation in these cases propagates in LN

at an angle 0, = 630, the Cherenkov angle, relative to the optical pump that propagates

normal to the crystal surface (see Fig. 2-4). The Cherenkov angle is found by accounting for

the difference in distance propagated as a result of the large difference in group and phase

velocities of the optical and THz radiation, respectively; in a time period t, the optical pump

moves a distance t -gr,opt through the crystal while the THz wave moves a distance t- Vph,THz-

The Cherenkov angle can be calculated geometrically:

cos =c Vph,THz _ gr,opt

Vgr,opt nTHz

(a) (b) (C)

z (eo) gropt YphTHz

y t

X

Figure 2-4: Optical Rectification in bulk LN. (a) An 800 nm optical pump is directed at normal
incidence through a LN crystal and generates THz waves that propagate at the Cherenkov angle due to the
index mismatch at optical and THz frequencies. (b) A zoomed-in view showing the Cherenkov radiation
geometry of the THz phase fronts traveling at an angle 0, = 63* to the optical pump envelope. (c) The
optical pump intensity profile is tilted by Ot but continues to propagate normal to the crystal.

Unfortunately, the large index mismatch between the optical and THz radiation leads to
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relatively short coherence lengths and low generation efficiency. However, velocity matching

may be attained if the optical pump intensity profile is instead tilted at angle Ot = 900 - =

270. The tilted optical pump continues to propagate in the forward direction with a velocity

Vg,opt, but its projection along the THz propagation direction is only vr,opt cos(9c). The

velocity matching condition can therefore by satisfied according to Vph,THz = Vgr,opt COs(Oc)

and equivalently ngr,opt = nTHz coS(0c). In LN, the optical group index is 2.25 at 800 nm [36],

while the index is ~ 4.96 at 1 THz [37], and thus the tilted pulse front is necessary for

adequate phase matching.

Without tilting of the optical pulse front, THz plane waves can be generated by cylindri-

cally focusing the optical pump to a narrow line such that the beam waist is much smaller

than the wavelength corresponding to a period of oscillation of the generated THz field [29].

The field strengths are weak due to lack of coherent amplification, where the THz waves

propagate away from the generation region at the Cherenkov angle. THz generation by

tilting of the optical pulse front as shown in Fig. 2-4(c) is necessary for spatiotemporal

overlap of the optical phase fronts with the generated THz phase fronts. The tilting is ac-

complished using a grating [16,29] or an echelon, which has been shown to greatly improve

the interaction length with adequate phase matching. In particular, the tilting of a spatially

expanded optical pulse front allows for THz amplification since the propagating THz wave

can constructively interfere with THz radiation generated later in time and at different lat-

eral positions in the crystal; conversion efficiencies are approximately an order of magnitude

better than for collinear generation in zincblende crystals.

In LN, due to the very high index of LN at THz frequencies, the critical angle for total in-

ternal reflection (TIR) is very small: 9 cr = sin1(nair/nTHz) = 11.50. Because the Cherenkov

angle in LN is 630, the incident angle of the THz beam at the output surface is just the

complementary Cherenkov angle, 27* > 0cr, and so the generated THz waves are bound in

the crystal, unable to couple out into free-space to be applied towards spectroscopy. If the

output surface is cut to match the Cherenkov angle as shown in Fig. 2-4(c), then the THz
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wave is at normal incidence and so couples out into free space but experiences reflectivity

losses due to the index mismatch:

r 12

R = nTHz ir = 45%.
nTHz + nair

2.3 Terahertz Generation in Waveguided Systems

2.3.1 Derivation of Modes in Anisotropic Slab Waveguide

The slab waveguide confines the THz waves in its thin dimension and extends infinitely

in the other two dimensions as described in the previous waveguide derivation, such that

the THz waves propagate as discrete modes or eigenmodes, similar to the confinement and

subsequent discretization of energy levels experienced in a 1D particle-in-a-box. For the

following derivation, we consider a symmetric slab waveguide consisting of a high-index

anisotropic core, specifically LN, surrounded by low-index isotropic cladding, air, on both

sides; similar treatment is found in Marcuse and Kaminow [38] and Yang and coworkers [39].

We assume that the crystal is uniaxial and its optic axis is parallel to the slab surface (here

as in x-cut LN). The y- and z-dimensions of the slab are assumed to extend infinitely, while

the x-dimension, corresponding to the slab thickness, is confined. The waveguide modes

propagate along the y-direction and extend infinitely along the z-direction. For simplicity

we express the E-field as harmonic in space and time, having the general form:

E(x, y, z, t) = E(x) exp[i(fy - wt)], (2.32)

where 8 = ky is the propagation constant.

Here, we solve for the waveguide modes in a symmetric anisotropic waveguide, shown in

Fig. 2-5, separately for two orthogonal polarizations: transverse electric (TE) and transverse

magnetic (TM) polarizations (for intermediate polarization states see Ref. [39]). Here we
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Figure 2-5: Symmetric waveguide experimental geometry. A schematic of a waveguide with low-
index, ni, cladding and high-index, nh, anisotropic core. e and p are the permittivity and permeability in
each region.

assume a nonmagnetic, lossless high-index core and a low-index cladding with purely real

permittivities, 6h (dielectric tensor for an anisotropic material) and F, (dielectric constant

for isotropic material) respectively, and free-space permeability, po. Lossy waveguides have

complex permittivities and wave vectors and have been treated by Kaminow and coworkers

[6].

The general approach will be to firstly consider the bulk dispersion curves and polariza-

tions that describe the bulk wave properties in the core and cladding. The waveguide modes

are linear combinations of these bulk waves, which result from the geometric constraints of

the system. The coefficients of the linear equation are determined by applying the boundary

conditions across the interface described by Maxwell's equations. The result is a set a homo-

geneous equations that may be recast into matrix notation, where solutions exist when the

determinant is equal to zero. These solutions correspond to bound, propagating waveguide

modes that only exist at specific pairs of propagation constant, #, and frequency, W, i.e.

along the waveguide dispersion curves.

In this geometry, TE waves have Ey = 0 while TM waves have Hy = 0. TEM waves exist

if both Ey = 0 and Hy = 0. TE modes have nonvanishing field components: Ez, Hz, and Hy.

In contrast, the TM modes have nonvanishing field components: Hz, E2, and Ey. Although

the core is anisotropic, the TE-polarization modes simplify to the isotropic case since the
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Figure 2-6: Waveguide coordinate system. (a) For an anisotropic system, the coordinate system for the
derivations is defined as a function of 9, the angle between the z-axis and the optic c-axis of the crystal. (b)
For TE waves, 9 = 00, such that the c-axis lies along the z-axis. (c) For TM waves, 9 = 900, such that the
c-axis lies along the y-axis.

E-field , E(y), has only a single component, E., along the optic c-axis of the crystal (the

extraordinary (eo) axis of LN) (see (Fig. 2-6(b)). This does not hold for the TM-polarization

since in our experiment we rotated the c-axis of the crystal by 900 relative to the z-axis;

this kept the pump polarization parallel to the eo-axis so that the largest optical nonlinear

coefficient in LN, d33, was used for efficient THz generation [31,40,41]. The TM case requires

consideration of the anisotropy of LN since it has E-field components along the eo-axis, E,,

and the ordinary (o) axis, Ex (see Fig. 2-6(c)).

2.3.1.1 General Waveguide Information

The bulk dispersion curves are defined from the wave vector of the material: k = 2.

Straightforward substitution of A = c/nf = 27rc/nw gives the relationship between wave

vector, k, and radial frequency, w: k2 = k + k 2 + k2 = (wn)2, where c is the speed of light

in vacuum and n is the index of refraction. As previously defined, the propagation constant

is ky = 3 since the propagation direction is along y. The wave vector component orthogonal

to the slab surface, kx, is defined differently for the ordinary and extraordinary index of the

core, kx = no or k. = Ke, and the cladding, kx = ia. For bound/guided modes, the field

must evanescently decay in the cladding, which is indicated by the imaginary wave vector

component along x. In contrast, propagating or oscillatory solutions exist for the bound

modes in the lossless high-index core, which have real wave vector components. Lastly, since
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the field extends infinitely along z, i.e. infinite wavelength, its wave vector component is

k, = 0. Bulk dispersion relations of the anisotropic system describe both the ordinary and

extraordinary waves of the core, LN, and of the cladding, air:

Core, ordinary : K, + = 2 (2.33a)

Core, extraordinary: n + !- cos29+ sin2  (2.33b)

Cladding: -a 2 +o2 wnc (2.33c)

where no and ne are the bulk ordinary and extraordinary index of LN, respectively, and nc is

the index of the cladding, air. 9 is the angle between the z-axis and the c-axis of the crystal

shown in 2-6(a)). Accordingly, we see that 0 = 0* for TE-polarization while 9 = 90* for

TM-polarization. It is important to note that in the following analyses, we are exclusively

solving for the extraordinary TE and TM waves due to our experimental geometries, and

any study regarding the ordinary wave counterparts is limited.

2.3.1.2 TE Modes in Anisotropic Symmetric Dielectric Slab Waveguide

The overarching goal of the following derivation is to arrive at the wave equation that relates

1 and w; this requires the use of the bulk dispersion relations in (2.33) that express k" in

terms of 3 and w. For any pair of 1 and w, the most general form has the sum of four possible

plane waves in each region: two signs for k, and two polarizations (that map directly to TE or

TM waves). In the case of only generating the extraordinary TE waves, the system simplifies

to an isotropic system where kx,core = Ke = K. For 9 = 0*, (2.33b) is simplified to a form

that only contains a single refractive index, ne. In an isotropic system, any two orthogonal

polarizations may be chosen in the core and cladding. However in a uniaxial crystal, there

are two convenient polarizations that allow the TE modes to be treated isotropically. A unit

vector along the z-axis, z, represents one choice of polarization, and the second polarization
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is orthogonal to both 2 and k in each region. In the high-index core, the unit vector is:

k x2 ->1 < h 2 0
(2.34)[

S+ K2

similarly in the low-index cladding:

k x 2 ~20_a2
tia .

0

(2.35)

The full form of the E-fields of the waveguide modes in each region is written as follows:

Cladding (x < -t):

E(x) = C12 exp[a(x + f)] + C22 exp[-a(x + f)] + C31- exp[a(x + f)] + C4i+ exp[-a(x + t)],

(2.36a)

Core (-f < x < _):

E(x) = A1 2 exp(inx) + A 2 2 exp(-irx) + A 3 ig exp(iiz) + A4 i- exp(-inx) (2.36b)

Cladding (x > f):

E(x) = Bi2 exp[a(x - f)] + B22 exp[-a(x - f)] + B31i exp[a(x - f)] + B4r+ exp[-a(x - f)],

(2.36c)
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where Ai, Bi, and Ci are scalar constants.

Upon inspection it is clear that the first polarization, 2, corresponds to TE modes that

only have an E, component (perpendicular to the propagation direction along y) while the

second polarization, h: and 0*, corresponds to TM modes that have E, and Ey components.

Additionally, any E-field components that do not decay to zero as x -+ oo cannot describe

the bound modes, so exponentially increasing terms are discarded. Therefore, the TE E-

fields are simplified to:

Cladding (x < -f): E(x) = C- exp[a(x + f)], (2.37a)

Core (-f < x < f): E(x) = A1 s exp(irx) + A2 exp(-ix) (2.37b)

Cladding (x > f) : E(x) = BZ exp[-a(x - f)] (2.37c)

The boundary conditions are provided by Maxwell's equations, which state that tangen-

tial E- and H-fields must be continuous across the boundary. Here, these are the y- and

z-components of the E- and H-fields. Since the TE modes have been described in terms of E-

field, we can use Faraday's law to recast the H-field in terms of the E-field. Since we assume

that the materials are nonmagnetic, p = po, and because the solutions are time-harmonic,

we replace the time-derivative with j = iw. Plugging in and rearranging Faraday's law

yields:

x == -p- = iwpOH = W= V x E (2.38)

Additionally, the terms within the del operator, V, simplify to a= i, A = 0, which

follows from the functional form of the E-field in (2.32). Consequently, the H-field may be

re-written as follows:

H = [- -iEz +.9X + ioEx - ( (2.39)
wyo 8xOx]
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The complete set of boundary conditions after substituting for all the magnetic fields is:

Ez,clad = Ez,core (2.40a)

OEz,ciad _ OEz,core (2.40b)Ox Ox

Ey,ciad = Ey,core (2.40c)

i/Excia, - y,ca = OiExcore - Ey,core (2.40d)ad x coe Ox

For TE modes, only the first two boundary conditions apply, which correspond to the

E, and H, components, respectively, while the other two boundary conditions, the E, and

H_ components, respectively, are for TM modes. The boundary conditions are evaluated

at the x = i. Because the system is symmetric, applying the boundary conditions at

x = +e reveals the same information as at x = -e and so (2.37a) may be discarded due

to redundancy. The geometry of the waveguide permits the propagation of symmetric and

antisymmetric modes, both of which are solved for by applying the boundary conditions in

(2.40a) and (2.40b) at x = f to yield a set of homogeneous equations. For the symmetric

modes, A 1 = A 2 = A, and the homogeneous equations in matrix form are:

cos(Ki) -1 A =0 (2.41)

L sin (rd) -a JLB

The determinant of this matrix gives a transcendental equation:

-a cos(KE) + r sin(K) = 0 ==> tan(dt) (2.42)
K

where the solutions correspond to the allowed waveguide modes of the system. For the
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antisymmetric modes, A1 = -A 2 = A, and the homogeneous equations in matrix form are:

[sin(e) -1 A 0 (2.43)

[ cos(Kt) -a B]

and similarly

-a sin(ri) - n cos(dt) = 0 ==> .- cot(nt) = a. (2.44)

Because cotangent and tangent are periodic, many solutions exist. Also, using the trigono-

metric identities tan(O + 7r/2) = - cot(9) and tan(9) = tan(9 + mir) where m is an integer,

then (2.43) and (2.44) may be combined to yield periodic solutions for both symmetric and

anti-symmetric bound TE modes:

tan(Ke + mir/2) = (2.45)

where m = 0, 1, 2, - represents the mode number; m = 0 corresponds to the lowest sym-

metric mode and m = 1 corresponds to the lowest antisymmetric mode. The bulk dispersion

curves in (2.33) are used to eliminate dependence on both K and a such that we arrive at

a relation between # and w. The resulting transcendental equation may be solved using

Newton's method by bisection or other numerical solvers in Matlab. In either method, ac-

curate bounds must be given for each solution otherwise the method will not converge to

the correct waveguide modes. For numerical solvers, the transcendental function must be

analytical everywhere and so it is easier to find converging solutions if we firstly define a

stable parameter instead of directly solving for f: B = (fl/ko) 2 , where ko = w/co is the wave

vector in free-space. The relevant bulk dispersion relations are then simplified to:

2=koVn - B (2.46)

a=koB - nc (2.47)
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The transcendental equation in (2.45) can then be rewritten as:

tan- 1 -B )

100
K (rad/mm)

200

-ko/n- - B +m- = 0
2

(b)
....... .... .. ..

........ ....... .........

.......................

.............. ...................

0

100

100

200

P(rad/mm)

Figure 2-7: TE dispersion curves in LN. For the lowest four modes in a 50 pm slab of LN, the wave
vectors are calculated in (a) the core, r,, (b) a, in the cladding, and (c) the propagation constant, /.

The converging solutions are only found with a numerical solver by inputting a good

initial guess. In Matlab, the numerical solver solve was used; it is worth noting that this

solver is compatible with complex values that becomes important for lossy materials. Here,

we used B = 1, equivalent to a guess of 0 = ko; once B and consequently / is determined,

the internal wave vectors, rn and a can be explicitly found using (2.33). The dispersion curves
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of 8, K and a are shown in Fig. 2-7. The system has no waveguide cutoff frequency, which

means all frequencies are allowed to propagate in the waveguide. At low wave vectors, the

waveguide mode dispersion approaches the linear dispersion of air (i.e. it is light-like), while

at high wave vectors, the waveguide mode approaches the bulk dispersion curve of LN along

the extraordinary axis.

Additionally, the waveguide mode profiles in (2.37) can be solved for explicitly for the

symmetric and antisymmetric modes. For the symmetric modes, setting A1 = A 2 = 1/2 and

B = C = cos(Kd), the E-field profiles:

cos(d) exp[a(x + f)] x < -f

E(x) = REo cos(Kx) -e < X <e (2.49)

cos(d) exp[-a(x - t)] x > f

where EO is the amplitude of the E-field in V/m. For the asymmetric modes, setting

A1 = -A 2 = 1/2 and B = -C = sin(if)

- sin(dt) exp[a(x + f)] x < -f

E(x) = Eo sin(Kx) -t < X <e (2.50)

sin(ni) exp[-a(x - f)] X > f

The mode profiles of the lowest three TE waveguide modes are shown in Fig. 2-8.

From the dispersion curves, it is straightforward to calculate the phase index and group

index of the THz waves, which are representative of the THz phase and group velocities,

respectively. The effective phase index of refraction is given at every point on the dispersion

curve: n(w) = #co/w, while the effective group index of refraction is given as the instanta-

neous slope at each point: ngr = A/co/Aw. The phase and group indices of the TE modes

are plotted in Fig. 2-9 without accounting for material dispersion in (a) and with material

dispersion in (b). For a material with negligible dispersion, at large frequencies the phase
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-- M=1
- m=2

1.5 THz

Figure 2-8: TE waveguide mode profiles. The lowest three modes in a 50 pm slab of LN calculated at
1.5 THz.

indices (solid lines) and group indices (dashed lines) of all waveguide modes both plateau to

the bulk index of the core (~ 5 in LN) while at lower frequencies, they approach the index

of the cladding (1 for air). For dispersive materials, the phase and group indices do not

approach a constant bulk index since its frequency-dependence must be taken into account,

which poses challenges in phase matched THz generation. Most important to take note of

is the waveguide dispersion present far below the optic phonon resonance in LN at 7.6 THz,

which means that wave of different frequencies within a waveguide mode travel at different

speeds. We will later show how phase velocity dispersion can be used for generating nar-

rowband THz waves. Additionally, the consistently higher group index in the higher order

modes means that higher order modes (the envelopes of the fields) lag behind the lower order

modes as they propagate laterally through the crystal.
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Figure 2-9: Effective phase and group indices of TE modes in LN. Phase (solid lines) and group
(dashed-lines) indices of lowest four modes in 50 gm LN without material dispersion in (a) and with material
dispersion in (b).

2.3.1.3 TM Modes in Anisotropic Symmetric Dielectric Slab Waveguide

In the TM-polarization case, the anisotropy of the core must be considered. The polarizations

are uniquely defined by the extraordinary polarization, e, and the ordinary polarization, o.
The dielectric cladding (air) is isotropic so we can choose any two orthogonal polarizations:

vertical polarization, V, and horizontal polarization, h. Therefore, the most general form of

the E-fields of the waveguide modes in each region can now be written as follows:

Cladding (x < -f):

E(x) = C1f- exp[a(x + f)] + C2 if+ exp[-a(x + f)] + C3h~ exp[a(x + f)] + C4h+ exp[-a(x + f)],

(2.51a)
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Core (-i < x < f):

E(x) = Ais* exp(irex) + A 2 - exp(-iex) + A 3o5 exp(iKox) + A 40- exp(-irix) (2.51b)

Cladding (x > f):

E(x) = B1 - exp[a(x - f)] + B2O+ exp[-a(x - t)] + B3J exp[a(x - t)] + B4h+ exp[-a(x - f)],

(2.51c)

where Aj, Bi, and Ci are scalar constants.

The extraordinary polarization is located in the plane containing the wave vector, k,

and the optic axis, C' while the ordinary polarization is located orthogonal to this plane:

eOc k x (k x c) and 6 oc i x C. The relevant vectors are defined as follows:

0 kk

= sin9 and k= (2.52)

cos0 0

where 0 is the angle between the z-axis and the eo-axis of the crystal and the appropriate kx

is applied (/e for e and r. for 5). In an anisotropic waveguide, the angle must be accounted

for in both e and 6.

In terms of defining e, which describes the polarization of extraordinary E-fields, the

angle-dependence of the propagation constant as seen in (2.33), is taken into account by

expressing it in terms of the displacement field, D, since D oc k x (k x c). The D-field is

written as:

-Do
D = / r [e (2.53)

0
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where Do is the amplitude of the D-field in C/m2 .

The relationship between D and E is expressed by the constitutive relation: E =

R(--)V 1R(9)1 where the dielectric tensor, c, has been rotated around the x-axis by 0,

as in Fig. 2-6(a). For a uniaxial crystal with the principal axes chosen in Fig. 2-6(a), the

dielectric tensor has the form:
[e 0 0

= 0 e 0 (2.54)

[0 0 eel

where e(. and Ee are the ordinary and extraordinary permittivity, respectively, in C-V-'-m-'.

The rotation around the x-axis is given by: f = R(= 9)M(), where:

1 0 0

R(9) 10 cos0 -sin9 (2.55)

0 sin0 cos J

We can see that when 0 00, as in the TE cases, the rotation matrix takes on the identity

form in which the dielectric tensor is unchanged and the angle of rotation can be ignored.

The resulting rotated dielectric tensor for TM modes with 0 = 900 is then:

[e 0 0

0 ee 0 (2.56)

0 0 eO

There are no off-diagonal terms since pure TE or TM modes do not couple to each other. For

0 # 0* or 900, we have TE- or TM-like modes that are superpositions of the extraordinary

and ordinary waves.
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The extraordinary and ordinary polarizations of the E-field when 0 = 900 are then:

1 ie11[ ] []
OC Ne/Ee and * oc- = (2.57)

0 Jc LrJ

In contrast, for the isotropic cladding, any two orthogonal polarizations may be used,

where we substitute 17 and h in (2.51) by Z and rh (from (2.34) and (2.35)), respectively:

0 -0

z= 0 and POc [ia. (2.58)

1 0

We can then simplify the E-field expressions in (2.51) since TM waves are described by

e and l*. Also, any E-field components that do not decay to zero as x -+ oo are discarded.

This yields:

Cladding (x < -f): E(x) = Ci- exp[a(x + )], (2.59a)

Core (-- < x < e): (x) = Ale- exp(inex) + A 2e' exp(-iKex) (2.59b)

Cladding (x > f) : E(x) = Br+ exp[-a(x - t)], (2.59c)
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The TM modes are found by applying the last two boundary conditions in (2.40c) and

(2.40d) at x = f, and solving separately for the symmetric and anti-symmetric modes. For

the symmetric modes, A = A 1 = A 2 :

sien(iie) -1 [Al
[(Ke/f ) cos(ce=) -a [ 0 (2.60)

sin(rej) n 2 B

The transcendental equation for symmetric TM modes is:

an 2
-cot(Kee) = 2  (2.61)

Kenc

For the anti-symmetric modes, A = A1 = -A 2 :

(Ke/n 2) sin(Kee) a A
e2 = 0 (2.62)

Scos(Ke) ncL B

The transcendental equation for antisymmetric TM modes is:

tan(Kee) = efl (2.63)

Again, using the trigonometric identity that tan(9 + 7r/2) = - cot() and tan(9) = tan(8 +

m7r), then the solution for both the symmetric and anti-symmetric TM modes can be de-

scribed by:
gr a2

tan(ei + m-) 2 (2.64)
2 Kenc

where m = 0, 1, 2, - - - represents the mode number; m = 0 corresponds to the lowest anti-

symmetric mode and m = 1 corresponds to the lowest symmetric mode.

68



Similar to solving for the TE modes, we also substitute B = (3/ko) 2 to yield the following:

=ek O 2- B (2.65)
no (

a= ko V/B - nc (2.66)

The transcendental equation can then be simplified to:

tan~ neno)
no - B

nekof

no

7
m-=O

2
(2.67)
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K (rad/mm)
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300 400
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Figure 2-10: TM dispersion curves. For the lowest four modes in a 50 pm slab of LN, the wave vectors
are calculated in (a) the core, te, (b) a, in the cladding, and (c) the propagation constant, 3.
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The dispersion curves are shown in Fig. 2-10 and the effective phase and group indices

are shown in Fig. 2-11.

20
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0
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frequency (THz)

Figure 2-11: Effective phase and group indices of TM modes in LN.
(dashed) indices of the lowest four modes in a 50 pm slab of LN.
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Figure 2-12: TM mode profiles. The E-field profiles are calculated for E-- and E. components for (a) the
lowest order m=0 mode, (b) m=1 mode, and (c) m=2 mode.
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The waveguide mode profiles can be written exactly with the values of the scalar constants

imposed by the boundary conditions. The symmetric TM waveguide mode profiles are found

after determining the constants A1 = A 2 = 1/2, B = -C = -i [e/(aee e2 + Kg) cos(Kee):

{ cos(Kee) exp[a(x + i)]

i -(Oe.) sin(ex )

cos(r,,,) exp[-a(x - f)]

+ Y(Ke/Ee)

The anti-symmetric

Al = -A 2 =1/2, B

cos(Kee) exp[a(x + t)]

cos(nex)

cos(Kee) exp[-a(x - t)]I
TM modes profiles are similarly written with the

= C = [ne/(e#2 + "i)] sin(Ket):

} (2.68)

x < -f

X ;> f

determined constants

'1e sin(Ket) exp[a(x + t)]

_X / (0/6o) cos(Kex)

Le 3 sin(ne) exp[-a(x - f)]

+ iY(Ke/Ee)

- sin(nee) exp[a(x + f)]

sin(Kex)

sin(Kee) exp[-a(x - t)] }x < -(

-< x < j (2.69)

X ;> i

2.3.2 Experimental Broadband and Narrowband THz Generation

in Lithium Niobate

2.3.2.1 THz Broadband Slab Waveguide Generation

As a modification to THz generation in bulk systems discussed in the last section, shrinking

the depth dimension to a subwavelength scale relative to the THz waves forms the basis of the
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THz planar waveguide. Due to the large Cherenkov angle (630), the dominant wave vector

component in the bulk crystal is in the lateral dimension such that the THz waves propagate

primarily perpendicular to the propagation direction of the optical pump. The THz waves

propagate as discrete waveguide modes, bound within the high-index core, as discussed in the

previous section. The waveguide undergoes TIR (which is also present in bulk LN crystals),

as the waves bounce back and forth from front to back surface of the thin slab of LN, with

a small forward component resulting from the forward-propagating pump. Unlike for free-

space THz applications, it is advantageous to have the wave confined within the slab since

the generated THz waves that propagate laterally can either be manipulated by integrated

structures or made to interact with a sample placed on the surface, and subsequently can

be detected on the same slab sample either by imaging methods or at a single point, as

discussed in the next chapter.

The generation of TE or TM modes (or a hybrid) is based on the polarization of the optical

pump relative to the propagation direction of the THz waveguide modes. Experimentally,

we focus an 800 nm optical pump (pulse energy of 470 jJ) to a narrow vertical line with

an achromatic cylindrical lens (f = 15 cm), giving a beam waist diameter of ~, 10 pm,

at normal incidence to a thin slab of LN (f = 30-50 pm ). Figure 2-13(a) shows the

experimental pumping geometry in the waveguide, where the impulsive pump generates

counter-propagating THz waves traveling in the lateral directions. The propagation direction

is denoted by the wave vector k in Fig. 2-13(b); TE waves are generated when the E-field of

the optical pump is polarized perpendicular to k (Ev = 0) while TM waves are generated

when the optical E-field is polarized parallel to k (Hy = 0). In either case, we rotated

the crystal (and pump polarization) such that the extraordinary axis or optic c-axis of LN

(containing the strongest nonlinear coefficient d33) lies along the pump polarization direction

for the highest generation efficiency, previously depicted in Fig. 2-6. However, TM generation

results in a weaker pumping efficiency compared to the TE case, which can approximated

by calculating the fractional modal volumes bound inside the crystal (i.e. E. and E.) [39].
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In the waveguide regime, phase matching is not the limiting factor for attaining high

field strengths since the crystal is so thin, but as in the bulk crystal, the pump intensity is

limited by the damage threshold of LN. We used 0.6% MgO-doped stoichiometric LN that

has been shown to have higher optical damage thresholds than undoped LN. We obtain the

highest optical pump fluence by optimizing the position of the cylindrical lens to maximize

the second-harmonic (400 nm) light that is also generated in the nonlinear crystal, avoiding

immediate damage to the crystal. Sometimes the crystal is damaged over prolonged exposure

to the tightly focused pump.

(a) Z (b)

y

800 nm
pump UNb03

Figure 2-13: Broadband THz generation in a LN waveguide. (a) Schematic illustration of the exper-
imental geometry, where a cylindrically focused 800 nm pump pulse is directed at normal incidence through
a LN crystal. The generated THz waves counter-propagate in the lateral directions due to the large index
difference and are waveguided down the slab by total internal reflection. (b) The requisite polarization of
the optical pump relative the optic c-axis of the crystal for generating TE and TM THz waveguide modes.

An example of a broadband TE-polarized THz time trace in a 30 pm-thick slab of LN
is shown in Fig. 2-14(a), measured at a distance away from the generation region. This

is a clear demonstration of waveguide dispersion, where an initially single-cycle broadband

pulse at the point of generation is chirped and separated into the discrete waveguide modes

as they propagate at different speeds. At the initial point of generation, with no lateral

propagation, the THz waveform would appear as essentially single cycle. Broadband THz
generation in LN is capable of attaining bandwidths up to 2 THz, with relatively low material

damping. In this trace, the first and second waveguide modes are just beginning to separate
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(the first order mode runs ahead, appearing at earlier time delay, followed by the higher

frequency second order mode at later time delays). Consequently, the waveguide modes

are separated in time and interfere with one another, giving rise to spectral interference

seen in the frequency domain (the dips in the spectrum) in Fig. 2-14(b). However, spectral

interference only occurs above the cutoff frequency of the second mode (characteristically

similar to the TE-mode dispersion curves in 50 pm LN shown in Fig. 2-7(c) except that the

cutoff for the second mode is at 1.1 THz for a 30 pm slab of LN) since no other modes exist

at frequencies below this cutoff. As the waveguide modes continue to evolve, the oscillations

resulting from interference in the frequency domain become faster due to an increased time

separation between the modes.

1.0
8 (a) (b)

0.8
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01 0.6
0 -
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Figure 2-14: Experimental THz broadband generation in LN Waveguide. (a) THz time trace in
30 pm thick LN where the first and second order modes are just beginning to separate in time as they
propagate at different speeds through the crystal. (b) The Fourier transform of (a) yields the THz spectrum
showing bandwidth up to 2 THz. Modulation of the spectrum is a result of waveguide mode interference.

2.3.2.2 Tunable THz Narrowband Waveguide Generation

A narrowband, high-amplitude THz source is necessary to strongly and coherently drive

resonant phenomena and to provide a means of isolating specific resonant responses from

potentially convoluted broadband responses. In bulk LN, we observed noncollinear phase-
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matched THz generation over a relatively broad range of frequencies with a tilted optical

pulse front, made possible due to the linearity of the index of LN below the lowest op-

tic phonon resonance at 7.6 THz. However, in the waveguide regime there is pronounced

dispersion of the waveguide modes (in addition to material dispersion), which introduces

considerable phase velocity dispersion. Waveguide dispersion can be exploited for narrow-

band generation by using the same concept of tilting an optical pulse front, such that the

effective lateral group velocity of the optical pump matches the lateral THz phase velocity

at a selected THz frequency.

top view

Vint phTHz

gropt

Figure 2-15: Narrowband pumping geometry. The optical pump is tilted at an angle, -y, and propagates
at normal incidence relative to the surface of the LN crystal. The intersection velocity between the optical
pump and THz waves is given by vit and is equal to the THz phase velocity, Vph,THz, at a selected THz
frequency.

As shown previously for the TE modes in Fig. 2-9, the THz phase velocity dispersion is

clearly observed by calculating the phase index for each waveguide mode. By tuning the angle

of the optical pulse front's tilt to match the THz phase index of a particular frequency, we can

attain narrowband pulses for one or multiple waveguide modes. In this way, the peak of the

optical pump continuously intersects the peak of the THz wave, and coherently amplifies the

THz wave at the selected frequency while destructively interfering at all other frequencies.

