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ABSTRACT

Effectively balancing existing technology adoption and new technology development is

critical for successfully managing carbon dioxide (CO 2) emissions from the fossil-
dominated electric power generation sector. The long infrastructure lifetimes of power
plant investments mean that deployment decisions made today will influence carbon

dioxide emissions long into the future. New technology development and R&D decisions

can help reduce the overall costs of reducing emissions, but there are multiple technology

investments to choose from, and returns to R&D are inherently uncertain. These features

of the technology "deployment versus development" question create unique challenges
for decision makers charged with managing cumulative carbon dioxide emissions from

the electricity sector.

Unfortunately, current quantitative decision support tools ultimately lack one or more of

three overarching features jointly necessary to provide useful insights about an optimal

balance between R&D program and power plant investments. They lack (1) resolution of

the critical structure of the electricity sector, (2) an explicit endogenous representation of

the effects of learning-by-searching technological change, and/or (3) an efficient
decision-analytic framework to explore multiple technology investment options under

uncertainty in the returns to R&D.

This dissertation presents a new quantitative decision support framework that allows for

the study of socially optimal R&D and capital investment decisions for the power

generation sector. Through a novel integration of classical electricity generation
investment planning methods, economic modeling of endogenous R&D-driven
technological change, and emerging numerical stochastic optimization techniques, the

new framework (1) explicitly accounts for the complementary roles that generating

technologies play within the electric power system, (2) considers the characteristics of the

uncertainty in the technology innovation process, and (3) identifies flexible, adaptive

R&D investment strategies for multiple technologies for decision makers to consider.

A series of numerical experiments with the new model reveal that (1) the optimal near-

term R&D investment strategy under technological change uncertainty and adapting
between decisions can be different than the optimal strategy assuming perfect foresight,
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and may be higher or lower; (2) the timing that a technology should be deployed to meet
a specific carbon target dictates the direction and magnitude of the difference in these
decisions; (3) increasing the level of uncertainty tends to increase near-term R&D
investments; and (4) increasing right-skewness of the uncertainty (i.e., decreasing the
likelihood of higher than average returns), reduces R&D spending throughout the
planning horizon.

Thesis Supervisor: Mort D. Webster
Title: Assistant Professor of Engineering Systems
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Chapter 1 Introduction

Effectively managing carbon dioxide (CO2) emissions from fossil-based electric

power generation is critical for executing a comprehensive global climate change

mitigation and risk management plan. In the United States, for example, the electric

power generation sector is responsible for approximately forty percent of the country's

annual emissions (Energy Information Administration, 2011). Unfortunately, many of

the technologies for significantly reducing CO2 emissions from the electricity sector are

either in early conceptual stages or available at relatively high costs or small scales,

requiring additional research and development (R&D). Meanwhile, the industry

continues to meet increasing electricity demands with carbon-emitting technologies that

are both commercially available and economically viable. This pattern repeats itself

throughout the industrialized world, and more troublingly, intensifies across the

industrializing world where electricity demand and fossil-based generation are expected

to track near-exponential rates of economic growth.

To address the dilemma of resolving increasing electricity demands with emission

reduction goals, policy makers are interested in the dual role that environmental policy

instruments can play in near-term carbon reductions by incentivizing existing low-carbon

technology adoption, and in long-term carbon reductions by incentivizing private R&D.

Likewise, the possibility that early and direct public investment in R&D can reduce the

overall cost of mitigating future climate damages is attractive to many stakeholders.

However, identifying the best policies remains elusive due to the complexity with which

different policy instruments induce existing technology deployment versus new

21



technology R&D; the magnitude of uncertainties associated with the outcomes to R&D;

and the long lifetimes of electric power capacity investments. Figure 1-1 conceptually

summarizes policy-induced technological change and the complex interactions that exist

within the power generation sector, many of which are studied in this dissertation.

Makes Enrmna and Technology

The Natural
Environment

GovernmentPolicyRespondsto Changes in the Environment

Figure 1-1 Policy-induced technological change in the electric power generation sector

1.1 The Problem

Electric power generation plants require massive investments and have very long

infrastructure lifetimes. It is not uncommon for a new large state-of-the-art coal-fired

power plant to cost almost $4 billion to build, while a single new moderately-sized

offshore wind farm to cost well over $2 billion (Energy Information Administration,

2011)1. Moreover, several of these investments will continue to operate and emit carbon

dioxide for at least fifty years, some closer to sixty or seventy years into the future. The

decisions made today regarding how to best meet growing electricity demand and how to

I Capital cost estimates are derived from a state of the art dual-unit 1200 MW IGCC plant and a 400 MW
offshore wind farm, respectively.
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attain specific objectives such as carbon emissions reduction in the near term (e.g., for the

next five years) are therefore de facto decisions about meeting electricity demand and

achieving other objectives long into the future.

This decision making faces several immense challenges in the context of meeting

new environmental objectives and investing public (or private) monies in R&D programs.

First, it is unclear how policy decisions made on the sector's behalf (e.g., a carbon cap) or

specific R&D investment decisions will ultimately affect actual carbon emission

reductions and costs in such a unique sector. Although infrastructure costs, lifetimes, and

other characteristics of the electric power system match other large-scale infrastructure-

heavy systems, a facet that sets it apart is the necessary interaction between highly

complex, time-dependent technical operations and the infrastructure itself. This feature

requires a diverse portfolio of technologies during any given period of time in the system

working together seamlessly to balance each other over very short time-scales (e.g.,

fractions of a second to minutes) to deliver reliable electricity. Unfortunately, their long

lifetimes and capital intensive nature mean that these same technologies will also

continue to operate in the system for decades after they are built, influencing long-term

environmental goals. These complex policy-operations interactions are only beginning to

be understood in the policy realm, and are thus not yet well represented in decision

support tools (e.g., numerical models) for those actually making policy and funding

decisions. However, as there is great interest in meeting objectives at least cost, it clearly

becomes important to consider the effect that activities such as R&D (pursued with the

express intention of reducing costs) can have on the evolution of the system.
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Adding to this challenge are the multitude of uncertainties decision makers face in

having to make investment decisions today that will continue to affect operations and

other investment choices well into the future. In the context of R&D decision making,

one of the greatest uncertainties rests in the outcomes of R&D efforts. The innovation

and R&D process is inherently uncertain and thus best described by a probability

distribution of outcomes to specified levels of R&D effort (e.g., dollars of R&D invested)

(Mansfield, 1968; Evenson & Kislev, 1975). Moreover, these probability distributions

are often highly skewed. The majority of outcomes are smaller, more incremental, and

less individually valuable contributions to overall technological change, with few

occurrences of high value, breakthrough-type innovations (Jaffe & Trajtenberg, 2002;

Pakes, 1986). Figure 1-2 schematically depicts the characteristically skewed distributions

for outcomes to R&D effort. Additionally, the shape of these distributions can be quite

different for different technology groups within the same industry. Though still skewed,

distribution profiles characterizing technologies that seem to experience "slow and steady

progress," across different levels of R&D co-exist with profiles for technologies that fall

into a more "high-risk, high-reward" type of innovation process (Chapter 6).

24



Schematic of Distribution of Returns to Energy R&D

Breakthrough
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Value of New Technology (Return to R&D Investment)

Figure 1-2 Characteristic skewed distribution of returns (outcomes) to R&D investments

Unfortunately, considering this uncertainty and the spectrum of possible outcomes

to R&D investment within the context of energy decision and policy analysis models is

rare in practice; it is even less common in decision models that include details about

electric power sector evolution in response to changes in policy and R&D decisions.

When combined with the already challenging problem of resolving the effect of (static)

policy and R&D activities on operations and optimal generation planning in the electric

power sector described above, it is not surprising that uncertainty and differences in risk

profiles across different technologies have not yet become integrated into decision

support models.

Finally, modem decision support models for investment planning within the

electric power sector are not currently structured to match the manner in which policy

makers and other stakeholders actually make decisions. Decisions about long-term

problems, such as how best to develop the electric power sector to manage climate
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concerns, are necessarily strategic and rely on concepts of adaptive management.

Decisions are made at different time intervals, between which additional information

about the state of the world (e.g., actual technology evolution, current exogenous

policies) and outcomes of past decisions are collected and assessed. For example, private

companies and electric utilities do not choose one R&D plan or capital deployment plan

at one point in time and then necessarily stick to that plan for long time periods. They

make the best decision they can with information they have available and then wait for

additional information to arrive before making a next "best" decision. Such a strategy is

particularly important in the highly capital-intensive electric power generation industry,

with power plant investment (deployment) decisions being relatively "irreversible."

Similarly, policy makers do not obey a single-path decision rule; set "check points" are

built in to most environmental and other laws to assess the effect of past decisions and

decide whether adjustments to the original plan are warranted to best meet the overall

objective. Unfortunately, current decision support models in this area are structured

assuming that decision makers do stick to a single path throughout time. In the context of

R&D and "irreversible" capital investment planning, these models do not appropriately

consider the inherent stochasticity in technological change or the desire for stakeholders

to revise and update their decisions over time.

1.2 Purpose of this Dissertation

The purpose of this dissertation is to present a new decision support framework

that addresses the interplay and challenges discussed above and allows for rigorous study

of socially optimal parallel R&D and capital investment decisions for the electric power
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generation sector. The new framework considers the complementary roles that

generating technologies play within the electric power system, the physical integration

constraints they face, and the economics at play in electric utilities' least-cost investment

decisions, given the economics of technological change. The new framework also

overcomes challenges in considering uncertainty and the characteristics of the uncertainty

surrounding the energy innovation process itself, as well as the need for decision makers

to adaptively manage their decisions to new information over time. Together, these

components have important implications for what drives technology adoption and

development, and thus emissions reduction, in this unique sector. Results obtained from

the decision support model can provide insight and information to the policy process for

the electric power sector, and the numerical modeling framework itself is intended as a

springboard for further model development and future analyses in this area.

1.3 Framing the Research Questions

The modeling framework introduced in this dissertation seeks to provide decision

makers with insight about how to optimally balance near-term efforts to reduce emissions

from the power sector with future efforts. Specifically, the numerical model is capable of

studying socially optimal balances of intra-temporal and inter-temporal capital

investments and technology-specific R&D expenditures for the U.S. electricity

generation sector.

A simple framing of the specific problem studied is as follows: if the overall goal

is to limit cumulative emissions from the power sector by a certain amount (or reach a set

emissions target by a certain future date) while continuing to meet demand reliably and
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efficiently, and there are two pathways for achieving this-1) direct emission cuts (e.g.,

through constraining regulations and market-based incentives) that force or incentivize

currently available (but possibly expensive) clean-technology deployment downstream at

the electric utilities, and 2) indirect emission cuts through R&D investment that can make

currently expensive technologies cost-competitive with their "dirtier" counterparts at

some point in the future-what is the most cost-effective method for allocating these two

efforts through time? The question can be framed as one about "now versus later," as

well as about "deployment versus development"-how much effort or money do we

expend to push deployment of currently expensive technologies capable of reducing

emissions and meeting demand now, versus how much do we expend to drive innovation

and R&D capable of reducing emissions and meeting demand later?

When uncertainty is explicitly considered these questions become fundamental

ones of risk management and hedging against future costs, turning to concepts of

portfolio optimization under uncertainty. How do we optimally allocate our efforts

between the two pathways in the near-term, cognizant of the fact that we cannot predict

the future of technological change and cost paths for different technologies, but knowing

that we can learn about outcomes to R&D as they unfold, and update our future decisions

accordingly?

The new modeling framework is presented using the U.S. electric power sector as

a case, although it can be adapted to power systems in other nations with relative ease.

The model is also presented from the perspective of C02-reduction and climate change

policy, but it can likewise also be used to study other environmental policies when
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applied to other "stock-type" environmental pollutants for which emission reduction

targets exist and a multi-year reduction plan may be suitable.

The new modeling framework in this dissertation is motivated by the following

three research questions:

(1) What is the optimal intra- and inter-temporal balance between electricity generation

capital investments and R&D investments under technological change uncertainty?

(2) How does the optimal investment strategy under uncertainty compare to the

deterministic investment strategy design?

(3) What role do R&D program risk profiles and specific electricity generation

technology characteristics have in investment planning under uncertainty for the

power sector?

1.4 Dissertation Structure

This dissertation comprises three main sections: a background and overview of

the system and literature review; a description and demonstration of the new modeling

framework under static (deterministic) planning; and a description and demonstration of

the full new stochastic modeling framework applying approximate dynamic

programming techniques for sequential decision making under uncertainty. Below, each

chapter in the dissertation is listed and introduced briefly.

To provide background and context for the current work, Chapter 2 presents an

overview of the U.S. electric power sector and the U.S. energy innovation system.

Details about the unique structure of the industry are included, and the focus of the
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section is on the generation sub-sector. The section on the U.S. energy innovation system

provides an overview of the pathways for innovation that exist for the energy (and

electricity) industry, the entities engaged in the innovation process, and a review of recent

R&D spending and its effects in the power sector.

Chapter 3 provides a review of the literature on the three main academic areas this

dissertation fuses-electricity generation sector investment planning, technological

change within energy decision models, and methods for decision making under

uncertainty. The section on generation sector investment planning provides a brief

overview of the main methods used for investment planning and study. In the sections on

technological change in energy decision models and methods for decision making under

uncertainty, the focus is on presenting recent studies that define the current state of the art

in energy and electricity R&D and capital investment planning models, and integration of

uncertainty analysis within these models.

Chapter 4 introduces the numerical modeling framework developed and used for

the deterministic study on optimal electricity generation technology R&D and capital

investment strategies under endogenous "learning-by-doing" and "learning-by-searching"

technological change. The structure of the problem is presented, followed by details

about the model's mathematical formulation, integration of technological change

dynamics, data, and solution approach. Results from the reference model are presented.

The goal of Chapter 5 is to demonstrate the new modeling framework's

capabilities and to motivate the need for further uncertainty analysis. Six numerical

experiments are performed to gain insight about behaviors of key variables and the

optimal investment strategy under different conditions. First, optimal R&D and capital
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investment strategies are explored over a range of different cumulative carbon emission

targets. The next three experiments study behaviors of the optimal investment strategy

across different learning pathways and technology-specific differences in the innovation

process. The fifth experiment explores the case of solar power technology in more detail.

Finally, the sixth experiment presents results from testing a status quo U.S. energy policy

in the modeling framework. The chapter closes with a summary and recounts the key

insights gained from each of the experiments.

Chapter 6 introduces the stochastic modeling framework used for the sequential

decision under uncertainty model. The full structure of the model and its components are

presented, including the characterization of uncertainty in R&D outcomes. The

approximate dynamic programming algorithm developed to numerically solve for the

optimal investment strategies under uncertainty is presented and explained, including

sampling and value function approximation methods.

Chapter 7 presents results from the stochastic study of optimal investment

strategy under R&D uncertainty. First, the optimal investment strategy under uncertainty

is compared and contrasted with the optimal deterministic strategy. Using various

probability distribution types for the outcomes to R&D, the effects of increasing

skewness and overall level of risk (variance) on the optimal investment strategy is

presented and discussed next. The impact of R&D effort risk profiles and technology

characteristics is also discussed.

Finally, Chapter 8 summarizes the dissertation and its contributions, and recounts

the key insights from both the deterministic and stochastic study of optimal R&D and

capital investment planning (with and without uncertainty). The implications of this
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research to policy analysis and real-world planning within the electric power sector are

explored and discussed. Major limitations of the new modeling framework are also

presented, and important future research opportunities in this area are framed.

The dissertation now begins with an overview and history of the U.S. electricity

generation and innovation system.
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Overview and History of the System

The research questions under investigation in this dissertation take place at the

intersection of the U.S. electric power system's generation sector and the U.S. energy

innovation system's electricity technology-related activities. The engineering system

studied can thus be described as the "U.S. electricity generation and innovation systems

nexus". This chapter provides a background of the relevant structure and activities of

each of these two sub-systems; each is a substantial system on its own. It also discusses

some of the key uncertainties inherent in the system. It should be noted that while this

dissertation does not resolve all of the structural details presented below (much is beyond

the scope of the immediate research questions and the purpose of study), overviews are

included here to provide the reader with a contextual background of the system and an

appreciation of future research tasks and challenges.

