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Abstract

This thesis investigates the utility of using retailer point of sales (POS) data in the production
planning process of a consumer-packaged goods (CPG) manufacturing company. The quantitative
measurements of utility include the improvement of production forecasting, reduction of inventory
costs, and reduction of equipment changeover costs. Qualitatively, we evaluate the effectiveness
of using POS to drive a more collaborative relationship between the retailer and the manufacturer.
The POS data include items sold, store inventory, and warehouse inventory of a retail partner for
specific stock keeping units (SKUs) produced by the manufacturer. We develop production-
planning models by combining POS data with customer orders, current production plans, and
existing inventory positions to optimize manufacturing and inventory costs. The results illustrate
that if the aggregate volume of customer orders approximately equaled to that of the POS, then the
integration of POS data into manufacturing planning offers opportunities to reduce production and
inventory costs. The analysis also points to situations where POS data and customer orders vary
significantly; in these situations the proposed production-planning model does not apply, but the
POS data provide useful evidence for aligning plans between the manufacturer and the retailer.

Thesis Supervisor: Jarrod Goentzel
Title: Research Director, MIT Center for Transportation & Logistics
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1 Introduction

This thesis addresses a key opportunity in today's supply chain of CPG companies: how to

effectively use large volume of demand data to improve overall supply chain performance. In

particular this study focuses on the use of Point of Sales (POS) data to adjust production-planning

schedule of a CPG manufacturing company, which we are going to label from now on as our

sponsor company. We started this project by first interviewing the key stakeholders in our sponsor

company's key divisions such as manufacturing, transportation, inventory management, IT,

demand planning, finance and sales. Once we understood their needs and expectations we collected

POS data on specific SKUs from one of the manufacturer's largest retailer customer. The intent

was to find meaningful relationship between downstream demand data and retailer orders. Using

the two datasets we created a production plan and scheduling model that would emulate and

improve on the current planning process of our sponsor company; the objective, in fact, was to

identify and quantify the added value of integrating POS data in the supply planning process.

1.1 Sponsor Company Background: Current Planning Process

The sponsor company is a Fortune 500 CPG corporation primarily focused on food products. The

company markets many different brands in the United Stated and it manufactures on shore. The

main distribution channel is large retailers, and the sponsor company ships to the retailer's

warehouses via its regional distribution centers. The sponsor company is presently collecting POS

data but it has not integrated them yet into the Sales and Operation Planning (S&OP) process.

The unconstrained demand in the demand planning process is generated by a statistical forecast

based on historical Customer Orders. Then the forecast is reviewed by different stakeholders to

produce a final demand consensus. This in turn is fed into an optimization software to generate a
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weekly production schedule by SKU; the optimization algorithm takes into account all the

constraints on the supply side with the intent of meeting the consensus demand at minimum cost

and at an established item fill rate target. The software is in fact calculating the target Days of

Supply (DOS) for any given planning period. This target is resulting from the defined inventory

policy whereby the inventory level for any given planning period should not be less than a desired

amount. The review of the overall demand and supply planning process is performed monthly

while the production planning is reviewed weekly. For the majority of the products the production

planning schedule has a freeze period of two to three weeks. This implies that the master

production schedule could only be adjusted, if needed, beyond this planning period.

1.2 Problem Statement and Scope of Project

The fundamental question of our sponsor company is the following:

"How can manufacturers use retailer POS data to drive upstream decisions?"

The sponsor company has at its disposal a vast amount of retailer POS data as it collects demand

signals from retailers on a daily basis. The key question was how to extract value from those

demand signals by directly affecting the manufacturing production schedule and cycles. The scope

was intentionally narrowed by the sponsor company to a particular production platform to test the

usability and added value of POS data. The initial list of more than 40 SKUs was narrowed down

to a key list of four SKUs to be the most representative of the production platform selected for this

research. Despite the nature of POS data, the main focus of the sponsor company was not to

produce a new forecasting technique or to change the current demand planning process. On the

other hand, the emphasis was to produce a methodology and a framework to justify and prove the

validity of the use of POS data for adjusting the upstream manufacturing planning process. To
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illustrate the value of POS data, we focused on the impact of our model on two key relevant

manufacturing costs: change over costs and inventory holding costs. We therefore focused on how

POS data integration in the supply planning process could produce direct benefits for those costs

while maintaining the item fill rate target.

1.3 Hypothesis: Expecting and Managing the Bullwhip Effect

Our expectation is that by analyzing POS data the sponsor company can better understand the

reasons behind the behavior of the retailer orders and eventually have a better visibility on the very

downstream segment of the supply chain. Our main hypothesis is that as the Customer Orders are

driven by the inventory policy of the retailer, our sponsor company should face a bullwhip effect

when it comes to generating a forecast and generating a production planning schedule against the

Customer Orders. Consequently, we are expecting to see a POS data historical pattern exhibiting

a degree of volatility lower than the historical demand pattern of retailer orders to the manufacturer.

We therefore tested this hypothesis to see if we could encounter a bullwhip effect, quantify it and

take advantage of it by better planning for the production schedule. The existence of the bullwhip

in fact could lead to two different usages of POS data:

i. A better prediction of Customer Orders, thus planning for the bullwhip

ii. A better prediction of future POS therefore reducing the bullwhip

We focused primarily on the first point in line with the key requirements and expectations of our

sponsored company while also providing further insights on the advantages of choosing the second

approach.
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1.4 Project Goal and Approach in Building the Model

The main goal of the project was therefore to share with our sponsor company a model that could

be used to provide a framework and a methodology in leveraging POS data and capturing their

value in the production planning process. We first built a conversion rate by observing and

measuring the POS data relationship with the Customer Orders. This rate would convert a set of

observed POS data into a projected set of Customer Orders by injecting the noise of the bullwhip

effect into the downstream sales signals. This conversion allowed us to integrate the POS data in

a production planning model that was built to recreate the current scheduling environment of the

sponsor company. We designed an optimization problem, which in the literature is referred as a

multi-period production planning linear program. Through the model, we solved for the optimal

production scheduling of the SKUs by minimizing holding and change over costs while keeping a

target item fill rate. We then compared the results of the optimization with two other versions of

the model where we simulated two different environments: a modelling of the as is process of our

sponsor company and a modelling of an optimal integrated supply chain. The final results showed

the potential gains of integrating POS data in the production planning process and helped define a

framework for the sponsor company on how to spot opportunities in leveraging POS data

depending on the characteristic of the individual SKU.
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2 Literature Review

2.1 Introduction

The use of Point of Sale (POS) data to perfect forecasting has always generated a great amount of

hype. The latest reincarnation of this hype is being associated with "BIG DATA". In order for

POS data to be used to create real value, one must prove the benefits outweigh the costs and

convince internal business units and external trade partners to support the gathering and use of it.

The recent developments in technology have allowed POS data to be collected, transferred, stored

and analyzed to improve forecasts. Essential questions to ask are how the POS data be used, how

they should be analyzed, and how it is useful integrating them in the supply chain planning process.

The purpose of this thesis is to develop the scope of what POS data can be used for and also

develop a model based on the POS data to improve the processes described in the scope. We

analyzed the existing research based on the effectiveness of results and based on our academic

knowledge and professional experience.

2.2 Past: Lack of POS Data and Poor Collection Efforts

The ability for manufacturers to start collecting POS data is a recent innovation in the supply chain

planning process. As Kiely (Kiely, Winter 1998-1999) correctly points out, the lack of POS data

in the past forced companies to produce a forecast and demand planning based merely on shipment

data out of the factory on a monthly basis. This type of information available at the most upstream
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echelon of the supply chain is far from the truth in predicting the actual product consumption of

the end costumers.

According to Trepte (Trepte, Winter 2008-2009) forecast accuracy has historically remained flat

as many suppliers have not been focusing in what he refers as a "consumer-centric approach".

Despite gaining visibility of POS data from the retailers, many suppliers did not have the capacity

at their system level to absorb such volume of new data and therefore they were not able in the

past to leverage them. In addition they were not comfortable using them as they were getting just

a fraction of the total volume of sales. According to the author it could be a weakness to use POS

data just as a set of extra data points without fully integrating them into the planning process.

Andres (Andres, Winter 2008-2009) also highlights the difficulty in the past of collecting POS

data, which was primarily due to the lack of today's technology in effectively collecting such data,

as well as the high number of retailers that populated the market few decades ago.