Figure 2-15 shows a top view of the experimental pumping geometry, where the following
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velocity matching condition must be satisfied when vit('y) = Vph,THz (WO), where the lateral

intersection velocity is given by vint(-y) = vgr,optcot(y) and vph,THz(WO) = C/feff(WO) is the

THz phase velocity at the selected frequency wo. Because Vgr,opt = c is the optical group

velocity in air, the velocity matching condition is simplified to:

neff (wo) = tan(y) (2.70)

3 1
(a)(b) 5

0.8
23

0-01 0.6 3I0.4

0 1 2
E frequency (THz)

0 0.2

0 - -
-15 -10 -5 0 5 10 15 0 0.5 1 1.5 2

time delay (ps) frequency (THz)

Figure 2-16: Experimental narrowband THz generation in the waveguide. (a) Narrowband THz
time traces tuned to three different frequencies in 50 pm LN, where the first and second order waveguide
modes are observed. (b) The narrowband THz spectra of (a) showing two peaks corresponding to the two
modes at different frequencies. The inset shows that these modes possess the same effective index and hence
both satisfy the velocity matching condition.

Narrowband generation creates multi-cycle THz waves as seen in Fig. 2-16(a) for any

mode(s) that satisfies the velocity matching condition in (2.70). In the time traces, the

second order mode is also present, albeit pumped less efficiently than the first order mode,

since it has the same neff at a different frequency wo. This is made clear in the Fourier

spectra of the traces in Fig. 2-16(b), where two peaks were detected for each trace (the third

mode was at the edge of our bandwidth and difficult to measure). The inset in Fig. 2-16(b)

demonstrates the velocity matching condition, which as observed can be satisfied by one or

more modes. The relative bandwidth with respect to the center frequency is narrower at
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higher frequencies since a larger number of cycles can be phase matched over the interaction
length between the optical pump and THz waves, which is also evident in the time traces.

800 nm
pump

HWP CL1
(vert.) T MNf= 1 m

---..-.----..... :

CL2-
(horiz.) |LN

f=15 Cm -- ~-~~~~~~~~

I0 I

44
Figure 2-17: Narrowband experimental pumping geometry. An 800 nm pump beam is incident on a
diffraction grating at 460, and emerges tilted at an angle of 73.60. The final tilt angle, y, at the LN crystal,which determines the velocity matching condition, is set by the magnification ratio determined by the one-
lens imaging system with an achromatic cylindrical lens. A polarization rotator is used to flip the p-polarized
light off the grating back to s-polarized and parallel to the optic axis of LN for TE mode generation. The
two double-sided arrows indicate adjustable stages for adjustment of the imaging ratio of the grating surface
at the LN crystal.

The experimental pumping scheme, depicted in Fig. 2-18, demonstrates a way to obtain
the requisite tilt angle y of the optical pump at the LN crystal. The optical pulse front is tilted
by using the m = -1 order of the diffraction grating (2000 grooves/mm) most efficient for
p-polarization and imaging it using a one-lens imaging system with an achromatic cylindrical
lens (CL2, f = 15 cm) onto the LN crystal. An upstream long focal length cylindrical lens
(CL1, f = 1 m) is used to minimize the spot height for a higher pump fluence. The final tilt
angle is then set by the initial tilt angle, -y, off the grating (set by the incidence angle, a)
and the imaging ratio, M: tan(-y) = tan(-yi)/M (i.e. smaller y for a larger M ratios). The
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tilt, -y, of the m = -1 order diffraction beam is given by:

A
tan(y) = d

d cos #
(2.71)

where A = 800 nm, d is the groove spacing in nm, and # is the angle of diffraction. The

angle of diffraction is calculated using the grating equation:

s = sin- -sin a) (2.72)

where a is the angle of incidence onto the grating. We used an incidence angle of 460, which

corresponds to a tilt angle of 73.60 for the -1 order diffraction beam. Lastly, a polarization

rotator is used to flip the polarization of the tilted optical pump back to s-polarization,

parallel to the c-axis of the LN crystal for TE waveguide mode generation.

'a;
W
Vn
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Figure 2-18: Tilt angles for narrowband THz generation. For a 50 Am slab of
angle, y is calculated as a function of frequency for the four lowest waveguide modes.

LN crystal, the tilt

For tuning the center wavelength of the narrowband THz field, we fixed the position of

the LN (image plane) and moved both the cylindrical lens and grating arrangement built

on a small breadboard (object plane) together to change the magnification ratio. From
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Fig. 2-18, we see that steeper tilt angles (smaller M) are needed for attaining higher center

frequencies, which result in shorter interaction lengths. In the waveguide, angular dispersion

off the grating and the limited depth of focus provided by a one-lens imaging system are not

problems, unlike in bulk systems where they limit the interaction length and consequently

the generation efficiency. In those cases, angular dispersion may be minimized by introducing

the tilt with an echelon instead of a grating and two-lens imaging of the pulse front.
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Chapter 3

Terahertz Detection Methodology

3.1 Introduction

As a result of the intermediate regime of THz frequencies, conventional electronic or optical

detection technologies are unfeasible for either the temporal or spectral detection of THz

electromagnetic waves. With the development of THz generation techniques via optical

rectification in nonlinear crystals came the complementary development of coherent THz

detection via the inverse process called electro-optic (EO) sampling. It is a time domain

detection technique that has the unique capability of accurately measuring the amplitude

and phase of the THz E-field transient. EO sampling is typically implemented with a

focused optical probe beam, with a spot size much smaller than that of the THz beam at

the crystal, and is referred to in this thesis as point-source THz detection. In very thin

slabs of LN (i.e. THz waveguides), where the THz waves propagate primarily in the lateral

direction, orthogonal to the optical pump pulse, an expanded probe beam can be used to

spatially resolve the THz propagation. In the Nelson lab, we use two THz imaging techniques:

polarization gating imaging that is fundamentally similar to EO sampling and phase contrast

imaging that is based on refractive index contrast.
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In this chapter, I will describe point-source THz detection that is used in both bulk and

waveguided nonlinear crystals and recent technical improvements in the spatial resolution

and signal-to-noise (S/N) of the two THz imaging techniques in the waveguide regime.

3.2 Point-source THz detection

EO sampling is based on the principle that a THz E-field can modulate the polarization of

an optical probe pulse through the linear EO-effect in a nonlinear X(2) medium, referred to

as the Pockels effect. [19, 31]. Experimentally, the change in polarization state is temporally

gated by a short optical probe pulse with femtosecond pulse duration, over which the THz

E-field is averaged, and hence sets the time resolution of the measurement. A pump-probe

geometry is employed where the time axis is derived from the scanning of a mechanical

stage typically in the probe arm to introduce a relative time delay between the pump and

probe pulses that respectively generate and measure the THz field. Point-source detection

measures the THz waveform at essentially a single position and thus recovers time traces

that contain no spatial content other than the location of the focused probe spot, but yields a

higher S/N ratio for the THz field profile than imaging measurements. In this section, I will

describe the EO effect in ZnTe and LN, the experimental implementation of EO sampling

in bulk and waveguided systems, and the instrumentation required for reliable acquisition.

3.2.1 The Electro-optic Effect

The EO effect is the change in the optical refractive index of a material in response to an

applied dc or time-varying E-field, such as a THz E-field. In the Pockels effect, the change

in optically measured refractive index is linearly proportional to the strength of the applied
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field. The linear EO effect can be described by the second order nonlinear polarization:

P(w) = 2 (oE = W + 0, W, O)Ej(w)Ek (0) (3.1)
jk

where Ej (w) is the E-field of the optical probe and Ek(O) is the lower-frequency THz E-field.

Analogous to THz generation via optical rectification, as a result of the symmetry constraints

on the second order nonlinear susceptibility, the Pockels effect only exists in crystals that

do not have inversion symmetry.' From (3.1), we observe that the nonlinear polarization

is linearly dependent on the applied THz E-field, Ek(O). Note that we are neglecting the

nonzero value of the THz frequency because in our measurements we do not frequency-resolve

the modulated optical probe field to measure its shift by that frequency.

In the following analysis, we will derive the effect of an applied THz E-field on the

optically measured refractive index. For an anisotropic material, the relationship between

the displacement field, D, and the electric field, E, of the optical probe is given by:

D -Opt = _#~

-?P = E (3.2)

where = is the dielectric tensor and the terms ei are its matrix elements. For a lossless

medium, = simplifies to a real, symmetric matrix, in which transformation to a new coordinate

system yields a diagonal matrix [19]:

E y Ey Yy, =EV 0 fyy 0 (3.3)

[EzX EZy Ezz [ 0 0 EZZ

'For centrosymmetric crystals, the lowest order EO effect is the quadratic EO effect or the Kerr effect,
in which the change in the optical refractive index depends quadratically on the applied field.
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where the transformed coordinates (X, Y, Z) represents the principal-axis system. From the

dielectric tensor, we can obtain the refractive index of an anisotropic medium as a function

of the propagation direction, since n = V/o (assuming a non-magnetic material).

Z (c-axis)

ne

propagation
e direction, k

n e'

n ..-- ....- .... Y

Figure 3-1: The optical indicatrix. A geometric representation of the refractive index of a uniaxial
anisotropic system that is used to determine the permitted polarization directions and the magnitudes of the
refractive index along these directions. For a uniaxial crystal, its principle axes are given by the extraordinary
index, ne, along z, and the ordinary index, no, along x and y. Here, an electric field propagates along k at
an angle 0 e from the optical (c) or extraordinary axis along z. The two emerging polarizations lie in a plane
perpendicular to k, where the intersection between this plane and the index ellipsoid forms an ellipse; the
polarization directions are given by the major and minor semi-axes of the ellipse and the effective indices
are given by the magnitudes of these vectors, n' (0e) and no.

Except for propagation along a special direction (i.e. the optical c axis in a uniaxial

crystal) or polarized along one of the principle axes of the crystal (i.e. the extraordinary or

ordinary axis in a uniaxial crystal), a randomly polarized beam incident at some angle on an

anisotropic crystal is decomposed into two orthogonal polarization directions, with each of

the beams accompanied by a unique index of refraction that gives its propagation velocity.

This variation of refractive index experienced by the propagating waves is geometrically

represented in the form called the optical indicatrix or index ellipsoid, depicted in Fig. 3-1.

In the principle-axis system, the index ellipsoid in the absence of an applied field takes on
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the simplest form:
X 2  y2  Z2

--- + - +-
exx EYY ezz

(3.4)

The most general form of the index ellipsoid is expressed in the arbitrary coordinate

system (x, y, z):

X2 + y2 + Z2 +2 yz+2 xz + 2 xy 1 (3.5)

where the coefficients (1/n 2 )i are the optical constants along the simplified coordinate i.

These subscripts are compact representations of the coordinate system:

1 -+ x, 2 -+ y, 3 -+ z, 4 -+ yz, 5 -+ xz, 6 -+ xy.

This particular assignment of coordinates is consistent with the notation commonly used for

the EO tensor to be defined later.

The effect of the applied field

impermittivity tensor, the matrix

on the refractive index is more clearly seen by using the

inverse of =: r= = = . (3.2) can be rearranged to yield:

E*pt = # t

EOPt = 177DOPij~ 7-t. Z D3PtC i

(3.6)

(3.7)

and the index ellipsoid (3.5) is modified to include the impermittivity tensor:

7iiX2 + 722Y2 + 33 z2 + 2723YZ + 2713xz + 2 712XY = 1 (3.8)

The elements of the impermittivity tensor in the general and principle-axis system, respec-
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(1/n2),

77 (1/n2)6

(1/n2)5

In the presence of an applied field, the impermittivity

linear EO effect induced by the applied field:

tensor is modified to include the

(3.10)
= ?7+ rPTz

where V is the impermittivity tensor in the absence of an applied field and r = F is the EO

tensor (a rank three tensor) pertaining only to the linear EO effect; higher order terms are

ignored here. Alternatively, we can write the impermittivity tensor in summation form:

(3.11)~ij = + rijkkT E

k

Because r7 is real and symmetric, this implies that r is also real and symmetric in its first two

indices, i and j. This means that we can use the compact subscript form defined previously

such that rijk =rk where h= 1 to 6:

rlk = 1k r23k = r32k r4k

(3.12)r22k r2k r13k r31k r5k

r33k = r3k r12k = r21k 6k

The change in the refractive index due to an applied THz E-field is given by the second
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tively, are:

(1/n2)6

(1/n2)2

(1/n2)4

(1/n2 )5

(1/n2)4

(1/n2)3j

1/exx

=1 0

0

0

1/Eyy

0

0

0

1/EzzJ

(3.9)



term in either (3.10) and (3.11). It can be written as:

A (3') = Z riETHz (3.13)

where i = 1, 2, ... , 6 is the contracted coordinate notation for the indices in the impermit-

tivity tensor and j = 1, 2,3 is the direction the THz field is applied. This expression (3.13)

may be rewritten in matrix representation:

A (1/n 2)1 r1  r 12 r 13

A (1/n 2 ) 2  r 2 1 r 2 2 r 2 3  -
1E11A (1/n2 )3  _ r3 l r32 r33  E3
1E21 (3.14)

A (1/n2 )4  r41 r4 2 r43  E3

A (1/n2)5  'r'5 r5 2 r53 L J

A (1/n2 )6  r6 l r6 2 r63

The EO coefficients rij represent the real material properties that govern how the impermit-

tivity changes as a function of applied field strength, given in units of m/V.

Finally, the distortion of the index ellipsoid from an applied E-field can be rewritten to

include the modified r7ij coefficients in (3.8):

1)+ Zj(1)1 X2 + + y2 + +Z2

+ 2A ( )4YZ + 2A ( 2 ) XZ + 2A (-)XY = 1 (3.15)

where we have assumed a principle-axis coordinate system in the absence of an applied field,

such that the off-diagonal impermittivity terms are zero: (1/n2)4 =(1/n 2 )5 = (1/n 2 )6 = 0.

In the absence of an applied field, ETHz = 0, so all the coefficients A (1/n2 )i = 0 and (3.15)

is reduced back to (3.4).
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3.2.2 The Pockels Effect in Zinc Blende Crystals

The form of the EO tensor is affected by the rotational symmetry properties of the EO crystal

(i.e. the terms that must be zero as a result), which can be elucidated from knowledge of

its point group. Zinc telluride (ZnTe) and gallium phosphide (GaP), cubic crystals that

possess point group symmetry 13m, have only one nonzero EO coefficient, r41 [42]. The

overarching goal is to determine the direction and magnitude of the principle axes of the

perturbed index ellipsoid in the presence of an applied field, as shown in Fig. 3-1; this

requires coordinate transformations. Consequently, with the optical probe polarized along

a predetermined direction, we can use the new coordinates to calculate the change in the

probe's initial polarization, a direct result of the change in refractive index induced by an

applied field.

The EO tensor for point group 43m is of the form:

0 0 0

0 0 0

r = (3.16)
r 41  0 0

0 r 41  0

0 0 r 41

where r4 1 = r5 2 = r63 . The modified index ellipsoid due to an applied THz E-field is given

using (3.14) and (3.15):

()X2 + Y2+ Z2

+ 2r4 1ETHzYZ + 2r41ETHzXZ + 2r4 1E3THzXY = 1 (3.17)

where the refractive indices simplify to nj = n2 = n3 = n in the absence of an applied
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THz field because the crystal is cubic. From (3.17), it is evident from the existence of

cross terms that the coordinate system (X, Y, Z) is not the principle-axis coordinate system

of the modified index ellipsoid. Two separate coordinate transformations are required to

essentially 'undo' the distortions imposed on the index ellipsoid by the THz E-field , which

allows us to directly infer the direction the field is applied along (i.e. its polarization) and

its corresponding strength. The two transformations are detailed carefully by Planken et al.

in [43] for EO detection in ZnTe.

Initial coordinate
system (XYZ)

Z

(a) a

ETHz Y

Z~~ --)

Rotation of 450
around Z-axis (XY,Z)

O Rotation of (D
around X'-axis (XYZ")

- "

X"

Figure 3-2: Two coordinate transformations in zinc blende EO crystals. A THz E-field, polarized
at an angle a relative to the Z (001) crystallographic axis and with magnitude JETHZ , is applied to the
crystal and distorts the index ellipsoid. In order to determine the extent of the distortion, which is directly
related to the EO tensor and THz field strength, we need to determine the new set of principle axes through
a sequence of coordinate transformations of the initial unperturbed axes. (a) shows the initial coordinate
system (X, Y, Z) in the absence of a THz field. (b) shows the first coordinate transformation that requires
a rotation of 450 around the Z-axis to obtain (X', Y', Z'). (c) shows the second coordinate transformation
by an angle -1) that is dependent on the initial THz polarization angle a. Appropriate substitution of the
transformed coordinates into the index ellipsoid expression puts it into the principle axes frame (X", Y", Z").

Figure 3-2 illustrates the two coordinate transformations that are needed to assign a

principle-axis system to the modified ellipsoid. The first transformation is a 450 rotation

around the Z axis, which transforms the X and Y axes, but leaves the Z axis unchanged;

this results in the new axes (X', Y', Z') as seen in Fig. 3-2(b). For a THz pulse propagating

along the (110) axis, the following simplification is used E2THz = -ETHz. The index ellipsoid
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in (3.17) is recast in the (X', Y', Z') coordinate system:

x' 2 ( + + Y/ 2  - E Hz +z/ 2  + 2-ETHz 41/Z

Elimination of the last cross term requires a transformation around the X' axis by an angle .

If we express the THz E-field in terms of the angle a between the THz polarization and

the Z axis, then the components of the field can be rewritten as: E3THz = EM cos a and

ET V- ErHz sin a where ErHz [THz; the magnitude and direction of the THz E-

field are shown in Fig. 3-2(a). The index ellipsoid following this transformation to the final

coordinate system (X", Y"Z") shown in Fig. 3-2(c) is simplified using trigonometric identities

to yield:

x" 2  + ErHzr4i cos a + Y" 2  
- ErHzr4l (cos a sin2 D + cos(a +

+ z" 2  - ErHzr41 (cos a cOS2  - cos(a +2

+ Y"Z"ErHzr4i (sin 24 cos a + 2 cos 24 sin a) = 1 (3.19)

-0

The remaining cross term Y"Z" is assumed to be zero if its coefficients are zero; this condition

is satisfied for the angles:

tan(2+ mr) = -2tana (3.20)

24= - tan'(2tan a) - mr

where the angle 4 is dependent on the initial angle a between the THz polarization and

Z-axis in the original coordinate system, and a is bound according to:

(m - 1/2) 7r ; a < (m + 1/2) r, for m = 0,1, 2,....
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Assuming that A (1/n2 « 1/n 2 , then the following differential relation is valid:

d(1/n = -2n- 3  
(3.21)

dn

Then we can replace the differential form by the finite linear difference A to reveal the

relationship between An and A(1/n2 ). Substitution and rearrangement of (3.21) yields:

1
An = -- n 1/n2 ). (3.22)

2

Lastly, the new index along each axis is simply:

n' = n + An. (3.23)

For propagation of an optical probe along the X" axis, we intersect a plane at X" = 0 with

the modified index ellipsoid in the principle-axis system. The plane should pass through the

origin of the ellipsoid and is perpendicular to the X" axis. The resulting intersection forms

an ellipse, which is found by setting X" = 0 in (3.19), and consequently the impermittivities

of interest lie along Y" and Z":

1 1
1 (a) = -ETH 2 r41 [cos a sin2 (D + cos(a + 2)], (3.24a)ny2 n2 o

= A(1/n2)

1 _1

2 (a) = , ETHZr41 [cos a cos2  - cos(a + 2D)]. (3.24b)
nz/1

= A(1/n 2 )z"

In the principle-axis coordinate system derived here, it is straightforward to determine the

terms in (3.19) that are responsible for the change in impermittivity, A (1/n2 ), being the

second term in each expression in (3.24). Using (3.22) with substitution of the change in

91



impermittivity in (3.24), the new refractive indices are:

n3

ny2 (a) n + ETHzr41 [cos a sin2 4p + cos(a + 2d)] , (3.25a)

nz2 o) n + ETHzr41 [cos a cos2 1 - cos(a + 2JD)] . (3.25b)

Note that ny" 4 nz7 , which means that the initially spherical indicatrix under an applied

THz E-field becomes elliptical and that the crystal goes from being isotropic to biaxial (

nx" 74 fnyt 14 fnz). As a consequence, an optical probe initially linearly polarized at

an angle 9 relative to the crystallographic Z axis and propagating along X" experiences

different indices along the new axes Y" and Z" and hence each of its polarization components

accumulates different amounts of optical phase. The optical probe emerges from the crystal

elliptically polarized due to the THz-induced birefringence (see probing geometry in Fig. 3-3).

E TZ
t Z"

Eopt Z'

THz' kopt

. X"
Figure 3-3: Experimental EO probing geometry in zinc blende crystals. This schematic illustration
of the beam geometry in the crystal shows the polarizations and propagation directions of the optical probe
and the applied THz field in the transformed principle axis coordinate system. The THz E-field is polarized
at an angle a and the optical probe is polarized at an angle 0 relative to the Z (001) axis of the crystal
and both beams propagate together along the new principle-axis X". As a result of the THz induced
birefringence, there are two allowed polarization directions along Y" and Z" with corresponding modified
refractive indices, ny" and nz. Because ny" 7 fnz", the optical probe becomes elliptically polarized as it
propagates through the crystal.
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3.2.3 The Pockels Effect in Lithium Niobate

EO detection in zinc blende crystals is the most widespread since it allows for detection

of THz E-fields in the collinear geometry, a direct result of the requisite phase matching

described in the previous chapter for THz generation. However, in the polaritonics platform

(also described in Ch. 2), the large index difference at THz and optical frequencies in EO

crystals, such as lithium niobate (LN) and lithium tantalate (LT), is utilized since it allows

for generation and detection in the same sample. LN is a trigonal crystal with point group

symmetry 3m and therefore its EO tensor takes on the form:

0 -r 22 r 13

0 r 22  r1 3

ri 0 r33  (3.26)
0 r 5 i 0

r5 i 0 0

-r 2 2  0 0

where r2 2 = -r12 = -ri, r5 i = r 4 2 , and r13 = r2 3 . The modified index ellipsoid due to an

applied THz E-field is given using (3.14) and (3.15):

-r22E 2 + r13E3 x2 + ( )+ r2 2 E2 + r13E3 Y2 + [ )+ r33E3 Z 2

+ 2r51E2 YZ + 2r5 1E1XZ - 2r22E1XY = 1. (3.27)

In our experiments, we use x-cut LN, such that n1 = n2= n0, and n3 = n, where n, and ne

are the ordinary and extraordinary refractive indices, respectively. In the probing geometry,

we use an optical probe propagating at normal incidence to the crystal (i.e. along X) and
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so we can simplify the indicatrix above to be in the most relevant form by setting X = 0:

[2 + r22E2 + ri3 E3 Y 2 + +2r51E 2YZ = 1. (3.28)

For the THz field strengths in the polaritonics platform, the induced changes in impermit-

tivity from off-diagonal components are much smaller than those from the on-diagonal terms

and can be discarded [44]. Therefore, the indicatrix is cast in the principle axis coordinate

system with no off-diagonal terms:

[- + r22E2 + ri3 E3 Y 2 + -+r 33E3 Z2 = 1. (3.29)

Note that since there are no mixed terms, no coordinate transformations are required and

the modified index ellipsoid lies along the original principle axes of the crystal (unlike in zinc

blende crystals). From this expression, we see that the modified refractive indices along the

ordinary and extraordinary axes are:

' = (r 22 E 2 + r13 E3 ) (3.30a)

n = - n (r3 3E3). (3.30b)

Therefore, an optical probe propagating along X accumulates different amounts of phase

along the ordinary and extraordinary axes, resulting in a phase shift between the emerging

orthogonal polarization components of the probe.

3.2.4 Electro-optic Phase Retardation

The optical phase difference introduced by the THz E-field is the quantity that we wish to

determine since it is a quantitative measurement of the THz field strength given the EO

coefficients. Here, we consider an optical probe propagating along the principle axis x' of
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the modified ellipsoid; at x' = 0 the optical field is split into two orthogonal states polarized

along the other two principle axes, y' and z', with the corresponding indices of refraction, nyl

and n,t. These two polarizations lie in the y'z' plane, perpendicular to the incident probe,

and propagate along x'. The time-dependent E-fields of these components are:

Eyi = A exp [i (kyrx' - wt)] (3.31a)

Ez1 = A exp [i (kzx - wt')] (3.31b)

where k = 27rn/Aopt is the wave vector component along the appropriate axis for the optical

wavelength, Aopt, and refractive index, n. Therefore, the phase accumulated by the optical

probe in either polarization direction is given by:

Oy,(x') = 27r1!'x' (3.32a)
AoPt
nz,

OZ,(x') = 27r z' (3.32b)
Aopt

For a crystal of thickness, , the phase difference between the two orthogonal components

is called the EO phase retardation, A#, which is related directly to the THz E-field. It is

simply calculated as the difference of the phases given in (3.32):

AO = 4/) - OI)
(3.33)

= 27r (nY, - nzi)
Aopt

Because the THz E-field causes an induced phase shift in the optical probe, the static index

terms may be ignored and only the change in the index, An, is considered. Assuming the

index is of the form n' = n + An, then we can separate the phase shift into the static and

induced phase shift terms since AO = A$t + A4n.. Explicitly, the phase shifts can be
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written as:

A#t = 27r- (nY - nz) (3.34a)
AOPt

Aoind = 27ry. (An. - An,). (3.34b)
opt

For ZnTe considered in Section 3.2.2, the relative phase shift only arises from the induced

change in the indices (i.e. the material has no static birefringence, AO#t = 0); substitution

of the modified indices in (3.24) gives:

A = = 27 ETHZ [2 cos(a + 24) - cos a cos(24c)]. (3.35)
A~kid 2 A0 pt 2

This expression shows that the phase shift depends on the polarization direction and strength

of the THz field. According to experimental results presented by Planken et al., the largest

detected signal occurs when the polarization directions of the THz and optical probe are

parallel (9 = a) or perpendicular (9 = a + 90*) to each other. This is different from the

commonly chosen relative angle of 45* used for optical Kerr detection or more relevantly

for the Pockels effect in LN to be shown later. The THz polarization that gave the largest

detected E-field amplitude occurred at & = 90* for either the parallel or perpendicular

probing scheme, which subsequently sets (D in (3.20), and the relative phase shift in (3.35).

For LN in Section 3.2.3, the induced relative phase shift is:

Aoind = 27r (Ano - Ane) (3.36a)

f n 3 (r22E2 + ri3 E3 ) - n3r33E3=-2,7r- . (3.36b)
Aopt 2

In LN, a probe polarized at 45* experiences a horizontal and vertical phase shift according

to this expression.

The phase shift is an interesting quantity because for certain values, the crystal under an
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applied field can act either as a quarter-wave plate (AO = 7r/2) to yield circularly polarized

light, or as a half-wave plate (AO = 7r) to yield an orthogonally polarized beam, relative

to the linearly polarized direction of the input optical probe. In the next section, we will

calculate the detected intensity modulation, also directly proportional to the THz E-field,

through a phase-to-amplitude conversion process.

3.2.5 Electro-optic Sampling

3.2.5.1 The Detected Electro-optic Signal

Because photodiodes are square law or intensity detectors that are unable to detect phase,

we need to convert the phase into an amplitude change. This concept of phase-to-amplitude

conversion forms the basis of EO sampling and also detection in both imaging techniques

to be described later. Experimentally, a quarter-wave plate and a Wollaston polarizer are

placed after the detector crystal, and the intensity of two emerging orthogonal polarizations

are measured on a photodiodes. The EO-detection scheme is presented in Fig. 3-4, where the

orientation of the incoming optical probe and principle axes of the EO crystal are specified

for LN.

If we first consider the case without an EO crystal in place, an input optical probe is

firstly linearly polarized at 450 and then passed through a quarter-wave plate at 00. The

quarter-wave plate introduces a relative 7r/4 phase shift between the horizontal and vertical

polarization components of the probe and consequently the beam emerges circularly polar-

ized. Lastly, the phase-to-amplitude conversion process is carried out by using a polarizer,

in this case a Wollaston prism oriented at 45', such that the circularly polarized beam is

split equally into +45* and -45' polarization components. Two photodiode detecters record

the intensities of the probe for both components, which are equal to each other (I, = 12).
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input optical PD1
probe y fast C

CPD%z 4 IS/Ow P D2

.quarter-wave Wlatnpim 5
polarizer, 450 electro-optic crystal platewv Wollaston prism, 45*

Figure 3-4: Ideal EO sampling geometry in LN. An input optical probe is linearly polarized at 450 and
propagates along the x'-direction in the EO crystal. In this case, an applied THz E-field induces changes
in the refractive index along the principle axes y' and z'. An optical probe experiences a relative phase
shift, A4 due to the EO crystal and an additional 7r/4 phase shift from the quarter-wave plate. A Wollaston
prism splits the optical probe into two orthogonal polarization states at 45', which are detected by two
photodiodes.

In the case where an EO crystal is placed after the initial polarizer, the optical probe

may experience a static phase shift for inherently birefringement materials or an induced

phase shift from an applied E-field, as described in Section 3.2.4. This means that when

it passes through the quarter-wave plate, the emerging beam becomes elliptically polarized

and hence it is split unevenly into 45' polarizations by the Wollaston prism, leading to

unequal intensities on the photodiodes (11 -, 12). The differential intensity is calculated as

AI = I, - 1, where I, is the intensity in the presence of an applied field for photodiodes

i = 1, 2 and Io is the intensity of the probe in the absence of an applied field. A THz

E-field can modulate the detected intensity, which we exploit to extract a THz time trace:

ETHz OC AO OC Al/IO-

The intensities of the orthogonal components can be analytically cast using the Jones

calculus formalism [45] developed for polarizing elements and light. The following matrix
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operations are used to yield the resulting E-field of the optical probe emerging at +450:

1 1 1 4 1 0 1 0 EO1- - i.i eilr/4 [~? ~e *] Eo [
2 P iz 0 i L 0 e pA O L 1lg

Polarizer at +4511 quarter-wave plate EO crystal 450 polarized light

1
=-Eo2

E+ie2a1
1 + ie'AJ

where EO is the amplitude of the probe E-field in the absence of an applied field.

intensity, I = EE*, is calculated to be:

I+450= Io (1 - sin AO).

Similarly, a calculation performed for -45* yields:

I 4 5O = Io (1 + sin A#).

The signal modulation is then simply:

AI-F/Io = sin AO, (3.40)

where AIF = 4 - 1o. The implementation of balancing is implemented by subtracting the

signal modulations of the orthogonal polarizations:

A A - - 2 sin(A#)
Io o Io (3.41)

~2A#

where for small A#, the detected signal is doubled while noise that is non-polarization

sensitive is suppressed (since noise fluctuations change A# with the same sign for both

99

(3.37)

The

(3.38)

(3.39)



polarizations). It is preferable to have small phase shifts (i.e. small THz field strengths and

crystal lengths) such that we can make this approximation and detect in the linear regime

for quantitative measurements.

In LN, for a z-polarized THz TE E-field (E2 = 0), the induced signal modulation detected

using EO detection is:
AIi n 3r33 - n 3r13AL ~ ; 27r e 0 ETHz. (3.42)

I0 Aopt 2

For ZnTe, although the input polarization state and principle axes are oriented differently,

the signal modulation detected is the same. Planken and coworkers calculated the signal

modulation as a function of the polarization direction of the optical probe and applied THz

field [43]:
IT (a, 9) ~ t sin [2(0 - )] A4(a). (3.43)
'0

3.2.5.2 Other Considerations

The quarter-wave plate is used to introduce a static 7r/4 phase-shift, which effectively yields

50% intensity transmission in the absence of an applied field. This falls in the linear regime

of the sinusoidal response, where positive and negative amplitudes of the THz E-field can

be monitored. Without a quarter-wave plate, the result is a homodyne detected signal that

is proportional to Aq 2 , and so the sign of the signal is lost. This crossed polarizer EO

sampling geometry has been used for detecting very weak signals since this is essentially a

background-free measurement and amplifies the signal modulation in the nonlinear detection

regime. In order to recover the sign of the field, the static birefringence in the EO crystal is

used as a small bias to -have near zero transmission [46].