2.1 The U.S. Electric Power Generation Sector

The U.S. electric generation sector is unique in many respects. The country's

size, the specific evolution of physical infrastructures through time and space, and the

nature of federal, state, and other regulatory authorities make the U.S. electricity

landscape among the most diverse in the world. The generation sector fits within a larger

physical electric power system, which is comprised of vast generation infrastructure

resources (the power plants that produce the electricity supply), end-use infrastructure

resources (the homes, commercial buildings, and industrial facilities that use the

electricity supplied), and transmission infrastructure resources (the wires that move the

33

Chapter 2



electricity from the point of supply to the point of use). Likewise, it fits within a larger

socio-technical system which is comprised of the physical components just listed, the

numerous regulatory agencies that oversee its operations, markets (commodity and

financial), and planning; businesses and public utilities that own and operate the physical

infrastructure; customers that use the electricity for personal or other uses; and other

stakeholders such as environmental non-governmental organizations that have vested

interests in the activities of this highly influential (economically and environmentally)

industry. Figure 2-1 provides a snapshot of the landscape of electricity generation

facilities in the U.S., showing how generation density generally follows population

density in the country. The size of the circles indicates the relative electricity output of

the plants.

Figure 2-1 Landscape of U.S. Electricity Generators
(NPR.org, 2012, Original Source: EPA E-Grid Database)
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The following subsections present an overview about the structure, functions, and

general operation of the U.S. electric power generation sector. The types of resources

used to generate electricity, facility ownership structures, unique characteristics of

electricity as a commodity, generation planning functions, technology costs, legal and

regulatory oversight structure, and the climate change policy landscape are reviewed and

briefly discussed.

2.1.1 U.S. Generation Capacity Technology Portfolio

As of 2010, there were 18,151 electric generating facilities in the U.S., which

when combined, comprise the country's 1,128,638 megawatts (MW) of generating

capacity (EIA, 2010a). Overall, the generating capacity portfolio in the U.S. is

dominated by coal- and natural gas-fueled sources, with the majority of the difference

supplied by nuclear power (Figure 2-2). This has been the general trend throughout U.S.

electricity history (Figure 2-3). Hydroelectric power (conventional and pumped storage

facilities) comprises nine percent of the resources, and other technology types (including

all renewables resources such as wind and solar power) comprise the remaining five

percent. Capacity additions to keep up with continually increasing demand and

retirements of older plants (Figure 2-5) over the past fifty years have also focused on

natural gas-fired, coal-fired, and nuclear-power generation, followed by a small surge in

wind capacity during the past five years. In terms of actual generation (operation of the

installed facilities), the balance shifts further towards fossil fuels. In particular, coal has

provided a particularly inexpensive fuel source (Figure 2-4). Once a coal-fired power

plant is installed, it tends to be utilized as a dominant resource, sometime referred to as
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"baseload", meaning it operates nearly year-round except for periodic maintenance.

Nuclear plants similarly operate as baseload. As explained in more detail below,

technologies such as coal or nuclear have relatively high capital costs, but relatively low

operating costs, and these characteristics are the main drivers as to which units are

baseload. In addition, technical constraints of the technologies that create challenges to

rapidly shutting down or starting up or ramping power output up or down contribute to

how these technologies are used. To date, renewable resource generation currently has

had a minor role relative to the entire U.S. generation share.

There is great diversity of generation resources and associated fuel sources used

to generate electricity across the country (Figure 2-6). Several factors influence this,

including regional fuel availability, fuel price, environmental regulations, and political or

public support for particular fuels. For example, the West Coast's abundant supply of

"run-of-the-river" water results in its relatively higher share of hydropower compared to

the West South Central region. The strict environmental regulations and lack of public

support for coal-fired power generation in the West Coast region also creates a much

smaller reliance on coal use than other parts of the country.
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Figure 2-4 U.S. Electricity Generation by Fuel Source 1999-2010 (EIA, 2010a)
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Figure 2-5 U.S. Electricity Demand 1950-2010 (EIA, 201 la)
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Figure 2-6 U.S. Electric Power Generation Regional Fuel Diversity (Edison Electric Institute, 2009)

2.1.2 Generation Ownership Structures

Across the country, four main ownership structures exist, each with different

levels of vertical integration (generation, transmission, and distribution facilities) within

them: investor-owned utilities, publicly owned utilities (state and local government or

public utility district owned), federally owned utilities, and rural electric cooperative

utilities (Figure 2-7).

Although investor-owned private utilities comprise only about six percent of

electricity entities, they produce over 65% of the electricity consumed in the U.S. on a

total "sales-to-ultimate-consumer" (kilowatt hour) basis. Private power producers sell

electricity at retail rates directly to end-use customer classes (industrial, commercial,

39



and/or residential), and for resale at wholesale rates to other utilities. As shown in Figure

2-7, publicly owned utilities, on the other hand, comprise the vast majority of entities

(approximately 60%), but they supply only about fifteen percent of the nation's power

needs. Publicly owned utilities such as municipal utilities are generally self-regulated

and financed through bonds. (EIA, 2007a)

Federally-owned utilities consist mostly of individual Army Corps of Engineers

and Bureau of Reclamation hydropower projects scattered around the country, and the

Tennessee Valley Authority, which operates generation and distribution facilities in the

Tennessee Valley Region. Power generated at these federally owned facilities is sold

mostly to publicly- owned and rural cooperative utilities at low (wholesale) rates, and

surplus power is sold to the wholesale market. Rural electric cooperative utilities exist

mostly as a result of the 1936 Rural Electrification Administration, created as part of

New Deal legislation, which sought to expand electric power access to previously

isolated rural areas. As of 2007, there were approximately 900 rural cooperatives in the

U.S., most of which act as distribution utilities only, purchasing power for their

customers from the wholesale market, and without their own generating facilities.

Additional (small) electric entities in the US consist mostly of individual

cogeneration and other industrial "facilities" with generation sources that sell power

directly to industrial or residential customers under regulated rates, and "other" power

marketing entities or energy service providers who sell either energy or distribution

services to end-use customers (EIA 2007a; Edison Electric Institute, 2009).
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Figure 2-7 Composition of U.S. Electric Utilities 2007 (EIA, 2007a)

2.1.3 Three Unique Characteristics of Electricity

In the context of operating the electric power system and planning for the future

of the generation sector, three unique and interrelated characteristics of electricity must

be considered. First, unlike other commodities, at present, electricity cannot be

effectively stored on a large scale, which creates severe inventory challenges. In practice,

this requires that electricity be produced in "real time," as it is demanded; generators on

the system respond to increased demand instantaneously by increasing their supply.

From an operations standpoint, the lack of storage creates several challenges, including

the need to maintain "spinning reserves" in order to maintain a margin above the current

level of demand that can be met rapidly. From a generation capacity planning standpoint,

this increases the importance of keeping a diverse portfolio of power plants-those which

can provide power as baseload, as well as more flexible technologies that can be started

and shut-down quickly.
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Second, the power supplied must always equal the electricity demanded plus any

transmission and distribution losses, in order to prevent power failures and system

damage. From a capacity planning standpoint, this requires that power supply adequacy

(size, number, availability, etc. of power plants) always remain ahead of demand.

Third, electricity system participants can only govern how much electricity is

produced, how much is demanded, and the physical infrastructure (i.e., transmission grid

and distribution wires) built to move the electricity around, but they cannot govern where

the electricity flows once it is put on the grid (physical laws dictate this). From a

capacity planning standpoint, this limitation increases the importance of generator

locational siting with respect to transmission infrastructure and load centers, among other

issues.

2.1.4 Electric Power Generation Planning

The complex technical, economic, regulatory, and other institutional frameworks

within which the electric power sector operates requires strong planning and modeling

tools. A multitude of models and modeling methods exist; yet their relevance depends

entirely upon the nature of the system being modeled and the nature of the inquiry.

Power system expansion modeling is routinely performed by several entities, each

seeking information that can inform very different types of questions. For example, the

federal government may be interested in testing the implications of various policy

proposals on the future U.S. generation portfolio mix (the interest of this dissertation) and

least-cost pathways for reducing carbon emissions. Regional transmission organizations

may be interested in forecasting capacity needs, given various demand projections. A
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transmission company may be interested in updating its long-range business plan and will

need to estimate future production capacity on the system grid so that they can build new

facilitating transmission lines. Finally, an individual generation company may want to

plan its own firm-level long-range generation portfolio.

Power system operation and expansion planning modeling proceeds on many

different levels and time horizons-from the very near term (in real-time, or on the order

of seconds) to very long term (30-50 years into the future) (Figure 2-8). The economic

dispatch function is on a shorter time scale (hourly) among the generation planning

functions, but on a longer time step than near-real time generator control management

(seconds to minutes) that keeps the system operating reliably. Economic dispatch

describes how decisions are made to actually operate currently installed power plants to

meet electricity demand. Above this function is unit commitment, which normally

proceeds on the order of hours to a day in advance of actual generation, and consists of

operators of the system and electric utilities confirming that specific generating facilities

will be available (i.e., "on"9 or "off") to generate electricity during the next period in

question. Electricity load forecasting is a necessary function within the generation

planning hierarchy because, although inherently volatile, system operators need to be

able to plan for how much generating capacity is needed to meet demand. At the longest

time scale (years to decades) is the task of generation expansion planning, which is the

function of making decisions about generating capacity to add to the system to meet

future demand. This constitutes very long-term planning, and the electricity industry

commonly employs cost-effectiveness analyses to do so, where the goal is to add new
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capacity at the lowest cost while still meeting overall system objectives such as reliability

and/or sustainability.

Finally, there are interdependencies within this modeling hierarchy: each stage of

planning directly depends upon the preceding step, increasing the importance of sound

representations, estimations, and assumptions (Ramos et al., 2008; Ramos, Cerisola, &

Latorre, n.d.). Modeling subsequent system functions requires that appropriate

assumptions are made about all preceding functions. Because expansion planning-the

focus of the larger research question in this work-is at the extreme end of the spectrum

and requires assumptions about the processes at smaller time scales, special challenges

exist for the long-range generation capacity expansion planner.
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Figure 2-8 Electric Power System Planning Functions (Perez-Arriaga, Rudnick, & Rivier, 2009)
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2.1.5 Generating Technology Costs

The generation capacity expansion problem is cost-driven. There are several

additional objectives relevant to broader decision making about new capacity additions,

but ultimately the decision comes down to a question of costs. Currently, the range of

costs associated with technologies capable of generating electricity is very wide.

Moreover, there is a high degree of variability between the different types of costs that

comprise the total cost structure for a given technology, and it is the combination of these

different costs that allows the expansion planner to choose between different installation

plans. Several estimates exist for the costs of different technology types (a result of

companies' reluctance to publicly reveal the final values they end up paying to install and

operate different technologies, and of the different methods and sources for data

collection). Figure 2-9 shows examples of capital, fixed operation and maintenance, and

other variable costs across different technologies as used by the National Renewable

Energy Laboratory (NREL) (Short et al., 2009) and the U.S. Energy Information

Administration (EIA) (EIA, 2010b).
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Figure 2-9 Capital costs (a), fixed operation and maintenance costs (b), and variable costs (c) for various electricity generation technologies (Data Sources: Short et al.,
2009; EIA, 2010b).
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At present, new advanced coal plants, coal plants with carbon capture and

sequestration technology, nuclear power plants, and large solar photovoltaic plants

remain the most capital intensive and costly plants, while also being the least expensive

options regarding fuel-based variable operating costs. Natural gas plants follow an

opposite pattern, with relatively low capital costs, but historically high natural gas prices

(and relatively volatile gas prices, making planning for their expansion and operation

challenging). As of the last decade however, new drilling techniques have allowed for

enormous increases in production of natural gas from shale formations in the U.S., which

have helped keep natural gas prices quite low and less volatile (Figure 2-10). Wind power

remains relatively moderate with respect to capital costs and free with respect to fuel

costs (renewable wind).
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Figure 2-10 Natural Gas Prices Paid by Electric Power Sector 1997-2011 (EIA, 2012a)

When combined, these fixed capital and variable fuel costs (and other costs) are

used to determine the least-expensive manner in which to meet electricity demand. For
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example, the relatively high capital cost of a coal plant but low fuel cost makes it an ideal

choice for meeting the baseload of electricity demand-once a coal plant is installed, it is

very economical to run, so it should run most of the time. An additional relevant

technology-related feature for the generation expansion planning problem is the

availability of the fuel resource, particularly in the case of wind power or solar power. In

the case of wind power, for example, the capital cost is modest, and the fuel price is zero,

but the wind resource remains an intermittent and less reliable source of energy than

other energies, which limits its ability to be widely adopted at large scale.

These different technology characteristics lay the foundation for how different

generation technologies within the power system balance each other, and why a diverse

portfolio of technologies is often the most economical: build as much of the capital

intensive, low fuel cost technologies as can meet the base-level of electricity demanded

during a day, or a year, etc., and then begin matching subsequent quantities of electricity

demanded and the amount of time it is needed with the technology that is most

economical to build and operate for that amount of time. Using such a "screening curve"

approach usually results in technologies such as nuclear, coal, and hydropower plants

being built and operated to meet baseload electricity demand, natural gas combined cycle

plants being built to meet "shoulder" electricity demands, and natural gas open-cycle

plants being built to meet the highest, peak levels of electricity demand. Renewable

resources such as solar power and wind power remain relatively isolated from traditional

screening curve analyses, as their primary energy resources are intermittent and they are

usually utilized whenever available. The rest of the system then adjusts.
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2.1.6 Electricity Industry Regulation and Oversight

Several government and quasi-governmental agencies at the federal, regional, and

state level oversee the generation sector of the U.S. electric power industry. At the

federal level, the main bodies of oversight and support include the Federal Energy

Regulatory Commission (FERC), the Environmental Protection Agency (EPA), and the

Nuclear Regulatory Commission (NRC). FERC is mainly responsible for the oversight

and approval of wholesale electricity and transmission rates in interstate commerce. EPA

oversees and administers most environmental regulations affecting generation facilities,

including technology standard setting for new generating facilities (e.g., minimum air and

water emission limits) and pollution compliance programs. NRC oversees virtually all

aspects of the civilian nuclear power program in the U.S., including reviewing and

approving proposals for new plants, re-certification of plants, and decommissioning of

old plants. To a lesser extent, but still overseeing specific industry and market practices,

are the Federal Trade Commission (FTC), the Department of Justice (DOJ), and the

Commodity Futures Trading Commission (CFTC).

At the state-level, the main authorities include Public Utility Commissions

(PUCs) and other state commissions, and the appropriate state-level environmental

agency or agencies. PUCs in each state are responsible for regulating rates and services

of public electric utilities. Often, they are multipurpose commissions and oversee a wide

range of public utilities such as natural gas, water and wastewater, telecommunications,

and transportation and safety, in addition to electricity. State environmental agencies,

such as the Texas Commission on Environmental Quality (TCEQ), California Air

Resources Board (CARB), and Massachusetts Department of Environmental Protection
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(MassDEP), typically administer federal regulations governing generation facilities (e.g.,

federal pollution permit programs), and also retain authority to enact more stringent state-

level environmental regulations if desired.

In addition to federal, state, and sometimes even local regulatory authorities, the

U.S. electric power industry is divided into three levels of regional regulatory oversight.

The first level consists of the physical power grids, and does not directly involve the

actual generation resources. The continental U.S. consists of three separate power grids,

which operate simultaneously and at the same frequency, but not synchronously, and

therefore they require special interchanges to connect them (Figure 2-11). Alaska and

Hawaii operate on separate systems: Alaska operates a traditional grid that connects its

major urban areas, various mini-grids, and smaller isolated diesel generators. Hawaii

consists mainly of non-interconnected mini-grids and isolated generators for powering

individual islands. The lack of synchronous operation between the three main power

grids in the continental U.S. makes coordination and planning between them an often

challenging task (U.S. Department of Energy, 2009).

50



TOus W"Conn.ot

Figure 2-11 U.S. Power Grids and NERC Reliability Regions (U.S. Department of Energy, 2009)

The next level of oversight is also shown in Figure 2-13, and consists of the North

American Electric Reliability Councils (NERC regions). There are ten in the US plus

Canada, which are structured to oversee reliability, and security of generation resources

and electricity supply. Utilities within each NERC region coordinate planning and

operations in order to maintain a suitable level of electricity supply security and

reliability. Finally, the industry consists of several Regional Transmission Organizations

(RTOs) (also known as Independent System Operators (ISOs)) that operate throughout

North America. The Federal Energy Regulatory Commission organized and developed

RTOs to formally replace former informal power pools, which used to exist to exchange

power and coordinate planning and operation between regional grid areas (Figure 2-12).
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Figure 2-12 Regional Transmission Organizations in North America
(Federal Energy Regulatory Commission, 2012)

Given the comprehensive coverage of regulations and legal oversight of the

electric power industry, it is perhaps surprising that there is any discussion about

deregulation in the U.S. First, it must be noted that the term "deregulation" is an often

misapplied word in this context; in the electricity sector deregulation applies only to the

generation sector (and even then only to a portion of the generation sector). U.S. interest

in deregulation was spawned in the early 1990s for a variety of reasons that are beyond

the scope of this system overview, but its basic tenet was the substitution of market prices

for previously government-set consumer retail rates for electricity. In deregulated

markets across the U.S., generation sectors have been restructured and customers can

make the choice about their electricity supplier. Currently however, the U.S. struggles in

a state of disequilibrium, about half-way between a highly regulated system dominated

by local monopolies and a deregulated system where electricity prices and generation

capacity investment decisions are set primarily by competitive markets (Figure 2-13). At
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the state level, several states have active, restructured industries; yet others that had

originally started down the deregulation path have suspended their restructuring efforts

for a variety of reasons. In the near term, and what is relevant for generation expansion

planning, the U.S. will continue to see a hybrid system of regulation and competition,

making the planning job even more challenging.