2.2 Present: Methods of POS Collection and Different Contents

Although the notion of whether to use POS data to improve supply chain operations is generally

supported, the actual implementation of integrating POS data into the supply chain is still in its

infancy. Companies are still defining the benefits of POS while at the same time appropriating

the cost, time, and effort of collecting, analyzing, and using the data. Larry Lapide (Lapide L. ,

Spring 2011) explains that POS implementation requires a companywide IT system integration

and also the buy-in from each department to participate and use the data. Jeff Brown, Senior

Demand Planner of Brown Shoe makes an even more extreme claim that successful POS
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implementation requires the collaboration of not only internal business units but also that of the

entire supply chain from end customers to suppliers (Brown, Winter 2008-2009).

The advance of technology and the consolidation of retailers in few big players has significantly

reduced the cost of collecting POS data today, according to Andres (Andres, Winter 2008-2009).

Not only is POS data now shared more easily and effectively between the retailer and the

manufacturer, but the proliferation of third parties, such as Nielsen, have contributed to a vast

collection of data which is then sold across the different stakeholders of the supply chains. POS

data are usually collected at the SKU level where each product has a unique universal product code

(UPC). A typical query from a POS database would be able to generate information such as price,

inventory level in store, inventory level at distribution center and the number of units sold. In some

cases it is possible to identify with flags those items on promotion.

According to S. Aiyer (Gentry, January 2004) POS data do not necessarily have to be collected on

a real time basis as it is sufficient for a manufacturer to receive such data from retailers on a daily

or weekly basis depending on the way retailers collect and distribute their information.

Shapiro (Shapiro, Winter 2008-2009) provides a general overview of the different types of POS

data currently available. In some cases POS data come from proprietary software available at the

retailer level. This type of data that is usually used by the retailer to generate the forecast. POS

data can also be generated through the transmission of EDI documents. Shapiro points out the

difficulties in managing such data as the lack of normalization can further complicate how

manufacturers can collect and interpret the data for their purposes. There can also be issues in the

transmission of the data itself and the lack of standardization across the different retailers. Finally,

in some cases, POS data are transmitted via Excel spreadsheet. In this latter case the accuracy and

the usability of the data is more compromised than the ones generated through EDI transmission.
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Kiely accurately describes the different sets of data available in the supply chain and how the POS

data is indeed one of the most appropriate indicators of the final customer product consumption

(Kiely, Winter 1998-1999). Total demand for a product can in fact be captured by the different

material and document flows throughout the supply chain, starting from the shipment data out of

the factory, then moving into the order requests from the manufacturer's DC and retailer's DC,

then into the customer's warehouse movements from their DC to the final stores, and finally

reaching the last piece of information demand, the POS data, which represent the better indication

of the end consumer purchasing choice.

2.3 Future: Usage and Benefits for a Perfect Visibility in the Supply Chain

Brent Williams of Auburn University and Matthew Waller of the University of Arkansas set out

to examine quantitative differences in forecast accuracy between using POS and order history

(Williams & Waller, Creating Order ForecastL Point of Sale or Order History?, 2010).The study,

conducted on grocery stores, revealed results that were both expected and counter to conventional

thought. It concluded that POS data can generate forecasts that were more accurate more

frequently, although order history was producing a more accurate forecast, the magnitude of the

benefits was much higher. This result signifies that human input (order history) still generates a

tremendous value but the amount of skilled human resources cannot be compared to the ever-

available POS data. The resulting action is to use human input to generate forecasts that have a

major impact on the business.

The most useful conclusion of this study is that POS data and Order History should be used in

combination and used to complement each other. To do so, companies can generate more accurate
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forecasts more frequently and increase the magnitude of the benefits. Companies can also reduce

bullwhip by using the two datasets to offset each other.

A "perfect synchronization" is what Gruman (Gruman, 2005) defines as the ultimate result in

supply chain when POS data is incorporated into the demand planning process. The perfect

synchronization could allow a company to better harmonize its marketing, sales, manufacturing

and distribution efforts. According to the author, POS data is a powerful tool in accounting for

seasonality, promotional events and measuring any significant deviations from the foreseen regular

pattern.

Andres (Andres, Winter 2008-2009) shares a clear and simple idea about the reasons behind the

added value of POS data in the supply chain: POS data by their nature do provide the most

independent piece of demand information. POS data, in fact, are not affected by any inventory

decisions across the chain as they are driven only by the final consumer's willingness to buy. On

the other hand, any other piece of demand information across the supply chain would hide

replenishment and inventory policies that might mask the real sale patterns. According to the

author, using POS data to generate forecast models is the main driver for a better visibility in the

supply chain. As a complement to the design of a forecast model of multilinear regression, a store

replenishment model has to be developed to fully capture the added value of POS data. The author

is suggesting to calculate a safety stock level during a week period to be added to the sum of a

daily forecast which will then in turn generate the optimal order quantity. The impact will be an

optimization of the transportation planning, inventory management and an overall reduction of

stock outs.

According to S. Aiyer (Gentry, January 2004) the future of supply chain planning is to move from

a collaborative planning, forecasting and replenishment (CPFR) environment to a "consumer-
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driven replenishment (CDR)" approach whereby the new information available with POS data can

be leveraged to increase the level of visibility of the final consumer. While for items where the

demand is sporadic or slow moving the application of a CDR has its limitations, for commodity

products with seasonality features, POS data can be truly powerful to predict the demand pattern.

One of the benefits of the CDR approach as defined by Aiyer is the increase in inventory turnovers

and an increase of the level of forecast accuracy. POS data is therefore critical in enhancing the

collaboration between manufacturer and retailer.

In emphasizing the role of POS data to produce a more consumer-centric planning approach,

Trepte (Trepte, Winter 2008-2009) proposes three distinct solutions. The first focuses on using

POS data to produce a comparative dashboard with shipment data. For example POS data can be

used to quickly identify any significant deviation with the trend and growth in shipment data. This

approach can help spot any issues that would need rapid attention from the management. The

second solution provides a way to use POS data in calculating the inventory level of the retailer

and predicting the next orders. POS data is indeed used to generate a forecast which are combined

with the shipment forecast and produce a replenishment model to optimize the inventory level and

better predict the customer's orders. Finally POS data can be used to enhance the collaboration

between manufacturers and retailers by designing risk-sharing types of contracts (pay back

solution for example).

Gallucci and Mccarthy (Gallucci & McCarthy, Winter 2008-2009) praise the POS data as the most

valuable piece of information that would dramatically reduce the bullwhip effect. POS data change

less significantly over time compared to the order history. By having order forecasts as close as

possible to the POS data pattern, the overall demand planning can reduce the noise in the regression

model and improve its stability and accuracy. One of the most important benefits according to the
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author is the level of insights that POS data can especially provide in predicting customer behavior

during promotional or seasonal activities. The impact is therefore truly beneficial not only for the

entire supply chain but also for the marketing and sales department when planning their

commercial initiatives. The authors, in line with other scholars, describe POS data usage as

favorable for comparison and analytical purposes but also instrumental in transforming and

integrating the forecast methods. The authors see a great potential in modelling POS data forecasts

and integrating those in the overall demand planning process. A new consensus would be generated

as a validation process between POS-based forecasts and order history based forecasts. This

approach would be extremely successful as it would consider the two types of forecasts

independently thus allowing the manufacturer to craft different planning scenarios.

Similarly, Shapiro (Shapiro, Winter 2008-2009) stresses the importance of using POS data to

complement and refine the forecasting process of a manufacturer especially when it comes to

identifying seasonality indices. Like many other scholars he is also supporting the usage of POS

forecast to assess the inventory level of the retailers and thus predict their order patterns.

Like other authors, Kiely (Kiely, Winter 1998-1999) also emphasizes the virtues of POS data as

the most independent, granular and stable source of demand. According to the author, a consumer-

driven planning system has to take into account the POS data and blend them with their current

demand planning system.

2.4 Conclusion

There is no doubt that POS data represent a powerful tool in the hands of supply chain planners.

The collection of such data has been considerably improved over the last decades and its volume

has become a significant portion of the overall available information for a manufacturer to make
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intelligent decisions about its supply chain planning. It is now time to leverage this increased

visibility in the supply chain which provides more insights into the final customer's frequency and

willingness to buy a given product. Our thesis explores the different POS data available in our

sponsor company and provides a unique methodology on how integrating the data in the current

production planning process with the final objective of reducing costs while keeping a target

service level. The model we proposed takes inspiration from the lessons learned in the literature

to design a new integrated customer driven supply demand process.
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3 Methodology

This section explores how we interpreted and used the data to design and apply both a quantitative

and qualitative analysis. The core objective was to find meaningful relationships between POS

data and customer ordering behavior to optimally adjust production planning and scheduling.