It is of interest to note that the same outcome results from switching the angle of the

quarter-wave plate to 450 and the Wollaston prism to 0* to yield vertical and horizontal

polarizations at the photodiodes. This is useful in imaging methods where we need the +

and - polarizations to be vertically aligned, such that both polarization states can fit on the
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same detector (e.g., CCD chip). In this case, a rotated quarter-wave plate is substituted

into (3.37) with the use of rotation matrices, and vertical or horizontal linear polarizers as

the last element in the series. A quarter-wave plate with its fast axis at 450 has the form:

QWP4' =eir/4 =

-1 +i 1 -i

Also, the static birefringence that gives rise to the static phase shift, AOt is removed

by tilting of the quarter-wave plate around its fast axis until both photodiodes have equal

intensity (in the absence of a THz field). Therefore, this compensates by introducing more

or less phase along the slow axis to match the phase shift along the fast axis. Therefore, the

quarter-wave plate simply introduces an additional phase shift, -y in the component:

QWPO.,tlt = e i/ 4 [ 0

LO ie"Y

where -y = -A#$t. A common mistake is to compensate the static shift by rotating the angle

of the wave plate while keeping the polarizer unchanged, but this mixes the two orthogonal

polarization states together and the detected signal is not of the form derived above.

3.2.6 Pump-probe Geometry for time domain THz Detection

Due to the lack of a THz spectrometer that spectrally resolves a THz pulse, EO sampling

relies on a pump-probe geometry that records a THz time trace. This detection scheme

captures both the amplitude and phase of the THz pulse in the time domain, which may be

Fourier-transformed to yield the corresponding frequency domain spectrum. Figure 3-5(a)

shows a general schematic of the pump-probe geometry used for EO detection, specifically

in the polaritonics platform, but encompasses the same detection method used in free-space

THz experiments.
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Figure 3-5: EO sampling pump probe geometry. (a) A general schematic of EO sampling in the
polaritonics platform. The 800 nm laser is initially split into the pump and probe arms. The pump is time
delayed relative to the probe by scanning a mechanical delay stage. (b) The optical probe acts as a gate
pulse that samples the THz waveform at different pump-probe time delays; the THz field is averaged over
the probe pulse duration, setting the time resolution of the measurement.

Initially, an 800 nm ultrafast pulse (1.5 mJ/pulse, - 80 fs, 1 kHz) is split into the

"pump" and "probe" arms by a beamsplitter; typically 90% or higher is allocated to the

pump arm since minimal fluence is needed for the optical probe. The pump is directed into

a mechanical delay stage, where its movement lengthens or shortens the pump arm's total

path length from the beam splitter to the LN sample. In the polaritonics platform, the probe

arm is directed into a non-collinear optical parametric amplifier (NOPA) to generate light

with 532 nm center wavelength and polarized at 45'. In free-space THz setups, the probe is

an 800 nm beam since THz generation and THz detection occur in spatially distinct parts of

the setup, and so spectral filtering of the 800 nm pump is not required since it can be blocked

or filtered out upstream. The pump and probe arms are recombined by a dichroic mirror and

focused onto the same spot in the LN sample. In free-space setups, the pump and probe are

recombined by either a pellicle beam splitter (transparent to THz wavelengths, but partially

reflective to optical wavelengths) or directing the optical probe through a drilled hole in the

last THz focusing parabolic mirror.

As described in the last section, the THz waves modulate the polarization of an optical
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pulse via the Pockels effect and the THz-induced phase shift is converted to an amplitude

change by using a quarter-wave plate and a Wollaston polarizer. The two emerging orthogo-

nal polarization states are then detected on a pair of photodiodes for balanced detection. In

our experiments, we measure a time-dependent signal modulation, j(t), since its quantity is

directly proportional to the amplitude of the THz waveform according to (3.42), only scaled

by a set of constants.

The femtosecond optical probe acts as an optical gate pulse since it is temporally much

shorter than the period of a THz pulse. The optical gate essentially averages the THz pulse

over its pulse duration. Strictly speaking, the detected signal modulation is the convolution

of the THz E-field with an optical gate pulse: A/IO oc ETHz & Eopt, but in the limit of a

very short gate pulse (i.e. 100 fs or shorter), the measured signal is simply proportional to

the THz field, which in our case is essentially constant over that duration.

Figure 3-5(b) illustrates the pump-probe technique where the x-axis represents the time

delay between the pump and probe arms introduced by the mechanical delay stage. At one

fixed time delay, the THz E-field, ETHz(t), and the probe pulses are time-coincident at some

point in the THz field profile at the detection crystal, and a signal modulation proportional

to the E-field amplitude at one instance of time is measured. By stepping the time delay

between the pump and probe, a full time trace of the propagating THz field is recovered.

The probe pulse duration is inversely proportional to the detectable bandwidth (~, 10 THz

for 100 fs pulse), but typically the detectable bandwidth is limited by optical rectification in

the EO crystal.

3.2.7 Signal Detection with Data Acquisition System

As an alternative to using a lock-in amplifier, we use a data acquisition (DAQ) system that

measures the energy of every pulse at a rate limited by the maximum sampling rate of the

card [47]. In this section, I will describe the general guide to setting up a DAQ system
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and discuss its benefits compared to the lock-in and its flexibility in adapting arbitrary

measurement schemes.

3.2.7.1 THz Detection Instrumentation

In the pump-probe geometry described, every laser pulse detected by the photodiodes is

measured using the DAQ system, with its sample clock synchronized to the repetition rate

of our 1 kHz laser. In this method, the measurable quantity that is directly related to the

pulse energy of the optical probe is the peak voltage of each electrical pulse (the integrated

voltage would have also worked). The general layout of the instrumentation for the DAQ

system is shown in Fig. 3-6(a).

(a)

-o

E
MU

0 2

time (ms)
3

Figure 3-6: DAQ system layout. (a) The basic DAQ system consists of detectors, a computer, and a DAQ
card that interfaces the detector with the computer. In our system, the current outputs of the photodiodes

are both sent to current preamplifiers. The filtered and amplified voltage outputs are analog signals that

are sent to a DAQ connector block (channels aiO and ail). A precisely delayed 1 kHz sample clock from a
digital delay generator and a 500 Hz trigger source from a chopper control are digital signals that are also

connected to the DAQ block (PFIO and PFI1). The analog and digital signals are sent to a DAQ card,
which has an analog-to-digital (A/D) converter at its front end. The digitized signals are then manipulated

using a computer. (b) The evolution of the pulses on an oscilloscope shows how the rising edge of the 1 kHz

TTL sample clock is positioned to lie at the peak voltage of the preamplifier voltage output. The DAQ card

records the voltage whenever it detects this rising edge.

Firstly, the current output from the photodiodes is directed into a low-noise current

preamplifier (Stanford Research Systems, SR570) that serves two purposes: it filters/amplifies
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the signal and converts the current signal into a voltage; this is an analog signal. Also, a 1

kHz transistor-transistor logic (TTL) signal directly from the laser is fed into both a digital

delay generator and a chopper control unit (connected to a chopper in the THz pump arm).
The digital delay generator (Stanford Research Systems, DG535) is used to precisely delay

the input TTL such that its rising edge is aligned with the peak voltage of the preamplifier

output (see Fig. 3-6(b)). We filter out the high frequency components by using the 3 kHz

low pass filter setting on the preamplifier; this causes the voltage to evolve more slowly so

that we can accurately measure the peak with minimal error from jitter of the sampling

clock, but it also allows the signal to decay to zero within 1 ms.

The chopper control that sets the chopping frequency and phase of the THz pump is also

synchronized to the 1 kHz output and then down-counted to 500 Hz, the maximum pump

modulation frequency. This ensures that every other pump pulse is blocked, which means

the probe pulse alternates between measuring I (THz pump present) and o (THz pump

absent). The output TTL from the chopper control unit is used to trigger the acquisition

so that we know the order in which the pulses, I and 10, are collected in. This allows us to

correctly calculate the signal modulation:

A~I I -10

1o 10

The two analog voltage signals from the photodiodes are sent into the analog inputs, and

the sample clock and trigger sources are sent into the digital inputs, of a DAQ connector

block. The DAQ connector block simplifies the connections while shielding the signals from

interfering with other electrical sources that can produce crosstalk. Subsequently, a DAQ

card (National Instruments, PCI-6281, 18 bit analog input resolution, 625 kS/s sampling

rate) performs analog-to-digital conversion on the analog input signals so that the digital

signals may be manipulated by a computer. Whenever the DAQ card detects the rising edge

of the external sampling clock, it records the voltage of the digitized signal.
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The settings on the preamplifiers that we have found that give the best signal-to-noise

are the following:

* Filter type: 12 dB low-pass filter

" Filter frequency: 3 kHz (below 1 kHz the signals decay too slowly)

" Sensitivity: 20-50 nA/V

" Gain mode: low noise

The amount of gain needed depends on the energy of the pulses impinging on the photodi-

odes, which cannot be set too high otherwise electronic noise becomes noticeable. Typically,

we need to use neutral density (ND) filters in the probe arm since the intensity saturates

the photodiodes. The intensity of the probe is chosen to be in the linear response regime of

the photodiodes, which is easily assessed on an oscilloscope by adding a 0.3 ND filter in the

probe; this should halve the intensity of photodiode output in the linear response regime.

Also, when the sensitivity is set on the preamplifier to 50 nA/V for example, the next lowest

setting at 20 nA/V should saturate the preamplifier in order to reduce the amount of gain

required.

3.2.7.2 Advantages of DAQ Systen

The immediate advantage of the DAQ system is that, in addition to having a comparable

sensitivity to the lock-in, it allows us to fully quantify our laser noise performance as a result

of in silico data processing (e.g., chopping, balancing, and averaging). It also has the ability

to directly measure the physically relevant quantity AI/Io for balanced detection, given in

(3.41), while the lock-in can only detect the difference between the two input signals from

the photodiodes, I, - 12. Because we measure every pulse (both THz present, I, and THz

absent, Io), the balanced signal does not drift in the presence of large laser fluctuations since

these are corrected for by the division of Io. The lock-in requires a separate measurement

106



of Io either before or after the experiment and thus cannot account for dynamical laser

fluctuations.

Additional capabilities unique to the DAQ system are its capability to conduct "fast

scanning", which is most useful in situations where real-time feedback is needed for opti-

mization of alignment or pump-probe overlap. A lock-in amplifier is not capable of attaining

scan rates of sufficient speed since it uses an exponential averaging algorithm that heavily

weighs the signal at earlier time delays. Therefore, before acquiring data at each new time

delay, the lock-in must wait several time constants to remove the parasitic contributions from

earlier time delays. Alternatively, the DAQ system weighs the values of all pulses equally.

In principle, a THz time trace can be measured with a minimum of two laser pulses per time

point at the maximum pump modulation frequency of 500 Hz. This means that instead of

immobilizing the stage at a fixed position and averaging many shots, we can continuously

scan the stage and collect laser pulses at a constant set velocity to the target end position

(the longest time delay). The velocity of the stage, given the laser repetition rate, sets the

number of pulses averaged at each time delay; to average more pulses, a slower stage velocity

is used.

3.2.7.3 Differential Chopping

The DAQ system is also useful in two-pump experiments, where the implementation of

differential chopping makes it possible to deconvolute the contribution from each pump

separately and also the coupling between the two pumps, while maintaining detection at a

high frequency for noise suppression. The ability to simultaneously extract signals derived

from only one pump is also useful for correcting for pump scatter that affects the noise

floor. In differential detection, each pump is chopped at an even integer fraction of the laser

repetition rate. For differential detection with the lock-in amplifier, a laser repetition rate

of R gives maximum pump modulation of R/4 and the other at R/6, leading to a detection
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frequency at R/12; this is highest modulation frequency since the lock-in detects at R/2.

Alternatively, the DAQ system detects at R, and the maximum pump modulations are R/2

and R/4, giving a detection frequency at R/4.

250 HzTTL
(trigger)

1 kHzTTL
(sample clock)

Pump A
500 Hz

Pump B
250 Hz

Figure 3-7: The implementation of differential chopping in the DAQ system. For a 1 kHz laser
repetition rate, the maximum detection frequency for differential chopping is 250 Hz. Here, two pumps are
chopped at 250 Hz and 500 Hz. A 250 Hz TTL pulse triggers the acquisition and the 1 kHz TTL sets the
external sampling clock. In this scope trace, the falling edge is shown to coincide with the measured peak
voltage. The pulse sequence is known to be: Pump A, No pumps, Both pumps, and Pump B, which allows
us to extract traces due to just one of the pumps or both pumps.

We have tested this by modulating a THz pump (A) at 500 Hz and an optical pump

(B) at 250 Hz, see Fig. 3-7. The sequence order of the measured traces is determined by

looking at the outputs on an oscilloscope as seen in Fig. 3-7. A 250 Hz TTL from the

pump B chopper control triggers the acquisition and the 1 kHz TTL from the laser serves as

the sample clock. After receiving the trigger, the measurements are acquired at the falling

edge of the 1 kHz TTL in the following order: (1) pump A (S+-) (2) no pumps (S__) (3)

both pumps (S++) (4) pump B (S-+), where "+" is the pump present and "-" is the pump
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absent. The signal resulting from the coupling between the pumps is given by the following

operations: (S++ - S+- S + + S--)/S--.

3.3 Phase-sensitive THz Imaging Techniques

This section is a modified version of the publication:

Christopher A. Werley*, Stephanie M. Teo*, Benjamin K. Ofori-Okai*, Prasahnt Sivarajah, and Keith A.

Nelson, "High-resolution, Low-noise Imaging in THz Polaritonics," IEEE THz Science & Technology, vol. 3,

no. 3, pp. 239-247, 2013. (*equal contribution)

As an alternative to using a focused optical probe beam, an expanded optical probe beam

can be used to retrieve additional two-dimensional spatial information about the propagating

THz pulse. The waveguided polaritonics platform forms the basis of two THz imaging

techniques that use different techniques for phase-to-amplitude conversion. Time-resolved

imaging of propagating electromagnetic waves at THz frequencies provides deep insights into

the waves and their interactions with a variety of photonic elements. As new components

for THz control are developed, such as metamaterial microstructures that display deep sub-

wavelength E-field localization, finer spatial resolution and more sensitive imaging techniques

are required to study them. Here we introduce key advances in the optical design and lock-in

image acquisition at 500 Hz for the complementary imaging techniques of phase contrast and

polarization gating.

3.3.1 Introduction to THz Imaging in the Polaritonics Platform

Ultrafast optical pulses can efficiently generate THz frequency electromagnetic radiation in

the ferroelectric crystal LN via impulsive stimulated Raman scattering [33]. The THz field

can either be transmitted out of the crystal as a source for intense, free-space THz radiation

[16, 29] or used directly in the LN crystal for on-chip applications. This on-chip system

is compact, avoids free-space coupling losses, and offers possibilities for smooth interfacing
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between THz and other optoelectronic components commonly built in LN such as optical

modulators for telecommunication. On-chip control of THz in a slab of ferroelectric crystal,

termed THz polaritonics [3], has witnessed significant developments in the last 15 years.

These include versatile control and enhancement of generated THz waveforms due to spatial

and temporal control of the driving optical fields [48-50] and the development of integrated

photonic elements such as waveguides [51--53], diffractive elements [53,54], interferometers

[51], filters [55], photonic crystals [52,56], resonators [41,57], and antennas [7].

Of central importance to studying both THz generation and photonic elements has been

the ability to image the spatial and temporal evolution of the E-field of the THz wave

using time-resolved, phase sensitive imaging [5,58-60]. The presence of sub-wavelength E-

field structure in the near-field of metallic components has motivated the development of

imaging techniques with improved resolution, and the desire to study weak E-fields in a

variety of situations has continually driven methodological refinements that improve the

signal-to-noise ratio (S/N). Here we carefully explain the new optical design and acquisition

methodology that yields higher spatial resolution and S/N than previously described THz

imaging methods [5]. Using improved optics to increase the numerical aperture (NA) while

minimizing aberration results in a 4-fold finer resolution of 1.5 pm (A/100 at 0.5 THz). In

addition, the new acquisition methodology uses a high-speed complementary metal-oxide-

semiconductor (CMOS) camera for lock-in imaging at 500 Hz, which yields a minimum signal

detection threshold of A/IO > 0.2%. This high detection frequency is much faster than the

0.25 Hz rate used previously with a charge-coupled device (CCD) camera. Depending on

details of laser noise and illumination geometry, the high-frequency detection can reduce

noise by up to 5-fold. The ability to quantitatively record E-fields of electromagnetic waves

with sub-cycle temporal and A/100 spatial resolution lets us study the interactions between

light and photonic components in unparalleled detail. Since Maxwell's equations are scale-

invariant, insights gained at THz frequencies can be equally well applied to infrared and

optical components where such high-resolution imaging is considerably more challenging.
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Thus our methodology can be used to develop insight about plasmonic structures such as

antennas and metamaterials and purely dielectric structures such as photonic crystals at

wavelengths spanning the electromagnetic spectrum.

(a)

(b)
10 ps

(c)
15 ps

(d)
20 ps

(e)
25 ps

Figure 3-8: Movie frames of propagating THz waves. The data were recorded using phase contrast
imaging with magnification of 17x and show a 530 GHz wave interacting with a resonant antenna pair
(masked in black for clarity). (a) The rightward propagating THz wave just before interaction with the
antenna. The inset shows the antenna dimensions. (b)-(e) The time-progression of the THz field showing
the interference between the incident wave and the complicated far-field radiation pattern of the antenna.
(e) The field has mostly propagated away from the antenna by 25 ps.
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When an optical pulse generates THz radiation in a slab of LN, the large mismatch in

velocities causes the THz wave to be emitted as Cherenkov radiation [31] and propagate

mainly in the lateral direction, orthogonal to the pump pulse. If the LN crystal is thin,

the THz field is waveguided within the slab. As the THz field propagates, it changes the

refractive index of the LN via the electro-optic effect. In the majority of experiments the

THz field is polarized along the optic axis, so:

An= 1n3r33ETHz (344)

with ne the extraordinary index of refraction and r33 the appropriate electro-optic tensor

component. Equation (3.44) assumes vertically polarized probe light as is used in phase

contrast imaging; for horizontally polarized light ne is replaced with n. and r33 is replaced

with r13. An expanded optical probe pulse will experience a spatially dependent phase shift

directly proportional to the spatially dependent THz-induced change in index:

A#(x, y) = 27r An(x, y), (3.45)

with f the slab thickness and Apt the optical wavelength in free space. If the sample were

imaged directly onto a camera without modification, the THz signal would not be visible

because it is a phase image. A phase sensitive imaging technique converts the phase infor-

mation into amplitude information that can be detected by the camera. Dividing the signal

image (when the THz is present) by a reference image (when the THz is absent) enables

imaging of the spatial profile of the THz wave and quantitative measurement of E-field am-

plitudes. Finally, the full temporal evolution of the wave is recorded by stepping the time

delay between pump and probe pulses.

An example of the data that can be collected with this technique is illustrated by the

series of images in Fig. 3-8, in which an initially rightward propagating THz wave interacts
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with a 200 nm thick gold antenna pair deposited onto the surface of LN (see Multimedia 1

in [4]). The driving field, visible in Fig. 3-8(a), is an intense, multi-cycle THz wave [50] whose

frequency is tuned to a higher order resonance of the antennas at 530 GHz. The evanescent

field of the THz, which extends into the air on either side of the slab, interacts directly with

the antenna and induces electrons in the metal to oscillate in a complex mode pattern with

a vertical node bisecting the antennas and multiple horizontal nodes. This mode radiates a

complex pattern into the far-field, most clearly visible in Fig. 3-8(d). The far-field pattern

can be seen as six diverging waves propagating roughly along 2, 3, 4, 8, 9, and 10 o'clock.

In addition there is field enhancement, which is difficult to see at this magnification, at the

corners and edges of the antenna.

A previous study of phase-sensitive imaging techniques for polaritonics compared Talbot

imaging, Sagnac interferometry, phase contrast, and polarization gating and found that

Talbot imaging and Sagnac interferometry could not quantitatively measure THz fields [5].

Further analysis showed that phase contrast imaging had the highest imaging resolution,

while polarization gating imaging provided the most reliable quantification of THz field

strengths and had the best S/N. We present new optical designs of both methods, which

result in finer resolution, and discuss a novel detection procedure using a high-speed camera

that reduces noise.

3.3.2 Experimental and Results

The pump and probe pulses and THz generation geometry are the same in both meth-

ods. The THz radiation is generated by an intense optical pump pulse from a regenerative

Ti:Sapphire amplifier (800 nm center wavelength, 100 fs duration, 1 mJ pulse energy, 1 kHz

repetition rate). The probe pulse (100 fs duration, 1 pJ pulse energy) is the output of a

home-built noncollinear optical parametric amplifier (NOPA) tuned to 532 nm. A NOPA is

used because it is desirable for the probe pulse to be spectrally separated from both the 800
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nm pump and the 400 nm light created by efficient second harmonic generation (SHG) of the

pump light in the LN sample. A spectral filter can then be used to reject all pump light, and

there is no need to insert a spatial filter, such as a razor blade, which can easily block some of

the diffracted probe light important for high-resolution imaging. 532 nm light in particular

is chosen for the probe because of the abundance of high-quality optics at this wavelength.

The pump is delayed relative to the fixed probe by a scanning delay line. The two beams

are recombined just before the sample with a dichroic mirror. The x-cut LN slab, here 30

pm thick, has its optic axis oriented vertically, parallel to the polarization of the pump pulse,

to take advantage of the largest nonlinear tensor component for THz generation. The slab

is thinner than the THz wavelength, so the THz is waveguided; different waveguide modes

and waveguide dispersion are clearly visible [39]. The metal microstructures are 200 nm

thick gold on a thin chromium adhesion layer deposited by optical lithography directly on

the surface of the LN slab.

3.3.2.1 Phase Contrast Imaging

Phase contrast imaging is a method that generates contrast in transparent samples with

variations in thickness or refractive index [61], and is often used in biology to image cells.

In polaritonics, we use an adaptation of phase contrast imaging that enables quantitative

measurement of small THz-induced phase shifts [5,60]. The vertically polarized probe beam

is spatially filtered by a pinhole and expanded so its intensity profile is smooth and slowly

varying across the region of interest on the sample (see Fig. 3-9). In this case, the phase-

to-amplitude conversion required to visualize the THz wave is achieved with a phase mask

placed in the Fourier plane, also called the back focal plane or conjugate plane, of the

imaging system. The 0 th order beam is focused to a small spot in the center of this plane,

while the light diffracted off the THz wave and other structures is spatially separated from

this point and spread throughout the plane. Our phase mask, made by e-beam lithography,
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is a low-distortion, flat fused silica plate with a 25 x 25 pm recessed square etched into its

center. The depth of the recess is set so that the 0 th order beam, which passes though the

square, experiences a A/4 phase shift relative to the diffracted light. When the diffracted

light and Oth order beam recombine in the image plane, they interfere and cause amplitude

modulation. For small THz-induced phase shifts, the signal at the camera is [62]:

I(x, y) ~ Io(x, y) [1 - 2zO(x, y)] . (3.46)

800 nm
pump pha L4

pinhole L, ' U L L mask dfrated
UTF 2 3 "

532 nm DM LN
probe

f f, WD f2 f2 3  3 4 f4

Figure 3-9: Phase contrast imaging experimental diagram. L Lens; DM Dichroic Mirror; LN LN
sample; UTF Ultra-thin Filter; WD Working Distance. The phase mask introduces a A/4 shift between the

0 th order beam and diffracted light, enabling interference and phase-to-amplitude conversion at the camera.
The pinhole is relay imaged onto the phase mask so the entire 0 th order beam fits through the depression,
and the sample is relay imaged onto the camera for high-resolution imaging.

As is typical for imaging systems, the resolution is improved by increasing the NA. Design

of the polaritonics system, however, is constrained by the fact that the 1 mJ, 100 fs pump

pulse will destroy an objective lens if it passes through (experimentally confirmed). To

maximize the distance of the objective from the sample, we used a long working distance

(WD), large aperture, M Plan Apo objective (Mitutoyo 378-803-2, NA = 0.28, WD = 33.5

mm). A high-damage-threshold filter must be placed between the sample and objective, as

close to the objective as possible to allow the pump beam to diverge and lower its intensity

over a longer distance. Most objectives are designed to image through a piece of glass

(either a microscope slide or cover slip), and so to achieve aberration-free diffraction-limited

performance, the filter thickness must match the designed glass thickness. In our system,

we used a hard dielectric filter deposited on a 300 pm thick slab of fused silica (CVI Melles
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Griot part: SWP-0-R800-T400-ET-25.4-0.30-UV), which caused no noticeable degradation

in image quality when oriented orthogonal to the probe beam propagation direction.

(d)

-Ko m3
54

-0.5 0 0.5
ETHz (kV/cm)

Figure 3-10: Phase-contrast imaging of a pair of antennas at 30x magnification. (a) An optical
image of antenna without the phase mask. (b) An optical image of antenna with phase mask, which displays
minimal degradation compared to (a). (c) THz image calculated by dividing signal image (THz present) by
reference image (THz absent) shows in-focus structures with smooth THz field gradients. (d) A lineout of
the image of the THz field along the dashed line in (c) shows the resolution of the imaging system. The field
changes from 90% signal strength to 10% signal strength in 1.5 Am .

Once the specifications of the objective were determined, the remainder of the design

followed naturally. The phase mask must be placed in a Fourier plane, but the back focal

plane of the objective is located within its housing, so the Fourier plane must be re-imaged

onto the phase mask. To ensure that the entire 0 th order beam passes through the depression

in the phase mask, a pinhole is imaged onto the phase mask. For lenses L2 and L3 in

Fig. 3-9, which are relatively short-focal-length lenses that must have minimal aberration,
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we used 3-element, air-spaced aplanat lenses capable of diffraction-limited performance (CVI

Melles Griot parts: LAP with companion APM). Lenses L, and L4 , whose performance is

less demanding, were cemented achromatic doublets. There are several considerations in

choosing the other focal lengths in the system. The probe spot size at the sample must

be larger than the longest THz wavelength under study, but should be as small as possible

to minimize intensity and chance of damage at the focus in the objective and phase mask

and to maximize intensity in the highly expanded beam at the camera. The pinhole size

and focal length of L, were chosen so only a small - 2.6 mm diameter region of the sample

was illuminated. Lenses f2 and f3 must apply the appropriate magnification to the image

of the pinhole so it easily fits through the 25 Am depression in the phase mask, and must

have sufficient NA to capture all the 0th order beam and diffracted light. Finally, f4 sets the

overall magnification of the imaging system, which generally must be sufficiently large such

that the resolution is limited by diffraction and not detector pixelation. The parameters

chosen were: pinhole aperture = 100 pm , fi = 200 mm, fosb = 20 mm, f2 = 66 mm, f3 = 83

mm, and f4 = 750 mm. Because of the large magnification (M = 30 x), the probe intensity

at the detector was greatly reduce;l (approximately by 1/M2 ) and so we used a low-noise

CCD camera for detection (see Section IIC for a full discussion of detectors).

The resolution of the imaging system is shown in Fig. 3-10. Figure 3-10(a) shows an

optical image without the phase mask in place, demonstrating the native resolution of the

imaging system. When the beam was imaged through the phase mask in Fig. 3-10(b),

interference with the 0th order beam causes an expected inversion in the image. There is

minimal degradation in image quality except for a narrow diffraction ring around sharp

features, which does not appear to reduce the resolution. Figure 3-10(c) shows a zoomed-in

view from the time-series in Fig. 3-8, where field localization and sharp edges in the field can

be recorded with approximately the native image resolution. A line-out of the THz E-field in

Fig. 3-10(d) shows that the field changes from 90% to 10% maximum signal strength over a

distance of 1.5 Am.
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The measured resolution is slightly worse than the predicted diffraction-limited resolution

of 950 nm. There is a small amount of aberration in the imaging system from the ultra-

thin filter, phase mask, and imperfect lenses, but this does not explain the entire difference.

The primary source of blurring is from pointing instability of the coherent probe beam. As

the pointing changes, the diffraction rings at the edges of sharp structures move, and when

muqtiple laser shots are averaged together (either directly on the CCD chip or digitally)

the edges are effectively softened. Thus the highest resolution can only be achieved when

exposures are short (less than roughly 10 ms), and signal and reference images are collected

close together in time. This has important ramifications for choosing the optimal detector

(see Sec. 3.3.2.3).

3.3.2.2 Polarization Gating Imaging

The major alternative to phase contrast imaging is polarization gating imaging. At 5 pm,

its spatial resolution is not as fine as for phase contrast, but polarization gating enables

the suppression of laser noise with balanced imaging and its self-compensating geometry

facilitates quantitative measurement of THz E-fields. The experimental setup is shown in

Fig. 3-11. Like in phase contrast imaging, the incoming probe light is spatially filtered

by a pinhole and expanded to be larger than the region of interest on the sample. Here,

however, the input polarization is set to 45*. Instead of detecting absolute phase shifts,

the polarization gating technique is sensitive to the relative phase shift between vertically

and horizontally polarized light (identical to point source EO sampling in LN described in

Sec. 3.2.5). Using (3.44) and (3.45), we get:

f
A#(x, y) = -27r [An,(x, y) - Anh(X, y)] (3.47)

e (n3r33 - n ria)ETHz,
-2npt 1 3 )
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with An, and Anh the induced index changes for vertical and horizontally polarized light,

ne and n. the extraordinary and ordinary index for optical-frequency light, and r33 and r13

the appropriate electro-optic coefficients.

In a typical polarization gating measurement, the sample is placed between a pair of

crossed polarizers, and the induced polarization change is detected as an amplitude change

after the second polarizer. LN, however, is strongly birefringent so the THz-induced polar-

ization change rides on top of a large static polarization change. An additional complication

is that inhomogeneous sample thickness leads to spatial variation in the static polarization

state. To solve this problem, we used a self-compensating geometry where the sample cor-

rects for itself. The LN crystal is imaged with a 4f imaging system onto a retro-reflecting

mirror, and then re-imaged back onto itself. The double pass through the quarter-wave

plate, whose fast axis is parallel to the input polarization (see Fig. 3-11), flips the vertical

and horizontal polarizations.

filter oversized
800 nm DM LN pinhole QWPrero
pump# : Rfector tpve

NPBS

polarizer iris |_-WP
side view

532 nminU N R
probe __WP -- - - - -

Figure 3-11: Experimental setup for polarization gating imaging. DM Dichroic Mirror; LN LiNbO 3
sample; QWP Quarter Wave Plate; NPBS Non-Polarizing Beamsplitter; WP Wollaston Prism. The

LiNbO 3 sample is re-imaged back onto itself via a retro-reflecting mirror, with the beam polarization flipped

to compensate static crystal birefringence. The sample and THz wave launched by the pump pulse are then

imaged onto the camera. The side view shows how the Wollaston prism splits the two polarizations for

balanced imaging on the same detector chip.

After the second pass through the sample, the static phase shift is removed and the

polarization state is returned to 45*. Just before the probe pulse's second pass through the

crystal, the pump pulse launches the THz wave and the spatially dependent phase shift from

(3.47) is induced in the probe. The sample is then imaged onto the camera, and the final
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quarter wave plate and polarizer convert the change in polarization state into amplitude.

The final polarizer is a Wollaston prism, which splits the two orthogonal polarization states

so that both are imaged onto the same detector chip. Jones matrix analysis [63] shows that

the signal on the detector is [5]:

I'(x, y) = I1'(x, y) [1 t sin (A#(x, y))], (3.48)

where "+" is the top image and "-" is the bottom image, corresponding to vertical and hori-

zontal polarizations (see Fig. 3-12(a)). Because the signal modulation is equal in magnitude

but opposite in sign for the two polarizations, subtraction doubles the signal strength, while

common mode laser noise, which has the same sign in both sub-images, is cancelled. Image

registration is achieved with an affine transformation in Matlab.

To achieve optimal resolution, there are several important but somewhat subtle elements

in the optical design. The first stems from the fact that transmission through a slab (such

as a beamsplitter) introduces significant aberration in the image. Thus it is important that

the image is reflected off both the dichroic mirror and the non-polarizing beamsplitter. The

second consideration relates to the pinhole in the 4f imaging system. Without the pinhole,

the image from the retro-reflector must be exactly mapped back onto the sample itself, which

is difficult to implement perfectly and results in some degradation of the final resolution. The

pinhole blocks light diffracting at high angles off fine structures in the sample, so in the final

image sharp edges are only captured by the second pass through the slab. If the pinhole is

too small, however, the polarization self-compensation scheme that corrects for variations in

sample thickness will be defeated. Since slab thickness generally varies smoothly on a long

length scale, light is diffracted off this inhomogeneity at very small angles. In the Fourier

plane of the imaging system, this diffracted light is tightly clustered near the focus of the 0 th

order beam in the center of the plane, so an oversized pinhole passes this information. We

used a 100 Im pinhole, which is large enough for the polarization compensation to work well
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but small enough to improve the final image resolution. Another important consideration

is the choice of final polarizer. When using a cube polarizing beamsplitter, it is difficult to

fully maintain the polarization state and route both images (in focus) onto the same detector

chip. In contrast, a Wollaston prism has excellent polarization performance and the routing

is trivial. When we used a Wollaston prism at 100, however, we found that the image was

significantly blurred due to refraction. Ultimately, we found that a Wollaston prism with

a small divergence angle (1.50, United Crystals) maintained the advantages in polarization

and routing, and did not noticeably degrade the image.