Electricity Restructuring by State

Figure 2-13 Status of U.S. Restructuring by State (EIA, 2010c)

2.1.7 Climate Change and the Policy Landscape

In 2011, the U.S. electric power generation sector emitted approximately 2000

million metric tons of carbon dioxide into the atmosphere, representing about 40% of the

country's CO2 emissions-the most abundant anthropogenic greenhouse gas. Emissions

from the transportation sector follow closely behind, with all other sectors representing a

smaller fraction (Figure 2-14). This trend has been consistent throughout recent history

(Figure 2-15).
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Figure 2-15 Carbon Dioxide Emissions by Sector 1990-2011 (EIA, 2012b)

Until 2006, the U.S. was the largest emitter of the CO 2 in the world (only recently

superseded by China as the world's largest emitter during the past five years), and

remains the largest cumulative contributor of CO 2 in the atmosphere. Figure 2-16

illustrates the relative proportion of U.S. CO2 emissions compared with other major

emitting countries and with the rest of the world. When the data in this figure is

combined with the share of electric power emissions from Figure 2-14 above, it can be
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shown that the U.S. electric power industry accounts for roughly 10% of CO2 emissions

from the world's top emitters. Thus, planning for a sustainable and low carbon U.S.

electricity generation sector constitutes a non-negligible size of the entire world's CO2

mitigation effort.
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Figure 2-16 World's 10 Largest CO2 Emitters (in Gigatons) 2009 @ OECD/IEA (IEA, 2011)

Cognizant of this need, the world and the U.S. have produced a flurry of political

and technical proposals about how a transformation to a low-carbon world electricity

sector might proceed. On the policy front, in 1992 the United Nations Framework

Convention for Climate Change (UNFCCC) outlined a process for global coordination

towards stabilizing greenhouse gas concentrations in the atmosphere at a level that would
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prevent dangerous anthropogenic influence with the Earth's climate system. As one step

in this process, the Kyoto Protocol was agreed to in 1997 and ratified by 160 countries

(the United States not included). The Protocol went into force in 2005 and as of January

2009, 183 parties had signed on to it. It called for a roughly 5% reduction in collective

greenhouse gases from industrialized countries relative to their 1990 emissions. The

Kyoto protocol expires at the end of 2012, and discussions about its extension or re-

ratification are at present moving forward slowly. The world's climate change leaders

are still negotiating the next installment of a global treaty on greenhouse gas reduction.

But whatever the result of these negotiations, the importance of a transition to a low

carbon electricity generation sector in the long-run is well-known.

Domestically, the U.S. has been addressing climate change and greenhouse gas

reduction issues for some time now. In recent years, there has been a surge of legislative

proposals at the federal level aimed at curbing national greenhouse gas emissions through

various mechanisms (carbon tax, cap-and-trade, etc.). In June 2009, the U.S. House of

Representatives passed the American Clean Energy and Security Act (ACES Act), which

set forth the structure of a possible future cap-and-trade program for CO 2 and other

greenhouse gas emissions, including those from the electric power sector. Targets for

emission reductions were stringent, and the distribution of allowances for the electricity

sector decreased over time until reaching zero by about 2030, pointing once again to the

imperative nature of electric power generation technology reform. To date, neither

ACES nor any other climate policy legislation has been enacted.

While the country waits for future national climate policies to be decided,

regional, state, and local governments have proceeded to address climate mitigation
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through their own initiatives. Twenty-nine states and the District of Columbia have

renewable electricity generation portfolio standard mandates (RPS) and five more states

have voluntary renewable goals (Figure 2-17). Additionally, regional greenhouse gas cap-

and-trade programs such as the Western Climate Initiative and the Regional Greenhouse

Gas Initiative (RGGI, in the Northeast) were developed and some are already operating.

Other non-federal partnerships, such as the U.S. Mayors Climate Protection Agreement,

where cities pledged to meet Kyoto-like greenhouse gas reduction targets (seven percent

below of 1990 levels by 2012), have been created.

Renewable Portfolio Standard
Alternative Energy Portfolio Standard
Renewable or Altemative Energy Goal

Figure 2-17 U.S. State Renewable and Alternative Energy Standard Program Status
(Pew Center on Global Climate Change, 2009)

Meeting even modest climate targets will require major changes in the electric

power system; some of these have already begun taking place. The first, most striking,

and highly influential change is the exponential growth in generating capacity using low-
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and zero-carbon emitting renewable resources (Figure 2-18), most of which is due to rapid

increases in new wind power facilities. Although this increase still only results in a total

renewable capacity of 5% of total generating capacity in the U.S., this relative capacity

growth (and associated operation) still affects the overall system in meaningful ways.

One important effect is the need for system operators to manage an increased level of

intermittent electricity generation with zero-emissions with a lower resource availability

rate compared to conventional fossil and nuclear plants. This complicates capacity

planning by increasing the need to create balanced portfolios of technologies for reliably

meeting demand.
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Figure 2-18 U.S. Renewable Electricity Technology Capacity Trends 2000-2010 (EIA, 201 Oa)

Other key technological prescriptions for the system to help transition the

generation sector to a low-carbon state-some of which have already begun moving

forward-include an increase in distributed generation resources such as small facility

wind-turbines and residential and commercial-top roof solar photovoltaic panels, the
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growth of battery-electric vehicles in the transportation fleet, and serious consideration of

integration of carbon capture and sequestration technology into fossil fuel-fired power

plants on a large scale. Each of these prescriptions, however, including the continued

addition of more renewable resource capacity, will require continued technological

advances, and in some cases technological breakthroughs. Large-scale carbon capture

and sequestration at coal and natural gas plants needs additional research due to its high

capital cost relative to other conventional technologies. Adding more and more wind

power to the system will require the use and integration of other technologies to help

balance its intermittency. Integrating new technologies such as battery-electric vehicles

and large amounts of distributed generation would enable efficient large-scale electricity

storage on the system, but would require a radical technology shift in the transmission

and distribution sub-systems as well.

2.2 U.S. Electricity Innovation Activity

Technological change that would enable generating electricity more efficiently, at

lower cost, or using radical new processes or scale-up of technologies, will require

research and experience at several different stages. Broadly, technological change

encompasses the invention, innovation, adoption, and diffusion of a technology from the

laboratory to the point of commercialization and deployment. These phases loosely

correspond to a learning-by-searching process followed by a learning-by-doing process,

although there is considerable overlap and feedback between the two. In general,

learning-by-searching can be considered the early innovative phases of a new technology

or process, through invention and innovation. Learning-by-doing technological change
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generally occurs through demonstration and use of the technology once it is ready or

almost ready for deployment. Formal efforts to increase efficiencies, reduce costs, or

develop new processes or technologies through R&D programs usually occur in the

learning-by-searching process.

Regardless of the pathway for technological change, several studies have called

for the need to significantly increase the pace of energy technology change if a serious

effort to manage climate change is to be made (Henderson & Newell, 2010). In fact, this

need is very clearly seen in some of the most widely used energy systems and emissions

forecasts used to inform policy making today. In the 2010 U.S. Energy Administration's

reference case forecast, U.S. energy consumption increases 13 percent and carbon

dioxide emissions increase 9 by 2030, which would exceed the range of carbon emissions

targets proposed at the national level (Henderson & Newell, 2010). As another example,

the reference scenarios of the International Panel on Climate Change (IPCC) reports

assumed that two-thirds of all the energy efficiency improvements and de-carbonization

technologies needed to reach climate stabilization targets would occur in the absence of

additional climate policy beyond the status quo (Pielke et al., 2008). Pielke et al. (2008)

argue that this assumption implies that the amount of technological change actually

needed is even more than is often assumed.

The following subsections provide a general background of U.S. energy

innovation activity, with a focus on electricity-related technologies. Brief accounts and

overviews of the U.S. record of electricity innovation; current technology hurdles; key

players in the innovation system; past and present R&D funding levels and trends; and

key technology policy tools are presented.
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2.2.1 U.S. Record of Energy Innovation

The U.S. has a good record of innovation in energy technologies that it can build

upon, particularly with electricity generation innovation. Consider the case of the

advanced, combined-cycle natural gas-fired turbine, a technology that has provided the

greatest efficiency gains in the electricity generation sector of any single technology type.

The civilian nuclear power program provides another example. Building upon earlier,

mostly military R&D investments, capacity additions of nuclear power experienced a

dramatic increase in the 1960s and 1970s in the hopes of being a reliable, low-cost source

of domestic energy (Newell, 2011). Although nuclear capacity has slowed tremendously

since the 1980s for a variety of reasons, there has been a resurgence in interest in

developing the next generation of nuclear plants with higher temperatures, higher

efficiencies, and lower fuel-use (and lower overall costs). Finally, the case of wind

power in the U.S. shows an example of successful R&D efforts. Since the early 1970s,

when a major effort at wind power innovation and deployment was made by the U.S.

federal government and some non-governmental partners, dramatic shifts in the

technology have taken place and wind turbine deployment has accelerated, due to

decreasing costs, government subsidies, and tax credit programs. Whereas early wind

turbines were small-generating about tens of kilowatts with 15 meter diameter rotors-

the use of lighter-weight materials and capability to operate at variable speeds has

allowed recent wind turbines to generate up to 2.5 megawatts using rotors closer to 100

meters in diameter. These increases in scale have also lowered the cost of generating

electricity from a wind turbine from almost 30 cents per kilowatt hour in the 1980s to 10

cents per kilowatt hour in 2007 (Newell, 2011).

61



2.2.2 Technology Hurdles

Similar types of transformations need to occur-some on a much larger scale and

faster timeline-if significant carbon reductions are to be achieved. Technologies

requiring further improvements include carbon capture and sequestration, advanced

nuclear, solar, and wind. For coal- and natural gas-fired power plants with carbon

capture and sequestration (CCS), the major hurdles require addressing efficiency losses

that occur in the capture process, and reducing the associated high investment costs.

Currently, fewer than ten large-scale demonstration projects exist, but almost ten times

more are needed to rigorously prove the technology is viable at the scale needed.

(Several non-technical hurdles for CCS also exist, including the need to establish legal

and regulatory frameworks for stored carbon dioxide, international collaboration to learn

about the technology faster, and integration of CCS technologies into future climate

policies.)

Nuclear (fission) technology is already proven at scale, but there is a current push

to build new plant designs that can operate at higher temperatures (and achieve greater

efficiencies and reduce fuel use and waste output), thereby lowering costs. Non-technical

hurdles also exist for nuclear power technology, including a need to establish permanent

long-term storage of spent fuel, and overcome various political constraints associated

with nuclear power safety concerns and fuel storage.

In terms of solar power, innovation goals for concentrating solar power

technology include cost reduction by increasing scale (e.g., plants with 100+

concentrating dishes), higher electricity storage capacities, and higher operating

temperatures. For solar photovoltaic (PV) technology, needs include basic materials and
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chemical engineering innovation to increase performance, as well as designs for

increasing scale. For wind technology, the technology change focus continues to be on

lighter and stronger materials for all wind power subgroups. New innovations are also

needed in basic materials to achieve large scale deep-water off-shore wind installations

(e.g., adequate corrosion-resistant materials for ocean applications). (IEA, 2010; Herzog,

2011)

2.2.3 Key Players in R&D

Electricity-related R&D funding comes from several different sources. At

present, R&D activities are pursued in a variety of modalities. The U.S. Department of

Energy (DOE) provides almost 90% of the federal government's energy funding to

national laboratories, universities (usually through grants), and co-funded collaborative

research projects with utilities and equipment manufacturers. The balance is made up of

funding from the National Science Foundation (NSF), National Aeronautics and Space

Administration (NASA), and a range of Executive Agency Departments (ITIF, 2010).

National lab research is usually targeted at basic energy science, although funding for

applied science has also been granted (albeit in a less committed and more volatile

manner) (Anadon et al., 2010). Two new federal energy R&D institutions include the

DOE Energy Innovation Hubs (DOE EIH) and the Advanced Research Projects Agency -

Energy (ARPA-E). The DOE EIH program mission is to integrate basic and applied

R&D efforts to reach commercialization of important energy technologies. ARPA-E is

focused on high-risk, high-reward innovation, acting as a funding mechanism for projects

that seek to develop the next generation of energy breakthrough technologies. Both
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institutions provide multi-year (3+) funding commitments for projects (Anadon et al.,

2010).

Historically, electric utilities themselves played a significant role in funding R&D

activities (mostly applied research), but this has waned in recent years. This shift

occurred for a variety of reasons, but one important driver has been deregulation and

increased competition. In the past, public utilities, which were mainly regulated

monopolies, could receive approval for including R&D expenditures in their rate base,

which allowed them a fixed rate of return on those expenditures. However, this is no

longer the norm (GAO, 1996). Private and investor-owned utilities continue to partake in

R&D activities, as do state programs (although both to a lesser extent than the federal

government). Private equipment manufacturers constitute the other major source of R&D

funds, although estimates of their spending are proprietary and thus usually unavailable

in a form sufficiently disaggregated to be useful. A 1988 study by the Electric Power

Research Institute estimated that private equipment manufacturers spent a total of $200

million on electricity-related R&D (GAO, 1996).

The story of the innovation behind the advanced combined cycle gas turbine

provides a useful example of the heterogeneous efforts that mark the present innovation

landscape in the power sector. When the Advanced Turbine System (ATS) program was

launched in 1992, a long-term (8-year) R&D program was outlined and agreed to by all

participating parties, totaling approximately $750 million. Two simultaneous programs

were launched, one by General Electric Power Systems and the other by Siemens

Westinghouse Power Corporation. In both cases, nine different groups participated in the

R&D effort. In the case of the GE turbine design program, GE partnered with DOE
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national laboratories and the DOE program management, utility companies and power

producers, university research programs (through research grants), vendors, casting

companies, and other GE business groups including GE Aircraft Engines and GE

Corporate Research Division (Curtis, 2003). A similar set of groups participated in the

Siemens Westinghouse effort.

2.2.4 R&D Funding Levels and Trends

Although institutions across the country exist to perform energy R&D activities,

adequate funding to do so has been a different story. As of 2007, the U.S. invested $1

billion less annually than it did a decade earlier in electricity sector technologies, as well

as across the energy industry (Nemet & Kammen, 2007). In fact, both public and private

R&D investments declined dramatically between the early to late 1980s and mid-2000s,

with public R&D funding declining more rapidly (Figure 2-19).
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Figure 2-19 U.S. Public and Private Energy R&D Trends 1975-2005 (Nemet & Kammen, 2007)
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Two troubling features of this declining investment in energy innovation is that 1) it was

counter to the country's overall R&D spending, which grew by over 5% per year, and 2)

the amount of energy R&D spending compared to R&D spending across other sectors of

the economy has always been low (less than 10% of total spending) (Nemet & Kammen,

2007; Margolis et al., 1999; Henderson and Newell, 2010). The decline in private R&D

investments is especially challenging because in the past private companies and

manufacturers were a reliable source of funding. The three main drivers behind this

decline included the slow but continuing shift from regulated monopolies to competition,

the decline of interest in nuclear power as a "savior" zero-carbon energy source due to

concerns about waste, safety, and project cost overruns, and policy uncertainty (Nemet &

Kammen, 2007).

More recently, this trend appears to be reversing and in 2010 overall energy

innovation spending grew, from $3.2 billion in 2009 to $3.4 billion. During these years,

an additional $4 billion was allocated to energy innovation projects through the American

Recovery and Reinvestment Act (ARRA). The percentage of these funds devoted to

electricity generating technologies is also considerable-approximately 50%--and were

spread across a diverse set of technology categories (Figure 2-20) (ITIF, 2010).
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Figure 2-20 2010 Electricity Technology Spending by Technology Category
(ITIF Energy Innovation Tracker, 2010)

When considering total electricity-related support (including direct expenditures,

subsidies, and tax expenditures), the 2010 estimate grows to $11.9 billion, an increase

from $7.7 billion in 2007 (EIA, 2011 c).