3.1 Data Collection

Two types of data were collected: Retailer data and Manufacturing data. Retailer data is provided

by the retailer on a daily basis to our sponsor company under EDI format. This type of data

provides all relevant sale and inventory information for each store and SKU. Manufacturing data

is generated by our sponsor company and maintained on a daily or weekly basis depending on the

type of data. This dataset provides all information regarding inventory positioning, customer

orders and production scheduling for each SKU.

3.1.1 Retailer Data: Point of Sales (POS)

The Retailer data we decided to focus on came from a large customer of our sponsored company.

In agreement with our sponsor, we focused on four key SKUs, which we label SKUl, SKU2,

SKU3 and SKU4 and which are produced in one specific manufacturing platform. In agreement

with our sponsor company, we chose those SKUs as the most representative sample of all products

produced in the same platform. In fact, those items represent the largest share of retailer orders

and for this reason were selected as the most suitable for our analysis. We filtered the data to have

enough days to cover a significant period of sales. This resulted in collecting daily POS data points

from January 1' 2013 through June 29, 2013. The POS data included:
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* Store ID: A unique identifier for the retail store where POS originated.

* Store Location: The geographical location of the retail store

* Universal Product Code (UPC): A unique identifier for the SKU according to the

retailer product coding

* Day ofPOS: Date of POS transactions

* POS Units: The number of units sold for a given SKU in a given day

* On-hand Store Inventory: The daily inventory position of each SKU in each store

* On-hand Warehouse Inventory: The daily inventory position of each SKU in each

retailer warehouse

3.1.2 Manufacturer Data: Production Planning, Inventory and Customer Orders

We were able to collect a dataset that covered the same period as the retailer data, from January 1,

2013 until June 29, 2013. Manufacturing data included:

" Production Quantity: The quantity produced per SKU per week per plant and

measured in cases (equivalent to 12 units)

* Inventory Quantity: The total inventory on hand in our sponsor company's

Distribution Centers (DCs) per SKU and per month

* Customer Orders: The orders placed by the retailer to our sponsored company on a

weekly basis disaggregated by SKU
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3.2 Data Visualization: Patterns Identification and Distribution Fitting

We merged the two datasets in order to visualize all key parameters

* Customer Orders (manufacturer data)

" Production Planning (manufacturer data)

* POS Sales (retailer data)

* Store Inventory (retailer data)

" Warehouse Inventory (retailer data)

We visualized the variables to identify any potential correlations between POS sales and Customer

Orders, and between POS sale and inventory position of the retailer. The assumption behind our

observations was that the retailer had a significantly stable periodic inventory policy that could be

used to better predict the future Customer Orders when looking at the combination of the POS

sales and their inventory level. We tested several approaches to develop an explanatory model that

could better project the Customer Orders by determining the reorder point of the retailer and the

ratio between the POS sales and its target inventory level. For those SKUs where we could find a

stable relationship between POS sales and Customer Order we analyzed their corresponding

distribution functions to better understand and predict their behavior. We then executed a

normality test for both Customer Orders and POS sales datasets. Our hypothesis was that a normal

distribution with a similar trend level could be applicable for both types of demand data; the only

difference between the two distributions would therefore be the degree of volatility as we were

expecting to see a bullwhip effect. With this hypothesis confirmed, we could then find a way to

convert the POS sale into projected Customer Orders and finally solve for the adjusted production

planning and scheduling. The projection of Customer Order was a necessary step in the
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optimization problem as it allowed us to project the expected beginning and end of inventory for

every week, thus determining the expected stock at the end of the production freeze period.

3.3 Production Planning Model: Converting, Projecting and Optimizing

We designed a multi-period production planning linear program to optimize production scheduling

for a given set of weeks by minimizing the total relevant costs subject to capacity and inventory

target constraints. The total relevant costs to minimize were the following:

* Holding costs: the inventory costs per unit per week calculated against the average

inventory of the week (average between beginning and end of inventory)

* Changeover costs: the costs of converting the production line from running one product to

another for a given week. In our model we are simplifying the sequence of the multi-

product production scheduling, thus assuming a changeover cost anytime we decided to

produce a specific SKU (similar to setup costs).

The production constraints were the following:

" Capacity constraints: less than the maximum capacity of the single production line

" Demand constraints: the end of the inventory for each week must be greater than the target

days of supply (inventory target)

To simplify the model we assumed that all SKUs were being produced in the same plant so that

the linear programming had to assign each SKU production quantity to each week for a unique

factory location. To set up the model dynamically and to replicate what actually happened during

the same period covered by the datasets, we first prepared a total of 26 periods (26 weeks) from

the first week of January to June 29, 2013. For each week we set up the following objects:
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" Beginning of inventory: inventory at the end of previous week

" Production planning: the quantity produced by our sponsor company for a given week

* Customer Orders: the orders received from the retailer

* End of inventory: beginning of the inventory plus the production quantity minus the

Customer Order

Below is a table illustrating the logic of the production planning framework:

Table 1: Production Planning Framework

Weeks 2 . . 26

A D ... xx

B E YY

CsoeOresC F 1 ... ZZ

A+B-C=D D+E-F=G V ... XX+YY-ZZ

We then included a new row for the new production planning that would constitute the decision

variables for the linear programming. The new production planning would represent how much to

produce for a total of four consecutive weeks as solved by the optimization problem. In agreement

with our sponsor company, we established a freeze period of production planning for three

consecutive weeks. This implied that if we were in week 5, we could only adjust from week 8

onwards, as the production scheduling for weeks 5, 6 and 7 could not be modified. We then

projected the new adjusted planning over a four-week horizon to allow the optimization model to

run the linear programming for a minimum significant number of periods. This would imply that

if we were in week 5, we could only adjust production planning for weeks 8,9,10 and 11. Table 2

below shows an illustration of the model:
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Table 2: Production Planning Rolling Schedule

Present
week

5 6 78
347,95 298,70 268,03 241,68

3 5 3 1
0 0 0 0

Freeze Freeze Freeze 0

49,248 30,672
298,70 268,03

5 J 3

26,352
241,68

1

34,560
207,12

1

djusting weeks 8-11

9 10 11

207,121 336,34 329,97
0 7

167,235 21,718 0

0 46,607 0
38,016 28,080 30,240

336,340 329,97 299,73
7 7

The next step was to calculate a new set of expected Customer Orders from week 5 to week 11 (if

we keep using the example period above). The new set of expected Customer Orders would trigger

a new set of projected beginning and end of inventory which would in turn trigger a new set of

production quantities for weeks 8-11 (as solved by the model). To reproduce such a set of expected

Customer Orders, we converted the POS sales data into future retailer orders. In our example,

where the current week is week 5, we therefore looked at the actual POS sales data for weeks 1 to

4 to develop a conversion formula that would translate the demand signals from the store into

valuable information (expected Customer Orders) and anticipate the future behavior of the retailer.

The conversion rate would result from the normal distribution test we described above.

Once we calculated the new expected Customer Orders for weeks 5 to 11, we were able to generate

the new expected inventory at the end of week 7; thus we would be ready to run our new production

scheduling for weeks 8-11.
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3.3.1 Defining the Decision Variables

We set decision variables for quantities to be produced in four consecutive weeks and starting 3

weeks ahead of the present week. The linear programming solved simultaneously for all products

involved and assigned a given quantity for each SKU in each of the four consecutive weeks. Below

are the decision variables:

0

S

Xy: number of units of product i produced in weekj

YU: binary variable which is equal to 1 if product i is produced in weekj and equal to 0 if

product i is not produced in weekj

3.3.2 Defining the Objective Function

The objective is to minimize all relevant costs as per below notation:

n m

Sij * Yij
C i h i:=ve1 C

Changeover Costs

(1)

n M

+ Hi j * Bi j
i g j=1

Holding Costs

where Sij is the changeover costs for a product i in weekj and Hij is the holding cost for a product

i in weekj; Bij represents the average inventory (average between beginning and end of inventory)

for product i in weekj. The notation for Bji is described in below formula:

(2)

By = By-1 + X - Dy
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Di is the expected demand of the retailer for product i in weekj as derived by our projection

from observing the POS sale of weeks j-1,j-2,j-3,j-4.