The last consideration was specifications of lenses and imaging NA. For imaging the near-

fields of metallic structures deposited on the surface of the LN slab, phase contrast is the

preferred method. Polarization gating is more typically used for imaging structures where

air-gaps have been cut through the entire slab waveguide using laser machining [64]. The

LN slabs are typically 30-50 pm thick, and the E-field of the lowest slab waveguide mode is

relatively uniform through the depth of the slab [39]. The propagating THz fields are best

recorded when the depth of field (DoF) is roughly equal to the slab thickness and the entire

sample is in focus. Both the resolution, the Airy disk radius rAky in the Rayleigh definition,

and depth of field are related to the optical wavelength, Aopt, and the NA [65]:

rAiry ; 0.61Aopt/NA (3.49)

DoF ; A 0pt/NA 2  (3.50)

where we have assumed that no immersion fluid has been used when imaging. Setting

the DoF to 50 pm, we find that the optimal NA is 0.1 and the diffraction-limited image

resolution is 3 pm. In our experiments, we used cemented achromatic doublets for all the

lenses. The lens responsible for the NA of the imaging system, which is near the non-

polarizing beamsplitter in Fig. 3-11, had a diameter of 5 cm and a focal length of 15 cm.

The NA was set using an iris in the conjugate plane (see Fig. 3-11).
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Figure 3-12: THz wave propagation recorded with polarization gating imaging. (a) Raw images on
detector, which show the two polarization states (vertical, top and horizontal, bottom). The inset shows an
expanded view of one of the gold microstructures, which demonstrates the resolution finer than 5 pm. (b)-(f)
A time sequence showing the spatiotemporal evolution of the THz wave as it propagates and interacts with the
microstructures (false colored black for clarity in (b)-(f)). The arrows at the top of each wave packet indicate
the direction of propagation. Initially, the pump launches counter-propagating, broadband THz waves. The
leftward propagating waves pass out of the field of view within 15 ps while the rightward propagating waves
interact with the microstructure array. Both reflected/diffracted and transmitted/diffracted waves are clearly
visible.

122



Figure 3-12 and Multimedia 2 in [4] show the high-resolution, low-noise imaging possible

with polarization gating. Fig. 3-12(a) is a raw image collected using the polarization gating

system. The sample is a 30 pm thick slab of LN with a column of 200 nm thick gold mi-

crostructures deposited on its surface using optical lithography. This microstructure shape,

which has electric but not magnetic resonances, is a common building block in metamate-

rials [66-68]. The microstructures, 50 x 50 pm squares with short, inward-pointing arms

separated from each other by 15 pm (see inset of Fig. 3-12(a)), are resolved to better than

5 pim in the raw image. Fig. 3-12(b)-(f) are frames from Multimedia 2 showing a THz wave

interacting with the microstructure array. The frame at t = 0 ps shows the generation of

counter-propagating, broadband THz waves. Due to the resonances of the microstructures,

the array acts like a filter in that some frequencies are strongly reflected or diffracted while

others pass through almost unperturbed. The flat backgrounds in these frames and the ac-

companying movie (Multimedia 2 in [4]) demonstrate the advantages of balancing for noise

reduction. Balancing, coupled with the use of a high-speed camera described in Section IIC,

has made these the lowest noise polaritonics imaging measurements to date. The low noise,

quantitative field extraction due to self-compensation, and ~ A/25 image resolution make

polarization gating imaging the preferred method for many polaritonics measurements.

3.3.2.3 Detection Procedure and Electronics

In addition to the optical designs for phase contrast and polarization gating described above,

both an appropriate acquisition methodology and imaging detector are critical for making

low-noise measurements. For these techniques, the two major noise contributions are in-

stability in the probe and electrical noise of the detector. Typically, laser fluctuations are

dominated by 1/f noise, where the noise amplitude is inversely proportional to the fre-

quency [69]. This noise can be suppressed both by balancing and by detecting at a high

frequency, as is commonly done in point-probe measurements with a lock-in amplifier. Here,
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this means acquiring the signal and reference images as close together in time as possible.

In contrast, electrical noise from the camera is uncorrelated white noise that can only be

reduced by averaging or using a low-noise detector. The ideal camera would have extremely

low electrical noise and be fast enough to synchronize to the repetition rate of our 1 kHz

laser, which would enable signal detection at the maximum pump modulation frequency of

500 Hz. In practice, no such detector exists so we compare the two limiting cases: a low-noise

but slow CCD camera and a fast but high-noise CMOS camera. Although CCD cameras

have typically been used in the past [5, 39,56,60], we show that the fast CMOS system has

better performance in most situations.

Our low-noise detector was a scientific grade Princeton Instruments PIXIS CCD camera

(2048 x 2048 pixels, 16 bit, maximum full-chip frame rate of 0.5 Hz, 0.03% dark RMS noise).

The high-speed detector was a Photron FASTCAM 1024PCI CMOS camera (1024 x 1024

pixels, 10 bit, 1 kHz maximum full-chip frame rate, 0.2% dark RMS noise). The CCD

was triggered using a 1 kHz TTL signal from the laser and acquired data at a rate of

approximately one image every two seconds (including file transfer time). To avoid exposing

the chip while the built-in CCD camera shutter was opening (~25 ms), we placed a 700-ps

shutter in the probe upstream of the camera. This secondary shutter was triggered to open

after the camera shutter had opened fully and to close before the camera shutter started

closing. Therefore with a 75 ms exposure time, the CCD chip would be exposed to the probe

for only 50 ms, equivalent to 50 consecutive laser pulses. In sharp contrast to the 0.5 Hz

CCD, the CMOS camera was synced to the 1 kHz laser and each probe pulse was collected

as a separate image. For acquisition with both the CCD and CMOS cameras, the pump was

modulated as quickly as possible given the camera frame rate. Because of the modulation,

the pump was blocked and the THz pulse was absent in every other frame of the recording,

and these served as the reference. The THz-induced phase shift (and consequently the THz

E-field) was determined by dividing the signal image by the reference image as given by

(3.48). Pump modulation was carried out with a mechanical shutter when detecting with
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the CCD camera, while an optical chopper set to 500 Hz was used with the CMOS camera.

The noise performances of the two detectors were directly compared by recording a series

of images in an unstructured LN slab in the same way a THz movie is recorded, but with

the pump blocked to remove the THz signal. The image sequence was recorded using the

polarization gating imaging system so the effects of balancing could be quantified. While

the CMOS camera is capable of collecting many images in the same time that the CCD can

collect a single frame, the large data volume (2 Gbyte/sec data rate for full frame recording)

requires a much longer download time. We took this into account when recording the image

sequences, and held the pixel number and total acquisition time constant. For both cameras,

the average signal image and average reference image were calculated and then divided to

give ratio images. Balanced images were calculated by subtracting the top and bottom ratio

images. The unbalanced and balanced images are shown in Fig. 3-13.

CCD CMOS
(a) RMS 1% (b) RMS=0.2%;

00 *
(c) RMS =0.14% (d) RMS =0.12%

CO -- 2

Figure 3-13: Noise images using CCD and CMOS based cameras. (a) and (b) show the ideally flat

pictures calculated by dividing signal images by reference images and averaging. Pointing and spatial beam

profile fluctuations between signal and reference images and detector noise lead to spatial variations in the

image. (c) and (d) demonstrate further noise suppression by balancing, calculated by subtracting the top

image on the chip from the bottom one.

The value in the upper right hand corner of each image shows the RMS deviation across

the image. Fig. 3-13(a) and (b) show the results without balancing. Both detectors show

long length scale noise due to pointing changes and fluctuations in the spatial beam mode
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profile between collection of signal and reference images, but it is significantly suppressed

by high-frequency detection in the CMOS camera. For the CCD, the mean of the image is

not zero; this further demonstrates the disadvantage of detecting at a low frequency. The

balanced images are shown in Fig. 3-13(c) and (d). Balancing suppresses laser noise at

all frequencies, and is particularly effective at suppressing long length scale noise (compare

Fig. 3-13(a) to (c) or Fig. 3-13(b) to (d)). For the CCD, where electrical noise is insignificant,

balancing reduces RMS noise by a factor of 10, while it is decreased by only a factor of 2 for

the noisier CMOS detector.

-No Bal. CCD
--- With Bal. CCD
- No Bal. CMOS
--- With Bal. CMOS

0.1

0.01
0 100 200 300

wave vector (rad/mm)

Figure 3-14: Wave vector-dependent noise distribution. For both the CCD and the CMOS camera,
the largest noise contributions are at low wave vector and result from laser pointing and spatial beam profile
fluctuations. Balancing greatly reduces these effects, but adds a factor of for electrical noise, leading to
larger noise amplitudes at high wave vectors for the CMOS camera.

To analyze structure within the noise and further study the relative effects of laser fluc-

tuations and electrical noise, we calculate the frequency- and wave vector-dependent noise

distributions. To do this, we took a 2-dimensional slice S(x, y = const, t) out of the 3-

dimensional movie data. A 2D Fourier transform gives the wave vector-frequency noise

distribution. The data (not shown) were roughly uniform along the frequency axis, and so

the results were averaged over frequency to give the noise amplitude as a function of wave
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vector as shown in Fig. 3-14.

For both the CCD and the CMOS cameras, noise is many times larger at low wave vectors,

consistent with the slow variation across the images in Fig. 3-13(a) and (b). Balancing

suppresses this low wave vector noise for both cameras, but the high-wave vector behavior

is very different. For the CMOS camera, balancing causes a 1.3-fold increase in the high-

wave vector noise, roughly the factor of v/_ expected when subtracting two numbers with

uncorrelated uncertainty. This suggests that random electrical noise is significant for the

CMOS detector, but not for the CCD, which does not display this effect. We conclude that

for the CCD detector, measurement noise is dominated by laser fluctuations, while both

laser and electrical noise matter for the CMOS camera.

The analysis shows that although the CMOS chip has higher electrical noise than the

CCD, the ability to detect at a high frequency and average more images in the same amount

of time provides adequate compensation in our system. This high-frequency detection is

especially useful if balancing is not an option (as in phase contrast imaging). There are two

important situations, however, where the noisier CMOS detector is less effective. The first

is when the intensity of light at the detector is limited, as may be the case in very high-

magnification imaging systems, where dark counts are a significant fraction of the total signal.

The second is when a low-noise light source is used for the probe. In our measurements,

the NOPA used to generate the probe light suffers from pointing instability and roughly

2% RMS amplitude fluctuations, so balancing and high frequency chopping are essential for

efficient noise suppression. If imaging were implemented with a very stable laser, then the

relative importance of detector noise would be increased and it is likely that the CCD camera

would have better overall performance. Further noise suppression would be possible if either

the noise of the detector could be reduced or if more averaging were possible. The latter

is possible as data transfer rates become faster, since for the CMOS camera almost all the

data collection time is spent transferring the images to the computer memory and about 1%

of the time is spent recording images. A future alternative is the scientific CMOS (sCMOS)
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camera, which offers a potentially advantageous compromise between noise and speed. It

has a noise performance comparable to CCDs but detects at rates 100x faster, and can have

high data transfer speeds.

3.3.3 Conclusions

Our results show that for both phase contrast and polarization gating imaging designs,

it is possible to acquire optical images of samples with near diffraction-limited resolution.

When dividing by the reference to convert optical images to THz images, there is only a

slight degradation in resolution. Given the huge wavelength mismatch between visible and

THz light, A(1 THz) > 500 x A(532 nm), THz waves can easily be imaged in the deep

sub-wavelength regime providing detailed insight into the near-field behavior of photonic

structures.

Phase contrast imaging, optimized for high-resolution study of THz fields interacting

with metal structures, had an NA of 0.28 and spatial resolution of 1.5 pim. Further increase

of the NA is possible, but damage from the intense optical pump makes this very challenging.

Polarization gating was optimized to study fields spanning the depth of a 30-50 pim thick LN

slab. Optimizing for this large depth of field limits the NA to about 0.1 and the resolution

to about < 5 pm, still deeply subwavelength for the THz light. Self-compensation of static

phase variation from the sample facilitates quantitative E-field extraction, and balancing re-

duces noise. Both phase contrast and polarization gating can be detected at high frequency

with a high-speed camera to reduce noise, resulting in noise floors of 0.2% and 0.12%, re-

spectively. Further significant noise reduction should be possible using high-speed, low-noise

cameras based on the development of sCMOS technology. We anticipate that these imaging

techniques will enable a new generation of studies on structures such as THz metamaterials

and photonic crystals. The high resolution also opens interesting possibilities for studying

waves with much shorter wavelengths, such as acoustic waves.
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Chapter 4

THz Metallic Slab Waveguides

4.1 Introduction

Photonic elements such as metamaterials, bandgap crystals, and optical modulators are key

components in next-generation optical signal processing and telecommunications systems.

A powerful tool for studying and building intuition about such systems is the polaritonics

platform [3], in which terahertz-frequency (THz) light is generated and detected optically in

a thin slab of an electro-optic crystal, typically lithium niobate (LN). Metallic and dielectric

photonic components can be fabricated directly onto the crystal slab [7,53,64], and THz

waves can be visualized [4] as they propagate at the speed of light and interact with these

components. These on-chip capabilities create an integrated environment for THz spec-

troscopy, signal processing, and the development of photonic devices. In this chapter, we

deposit indium tin oxide (ITO) on one surface of the LN slab to enable direct visualization

of metal-clad waveguide modes, and we assess the potential for using ITO in THz devices.

The broad set of tools and capabilities in the polaritonics system results from its unique

experimental geometry. THz waves are generated via impulsive stimulated Raman scattering

[33] by focusing an intense, ultrafast near infrared (NIR) pump pulse through a thin LN
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crystal. Due to the large mismatch between refractive indices at THz and NIR frequencies,

THz waves propagate laterally, perpendicular to the pump pulse if it is at normal incidence,

and are waveguided within the slab [3, 39] (see Fig. 4-10). As the THz waves propagate

through the crystal, they modify the refractive index of LN via the electro-optic effect. An

image of the spatially-dependent index change, An(y, z), can be recorded with an expanded

probe beam and a phase-sensitive imaging technique [4,5]. By recording the image with

variable probe pulse delays relative to the pump pulse, one can assemble a movie of the

propagating THz wave. The method is capable of measuring THz electric fields (E-fields)

quantitatively and non-invasively with deep-subwavelength resolution (~ A/100 at 0.5 THz).

These capabilities have enabled the study of a diverse set of photonic components including

reflectors, diffractive elements, resonators, waveguides, and antennas [7,39,53,56, 70].

4.2 Bound Modes in Planar Metal Slab Waveguides

For a better understanding of the experimental results on metallic slab waveguides, it is

instructive to firstly be familiar with the perfect metal slab waveguide. The following deriva-

tion builds on the derivation of the transverse electric (TE) and transverse magnetic (TM)

waveguide modes in the plain symmetric slab waveguide (refer to Ch. 2, Sec. 2.3.1 for more

detailed explanations); only the most relevant equations will be re-stated here.

We consider a slab waveguide consisting of an anisotropic core surrounded by an ideal

metal cladding on one or both sides to give either the asymmetric or the symmetric waveguide

system, respectively. The anisotropic core, being x-cut LN, is uniaxial and its optic axis is

parallel to the slab surface. The y- and z-dimensions of the slab are assumed to extend

infinitely, while the x-dimension, corresponding to the slab thickness, is confined. The

waveguide modes propagate along the y-direction, ky = 3, and extend infinitely along the z-

direction, k, = 0. In the core, the propagating bound modes are described by real transverse

wave vector components, k., = ne = n, while in the cladding, the field evanescently decays to
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zero along the transverse direction, k, = ia. The metal claddings are assumed to be perfect

conductors with lossless reflection, such that E = 0 and H = 0 inside the metal itself.

(a) y (b)y

0 z x0 Z x

Figure 4-1: Asymmetric and symmetric metal slab waveguide geometries. (a) Asymmetric waveg-
uide experimental geometry with perfect conductor cladding (left), low-index, ni, cladding (right), and
high-index, nh, anisotropic core. (b) Symmetric waveguide experimental geometry with high-index core
surrounded by perfect conductor cladding on both sides. e and p are the permittivity and permeability,
respectively, in each region.

In this derivation, we treat the TE and TM polarizations separately and solve for the

waveguide modes in an anisotropic waveguide in each of the experimental geometries shown

in Fig. 4-1. We assume a nonmagnetic, lossless high-index core and a low-index cladding

with purely real permittivities, fh and El, respectively, and free-space permeability, po. The

same coordinate system depicted in Fig. 2-6 is used for our experimental geometry in ITO

waveguides, where 0 = 00 for TE waves and 0 = 90' for TM waves. Because we experimen-

tally only generate the extraordinary waves in the core, the relevant bulk dispersion relations

are:

Core, extraordinary, TE : 2 + o2 = (4.1a)

Core, extraordinary, TM: K + .2 nj2) = (\e) (4.1b)
2c

Cladding: - a2 + 2 = ( wc (4.1c)
c )2

where n,, and ne are the bulk ordinary and extraordinary index of LN, respectively, and n,
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is the index of the cladding, air.

4.2.1 TE Modes in Asymmetric and Symmetric Metal Waveguides

For extraordinary TE modes, according to (4.1a), the anisotropic system reduces to the

isotropic case. In an isotropic system, the modes may be described by an arbitrary choice

of two orthogonal polarizations. In the lab frame, the convenient choices are a unit vector

along the z-axis, ^:

(4.2)

and hl in the high-index core or

0

Z= 0

in the low index cladding axe given by:

- 1~

0
F-. 1

similarly in the low-index cladding:

(4.4)

L20 1

The first polarization maps directly to the TE modes of concern here, while the second

polarization maps directly to the TM modes, in isotropic systems. The TE E-fields can be
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described in each region:

Cladding (x < 0): E(x) = Cz exp[a(x + e)], (4.5a)

Core (0 x f): E(x) = A1 2 exp(irx) + A 2 Z exp(-inx) (4.5b)

Cladding (x ;> f) :(x) = Bs exp[-a(x - t)] (4.5c)

These expressions ensure that the TE E-fields decay to zero as x -+ oo. Because tangential

E- and H-fields (the y- and z-components) must be continuous across the boundary, the

relevant boundary conditions given by Maxwell's equations for the TE modes are:

Ez,clad = Ez,core (4.6a)

&Ez,cia 9Ez,core (4.6b)
ax Ox

4.2.1.1 TE Modes of Asymmetric Metal Waveguides

For the asymmetric metal waveguide in Fig. 4-1(a), the boundary conditions in (4.6) are

applied at the LN-metal interface (x = 0) and LN-air interface (x = t). At x = 0, the

boundary conditions show that A1 = -A 2 = A, which gives a sinusoidal E-field. The

equations yield a set of homogeneous equations that can be recast in the following matrix:

sin(t) -1 A 0 (4.7)

L r cos(rvt) a JLB

For a homogeneous system, a solution exists when the determinant is zero; the determinant

can easily be calculated analytically from the matrix to yield:

tan(Ke + mir) = -K/a (4.8)
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where m = 0, 1, 2, - - - represents the mode number for the periodic solutions. The bulk

dispersion curves in (4.1) are used to eliminate dependence on both r and a such that we

arrive at a relation between f and w. The resulting transcendental equation may be solved

using Newton's method by bisection or other numerical solvers in Matlab. In both cases,

accurate bounds must be given for each solution; otherwise the method will not converge to

the correct waveguide modes. The solved dispersion curves are shown in Fig. 4-2, where the

system has a waveguide cutoff frequency, as will also be observed in the other polarizations

and geometries discussed later.
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Figure 4-2: TE dispersion curves and effective indices in asymmetric metal-clad waveguide. For
the lowest three TE modes (f = 54 pm): (a) The frequency-dependent propagating wave vector in the
LN core, K. (b) The frequency-dependent evanescent wave vector, a, in the air cladding. (c) Waveguide
dispersion curves (solid lines) of the first three modes and bulk dispersion curves (dashed lines) of LN core
along the extraordinary axis and air cladding. (d) The effective phase (solid) and group index (dashed) as
a function of frequency.

Interestingly, the TE waves for the asymmetric slab reproduce the results for the asym-

metric TE modes of a plain slab of LN of twice the thickness (this will also be shown to be
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true for TM) given previously in (2.44). This is the case because the antisymmetric modes in

a plain slab have a node (i.e. fields go to zero) located in the transverse center of waveguide.

This resembles an asymmetric metal waveguide with a core twice as thick, with the metal

cladding located in the center, and thus the field is zero at the LN-metal interface to satisfy

the boundary condition. Physically, the boundary condition is satisfied because the incident

and reflected waves off the metal interface are 180 degrees out of phase and destructively

interfere at the surface.

In addition, the waveguide mode profiles in (4.5) are solved for explicitly as follows for

A = 1/2, B = sin(f)

0 x<0

E(x) = Eo sin(sx) 0 < x < (4.9)

sin(rt) exp[-a(x - f)] X > f

where EO is the amplitude of the E-field in V/m. The mode profiles of the lowest three TE

waveguide modes are shown in Fig. 4-3.

1.5 THz

---M=0

- -m=2

0 x

Figure 4-3: TE modes in an asymmetric metal-clad waveguide. The Ez-field profiles of the lowest
three TE modes at 1.5 THz.
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4.2.1.2 TE Modes in Symmetric Metal Waveguides

The symmetric metal waveguide in Fig. 4-1(b) is also evaluated at either x = 0 or x = f.

Similarly here, at x = 0, the boundary condition shows that A1 = -A 2 = A. With only a

single unknown variable, A, we apply the first boundary condition in (4.6) at x = t to yield

the following homogeneous equation:

A sin(ii) = 0 (4.10)

The expression is satisfied for the periodic solutions nt = mir, where m = 1, 2, 3, - are the

allowed mode numbers.

In this case, the propagation constant is frequency-independent for each mode as seen in

Fig. 4-4(a). The dispersion curves for the allowed waveguide modes are easily determined by

substituting the wave vector K into (4.1a). The dispersion curves are shown in Fig. 4-4(b),

where the modes approach the bulk dispersion of LN along the extraordinary axis. It is

interesting to note that at very low wave vectors, the dispersion curve is nearly flat. Because

the slope of the dispersion curve, dw/dk, signifies the group velocity, at low wave vectors

the wave has almost zero group velocity and is referred to as 'slow light'. This phenomenon

has been observed in photonic crystal waveguides [71], which have been exploited for optical

modulation devices for implementation in optoelectronic systems [72], optical buffers [73],

and dynamic dispersion compensators [74]. This is corroborated by the effective group index

in Fig. 4-4(c), which approaches infinity, while the effective phase index approaches zero and

so the phase velocity approaches infinity.

The waveguide mode profiles are solved in the core, given in (4.5b), for A = 1/2:

0 x < 0

$(x) = REo sin(Kx) 0 < x < (4.11)

0 x > t
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Figure 4-4: TE dispersion curves and effective indices in a symmetric metal-clad waveguide. For
the lowest three TE modes (f = 54 /rm): (a) The fequency-independent wave vector in the core, K. (b) The
waveguide dispersion curves (solid lines) and bulk dispersion curve of LN core along the extraordinary axis
(dashed line). (c) The effective phase (solid) and group index (dashed) as a function of frequency.

where EO is the amplitude of the E-field. The mode profiles of the lowest three TE waveguide

modes are shown in Fig. 4-5, which are analogous to the allowed states in a 1D particle in a

box system.

0 x

Figure 4-5: The lowest three TE modes in a symmetric metal-clad waveguide. (a) Frequency-
independent Ez-field profiles and (b) waveguide dispersion curves (solid lines) and bulk dispersion curve of
LN core along the extraordinary axis (dashed line).
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4.2.2 TM Modes in Asymmetric and Symmetric Metal Waveg-

uides

For the TM-polarization, the anisotropy of the core must be treated since there are E-

field components along both extraordinary and ordinary axes. For anisotropic systems, the

allowed polarizations are uniquely defined by the extraordinary polarization, e, and the

ordinary polarization, 60. The extraordinary and ordinary polarizations of the E-field when

9 = 900, derived previously in Sec. 2.3.1.3, aie:

F#8/6- 0 0
1 1

e oc Ke/te and oc [o 0 [0 (4.12)
Ke/+ e =

0 tKo 1

where e. = n. is the dielectric constant for the ordinary axis and ee = n2 is the dielectric

constant for the extraordinary axis. In contrast, the isotropic cladding may still be described

by the orthogonal polarizations defined for the isotropic TE case previously in (4.2) and (4.4).

Because a TM mode is purely characterized by its Hi-component (or its complementary

E, and Ey components), we find that the extraordinary polarization corresponds to a TM

wave and that the ordinary polarization corresponds to a TE wave. The E-fields of the TM

waves can be expressed in each region as follows:

Cladding (x < 0): E(x) = 0 (4.13a)

Core (0 < x <f): E(x) = Ale- exp(inx) + A2e- exp(-iKx) (4.13b)

Cladding (x > e): E(x) = Bfr exp[-a(x - t)] (4.13c)

These expressions ensure that the TM E-fields decay to zero as x -+ oc. The relevant

boundary conditions for the TM modes correspond to the tangential Ey and H_ fields. The
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H-field in terms of the E-field components are:

-# -i OEz MEyH = - -ixi Ez +9 Y^5 + ^ (iOE. -a . (4.14)WOx x

Therefore, the TM boundary conditions are:

Ey,clad = Ey,core (4.15a)

i#Ex,ci1 - aEy,ciad = iOEx,O Ey,core (4.15b)
& ax core - x

4.2.2.1 TM Modes in Asymmetric Metal Waveguides

The TM modes of the asymmetric waveguide in Fig. 4-1(a) are determined by applying the

boundary conditions in (4.15) at x = 0 or x = t. At x = 0, the boundary conditions show

that A 1 = -A 2 = A. The relations yield a set of homogeneous equations that can be recast

in the following matrix:

-K sin(nf) a A[] = 0 (4.16)
cos(rt) 1 B

The resulting transcendental equation that describes the TM modes is:

tan(ii + m7r) = --- (4.17)

where m = 0, 1, 2, - represents the mode number for the periodic solutions. It can be

seen that the TM waveguide modes derived here are simply the asymmetric TM modes of a

symmetric waveguide with dielectric claddings (i.e., a slab of LN surrounded by air cladding)

for a slab of twice the thickness as derived in Sec. 2.3.1.3 (compare with (2.63)), for the same

reasons described for TE waves in an asymmetric metal slab waveguide.
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The dispersion curves of the lowest three TM modes are shown in Fig. 4-6(a)-(c). The

TM modes have components that travel at the speed of light in air at low wave vectors and

have no cutoff frequency, analogous to those observed for TM modes in the plain slab. The

effective indices are shown in Fig. 4-6(d), where both the phase and group index approach

the bulk ordinary index of LN at high frequencies and approach the index of air at low

frequencies. While the phase index monotonically increases with frequency, the group index

initially increases rapidly and then decreases to approach the bulk index (attributed to the

curvature in the dispersion curve in Fig. 4-6(c). It is interesting to note that the odd order

modes are symmetric in Ey and antisymmetric in E, with respect to the transverse direction.

The waveguide mode profiles in (4.13) are solved for explicitly as follows with A =

1/2, B = sin(s()

0

E(x) = DV )3 [i2 (,i/Ee) sin(nx)

(n/e) sin(Ke) exp[-a(x - t)]

0 1 x<0

- X (0/) cos(Kex) 0 < x < e (4.18)

r- sin(dX) exp[-a(x - t)] X > f

The mode profiles and dispersion curves of the lowest three TM waveguide modes are shown

in Fig. 4-7.

4.2.2.2 TM Modes in Symmetric Metal Waveguides

The TM modes of the symmetric waveguide in Fig. 4-1(b) are similarly determined at the

boundary conditions in (4.15a) at x = 0 and x = f. At x = 0, the boundary conditions show
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Figure 4-6: TM dispersion curves and effective indices in an asymmetric metal-clad waveguide.
For the lowest three TM modes (f = 54 pm): (a) The frequency-dependent propagating wave vector in the
LN core, n. (b) The frequency-dependent evanescent wave vector, a, in the air cladding. (c) Waveguide
dispersion curves (solid lines) of the first three modes and bulk dispersion curves (dashed lines) of LN core
along the ordinary axis and air cladding. (d) The effective phase (solid) and group index (dashed) as functions
of frequency.

that A1 = -A 2 = A. The resulting homogeneous equation is:

A sin(0t) = 0 (4.19)

Periodic solutions exist at t = m7r, where m = 0, 1, 2, 3, - represents the mode number.

The solution here bears the same functional form as that for the extraordinary TE wave

solution analog in the previous section. Consequently, the frequency-independent wave vector
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Z M=0 -Z M=1 z m=2
(a) (c)

0 X x 0 x x

Figure 4-7: The lowest three TM modes in an asymmetric metal-clad waveguide. The TM E-
field profiles (E. and E.) of (a) m = 0 mode, (b) m = 1 mode, (c) m = 2 mode.

in the core between the TE and TM modes in symmetric metal slab waveguides are identical

as observed in Fig. 4-8(a). The TM dispersion curves closely resemble the analogous TE

dispersion curves, but approach the ordinary index of LN at high wave vectors, or at high

frequencies for the effective indices, in Fig. 4-8(b) and (c).

2 2 2 0

1.5

1

Cl
0
Q 0.5

n

1.51

Cr TEM.(m=0)
W0.5 5

bulk LN (o)
I U . I0 0.05 0.1 0.15 0.2 0 50 100 150 200 0.5 1 1.5 2

K(rad/mm) P(rad/mm) frequency (THz)

Figure 4-8: TM dispersion curves and effective indices in a symmetric metal-clad waveguide.
For the lowest three TM modes (f = 54 pim): (a) The fequency-independent wave vector in the core, r,. (b)
The waveguide dispersion curves (solid lines) and bulk dispersion curve of LN core along the extraordinary
axis (dashed line). (c) The effective phase (solid) and group index (dashed) as a function of frequency.

However, the TM modes possess a special case, in that the lowest order TM mode, m = 0,

is a TEM wave since it satisfies the previously described conditions: Ey = 0 and Hy = 0,

while E. and H, are non-zero. This differs from the TE wave analog in the Sec. 4.2.1.2
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where m A 0 and TEM mode solutions are not allowed since they cannot satisfy the required

conditions without setting all fields to zero (E(x) = 0 and J(x) = 0). The TEM mode has

no cutoff frequency. Additionally, TEM modes have perfectly linear dispersion, coinciding

with the bulk dispersion curve in LN along the ordinary axis; since r = 0, then in accordance

with (4.1b): 3 = wnri/c. It follows that both the group and phase velocities are equal to

c/no. This means that the TEM wave travels through the waveguide at the speed of light

in the medium, LN, without bouncing back and forth between the two metal boundaries.

This differs from the higher order TM modes that have nonzero kx components. Another

implication is that the TEM modes have no dependence on the transverse x-coordinate, such

that the E-field (from (4.22)) and H-field (from (4.14)) profiles are constant across x in the

core. The E-field is given as:

E(x) = .Do/Eo = 2 Eo (4.20)

and consequently the H-field is:

H(x) = z---Eo (4.21)
WI'0

z m 1 zm=2 zm=3

(a) M b (C)

- E

0 x 0 x 0 x

Figure 4-9: TM modes in a symmetric metal-clad waveguide. The lowest three TM E-field profiles
(Ex and Ey) of (a) m = 1 mode, (b) m = 2 mode, (c) m = 3 mode.

The TM waveguide mode profiles (for m > 0) are solved for explicitly in the core as
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follows where A = 1/2:

-. Do K #E(x) = i - sin(x)) - 2- cos(KX) 0 < < l (4.22)
/2 + p2  Y Ve / /

The mode profiles of the lowest three TM waveguide modes (excluding the m = 0 mode) are

shown in Fig. 4-9.