2.2.5 Technology Policy Prescriptions

Technology policy as a means to stimulate a transformation to a low-carbon

electricity sector is a much-discussed topic with respect to climate change mitigation and

overall climate policy. Throughout the economic literature on technological change

about the public role in energy innovation, two dominant roles exist: 1) to stimulate a

market for technological improvements through policy interventions such as

environmental regulation or a carbon cap and trade program, and 2) to directly support

R&D activities to bring new technologies to the market (e.g., Newell, 2011; Henderson &
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Newell, 2010; Fischer, 2009; Pew Center of Global Climate Change, 2008; Anadon et al.,

2010). These two roles reflect the frequent "demand-pull" and "technology-push"

prescriptions for technological change.

Demand-pull incentives refer to changes in the market, which lead to more of a

certain type of technology being demanded. New environmental regulations, among

many other things, can influence the demand for new technologies. For example, a

pricing scheme for carbon emissions from the energy industry will increase the demand

for many low-carbon electricity technologies, as firms directly affected by the new

regulations look for ways to decrease costs of compliance. This increase in demand will

signal the potential for increased profits to private inventors upstream, thus incentivizing

them to innovate (Fischer, 2009).

The Federal Interconnection Standard implemented in 2003 and adapted in 2005

is one current example of a regulation that promotes the use of renewable electricity

generation. Other common demand pull incentives for electricity generation technology

deployment include state-level renewable portfolio standards that mandate a minimum

level of renewable resource generating capacity to be online by specific dates, capacity

payments for generators that participate in special "capacity markets", tax credits or

production subsidies paid directly to utilities for installing certain qualified new

technologies, low-interest loan programs, and demonstration projects (Pew Center for

Global Climate Change, 2008). An example of a subsidy program is the US Department

of Treasury Renewable Energy/ARRA Grant Program implemented in 2009, which

awarded up to 30% of the property (i.e., equipment and property costs) for qualified fuel

cell, solar, or small wind turbine facilities. Specific examples of current tax incentives
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programs are the federal Modified Accelerated Cost-Recovery System (MARCS)

corporate depreciation program, which allows businesses to recover investments in

certain renewable energy properties through depreciation deductions. Another is the

Business Energy Investment Tax Credit (ITC), which provides a 30% tax credit for

qualified solar, fuel cell, and small wind facilities, and 10% for qualified geothermal,

micro-turbines, and combined heat and power applications. (DOE, 2012)

Perhaps the most well-known renewable energy tax credit program in the U.S. is

the Renewable Electricity Production Tax Credit (PTC), which presently provides

companies 2.2 cents per kWh for generation from qualified wind, geothermal, and

closed-loop biomass facilities, and 1.1 cents per kWh for other eligible technologies.

However, the U.S. experience with this demand pull mechanism has been mixed.

Between 1992 when it was enacted and 2007, the PTC has experienced lapses in funding,

creating policy uncertainty and significantly affecting the actual adoption of technology.

Figure 2-21 illustrates the growth in wind power generation capacity in the U.S. once the

PTC took effect, as well as the impacts of the PTC lapses in specific years. (Wiser,

Bolinger, & Barbose, 2007)
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Figure 2-21 Impact of Production Tax Credit on Wind Power Capacity Growth in the U.S.
(Wiser, Bolinger, & Barbose, 2007)

Despite the economic incentives provided by demand pull mechanisms, private

inventors still do not have sufficient incentive to undertake the level of R&D that is

socially optimal. The market failure in this case is that knowledge (the return from R&D)

is a public good. From an economic perspective, when a private inventor produces new

knowledge, it would like to be able to claim 100% of the returns from that investment.

However, when a new technology or invention is developed and sold, part of the new

knowledge returns "spillover" into the public domain. From the perspective of other

actors, these knowledge spillovers are "free." However, the inventor is uncompensated

for the benefits that others receive from this knowledge. . All firms therefore have an

incentive to free-ride on the R&D of others, and will themselves under-invest in R&D. A

rational agent will invest in R&D only to the point where private returns equal their

investment or production costs.
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The situation presents a mirror image of the public goods nature of clean-air in

environmental markets, and the negative externalities associated with industrial air

emissions from the electricity production process. In the absence of environmental

policies forcing firms to internalize the negative externality associated with their

emissions, firms have an incentive to overproduce emissions because they do not have to

pay for them. In effect, they enjoy the benefits of "using up" clean air for free, while the

public pays for it (through less clean air). In knowledge markets, the public reaps the

rewards of free knowledge, while the inventing firms end up paying for it. Public

policies for R&D, therefore, essentially seek to make the public "internalize" the positive

externality associated with inventors' knowledge production.

Technology push mechanisms are intended to address this specific market failure

and increase the overall success rate of R&D activities. Common direct-support policy

mechanisms to achieve this internalization include R&D contracts with private finns,

contracts and grants with universities, allocations for research conducted within

government labs, and contracts with industry-led consortia or collaborative efforts (such

as in the case of the ATS program). Other policy tools support technologies that are

closer to commercialization and production, but still focus on technology push. These

include mechanisms such as patent protection measures and R&D tax credits.

2.3 Long-term Planning Uncertainties

The U.S. electricity generation and innovation systems nexus faces a multitude of

uncertainties that the policy maker, business operator, or other stakeholder must grapple

with when planning for the system's future. The following section briefly details some of
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the main uncertainties that mark the long-term expansion planning problem. The first

subsection focuses on uncertainties that traditionally have been considered within the

planning context, and the second subsection describes relatively new uncertainties that

motivate the current dissertation research.

"In one word, a key challenge for meeting emissions and technology goals

is uncertainty. We are not sure what emissions reductions will ultimately

be needed or what the corresponding prices will be. We do not

necessarily have a good idea of the costs of large-scale deployment of

existing technologies, when breakthrough technologies might arrive, or to

what degree costs and quality of existing technologies will be improved.

These kinds of uncertainties can create a tension-how to choose among

them?" (Fischer, 2009)

2.3.1 "Traditional" Uncertainties

Uncertainties that long-term electric power system planners have long confronted

include uncertainty in demand growth and uncertainty in fuel prices. To meet cost-

minimization goals, planners must be able to accurately predict how much electricity will

be demanded at a future point in time so that proper amounts and types of new capacity

can be added to the system. Too much new capacity and the system will be overbuilt; too

little and the system will be unreliable, unable to effectively deliver electricity to

consumers upon demand. In recent years, the uncertainty in demand has increased due to

increased electricity conservation and efficiency measures consumers can choose (e.g.,
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more efficient home appliances, choices about when to use electricity in areas with time

of day pricing), and the possibility of widespread electric vehicle adoption and use. How

these choices will impact electricity demand, and how long they will need to take effect

are important inputs to the planner's decision making about how to add new generating

capacity to the system. Each of these consumer choices can impact the way electricity is

demanded throughout a day or a year (the shape of the load curve) and can impact overall

demand growth, creating an additional source of complexity and uncertainty.

Fuel prices have also long been a source of uncertainty. As mentioned in Section

2.1, coal prices have historically been low and stable, but natural gas prices have been

quite volatile throughout history (Figure 2-22), making it difficult to know a priori

whether adding new natural gas-fired generating facilities should be part of a long-term

least-cost management plan. As discussed above, the rejuvenation of the domestic

natural gas industry due to abundant recoverable shale gas in the U.S. might reduce this

uncertainty for the near future, but in the long run, fuel price uncertainty will continue to

exist.

Uncertainty in the availability of adequate supporting infrastructure (transmission

and distribution lines) is a third key uncertainty in the long-term planning of generating

facilities.
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Figure 2-22 Henry Hub Daily Spot Market Natural Gas Price 1993-2006
(EIA, 2007b, Original Source: NGI's Daily Gas Price Index, Intelligent Press)

2.3.2 "New" Uncertainties

Recent environmental and climate change concerns create additional

uncertainties. These include uncertainty in the cost of future technologies to aid in CO2

emission reduction from generation (e.g., carbon capture, storage, and sequestration,

next-generation nuclear), the outcomes of R&D investment efforts to invent and bring

new technologies to the marketplace, uncertainty in future policies (environmental

constraints, regulations, and incentives), and uncertainty and variability in the energy

resource availability for certain key renewable energies such as wind and solar.

The uncertainty in the technological change process is inherent. Past research

program outcomes can lend some evidence for the quantity and quality of returns to R&D

investments, but it is not possible to know with perfect foresight the degree to which

innovative efforts will succeed or fail. The innovation and R&D process is by nature
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stochastic, and thus best described by a probability distribution of outcomes to specified

levels of R&D effort (Mansfield, 1968; Evenson & Kislev, 1975). Moreover, these

probability distributions are often highly skewed. The majority of outcomes are smaller,

more incremental, and less individually valuable contributions to overall technological

change, with few occurrences of high value, breakthrough-type innovations (Jaffe &

Trajtenberg, 2002; Pakes, 1986). The shape of these distributions can also be quite

different for various technology groups within the same industry. Though still skewed,

distribution profiles characterizing technologies that seem to experience "slow and steady

progress," across different levels of R&D co-exist with profiles for technologies that fall

into a more "high-risk, high-reward" type of innovation process (Chapter 6). Likewise,

the nature of learning-by-doing is uncertain; human experience with other technology

types and resulting learning rates and cost reductions can provide evidence of what to

expect, but this cannot be known a priori due to the inherent differences in how people

and organizations learn.

As mentioned in Sections 2.1 and 2.2, the past decade has seen discussion about

federal climate policy and pricing carbon, but at present no national economy-wide

legislation has been enacted. Political issues and competing interests have made it

difficult to pass such legislation. Economic recessions, strong support for other domestic

policy agenda items such as finance or healthcare, and even the historically low natural

gas prices have all helped to shift the focus away from climate policy and greenhouse gas

emissions mitigation in recent years. These ups and downs create a sense of uncertainty

about the likelihood of future mandatory climate change regulation, which greatly

influences the way long-term planning in the electricity industry is performed. Shorter-
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term policy uncertainties are also prevalent in the system, as shown in the case of the

U.S. Renewable Electricity Production Tax Credit (PTC) program, where lapses in the

program caused the industry to quickly and substantially change its capital investment

pattern.

Finally, energy from natural resources such as the sun, wind, rivers, and other

hydro reservoirs, retain an inherent natural variability that the long-term electricity

planner must account for in building a reliable and efficient power system. Averaged out

over the course of a year for example, wind or solar power might convert about thirty

percent of its energy into usable electricity to meet demand. However, within the year,

from season to season and day to day, the amount of wind or sun available to generate

electricity is quite variable. Figure 2-23 shows the highly volatile output from a single

wind turbine in Germany (blue line), compared to the spatially averaged output when

groups of turbines are considered, or wind power across the entire country. Note the

continued volatility even in the output when the entire country is considered. Despite the

most sophisticated forecasts, the amount of variability is not entirely predictable. This

intermittency must be accounted for in long-term plans by making specific decisions

about the location and type of balancing resources, such that this low-cost, low-carbon

resource can be efficiently used, but in a manner that does not adversely affect electricity

reliability.
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Figure 2-23 Volatility in Wind Turbine Output, Germany C OECD/IEA (IEA, 2008)

The next chapter reviews the literature on state-of-the-art electricity capacity

expansion planning tools with respect to representation of power system details,

technological change, and uncertainty.
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Literature Review

There are many challenges to representing critical features of the long-term

electricity generation capacity planning problem in a model that can inform the policy

process. At present, national-scale electricity generation capacity expansion models can

evaluate several aspects of the interaction between environmental policies and the power

industry, but ultimately lack one or more of three overarching features jointly necessary

to provide useful insights about an optimal balance between R&D program and power

plant investments. First, they lack resolution of the critical structure of the electricity

sector. Second, they lack an explicit endogenous representation of the effects of

learning-by-searching technological change. Third, they lack an efficient decision-

analytic framework to explore R&D and plant investment options under a range of

uncertain technology futures. This chapter reviews details about the current capabilities

of state-of-the-art electricity capacity expansion models with respect to their

representations of power system details, technological change, and uncertainty, and thus

their effectiveness for decision support within this context.

3.1 Resolution of the Structure of the Electric Power Sector

The majority of models used to inform policy tend to be lacking in technological

explicitness, macroeconomic completeness, or microeconomic "realism," (Bataille,

Maccard, Nyboer, & Rivers, 2006). Two types of models currently dominate in the

spectrum of tools to help policy makers understand the implications of their decisions on

businesses and consumers: 1) economic models that represent the macroeconomic
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implications of certain policies, but typically omit key engineering constraints that

influence firm-level decisions and the technology mix that would result, and 2)

engineering-cost models that are designed to represent rich technological detail, but do

not explicitly capture firm-level decisions on technology adoption or macroeconomic

behaviors and feedbacks. This discordance has driven an entire movement in hybrid

energy policy modeling, which aims to link engineering cost models with economic

models in order to capture the spectrum of needs to inform policy. However, many

challenges remain for hybrid models to represent the full range of processes and

feedbacks relevant to the policy discussions they are intended to inform.

3.1.1 Economic Models

Many existing models for environmental and climate policy analysis focus on

representing the economy as a whole, and for tractability reasons use highly simplified

representations of the electric power sector. Classified by some as "top-down"

environment-economy models, they can be broadly categorized into one of two groups:

computable general equilibrium models (CGEs) or inter-temporal optimizing growth

models (Sanstad & Greening, 1998).

Aggregate energy-environment CGEs such as the MIT Emission Prediction and

Policy Analysis (EPPA) model or the EPA Applied Dynamic Analysis of the Global

Economy (ADAGE) model are two examples (Paltsev et al., 2005; Ross, 2008). These

models represent multiple regions and multiple industries. Productive output is the result

of demand and supply of multiple sectors of the economy being in equilibrium,

determined by the simultaneous clearance of all represented markets. The strength of
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these models is that they capture important economic feedbacks between sectors of the

economy, such as substitution or trade effects. They are particularly useful for describing

how price changes in one sector affect all other represented sectors of the economy.

However, these economic models typically lack detail about technology types,

operational constraints, and important dynamics of the sectors and industries they

represent. Considering the electric power system, this does not allow for generation

technology expansion decisions to be made in a manner consistent with how different

technologies within the system complement and interact with each other. Computable

general equilibrium models typically use nested CES (constant elasticity of substitution)

functions to represent how fossil-fuel and other primary inputs are converted into

electricity. Through the CES structure, input factors are used in proportion to their

marginal productivity and can be substituted for other inputs if relative prices change.

More importantly, relative costs of technologies in CGE models are often calibrated to

exogenously determined "Levelized Costs of Electricity (LCOE)," values, which depend

on assumed capacity factors. Use of capacity factors can be limiting because they

assume that the physical operation (how much electricity each plant type generates) of

these technologies can be known before witnessing the level of electricity demand or

energy prices entering the equations. Additional operational constraints of the physical

electricity system, such as its capability to handle intermittent renewable power

generation, transmission congestion, and resource availability rates, are implicit within

these relative costs. While these economic representations are often established on

theoretical and engineering grounds, and the decision to choose macroeconomic

completeness over technological explicitness is knowingly made, such models are not
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appropriate for rigorous sector-level investigations about optimal investment decision

making across different technologies. They simply lack the technological detail and

operational realism that exists within the electricity system to make the serious inquiry.

Most intertemporal optimizing growth models widely used for energy and

environmental policy analysis, such as the Dynamic Integrated model of Climate and the

Economy (DICE) (and its extensions such as RICE and ENTICE), are built upon the

theoretical Ramsey neoclassical optimal growth framework. In the Ramsey model,

growth is driven by capital accumulation and economic equilibrium is reached when the

representative agent's utility function is optimized intertemporally (Nordhaus, 1994;

Nordhaus, 2010; Popp, 2004; Popp, 2006). To keep these models tractable, the economy

is typically represented through a single or very few aggregated sectors and production of

a single final good; details about the productive inputs are also limited (e.g., capital,

labor, and energy). This framework therefore necessarily constrains inquiries about

interactions between technologies within a sector.

3.1.2 Engineering-Cost Models

In contrast to economic models, engineering cost-based models (also called

"bottom-up" models by some research communities), are built upon engineering

principles and represent detailed technical characteristics of the industries or technologies

within the sector(s) included. Keeping these models tractable usually requires a partial-

equilibrium perspective, rather than explicit representations and interactions between

each sector and the rest of the economy, but their ability to study the technical

interactions within the energy sector is strong. These models can vary in their structure
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and solution approach, but most use a dynamic linear-programming or mixed-integer

programming optimization framework, or a simulation framework such as business

dynamics or agent-based modeling (Azar & Dowlatabadi, 1999).