3.3.3 Defining the Constraints

The capacity constraint is given by below definition

(3)

n

Subject to XiL C for j =1,2, ... m and i =1,2, ... n;
i=1

Where Ci is the maximum capacity of production quantity for all products in weekj.

The target inventory constraint is given by below definition

(4)

Subject to Bij > Tij for j = 1,2, ... m and i = 1,2, ... n;

where the target days of supply (T) of inventory is based on the following calculation:

(5)

T = (FL+R+ RMSE * k * VL + R)/(FR) * 7

Where:

" FL+R is the forecasted demand over period L (leadtime) and period R (review period).

" RMSE is the squared root of the average of the forecast errors. In our model we used a

value proportional to the standard deviation of the Customer Orders for each SKU

* k is the safety factor derived from a given service level. This is in turn derived from an

Item Fill Rate of 98.5 %, which was kept constant across the model.
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The big M method helps define the constraint for the changeover costs such that only when the

solution is proposing to produce product i in weekj we then charged those costs to product i in

weekj. Below the corresponding notation:

(6)

Xii :; M * Yj forj = 1,2,...m and i = 1,2,...n;

Finally we completed the linear programming by adding the non-negativity and binary constraint

of the decision variables such that:

(7)

Xi1 ; 0;

Yij E (0,11

3.4 Testing the Results: Our model vs Two Additional Scenarios

In order to test the results of our model, we designed two additional scenarios. One scenario

simulated the current planning and scheduling process of our sponsor company: we can label this

model as our baseline. This first test would emulate the same logic as our production planning

model, with the exception that POS data would not be considered at all in the scheduling process.

The objective of this test, called Orders-to-Orders test, is to isolate the effect of the POS sales into

the optimization problem. By comparing our initial results with the Orders-to-Orders results, we

could see if our model would produce any value and therefore validating or not the benefits of

POS sales when planning for the bullwhip. The second test, labelled as POS-to-POS test, tested

the value of POS sales without predicting future Customer Orders. This implied that the

manufacturer could observe the POS sales and adjust the production planning without having to
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consider any retail Customer Orders. The POS-to-POS scenario would in fact remove the planning

layer of the retailer, thus removing the bullwhip produced by the retailer inventory policy. To

reproduce such an environment, we used the same original model but we ignored the existence of

the Customer Orders, and we planned for the demand of the final consumers. We then compared

the results of this test with the results of our model and the Orders-to-Orders test to measure the

added value of POS sales when the manufacturer could target a global optimal (that is considering

the supply chain as one system). All three scenarios were run on a rolling basis. This implied a

dynamic optimization model whereby the results of each week would be carried over to the

following week's optimization run.

3.4.1 Test 1: Orders-to-Orders Scenario

In the Orders-to-Orders scenario, we used the same logic and rules described above for the design

of the linear programming model. In order to emulate the current planning scenario of our sponsor

company, we simply did not apply the POS conversion rate to generate projected Customer Orders.

We only applied the moving average of the previous four weeks for any given current period we

were going to analyze. We chose not to use the actual forecast values of our sponsor company as

we deliberately simplified the forecasting approach to use the same simple method across all

models. This would better isolate the effect of the POS integration in the model when compared

with our baseline. The projected Customer Order was therefore derived from equation (8) below:

(8)

Ct = Average (Ct 4;Ct-3;Ct-2.;Ct_;)

where Ct would be the projected Customer Order for the period t when the optimization was run.

This projected value would be then applied for seven consecutive weeks to allow production
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planning of four weeks beyond the freeze period of three weeks. All other parameters of the model

were kept the same including the target DOS inventory level.

3.4.2 Test 2: POS-to-POS Scenario

Two changes in the logic of our original model were required to design the POS-to-POS scenario.

The first was to modify the conversion rate used to project the future orders. As in this scenario,

we removed the retailer orders; the only projection we made were the purchases made by the final

consumers in the retail stores. Therefore the formula for the projected orders is as follows:

(9)

POSt = Average (POSt 4;POSt-3;POSt-2POSt_.-)

where POSt are the projected POS sales for the current period t that would be used to project final

consumer demand over the following seven weeks. We therefore kept the observation of the POS

sales for the previous four weeks but we did not use any conversion rate to inject the noise of the

Customer Orders. This is why we just used the moving average of the four observations. The

second change we had to implement from the original model was to modify the target DOS. As

we described through formula (5) in chapter 3, the DOS target inventory is a function, among other

things, of the RMSE. The RMSE in turn is a function of the standard deviation of the historical

data used to generate the statistical forecast. Because we remove the Customer Orders of the

retailer in this test we should expect an historical demand of POS sales that is less volatile than the

historical demand of Customer Orders. This would require a revision of the DOS before running

our optimization model. We first quantified the relationship between the RMSE and the bullwhip

effect and then re-calculated the target DOS for each SKU based on the new expected RMSE while

keeping the item fill rate at 98.5%.
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4 Data Analysis and Results: Illustration and Discussion

In this section we present and discuss the analysis and results of our methodology, described in

the previous chapter. We start by stating and proving our initial hypothesis of expecting a bullwhip

effect between Customer Orders and POS sales. Then we plot the manufacturer and retailer

datasets together for each of the four SKUs to illustrate any potential patterns and relationships

between the two datasets that could confirm the bullwhip. This initial analysis will be therefore

presented at SKU level. Once we identify the SKUs with significant relationships between POS

sale and Customer Orders we then present the results of the multi-period production planning

model using this relationship to adjust the master production scheduling. The results will show the

differences in costs when comparing the model with the two test environments.

4.1 Simulating the Bullwhip Effect in a Periodic Review Inventory Policy

Our main hypothesis is that by plotting Customer Orders and POS sales data on the same chart we

would be able to easily spot the bullwhip effect even before we could actually measure it and prove

its existence statistical tests. In the long term, the trend of POS sales and Customer Orders should

be aligned. This long-run equilibrium between the two datasets is what Williams, Waller, Ahire,

and Ferrier label as "the inventory balance effect" (Williams, Waller, Ahire, & Ferrier, 2014). The

main difference between the two datasets, however, is the standard deviation, with the Customer

Orders having a larger level of volatility than the POS sales. Chen, Drezner, Ryan and Simchi Levi

(Chen, Drezner, Ryan, & Simchi-Levi, March 2000) quantify the bullwhip effect as the variance

of the Customer Orders ("sales in") divided by the variance of the POS sales ("sales through").

The conclusion driven by the authors is that one of the drivers of the bullwhip effect is the demand
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forecast itself. In fact, the number of periods observed to produce the forecast is inversely

correlated with the increase in the bullwhip: the higher the number of periods, the closer the

standard deviation of POS sales with the standard deviation of Customer Orders. Another

important factor is the leadtime, the increase of which affects the calculation of the safety stock,

thus amplifying the bullwhip. Before observing the real data from the retailer and from our sponsor

company, we re-created a similar environment whereby a retailer would use a periodic review

inventory policy to replenish its inventory. We assumed that the retailer was reviewing its

inventory level every week and was facing a leadtime of one week. We assumed a service level of

98% and that the retailer was using a moving average forecasting technique with an RMSE being

a tenth of the observed values. Using those assumptions we calculated the order-up-to point using

below equation:

(10)

X=FL+R+RMSE*k*VL+R

where:

* FL+R is the forecasted demand over period L (leadtime) and period R (review period). In

our scenario therefore we are forecasting demand over a total of two weeks (L=l, R=1);

* RMSE is the forecast error

* k is the protecting factor corresponding to the normal Z value with probability of 98%

(our service level target)

" VL +R corresponds to the square root of the sum of leadtime and review period. In our

case it is equal to the square root of 2.