4.3 ITO-coated Planar Waveguides

In the polaritonics platform, metals are an important class of materials because of their strong

interactions with light and unique optical properties. Metal microstructures can be used, for

example, to enhance E-fields and localize light well below the diffraction limit [7,17,75,76],

or to modify the effective dielectric properties of a substrate such as in metamaterials [77].

Solid sheets of metal modify boundary conditions and dispersion of waveguides [78]. A

drawback to using conventional metals on the polaritonics platform, however, is that they

are opaque to optical light and thus the THz fields underneath the metal microstructures

cannot be visualized. Here we investigate the potential for the optically transparent electrical

conductor ITO to substitute for ordinary metals in the polaritonics platform.

Transparent ITO films have convenient applications as transparent electrodes in flat

panel displays and solar cells or as the anode contact in organic light-emitting diodes, which

exploit the relatively high carrier concentration in the n-type semiconductor. The bandgap

in ITO is -' 3.5-4.3 eV [79], too large to permit the absorption of visible photons, giving

rise to its optical transparency, but ITO is opaque to ultraviolet light due to valence band

to conduction band absorption. More relevantly, ITO displays metal-like behavior at THz

frequencies [80] as a result of free carrier absorption that occurs within the conduction band

itself.
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4.3.1 Experimental Setup

The ITO-coated waveguides were fabricated by temporary attachment of a delicate, 54-

pm thick x-cut LN slab (10 x 11 mm) to a silicon wafer with a thin layer of photoresist.

Following this, a 2.7-pm-thick film of ITO (10wt% of SnO 2) was sputtered in a square

pattern (5 x 5 mm) onto part of the slab as shown schematically in Fig. 4-10. Annealing

the sample at 400 C for one hour in a nitrogen atmosphere increased the DC conductivity

of the ITO, as measured with a four-point probe, from 9dc = 1.7 x 10-2 S/cm to 2 x 102

S/cm. Although the attained conductivity was low compared to ITO films often claimed in

literature (adc ~ 10' S/cm [81]), it is sufficiently high to waveguide THz fields with behavior

expected for metal-clad waveguides as will be described below. The ITO layer was optically

transparent, evident by the optical image shown in Fig. 4-11(a).

800 n m
p Um -0 z (c-axis)

_"ITO x

THz
LiNbb3

Figure 4-10: A schematic illustration of the ITO-coated waveguide on the polaritonics platform.
A 2.7-gm-thick film of ITO is deposited on one side of a thin slab of LiNbO 3 . The laterally propagating THz
wave interacts with the modified LN waveguide (i.e. the asymmetric metal waveguide), which has different
propagation properties compared to a plain slab.

The NIR pump pulse (1.5 mJ, 80 fs, 800 nm center wavelength, 1 kHz repetition rate

from a Ti:sapphire regenerative amplifier) was focused to a vertical line with a cylindrical

lens to generate a pair of broadband counterpropagating, initially single-cycle THz waves

in the slab that travel perpendicular to the line focus (see Fig. 4-11(b)). TE modes (E-

field polarized along the direction of the line focus) were generated when the pump light

polarization and optic c-axis (z-axis in Fig. 4-10) of the LN crystal were aligned along the
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direction of the line focus and perpendicular to the THz wave propagation direction (y-

axis). TM modes (E-field polarized out of the plane of the slab and along the THz wave

propagation direction) were generated when the light polarization and c-axis were parallel to

the propagation direction [39]. In both cases, the optical probe pulse (200 nJ, 100 fs, 532 nm

center wavelength generated with a non-collinear optical parametric amplifier) was polarized

at a 45* angle relative to the c-axis of LN. The sample was imaged onto a camera in the

polarization gating configuration [4], where phase information in the sample was converted

into amplitude information at the camera with the appropriate polarization optics. The

image resolution was 5 jpm and the magnification of the system was 3.3x.

4.3.2 Data Analysis and Discussion

4.3.2.1 Dispersion of Bound Modes in ITO Waveguides

Figure 4-11(b) shows a selection from the complete set of recorded THz E-field images at a

series of pump-probe time delays. The leftward propagating wave travels unimpeded through

the uncoated slab. Part of the rightward propagating wave reflects off the edge of the ITO-

coated region of the slab (dashed white line in Fig. 4-11(a)), and the rest propagates under

the optically transparent ITO layer. THz E-fields underneath the ITO are directly and

clearly observed. For each image in the series (i.e. each time delay) we averaged over the

uniform, vertical dimension, conserving the information in the lateral propagation direction,

and placed the resulting vectors in different rows of a matrix. The compiled space-time

plot, shown in Fig. 4-11(c), compactly shows the full evolution of the THz E-field, where

dispersion, interference, and reflection of the waveguide modes are apparent.

An experimentally measured dispersion curve can be calculated by taking the 2D Fourier

transform of a space-time plot like the one in Fig. 4-11(c). Figure 4-12 shows the dispersion

curves determined for TE and TM modes. Analytical waveguide dispersion curves for ideal

metal-coated LN derived in the previous section are overlaid on the experimental results.
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Figure 4-11: Experimental image processing. (a) A raw image of an ITO-coated slab of LN (right side)
that demonstrates the optical transparency of the ITO. The vertical dashed line represents the separation
between uncoated LN (left) and ITO-coated (right) areas. (b) A time series of images of a TE mode THz
E-field, collected using polarization gating imaging. A signal image I(y, z, t) recorded at variable time t
following THz field generation by the pump pulse was divided by a reference image Io(y, z, t) recorded with
the THz field absent and [(I - Io)/Io] (y, z, t) was determined to produce the images shown. The THz E-
field is directly proportional to AI/Jo, (c) THz E-field evolution as a function of space and time derived
from averaging over the vertical dimension of a series of images including those in (b).

For a LN waveguide with ITO coated on one side, the experimental TE dispersion curves

in Fig. 4-12(a) demonstrate good agreement with theoretical solutions for the perfect metal

analog. The cutoff frequency, evident at 270 GHz, is a feature that is non-existent in uncoated

dielectric waveguides. The TM modes in Fig. 4-12(b) however, do not have a cutoff frequency.

The calculated transverse field profiles for the two lowest order TE and TM modes at 1 THz

are shown in the inset of Fig. 4-12(a) and (b), respectively. We expect a potential for further

dispersion control in on-chip THz components including the extension to a symmetric metal-

waveguide geometry for both TE and TM mode excitations (see Sec. 4.2. For the following

analyses, we focused exclusively on the TE modes since the generation efficiency in the
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Figure 4-12: TE and TM dispersion curves in asymmetric ITO waveguides. Waveguide modes
in a LN waveguide (thickness f = 54 Mm) with ITO deposited on one surface. Dispersion of air and bulk
LN extraordinary (eo) and ordinary (o) waves are shown in yellow. Analytical solutions in dashed red are
overlaid on the experimentally observed results. The insets show cross-sectional views of the slab. (a) TE
modes. Inset: calculated Es-field profiles of the two lowest order TE modes at 1 THz. (b) TM modes. Inset:
calculated Ex and En-field components of the two lowest order TM modes at 1 THz.

crystal was higher than that of TM modes [39].

4.3.2.2 Leaky Waves in Asymmetric ITO Waveguides

The advancement in optical waveguide technology spurred the development of many sophis-

ticated computation algorithms for modeling of waveguide behavior. These numerical solvers

such as finite-difference [82] or finite-element [83] have the ability to calculate the modes and

complex propagation constants in the waveguides. However, there is little understanding of

the physical meaning of complex propagation constants that correspond to the leaky modes

in a waveguide that exist even in the absence of material damping [84]. The numerical

solvers discover the leaky modes if the constraint that the modes are true eigensolutions

of the waveguide are relaxed and so the initially generated leaky modes represent 'almost'

guided solutions. Experimentally, leaky waves were first observed in 1961 at microwave

frequencies with an electric line source over a grounded dielectric slab waveguide [85].

Physical interpretation of guided modes in Fig. 4-13(a) is straightforward since the waves

evanescently decay in the cladding (purely imaginary wave vector) and oscillate in the core

(purely real wave vector for a lossless material). Leaky modes in Fig. 4-13(b), however, are
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difficult to interpret because the wave vectors are complex and lead to unphysical behavior

at the limits x -+ oo; they have been deemed 'improper modal solutions' to the waveguide.

The solution was demonstrated to be physical in restricted regions of propagation where the

exponentially growing field has a finite amplitude by using a simple ray picture [86]. Leaky

waves have complex propagation constants in the longitudinal and transverse directions,

which mean that they attenuate as they propagate longitudinally and they exponentially

grow transversely. In contrast, surface waves are proper modal solutions that have pure

attenuation in the transverse direction. In general, the theory of leaky waves is more com-

plicated than that of surface waves, but leaky waves present new, interesting capabilities for

integrated optics applications. For example, leaky waves have a longitudinal phase velocity

greater than the speed of light, whereas surface waves are slow. Leaky waves are also not

bound to the surface and so they can radiate out of the waveguide, unlike surface waves [85].

Guided Modes Leaky Modes
IE(x)2  'E(x) 2

X X

Figure 4-13: Guided and leaky waveguide modes. The mode power, IE(x) 1 2, along the transverse
direction of a 1D waveguide for (a) the guided modes, which have a purely real propagation constant,
kX = K, in the core and purely imaginary propagation constant, kx = ia, in the cladding such that the wave
decays to zero at x t oo. (b) the leaky modes that have complex propagation constants in the cladding and
core, where the wave in the cladding grows exponentially at x oo. This is an unphysical solution in general,
but it is valid under some restricted regions of propagation.

In Figure 4-12(b), there are some signals detected due to "leaky" modes, i.e. unbound

modes that lie outside the light lines in the dispersion curves [84]; these are not eigenmodes
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of the system, and therefore are not guided within the structure. In particular, leaky modes

outside the light line of air exist, in addition to the bound TM modes, and thus have phase

velocities faster than the speed of light. Firstly let us consider the bound TM modes that

are waveguided in the slab by total internal reflection (TIR) at the air-LN interface and

the metal cladding. The bound modes have the ability to propagate indefinitely (neglecting

material damping) since they are perfectly reflected at every interface. The dispersion curves

of the bound modes are given as the dashed-red lines in Fig. 4-14(a). In the corresponding

space-time plot in Fig. 4-14(b), we observe a portion of modes that have linear dispersion,

traveling at the speed of light in air, and also a portion of modes that approach the light

line of the ordinary axis of LN. However, any waveguide, regardless of the specifics of the

cladding or core materials, possesses leaky modes that exist from partial reflections off the

core-cladding interface [87]. Leaky modes are not bound and propagate at an angle less than

the critical angle for TIR at the air-LN interface. Every successive reflection off the LN-air

interface results in progressive leakage of amplitude, while we assume reflection with perfect

efficiency at the LN-metal interface; in reality, ITO is an imperfect metal and constitutes

another interface with leakage.

We found that the only way to generate the leaky modes was to generate THz waves

directly in the ITO-coated region of the slab (and not in the uncoated slab since this required

appropriate THz mode-profile matching to cross the ITO interface where different boundary

conditions were imposed). We excited the leaky TM waves at very low wave vectors, as

seen in Fig. 4-14(a), by using a loosely focused optical pump (width on the order of ~

100 jpm). In order to increase the visibility of these modes, we isolated the leaky modes

that appear at different regions of the dispersion curve. We did this by Fourier filtering

the appropriate portion of the dispersion curve, the air light cone, in Fig. 4-14(c) and then

inverse Fourier transforming back to the time-domain to study the propagation in the space-

time plot in Fig. 4-14(d). Careful consideration of the results is needed since the Fourier

filtering introduces an artifact that corresponds to the sharp contrast introduced in the
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Figure 4-14: Leaky TM waves in asymmetric ITO waveguides. (a) The experimental dispersion curves
for the TM modes in an asymmetric metal waveguide of thickness f = 54 pm, with the calculated solutions
(dashed red) overlaid. The solutions of the symmetric modes of a symmetric metal waveguide for a waveguide
of thickness 2f. The corresponding space-time plot is shown in (b). (c) The Fourier filtered dispersion curve
of the leaky modes that lie above the light line of air with near zero group velocity. The corresponding Fourier
filtered space-time plot in (d) shows the leaky waves that oscillate in time but propagate short distances.

Fourier filtered dispersion curve along the light line; the artifact appears in the space-time

plots, which denoted in Fig. 4-14(d). From the space-time plot, the leaky modes did not

propagate appreciably from the generation region, but still oscillate in time, before decaying

due to Fresnel losses across the interface. Similarly, the leaky waves show close to zero group

velocity, observed from the small slope in the dispersion curves.

In terms of modeling our observation of the leaky waves, if we assume that the wave does

not immediately leak out but instead partially reflects off the LN-air interface, the waveguide

system resembles a symmetric metal waveguide, derived in Sec. 4.2.2.2. We found that the

leaky modes have the same dispersion characteristics as the odd order modes (symmetric
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in E.) in a symmetric metal waveguide of twice the thickness, which are overlaid as the

white-dashed lines in Fig. 4-14(ayald (c); this is similar to the conclusion derived for the

bound TM modes in the asymmetric waveguide in Sec. 4.2.2.1 that had identical dispersion

to that of the asymmetric -blad'modes in plain slab LN of twice the thickness. The overlaid

plots only allude to the real part of the propagation constant because leaky waves have

complex propagation constants. The imaginary part of the propagation constant is the

decay constant or the inverse of the 1/e propagation distance, which has been calculated for

a slab waveguide by Hall and Yeh [88]. Haus and Miller describe the leaky modes as being

analogous to resonant states in a Fabry-Perot cavity, which exist when the cavity length is

an integral number of half wavelengths [87]. The symmetric modes in a Fabry-Perot cavity

have the relationship:

m(A/2) = L, (4.23)

where m = 1, 3,5,- -. This solution is analogous to the modes that have symmetric trans-

verse field profiles in E. in a symmetric metal waveguide (see Fig. 4-9). The incident and

reflected waves at either metal interface are 1800 out-of-phase and consequently destructively

interfere and hence satisfy the boundary conditions. However, in an asymmetric metal waveg-

uide, a wave incident at the LN-air interface experiences no phase shift since it is moving

from higher to lower refractive index. The boundary condition at the LN-metal interface is

therefore only satisfied by a round trip of a wave (i.e. LN-metal -* LN-air -+ LN-metal).

Consequently, the condition that must now be satisfied is:

m(A/2) = 2L, (4.24)

where m = 1, 3,5,.--. This solution corresponds to the symmetric modes of a symmetric

metal waveguide of twice the thickness. Only the symmetric modes survive since the reflected

waves off the LN-air interface are in-phase with the incident wave and constructively interfere
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(see Fig. 4-15(a)). In contrast, the waves of the antisymmetric modes, with an integer number

of full wavelengths, reflect off the LN-air interface 1800 out-of-phase with the incident wave

across its entire transverse dimension and so the incident and reflected waves completely

cancel everywhere due to destructive interference (see Fig. 4-15(b)).

z m_= 1 (odd)7j1

0 ei

constructive

171
x

destructiveZM 2 (even)

If
0 le x

Figure 4-15: Leaky waves resemble Fabry-Perot cavity modes. (a) For a single-sided metal waveg-
uide, the leaky waves resemble the odd order modes (m = 1, 3, 5, - - -) in a Fabry-Perot cavity (of twice the
thickness) that have symmetric transverse field profiles. This schematic illustration demonstrates construc-
tive interference between incident and reflected waves off the LN-air interface for the m = 1 mode. (b) In a
single-sided metal waveguide, none of the leaky modes resemble the even order modes (m = 2,4,6,. --) of a
Fabry-Perot cavity that have asymmetric transverse field profiles. This schematic illustration shows purely
destructive interference between the incident and reflected waves off the LN-air interface for the m = 2 mode.

The number of reflections before the TM wave decays may be approximated by calculating

the reflection coefficient in moving from medium 1, LN, to medium 2, air [89]:

1 - sin2 0, -

,(1) =
1 - sin2 01 ) n

(4.25)

1 - sin2 91 +
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Figure 4-16: Propagation of leaky TM waves. (a) The calculated real part of the dispersion curve for
the lowest three symmetric modes in a symmetric metal waveguide, corresponding to the leaky TM modes,
and the air light line. (b) Calculated incidence angle, 01, at the LN-air interface for the lowest three leaky
modes. The critical angle Oc = 8.46'. (c) The reflectivity as a function of incidence angle. The Brewster
angle, 9 B = 8.37*, indicates where there is no reflection. Above the critical angle, no leaky waves exist. (d)
The number of reflections off the LN-air boundary before the wave decays to 5% of its initial value as a
function of incidence angle.

where 01 is the angle of incidence in medium 1 relative to the normal of the interface, ni = no,

and n2 = 1. The angle of incidence of the leaky waves can be calculated directly from the

calculated values of # and n for a symmetric metal waveguide of thickness 2f using (4.19):

01(w) = tan~ 1 ( ( ) (4.26)

The propagation constants, 3, for the three odd order modes (i.e. m = 1, 3, 5), which

correspond to Re(O) of the leaky modes, are shown in Fig. 4-16(a), and the corresponding

angle of incidence at the waveguide interface for these modes are shown in Fig. 4-16(b). The
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critical angle, 0c, at the LN-air interface for TM modes with H, along the ordinary axis is

8.460. Above 0c, the leaky waves by definition cannot exist since they are not bound. In our

results, we observe a feature that loosely resembles an 'avoided crossing' in the dispersion

curves in Fig. 4-14(a), where there is a reduced intensity of modes between the leaky and

guided modes that agrees well with the onset of an incidence angle larger than the critical

angle. The reflectivity, R = 11712, is straightforward to calculate using (4.25). Because the

angle of incidences for all the modes shows the same flat structure, only one TM reflectivity

plot is shown in Fig. 4-16(c), where at angles less than the Brewster angle, 9B = 8.37*, the

reflectivity is less than 55%. The number of reflections off the LN-air interface (assuming

perfect reflection off the metal interface) until the wave is attenuated by 95% (or 5% of

its maximum value) is shown as a function of 01 in Fig. 4-16(d); at angles less than the

Brewster angle, the leaky waves reflect a maximum of 5 times off the LN-air interface at

normal incidence (i.e. no forward propagating component) and even less at other incidence

angles.

4.3.2.3 Reflection Efficiency and Resistive Damping in ITO Waveguides

In order to demonstrate the reflection efficiency over a range of frequencies, we used a thinner

LN slab (f = 30 pm) with ITO coated on one side so that the cutoff frequency fell well within

our THz pulse bandwidth and strong signals could be observed at lower frequencies. We

generated a low frequency, TE-polarized, narrowband THz wave using a tilted optical pulse

front [50]. This generation method, in which the optical pump profile moves laterally along

with the THz wave for several millimeters at the speed of a selected frequency component,

allows for high spectral brightness at this frequency, which was tuned to 0.25 THz, far below

the cutoff frequency of 0.50 THz. The resulting multicycle THz wave images are compactly

represented in the 2D space-time plot in Fig 4-17(a). A majority of the incident field is

reflected, but it is clear that a significant portion is also lost, possibly through scattering off
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the interface into free space. There is a small transmitted component that can be observed,

which corresponds to both evanescent waves below the cutoff frequency and also a weakly

excited bound mode at 1.2 THz due to the nature of the phase-matched generation process.

(a) Narrowband THz pump, 30 pm-LN (b) 2
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Figure 4-17: Reflection efficiency of TE waves in asymmetric ITO waveguides. 2D space-time plot
of an asymmetric ITO-clad slab of thickness 30 pm, with the incident THz frequency tuned to 0.25 THz,
well below the cutoff frequency at 0.50 THz. (b) The dispersion curve for the narrowband space-time plot in
(a). The decay lengths are shown for the evanescent mode below the cutoff frequency and the bound mode
at 1.2 THz. (c) The frequency-dependent amplitude reflection coefficient for a THz E-field incident from an
uncoated region of a 54-yim thick LN slab onto an ITO-coated region.

The frequency-dependent 1/e decay lengths of the modes can be found by firstly Fourier

transforming along the time axis of the space-time plot to yield frequency vs. time and then

extracting the decay constant, a, following an exponential fit of the E-field to E oc Eoe-'.

In Fig. 4-17(b), we calculated the decay lengths for the evanescent waves to be less than 120

pm. They show a roughly 1/v/If scaling that is similar to that of a skin depth of a material,

in this case governed by the boundary conditions of a waveguide. Alternatively, the bound
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mode is an allowed mode that is able to propagate and carry energy, and has a decay length

roughly twice as large. The decay length appears to increase monotonically with frequency,

which is more indicative of other loss mechanisms such as resistive material or scattering

losses in ITO or LN.

Returning to the broadband signals in the 54-pm thick LN slab, we show a more compre-

hensive frequency-dependent reflection ratio in Fig. 4-17(c). We calculated the frequency-

dependent E-field reflection ratio for the lowest waveguide mode using the incident and

reflected waves near the ITO interface as seen left of the dashed line in Fig. 4-11(c). Even

below the cutoff frequency (vertical dot-dashed line in Fig. 4-17(c)), the reflection ratio is

only in the 20-40% range. Approximately 60-80% of the field (or - 85 - 95% of the energy)

is scattered into free space or transmitted into the metallic waveguide. Above the cutoff fre-

quency, there is incomplete transmission of the field across the interface, but the reflection

ratio for the bound modes continuously drops, reaching nearly zero by 600 GHz.

(a) 200 (b) 12

a Ecutoff cutoff.180 frequency frequency
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Figure 4-18: Decay length and Q-factor of TE waves in an asymmetric ITO waveguide. (a) The
1/e decay length as a function of frequency. (b) The frequency-dependent quality factor (Q) for propagation
in the ITO-coated region of the bound TE modes.

It is evident from Fig. 4-11 that the field that is transmitted into the ITO-coated region

suffers far stronger loss at all frequencies than the field in uncoated LN. Figure 4-18(a)
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displays the attenuation length and also the quality factor Q given by:

Q(w) = wr(w)/2 (4.27

= f(w)d(w)/2

where the envelope of the E-field at radial frequency w decays exponentially as E(t) oc

Eo exp(-t/r). Equivalently, the Q-factor can be calculated from the decay length, d, from

the transmission of the field in the ITO-coated slab and the propagation constant, O(w), that

were previously calculated for the bound modes. The low Q-factor is indicative of extremely

strong damping of the bound modes at all frequencies where resistive losses dominate.

In general, the results show that our ITO layer is a relatively poor metal in the THz fre-

quency range, as it is according to DC measurements. For comparison, the DC conductivity

of gold is 4.10 x 10 S/cm [90]. We note that some resonant structures of practical interest

have extremely strong radiative damping, and in those cases it may be possible to use ITO

for metallic coatings in THz devices. For example, measurements have shown that Q ~ 1 for

a gold dipole antenna at 255 GHz [7] and Q ~ 4 for a gold split-ring resonator at 1 THz [91].

For such functionalities, even quite high resistive loss could be tolerated.

4.3.3 Conclusions

In conclusion, direct visualization of THz wave propagation and dispersion in ITO-clad

LN waveguides has been carried out, revealing bound waveguide modes, leaky modes, and

near-field evanescent waves. Direct observation of leaky modes and near fields in the THz

polaritonics platform may be exploited for characterization of a wide range of photonic

devices. This may enable detailed testing of device designs even if other metals besides ITO

are preferred for practical implementation. Study of THz fields in metamaterial structures

such as dipole antennas and split-ring resonators, with direct visualization in the metal-

coated regions as well as the near fields between them, may also be possible.
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The results showed that the 2.7-pm-thick ITO film used in our structure behaves as a

poor metal at THz frequencies. It is possible that improved deposition methods may yield

ITO films with higher THz conductivity and lower loss, widening the range of waveguide

applications that exploit the optical transparency and THz metallic properties of ITO. Ex-

tensive control over the waveguide behavior including dispersion and radiative coupling of

leaky modes can be achieved by varying the slab thickness, THz polarization, and coating of

the metal onto one or both slab surfaces. Despite its high losses, ITO-coated LN exhibited

sufficiently high Q for applications in which optically transparent, highly radiative resonant

structures are desired in the THz frequency range.
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Chapter 5

Single-shot THz Detection

Multidimensional spectroscopy at visible and infrared frequencies has opened a window into

the transfer of energy and quantum coherences at ultrafast timescales. For these measure-

ments to be performed in a manageable amount of time, one spectral axis is typically recorded

in a single laser shot. An analogous rapid-scanning capability for THz measurements will

unlock the multidimensional toolkit in this frequency range. Here we first review the merits

of existing single-shot THz schemes and discuss their potential in multidimensional THz

spectroscopy. We then introduce improved experimental designs and noise suppression tech-

niques for the two most promising methods: frequency-to-time encoding with amplitude

encoding spectral interferometry and angle-to-time encoding with dual echelons. The ac-

celeration in acquisition time will compress day-long scans to hours, and hence presents a

practical means for exploring many new multidimensional THz measurements.

5.1 Introduction

The advancement of terahertz (THz) spectroscopy has relied on the increasing sensitivity

and resolution of optical detection methods for ultrafast THz waveforms. In this regime, THz
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time domain spectroscopy (THz-TDS) is used to measure the full time-dependent waveform

of the THz electric field (E-field) [92]. A common technique employs electro-optic (EO)

sampling with a mechanical scanning delay-line [31]. This classic approach has its temporal

resolution given by the probe pulse duration, which is typically much shorter than a THz

period, and its time window set by etaloning effects in the EO detection crystal or the

sample. Early THz-TDS focused on measuring the linear THz response of a system at

equilibrium, but has since advanced to more complex pump-probe geometries capable of

measuring dynamics of reversible processes following photoexcitation.

THz-TDS is limited, however, by its inherently multi-shot, scanning approach. The time-

intensive nature of this method is unfeasible for the observation of rapid time dynamics of

phenomena that are irreversible (e.g., material damage, irreversible chemical reactions, or

structural phase transitions) or experiments that use THz sources with large shot-to-shot

fluctuations. In addition, a scanning technique is impractical for low duty cycle experiments

that use lasers or other THz sources with low repetition rates. These motivations have

driven the development of THz single-shot diagnostic techniques up to now, but when used

in conjunction with averaging, single-shot methods also have the potential to drastically

reduce the time required to record high signal-to-noise ratio (S/N) scans.

One important class of experiments that will benefit from such a reduced scan time

is multidimensional THz spectroscopy where a THz probe field is fully time-resolved as a

function of pump-probe time delay. Here, the pump-induced response is measured as the

time-evolution of the change in the THz probe spectrum. In general, multidimensional

studies aim to uncover the relationships between different degrees of freedom in a system

(nuclear, vibrational, rotational, or electronic) that are otherwise difficult to unambiguously

isolate from the vast number of observed responses. There has already been an effort in

this respect, for example in studying spin-spin couplings in complex molecular systems us-

ing 2D nuclear magnetic resonance spectroscopy [93], coherence transfer using 2D infrared

vibrational spectroscopy in organic solutions [94], or 2D visible electronic spectroscopy for
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studying electronic couplings in photosynthetic systems [95] and GaAs quantum wells [96]

and exciton-phonon coupling in molecular aggregates [97].

In the THz regime, many studies only measure the average THz probe response (the

peak or integrated power) at various pump-probe time delays. This approach has proven

useful for measuring carrier dynamics using an optical pump in silicon on sapphire [98],

microcrystalline silicon [99], graphene [100] and InAs/GaAs quantum dots [101] or carrier

dynamics using a THz pump in semiconductors [102, 103]. Other examples include the

study of optically pumped liquid solvation dynamics [104,105] and an optically induced

phase transition in vanadium dioxide [106]. An important distinction is made between these

measurements and ones in which the THz probe is spectrally resolved for a limited number

of fixed pump-probe time delays such as in the photoconductivity study of liquid n-hexane

using a UV pump [107] and the determination of relaxation dynamics of carriers and excitons

in GaAs-AlGaAs multiple quantum wells [108].

While these THz probe experiments are sufficient for observing dynamics, they lack the

ability to deduce the extent of coupling between THz-resonant degrees of freedom; this

would require a comprehensive study of a spectrally resolved THz probe as a function of

a near-continuous sweep of pump time delays. More recently, there has been endeavor to

perform true 2D THz spectroscopy to elucidate the coupling between electronic degrees of

freedom in quantum wells and graphene [109-112]. However, the technological barriers in

THz generation and detection have limited the measurement of THz nonlinear signals to

this small subset of systems, which have relatively large transition dipole moments arising

from strong electronic resonances. Additionally, an exciting area unique to the THz realm is

the study of intermolecular and low-frequency intramolecular motion using multidimensional

vibrational THz spectroscopy, but progress in this area is still in its early stages.

A class of materials that poses key challenges in the understanding of coherent coupling

and energy transfer across many different degrees of freedom is energetic materials. In these

systems, mechanical energy from a shock front is up-converted to high-frequency molecu-
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lax vibrations that lead to initiation of a chemical reaction [113]. Comprehensive studies

of the intricate vibrational couplings throughout such a system embody the motivation for

development of 2D techniques across the electromagnetic spectrum. One study that has

started to observe these couplings used 2D Raman-THz spectroscopy to observe the collec-

tive intermolecular modes of water molecules [114], but proved difficult to characterize the

spectral response due to a limited observation temporal window. For low-frequency vibra-

tional couplings, these nonlinear signals are even smaller than those observed in [109-112]

and typically have narrower spectral features that are only resolved with sufficiently large

time windows. Furthermore, all of these multidimensional THz time domain measurements

require substantial scaling up of total experimental time with the number of time points (i.e.

1D scan: ~j n time points, 2D scan: ~ n2 time points, etc.), which makes faster acquisition

techniques crucial for their practical implementation.

In view of the shortfalls of conventional scanning THz-TDS, a proposed detection scheme

is one that accurately recovers the entire THz waveform in a single laser shot and has

a sufficiently long time window to provide the desired resolution in the THz spectrum.

Furthermore, under equal averaging times the S/N of the recorded single-shot THz trace

should surpass that recorded using the traditional scanning method. Here, we will review

a number of single-shot methods and compare them to traditional EO sampling, the gold

standard for accurately recording THz traces. We compared the different single-shot methods

based on their temporal resolution, time window, accurate reproduction of the THz E-

field, and the anticipated S/N, and selected two of the most promising techniques to try

experimentally: amplitude encoding spectral interferometry and dual echelons.

For these two single-shot methods, we constructed experimental setups that implemented

balancing and high-frequency modulation of the pump for optimal noise suppression in ad-

dition to averaging. The designs allowed for rapid switching between single-shot detection

and scanning delay-line detection without perturbing the THz generation so that we could

directly verify the single-shot method's ability to accurately measure THz waveforms and
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compare their S/N to that of the standard methodology.

5.2 Review of Existing THz Single-Shot Methods

To date there has been little emphasis on single-shot methods as reliable, quantitative and

quick data acquisition techniques for spectrally resolving a THz probe field between 0.1-

10 THz. Many of these single-shot methods have a tradeoff between fast experimental

acquisition and some fundamental capabilities that will be discussed below. In this case, we

deviate from the objectives of irreversible single-shot experiments or diagnostic techniques.

While there still exist stringent noise floor requirements, there is also a new regime for

acquisition. More extensive averaging to yield markedly improved sensitivity would enable

the measurement of weak, but reversible phenomena, or small changes in strong signals where

a large dynamic range is needed in addition to high sensitivity.