Technology-rich engineering-cost models such as the National Renewable Energy

Laboratory's ReEDS (Regional Energy Deployment System) model, the MARKAL

modeling framework originally developed by Brookhaven National Laboratory (and its

several variants), the International Institute for Applied Systems Analysis (ILASA)

MESSAGE model, Research Triangle Institute International's (RTIs) Electricity Markets

Analysis (EMA) model, the U.S. Environmental Protection Agency's (EPA) Integrated

Planning Model (IPM), and the electricity capacity planning module of the Energy

Information Administration's (EIAs) National Energy Modeling System (NEMS) are

some of the most widely-known and used optimization models for electricity and

environmental policy analysis (Short et al., 2009; Loulou, Goldstein, & Noble, 2004;

Messner, 1997; Ross, 2008; EPA, 2010; EIA, 2009a). Each of these models is designed

to conduct analyses specific to the energy sector (and in many cases specific to the

electricity sector), capturing multiple regions, multiple time periods, and several different

types of technologies and their characteristics (typically 20 or more electricity generation

technology types).

The objective of these models is generally to determine the least-cost method of

operating existing generation equipment and/or building new equipment to meet growing

electricity demand on a seasonal and time-of-day basis, subject to several operational

constraints. These constraints vary according to the purpose of and level of detail in the

models, but often include constraints such as the availability and quality of renewable
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resources, access to and costs of transmission, ancillary service requirements and their

costs, and physical limitations of operating different types of power plants (Short et al.,

2009). A key feature of engineering-cost models distinct from the economic models is

the lack of assumption about fixed operation of the generating equipment. Whereas

economic models assume capacity factors for the different technologies, engineering-cost

models through their detailed representations of technology cost structures (e.g.,

investment costs, other fixed costs, fuel costs, other variable costs), and time-of-day

electricity demand, allow generator operation decisions to be determined through the

optimization. Thus, the capacity factor of each technology -is calculated as an output of

the model. This feature allows for the interaction and complementarity of the different

technologies within the system to be explicitly and more realistically considered. For the

purposes of investment planning within the electricity sector then, use of engineering-cost

models provides for resolution of the critical physical structure of the system

components.

3.1.3 Hybrid Models

Finally, realizing the relative strengths and weaknesses of either the economic

modeling or engineering-cost modeling approach, and desire to study energy and

environmental policy decisions from both a rich technological and complete

macroeconomic perspective, hybrid modeling has risen in popularity over the past ten to

fifteen years. These models aim to link engineering-cost and economic models in order

to capture the full range of specifications needed to inform policy. However, these

efforts have been met with varying degrees of success, and many challenges remain for
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hybrid models to represent the full range of processes and feedbacks relevant to the

policy decisions they intend to inform.

Two popular models that fall in the hybrid modeling category are the Model for

Evaluating the Regional and Global Effects of GHG reduction policies (MERGE) of

Mann, Mendelsohn, and Richels (1995) and the World Induced Technical Change Hybrid

Model (WITCH) (Bosetti et al., 2006). At its core, MERGE retains an economic

intertemporal optimizing growth structure akin to the DICE model, but disaggregates

productive energy inputs into electricity and non-electricity sectors, as well as the

electricity sector into a small number of different technology types. However, the model

remains limited in representing the actual structure of the electricity generation supply

sector by omitting critical information about the detailed cost structures of the different

technologies and details about the temporal variability of electricity demand. Likewise,

the WITCH model also retains a relatively economic perspective. It focuses on

disaggregating the energy sector, but continues to use a traditional CGE nested CES

structure to represent the substitutability between different types of electricity

technologies in producing electricity, and typical capacity factors, or "plant utilization

rates," which make critical assumptions about their operations. Therefore, while hybrid

modeling is moving in the right direction, overall these models still lack the necessary

structure for rigorous study about investment planning in the electricity sector.
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3.2 Representation of Technological Change

Costs of electricity generation technologies have decreased over time (Figure 3-1),

while efficiencies and other performance attributes have improved. Following this,

during the past fifteen years the quantitative energy and environmental policy analysis

modeling community has made efforts to represent the process of technology

improvement within their analyses. However, the type of technological change

represented and how specifically it is incorporated varies greatly from framework to

framework and model to model. The following section provides a review of the main

pathways for representing technological change in models for energy and environmental

policy analysis. As discussed in more detail below, whether a model is structured for

economic analyses or engineering-cost analyses appears to drive the specific mechanism

used to represent technological change.
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Figure 3-1 Technology Costs for Various Electricity Generation Technologies, in cents per kWh2

(Schilling & Esmundo, 2009; original data from NREL and US DOE)

3.2.1 Exogenous Technological Change

The traditional approach to incorporating technological change within models for

energy and environmental policy analysis is to use an exogenous assumption about future

reductions in technology investment costs, availability of new technology, or

improvements to energy efficiency. These are often referred to as "technology

snapshots" (Edmonds, Roop, & Scott, 2000). This is done through the use of fixed,

empirically-derived time-trends, which represent how technology improves as a function

of time. Economic CGE models such as the MIT EPPA model or the EPA ADAGE

model use an "autonomous energy efficiency improvement (AEEI)" parameter to model

2 Includes capital, O&M and fuel costs; fossil fuel costs include only fuel costs due to unavailability of
capital costs prior to 1990
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technology improvement over time (Paltsev et al., 2005; Ross, 2008). Calibrated to

historically observed energy consumption trends relative to GDP and prices, the AEEI

parameter is used to model expected changes in energy consumption per unit of output.

The early approaches to exogenous technological change in intertemporal optimizing

growth models such as DICE consists of aggregating all technological change within a

single, exogenously decreasing total factor productivity scaling parameter within the

production function for economic output (Nordhaus, 1994). In engineering-cost energy

and electricity systems models such as the NREL ReEDS model, or the RTI Electricity

Markets Analysis (EMA) model, the approach typically uses an exogenous discrete time

trend for the costs for different technology categories (Short et al., 2009; Ross, 2008;

Grubb, Kohler, & Anderson, 2002). For example, in the ReEDS model, capital costs

decline between decision periods and heat rates (power plant efficiencies) improve.

Overall, use of such exogenous assumptions about the rate of technology

improvement in these models does not preclude meaningful interpretation for real-world

technological change, but does limit the opportunity for specific types of inquiries. First,

the majority of models utilizing exogenous technological change assumptions consider a

single technological change parameter or mechanism, which aggregates the many

different pathways from which that technological change may have occurred-through

experience, explicit R&D, spillovers from another industry or sector, or simply the

general rate of technological change of the entire economy. This aggregated

technological change approach limits the ability to study the contribution of individual

pathways on the final objective (e.g., through sensitivity analyses). Second, and perhaps

more importantly for energy investment planning, such exogenous representations do not
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allow decision makers to evaluate the true impacts of policies and current decisions on

the future state of the system (e.g., generation technology mix, technology costs) because

technology characteristics in the model do not respond to changes in R&D or past capital

investment decisions (Clarke, Weyant, & Edmonds, 2008; Clarke, Weyant, & Birky,

2006).

3.2.2 Endogenous Learning-by-Doing Technological Change

In an effort to overcome this limitation, models began including various

endogenous representations of technological change. The simplest approach consisted of

endogenous "learning-by-doing (LBD)" curves (also known as experience curves), which

represented how technologies improved as a function of cumulative production or use. In

the case of the electric power sector, this extended to cumulative installed capacities of

different technology categories, or cumulative electricity production from that technology

(Clarke et al., 2008). LBD formulations are founded upon the concept that technology

improves (e.g., costs decline) as cumulative experience with the technology increases;

repetition and familiarity breeds efficiency. Steady progress on the empirical research

side in gathering and statistically analyzing time-series data on cumulative installed

capacities and technology costs have been especially useful for calibrating endogenous

technological change dynamics within formal models (e.g., Ibenholt, 2002; Colpier &

Cornland, 2002; Yeh & Rubin, 2007).

The earliest use of endogenous LBD in a engineering-cost energy systems model

focused on the power sector is seen in IIASA's MESSAGE model, and since then it has

been applied in a range of other models to the point where at present inclusion of some
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form of LBD is the norm (Messer, 1997). For example, learning-by-doing pathways are

also present in the engineering-based MARKAL, EIA NEMS model, the global GENIE

model of power generation of Mattheson and Wene (1997), and the IASA Energy

Research and Investment Strategy (ERIS) model that focuses on the power generation

sector. In each of these cases, the specific investment costs for the technologies is

affected by experience with the technology (Loulou, Goldstein, & Noble, 2004; EIA,

2009a; Seebregts et al., 1999; Morris, 2002; Mattsson & Wene, 1997; Berglund &

Soderholm, 2006; Kypreos & Barreto, 2000).

Most of the focus on endogenizing technological change in economic models has

been on R&D and "learning-by-searching" (discussed in detail below), although van der

Zwaan et al. (2002) provides an example of including endogenous LBD in their energy-

environment model, DEMETER (the Decarbonization Model with Endogenous

Technologies for Emission Reduction). In terms of considering endogenous LBD in

hybrid models of energy and environment, in a version of the original MERGE model

called MERGE-ETL, endogenous technological learning is applied to several electric and

non-electric sector technologies. The formulation for the experience curve is identical to

those used in engineering-cost models, with cumulative installed capacity of the

technologies affecting the specific investment costs in future decision periods (Kypreos

& Bahn, 2003).

Endogenous LBD representing how technology improves as a function of

cumulative installed capacity or cumulative use, are certainly a major improvement

compared to exogenous time-trends. However, this approach also has some limitations.

First, each of these applications is essentially using cumulative capacity or production as
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a proxy for the knowledge accumulation that drives technology improvement (e.g.,

investment cost reductions), which asserts that all (or almost all if an exogenous rate is

also used) technological change results from activities that respond to changes in

technology deployment or demand. However, this may or may not include other

important sources of technological change such as R&D (Clarke et al., 2008). Following

on this, use of these single-factor LBD curves, also assumes that technological change is

relatively "free." Although investment costs exist, accounting for the opportunity cost of

the resources uses to improve the technology is omitted. Second, while NEMS,

MESSAGE and other models with single-factor LBD curves implicitly account for the

technology improvement that results as a function of R&D, this formulation of

endogenous technological change still limits the ability to explicitly study how R&D

investments affect technology improvement because technology costs are unresponsive to

changes in R&D. The second of these limitations directly affects the goal of the current

dissertation, as R&D investment decisions are considered a major pathway for

technological change.

3.2.3 Endogenous Learning-by-Searching Technological Change

Appreciating the importance of including explicit R&D-based technological

change, a number of models have incorporated endogenous "learning-by-searching

(LBS)" formulations. These efforts are often supported by empirical studies that link cost

reduction to R&D investments (e.g., Schilling & Esmundo, 2009). However, recognizing

that by using R&D investment data as an input, most conventional learning-by-searching

curve analyses are likely missing important private sector technology developments,
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other empirical studies detail the effect of public and private R&D effort on technological

change. One method of doing so while still retaining disaggregated technology data is

through the use of patent citation data, as discussed by Jaffe and Trajtenberg (2002) and

Griliches (2009), and seen in the econometric analyses of Popp (2002) and Popp (2005).

Another method is through the use of expert elicitation, where knowledge experts in

relevant technology fields provide guidance and estimates about the pace of future

technological change (e.g., Baker et al., 2009; Gallagher et al., 2011). While each of

these methods face inherent challenges in incorporating results into formal models of

energy and environment, they have proven useful in beginning to calibrate more detailed

technological change pathways into numerical models (Clarke et al., 2008; Popp, 2005).

In addition, a number of models have endogenized learning through the use of

"two-factor" learning curves, which explicitly account for learning through both

cumulative experience (LBD) and cumulative R&D effort (LBS). Recent empirical

studies that have developed two-factor technology learning curves, which consider the

effect of both capacity and R&D investments on costs, have been particularly useful for

these more integrative models (e.g., Klassen et al., 2005; Soderholm & Klassen, 2006;

Jamasb, 2007; Kobos et al., 2006).

Most of the early work to include LBS technological change within quantitative

models for environmental and energy policy analysis took place within an economic

framework (van der Zwaan et al., 2002; Popp, Newell, & Jaffe, 2009). Goulder and

Scheider (1999) incorporate R&D-based learning-by-searching in a research-scale

analytical and numerical CGE climate-economy model to test the effect of incorporating

LBS on climate change policy. As is the case with many other present day economic
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models that include LBS technological change, LBS is modeled through the use of an

accumulating knowledge capital stock, which is increased via R&D investments, and is

either incorporated directly into the production function(s) or cost function(s), depending

on the structure of the model. The approach for endogenous LBS in the ETC-RICE

model, a regional version of original global DICE intertemporal optimizing growth

climate policy model is similar (Buonanno et al., 2003). In this model, endogenous

technological change affects total factor productivity through addition of an accumulating

knowledge stock into the production function, which is related to R&D investment

decisions. The knowledge stock also affects the emissions-output ratio (decreasing

emissions per unit output). Also from an economic perspective, Goulder and Mathai

(2000) incorporate LBS within a cost-function-based climate policy model for

intertemporally choosing emissions abatement and R&D investments to minimize total

costs (of emissions abatement and R&D investments) of meeting a specified emissions

target. In this model, the LBS pathway affects the abatement cost function through an

R&D-based accumulating knowledge capital stock.

Finally, Popp (2004) and Popp (2006) incorporate endogenous LBS technological

change into the DICE model, developing the ENTICE and ENTICE-BR models for

climate policy. In ENTICE, endogenous LBS technological change increases the stock of

energy-related human capital (the cumulative knowledge stock), which can substitute for

carbon-based fossil fuels to produce energy within a CES function. In this framework,

technological change represents improvements to energy efficiency that substitutes for

fossil fuels; as cumulative knowledge increases, there is a shift away from fossil-fuel

energy use, and therefore a reduction in emissions (Popp, 2004). ENTICE-BR adds a
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carbon-free backstop energy technology to the mix of technologies available to meet total

energy production, retaining the original ENTICE structure of endogenous LBS

technological change for energy efficiency, but introducing LBS technological change for

the backstop through a single-factor learning curve concept. In this formulation, the

simultaneously accumulating backstop human capital knowledge stock affects the price

of the carbon-free backstop technology, allowing energy-use to shift towards it and away

from fossil-fuels in a nested CES structure (Popp, 2006). A key feature of the ENTICE

and ENTICE-BR models that is not seen across many other numerical climate-energy

models but is valuable for understanding and being able to study in more detail the

drivers of LBS technological change, is the use of a two-factor production function for

linking the knowledge stock to R&D investments. In the other models reviewed,

knowledge stock typically depends linearly on R&D investments. Building upon the

formulation proposed by Jones (1995), and seeking to calibrate the models to real-world

data and build upon empirical evidence that the state of scientific knowledge affects the

overall outcome of R&D investment, the ENTICE and ENTICE-BR models utilize two-

factor production functions for the creation of new knowledge through "innovation

possibilities frontiers" (IPFs). The two factors in the IPF are R&D investments and the

cumulative knowledge stock, and new knowledge then accumulates into the knowledge

stock.

As hybrid modeling is still emerging as an overall concept and modeling

framework, there has been relatively sparse effort on introducing endogenous LBS

technological change within these models. One example is the WITCH model, where

technological change is endogenous and driven by both LBD and LBS (Bosetti et al.,
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2006). However, their formulations are separate and therefore relatively limiting: the

endogenous LBD pathway affects costs in the power generation industry included in the

model, while LBS affects energy efficiency and the cost of non-electricity technologies

(i.e., advanced biofuels). Energy efficiency improvements are formulated through the

use of an innovation possibilities frontier and nested CES structure employing the method

used by Popp (2004); advanced biofuels cost reductions are formulated using a modified

single-factor learning curve concept (Carraro, 2009). Overall, while there has been

significant effort to incorporate LBS technological change into models for environmental

and energy policy analysis, the WITCH model case is a good example that the critical

feature that many of these efforts lack is a combined treatment of endogenous LBS and

LBD technological change with good resolution of the electric power sector's structure.

3.2.4 Endogenous Learning-by-Searching and Learning-by-Doing Technological
Change

The frontier of research in this respect is to develop engineering-cost energy

systems models that endogenize technological change through learning-by-doing and

learning-by-searching. Compared to the multitude of models available for energy

systems and environmental policy analysis present, only a few have moved in this

direction. Those that have are able to capture critical power system details as well as

represent the effect of R&D investments and cumulative experience on technological

change.

The extended energy-systems ERIS model is an example of a model at this

frontier (Turton & Barreto, 2004; Barreto & Kypreos, 2004; Miketa & Schrattenholzer,

2004). ERIS is an engineering cost-based electricity generation capacity and R&D
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investment planning (optimization) model, the extended version of which has

incorporated a two-factor learning curve that manages technology investment cost

reductions as a function of both R&D investments and cumulative installed capacity.

Additionally, because LBD and LBS are both explicitly included in the model, sensitivity

of optimal plans to the specific learning pathways can be tested, as shown in Miketa and

Schrattenholzer (2004).