We ran a Monte Carlo simulation of 10,000 iterations for a total of 52 weeks. The simulation was

randomizing the demand for the products at retailer level assuming a normal distribution with a
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level of volatility similar to the POS data we observed. We wanted to calculate the expected value

of two parameters: the ratio of variance of Customer Orders over the variance of POS sales and

the ratio of the average of Customer Orders over the average of POS sales. We observed the

following bullwhip effect:

* Variance of Customer Orders/Variance of POS sales = 1.78 units on average

* Standard deviation of Customer Order/Standard Deviation of POS sales = 1.33 units on

average

* Mean of Customer Orders/mean of POS sales = 1.00 unit on average

Figure 1 below shows that the 90% of the time the bullwhip was between 1.4 and 2.2 when

measured in terms of variance of sales in over variance of sales through. The figure is plotting the

normal distribution function of the bullwhip effect as resulted from the simulation runs.
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Figure 1: Normal Distribution Function of Bullwhip Effect
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Figure 2 below plots the 52 weeks period where we can observe the differences in amplifications

of the Customer Orders versus the POS sales.

0

Simulation of Bullwhip Effect
20,000.00
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14,000.00
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-POS Sales

10,000.00

8,000.00

Figure 2: Customer Orders vs POS Sales in a Simulated Bullwhip Effect

The bullwhip effect measured above would be even larger if we increased the following

parameters:

" leadtime

* service level

* forecast error (inversely related to the number of observed periods used in the moving

average)
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The results confirm the existence of a bullwhip effect, based on our assumption on the existence

of a periodic review policy, as well as the alignment of mean values between the two datasets.

Now we are ready to explore the real data from the retailer and our sponsor company to see if we

can observe the above behavior and use it to better predict the Customer Orders and eventually

adjust the production planning. We start by analyzing SKU 1.

4.2 Analyzing SKU1

Figure 3 below illustrates the 26 weeks pattern of SKUl by plotting POS sale, Customer Orders

and average customer inventory.

SKU1
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-- Customer -- POS Sale -Customer Inventory Weeks
Order

Figure 3: SKU1 Retailer and Manufacturer Data

At a first glance we can see that during the 26 week period the Customer Orders are not aligned

with the POS sales as they are not following the same expected value in the long run. In other

words, the mean values for the two datasets differ from each other. In fact, the average value for

Customer Orders stands at 30,440 units while the mean of POS sales is 95,325 units. We also note
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that the customer inventory average is 351,464 units. If we calculate the ratio of customer

inventory over the POS sales, we can observe that the retailer is keeping a stock 3.7 times larger

than the weekly POS sales units with a coefficient of variation of 18%. This low level of volatility

suggests that the retailer is keeping a relatively stable order-up-to point in its periodic review

policy. However, we are not in a position to accept our hypothesis of the expected relationship

between POS sales and Customer Orders, primarily because both datasets are not sharing the same

expected level of mean demand. Therefore we cannot use SKU 1 data to better predict the

Customer Orders and build on the new production planning model. There could be many reasons

why we do not observe the expected pattern; any of those potential explanations could only be

detected by engaging in a direct dialogue with the customer to understand its inventory policy. The

fact that the retailer has been ordering on average a third of what was actually sold in the stores

indicates that the retailer may have had a significantly high inventory level at the beginning of the

observed period. This high level of stock may have been reviewed downward by the retailer to

effectively mirror the actual sales in stores. This is why eventually the retailer ordered less then

what was actually sold in the stores to reset its inventory level to a more accurate and lower target.

It is difficult however to be sure of what actually happened by just looking at the data and laying

out the key statistics. This sort of behavior illustrated by SKUl should trigger our sponsor

company to engage with the retailer in a more collaborative approach when it comes to understand

the reasons behind the Customer Orders pattern. The alert for the sponsor company should be a

misalignment between the trend of the POS data and the Customer Orders.
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4.3 Analyzing SKU2

Figure 4 below illustrates the 26 weeks pattern of SKU2 by plotting POS sale, Customer Orders

and average customer inventory.
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Figure 4: SKU2 Retailer and Manufacturer Data

The inventory level for the retailer is distributed with an average of 111,351 units. When we

calculate the ratio of the retailer vis-a-vis the POS sales, we can observe that the inventory level

stands at 2.6 weeks of equivalent POS sales with a coefficient of variation of 12%. We can

therefore conclude that as with SKU 1 the inventory policy of the retailer for SKU 2 presents a

relatively stable order-up-to point.

Contrary to what we observed with SKU 1, however, SKU 2 does present the behavior we expected

to see when plotting Customer Orders with POS sales. In fact, we can observe how both Customer
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Orders and POS sales align with each other in the long run, with the Customer Orders fluctuating

more than the POS sales do. If we isolate the two datasets in the chart, the expected behavior of

the same trend and bullwhip effect are even more visible.

SKU 2
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Figure 5: Bullwhip Effect on SKU2

The results confirm our observations. In fact, the average of Customer Orders stands at 42,952

units while the average of POS sales stands at 42,210 units. The two values are extremely close to

each other, pointing towards the same direction of the results of our simulation where the two

means align each other throughout the year. In addition, the data confirm the bullwhip effect. The

ratio between the variance of the Customer Order with the variance of the POS sales stands at 3.1,

while the ratio of the standard deviations stands at 1.76. Both ratios are therefore higher than our

simulation results which were 1.78 and 1.33 respectively, thus suggesting the presence of a

bullwhip effect. To rule out the possibility that the ratio is randomly greater than 1, we run a F test

statistics to compare the variances of the two data samples. The null hypothesis is that the variance
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of Customer Orders is equal to the variance of the POS sale (the ratio is equal to 1) while the

alternative hypothesis is that the variation of Customer Orders is greater than the variation of POS

sales (one-tail test). Table 3 below shows the result of the F-test for SKU2.

Table 3: F Test Statistic for Differences in VariancesSKU2

Customer
Orders POS Sales

Mean 42951.69 42210.35
Variance 41519967 13425728

Observations 26 26

Df 25 25
F 3.092567
P(F<=f) one-tail 0.003207

The P value is 0.003, suggesting that there is only a 0.3% chance that the variance of Customer

Orders is larger than the variance of POS sales by chance. Therefore we reject the null hypothesis.

We can therefore consider SKU 2 as a valid candidate for the design and implementation of the

production planning model.
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4.4 Analyzing SKU3

Next we analyzed the patterns for SKU 3. Figure 6 below plots the customer inventory, the

Customer Orders and POS sales.
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Figure 6: SKU3 Retailer and Manufacturer Data

At a first glance, the POS sales and Customer Orders align with each other only at the very end of

the 26 weeks period while for a large portion of the dataset they seem to have a different level of

trend. In fact, the mean value for POS sales is 64,664 units while the mean of Customer Orders

stands at 16,897. The average customer inventory is 389,785 units, which correspond to 6.7 weeks

of POS sales. The coefficient of variation for the target inventory is 26%, suggesting a less stable

inventory policy than the ones observed with the previous SKUs. Those results are affected among

other things by the two visible peaks in week 6 and 8, for POS sales and Customer Orders

respectively. The peak of POS sales in this case is suggesting the presence of an outlier likely
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produced by a promotional event. We could split the POS sales dataset in two segments: one from

week 1 to week 10 and the other covering week 11 to week 26. If we proceed with this split, we

can observe that the average of POS sales of the first segment (the outlier) stands at 101,128 units

which corresponds to 2.4 times the average of the second segment of the dataset. This indicates

the presence of a promotional effect on the product. Even with the split of data, however, the POS

sales and Customer Orders still present significant differences between each other when comparing

the respective mean values. For those reasons we are not considering SKU 3 as a valid candidate

for our production planning model. As explained above for SKUI, SKU3 visualization should be

a flag for our sponsor company to further investigate the inventory policy of the retailer. In this

case we also observe a significant peak that would suggest a promotional event. However it is not

easy to detect a defined relationship between POS sales and retailer orders as the retailer built up

inventory prior the start of the promotion and eventually reacted after two weeks of the POS peak

with a corresponding peak of orders. This is an isolated element of relationship between POS and

Customer Orders and there is therefore not enough evidence to detect a pattern between the two

sets. Like for SKUI, a lack of a clear relationship between POS and Customer Orders should invite

our sponsor company in discussing with the customer and understand the reasons behind such

inventory policy.
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4.5 Analyzing SKU4

We now look at the last SKU of our dataset: SKU4. Figure 7 below illustrates the POS sales,

Customer Orders and customer inventory.
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Figure 7: SKU4 Retailer and Manufacturer Data

The customer inventory average stands at 100,511 units, which correspond to 3.2 weeks of POS

sales with a standard deviation of 16%. This shows that the inventory policy is relatively stable.