A worthwhile technique will not make major concessions compared to traditional delay-

line EO sampling, in that the temporal resolution should be close to the transform-limited

pulse duration, a sufficient observation temporal window must be available and straight-

forward incorporation of noise suppression techniques should yield high S/N. Optimally,

the experimental geometry would allow the THz beam to be focused at the EO crystal for

higher sensitivity and accuracy and not require routine and/or intensive calibration prior to

the measurement. Figure 5-1 schematically compares conventional EO sampling in (a) to a

selection of existing THz single-shot techniques in (b)-(f). For each method we will discuss

temporal resolution, feasibility of a time window of 10 ps, ability to accurately record the

THz waveform, practicality to implement balancing for noise suppression, and overall ease

of implementation; the key characteristics are summarized later in Table 5.1 in Sec. 5.2.6.
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Figure 5-1: Comparison of single-shot THz methods and conventional lEO sampling.(a) Conven-
tional scanning EO sampling with balanced detection using a quarter-wave plate (QWP), Wollaston prism
(Woll), and two photodiodes (PD). (b) Frequency-to-time mapping by spectrally encoding a THz pulse onto
a linearly chirped probe in a collinear geometry. The chirped probe is then read out on a spectrometer. (c)
Non-collinear crossing of an 800 nm probe pulse with an expanded THz beam at ZnTe detection crystal. The
inset shows that crossing the probe beam an angle 0 maps time delay to transverse position on the crystal,
which is then imaged onto a camera. (d) Space-to-time mapping in time domain non-collinear SHG cross-
correlation, in which a THz pulse is encoded onto a chirped probe as in (b). The THz-imprinted probe is
then vertically focused to a line with a cylindrical lens (CL) and crossed with a short readout pulse in a SHG
crystal at an angle of 2#. The inset shows a zoomed in view of the intersection of the two beams in the SHG
crystal, where different frequencies of the chirped probe map to different transverse positions. The spatial
profile of the SB signal, S(x), recovers the temporal intensity profile of the chirped probe, which is detected
by a camera. (e) amplitude encoding spectral interferometry time delays a temporally short readout pulse
by At relative to the chirped probe and subsequently detects a spectral interference at the spectrometer. A
suitably short readout pulse sets the time resolution and recovers the envelope of the THz-imprinted chirped
optical probe. (f) Angle-to-time encoding using two crossed glass echelon optics, each with 20 steps, to create
a pulse train of 400 beamlets that are incrementally time delayed relative to one another. The beamlets
and THz beam are collinearly focused to the same spot at the ZnTe cyrstal, but the beamlets are imaged
to different locations on the camera. The detected grid pattern is made up of individual square regions that
sequentially read out the THz waveform.
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5.2.1 Frequency-to-time Encoding with a Chirped Probe

Fig. 5-1(b) illustrates the spectral encoding method, in which a linearly chirped probe pulse

is used to yield frequency-to-time mapping of a THz waveform in a single laser shot [115].

As in EO sampling, the THz field modulates the chirped probe polarization, which upon

passing through a polarization-sensitive analyzer is converted to an intensity modulation

corresponding to the THz field. The chirped probe is directed into a spectrometer, where an

intensity-modulated spectrum is detected on a camera.

A caveat exists however since allocating a single frequency component to a single time

delay violates the uncertainty principle. While increasing the chirp elongates the time win-

dow, imprinting the THz field onto a narrower range of frequency components degrades time

resolution [116,117]. The time resolution is given by y/T-O-h where TO is the transform-limited

pulse duration and Tch is the chirped pulse duration; for example, a 100-fs transform-limited

input pulse that is chirped to 10 ps results in a time resolution of 1 ps. Using a laser

with larger bandwidth coupled with a higher chirp rate was proposed as a way to lead to

better time resolution [115], although high-bandwidth lasers are less efficient for THz gener-

ation [103]. Alternatively, a distinct white-continuum probe pulse, independent of the pump

arm, could be used. Moreover, in instances where the time resolution was insufficient for

monitoring fast processes, the signal was shown to possess distortions depending on whether

the THz fields were strong or weak compared to the background [118,119]. Only under strict

conditions were these distortions eradicated, particularly by using a chirped probe pulse du-

ration optimized for a fixed THz pulse duration [120], which only emphasizes the intricate

balance between time resolution and the chirp rate.

Albeit the implementation of spectral encoding is technically the most simple, its most

serious detriment is the degradation of time resolution along with the inherent limit on

the temporal window for distortion-free measurements. In addition, the mapping assumes

a linear relationship between temporal chirp rate and frequency, which if not satisfied re-
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quires more careful characterization to avoid inaccuracies in recovering the THz waveform.

The method is however capable of implementing balancing by introducing the bias with a

quarter-wave plate and a polarizing beamsplitter. Consequently, the response is linear and

quantitative compared to the initial demonstration in [115], which only used the inherent

static birefringence in the EO crystal [46].

It was later proposed that the direct time-frequency mapping could be deconvolved with

in-line spectral interferometry [121,122], where the leak-through probe, resulting from static

birefringence in the EO crystal or slight detuning of the crossed polarizers, interferes in

the frequency domain with the amplitude-modulated signal. With no direct association

of frequency to time, the analysis should recover a time-resolution inversely proportional

to the full spectral bandwidth of the probe. However, this is a numerical reconstructive

approach that relies on accurate characterization of the chirped probe pulse up to second-

order dispersion (group delay dispersion). The method was experimentally demonstrated

as a better diagnostic tool in terms of time resolution compared to spectral encoding, but

ultimately the deconvolution algorithm is imperfect and introduces numerical artifacts that

are not conducive to reliable spectroscopic applications. In addition, balancing cannot be

implemented since the small bias necessary for large fringe contrast (i.e. for high sensitivity)

can only be introduced and subsequently detected in one polarization state.

5.2.2 Space-to-time Encoding with Non-collinear Geometry or

Collinear Tilted Probe Intensity Front

For a time-space encoding method of non-collinear crossing [123] or tilting of the optical

probe intensity front with a prism or grating [124,125], the transverse profile of the optical

probe pulse samples the THz field at different times when they spatially overlap in the

detection crystal as depicted in Fig. 5-1(c). The mapping between space-coordinate, x, to

time-coordinate, t, is calculated geometrically, depending only on the angle 0 between the
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THz beam and the optical probe (t = x tan 9/co), where co is the speed of light in vacuum.

The time window, AT, is determined by the width of the probe beam, w, which along with

9, are adjustable parameters (AT = w tan 9/co). For both of the described space-to-time

encoding methods, a time window of 10 ps and 450 relative angle between the THz and

optical beams requires a probe width of 3 mm.

In either the non-collinear or tilted pulse front geometry, there is minimal degradation

of time resolution due to phase mismatch between the group index of the optical probe

and the phase index of the THz field in the EO crystal [14,126] since for most crystals the

coherence length is large for a wide range of frequencies when 9 < 45 *. Instead, the time

resolution is dominated by dispersive propagation and absorption of the THz pulse in the

crystal [126, 127]. In the case of using a collinear tilted pulse front, the angular dispersion

introduced in the optical probe by dispersive elements typically increases the measured pulse

duration, but this is relatively negligible for detection crystals thinner than ~ 1 mm with a

50 fs transform-limited pulse [128]; the effect is exacerbated for thicker crystals and shorter

initial pulse durations.

There are however several considerations for this geometry in terms of applying it toward

sensitive THz spectroscopy. Firstly, attaining larger time windows requires that the focused

THz spot size at the detector crystal increase accordingly to a width of W = w/cos 9

(~ 4 mm for the parameters given above) and diminishes the THz field by 1/W. This

metric of W though only serves as a lower bound since in reality an ultra-broad-bandwidth

Gaussian THz pulse has both a spatially dependent E-field amplitude and spectral content

due to diffraction [129]. In typical EO sampling, the spectrum of the THz field is essentially

spatially invariant because the focused optical probe is much smaller than the THz spot

size; for example, a THz field with a full width half maximum (FWHM) of 1 mm varies

by less than 1% of its peak value for an optical probe focused to 40 pm. In the single-shot

scheme, the corresponding THz beam size, W, to achieve a near uniform spectral distribution

across the probe at the detection crystal is approximately 100 times larger with an expanded
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optical probe of W = 4 mm. These concerns pose obstacles with regards to the complete

mapping of nonlinear responses in multidimensional studies, where the preferred broadband

THz probes [24,130] are generally weaker compared to tilted pulse front generation in lithium

niobate that yields smaller bandwidth [16].

Consequently, in both the non-collinear geometry [123] and collinear tilted probe [124]

methods, a crossed-polarizer configuration that exploits the small static birefringence in the

nonlinear crystal was used in order to maximize the detected modulation depth [46]. The

distortions introduced by detecting in the quadratic regime are small for weak signals, but

typically an involved initial calibration is required that measures the nonlinearity of every

pixel in the detector array [124]. While the calibration also reports on the THz beam's

spatial profile, it only normalizes for amplitude variation across the THz focal spot and is

unable to capture the spectral variation. Nonlinear detection schemes often have non-trivial

balancing implementation or completely lack the ability as a trade-off for larger signals, and

so the shot-to-shot changes in the spatial beam profiles cannot be suppressed. Overall, the

single-shot method has demonstrated merits for linear spectroscopy in systems where the

absorptions are strong, but the barriers discussed hinder its practical implementation in

nonlinear spectroscopy.

5.2.3 Space-to-time Encoding with Time Domain Non-collinear

Second-harmonic Cross-correlation

In this technique the THz signal is first imprinted on a chirped optical probe pulse like in

Sec. 5.2.1. However, in this case the time profile of the probe is read out by crossing it at

angle 24 with a short recross-correlationadout pulse in a /-barium borate (BBO) crystal to

produce a type I second-harmonic (SH) signal as shown in Fig. 5-1(d) [131]. The crossing

of the two beams at an angle maps time delay onto transverse position, where different

frequencies of the chirped pulse are projected onto different locations at the BBO crystal
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(see inset of Fig. 5-1(d)), similar to that in a single-shot optical autocorrelator [132]. The

spatial profile of the SH beam, S(x) is recorded on a CCD array, which is represented as an

intensity cross-correlation between the two pulses: S(x) = f_*, Ich(T)Ir(t + r)dT, where ch

and r are the intensities of the chirped probe pulse and short readout pulse, respectively.

For a suitably short readout pulse, S(x) gives the temporal intensity profile of the chirped

probe since limIr,(t)-6(t) S(x) = Ich(t). The time window is given by AT = 2w sin #/c and

directly depends on the spatiotemporal overlap of the two beams across a width, w, in the

BBO crystal, where # is the angle in free space. For a 10 ps window at an angle of 15*, the

overlap width needs to be ~, 6 mm.

Although similar to the space-to-time mapping described in Sec. 5.2.2, this method does

not require any prior calibration of the THz spatial profile across the detector crystal, con-

sideration of spectral variation, or an expanded THz spot size. This is because both the

chirped probe and THz beam are collinearly focused at the EO crystal as in conventional

EO sampling. Also, there is no assumption made about the frequency dependence of the

chirp compared to spectral encoding [115], although spatial chirp could introduce inaccura-

cies in the recovery of the temporal waveform. The time resolution is affected by factors such

as material dispersion that stretches the pulses, particularly in the chirped probe containing

the THz dynamics, group velocity mismatch between the non-identical pulses, and phase

mismatch between the fundamental and SH beams in the BBO crystal. However, if a very

thin SHG crystal is used, the dominant source of the degradation of time resolution arises

from THz dispersion and absorption in the EO detector crystal, prior to the SH readout

process.

Unfortunately, just as is the case for many intensity autocorrelators [132,133], this experi-

mental setup calls for the accurate alignment of three sensitive degrees of freedom (horizontal

and vertical angle-tuning for phase-matching and coincidence in time) for the independently

crossed beams. There is also the complexity of relying on another nonlinear process, SHG, in

addition to the EO effect, which makes the signal inherently noisier and weaker. Using larger
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beam widths and BBO crystal dimensions lengthens the time window, but this consequently

reduces SHG efficiency and affects the sensitivity of the measurement. Furthermore, noise

suppression with balancing cannot be implemented in an optimal or convenient way due to

the strict conditions on proper phase matching and input polarizations for SHG.

5.2.4 Temporal cross-correlation using Linear Spectral

Interferometry

Matlis and coworkers demonstrated another variant of the THz cross-correlation technique,

shown in Fig. 5-1(e), between a chirped probe and a short readout pulse using linear spectral

interferometry [134]. The retrieval of the full E-field of an optical probe in this way has been

demonstrated earlier in frequency domain holography [135,136] and single-shot supercon-

tinuum spectral interferometry [137]. Firstly, a THz signal is encoded onto a chirped probe

pulse by collinearly focusing them at the EO detection crystal. Time-delaying a readout pulse

by At from the THz-imprinted chirped pulse introduces a phase difference, A(w), in the

readout field of wAt for the frequency component w and gives rise to a spectral interference

pattern. The measured interferogram at the spectrometer may be written as:

T(w) =I Ach(W) + Er (W) eAt ~ - (W) 2+ t(W)~ + Ech(W)Er(W)e +cc (5.1)

where kCh (W) = ch(W) eikch(W) and Er(w) = r(W) eier(P) are the amplitude and phase of

the E-fields of the chirped probe and readout pulses, respectively, and c.c. is the complex

conjugate of the preceding cross-term. This expression may be rewritten to include the

relative phase difference between the pulses in the spectral domain, A#(w) = 0r(w) - Och(w):

T(w) = Ich(w) + Ir(w) + \Ich(w)Ir(w) cos(AO(w) + wAt) (5.2)
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where Ich(w) and Ir(W) are the spectral intensities of the chirped probe and readout pulses,

respectively.

In the time domain, the response is simply the inverse Fourier transform of Eq. 5.2:

F-'[T(w)](t) = Ich(t) + Ir(t) + f(t - At) + f(-t - At)* (5.3)

where f(t - At) = f_ Ech(r)Er(t - At + r)dr is the cross-correlation between the chirpeI

probe pulse and the short readout pulse. The first two terms are the non-interfering autocor-

relation components that are centered at t = 0, and make up the DC response. In contrast,

the cross-correlation terms are separated from the DC response and are centered at iAt

and are derived from the spectral interference. For a readout pulse of suitably short pulse

duration and negligible spectral phase variation, the cross-term yields the chirped E-field

in amplitude and phase: limEr(t)-+(t) f(t - At) = Ech(t). Therefore, a THz signal can be

encoded in either the amplitude or phase of the chirped probe and subsequent extraction-of

a THz trace is possible given a reference interferogram in the absence of a THz pulse. Here,

the time resolution is set by the pulse width of the readout pulse E-field, ro, and the time

window corresponds to the pulse width of the chirped probe E-field, Tch.

As for any highly sensitive interferometric measurements, there are stringent experi-

mental conditions required for accurate implementation. The fidelity of the fringes is only

maintained for collinear beams with high relative optical phase stability and good spatial

beam mode matching. For the long observation time windows required, more effort is needed

for precise alignment since it calls for the use of non-common-path optics. Also, spatial chirp

resulting from an imperfect compressor or stretcher would affect the spectral interference. In

principle, the time window is freely adjustable by changing the chirp rate, but in practice is

limited by the resolution of the spectrometer, which must be capable of resolving the finest

fringe widths. Since the E-fields do not overlap temporally, increasing rch for larger time

windows leads to an increase in the corresponding time delay, At; this yields finer fringes in
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the interferogram with fringe widths inversely proportional to At.

In terms of sensitivity, the technique employs a linear detection scheme that is capable of

measuring small-amplitude signals and also allows for easy implementation of balancing for

amplitude encoding of the THz field on the chirped probe pulse. Alternate phase-encoding

spectral interferometry with a single chirped pulse [134] or with two chirped pulses in single-

shot supercontinuum spectral interferometry [137] is otherwise similar except the lack of

a polarization-sensitive scheme prevents the use of balanced detection; also an additional

measurement of the reference phase through cross-phase modulation is needed [137]. The

phase-encoding scheme is more pertinent to the measurement of intense THz E-fields since

very large phase differences can be detected [138] without causing over-rotation (i.e., for

induced phase differences more than 900) in the EO crystal.

5.2.5 Angle-to-time Encoding with Transmissive dual echelons

This single-shot technique is built around a complementary pair of custom-made transmission-

mode echelons, optics that look like glass stairways (see inset of Fig. 5-1(f)) [139,140]. When

the probe beam passes through a pair of a thin and a thick echelon, each with m steps, it

is split into an array of tiny "beamlets" that are delayed incrementally in time relative to

one another. The more glass a beamlet passes through, the longer the delay. By design,

an integer number of small steps of height, h, in the thin echelon introduces the same time

delay as a single large step of height, H, in the thick echelon or simply H = mh where m

is an integer. The beamlets are all focused to the same spot on the detector crystal (as a

pulse train), but they separate after the crystal and are imaged onto distinct regions of a

camera. Modulation of the pulse train in time is mapped onto modulation of intensity in

the image, making it possible to record the entire THz trace with a single laser shot. The

time resolution of transmissive echelons is roughly the time delay introduced by the smallest

step increment, hAn/co, where the index difference is An = ngiss - nair : 0.5, convoluted
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with the pulse duration. The time window is given by the total time delay resulting from all

m steps of the largest step increments, mHAn/co. For a 10 ps window with 20-step glass

echelons, the smallest steps are 15 pm (or 25 fs) and the largest steps are 300 pm (or 500 fs).

Transmission through the glass echelons leads to broadening of the optical probe, but

is dependent on the material properties, spectral bandwidth of the pulse, and length of

propagation in the medium. Since the probe passes through different thicknesses of glass,

each beamlet experiences a different amount of pulse broadening. An estimation of the upper

limit of broadening that degrades temporal resolution for a bandwidth of -' 20 nm (a 50 fs

transform-limited pulse) centered around 800 nm and a thickness of 10 mm is at most 4

fs [78] (see Sec. 5.4.2), which is negligible for monitoring THz dynamics. The degradation of

time resolution only becomes noticeable for ultra-broad bandwidth lasers (< 20 fs transform-

limited pulses). Implementation of this method requires fairly minimal modification to the

probe arm in a conventional free space THz detection setup and avoids the need for a high-

resolution spectrometer, noncollinear geometries, stretchers or compressors, or more involved

nonlinear optical measurements, although it does require custom-fabricated echelon optics.

Unfortunately, due to the imaging-based detection, any physical defects in the echelons

or aberrations in other optical components that degrade image resolution could affect the

recovery of the THz waveform. Finally, the method retains the ability for balanced detection,

but requires in-focus imaging of both polarization states on the camera.

5.2.6 Summary of Single-shot Methods

Table 1 summarizes the methods presented above, highlighting the desired criteria for a

fast-acquisition method with high S/N. With respect to these criteria, we have chosen to

explore the viability of two techniques: amplitude encoding spectral interferometry described

in Sec. 5.2.4 and EO-imaging with transmissive dual echelons in Sec. 5.2.5. These techniques

possess high time resolution and reasonable time window limits, allow the THz beam and
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Method Time Time Beams Technical considerations Additional Notes
resolution window focused? compared to EO sampling

* Time resolution degraded for
Spectral * Requires a grating long time windows
encoding, V/0ch > Tch yes compressor or stretcher and e Distortions introduced forFig. 5- 70 spectrometer monitoring processes faster1(b) [115] than time resolution

e Requires expansion of THz
spot size at EO crystal

* Nonlinear detection schemes
Non-collinear make balanced detection * Expansion of THz beam for a

crossing, m e tan No difficult or impossible longer time window reduces

Fig. 5- T0  CO S/N significantly; difficult to
1(c) [123,124] e Intensive calibration needed detect in linear regime

to remove distortions due to
spatial beam inhomogeneity
and nonlinear response

o Detection of nonlinear
process is inherently noisier

* Requires sensitive alignment and weaker.
SHG cross for proper phase matching in * Expanded probe beams for
corelation, 2wsn Y SHG crystal. large time windows lowers

1(d) [131] o Balanced detection is SHG efficiency.
non-trivial. * Spatial chirp distorts

recovered temporal
waveform.

* Linear detection scheme gives
Amplitude- * Interferometrically stable high sensitivity.

encoded conditions and precise
sec er alignment needed * amplitude encoding scheme

spectral inter- Io Irch Yes allows for balanced detection.
ferometry, * Requires a grating

Fig. 5- compressor/stretcher and o Time window is limited by
1(e) [134] high-resolution spectrometer. spectral resolution of

spectrometer.

* Pulse broadening in glass
* Requires custom-fabricated echelons for 10 ps time

Dual glass echelons. window is minimal for

transmissive * Imaging based detection transform-limited pulse
echelons, hAn mHAn Yes requires high optical quality durations > 50 fs.

Fig. 5- components and imposes * Reflection mode echelons also
1(f), [140] restrictions on experimental an option for very large time

design. windows or broad bandwidth
lasers.

Table 5.1: Summary of THz single-shot detection methods.
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optical probe to be focused at the EO crystal, and allow for straightforward noise suppression

with balanced detection. The following sections provide analyses on the quantitative ability,

noise floor, and technical ease of implementation of each method.

5.3 Amplitude Encoding Spectral Interferometry

As stated previously, spectral interferometry is capable of attaining the transform-limited

temporal resolution with a variable chirped probe to control the time window. Here, we

directly compare this method to the scanning delay-line method to demonstrate the extent

of its capabilities.

5.3.1 Experimental Design

The measurements were conducted with a 1-kHz amplified titanium-sapphire laser with a

center wavelength at 800 nm, a pulse energy of 1.5 mJ, and a pulse duration of 80 fs (50

fs transform-limited). The experimental setup in Fig. 5-2 was designed for convenient and

accurate comparison between the single-shot method and the conventional delay-line pump-

probe method. The pump beam was directed into a 2 mm thick ZnTe crystal to generate

THz pulses via optical rectification [24] and the THz output was imaged onto a 1 mm thick

ZnTe detection crystal with a pair of parabolic mirrors. The identical THz generation setup

was also used in the dual echelons technique described later in Sec. 5.4. The first beam-

splitter (90%R) separates the pump and probe beams while the second beamsplitter (70%R)

creates the chirped probe and readout arms. Prior to entering the second beamsplitter, the

beam was spatially filtered with a pinhole to decrease spatial interference upon recombina-

tion of both beams. The chirped probe and readout pulse must be combined at the third

beamsplitter (50%R) with equal intensities to ensure the strongest modulation depths of the

interferogram; the second beamsplitter accounts for the loss upon emerging from the dual-
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BS: Beamsplitter
PH: Pinhole

ZnP eBP: Black Polyethylene
QWP: Quarter waveplate
Woll.:Wollaston prism

efl efl, HWP: Halfwave plate
2 PD: Photodiode

MB: Magnetic baseplate
pellicle (45%R)

BS ZnTe
(50%R) PH

stage

QWP Woll.
MB

side view
Woll. --
HWP

slit....

5 BS
(90%R) PH (70%R) -

Figure 5-2: THz spectral interferometry experimental setup using amplitude encoding scheme.
The input laser is initially split into the optical pump for THz generation and the optical probe. The optical
probe is further split to give a chirped probe pulse (via a dual-grating compressor) and a short readout pulse,
which are time delayed relative to one another by a stage. The THz pulse is imprinted onto the amplitude
of the chirped probe at the ZnTe detector crystal, where both beams are focused. Both the chirped probe
and readout pulses are directed into a spectrometer and the spectral interference is imaged onto a camera.
In single-shot, both stages are fixed during the measurement. For the conventional delay-line method, the
chirped probe is blocked, and the short readout pulse is used as the EO sampling probe.

grating compressor. The dual-grating compressor consisted of two 830.8 grooves/mm pulse

compression gratings to introduce linear spectral chirp with minimization of spatial chirp;

in the experiments, the optical probe was chirped to rch ~ 7 ps limited by the resolution of

the spectrometer.

As for any interferometer, the importance of the collinearity of the interfering beams

is extremely strict; in particular for spectral interference, excellent collinearity is needed

to eliminate spatial interference artifacts from inhomogeneous beam profiles or crossing at

an angle. Interferometers with common path optics would circumvent the collinearity dif-

ficulties, but since phase masks or two-dimensional pulse shapers cannot achieve the long

temporal chirp widths desired, we had to employ the dual-grating compressor in one arm as

described above. Following the recombination beamsplitter, we aligned each arm through
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a 25-pm pinhole and the spectrometer entrance slit closed down to 10 pm. In addition, a

motorized stage was incorporated into the readout arm to set the time delay, At, between

the two pulses. Once set, this stage is immobilized for the entirety of the measurements.

Similarly, the stage in the pump arm for THz generation is set to temporally overlap the

chirped probe and then also fixed for the single-shot measurement.

For both single-shot measurements and scanning EO sampling, balanced detection was

implemented with a quarter wave plate and a Wollaston prism. For the single-shot method, a

small splitting-angle Wollaston prism was used to ensure that both spectrograms were imaged

onto the camera. The emerging beams of orthogonal polarization were focused onto the slit

of the spectrometer. A half wave plate (HWP) was used to compensate for the polarization-

dependent efficiency of the grating in the spectrometer by rotating the polarization of the

beams to 450, yielding equal intensities at the detector.

The single-shot detector was a homebuilt spectrometer coupled to a high-speed 10-bit

CMOS camera (Photron, Fastcam 1024 PCI, 1024x 1024 pixel chip). The spectrometer had

a 1200 grooves/mm grating to yield a wavelength range of AA = 30 nm and calibration

of 0.03 nm/pixel. The camera is capable of recording images at 1000 frames per second

while synched to the 1 kHz laser (its performance is detailed in [4]). For the conventional

scanning delay-line method, the signal was recorded using a data acquisition card and a pair

of low-noise photodiodes (Hamamatsu, S2281) [47]. For both methods, the pump beam was

chopped at the maximum modulation frequency of 500 Hz such that alternate probe pulses

record the signal and reference. Detection at a higher frequency allows for quick acquisition

of an interferogram for every pulse and effectively reduces 1/f noise associated with pointing

instability and laser drift, which is most important in this case for optical phase stability to

prevent the fringe pattern from washing out.
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5.3.2 Methodology and Data Processing

Before elaborating on the details of THz spectral interferometry, I will first give a generalized

description of optical heterodyne detection to clarify the description given in Sec. 5.2.4.

5.3.2.1 Optical Heterodyne Detection and Fourier Transform Spectral Interfer-

ometry

Square-law detectors (e.g., cameras, photodiodes, spectrometers) are electronic devices that

integrate a signal over time, and hence measure the intensity of the signal, Idet. The os-

cillations of E-fields, where A(t) and q(t) are the time-dependent amplitude, and phase,

cannot be measured directly in the optical frequency range (on the order of ~ 10" Hz) since

time-integrating electronics are unable to respond quickly enough to the changing signal.

The detector is only sensitive to the time-averaged energy, which is directly proportional

to Idet. For a spectrometer, this means that while signal amplitude information, A(w) is

conserved, any information about its phase, O(w), is inherently lost. The intensity of an

E-field, k(w) = A(w)e(w), detected by a spectrometer is:

2
Idet(W) = (Ek(w)l )t (E(w)E*(w))t = (A(W) 2)t (5.4)

Spectral interferometry is a technique that uses optical heterodyne detection to retrieve

the spectral phase of ultrafast pulses. This requires interference of a reference beam (typically

a local oscillator at a nearby frequency) with the signal beam of interest, both of which are

superposed at the detector. While intensity detectors cannot measure absolute phase, they

are sensitive to the relative phase between the reference and signal, A#(w) = Oref()-Osig (w).

The relative phase difference creates interference fringes at a beat frequency, which effectively

shifts the high-frequency signal to a lower carrier frequency that is electronically detectable.

The interference of the two spatially overlapped beams is measured simultaneously by a
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spectrometer:

Idet(W = IEsig(W) + Ere(W)1 = sig(W) 2 + IEref(W) 2+ 1*ig(w)Eref(w) IeaO(w) + c.c. (5.5)

where c.c. is the complex conjugate of the preceding cross-term. This expression is simplified

to:

Idet(W) = Isig(w) + Iref(w) + 2cos A(w) Isig(W)Iref(W) (5.6)

The first two terms are the non-oscillating homodyne components, which correspond to a

frequency-dependent dc offset in the detected intensity. In contrast, the cross-term with

cosine dependence causes modulation across the slowly varying spectrum and contains the

relative spectral phase difference information. The sum-frequency spectral phase also exists

but again is too fast for electronic detection in the optical regime and is omitted from the

analysis.

Spectral interferometry is a linear technique with high sensitivity and so small signals

may be measured independent of their magnitudes relative to that of the reference pulse;

in many cases, this fact is exploited for signal gain since the amplitude of the downshifted

difference frequency component depends on the amplitude of the reference that is typically

larger than that of the signal. However, because A#(w) is measured through its cosine,

this means that the phase difference can only be measured for discrete frequencies when

A#(w) = 27r (i.e. at the cosine maxima) [141]. As a means of circumventing this problem, a

time delay, At, is introduced in the reference beam, which results in a linear phase factor of

wAt. Now, cosine reaches its maximum when AO(w) = 27r - wAt and so phase differences

smaller than 21r can be measured. A modification of Eq. 5.5 gives:

Idet(W = Esig(P) + Eref(w) et 1= I sig(w) 2+ Iref() 1+ f(w)ewAt + . (5.7)

where f(w) = *ig(w)Eref(W) e e() = F[f(t)].
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This expression is similarly simplified to:

Idet(W) = Isig(w) + Iref(W) + 2 (Isig(W)Iref(W) Cos (A#(w) + wAt) (5.8)

Therefore, the oscillation of the spectral interference is set by both the time delay and the

difference in absolute spectral phase between the two pulses.

An inverse Fourier transform is applied to the spectral intensity in Eq. 5.8, using the

cross-correlation theorem and the Fourier shift theorem, to yield the spectrometer signal in

the time domain:

F-[Iet(W)](t) Isig(t) + Iref(t) + f(t - At) + f(-t - At)* (5.9)

where f(t - At) = f22o E,*ig(r)Eref(t - At + r)dr is the cross-correlation term. The first two

terms in Eq. 5.9 are the non-interfering autocorrelation terms that are centered at t = 0.

In contrast, the cross-correlation terms are separated in time since they are centered at

t = At. The time delay is set such that the spectrometer is capable of resolving the finest

fringes (fringe width oc 1/At ) and that the cross-correlation terms are not overlapped with

the autocorrelation terms for accurate phase retrieval. The spectral interference term of

interest is obtained by applying a filter that isolates the cross-term, f(t - At), at t = +At

(the other cross-correlation term at negative times reveals the same information when the

ordering of events is symmetric in time). Alternatively, the autocorrelation terms could have

been directly subtracted off earlier in the frequency domain if the signal and reference spectra

were also measured independently, which would allow for smaller values of At. The isolated

cross-term is then Fourier transformed back to the frequency domain and the phase wAt is

removed by setting t' = t - At to yield f(w) = F[f(t')]:

Ift (w) = Isig(w)Ire(w)eiA . (5.10)
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Finally, since the absolute reference phase is a known value:

0,ref(W) = (W - wo)At, (5.11)

subtracting 0ref from A#(w) and dividing by the amplitude of the reference, Iref(W) in Eq. 5.9

recovers the amplitude and phase of the signal:

Iflt(W) = 'sig (w)e-s). (5.12)

5.3.2.2 THz Spectral Interferometry

In the linear EO effect for ZnTe, the THz E-field-induced birefringence is 6(t) = -^ETHz(t)/2,

where -y = 27rtngr41 /Apt, t is the crystal thickness, no is the index in the absence of a THz

field at Aopt, the optical probe wavelength, and r41 is the appropriate coefficient of the EO

tensor [43]. When the probe polarization is oriented 450 relative to the principal axes of

the THz-induced index ellipsoid, the measured signal intensity, I, in the limit of weak THz

modulation strengths or small 6 is:

I +(t) = Io (t) (1 sin (0)) Pz I0 (t) (1 6(M)) (5.13)

where Io is the intensity in the absence of the THz E-field and "+" and "-" signify horizontal

and vertical polarizations of the optical probe, respectively. This signifies a conversion of

the induced change in the probe's polarization to an amplitude modulation with a quarter

wave plate and Wollaston prism. Implementation of balancing doubles the detected signal

modulation while canceling common mode noise:

AI+(t) I (t) = 2 sin 6(t) a 26(t) (5.14)
Io (t)

where AI'(t) = P=(t) - Jo(t).
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In spectral interferometry, the THz E-field may be encoded in the amplitude or the phase

of the probe, only depending on the polarization of the probe relative to the principal axes

of the THz-induced birefringence [127,134]. Because only the amplitude encoding scheme

allows for balanced detection, the following analysis omits THz E-field measurement through

the probe's phase and instead focuses on retrieval through extracting the chirped probe's

envelope. In the time domain, the chirped probe's E-field in the absence of a THz pulse

can be written as: Ep,o(t) = Ep,o(t)ei"Po(t) where ep,o(t) and <by,O(t) are its time-dependent

amplitude and phase, respectively. Just as in conventional EO sampling, amplitude encoding

requires the probe's polarization to lie between the principal axes of the crystal at 450,

which results in the THz E-field imprinted only on the amplitude of the transmitted probe:

Ep,THz(t) = Ep,THz(t)e Po(t) = Ep,o(t) V1 t 8(t). Consequently, the signal modulation and

THz E-field are conveniently extracted from the envelopes of both Ep,o and Ep,THZ:

Io(t) p,T

As described previously in Sec. 5.2.4, recovery of the THz waveform using amplitude

encoding depends on extraction of Ep(t) using a temporally short readout pulse separated

by a relative time delay of At. An example of a pair of raw interferograms with balancing

implemented and THz signal present is shown in Fig. 5-3(a). We integrated over the (+) and

(-) polarization interferograms to recover a spectrum from each; the spectrum for the (+)

polarization is shown in Fig. 5-3(b). The asymmetry in the frequency of fringe oscillations

depends on whether the readout pulse leads the blue or red spectral components of the

chirped probe in time. Similarly, a reference interferogram and spectra for both polarizations

are acquired in a successive laser shot in the absence of a THz pulse. In accordance with

Eq. 5.3, the spectra in Fig. 5-3(b) were inverse Fourier transformed to the time domain; the

modulus is shown for the (+) polarization in Fig. 5-3(c). Since the cross-correlation peaks

at At z 5 ps represent the envelope of the chirped probe, the THz signal modulation
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was calculated using Eq. 5.15 by simply squaring and dividing the signal and reference time

domain traces (taken with two laser pulses) in Fig. 5-3(c) and subtracting unity. A zoomed-

in view around +At is shown for both polarizations in Fig. 3(d); however, in these traces

the THz signal is barely distinguishable from the noise. Fortunately, the noise is largely

correlated and hence effectively suppressed by balancing as seen in Fig. 5-3(e), where noise

is reduced and the THz signal is doubled as predicted by Eq. 5.14. These results can be

compared to those predicted by a numerical calculation following the procedure outlined

Sec. 5.3.2 and illustrated in Fig. 5-4.