A modified version of the POLES world energy systems model with LBD and

LBS pathways for simultaneously reducing the specific technology investment costs is

another example (Kouvaritakis et al., 2000). Finally, in a study to assess the

effectiveness of different environmental and technology policy mechanisms for carbon

emissions reduction in the energy sector, Fischer and Newell (2008) develop a stylized

partial-equilibrium economic model of the U.S. electricity generation industry

incorporating both endogenous LBD and LBS for the non-emitting emerging renewable

resource technology. In their formulation, the knowledge stock generated is a function of

both cumulative knowledge from R&D investments and cumulative experience (output).

However, the purpose of their inquiry necessitated representing a profit maximizing

generation sector, a knowledge market, and an actual electricity market which created

dimensionality challenges that subsequently required using highly stylized generation

expansion equations and very low resolution in technology categories and decision

periods. Thus, the technological explicitness and engineering cost-based nature of their

model was relatively compromised.
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3.2.5 Opportunities for Research

Engineering cost-based energy-systems planning models that include explicit

LBD and LBS representations are the state of the art with respect to numerical energy

and environmental models capable of studying optimal R&D and capital investment

strategies for the electric power sector. However, this area of research is still emerging

and there are many opportunities for contribution through use of alternate formulations

for the learning pathways, and improvement in the structure of the models (Clarke et al.,

2008; Barreto & Kypreos, 2004).

Another limitation of current approaches is that representations of LBS

technological change and the underlying human capital knowledge stocks that drive it are

often represented as linear functions of R&D investments. This formulation is usually a

conscious decision on the part of the modeler(s) due to the data limitations of calibrating

a different functional form. However, this formulation limits the interpretation of the

R&D pathway to public R&D activity (private R&D data is not readily available at the

level of detail needed to support engineering-cost modeling), and also limits the

opportunity to study effects of the different drivers of accumulating scientific knowledge

for a technology (Rennings & Voigt, 2008). More explicit modeling of the process of

new knowledge creation through use of an innovation possibilities frontier resembling

Popp (2004), but within the context of an engineering-cost energy systems model would

be valuable, particularly given the empirical support for doing so.

With respect to the treatment of LBS and cumulative knowledge stock

formulations for different technology groups, although multiple technologies are

considered within engineering-cost energy systems models, the modeling community
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often uses similar or identical assumptions for learning-related parameters across the

different technologies, citing lack of empirical support for doing otherwise. For example,

Miketa and Schrattenholzer (2004) use the same learning rate for both wind and solar

technologies in determining the optimal allocation of R&D funds to the two electricity

technologies in the extended version of ERIS. Another common parameter assumption

includes utilizing the same rate for the depreciation of the knowledge capital stock over

time for different technologies.

Finally, as described below, there still remains a general lack of consideration for

uncertainty in technological change across many existing models used for energy systems

R&D and capital investment planning, and several authors of the models reviewed above

have called for the need to do so (e.g., Barreto & Kypreos, 2004). With exception to the

models reviewed below, the majority of models still use frameworks structured for

deterministic (perfect foresight) analysis. However, the outcomes to R&D investment are

inherently uncertain, and investment strategies need to be flexible and adaptive to the

nature of the R&D and technological change process. The outcomes to R&D are not only

uncertain, and thus best represented by probability distributions, but the distributions are

usually highly skewed. Both the theoretical and empirical literature have shown the

skewness of returns to R&D (Jaffe & Trajtenberg, 2002; Pakes, 1986; Scherer & Harhoff,

2000). There is an opportunity to contribute to the energy and environmental modeling

community by helping to further develop this next generation of stochastic investment

planning tools.
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3.3 Decision Making Under Uncertainty

This section describes the state of research with respect to integrating uncertainty

into energy and environment planning models. Due to the extremely broad research area,

the focus of this review will be on applications within the energy industry and electricity

sector, and on methods for integrating uncertainty about technological change within

models used for R&D and/or energy capital investment planning. However, as discussed

in Chapter 2, there are several different uncertainties that must be addressed when

making investment planning decisions. Many of these uncertainties have been integrated

into decision support models in some form or another for different types of analyses and

from which lessons can be drawn. Overall, it can be concluded though that there is

extensive opportunity for improvement in integrating uncertainty within electricity R&D

and capital investment decision models. Further, there is opportunity to integrate the

three features of 1) detailed resolution of the electric power sector; 2) representation of

endogenous LBD and LBS technological change; and 3) capability to make decisions

under uncertainty into a single framework.

3.3.1 Deterministic Modeling Efforts

The main methods used to structure numerical decision support models for the

electric power sector generally are generally classified as either optimization models or

simulation models. For deterministic analyses, the main optimization methods include

search techniques, linear programming (LP) models, mixed-integer programming (MIP)

models, dynamic programming (DP) models, and other decomposition techniques.

Optimization methods have traditionally been the dominant choice of the electricity
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industry. Across these techniques, the level of detail and sub-sectors within the power

system included in the model can vary widely, but the overall objective is usually to find

the cost-minimizing long-term generation operation and expansion plan, subject to model

constraints (e.g., meeting electricity demand at a minimum level of reliability). The

earliest and simplest models for long-term electricity generation expansion planning

under perfect foresight were either LP or DP models (Turvey & Anderson, 1977;

Petersen, 1973; Poch & Jenkins, 1990; Hobbs, 1995). LP models have the benefit of very

efficient solution algorithms, easily embedded constraints, and single solutions.

However, they are limited by the fact that they apply only to continuous variables where

the objective function and all constraints are necessarily linear. Mixed-integer

programming (MIP) addresses this problem by allowing integer variables (e.g., discrete

power plants can be represented), but computation times are increased. DP methods

allowed for more flexible objective functions and similarly easy inclusion of discrete

variables as decision variables, but computation times can also be limiting.

More recently, simulation techniques have been applied for electricity generation

planning and mainly consist of system (business) dynamics, agent-based modeling, or

other game theoretic models. System dynamics is based on control-theory concepts. The

structure and interactions between different components within the system being studied

are represented using differential equations that describe behaviors and links. Explicit

recognition of feedback and time lags are the hallmark of system dynamics, and as such it

has been a particularly useful tool in power system planning when the purpose of inquiry

concerns the behavior of system agents or evolution of the system. On the downside,

100



system dynamics has been criticized in the power system planning community for not

being as controlled and transparent a method relative to others (Sanchez et al., 2012).

Agent-based modeling has proven useful in modeling electricity industry

activities. However, overall, it has been more easily applied to shorter-term behaviors

such as generation companies' bidding strategy decisions when considering operation of

their existing plants, rather than long-range expansion planning decisions (Hernaez, 2008;

Sanchez, 2008).

Finally, game theoretic models are abundant in the modem generation expansion

planning literature. Games are solved using different mathematical programming

techniques such as iteration, or as mixed complementarity problems. Overall, games

provide a mechanism for studying markets and competition between firms, which is

particularly useful in deregulated market frameworks, but like agent-based models, they

have been used mostly for short-term generation planning activities such as operational

decisions and bidding strategy planning, due to their dynamic character. Dynamic games

would be useful for long-range planning, but the number of agents these models can

handle is limited, which creates a problem for electricity generation expansion planning

that needs to consider several players over long time horizons. Still, several studies have

provided good examples of the application of game theoretic models to electricity

generation expansion planning. Haikel (2009) applies game methods to study the

efficiency of various capacity-based incentive mechanisms for ensuring capacity

adequacy in electricity markets, and Murphy and Smeers (2005) illustrate game methods

that can be applied to study capacity expansion in imperfectly competitive restructured

markets.
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3.3.2 Stochastic Modeling Efforts

During the past twenty years, there has been a gradual shift towards considering

uncertainty and developing stochastic optimization models in the electric power industry.

This was driven first mainly by deregulation of power markets in which the predictability

of power purchases was reduced (Spangardt et al., 2006). Decision makers required

methods to determine the best hedging strategies against unpredictable situations, and

plans that considered the risk characteristics of the environments in which they operated.

At present, stochastic applications for the generation sector consider a range of

time scales. Short term planning, which occurs on the order of a week and involves

scheduling generation resources to generate power in advance (i.e., unit commitment),

and planning electricity trades in the market, require stochastic models to account for the

uncertainty in the electricity demand forecast and renewable resource variability (Ramos

et al., n.d.). Medium-term planning, which covers approximately three months to two

years out involves optimizing the purchase of power based on expected sales, and as such

requires a stochastic approach to consider variability in the financial power market, or the

allocation of hydro resources over different seasons. Finally, relevant to the current

research, long-term generation expansion planning, which typically covers anywhere

from five to 50 years out, involves decision making about investments for new generation

capital assets (i.e., power plants). Stochastic approaches have been applied in the long-

term expansion planning context because the uncertainties present at the shorter time

scales tend to persist (and actually increase due to the longer planning horizon), and

additional uncertainties such as technological change and environmental and other

regulatory changes should also be considered (Spangardt et al., 2006).
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The range of approaches to considering uncertainty and stochastic processes

within long-term generation planning has been quite varied. A common approach still in

practice today is the use of sensitivity analysis, scenario analysis, or Monte Carlo-based

simulation with deterministically structured models. Bergerson and Lave (2007) use a

sensitivity analysis approach to study coal fired power plant investment decisions under

uncertain carbon legislation and technological uncertainties for advanced coal fired

plants. The approach uses an engineering-cost structure and varies parameters

representing these features to determine the optimal decisions for each possible

realization of legislation or technology path. Scenario analysis and Monte Carlo

simulation are similar to sensitivity analysis approaches, but grow out of their more

formal counterpart literatures. Scenario planning is a method used to develop alternate,

plausible futures, and a description of the types of changes that would occur to exogenous

variables of interest to the decision maker (Wack, 1985). It creates a means for

understanding and evaluating policy decisions through informed ideas of the future

(Schwartz, 1991). An example of the use of scenario analysis in the context of electricity

generation planning and numerical modeling is seen in Richels and Blanford (2008), who

study the role of technological change in managing total system costs of meeting a carbon

target for the U.S. In their study, two alternate portfolios of technologies and

technological change are analyzed, one that represents modest investment in clean

electricity technology and one that represents more aggressive deployment. Monte

Carlo-based simulations stem from the probabilistic analysis and statistics literatures,

where probability distributions are typically used to characterize uncertain parameters

and a statistical sampling method is used to draw values that are then used in the model.
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Expected values for the optimal decisions assuming perfect information are then

computed across the different Monte Carlo runs, and used as the solution to the stochastic

problem. A good example of the use of Monte Carlo-based simulation is seen in Hoyos

et al., (n.d). who study the influences of carbon price and fuel price uncertainty on

generation expansion planning.

Two final examples using these types of methods with slightly more rigor, but

still from within a deterministically structured model, are see in Blanford's (2009) study

of R&D investment strategies for the power sector in the face of climate change, and the

stochastic work involving the MESSAGE model. Using the MERGE model, Blanford

develops and uses a separate stochastic R&D module to help map plausible alternate

technological change pathways on the basis of R&D investment decisions to outcomes of

the model on an expected value basis (2009). Stochastic versions of the IIASA

MESSAGE energy systems model also incorporate uncertainty analysis by introducing

expected value-based penalties into the objective cost function to represent the effect of

underestimating unpredictable future technology investment costs (Messner et al., 1995;

Grubb, 2002; Grubler & Gritsevskii, 1997). Although the details of the methods vary,

both of these methods ultimately incorporate uncertainty from an expected value

perspective directly into the objective functions of the problem.

The overlap between these three approaches is considerable, but in general the

scenario planning method tends to require a deeper understanding of the underlying

system than other methods. Additionally, scenario analysis typically uses the fewest

number of scenarios across model runs, followed by sensitivity analysis, and then Monte

Carlo simulation with the greatest number of model runs. Also, results from sensitivity
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and scenario analyses tend to be interpreted from a more qualitative perspective, whereas

Monte Carlo simulation is more quantitative and final expected value solutions assuming

perfect foresight are often provided. While each of these approaches provides valuable

insight about the range of possible optimal decision paths and evolution of the system in

the face of uncertainty, they lack the fundamental characteristic of solving for an

adaptable or flexible solution due to the nature of the underlying deterministic model they

use. Though alternate scenarios are tested, the model is structured assuming perfect

foresight, which does not account for the real-world opportunity to learn and revise

decisions throughout the planning horizon.

3.3.3 Formal Stochastic Approaches

For identifying adaptive decisions under uncertainty, formal stochastic

optimization or other sequential decision under uncertainty methods are needed. Klein et

al. (2008) develop a small research scale stochastic dynamic programming model of the

U.S. electricity market to study generation expansion under long-term uncertainties such

as fuel price and (future) carbon emissions regulation. Stochastic dynamic programming

(SDP) is the stochastic extension of the deterministic dynamic programming global

optimization method, retaining features of the underlying decision-tree it seeks to solve

and solution through backward induction using the Bellman algorithm. However, while

SDP provides a method for identifying adaptive strategies assuming an opportunity to

learn about the uncertain quantity, a challenge to its application is the "curse of

dimensionality" (Powell, 2007). This characteristic is seen in the case of Klein et al.

(2008) where the number of uncertainties were limited and coarsely discretized into three
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levels-high, medium, and low. SDP programs grow exponentially large with the

number of candidate decisions, uncertainties, and decision periods.

Stochastic programming (SP) methods have been extremely popular for

incorporating uncertainty analysis into models of energy systems and the environment,

and most of the work integrating uncertainty into electricity generation expansion

planning models used to inform the policy process has been on this front. Stochastic

programming is built upon the concept of recourse, which provides a method for

representing flexible decisions that can adapt to new information. Models are often

structured as linear programs where uncertainty is incorporated by integrating a scenario

tree with each branch from the root node to a leaf node representing a full set of decisions

and uncertainties. The problem is then solved as either a deterministic equivalent of the

stochastic problem (i.e., one large LP model) or through decomposition methods (Birge

& Louveaux, 1997).

A stochastic programming formulation for the GENIE global electricity planning

model was developed, where the learning-by-doing rate is uncertain (Mattsson, 2002).

Likewise, the MARKAL global energy systems model and the WITCH hybrid model

have stochastic programming formulations where uncertainty about carbon reduction

targets and uncertainty about the effectiveness of R&D programs, respectively, are

explicitly considered (Ybema et al., 1998; Bosetti & Tavoni, 2009). The ERIS electricity

model for energy research investments also has a stochastic programming version, which

has the ability to consider stochasticity in carbon targets, learning rates, and electricity

demand (Kypreos & Barreto, 2000). Finally, Botterud et al. (2005) present a research-

scale stochastic programming model for making electricity generation investments in the
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context of both centralized and decentralized markets, and uncertainty in electricity

demanded is considered.

The popularity of using stochastic programming to structure sequential decision

under uncertainty models for investment planning in the electricity sector reflects its

ability to rigorously and explicitly represent multiple, history dependent processes and

solve for optimal adaptive decision paths (Powell, 2012). However, the method does

retain its own limitations, as seen through the individual applications above.

First, due to the use of exogenous scenario trees to represent the range of

uncertainties, SP can also suffer from the curse of dimensionality, where the size of the

problem grows exponentially large with the number of uncertainties and time periods

considered. The GENIE, MARKAL, WITCH, and research-scale model of Botterud et

al. described above all limit the number of uncertainties they incorporate and the number

of discrete levels of each uncertainty being considered. For example, in the GENIE SP

formulation, the uncertainties incorporated are discretized into only two different levels

for the learning rate (i.e., low and high). Such coarse discretization keep the models

tractable. In the case of the ERIS stochastic program, the model is kept tractable by

limiting the number of decision stages to two.

Second, due to the scenario tree nature of SP and the requirement to generate the

trees in advance, incorporating path-dependent stochastic processes remains a

dimensionality challenge for the SP method as well. This feature can limit study of

important endogenous uncertainties such as the potential dependence of future likelihood

of R&D successes on the amount of R&D invested.
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One method not discussed above but is emerging in energy systems investment

planning is the use of modem portfolio theory (MPT) to incorporate risk into decision

making. First introduced in the early 1950s, MPT is today a widely used technique in

finance, which advocates diversifying assets to reduce overall risk in a financial portfolio

(Markowitz, 1952). In a recent master's thesis at the University of Illinois at Urbana-

Champaign, MPT was applied to electric power generation expansion planning, showing

that adding a risky technology (e.g., high fuel costs, low technology development

trajectory) to an already relatively high risk generation portfolio reduces the overall risk

(lowers total system costs) (Beltran, 2009). While this work shows the potential for

applying portfolio theory to investment planning in the electricity sector, the model used

treats different types of power plants as perfect substitutes for one another-as with pure

financial securities-by assuming fixed operations (i.e., capacity factors) for them. Thus,

Beltran is not able to fully capture the effect that complementarity between technologies

might have on the optimal investment plan under uncertainty. An engineering cost-based

electricity model that solved for the optimal dispatch of power plants within an electricity

system would provide additional insight.