The chart seems to suggest, as we observed for SKU 2, that we have the expected relationship

between POS sales and Customer Orders. The average value of POS sales is 31,710 units while

the mean of Customer Orders is 30,753 units. The two values are close enough to support our

hypothesis that the two datasets share the same trend. When it comes to the ratio between the two

variances, we do observe the expected bullwhip effect. In fact, the variance of Customer Orders

over the variance of POS sales stands at 8.4, while the ratio between the standard deviations stands
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at 2.9. The bullwhip effect for SKU 4 is therefore more evident than the one observed for SKU 2.

The effect is even more visible when we isolate the two datasets as per figure 8 below.
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Figure 8: Bullwhip Effect on SKU4

To rule out the possibility that the difference in variances is random, we again performed the F test

as we did for SKU2. Table 4 below show the results of the test.

Table 4: F Test Statistic for Differences in VariancesSKU4

Customer POS
Orders sales

Mean 30752.77 31710.19
Variance 71583489 8546360

Observations 26 26

df 25 25

F 8.375904

P(F<=f) one-tail 5.7E-07
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We reject the null hypothesis as the P value is close to 0 and therefore confirms that the variance

of Customer Orders is significantly larger than the variance of the POS sales. The results shown

above confirm that SKU 4 follows the behavior we have simulated with a periodic review policy.

It is therefore the second valid candidate together with SKU 2 to introduce and develop the

production planning model. Before proceeding with a description of the results of the production

planning model when incorporating POS sales we first want to verify if we can assume that both

POS sales and Customer Orders are normally distributed. The distribution fitting exercise will

determine if we can accept the hypothesis of using normal distribution for both POS sales and

Customer Orders so that we can find a quick and simple approach to convert the observed POS

sales into projected future Customer Orders. This is in fact the preliminary step before jumping

into the optimization model run which will adjust the production scheduling.

4.6 Distribution Fitting: Testing for Normality for SKU2 and SKU4

For each of the candidate SKUs of our production planning model, we would like to assume a

normal distribution for both POS sales and Customer Orders datasets. We used the Lilliefors test

to confirm our hypothesis that both POS sales and Customer Orders were normally distributed.

We chose this test as it represents the normality test with the most statistical power. This test

compares the cumulative distribution function of the empirical data with a normal distribution.

The null hypothesis is* that the distribution is normal. To reject such hypothesis, the test is

measuring the maximum vertical distance between the two cumulative distribution functions

(CDFs) and comparing the result against a list of t values per each percentage of significance level.

If the t value is higher than the significant value chosen, then the null hypothesis of normality can

be rejected and therefore we can't assume a normal distribution. Table 5 below shows the results
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of the Lilliefors test for SKU2 for Customer Orders while figure 9 is plotting the corresponding

test charts.

Table 5: SKU2_Customer Orders Normality Test Results

Customer
Order

Liliefors Test Results Data Set #1

Sample Size 26

Sample Mean 42951.69
Sample Std Dev 6443.60
Test Statistic 0.1205

CVal (15% Sig. Level) 0.1475
CVal (10% Sig. Level) 0.1558

CVal (5% Sig. Level) 0.1703

CVal (2.5% Sig. Level) 0.1817
CVal (1% Sig. Level) 0.2489

Figure 9: SKU2_Customer Orders Normality Test CDF chart

The test statistic value is equal to 0.1205 and is smaller than any of the comparable values

corresponding to the different significance levels. This implies that we cannot reject the null
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hypothesis and therefore it is correct to assume that Customer Orders for SKU2 are normally

distributed. The results for SKU2 for POS sales are illustrated below.

Table 6: SKU2_POS Sales Normality Test Results

POS Sale

Lilfiefors Test Results Data Set #1

Sample Size 26
Sample Mean 42210.35

Sample Std Dev 3664.11
Test Statistic 0.1403
CVal (15% Sig. Level) 0.1475
CVal (10% Sig. Level) 0.1558
CVal (5% Sig. Level) 0.1703
CVal (2.5% Sig. Level) 0.1817
CVal (1% Sig. Level) 0.2489

Figure 10: SKU2_POS Sales Normality Test CDF Chart

As observed for Customer Orders, the test value of POS sales data is lower than any comparable

value for each corresponding significance level. Therefore we do not reject the null hypothesis of
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normality. We can therefore continue with our assumption that POS sales for SKU2 are normally

distributed.

Table 8 and figure 11 show the same results for SKU4, with both datasets in the same table and

cdf chart.

Table 7: SKU4_ Normality Test Results for Both POS and Customer Orders

Customer
Order POS Sale

Liffiefors Test Results SKU4 SKU4

Sample Size 26 26
Sample Mean 30752.77 31710.19
Sample Std Dev 8460.70 2923.42
Test Statistic 0.0863 0.1069
CVal (15% Sig. Level) 0.1475 0.1475

CVal (10% Sig. Level) 0.1558 0.1558
CVal (5% Sig. Level) 0.1703 0.1703
CVal (2.5% Sig. Level) 0.1817 0.1817
CVal (1% Sig. Level) 0.2489 0.2489
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Figure 11: SKU4_Customer Orders and POS Sales Normality Test CDF Chart
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As we can see from the test values for both POS sales and Customer Orders, we can fairly assume

a normal distribution for both datasets also for SKU4. The test value for POS sales and Customer

Orders are indeed sufficiently small that we are not in a position to reject the null hypothesis.

To summarize, we have the following results for SKU2 and SKU4:

" The ratio of variances between Customer Orders and POS sales is greater than the ratio

measured through our simulation thus indicating the presence of a bullwhip effect

" The mean values of POS sales and Customer Orders tend to be close to each other in the

long run as resulted from our simulation; this indicates that the customer is using a stable

periodic review policy where the average order is the average weekly forecast demand

times the length of the review period

* Both POS sales and Customer Orders can be assumed to have a normal distribution

4.7 Conversion Rate: From Observed POS Sales to Projected Customer Orders

Now that we have verified our assumptions and hypothesis on the distribution and relationship

between POS sales and Customer Orders, we can use this relationship to project Customer Orders

after observing the most recent POS sales. As we have seen from our initial result that both POS

sales and Customer Orders do resemble each other in the long run, the key element of

differentiation in the short term is the ratio of variances and standard deviations between the two

datasets. Our conversion rate therefore inflates the observed POS sales to produce the most likely

future Customer Orders. In other words, the conversion rate is simply injecting the noise of the

bullwhip effect into the most recent POS sales to come up with a short term projection of Customer

Orders. We are therefore planning for the bullwhip.
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To illustrate the methodology of the conversion rate we are going to plot the CDF of two datasets:

one with standard deviation of 10 (representing POS sales) and one with standard deviation of 16

(representing Customer Orders). The bullwhip effect for this illustration is therefore 1.6. Both

datasets have the same mean of 100. A given data point taken from the normal distribution of POS

sales will be therefore converted into a Customer Order data point corresponding to the equivalent

cumulative distribution value. The figure below illustrates such conversion.

Cumulative Distribution Functions: POS sales Vs
Customer Orders

~- 116

IP

--
Rn 'f"I 00 0 00 C

I. -

)S sales

ustomer Orders

An 0 V)
-n V)

Figure 12: Conversion Rate Illustration

As we can see from the graph above, we selected a value from the POS sales equivalent to 110

and found its corresponding cumulative probability in the POS sales CDF curve. Then we moved

to the right to identify the Customer Order value that corresponds to the same cumulative
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probability. In our example above the Customer Order value is 116. We can conceptualize the

conversion rate with below equation:

(11)

XPOS - POSxc= * c + PC

where

" xc, ac, and pc are respectively the Customer Order value, the standard deviation of

Customer Order distribution and the mean value

" xpOS, qpos, and ypos are respectively the POS sales value, the standard deviation of POS

sales distribution and the mean value

In the production planning model that follows we are going to use the conversion rate above to

find a projected set of Customer Order values from the observation of a set of POS sales. In

particular, we are going to observe the last four weeks of POS sales to project the next seven

Customer Orders. This is our initial step before running the optimization problem and solving for

the adjusted production planning schedule. The conversion formula for the production planning

model is as follows:

(12)

V-1L=t-4 xPOS MPOS

Xc,t = * O1c + Pc

Where Yt- 4 xP0s,i /4 is the moving average of the observed periods of POS sales which in our

model is equivalent to the last four weeks. The weekly Xc will be then projected along the

following seven weeks to generate the basis for the optimization model.
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4.8 Actual Production and Inventory

Error! Reference source not found.8 and Table 9 show the actual production and inventory

positions for SKU 1 - 4. This thesis does not emphasize the comparison of any of the models to

the actual data because the number of constraints in the actual production planning optimization

algorithm is considerably more than that of any of the models described in this model. This

difference between the actual environment and our model results in an unfair comparison because

with fewer constraints our models can only produce more optimized results.