---- reference

.4-. C
Ma
C 4-I

a) W

LL.

785 790 795 800 805 810 815 -15 -10 -5 0 5 10 15

wavelength (nm) time (ps)

10 (e)

5
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-5
---- balanced

-101
3 4 5 6 7 8 9 3 4 5 6 7 8 9

time delay (ps) time delay (ps)

Figure 5-3: THz spectral interferometry data processing. (a) Raw interferogram showing (+) and

(-) detected polarizations. (b) is given by integrating over the vertical dimension in the (+) interferogram

in (a). (c) Modulus of the Fourier transform of the spectral interference in (b), which corresponds to the

amplitude of the cross-correlation between the chirped probe and readout pulse E-fields (i.e. approximately

the envelope of the chirped probe) in the time domain. (d) Unbalanced time traces collected in two laser

pulses for both polarization states by dividing the signal and reference traces in (c) and subtracting unity.

With no averaging, the THz signal is indistinguishable from the noise. (e) Balanced time trace collected in

two laser pulses following subtraction of (+) and (-) traces in (d), which reveals the THz signal.
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Figure 5-4: Calculated results for the (+) polarization demonstrating the methodology. (a)
Spectral interference of chirped probe and readout Gaussian pulses. (b) Modulus of Fourier transform of
(a). (c) THz time trace given by dividing the signal and reference in (b).

5.3.3 Experimental Results and Discussion

5.3.3.1 Characteristics of the raw spectra and time domain data

The spectral interference, as given by Eq. 5.1, shows fast modulations introduced by the
linear phase factor of wAt on top of a large, slowly varying background corresponding to the
sum of the spectral intensities of the chirped probe and readout pulses. Consequently, the
signal interferogram does not change significantly compared to the reference interferogram

due to a relatively small signal modulation caused by the THz pulse. These spectra also
lack full modulation depths of the fringes, which indicate unequal amplitudes of the readout

and chirped probe beams. The asymmetry in modulation depths spectrally varies, which is
evidence of spatial chirp in the system.

In the Fourier transforms of the spectra in Fig. 5-3(c), the cross-correlation features differ

noticeably from the predicted smooth Gaussian spectra simulated in Fig. 5-4(a). Narrow
filtering of pulse bandwidth appears as oscillations in the time domain, but since most of the
laser's bandwidth (AAFWHM = 20 nm) was captured by the spectrometer (AAFwHM = 30

nm), these oscillatory artifacts should be minimal. The roughness in the time domain traces

may be due to the non-Gaussian envelope of the spectral interferogram in Fig. 5-3(b). There

are a multitude of causes for this including the inherent laser mode, self-phase modulation,

or material absorption in either the readout or chirped probe beams. Further testing or
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simulation is needed to determine the origin of this source of noise.

5.3.3.2 Assessment of quantitative ability and noise floor

The most important aspect of the study was to determine whether the amplitude encoding

spectral interferometry method reproduced the THz signal quantitatively with a lower noise

floor for a fixed acquisition time compared to conventional EO sampling. By conserving the

total number of laser pulses, the THz time trace in Fig. 5-5(a) is evidence that the method

maintains the high temporal resolution of the scanning method by incorporating a short

readout pulse, a result of solely using a chirped probe [115]. This is further substantiated

by the fact that no distortions were introduced, which emerge when the phenomena under

study occur on timescales too fast compared to the measurement's time resolution [118,119].

Although the temporal dynamics were closely matched, the absolute THz signal measured

differed from the delay-line method, depending strongly on the alignment of the interfer-

ometer. THz fields were consistently measured to be larger by up to a factor of two. The

reliability of having pure spectral interference is a leading source of the discrepancy, which is

obscured by factors such as non-collinearity between the beams and inherent characteristics

of the individual pulses. The THz spectrum in Fig. 5-5(b), given by the Fourier transform of

Fig. 5-5(a), has approximately the same bandwidth as that measured using the delay-line.

However, due to the short useable temporal range in spectral interferometry, the measure-

ment yielded quite poor spectral resolution.

It is evident in Fig. 5-5(a) that spectral interferometry yields a noisier time trace than

the delay-line method for the same acquisition time. Since the single-shot methodology

records all n time points simultaneously, for the same acquisition time it should be able to

average a factor of n more traces than the delay-line method (disregarding computational

processing time). Ideally, the noise of one single-shot trace would have the same noise level as

a single trace acquired by the delay-line method, but expectedly there is h tradeoff between
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Figure 5-5: Direct comparison between THz spectral interferometry and conventional EO sam-
pling. (a) Averaged and balanced THz time traces for THz spectral interferometry and scanning delay-line
method. (b) Normalized Fourier transforms of the time traces given in (a).

acquisition speed and baseline noise. Although averaging reduces random noise by a factor

of fri, the initial baseline noise of a single-shot trace is too large to be sufficiently suppressed

by averaging. We measured the respective noise of each method as the uncertainty in A1/Io

across the time trace in the absence of THz pulses (not shown) to be 0.13% using spectral

interferometry and 0.06% using the delay-line method with the same number of laser pulses

(6400 total laser pulses).

In this system, laser noise presents itself in similar ways to conventional EO sampling

with a photodiode (e.g., intensity fluctuations, electronic detector noise), but also in new re-

spects. More stringent conditions are required for low-noise interferograms since laser point-

ing fluctuations compounded with spatial chirp dynamically change the spectral interference

compared to just measuring intensity changes with a large-area photodiode. Additionally,

spectral changes in pulses with a non-Gaussian spectrum may change on a shot-to-shot basis.

The last, but most important concern is with regards to optical phase stability in the system

that also drifts from shot to shot, between successive signal and reference acquisitions. Rel-

ative phase shifts between the signal and reference interference patterns manifest themselves

strongly when the two time domain traces in Fig. 5-3(c) are divided to yield Fig. 5-3(d).

Ultra-high phase stability is extremely difficult to attain since the experimental design calls

for the use of non-common-path optics to introduce high chirp rates; an improvement in

188



phase stability is gained by from detecting at a higher frequency.

Overall, amplitude encoding spectral interferometry has proven to be able to detect THz

E-fields with high temporal resolution and close to quantitative field strengths. But its poor

noise performance and oversensitivity to alignment, spectral fluctuations, and high optical

phase stability cannot be ignored since the measurement of small nonlinear signals is of in-

terest. Previously, spectral interferometry was only demonstrated as a means of detecting

intense THz pulses emitted from electron bunches using a high-power laser-plasma accel-

erator [142], but these field strengths are 3-4 orders of magnitude larger than the absolute

signals or relative induced changes we intend to detect. While spectral interferometry is also

routinely used in 2D electronic spectroscopy, the observable is subtly different since the sig-

nal is the mere existence of the cross-correlation peak itself (a higher contrast measurement)

and not small changes in the spectral interference as is the case here.

5.4 Dual Echelons Method

Previous studies using dual echelons have focused on optical pump-probe measurements of

irreversible processes [143, 144] and also more relevantly on diagnostics for real-time char-

acterization of THz pulses [140]. Here, we intend to transform the method into a robust

technique for multidimensional THz spectroscopy by implementing detection at a higher

frequency with balanced detection and multi-shot averaging.

5.4.1 Experimental Design

The sequentially time delayed beamlets can be introduced by using either transmission-mode

echelons or reflection-mode echelons. Typically, for relatively small time windows (-- 10 ps)

and small bandwidth laser pulses, transmission-mode echelons are practical. They introduce

little temporal chirp (see following Sec. 5.4.2) and allow for adequate imaging quality of
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the beamlets. However, for longer time windows, the thickness of the transmission-mode

echelons scales linearly, introducing more chirp, but most detrimentally prevents in-focus

imaging of the all the beamlets due to the accompanying need for a greater depth of focus.

In these cases, reflection-mode echelons are more desirable, but require an additional two-

lens 4f imaging system that has a larger experimental footprint. These two setups will be

discussed in the following sections.

5.4.1.1 Current experimental setup using transmission-mode echelons

BS: Beamsplitter
PH: Pinhole
BP: Black Polyethylene
QWP: Quarter waveplate
PBS: Polarizing beamsplitter

echelons 4 Hx20 PD: Photodiode
MB: Magnetic baseplate

ZnTe
Teflon /BP

hx 0

pellicle
MB ZnTe

MH

MB I

Defector. QPB
Dual-echelons Conventional

P H method: delay-line method:

BS

Figure 5-6: The experimental setup showing convenient switching between dual echelons and
delay-line methods and balanced EO detection. The input laser is split into the optical pump for THz

generation and the optical probe. An expanded probe beam is directed through a pair of echelons. The inset
shows a schematic illustration of dual 20-step echelons used to generate 400 pulses incrementally delayed in

time (not drawn to scale). The large echelon (right) has a step height of H = 300 pm and the small echelon
(left) has a step height of h = 15 Am. The beamlets and THz beam are both focused at the ZnTe detector

crystal. Then, the beamlets are imaged onto a camera. Alternatively, in conventional EO sampling, the

probe is re-directed to bypass the echelons and detected with a pair of photodiodes.

We used two transmissive echelons, each of which is a right-angled prism with a staircase

structure along its hypotenuse surface: one with large steps (step height H = 300 pm, time
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step = HAn/c = 500 fs) and one with small steps (step height h = 15 pm, time step =

hAn/c = 25 fs) each having transverse dimensions of 15 mm x 15 mm (see inset of Fig. 5-6).

Each echelon has 20 steps to yield a total of 400 pulses incrementally delayed in ~ 25 fs

time steps with an overall time window of 10 ps. The echelons were fabricated by depositing

index-matched epoxy onto the hypotenuse of a right-angled fused silica prism and molding

the epoxy with steps of the appropriate size [145]. A competing fabrication technology

for higher optical quality transmissive echelons is to stack and chemically bond thin layers

of fused silica, which can be obtained from Okamoto Optics, Japan [145]. Alternatively,

reflection-mode echelons, which are more favorable when much larger temporal windows are

desired (for higher spectral resolution) or for setups with very broad bandwidth lasers, can

be obtained from Sodick F.T., Japan; these echelons have recently been demonstrated to

measure THz E-fields [146].

The optical probe either passed through the echelons and was imaged onto a camera for

single-shot detection or was focused as a single beam through the sample and detected with

photodiodes for conventional point-probe detection with a scanning delay-line. For the dual

echelons method, it is important for the optical probe to be expanded and spatially filtered

with a pinhole to give a homogeneous beam profile. The THz beam and optical probe,

either the multiple beamlets from the echelons or a single beam for standard detection,

were combined with a pellicle beamsplitter such that they propagated collinearly through

the detection crystal. The high optical quality ZnTe crystal produced images with relatively

sharp features and minimal diffraction. Unlike optical pump experiments, the relatively large

THz pump spot at the sample focus (~- 1 mm diameter) compared to the tightly focused

optical probe (~-, 50 pm diameter), relaxes the constraint that each beamlet hit precisely the

same spot to experience the same pump strength; this also has favorable consequences in

response to pointing fluctuations that pose serious challenges for optically pumped single-shot

experiments. It was possible to switch rapidly between single-shot and point-probe detection

without modifying the pump arm by inserting or removing both magnetic baseplates under
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mirrors as shown in Fig. 5-6 and also swapping the detector. The THz-induced modulation of

the probe beam was detected using the standard EO sampling configuration with a quarter-

wave plate and polarizing beamsplitter.

For balanced detection in the single-shot echelon setup, both polarization states emerging

from the polarizing beamsplitter are imaged onto the camera. A raw picture showing the pair

of orthogonal polarization states acquired in a single laser shot is shown in Fig. 5-10(a). For

both images to be in focus, the path length from the detection crystal to the camera must be

the same for the transmitted and reflected beams emerging from the polarizing beamsplitter.

The beam transmitted through the polarizing beamsplitter was reflected directly to the

detector while the reflected beam was routed to the detector slightly off right-angle using a

pair of mirrors (Fig. 5-6). A polarizing beamsplitter was used due to the high optical quality

required for near aberration-free imaging; alternatively, a small-splitting-angle, high optical

quality Wollaston prism could be used [4].

5.4.1.2 Proposed experimental setup for longer time windows using a reflection-

mode echelon

For the reflection-mode echelon scheme, only the large echelon that provides the long time

delay needs to be switched since, for example, making it twice as thick for a time window

twice as long would exacerbate the imaging concerns with the current large transmission

echelons and would increase temporal broadening of the beamlets (although not a large

concern for THz dynamics). On the other hand, doubling the steps of the small echelon is

inconsequential to the measurement. In the desjgn of the reflective echelon, we require opti-

cally smooth surfaces that have relatively high reflectivity for 800 nm. We have found that a

gold-coated echelon structure, similar to an echelle grating with relatively low groove density,

could satisfy these conditions. These optics possess the same saw-tooth groove pattern and

are optimized for large incidence angles (or high diffraction orders); due to low angular dis-
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persion, these optics behave similarly to a mirror. We have had these optics custom-made by

Sodick F.T. based in Japan (American distributor: Sodick, Inc.). The manufacturer has the

capability of fabricating echelons with high optical quality and high tolerance limits over the

structure's characteristic parameters, in particular the cross-sectional profile of the grooves.

(a) top view (b)

2V b

Figure 5-7: Reflective echelon design. (a) Top view of a reflection-mode echelon, where the steps have
been plated with ~ 300 pm of gold. An input angle of 20i = 23.64 (drawn to scale) is designed to yield a
time window of 20 ps and the output is reflected normal to the single plane shared by all the steps. (b) A
zoomed in view of two steps showing the relevant parameters used to calculate a single time step.

The largest added benefit of the reflection-mode scheme is that the echelon can be de-
signed and fabricated such that the incident surfaces giving rise to the time delays are all in
the same object plane, and hence negate any depth of focus imaging problems. The design is
shown in Fig. 5-7(a), where an incident probe beam impinges on a few steps of the reflective

echelon at an angle 2b and is reflected normal to the object plane shared by all the steps,
which simplifies the subsequent alignment of downstream optics. The zoomed-in view of the

steps in Fig. 5-7(b) shows the incident and output beamlets emerging from two steps, where
the time delay resulting from the path length difference, b, is illustrated to give the time delay

for one step: Trefl = b/co. In terms of the dimensions of the steps to yield a fixed Trefl (or the
parameter b), these are easily found using trigonometry to be: sin 24 = b/w, cos4' = a/w,
and d = w sin 4'. These expressions may be used to give the following expression for the time
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delay of each step:
W

Tref = - sin 20 (5.16)
CO

For a 20-step reflective echelon, the relevant design parameters can be calculated by firstly

fixing Trefl = 1 ps and w = 750 pm (to match the width of the small transmission echelon

for square beamlet images): / = 11.80, a = 734.15 pm, and d = 153.37 pm. The general

experimental setup is shown in Fig. 5-8 and involves imaging the large reflective echelon

steps onto the transmission echelon with a 1:1 two lens, 4f imaging system (fi = f2). Then,

the new object plane at the position of the transmission echelon is imaged with a 1:2 imaging

system (f3 = 2f4) to shrink the image to fit onto the array detector chip. In this scenario, the

overall depth of focus required by the imaging system is now simply set by the thickness of the

new complementary 20-step small transmission echelon (32 pm/step, thickness = 704 pm).

Assuming that the size of the ZnTe crystal (diameter = 1 cm), located in the Fourier plane

of the second imaging system, apertures the diffracted light, then the minimum focal length

that can be used to achieve the depth of focus required is f3 ~ 20 cm and f4 ~. 10 cm.

f, fl,+f2 f2 f f3 f f

4V 1 F 1 V

transmissive ZnTe QWP
reflective echelon
echelon

Figure 5-8: Modified single-shot setup with reflection-mode echelon. The experimental geometry
shows the probing scheme using a large reflection-mode echelon, which is subsequently imaged onto a small
transmission-mode echelon.
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5.4.2 Methodology and Data Processing

5.4.2.1 Temporal dispersion of ultrafast Gaussian beamlets through glass ech-

elons

As a result of the broad spectral bandwidth inherently present in ultrafast pulses (compared

to the very narrow bandwidth of CW lasers), the propagation through an optical medium

is accompanied by dispersion of light. In a dispersive medium, different frequencies that

make up the broadband pulse travel at different speeds (or group velocities) and hence cause

lengthening of the temporal pulse width. For a Gaussian pulse, this is the temporal analog

of spatial dispersion, where different frequencies propagate to different positions in space,

transverse to the propagation direction, but will not be considered here. The following

treatment will focus on the introduction of linear chirp (or quadratic phase) in a Gaussian

ultrafast pulse in accordance with [78].

A transform-limited Gaussian pulse has the shortest pulse duration for a pulse with a

Gaussian spectral profile of a given bandwidth; in the time domain, the envelope of a pulse

can be described by:

A(t) = Ao exp(-t2/T 2) (5.17)

where AO is the normalized Gaussian amplitude and r is a time constant. The full E-field is

simply:

E(t) = A(t)exp(iwot), (5.18)

where wo is the central radial frequency of the pulse. From Eq. 5.17, it is seen that the

envelope of the pulse has constant phase (#(t) = constant, time-independent phase). The

intensity of the pulse then follows as:

I(t) = Io exp(-2t2 /- 2 ) (5.19)
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where 10 = lAo 12 is the peak intensity. The FWHM of the intensity of a pulse in Eq. 5.19 is

given as:

TFWHM,i = 21n 2- a 1.18r (5.20)

This is the pulse width normally referred to for an ultrafast laser pulse (e.g., 50-fs or 100-fs

pulses). A transform-limited pulse has its time-bandwidth product at its minimum:

TFWHMJAV = 0.44, (5.21)

which shows the inherent inverse relation between temporal pulse duration and FWHM spec-

tral bandwidth, Av. The pulse width of the amplitude of the pulse may also be calculated:

TFWHM,a =v'TFWHM,i ~ 1.67-. (5.22)

The spectral bandwidth can also be written in terms of wavelength, where AA < A:

AV ~ AA (5.23)
A2

For a linear temporal chirp, Eq. 5.17 is modified to include a more general complex phase:

A(t) = Ao exp(-t2/r') exp(iat2 -r2 ) (5.24)

where a is the chirp parameter. The phase of a chirped Gaussian pulse, 0(t) = at2 /, 2 ,

is a time-dependent quadratic function, and similarly the spectral phase is a frequency-

dependent quadratic function: O(w) oc r2aw2. Generally, a pulse is said to be chirped if it

has a time-dependent instantaneous frequency:

d#5
wi(t) = wo + dt (5.25)
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This results in a linear variation of the instantaneous frequency (referred to as linear chirp):

wi(t) = wo + 2at/r 2 and so a different central frequency will be measured at any instance of

time. An up-chirped pulse has a > 0 such that the instantaneous frequency increases with

time and vice versa for a down-chirped pulse with a < 0. The time-bandwidth product is

also modified to include the chirp parameter:

TFWHM,iV = 0.44 Vr +a2, (5.26)

which as expected is minimized for a transform-limited pulse (a = 0). Because temporally

chirping a pulse does not change its spectral width, the chirped pulse width, Tch must increase

the initial transform-limited pulse width, r, accordingly by the same factor VY +a2 and

consequently offsets any spectral broadening:

Tch = 7 N1 +2 (5.27)

A pulse may be chirped if it propagates through a dispersive transparent medium due to the

effects of a frequency-dependent refractive index (i.e. chromatic dispersion) or nonlinearities

in the medium such as self-phase modulation. In the case of the echelons, the former cause

is of interest, since the substrate, fused silica, has a frequency-dependent index, n(w). The

propagation of an E-field along a direction z in a linear lossless dispersive medium simply

undergoes a phase shift: (w)z, where / = wn(w)/co is the frequency-dependent propagation

constant. Firstly, in the time domain, Eq. 5.18 becomes spatially-dependent:

E(z, t) = A(z, t) exp(iwot) exp(-ioz) (5.28)

where ,o = O(wo). In the frequency domain, the Fourier transform of Eq. 5.28 is found using
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the Fourier shift theorem is:

E(z, w) = A(z, w - wo) exp(-ioz) (5.29)

where A(z, w - wo) = A(O, w - wo) exp[-i(#(w) - 0o)z]. This expression shows how propa-

gation in the dispersive medium alters the phase due to frequency-dependent index, giving

rise to chirp in the pulse, and therefore the dispersive medium can be thought of as a chirp

filter, IP(w) [78]. Eq. 5.29 is then:

E(z, w) = A(0, w - wo)T(w - wo) exp(-i3oz) (5.30)

where W(w) = exp[-i#8(w)z].

For a slowly varying propagation constant O(w), we may Taylor expand to second order

as follows:

d#1 d 20
#(w) = + +(-)2d2  w P U0)2  (5.31)

W=WO W=WO

=00 + O'(W - WO) + 1 0"(W - WO) 2 (5.32)

The first and second derivatives of the propagation constant have physical significance re-

lating to the evolution of the pulse's envelope. The first derivative is inversely proportional

to the velocity of the envelope (the group velocity, vg):

1- (5.33)
V9

and the second derivative is called the group velocity dispersion (GVD):

d 1
"= GVD -- (5.34)

dw vg
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The temporal broadening of a pulse therefore relies on the GVD since it introduces a

frequency-dependent time delay: rd(z, w) = z/vg(w). Eq. 5.28 can be rewritten to include

this:

E(z, t) = A(t - rd(z, wo)) exp[iwo(t - z/c)] (5.35)

where c is the velocity of light in the medium at the central frequency: c = co/n(wo) (the

phase velocity).

Because the index of refraction is usually expressed in terms of wavelength (e.g., the

Sellmeier Equation), it is more convenient to describe the group velocity as a function of

n(Ao) using # = 27rn(Ao)/Ao where AO = 27rco/w is the wavelength in vacuum and df/dw =

(d/dAo) (dAo/dw):

Vg = dn(AO (5.36)
n(Ao) - AOdAO)

Similarly, the GVD in Eq. 5.34 is rewritten by using d/dw = (dAo/dw) (d/dAo) = - (d/dAo):

Ar dn(Ao) 
(5.37)

2ircg dA/\

Lastly, in order to determine the chirped temporal width Tch from a transform-limited

pulse r, we need to determine the relationship between 3" and the chirp parameter a. The

Fourier transform of Eq. 5.24 for a chirped pulse can explicitly be written as:

A(w - wo) = Ao exp [- P (5.38)
4(1 - ia)I
2 (w- wO) 2 + iar7(w - wO) 2  .

= Aoexp 4(1+ a2 ) (5.39)

Equivalently, we can write the amplitude according to Eq. 5.30 by applying the chirp filter
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to a transform-limited pulse:

A(w - wo) = Ao exp [ exp i(6O + /'(w - WO) + 1"(W - wo)2)z (5.40)

Now, comparing the real and imaginary parts of Eqs. 5.39 and 5.40, we find the following

relationship:
23"z 4ln20"z

a -= - F . (5.41)
0 0o,FWHMji

Substituting this expression in Eq. 5.27 yields the chirped temporal width:

Aiz d2r{Xo))
ch = 71 1 + A; dAo) (5.42)

In order to extract the temporal width after propagation in a real material, we can

see from Eq. 5.42 that we need an expression for the experimentally measured refractive

index. Conveniently, the refractive index has been measured for many materials over a wide

wavelength range and is expressed as the Sellmeier equation:

+ B B~-2 + B3 C

n2 ('o) = 1+ A[2 B + 13 (5.43)0A'X - C1 28 - C2 28 - C3

For fused silica, the refractive index was measured in the range of AO = 0.21 to 3.71 Mm to

be given by [147]:

B1 = 0.6961663, B2 = 0.4079426, B3 = 0.8974794

C1 = 0.00467914826, C2 = 0.0135120631, C = 97.9340025 [giM2].

The index of fused silica is shown in Fig. 5-9(a), where n=1.4533 at 800 nm. Since it is

analytically easier to work with the derivatives of e = n2 , then the derivatives of the index
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can be re-expressed in terms of E' and e":

dn 1
- 1E- 1/2 ' (5.44)dAO 2

dn 1 3E'2 + (5.45)
dAo 4n3  2n

where E' = de and E" =

Therefore, substituting Eq. 5.45 in Eq. 5.42, the chirped temporal FWHM width ex-

perienced by each beamlet in the fused silica echelons can be calculated. The results are

shown for three different transform-limited pulse durations at 800 nm in Fig.5-9(b) for the

differential amount of broadening from the thinnest to the thickest step. The shortest pulse

duration, TO,FWHM,i = 35 fs (i.e. the largest bandwidth), undergoes the largest dispersion

and consequently the greatest pulse width difference, AT = Tch,FWHM,i - T0,FWHM,i. But, for
the longer pulse durations such as for the laser used in our experiments, TO,FWHM,i = 50 fs,
there is minimal temporal broadening for all beamlets at 800 nm (< 2 fs for the largest step
thickness, corresponding to a 10 ps time delay).

1.58 . 10
(a) fused silica (b) A0=800 nm

1.54 8 roFWHM,i
- 35 fs

6 - 50 fs
- 10ofs

1.50

4

no nm1. 45331.46 ~ 800nm 1 4 3

1.42 0
0.4 0.8 1.2 1.6 2.0 0 5 10 15

wavelength, X (m) echelon delay time (ps)

Figure 5-9: Temporal broadening in fused silica. (a) The wavelength-dependent refractive index of fused
silica derived from the measured Sellemeier equation [147]. (b) Temporal broadening of beamlets emerging
from fused silica echelons for three different initial transform-limited pulses at 800 nm as a function of
beamlet delay time.
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5.4.2.2 General extraction procedure for echelons

In the dual echelons method, two successive laser shots yields two pairs of images: one

pair with the THz pulse present (the signal) and one pair with the THz pulse blocked (the

reference) (see Fig. 5-10(a) for an example of such a pair of images). For demonstrative

purposes, Fig. 5-10(b) shows an image with the signal divided by the reference. The probe

intensity is visibly modulated by the THz field near the center of the grid, and the sign

of modulation is opposite in the left and right images. Here, the directionality of time is

increasing from up to down and left to right.

In reality, the data processing requires that a time trace is firstly extracted from both

signal and reference images like those in Fig. 5-10(a). Prior to extraction, a geometric

transformation "projective" in Matlab is applied globally to each raw grid in the images;

this effectively corrects for any tilt in the image. This makes it possible to methodically

average over the pixels within each square spatial region in the echelon and thus unwrap the

20 :x 20 grid of values into a 400 x 1 vector corresponding to sequential time delays. In

this experiment, because the last row of the echelons we used were damaged, we discarded

every other row to instead yield a 200 x 1 time sequence with 50 fs steps. Division of the

recovered signal and reference traces retrieves a THz time trace for each polarization state

labeled as (+) and (-) in Fig. 5-10(c). Balancing is implemented by subtracting the two time

traces in Fig. 5-10(c), which doubles the signal modulus and reduces common mode noise,

in accordance with Eq. 5.14. The balanced trace derived from the two laser shots is shown

in Fig. 5-10(d).

Numerous signal and reference images can be collected in succession and averaged to yield

further suppression of uncorrelated noise. This is most pertinent in the event of investigating

systems with reversible time dynamics, where many more images may be averaged to yield

marked improvement in S/N. Here, the averaging of N images is implemented by firstly

summing N/2 signal and N/2 reference images and then applying the extraction process
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described above to recover the balanced time trace. This order of operations is the least

computationally intensive, another aspect that cannot be overlooked when the overarching

objective is to reduce acquisition time significantly.

8
4 (c

0.

------- - balanced

120 2 4 6 8 100 2 4 6 8 10
time (ps) time (ps)

Figure 5-10: Data processing in dual echelons single-shot THz method. (a) An example of a raw
pair of signal images (THz pulse present). A reference image (not shown) with the THz pulse blocked
looks very similar to this. (b) Image pair computed by dividing the signal image by the reference image
(THz modulation is visible in several columns near the center of the grid). Time is increasing from top to
bottom and left to right of the grid. (c) THz time trace retrieved for left and right echelon images shown in
(a), following division of extracted signal and reference time traces. Balanced traces have opposite signs as
expected. (d) THz time trace with balancing implemented by subtraction of traces in (c). This doubles the
magnitude of signal and suppresses noise.
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5.4.3 Experimental Results and Analysis

To reiterate, for the single-shot method to be a viable tool for multidimensional THz spec-

troscopy, two criteria must be met: (i) the dual echelons technique must be capable of

quantitatively recording the THz time trace, and (ii) for a given acquisition time, the S/N

must be better than the conventional scanning delay-line method.

5.4.3.1 Assessing quantitative ability of the duAl echelons method

The first criterion was evaluated by acquiring THz time traces with the dual echelons method

and the conventional scanning delay-line method. Here, the number of traces averaged, N,

and laser pulses per time delay, K, and number of time points per trace, n, were kept

constant between both methods. The images were processed separately for the signal and

reference traces, but followed the same procedure. In the dual echelons method, after every

r laser shots, images were collapsed into a single trace and repeated for a total of N traces.

Ideally, the same S/N between both methods each requires the following total number of

laser pulses: Nrn (delay-line) vs. NK (single-shot). We will show that for a 1D trace the

acceleration of acquisition time is slightly less than the optimal reduction of 1/n, but still

provides substantial timesaving.

For each method, Fig. 5-11 shows the average of many traces and resulting spectra with

the same number of averages per time delay (N = 55, n = 250), but with the dual echelons

using the number of laser pulses divided by n compared to the delay-line. As seen in the

time traces in Fig. 5-11(a) and their Fourier transforms in Fig. 5-11(b), the dual echelons

method (solid pink trace) was able to replicate a THz time trace collected by the delay-

line method (dashed green trace). In addition to the closely matched time dynamics, the

signal modulation amplitudes also agreed quantitatively (Fig. 5-11(a) and (b) traces have

not been normalized to each other). This demonstrates the dual echelons method's ability to

accurately record THz spectra, which enables quantitative E-field measurement with reliable
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spectral features. Small deviations in the time traces and Fourier domain spectra in Fig. 5-11

may be a result of physical imperfections in the echelons themselves that may be seen in

the images in Fig. 5-10(a) or due to the distinct sources of noise in each system as discussed

below.

1.0,
5 (a) / - echelons (b)

--- delay-line

S0
*0.5

< -5 -

-10

-4 -2 0 2 4 0 1 2 3
time (ps) frequency (THz)

Figure 5-11: Direct comparison of dual echelons method and conventional EO sampling. (a) THz
time traces for dual echelons method and scanning delay-line method for the same number of averages per
time delay (dual echelons uses a factor of n fewer total number of laser pulses as the delay-line). (b) Fourier
transforms of the time traces given in (a).