Finally, a promising and still emerging method for power systems planning

extends the stochastic dynamic programming framework by incorporating techniques for

explicitly managing problems with multiple decision stages, multiple uncertainties, and

path dependency. Approximate dynamic programming (ADP) is a numerical dynamic

programming approach for implementing SDP by efficiently exploring the decision space

for complex problems under uncertainty precisely when the dimensionality becomes too

large. ADP iteratively samples potential decisions and uncertainties using Monte Carlo
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techniques, approximates traditional Bellman value functions from those samples using

either gradient search or regression-based techniques, and uses the approximations to

solve for optimal decisions (Powell, 2007; Bertsekas, 2007; Parpas & Webster, 2012;

Godfrey & Powell, 2002). An example of applying approximate dynamic programming

in the context of sequential decision making in electricity generation expansion is seen in

the SMART model, developed at Princeton University (Powell et al., 2012). SMART is

an engineering-cost integrated model for decision making about power plant dispatch,

electricity storage, and long-term generation investments; captures multiple uncertainties

including variability in wind resources and rainfall, electricity demand, and fuel prices;

and makes decisions sequentially at frequent time steps. It is the only known existing

ADP-based model for making long-term electricity investment generation decisions, and

although relevant limitations exist with respect to the method for value function

approximation used and the complexity of the model for developing new applications, it

represents the general ADP framework upon which this dissertation builds.

Outside the electricity generation investment planning literature in the broader

area of economic energy and environmental policy modeling, there have been a few

studies that have explicitly incorporated uncertainty into decision models. However,

most of them rely on reducing the dimensionality of the problem in a manner that limits

either the analysis or interpretation of the solution achieved (Golub et al., 2011).

First, using stochastic programming methods, Bosetti and Drouet (2005) develop

an economy-climate growth model using SP to study optimal R&D investments and

climate abatement under uncertainty about the effectiveness of R&D investment.

However, they use a coarse discretization of uncertainties to manage the resulting
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dimensionality. Solak et al. (2010) present a general analytic SP for optimization of

R&D investment portfolios under endogenous uncertainties and in a multi-stage context,

but also use (only two) discrete realization levels to represent uncertainty. Baker and

Solak (2011) develop a stochastic program using the DICE model framework to study the

same question under endogenous path-dependent technological change uncertainties.

However, their formulation requires a customized deterministic mapping function to

assign outcomes to decisions, which limits the generalizability of the framework to other

applications.

A few other studies have formally framed environmental (climate) decision

problems under uncertainty as a multi-stage stochastic dynamic program, using a variety

of approaches to overcome the dimensionality challenge. Gerst et al. (2010) develop a

SDP formulation of the DICE model to explore optimal climate policy under potential

extreme climate change-related economic damages. However, they use discrete sampling

via experimental design and a very large number of iterations to learn about the solution

space, which can be computationally very expensive. Kelly and Kolstad (1999) and

Leach (2007) base their stochastic climate policy models on the DICE framework as well,

and study optimal climate policy under uncertainty in the climate system response to

carbon emissions. In their studies, they approximate the value function associated with

the Bellman equation using neural networks to estimate a functional form with 16 terms,

but ultimately use discrete gridded samples in state-space to iteratively improve the

approximation. Finally, Crost and Traeger (2010) and Lemoine and Traeger (2011) also

study optimal climate policy under climate change uncertainty using a SDP formulation

of the DICE model; they statistically estimate relationships between state variables
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offline in order to reduce the dimensions of the state vector, and then use conventional

backward induction on the reduced state-space. Overall, each of these approaches rely on

discretizing a (possibly reduced) state-space into intervals, and therefore require potential

compromises of resolution and accuracy. Most recently, Webster, Santen, and Parpas

(2012) contributes to the growing DICE stochastic optimization modeling community by

presenting an approximate dynamic programming formulation of the DICE model,

incorporating endogenous, path-dependent continuous uncertainty in technological

change in a multi-stage decision context. Their work shows the value of the ADP

framework to study optimal decisions under decision-dependent uncertainties and to

explicitly overcome the dimensionality challenge of SDP without loss of accuracy.

This dissertation contributes to this literature by applying an approximate

dynamic programming method to R&D and capital investment planning under

technological change uncertainties, but in the engineering cost-based long-term electricity

generation planning context. In doing so, it seeks to bridge the gaps in modeling

practices between the three sets of literature reviewed above-it seeks to develop a

decision support model with adequate resolution of the critical structure of the electricity

system, explicit detailed learning-by-doing and learning-by-searching technological

change dynamics, and an efficient method for exploring adaptive, sequential decisions

under uncertainty.

Next, an introduction to the new modeling framework with learning-by-searching

technological change under static (deterministic) planning is provided.
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Chapter 4 Investment Planning under Endogenous
Technological Change: Description of the
Deterministic Modeling Framework

The purpose of this chapter is to introduce the numerical modeling framework

developed and used for the deterministic study on optimal electricity generation

technology R&D and capital investment strategies under endogenous learning-by-doing

(LBD) and learning-by-searching (LBS) technological change. The first section outlines

the overall structure of the problem. The next three sections detail the formulation of the

optimization model, focusing on the structures introduced to represent technological

change dynamics and electric power system characteristics. The following two sections

provide information about the data used to build the reference model, and details about

how the model is solved. Finally, the last section presents results from running the

reference model and shows the optimal investment strategy under a reference scenario.

4.1 Overall Structure of the Problem

This dissertation employs the framework of a traditional least-cost electricity

generation capacity expansion optimization model (e.g., Turvey & Andersen, 1977;

Hobbs, 1995), and modifies it to simultaneously choose R&D investments for emerging

low-carbon technologies (i.e., coal with carbon capture and sequestration, nuclear, wind,

and solar). To do this, it builds upon previous modeling work in this area, incorporating

both endogenous learning-by-doing and endogenous learning-by-searching dynamics

(e.g., Messner, 1997; Barreto & Kypreos, 2004; Fischer & Newell, 2008). The base

model is a capital investment planning model at its heart, but with generation technology
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costs responding to decisions about capital investments as well as technological

innovation. To the state of the art, this work adds the capability to study detailed drivers

behind learning-by-searching technological change through an explicit two-factor

formulation for new knowledge gained about these emerging technologies (e.g., Jones,

1995; Porter & Stem, 2000; Popp, 2004). Figure 4-1 provides a structural overview of the

new modeling framework.

Enviran-mwa and

Figure 4-1. Overview of the new modeling framework for electric power generation R&D and
capital investment planning
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The planning horizon is 60 years, with generation capital and R&D investment

decisions made every five years. Five-year periods are used to account for the

approximate time it takes for innovation activity to maximally affect energy use (Popp,

2001). In this framework, LBS-based technological change proceeds via a lumped entity

consisting of all public and private entities (e.g., private equipment manufacturers,

government labs) engaged in energy innovation activity applicable to the electric power

sector. Further, LBS-based technological change is defined as the broad base of

innovative activity with an ability to cause component-wise reductions in the cost of

energy technologies; from the perspective of basic versus applied research, LBS-based

technological change in this model spans a continuum including both types of research

(Clarke et al., 2008, Clarke et al., 2006). The existing physical system is also represented

and is based on aggregate United States generating capacity and electricity demand.

Finally, given the long-range strategic policy and technology planning objectives of this

research, and the large structural uncertainties inherent in the short-term market behaviors

of individual firms over such long time scales, a centralized planning approach is used

(Prez-Arriaga & Meseguer, 1997). This formulation designates a hypothetical central

decision maker to simultaneously make investment and generation decisions 3. Doing so

also keeps the core evaluation model tractable during the second phase of the dissertation

on decision making under uncertainty. The full model formulation and all variable and

parameter definitions are presented in Appendix A. The key features of the model and

associated data are presented below.

3 Using a central planning approach also assumes perfect competition in the electricity markets, and no
R&D market failures, such as knowledge spillovers.
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4.2 Objective and Key Constraints

The objective follows a traditional least-cost electricity generation expansion

planning problem, with modifications to include choosing investments in R&D and

representing the resulting technological change. In each period, the planner chooses

NEWCAPACTY,,g, the new generation capacity for technology g to install in period t,

and REBACK,,g, the allocation of R&D investments into technology category g in period

t, to minimize the net present value of total system costs:

G,T

min I[FCmg + VCt,g + REBACKt,g](1 + r)-t,
NEW_CAPACITYt,REBACKt4

where FC,,g, represents the total fixed costs (overnight capital and fixed O&M costs) of

technology category g in period t, VC,,g, represents the total variable costs (fuel and

variable O&M costs) of technology g in period t, and r is the discount rate.

In addition to constraints that define the design and operation of the electric

power system (summarized below and detailed in Appendix A), one key constraint drives

the optimal new generation capacity and R&D investment strategy in this problem:

T

>Et ; ecap, and
t

where ecap represents the total cumulative allowable carbon emissions from the

electricity sector during the planning horizon (a cumulative emissions cap). Stated
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simply, the constraint forces the objective to be met by allocate the quantity of emissions

in each period from the total allowable cap. Tying this back to the research questions

framed above, allocating emissions between periods defines direct emissions cuts "now

versus later" and the effort allocated to currently available technology adoption. R&D

expenditures between periods define the indirect emission cuts "now versus later" and

effort spent on innovation and new technology development. Together, these decisions

and constraint inform the economically-efficient balance of the two pathways for long-

term emissions management described above.

4.3 Technological Change Dynamics

Technological change enters the model through two distinct, but complementary

pathways. Building on recent empirical and numerical modeling literature, this model

employs a two-factor learning curve (2FLC) to simultaneously represent learning-by-

doing and learning-by-searching (Klaassen et al., 2005; Soderholm & Klaassen, 2007;

Miketa & Schrattenholzer, 2004; Barreto & Kypreos, 2004). Through the 2FLC, the cost

of a technology falls as the stock of knowledge about that technology increases, and the

physical experience with that technology increases. In the current framework, both types

of technological change affect the overnight capital cost component of total fixed costs of

the emerging technologies: wind, solar, coal with carbon capture and sequestration

(CCS), and nuclear. The current model specifies experience with a technology by its

cumulative installed capacity (total GW).

The technological change dynamics represented in the model can be summarized

with the three key equations:
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NEWHEBt, = agREBACKfl HEBACKg

CAPCog
CAPCtg = 'ACJ (gA (Eq. 4.3.2)

(CA A ACI TYt''-) (H E B ACK Ut'_

HEBACKt+ig = NEWHEBt,g + SgHEBACK,g (Eq. 4.3.3)

The first equation, 4.3.1, represents the production of new knowledge for

technology g in time period t, NEWHEB,,g,, defining it as a function of R&D investment,

REBACK,,g, and the human knowledge stock, HEBA CK,,g, for technology g in time period

t, with diminishing returns to research (both $ and * are less than 1.0) through an

"innovation possibilities frontier" (IPF). The parameter 1 represents the contribution of

R&D dollars invested to the creation of new knowledge, * represents the contribution of

the current knowledge stock to the creation of new knowledge, and a is a technology-

specific scalar used to calibrate the behavior of the new innovation possibilities frontier

to the current learning-by-searching literature.

The second Equation, 4.3.2, represents the two-factor learning curve combining

LBD and LBS. CAPCg is the capital cost of technology g in time period t, CAPCo,g is

the initial capital cost, CAPA CITY,,g is the total installed capacity in GW of technology g

in time period t, HEBA CKtg is again the human knowledge stock for technology g in time

period t, and 1/1g and q72 9 are the learning-by-doing and learning-by-research output
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elasticities for technology g, respectively. As noted by the index, the parameters q9 and

12 g are technology specific; their interpretation follows directly from traditional

experience curve "progress-ratio" calculations where 1 - 2"' describes the cost reduction

that occurs from a doubling of capital stock (71) or knowledge stock (12) (Ibenholt,

2002).

Equation 4.3.3 represents the cumulative nature of LBS-based knowledge

accumulation, and shows the stock nature of the human knowledge dimension in this

problem, where NEWHEB,,,, is new knowledge gained through R&D effort in technology

g during period t, and 8g represents a technology-specific decay rate for human

knowledge from one period to the next.

Use of the innovation possibilities frontier is where the formulation of the

endogenous LBS technological change in this energy systems planning model diverges

from the current modeling literature. Typically, endogenous LBS representations define

new knowledge as equivalent to the dollars of R&D invested, and knowledge stocks as a

simple accumulation of R&D invested over time (e.g., Barreto & Kypreos, 2004; Miketa

& Schrattenholzer, 2004). Motivated by the current empirical literature that shows the

production of new knowledge is dependent upon the quantity and quality of current

knowledge, in addition to the direct R&D investments, modeling LBS technological

change through an innovation possibilities frontier allows one to study the contributions

of these effects separately. Also, recent empirical study suggests that the knowledge

stocks of different technologies categories can behave quite differently with respect to

diminishing returns (Popp, Santen, Fisher-Vanden, & Webster, 2012); the current

formulation provides a platform to analyze the effects of these variations across
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technologies on optimal investment strategies. Finally, disaggregating the R&D

investment effect from the knowledge stock effect facilitates a more direct representation

of uncertainty in the returns to R&D investment, while continuing to utilize information

retained in accumulating knowledge stocks, as explored in Chapters 6 and 7.

4.4 Electricity System Operations

The infrastructure and operations of the electric power system, and behavior of

electricity consumers, interact in ways that make it difficult to assess a priori the effect of

cost reductions in specific emerging technology categories on optimal new capacity

additions and actual emissions reduction. Electricity demand must be (effectively) met in

real time by electricity generated, as there is for all practical purposes no efficient storage

on the system. This demand varies throughout the day, week, and year. Certain thermal

generating units such as coal or nuclear power plants can become less efficient at

generating electricity at low load levels, are expensive to "turn up" and "turn down"

throughout the day to meet this demand, and have relatively inexpensive fuel prices,

making them a premier default choice for "baseloading," or running near their full

capacities most of the time. Renewable resource generating technologies, such as wind

and solar power, are characterized by intermittency, fueled by geophysical laws that

dictate where and when the wind blows and the sun shines. Such characteristics create a

dynamic interaction between the operation and "dispatch" of different generating

technologies during different times of the day and under different environmental and cost

conditions-with certain technologies "filling in" for other technologies in different

orders. Finally, a criterion that electricity supply ought to be reliable and that consumers

120



should be able to depend on power without serious interruption issues directs power

system planners to build in redundancy, such as in the form of capacity reserve margins

over peak electricity demand and operating reserves.

A modified, least-cost electricity generation capacity planning optimization model

is used for this study in order to explicitly capture these effects and many of the

constraints that make the problem so unique. As Appendix C shows, the dynamics at

play within the power system affect the strategies for emission reduction, and these

interactions are often missed in the economic models used for climate policy analysis that

assume fixed operations to study electricity-related emissions. In order to isolate and

study the effects of technological change, the model in this dissertation employs a

streamlined version of what can become a more comprehensive treatment of the physical

system during future exploration. Still, several of the effects described above, outlined

through the following four main equations and elaborated on in Appendix A are

represented.

ZG: PWROUT,d,g. = NETLOADtd (Eq. 4.4.1)

NETLOADt,d = demandd(l + k)t - PWROUTt,d,g. (Eq. 4.4.2)

PWROUTt,dg* = CAPACITYt,g..availabilityrateg * (Eq. 4.4.3)

ZG CAPACITYtg : demand _peak(1 + k)t(1 + reservemargin) (Eq. 4.4.4)

121



Electricity demand is specified using an annual load duration curve defining the

number of (non-consecutive) hours that electricity demand is at or below a certain power

level, dividing the year into sixteen time slices, and including a "super peak" that

represents the forty hours with the highest electricity demand over the year. A nationally

aggregated version of the U.S. load from 2006, as used by the National Renewable

Energy Laboratory (NREL) ReEDS base model and shown in Table 4-1 and Figure 4-2

below is used. Every year, the power level for each demand slice grows exogenously by,

k, shown in Equation 4.4.4.