Table 8: Actual Manufacturer Production and Inventory for SKU2, 4

DOS 25 33

Item Fill Rate 100% 100%

Changeover $ 7,500 $ 4,500

Holding $ 81,872 $ 22,976
Total Cost $ 116,848

Table 9: Actual Manufacturer Production and Inventory for SKU1, 3

DOS 34 44
Item Fill Rate 100% 73%
Changeover $ 7,500 $ 3,000

Holding $ 87,804 $ 6,187
Total Cost $ 104,490
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4.9 Multi-Period Production Planning: POS-to-Orders Model Results

The POS-to-Orders Model is shown below in Table 10 and Table 11 for all 4 SKUS. As stated

previously, this model uses the POS data to improve the production planning to fulfill the

Customer Orders.

Table 10: POS-to-Orders Model for SKU 2, 4

DOS 25 33
Item Fill Rate 100% 100%
Changeover $ 6,000 $ 4,500

Holding $ 19,249 $ 20,427
Total Cost $ 50,176

Table 11: POS-to-Orders Model for SKU 1, 3

DOS 34 44
Item Fill Rate 100% 100%
Changeover $ 1,500 $ 2,500

Holding $ 24,482 $ 57,949
Total Cost $ 86,431

4.10 Multi-Period Production Planning: Orders-to-Orders Model Results

The Orders to Orders model ignores the POS data and only adjusts the production plan by using

historical Customer Orders data. The purpose of doing so is to mimic the manufacturer's

forecasting model so that this model can be used as a baseline to compare all other models against.

Table 12 and 13 show the results of the Orders-to-Orders model for all SKUs.
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Table 12: Orders to Orders Model for SKU 2, 4

DOS 25 33

Item Fill Rate 100% 100%

Changeover $ 6,000 $ 5,500

Holding $ 19,385 $ 21,985

Total Cost $ 52,870

Table 13: Orders to Orders Model for SKU 1, 3

DOS 34 44
Item Fill Rate 95% 86%

Changeover $ 4,500 $ 3,000
Holding $ 29,505 $ 53,377

Total Cost $ 90,382

4.11 Multi-Period Production Planning: POS-to-POS Model Results

As mentioned in our methodology section, before running the rolling plan for the POS-to-POS

scenario we had to first calculate the new target DOS inventory for both SKU2 and SKU4. In order

to adjust the DOS, we had to first calculate the new RMSE that resulted from a different base of

historical data. We ran a simulation where to prove that the ratio of the RMSE for Customer Orders

over the RMSE for POS sales was equal to the ratio of standard deviations of both datasets. In

other words, we wanted to verify that the initially measured bullwhip effect would have the same

value when comparing the two RMSEs. To run the simulation we used the average and standard

deviations from SKU2. The RMSE was calculated at the end of 52 weeks against a four-week

moving average forecast. The simulation ran for 10,000 iterations. Figure 13 below shows the

results for the RMSE expected value:
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Figure 13: RMSE for Customer Orders after 10,000 iterations

On average, the RMSE for Customer Orders for SKU2 would stand at 7,166.51. The RMSE for

the POS Sales should be less as the historical data of POS present a lower volatility rate. We then

ran a similar simulation for SKU2 using the mean and standard deviation of the history of POS

sales. We expected an RMSE value that would be proportionally lower than the RMSE for

Customer Orders. Figure 14 below shows the results of 10,000 iterations.
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The average value for the RMSE when using POS sales as historical data was 4,074.02. The ratio

of the two RMSEs was therefore 7,166.51 divided by 4,074.02 which gives us 1.76. This was

exactly the same ratio that resulted from standard deviation of Customer Orders over standard

deviation of POS sales. The simulation confirmed that the bullwhip effect has the same value when

comparing the RMSEs of the two datasets. We can therefore assume that whenever we apply the

same forecast technique using POS history instead of Customer Order history, the new RMSE will

be equal to the following equation:

(13)

RMSEpo5 = RMSEco * Pos
Uco

Where aco is the standard deviation of Customer Orders and Upos is the standard deviation of POS

data.

The equation above can now be used to calculate the new DOS supply for the POS-to-POS test

scenario. By using the DOS formula (5) mentioned in our Methodology section, we found the new

DOS shown in table 14, below, when updating the RMSE and fixing the Item Fill Rate at 98.5%.

Table 14: DOS Comparison between original model and POS-to-POS test

Prduct DOS Origal Model - DOS POS-to-P 1SI D

SKU2 25 20

SKU4 33 19

The results above show that by using POS sales as demand history instead of using Customer

Orders, the manufacturer can keep the same item fill rate with a lower target DOS inventory. This
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is possible, as we have seen, mainly because of a reduction of the RMSE: it is now lower when

forecasting POS sales. This initial reduction of the target inventory level suggests a reduction of

the average inventory for the manufacturer even before we run the optimization problem and solve

for the new production planning. Before observing the results of the test, we created an inventory

target frontier to illustrate the linear relationship between the bullwhip effect and the reduction of

the DOS value, as shown in figure 15 below.

25% DOS Reduction Frontier

20%

S15%

10%

> 5%

0%/

Bullwhip Effect (Stdl/Std2)

Figure 15: DOS Reduction Frontier

The above frontier shows that with higher levels of the bullwhip effect, there is higher inventory

reduction when planning using POS history instead of Customer Order History. This is possible

because the RMSE of POS forecasts is lower than the RMSE of Customer Orders, and the gap

between the two values increases as the ratio of the standard deviations goes up. This explains why

we observed a higher reduction of DOS for SKU4 than for SKU2: the bullwhip effect for the

former product is higher.

Table 15 and Table 16 show the POS-to-POS model for SKUl - 4.
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Table 15: POS-to-POS Model for SKU 2, 4

DOS 20 19
Item Fill Rate 100% 100%

Changeover $ 6,000 $ 5,500
Holding $ 16,114 $ 12,679

Total Cost $ 40,293

Table 16: POS-to-POS Model for SKU 1, 3

DOS 23 31
Item Fill Rate 100% 100%

Changeover $ 6,000 $ 3,000
Holding $ 39,371 $ 57,103

Total Cost $ 105,474

4.12 Results Discussion SKU2 and SKU4

Table 17 shows a summary of the different models for SKU 2 and 4. The results show a decrease

in cost as the role of POS increases. This is a promising trend, as it validates the usefulness of

POS data. SKUS 2 and 4 are excellent examples of the bullwhip effect in which the Customer

Orders was a consistent multiple of the changes in the POS data. The standard deviation of the

ratio of SKU 2 and SKU 4's retailer on-hand inventory to POS is quite moderate, ranging from

12% to 30%, and the difference between the POS and Order quantity is less than 3%.

The nature of the relationship between Customer Orders and POS sales show a consistent retailer

inventory policy and confirmed our initial hypothesis of long term inventory balance and bullwhip

effect. Table 17, below, summarizes the results of the 3 models to evaluate the usefulness of POS.

We did not include any comparison with the actual costs as this would not have provided valid

results.
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Table 17: Summary of SKU2, 4

Orders2Orders $ 52,870 NA NA
POS2Orders $ 50,176 5.10% NA
POS2POS $ 40,293 19.70% 23.79%

The Orders-to-Orders model and the POS-to-Orders model share several similarities. Both predict

Customer Orders resulting in sharing the same variability and bullwhip effect. The difference

between the two models is that the latter uses POS to improve the Customer Orders forecast. The

resulting savings represent the improved accuracy of the production planning with respect to

Customer Orders. This improved accuracy allows production to better match Customer Orders to

reduce inventory costs. But because the inherent variability exists, and that the POS is only used

to improve the accuracy of the Customer Orders, the difference in total cost is only 5.1%.

The POS-to-POS model shows a much larger cost reduction when compared to the other models

because the variation in the POS data is approximately 0.5 to 0.3 of the Customer Orders. This

improvement in the variation reflects the removal of the bullwhip effect. In order to implement

the POS-to-POS model, the manufacturer and the retailer must develop a relationship that shares

POS in real time and agree on the inventory policy that is based on the POS data.