5.4.3.2 Understanding sources of noise and noise suppression techniques in dual

echelons system

In a single-shot THz trace like that shown in Fig. 5-10(c), the most noticeable feature of

the noise is its periodic structure. This observation led to the final evaluation on expediting

THz acquisition using the dual echelons, which was conducted with the THz pulse blocked

and only probe light collected. Additionally, the probe-noise-limited baseline normalized for

the total number of pulses (i.e. the same total acquisition time) between both methods and

was calibrated with no detection crystal to simulate the best-case scenario (aberrations in

crystals degrade image quality and consequently interfere with signal extraction process).
Fig. 5-12(a) shows the unbalanced averaged probe-only traces for each polarization state,
where strongly periodic noise components are visible.

The periodic artifacts stem from the imaging-based detection that is more susceptible to

shot-to-shot beam pointing fluctuations and slow laser drift, consequently leading to jitter
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and drift of the spatial 2D image that negatively impacts the extraction process. This

structural noise occurs at the period of a large echelon step (i.e. 500 fs or 2 THz) and has

the largest magnitudes at the perimeters, with locations specified by the spikes. For a beam

with a Gaussian intensity profile, if the beam is only slightly larger than the transverse

dimensions of the echelons, the spatial variation will be most noticeable in moving from

the echelon step located at the last row to one at the top row (representing sequential time

delays). Expansion of the beam such that only the peak (varying by very small amounts in

intensity across space) passes through the echelons is only possible with enough probe power

since most of it would be unused. Compared to the large area photodiodes, the echelons has

a reduced active detection area per time point on the camera, which raises the sensitivity

of the trace extraction to laser fluctuations. Averaging over a more homogeneous beamlet

region a few pixels removed from all four edges minimizes this phenomenon, but faces two

competing factors: selecting one too large is more susceptible to shot-to-shot changes in

diffraction while one too small falls in the regime where electrical detector noise dominates.

However, the periodic noise itself does not necessarily stifle the single-shot method since

averaging effectively suppresses random noise from pointing fluctuations. High-frequency

chopping also reduces noise sources such as varying spatial inhomogeneity in the probe beam

and 1/f laser noise. Lastly, the structural noise is a prime candidate for implementation of

balancing since the noise in each (+) and (-) polarization trace is highly correlated, as seen

in Fig. 5-12(a), while any THz signal would appear with opposite sign. Through balancing,

the rms noise was effectively suppressed by more than a factor of two (compare traces in

Fig. 5-12(a) with the balanced trace, solid pink, in Fig. 5-12(b)). These noise suppression

techniques were equally effective in the delay-line method (see dashed green in Fig. 5-12(b)).

The remaining but most important difference between the two methods lies in the number

of traces averaged, N, which was a maximum of Neh,max = 3200 traces for the dual echelons,

a factor of 200 more traces than the delay-line method (or the number of time points in

a trace, n = 200). As illustrated in Fig. 5-12(b), the noise floor of the echelons method
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Figure 5-12: Probe noise traces where THz pump is blocked and total number of pulses acquired
is maintained between both echelons and delay-line methods. (a) The averaged unbalanced traces
from the echelons method, where periodic noise is strong. (b) The balanced traces from both methods; the
rms of the echelons trace is expectedly lower than that of the delay line as it averages 200 times more traces.
Also, periodic noise in the echelons method is greatly suppressed with balancing. (c) The rms of the echelons
system in response to averaging a number of traces given by Nech, which when plotted on a logarithmic scale
yields close to 1 /vNech scaling. The echelons method attains the same noise floor of the delay-line method
at Nech = 145 traces (290 laser shots); this is approximately 4.5% of the total shots required by the delay-line
method (6400 laser shots).

is lower than that of the delay-line method when collected with the same number of laser

shots, however this is not consistent with a relative reduction factor of p'2ls estimated

from averaging. The major contributions to this discrepancy are the different noise sources

discussed previously in the E o-imaging scheme required for the echelons.

The nature of averaging in the echelons system was further studied by determining the

rms noise as a function of N. In Fig. 5-12(c), the data are plotted on a logarithmic scale

and reveal roughly i/v9a scaling (dot-dash line). While thishs particularly true at short

time scales, where averaging many laser shots at a high frequency effectively suppresses

beam-pointing instability, there is a deviation after Nech ~ 220 for (+), (-), and balanced

traces. Although the effectiveness of balancing is clearly maximized due to the high level of

correlation between the (+) and (-) traces over time as the laser fluctuates, the deviation

results from uncompensated slow laser drift in the system occurring on the several hundreds

of milliseconds timescale. An iterative optimization algorithm for the extraction parameters
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on this timescale is likely to benefit noise performance since the initial parameters were

optimized based on the average static diffraction features (assumed only to randomly jitter).

In spite of this, from Fig. 5-12(c), the most significant metric discovered was that the dual

echelons method required 145 averaged traces (or 290 laser shots) to have rms noise equivalent

to the noise floor of the delay-line method (shown in Fig. 5-12(b)). This represents a mere

4.5% of the averaging time required by the delay-line method to recover an equivalent level

of S/N.

5.4.3.3 Optimization algorithm to suppress laser drift

For EO-imaging, noise suppression techniques are more sensitive to the parameters chosen

since a spatial dimension is involved. In the case of balancing, noise suppression may be

negligible or reduced due to non-identical imaging of balanced images or improper selection

of initial parameters for extraction, even if the rms noise is similar in magnitude (see Fig. 5-

13). In terms of data processing, it is imperative that the same area of the echelons is sampled

because of the unevenness or structure present in the grid, particularly the diffraction pattern

retained in every box that represents a single time point. Overall, the goal is to have both

the same structure and magnitude of the noise across all extracted time points to attain the

lowest noise following balancing.

The noise traces shown in Fig. 5-12(a) and (b) are derived from the same data set, except

that following initial manual grid selection, the (-) grid was optimized for a small subset of the

data (~,, 100 averaged traces) by simple translation of the horizontal and vertical positions to

match the (+) grid. The observed feedback was the similarity of the structural noise content

in the unbalanced traces, as seen in Fig. 5-12(a), but most clearly seen in the balanced trace

in Fig. 5-12(b) that has a lower noise magnitude and relatively flat trace (although some

periodicity continues to leak in). Similarly, one could also optimize the sizes of the integrated
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Figure 5-13: Noise traces extracted with no optimization of the initial grid that was inde-
pendently selected for (+) and (-) polarizations. (a) Averaged unbalanced traces, where due to
non-similarity in the grid chosen, the noise traces have different structure. (b) Averaged balanced noise
trace, which visibly still contains the unsuppressed structure.

boxes of either the (+) or (-) grid to match the other. However, as mentioned previously,

there is a divergence from the 1/v/N scaling in the rms noise in Fig. 5-12(c) due to laser

drift, which is uncompensated over the course of the measurement. This aspect will become

even more important as scan times approach the order of hours since it is already noticeable

on the seconds timescale.

In general, averaging suppresses random motion of images, but in this case, any net direc-

tional movement of the echelons from the initial selected grid points will strongly introduce

noise into the measurement. In order to compensate for both the jitter and drift of the

images, an optimization algorithm needs to be applied to redefine the grid coordinates every

few hundred milliseconds. The initial grid is iteratively optimized by choosing a range of x

(horizontal) and y (vertical) pixel offsets (typically varying from 2 pixels in either spatial

coordinate), which sets the predicted random spatial walk of the images. The rms noise from

a balanced noise trace is then recorded for every point in the 2D offset range specified and

the pair of (x, y) offsets that give the minimal rms noise determines the new position of the

grid. In Fig. 5-14(a) and (b), the noise traces of the unbalanced and balanced averaged traces

following this simple optimization are shown. The unbalanced traces show an improvement
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in noise by ~ 20% while balancing is even more effective (reduction of factor of 3.3 compared

to a reduction of 2.5 in Fig. 5-12). Lastly, the scaling of the noise follows as approximately

11/ "Nas expected.

W-(+:rms =1.94 x 10-%
- -rms=1.99 x 10-2

% (bal.): rms =5.93 x 10-3% j echelons -(+) -(-) - (bal.)

0.04-

0.02 -1.5 (

-2.5-0.02 --.- 2.0 0_
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Figure 5-14: Noise traces with optimization of relative grid location between (+) and (-) po-
larization and iterative optimization every 100 laser shots (N = 50) to compensate for laser
drift and jitter. (a) Averaged unbalanced noise traces, where the noise has been minimized. (b) Averaged
balanced noise trace. (c) demonstrates the effectiveness of the iterative optimization procedure with 1/VKI
scaling of rms noise of the balanced trace. The noise of the unbalanced traces trend together as expected.

5.5 Conclusions and Outlook

For two THz single-shot methods, we carefully evaluated the following central criteria that

would enable their use as a viable tool for multidimensional THz spectroscopy: signal re-

producibility and noise floor. Expectedly, there was a fundamental tradeoff between fast

acquisition and measurement noise, however the degree of effectiveness of noise suppression

techniques was essential to the success of the single-shot method in achieving both criteria.

THz spectral interferometry presented a multitude of technical difficulties in terms of ac-

curate alignment and interferometric phase stability, which led to unreliable signal strengths

and a higher noise floor than standard scanning EO sampling, albeit sufficient time reso-

lution. Common path optics, for example using phase masks and spatial light modulators,

would be highly desirable for its success, but would significantly limit the time window.
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In contrast, the dual echelons were able to accurately encode a THz signal into a spatial

2D image which is consequently mapped to the time domain, having well matched field

strengths, spatio-temporal waveform, and frequency content. The imaging-based detection,

compared to measuring laser intensity on low-noise photodiodes, is more sensitive to shot-

to-shot pointing fluctuations and laser drift. These resulted in periodic artifacts in the

time domain and a larger base-level noise from a single trace, but are lessened significantly

with high-frequency and balanced detection along with extensive averaging. EO detection

using the echelons substantially sped up acquisition time, without any concession to E-field

accuracy, by attaining the same noise floor as the delay-line method in 1/ 2 0th the number of

laser shots required for a 10 ps temporal window of 50 fs increments at a 1 kHz acquisition

rate. The amount of time saved is even greater for experiments that require additional time

points for larger time windows (like temporally long resonant features) since acquisition time

increases for the delay-line method, but not the single-shot method.

With respect to the relative ease of implementation of this fast-acquisition method that

gives quantitative traces with a low noise floor, the dual echelons method is a convincing

first alternative when transitioning to higher-dimension THz experiments. Specifically, there

are additional advantages to recording a 2D trace quickly since pump-induced fluctuations

(typically the dominant source of noise in strong pumping regimes) are largely minimized.

Additionally, the method easily lends itself to measurements of small, nonlinear signals, like

vibrational couplings, where higher sensitivity is needed, or of small changes in large THz

signals, where both high sensitivity and high dynamic range are needed. Future experiments

aim to use a lower-noise detector with larger bit depth, such as a scientific CMOS camera,

to lower the minimum detectable signal, and a data transfer speed that is not rate-limiting.

Furthermore, transitioning to a reflective large echelon would yield larger time windows for

finer spectral resolution and allow for all steps to lie in the same image plane. In light of

these recent measurements, we find that expediting THz detection using dual echelons is a

powerful technique that may be implemented in a straightforward manner.
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Chapter 6

Terahertz Photoconductivity of

Semiconductors

In this chapter, I will describe our recent measurement of the minority carrier lifetime and

photoconductivity of a thin-film semiconductor, tin (II) sulfide (SnS), at THz frequencies by

using an optical pump-THz probe experimental setup. Picosecond carrier dynamics form an

integral process in photovoltaic devices, which rely on efficient charge separation and trans-

port. Our collaborators are interested in using THz-TDS to characterize the effects of defect

chemistry that is closely tied to carrier lifetimes in SnS photovoltaics [148]. SnS has been

proposed as a non-toxic, earth-abundant material, and cheap alternative for photovoltaic

applications, specifically towards its application in solar cells [8]. This material was selected

as a model system to evaluate the practical implementation of single-shot THz detection

in terms of improvement in acquisition speed, S/N, and the ease-,of hardware and software

integration. Most importantly, although we do not expect any frequency-dependence of the

carrier lifetimes, this initial measurement serves as a prototype for future 2D Fourier trans-

form THz spectroscopy. In that case, we would replace the optical pump with a THz pump,

and probe a system with responses that may have very strong frequency-dependence in the
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THz range, and so there is much merit in developing and demonstrating the ability of the

new detection technique.

6.1 THz Transmission Experimental Setup

The THz transmission experimental setup is shown in Fig. 6-1, which consists of three

arms: a 400 nm optical pump, a broadband THz probe, and an EO-sampling probe (i.e.

the echelon beamlets). The generation and detection were carried out in 2 mm and 1 mm

thick ZnTe crystals, respectively, yielding a bandwidth of approximately 0.2-2 THz. The

detector in this case was a 16-bit scientific CMOS (sCMOS) camera (Andor Zyla) that

operated at a maximum frame rate of 50 Hz. We chopped the THz probe at 25 Hz such

that sequential images were detected with THz radiation absent and present; the 400 nm

optical pump irradiated the sample at a 1 kHz repetition rate. The sample was a 1 pm thick

film of SnS deposited on a 0.5 mm thick BK7 glass substrate (unfortunately the substrate

absorbs a significant amount of THz radiation across THz probe bandwidth) fabricated by

the Buonassisi group in the Department of Mechanical Engineering at MIT. The fluence of

the 400 nm (~v 3 eV) optical pump at the sample was,~ 0.1 mJ/cm 2 ; as a point of reference,

SnS has an indirect band gap at 1.07 eV [148]. Additionally, the sample was measured to

be 15-20% reflective at 400 nm. The setup was purged with dry air for several hours prior

to the measurement.

The experimental setup was used to collect a THz time trace for every time delay between

the optical pump and THz probe, T, for both the reference (substrate only) and sample (SnS

on substrate). An example of a 2D time trace for the sample is shown in Fig. 6-2, where a

vertical line-out yields a THz field temporal profile and a horizontal line-out essentially yields

a 'peak scan' measurement that is representative of the carrier relaxation dynamics following

optical excitation. In this particular measurement, it took around 2 hours to construct one

2D trace made up of 150 pump-probe time delays for a total time window of AT = 40 ps and
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Figure 6-1: Optical pump-THz probe experimental setup. The input 800 nm beam is initially split by
the first beamsplitter (BS1) into the pump and probe arms. The optical pump is directed onto a mechanical
stage that gives the pump-probe time delay, T, and then through a SHG generation crystal to generate
400 nm light. The probe arm is split again by a second beamsplitter (BS1) into the THz generation and
EO-sampling arms. The THz radiation was generated and detected in ZnTe. In this case, the EO-sampling
arm is directed through two crossed echelons to give the time delay, t, for the THz time traces. Both the
THz probe and optical pump are focused onto the same spot at the sample/reference position located after
the first two off-axis parabolas. The EO-sampling beam (echelon beamlets) were consequently detected with
a quarter wave plate (QWP) and Wollaston prism on a sCMOS camera.

averaged over 150 THz field time traces of 200 time delays for a time window of At = 10 ps

for both the sample and reference; four 2D traces were averaged to yield the data in Fig. 6-

2(a). It is important to note that we are measuring a 10% change in a 1% peak signal

strength in this experiment; depending on the required S/N, acquisition times may be much

shorter. The differential 2D time trace is shown in Fig. 6-2(a), where a pre-time-zero THz

trace (T = -5 ps) has been subtracted from each THz trace at all pump-probe time delays.

We calibrated the system to be ~ 8x faster in absolute time including data collection

and processing than conventional EO-sampling. It is possible that the factor of time im-
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Figure 6-2: Optical pump-THz probe 2D time traces with echelons. (a) A 2D time trace that plots
the THz time trace for each pump-probe time delay, T. This particular example is for the sample trace (SnS
on substrate). A vertical line-out (left) at a selected pump-probe time delay, T = -2 ps. clearly shows an
example of a THz field temporal profile; a reference trace (substrate only) is similar. A horizontal line-out
(bottom) at a selected echelon time delay, t = 3 ps, shows the equivalent of a THz peak scan typically used
to determine the carrier lifetime. (b) The relaxation dynamics are more evident in this 2D differential plot,
where the a pre-time-zero THz trace (i.e. the first column of (a)) is subtracted from each THz trace at all
pump-probe time delays.

provement may be increased by modifying the way the data are streamlined off the camera

(complete bypass of the onboard camera RAM and directly to computer RAM instead) and

the order of data processing. This acquisition time is longer than what was predicted in the

previous chapter since here we account for data transfer time and the fact that the camera
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acquires data at a lower rate (higher 1/f noise). However, because many fewer images are

collected, overall the sCMOS is much faster and has better S/N than our previous 1 kHz

CMOS camera. We are currently troubleshooting the data transfer process since ideally, the

data transfer in this particular sCMOS camera should not be limiting our acquisition time.

This camera interfaces with the computer via Dual Camera Link Interface (10-tap) with a

bandwidth limitation of 850 MB/sec, however, currently we are only operating at a data

transfer rate of 230 MB/sec. We believe that as data transfer rates become even faster, it

will be possible to acquire at a rate of 1 kHz without the current detrimental impact on

acquisition time and attain the predicted reduction factor of 20x determined in Chapter 5.

Additionally, acquisition at 1 kHz will allow for the straightforward implementation of dif-

ferential chopping, which is technically difficult to implement and less effective at the 50 Hz

acquisition rate here.

6.2 THz Transmission

Time-domain THz detection has many benefits, most of which directly follow from the abil-

ity to coherently measure both the amplitude and phase of the THz E-field for the sample

and reference, denoted as E,(t) and Er(t). The main advantage of particular interest for

the characterization of material properties is the fact that complex optical properties (e.g.,

index of refraction, conductivity) can be extracted without using Kramers-Kronig relations,

which are only effective if a very wide frequency range is covered. In addition, the measure-

ments provide a non-contact electrical probe, which is very beneficial for thin or small-area

samples that present technical difficulties in physical attachment of electrical contacts for

photoconductive measurements as in a conventional four-point probe measurement. Finally,

the measurement offers far higher bandwidth than can be achieved through conventional

electrical measurement methods.

Prior to calculating the complex properties of the system, we need to consider the
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Figure 6-3: T]ransmission spectra for sample and reference. The transmission spectra are plotted for

a pump-probe time delay of 5 ps, after the optical pump has irradiated the (sample+substrate) /substrate.
Both spectra have been normalized to the substrate. The transmission spectrum of the sample shows that,
following the generation of free carriers, free carrier absorption occurs across much of the THz bandwidth
within the conduction band.

frequency-dependent transmission through the sample. The field transmission, TE(W), is

calculated by firstly Fourier-transforming both E,,(t) and Er(t) and dividing their respective

amplitudes:

TE(W) Es (6-1)
JEr(w)1|

where Ej (w) = c_ Ej (t) e-dt. The transmission spectra for the sample and reference are

0

plotted in Fig. 6-3 at a pump-probe time delay of 5 ps (i.e. THz probe arrives 5 ps after the

400 nm pump). It is already clear that the presence a thss optical pump, which generates

free carriers, leads to increased free carrier THz absorption across a wide relatively large

bandwidth (below the peak at 0.4 THz, the inversion point in the THz spectrum yielded

unphysical data that is indicative of a THz generation problem). The power transmission,
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Tp(w), follows by similarly using the intensity of the field:

Tp(w) = TE(w) 2 = 2Er(W)12  (6.2)

Consequently, the optical density (OD) of the sample is:

OD(w) = -logio (T (w)). (6.3)

For the remainder of the section, the OD will be the measured quantity that we discuss.

6.3 Frequency-resolved Optical Density and Lifetimes

The OD as a function of pump-probe time delay and THz probe frequency is shown in

Fig. 6-4. The frequency-dependence of the sample's OD is immediately apparent from the

2D plot, and is corroborated by a vertical line-out at T = 5 ps on the left. A horizontal

line-out at 0.8 THz shows the carrier relaxation dynamics. At T = 0 ps the optical pump (3

eV) hits the sample and excites carriers from the valence band to way above the band gap

(1.07 eV), high in the conduction band. Subsequently, the carriers relax to the bottom of the

conduction band, during which time they can undergo free carrier THz absorption within

the conduction band. This initial free carrier relaxation rate is observed as an exponential

decay in the OD and has a characteristic time constant referred to as the carrier lifetime, r,

of the sample. At longer T, the system undergoes carrier recombination to the ground state

in the valence band.

It is easier to compare the lifetimes across the THz bandwidth by normalizing to their

peak ODs and subtracting off a pre-time-zero OD to yield an approximately zero baseline for

each frequency. The normalized OD spectra are shown in Fig. 6-5(a). We-fit the normalized
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Figure 6-4: Optical density spectra. The measured frequency-dependent optical density for the thin-film
sample of SnS is plotted as a function of the pump-probe time delay. The 2D plot shows frequency-dependent
THz absorption following free carrier generation by the optical pump, illustrated by the vertical line-out at
T = 5 ps (left). The system then slowly relaxes back to its unperturbed state on the picosecond timescale,
which is clearly illustrated by the horizontal line-out at 0.8 THz (bottom).

exponential decays to the function:

F(t) = exp(-t/r) + C, (6.4)

where T is the 1/e decay time and C is a constant offset from the pre-time-zero baseline

that represents the carrier population at long times following relaxation to the conduction

band. By definition, the carrier lifetime is the average time over which the minority carriers

(either the electrons or holes, depending on whether the semiconductor is n- or p-type) take

to recombine. We fit the exponential decays after T = 2.5 ps to avoid fitting around the

peak. An example of one of the carrier lifetime fits is shown at 0.8 THz in Fig. 6-5(b).

We fit the exponential decays of the OD in the sample shown in Fig. 6-5(a) for a range of
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Figure 6-5: Normalized OD spectra. (a) The OD has been normalized to the peak for each frequency.
The contour plot clearly illustrates the initial relaxation of the carriers, following optical excitation, to the
bottom of the conduction band. On the nanosecond timescale, the carriers recombine to the ground state
in the valence band and recover the baseline value (prior to optical excitation). (b) A horizontal line-out at
0.8 THz shows the exponential decay of the carriers. The exponential decay is fitted after T = 2.5 ps (red
line) to yield the carrier lifetime, r = 9.3 ps.

frequencies (0.4-1.5 THz) that had good S/N, mostly dependent on the bandwidth of the THz

probe, to yield accurate fit parameters. The extracted lifetimes, T, for each THz frequency

are plotted in Fig. 6-6(a). The data show relatively frequency-independent behavior, which

is evident from the contour plot of the OD in Fig. 6-5(a). The average lifetime across the

frequencies is Tavg = 9.6 0.8 ps, indicated by the dashed line in Fig. 6-6(a). We further

confirmed the accuracy of this value by conducting a conventional peak scan using the EO

sampling method, only measuring the peak value of the THz E-field in the time-domain

as a function of pump-probe time delay, T. The peak scan in Fig. 6-6(b) also depicts the

photoexcitation of carriers to the conduction band that results in THz free carrier absorption,
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indicated by a rapid increase in the OD across the THz probe bandwidth. Subsequently, the

OD decays to a value higher than that at pre-time-zero, before the optical pump arrives,

as the carriers relax to the bottom of the conduction band. Only on the nanosecond time

scale do all the holes and electrons undergo recombination at the valence band, such that the

peak scan should recover to the baseline or ground state value. The peak scan measurement

essentially recovers the same value for the lifetime, r = 10.2 ps.

12 1.2
(a) (b))T =9.6ps -=10.2ps

11 a=0.8ps 940.8

W, 10
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Figure 6-6: Carrier lifetimes in SnS thin films. (a) The exponential decays of the ODs in Fig. 6-5(a)
were fitted to yield the lifetimes as a function of THz frequency over the range of 0.4-1.5 THz. Overall, no
obvious frequency-dependence was observed in the lifetimes and so an average lifetime was calculated to be
TL,avg = 9.6 0.8 ps. (b) A conventional peak scan of the THz E-field as a function of pump-probe time
delay yields a comparable figure for the lifetime, r = 10.2 ps.

6.4 Complex Index of Refraction and Conductivity

As previously stated, the time-domain measurement of the THz E-field gives its amplitude

and phase, both of which are used to determine the complex index of refraction. In the

previous calculation of the transmission spectra, we only took advantage of the amplitude,

but the phase becomes important for many measurements including 2D THz spectroscopy
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measurements that we anticipate. The complex index of refraction has the general form:

h(w) = n(w) + iK(w), (6.5)

where n is the real index of refraction related to dispersive properties and K is the imaginary

index of refraction related to absorptive losses. The refractive index can be cast into an ana-

lytical form by taking the extreme limits of a thick and thin film. For a film of intermediate

thickness, the index of refraction can be found by modeling h and comparing the parameters

to experimental results.

6.4.1 Thick Film Limit

In the thick film limit, we assume that absorption in the sample is minimal such that K < n

and consequently, the Fresnel transmission coefficients that we use later can be approximated

by real numbers (i.e. the real part of the material indices). Firstly, if we consider a plane

wave propagating along z, the spatiotemporal E-field has the form: E(z, t) = Eoei(kz-wt),

where k = wh/c = w(n + iK)/c is the complex wave vector. The intensity of the field follows

as:

I = EE* = Io exp(-2wrz/c) (6.6)

The absorption coefficient, a, from Beer's law (I(z) = Ioe-1z) is related to the imaginary

part of the index, K, according to the equation above:

a(w) = 2w .(w) (6.7)
C

However, it is more useful to have both n and K in terms of the complex, frequency-

dependent transmission (or OD), which we can easily attain experimentally. If we focus on
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the spatial propagation on the plane wave in the time-domain, we can simplify the E-field to:

1W W
E(z, t) = Eo(t) exp -- z + i-nz (6.8)

The Fourier transform of the (6.8) gives the frequency-dependent form of the E-field. For

propagation through a sample of thickness d, we set z = d to yield:

E(z = d, w) = Eo(w) exp (- -i(w)d + i n(w)d) (6.9)

The experimentally measured transmission through a sample can be approximated by taking

account of the Fresnel losses at the interfaces. At normal incidence, moving from medium 1

(air) to medium 2 (sample), the transmission coefficient is:

T() - 2n2  (6.10)
ni + n2

where ni and n2 are the frequency-dependent real indices of medium 1 and 2 (assume that

, < n). Similarly, the E-field exits the sample by moving from medium 2 into medium 1,

after reflecting off the back surface of the sample, and so the overall transmission coefficient

is: T = T-T) = (4nin2 )/(nj + n2) 2 . The E-field as it is transmitted from air (n, = 1)

through the sample (n2 = n,) and back to air is then:

E.w =T- ~) 4n.(W) Eo (w p WK
E,(w) = T - E(w) = (12 )E(w) ( -- (w)d + i-n,(w)d) (6.11)

(+ n. (w))2 C C

The complex transmission of a sample can be calculated by using a blank reference (i.e.

air, A = n = 1) so that Er(w) = Eo(w) exp(iwd/c) according to (6.9):

~ Es 4n.(w) WT(w) =- exp --(w(w)d + i-(n,(w) - 1)d]. (6.12)
Er [1 + n,(w)]2 P - ( C
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6.4.1.1 Complex Index of Refraction

It is straightforward from here to assign the real index component, n,', to the phase of the

complex transmission (T(w) = A(w)ew)); rearranging the phase term in (6.12) gives:

ns(w) = 1 + <C(w). (6.13)
wd

Similarly, the imaginary index component of the sample, n,, can be given by the amplitude

of the complex transmission:

C [1 + ns(W)]
Ks) = dIn A(w) . (6.14)

wd I 4ns (w)_

It is evident that once we determine the real index from the phase of the experimentally-

determined complex transmission, we can calculate the imaginary index knowing the com-

plementary frequency-dependent amplitude of the complex transmission, A(w), without ever

employing the Kramers-Kronig relation. Subsequently, the absorption coefficient given in

(6.7) may be calculated from ,i(w), which represents the 1/e decay length.
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Figure 6-7: Complex index of refraction of BK7 glass substrate. (a) Real part of the refractive index.
(b) Imaginary part of refractive index.

As we will see in the next section, the determination of the conductivity of the thin film,

SnS, requires that we know the complex index of refraction of the substrate that the film is
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deposited on. The substrate is a bulk material that can be considered a thick film; therefore,

the 'sample' is the BK7 glass substrate and the 'reference' is air. The real and imaginary

index are shown in Fig. 6-7.

6.4.1.2 Complex Conductivity

Although not used here, but described for completeness, the complex conductivity of the

substrate can be found directly from the real and imaginary parts of the complex index of

refraction. Firstly, the complex dielectric function for a nonmagnetic material (M = 1) is:

g(w) = fi(w) 2 = [n(w) + in(W)]2  (6.15)

id(w)
= e0 + ,We (6.16)

W60

where e, is the high-frequency dielectric constant resulting from the bound electrons in the

valence band and & is the complex conductivity. The second term in the equation above is

the contribution from the free carriers. The complex dielectric function can be written as:

9(w) = e1 (w) + ie2 (w). (6.17)

The real and imaginary parts of the dielectric function directly follow from (6.15):

i = n(w)2 
- tC(W) 2  (6.18)

62 = 2n(W)i'(w). (6.19)

Similary, we can express the complex conductivity by additionally using (6.16) [149,150]:

&(w) = r(W) + iOi(w), (6.20)
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where the real and imaginary parts of the conductivity are respectively given by:

or(w) = 2n(w)K(w)wEO (6.21)

ai(w) = (E,, - n(w)2 + K(W) 2 ) weo. (6.22)

6.4.2 Thin Film Limit

For a thin conductive film, the complex transmission takes on a different analytical form

given by Glover and Tinkham [151]. In this regime, the sample is a thin film deposited on a

thick substrate. The complex E-field transmission of a thin film is the ratio of the complex

E-field transmitted through both the film and substrate and the substrate only, and can be

written according to the Tinkham formula: [152-154]:

Efln+sub(w) nsub(w) + 1
E5 bs(w) nsub(w) + 1 + Zo&(w)d (6.23)

where nsub is the real index of refraction of the substrate (here, of BK7 glass), Zo = 377 Q

is the vacuum impedance, and d is the thickness of the conducting layer. In our case, the

thickness of the conducting layer in the SnS film is approximately the penetration depth of

the 400 nm optical pump the material. The remaining depth of the film retains its bulk

properties since it is not directly excited by the optical pump. The absorption coefficient at

400 nm was measured to be a400nm = 72 pm- 1 and so the penetration depth is approximately

14 nm.

Using the complex index of the BR7 glass substrate determined in the previous section

and the experimental complex transmission spectra, we determined the real and imaginary

parts of the conductivity of the SnS film, depicted in a 2D plot in Fig. 6-8. The real

part of the conductivity, commonly referred to as just the conductivity, significantly affects

the absorptive (or imaginary) part of the dielectric function. This means that the higher
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Figure 6-8: THz complex conductivity of SnS film as a function of T. (a) Real part of the conduc-
tivity. (b) Imaginary part of the conductivity.

the conductivity, the more quickly the material will absorb the E-field and become more

opaque. The real part of the conductivity of SnS at THz frequencies is shown in Fig. 6-8(a).

At the onset of the optical pump at T = 0, the interband transitions cause the conductivity

to quickly rise from zero due to the generation of free carriers, and then the conductivity

decreases with T to an equilibrium state that is frequency-independent and follows Drude-

like behavior. The generation of a large amount of carriers forces the system into a non-

equilibrium state, where the system deviates from the classical Drude model; similar effects

have been seen in GaAs [155]. This explains the frequency-dependence of the conductivity

at early pump-probe delay times since the Drude model predicts a flat conductivity across

the frequencies. Alternatively, the imaginary part of the conductivity, which affects the

real part of the dielectric constant, is called the susceptance and is a measure of how much

the system is susceptible to conducting a changing current. The imaginary part of the

conductivity is shown in Fig. 6-8(b) increases slightly after the optical pump arrives but

shows no dynamical change as a function of T. The fact that both the real and imaginary

parts of the complex conductivity are positive is characteristic of a non-polarizable material

(a polarizable material has positive ar and a negative ai) [150].
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A very important application of measuring the conductivity of thin films via time-domain

THz spectroscopy is the determination of the dc electrical conductivity and carrier mobilities

by extrapolation from the experimental data in a non-contact method. This relies on the

fact that the material does not have any low-lying THz resonances that can obscure the

measurement. In that case, the Drude model and its variants can be used for the extrapo-

lation. Furthermore, the ability to directly measure the THz conductivity of a material will

become more important in the future development of devices (e.g., in THz transistors that

use materials like mercury telluride thin films [2]).
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