In all 3 modeled situations, the item fill rate for SKUI and SKU 3 was 100% for the entire duration

of the analysis.
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4.13 Results Discussion SKU 1 and SKU 3

Table 18 shows the summary of SKU 1, and 3. The results of SKU I and 3 were not in line with

those of 2 and 4 because of dynamics of the inventory policy that were not clearly visible in the

POS data. Although the POS still weakly dictates the Customer Orders, the standard deviation of

the ratio of retailer on-hand inventory to POS ranges considerably from 65% to 121%, and the

ratio of POS to order quantity is 3:1.

Table 18: Summary of SKU1, 3

Orders2Orders $ 90,382 NA NA
POS2Orders $ 86,431 4.37% NA
POS2POS $ 105,474 -22.03% -16.70%

The difference in POS and quantity ordered is the primary cause for the higher cost in the POS-to-

POS model when compared to the other 2 models. This results because the POS-to-POS does not

aim to fulfill Customer Orders but as the name implies, aims to fulfill POS. Although the POS to

POS model is quantitatively ineffective for SKU 1 and 3, qualitatively it can alert the manufacturer

to engage in discussions with the retailer to understand the dynamics of its inventory policy to best

prepare production planning.

Despite high variation in ratio of inventory to POS, we still see cost savings in using the POS data

to adjust the production plan compared to only using historical data. All SKUs examined showed

this cost savings because the retailer must replenish its stock based on POS.
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4.14 Sensitivity Analysis: "What If" Scenarios with Different Bullwhip Effects

We ran two sensitivity analysis to verify the effect of changes in the bullwhip effect on the benefits

of using POS data in both models, POS-to-Order and POS-to-POS. For the latter, we were

expecting higher benefits with higher levels of the bullwhip effect. For the former, we were not

expecting any linear relationship between the gains and the bullwhip effect as the POS-to-Order

model simply reproduces the noise rather than removing it.

4.14.1 Changing the Bullwhip in the POS-to-POS model

As we showed above in the Results section, the POS-to-POS model produces the best outcome as

it significantly reduces the bullwhip effect of the Customer Orders. In fact, by focusing only on

the POS data, we are reducing the volatility of the historical dataset and therefore targeting a lower

number of DOS. This in turn relaxes the target inventory constraints of the model for every week,

thus producing lower costs for the optimal solution (the target inventory constraint is binding for

several periods of the rolling model). The DOS inventory reduction frontier illustrated in Figure

15 shows a linear relationship between the bullwhip effect and the potential savings when it comes

to using POS data to project future POS sales. The larger the bullwhip effect, the lower the target

inventory level, and therefore the lower the inventory costs in our production planning model. By

updating our production planning model with the changes in the bullwhip, we found the following

results as shown in Table 19:
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Table 19: Sensitivity Analysis of POS-to-POS

1.5 $47,988 $40,293 16%

2.0 $50,829 $40,293 21%

2.5 $53,582 $40,293 25%

3.0 $57,102 $40,293 29%

3.5 $59,500 $40,293 32%

4.0 $64,020 $40,293 37%

As we can see from the table above, with a bullwhip effect of 1.5 for both SKUs, we reach a total

level of savings of 16%. If we then have two products with a higher bullwhip effect of 4.0 each,

we reach a total level of savings of 37%. This sensitivity analysis shows the great potential in using

POS data to project POS sales and therefore influence the ordering decision process of the retailer.

As the added value of the POS-to-POS model is the elimination of the bullwhip effect, the higher

the initial level of noise, the higher the savings if POS data are integrated in a collaborative

planning environment between the manufacturer and the retailer.

4.14.2 Changing the Bullwhip Effect in the POS-to-Order Model

When it comes to the POS-to-Order model we should not expect any significant changes when

products had different levels of the bullwhip effect. In fact, the model reproduces the noise of the

retailer inventory policy without removing such volatility from the planning process. We wanted

to see whether the model could still register some savings even when the level of bullwhip for the

two SKUs was changed. Below are the results of the sensitivity analysis for POS-to-Order model:
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Table 20: Sensitivity Analysis of POS-to-Order

1.5 $47,988 $45,761 5%

2.0 $50,829 $49,095 3%

2.5 $53,582 $51,987 3%

3.0 $57,102 $54,946 4%

3.5 $59,500 $57,292 4%

4.0 $64,020 $60,776 5%

As we can see from the table above, the POS-to-Order model produces gains irrespective of the

value of the bullwhip effect. However, the relationship between the savings and the bullwhip effect

is not linear as both 1.5 and 4.0 levels of the bullwhip effect show the same 5% total savings. This

confirms that our sponsor company could benefit from the POS-to-Order model even with a

relative lower level of the bullwhip effect, 1.5, and that a manufacturer should not expect

significantly higher gains with this model as the bullwhip goes up.
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5 Conclusion: the Value of POS data

We showed evidence that collecting POS data from the retailer and integrating them into the

planning process of a manufacturing CPG company can generate business value. By studying the

relationship between POS sales and Customer Orders at each SKU level, a manufacturing

company can leverage such a relationship and better plan for the bullwhip effect to come. This in

turn would improve the accuracy of the overall supply planning process as the company could use

POS sales to adjust the production planning schedule by better projecting Customer Orders. As a

result, savings in relevant supply chain costs, such as holding and change over costs, may

materialize.

At the same time, our thesis show a higher degree of value in using POS data when it comes to

using historical POS to better predict future POS sales and adjust the production planning

accordingly. In fact, in a business environment where the manufacturer could collaborate with the

retailer, the bullwhip effect could be significantly reduced from the equation. The manufacturer

could observe the POS data and leverage them to influence the ordering process of the retailer in

order to reduce the bullwhip effect generated by the additional inventory planning layer. In the

case of using POS to better project future POS, the lion's share of the gains originates from a

reduction of the safety stock, thus a reduction of the overall target inventory level. This in turn

would relax the production planning schedule constraints and meet the same item fill rate with

fewer relevant costs.

To capitalize on those benefi's a manufacturer would need to both invest in collecting POS data

from all its retailers and also engage in a constant dialogue with them. Analyzing each SKU is a

necessary step to leverage the power of POS data, but it is not enough. A manufacturer should use
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the POS data to investigate and question the ordering behavior of the retailers and eventually

involve them in a joint collaborative supply chain planning process.

As this thesis has shown, reconciling the Customer Orders with the POS sales could help the

manufacturer visualize and quantify the bullwhip effect. After this initial step, it will be clearer for

the company which SKUs to use in integrating POS data into the planning process with or without

the retailer. The higher the bullwhip effect, the higher the value of integrating POS data in the

supply planning process. The more misaligned the Customer Orders with POS sales, the higher

the need for the manufacturer to understand the inventory policy of the retailer and eventually

influence it. The manufacturer can therefore use the insights of our model to prompt a segmentation

of its products based on the degree of bullwhip effect and the level of misalignment between POS

sales and Customer Orders. This segmentation would help the company identify the products

where POS data could bring the highest value and therefore push for a deeper investigation and

understanding of the customer demand behavior.

There are, however, limitations to our model. The limited number of observed SKUs, as well as

the limited number of observed days of POS data, require a further research on all other key

products and retailers. Our model also takes as a main assumption that the manufacturing process

only allows an adjustment of the production schedule after three weeks. It would therefore be

relevant to analyze the effect of using POS data in our model when removing the three week freeze

period. In other words, it would be worthwhile investigating the power of POS data when a

manufacturing company can adjust the production planning immediately the week after instead of

waiting for two additional weeks. This further research could then evaluate if the costs incurred in

designing a more flexible manufacturing and production schedule process would be offset by the

savings produced by the POS data integration in the planning process.
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Finally, the power of POS data can be leveraged to improve the planning and monitoring of

promotional events, thereby involving other key stakeholders in the manufacturing company such

as marketing and sales. This, along with the benefits for the production planning process, could

trigger enormous benefits throughout the entire company's value chain.

POS data has still yet to show all of its potential value but the methodology and approach described

in the thesis as well as further suggested researches would help companies in unleashing the

benefits hidden behind them. Companies who are able to integrate POS data into their demand and

supply planning process could design more flexible and demand driven supply chains. Collecting,

interpreting and integrating POS data is a must for any companies in the CPG industry: it is the

secret ingredient for a supply chain that meets the real demand and adapts quickly to customer

behaviors changes.
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