Table 4-1 Annual US. Electricity Loads by Demand Slide (Short et al., 2009)

Demand Slice Season Time Period Duration (Hours) Power (GW)

H1 Summer 1OPM -6AM 736 453

H2 Summer 6AM - 1PM 644 482

H3 Summer 1PM -5PM 328 606

H4 Summer 5PM - 10PM 460 602

H5 Fall 1OPM -6AM 488 375

H6 Fall 6AM - 1PM 427 420

H7 Fall 1PM -5PM 244 478

H8 Fall 5PM - 1OPM 305 485

H9 Winter 10PM - 6AM 960 390

H1O Winter 6AM - 1PM 840 445

HIl Winter IPM -5PM 480 440

H12 Winter 5PM - 10PM 600 474

H13 Spring 1OPM -6AM 736 369

H14 Spring 6AM - IPM and IPM - 5PM 1104 433

H15 Spring 5PM - 1OPM 368 453

H16 Summer Superpeak 40 722
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Figure 4-2 Annual U.S. National Load Duration Curve in ReEDS Model (Short et al., 2009)

Equation 4.4.1 describes a fundamental characteristic about the nature of current

power systems that do not effectively store electricity-that power generated must equal

power consumed. To accommodate intermittency in renewable generation, this defining

characteristic is represented using a net load approach. In this approach, the power

output, PWROUTg*, of dispatchable technology, g*, in time period, t, and demand slice,

d, must equal the total electricity demanded in time period t and demand slice d less the

amount electricity supplied by non-dispatchable technologies, or the NETLOADd.

Equations 4.4.1 and 4.4.2 explicitly outline this approach. Non-dispatchable

technologies, g**, are defined as nuclear power plants (due to their operational

constraints and generally baseloaded nature) and solar plants, which are represented as

running whenever available (subject to maintenance schedules and expected outages).

Equation 4.4.3 outlines this approach, showing that an exogenous technology specific

availability rate is used. All other technologies are defined as dispatchable, including
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wind power, which is represented in this way to model the assumption that wind power

can be curtailed. Additionally, solar technology is represented as operating only during

the demand slices that correspond to the daytime. The combination of these

representations allows modeling to first-order the effects of intermittent renewable

resources, as well as the dominant operational constraint of nuclear power plants.

Equation 4.4.4 implements a reliability requirement through a constraint that says the

sum of all generating technology capacities, g, in each time period must meet or exceed

the total peak electricity demand in each time period, plus an exogenous reserve-margin

defined in percentage terms.

Finally, several additional realities are incorporated into the model to represent

various aspects of the electric power system. In actuality, each of these can be treated

and modeled with more rigor; simplified versions of these realities are included for this

study. First a high retirement rate for old coal and old steam gas technologies is assumed.

There is a very large capacity of very old conventional coal and steam gas plants in the

United States that is expected to be retired in the next one to two decades. A retirement

rate for nuclear power is also included, which follows a slightly higher than expected

retirement rate based on its expected lifetime given the aging stock of nuclear power

plants in the U.S.

Second is a "no new build" constraint on old coal plants, old steam gas plants, and

conventional hydro (run of the river) power plants, since these technology types are either

likely to still be operational within the problem planning horizon (e.g., hydro), or will be

replaced by more efficient technologies (new/advanced coal and new gas). Hydropower
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in the United Sates is also at or very near its resource constraint, adding to the limitation

on new builds in the upcoming years.

Third, to represent existing constraints in the "electricity generation and

innovation systems nexus" related to the ability to scale up emerging technologies, such

as limited technology availability from suppliers or permitting constraints, a constraint on

the rate of change of installed capacities for emerging technologies has been included.

This constraint requires that for coal with CCS, nuclear, wind, and solar, the total

installed capacity in time t +1 for each cannot exceed twice the capacity in time t.

4.5 Data

The new modeling framework is demonstrated by studying optimal capital and

technology R&D investments for an approximation of the U.S. electric power generation

sector. The base-year electricity system upon which new capacities are built roughly

matches the existing U.S. electric power system in terms of technology types and

gigawatts installed, as documented by the U.S. Energy Information Administration (EIA)

(EIA, 2009b). As noted above, electricity load data is also based on an aggregate U.S.

demand, as used by the National Renewable Energy Laboratory's (NREL) Regional

Energy Deployment System (ReEDS) Model (National Renewable Energy Laboratory,

2009). Electricity generator data such as heat rates, fixed O&M costs, initial capital

costs, and emission rates are also acquired from NREL and EIA, and shown in Table 4-2

below. Base fuel prices for coal and natural gas are $2.07 and $9.10 per MMBtu,

respectively (EIA, 201 lb). Uranium prices are given by the Royal Academy of

Engineering (2004) at $6.20 per MMBtu.
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Technology learning data, shown in Table 4-3, is given by Barreto and Kypreos

(2004) and Popp (2006)4. Specific values for the scalar a in the innovation possibilities

frontiers for emerging technologies are derived by calibrating new knowledge creation

via an innovation possibilities frontier (IPF), and resulting capital cost reductions to cost

reductions from the original two-factor learning-by-searching indices in the literature

(See Appendix B). This calibration method retains the overall impact of knowledge stock

on capital cost reduction, but still allows for disaggregation of the dynamics by which

new knowledge is created (and thus the knowledge stock accumulates). Knowledge

stocks for all technologies begin at 1.0. All additional parameter definitions and values

are listed further in Appendix A. ,

It is noteworthy that for the purposes of developing the stylized model for this

dissertation, a set of assumptions about the dynamics of the power system and the energy

innovation system were necessary to adopt. Furthermore, it was necessary to settle upon

a set of published cost and technical data for power plant investments and operation to

construct the new model, even though several additional (and numerically different) sets

of cost and engineering data exist. It is beyond the scope and purpose of this dissertation

to apply and analyze results under several different sets of data, but it is important for the

reader to recognize that the results of the reference model shown in Section 4.7 and the

analyses in Chapter 5 are sensitive to the assumptions made. Therefore, while in the

presentation of results and the discussion, references will be made about model behavior

using technology-specific names such as "coal with CCS," "wind," or "solar," these

4 LBD and LBS rates differ significantly across studies, as there are several open research questions that
exist in how rates are defined and estimated (Soderholm & Sundqvist, 2007). For the purposes of
constructing the new modeling framework for the dissertation exercises, one set of learning rates was
applied. Future work may focus on sensitivity analyses and application of additional data sets from the
literature.
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statements are necessarily tied to the original assumptions and data sets used for this

specific numerical implementation. Caution should be exercised before generalizing the

results to specific technology groups for real-world industry or policy applications.

4.6 Solution Approach

Conventional least-cost electricity generation investment planning problems

without endogenous learning dynamics are typically formulated as linear or mixed-

integer programing problems-linear if the capacity decisions are chosen from a

continuous range of megawatts to install, and mixed-integer if power plants are treated as

entities with a specific capacity (size) and the decision involves the number of discrete

plants of each technology to install. Introducing endogenous learning dynamics changes

the structure of the problem into a non-linear programming problem. The non-linearities

introduced arise from two separate points within the formulation: the two-factor learning

curve shown in Equation 4.3.2 and the innovation possibilities frontier shown in Equation

4.3.1 above in Section 4.3. (Note that even a single-factor endogenous learning curve

with either learning-by-doing or learning-by-searching would create a non-linearity.) As

such, the problem is solved numerically within the GAMS modeling environment, using

a standard non-linear programming solver, CONOPT. A 10-point seeding algorithm is

also used to set a scattered grid of initial points and start the optimization from different

locations within the solution space. The optimum preserved is that which minimizes total

system costs across the ten seeds.

Terminal conditions for this multi-period decision problem are managed by

running the 60-year planning problem for an additional 40 years (after which electricity
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demand growth stops and all operations cease). Results from only the first 12 (5-year)

periods are used in each of the analyses, ensuring that decisions being made at or near the

end of the planning horizon are not "end-of-world" artifacts or a result of arbitrary

terminal condition assumptions.

128



Table 4-2 Electricity Generator Data (Short et al., 2009; EIA, 2011 b; Royal Academy of Engineering, 2004)

Initial
Capacity

[GW]

5-year
Retirement

Rate [%]
Heat Rate

[MMbtu/MWh]

Initial Capital
Cost [$/kW-

knowledgeunit]
Fixed O&M Cost

[$/kW-year]
Initial Fuel Cost

[$/MMBtu]
Other Variable
Cost [$/MWhJ

Emissions Rate
[lbs/MMbtu]

Annual
Availability

Rate [%]

Old Coal 314.294 15 10.00 1234 24.460 2.07 4.14 204.12 85

New Coal 1.00 - 8.80 3167 35.970 2.07 4.25 204.12 85

Coal with CCS 1.00 - 12.00 5099 76.620 2.07 9.05 20.41 85

Old Steam Gas 84.267 20 9.46 390 25.256 9.10 3.85 121.83 80

Gas Combustion 196.623 - 6.43 1003 14.620 9.10 3.11 121.83 85
Turbine_________________________

Gas Combined 120.382 - 9.75 665 6.700 9.10 9.87 121.83 90
Cycle

Hydro 78.518 - 10.34 1320 12.700 - 3.20 - 60

Nuclear 101.004 10 10.40 3016 85.663 6.20 0.48 - 90

Wind 34.296 - - 2438 28.070 - 5.19 - 30

1.00 4755 16.700 95**

Notes: ** The availability rate for solar is high due to the technology only operating during peak solar demand slices.
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Table 4-3 Reference Scenario Technology Learning Parameters (Barreto & Kypreos, 2004; Popp, 2006; Appendix B)

Learning-by-Doing
Elasticity q1

Learning-by-Searching
Elasticity 112

IPF a IPF P IPF

Coal with CCS 0.05889 0.02915 0.3910 0.1 0.54

Nuclear 0.05889 0.02915 0.3910 0.1 0.54

Wind 0.25154 0.10470 0.4389 0.1 0.54

0.41504 0.15200 0.4536 0.1 0.54

5 The lack of experience with carbon capture and sequestration technology in the electric power sector makes it difficult to find reliable learning data for use in
numerical models of technological change. Thus, other authors have used learning rates for coal SO 2 scrubbing technology or NO,, reduction technologies and
applied them to coal with CCS technology in numerical decision support models (Rubin, Taylor, Yeh, & Hounshell, 2004). This dissertation uses the history of
nuclear fission technology and its learning rates as a proxy for coal with CCS (both are capital-intensive, large baseload technologies with significant challenges
of space, scale up, public acceptance, permitting, waste, etc.).
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4.7 Reference Optimal Investment Strategy

A business-as-usual (BAU) scenario is used to study the reference optimal capital

and R&D investment strategy, and the overall effect of introducing learning-by-doing and

learning-by-searching into the electricity generation expansion model. Business-as-usual

is represented by incorporating a non-binding cumulative emissions cap (ecap) equivalent

to approximately one-hundred times the 2010 U.S. electricity generation sector carbon

emissions (i.e., 300,000 million metric tons), which accounts for proceeding with current

operations from years 2010 through 2110 and meeting new electricity demand during this

time. As explained in Section 4.6 above, the results from the first sixty years of the

model are used for the study; they are compared (Figure 4-3) to results from running the

model with all forms of learning on the emerging technologies "turned off' (Figure 4-4).
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Figure 4-3 Reference Model (BAU) results with endogenous learning: R&D Investments (a), Installed
Capacity (b), Total Generation (c), Emissions Cap by Period (d)
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Figure 4-4 No-learning model BAU results: R&D Investments (a), Installed Capacity (b), Total
Generation (c), Emissions Cap by Period (d)

The optimal solution in the reference model with learning includes investment in

wind R&D only, initially relatively aggressively (approximately $500 million) but with

dramatic reductions by Period 5 (approximately $30 million) on (Figure 4-3a). Initial

capital costs of the other emerging technologies, their specific potentials to learn from

R&D, and their overall value in meeting electricity demand and (lack of) emissions

constraint, make them sub-optimal to invest in. Still, the optimal investment strategy

results in a lower total system cost than when learning is turned off and the option to

invest in R&D is not included ($6.048 versus $6.461 trillion NPV, respectively).

Results from both versions of the model show similar trajectories for installed

capacities of existing old coal and nuclear plants: existing aging coal plants decline

rapidly with time and the constraint on new builds of conventional coal plant technology

prevents them from reappearing. Nuclear plants decline less rapidly, following their own

retirement rate, but for economic reasons new nuclear capacity is not added. The same is
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true for the trajectories for all gas-fired power plant types. A comparison of these BAU

reference results with results from the well-known industrial-scale NREL ReEDS

electricity model show similar behaviors for old coal, new coal, coal with CCS, old steam

gas, nuclear, and hydro installed capacities over time. Differences in trajectories and

relative magnitudes for wind and natural gas fired plants exist, but are expected given

that the ReEDS model contains several additional technologies; detailed, disaggregated

natural resource data for renewable technologies such as wind; and the capability to

represent transmission constraints within the electricity system (Short et al., 2009). Such

capabilities interact to reduce new capacity additions for wind and increase natural gas-

fired plants compared to the aggregated U.S. model used in the dissertation. Overall,

however, the concordance between the two models' technology capacity trajectories

helps validate the new model.

The key difference between the learning and no-learning versions of the new

model is in the impact on wind and new coal power (Figure 4-5). Early wind R&D in the

presence of learning drops the capital costs of wind technology to a level where it

becomes economic to build beginning in Period 1 (and operate in Period 2) instead of

new coal plants. However, it is still optimal to build a portion of the new coal plants built

in the no learning model, and their longevity allows them to still exist and operate at the

end of the planning horizon. Combined with the constraint on the rate of change for

installed capacities included in the model for emerging technologies, new low-cost wind

power only partially displaces new coal in the reference BAU scenario. Additionally, as

Figure 4-5 below shows, the impact is on the timing of capital investment, not the final

capacity installations, which by Period 12 are the same. Figure 4-6 shows the capital cost
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trajectories of all emerging technologies and the corresponding knowledge stocks for the

two different models.
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Figure 4-5 Installed wind (a) and new coal (b) capacities by period in the reference model versus a
no-learning model under BAU
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Figure 4-6 Emerging technology cost and knowledge stock trajectories with endogenous learning in
reference model (left) and no learning model (right) under BAU 67

6 Capital costs decrease and knowledge stocks grow at a base (minimum) rate for all learning technologies,
regardless of whether they receive real R&D investments. This is an artifact of the model, which adds a
minimum level of R&D investment for all learning technologies in the numerical implementation. Note the
low rate of knowledge stock increase for solar power in all cases, despite zero R&D investments in the
optimal investment strategy.

Note that coal_ccs and nuclear share the same knowledge stock path in the reference model.
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Finally, note the delay in suppressed carbon emissions from Period 5 to Period 7

that results from the presence of endogenous learning and R&D (Figure 4-3d and Figure

4-4d, respectively). The reduction in emissions in both sets of results generally

corresponds to aggressive retirements for old coal and old gas plants and their

corresponding no new build constraints, which are quickly no longer able to operate and

force the physical system to settle to a new benchmark before pursuing its true

unconstrained emissions path for the remainder of the problem horizon. However, as

explained directly above, in the reference learning model, coal generates less because less

gets built at this point. The combination of this, along with new capacity and generation,

leads to the new benchmark earlier.

In the current formulation of the model, it is shown that it is actually more cost-

effective to invest in wind R&D upfront so that you can build more of it and run more of

it in later years, than the alternative of building and running new (already inexpensive)

coal or natural gas plants, even when there is no emissions reduction objective. While a

model with additional real-world power system constraints such as the ReEDS model

may reach a different conclusion (e.g., wind would not displace as much fossil-fired

plants), this result is presented as a benchmark to study the general behaviors of decision

variables in the numerical experiments and sensitivity analyses in the following chapter.
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Chapter 5 Investment Planning under Endogenous
Technological Change: Results from Numerical
Experiments and Sensitivity Analyses

This chapter presents results from several numerical experiments and sensitivity

analyses to study the behaviors of key variables in the system under different conditions,

and to illustrate the capabilities and limitations of the new modeling framework for

strategic capital and R&D investment planning. It also presents results from select

experiments to demonstrate the value in disaggregating new knowledge creation

dynamics for different technologies and for optimizing an investment portfolio under

uncertainty. Table 5-1 at the end of the chapter summarizes the assumptions and

associated parameters that differ across each of the analyses. The final section, 5.7,

provides a summary of and key insights gained from performing each of the numerical

experiments 8

5.1 Optimal Investment Strategy v. Carbon Target Stringency

This first experiment demonstrates the new model's capability to jointly optimize

R&D and generation capital investment portfolios inter-temporally over different climate

objectives. It does so by studying the behavior of the model's main decision variables,

per period electricity generation capital investment and per period emerging technology

R&D investment. Results from four climate policy stringency levels are compared: 1)

8 As described in Chapter 4, the reader should exercise caution before generalizing results from the
following analyses to specific technology groups for actual industry or policy applications. Though
specific technology names are used below, due to the stylized nature of the model and specific set of cost
and technological change data used, insights revealed are intended to provide intuition about optimal
investment strategies for broad classes of technologies and general model behavior.
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business as usual (BAU), defined as the reference model scenario from Chapter 4.7

above, 2) a "weak" target, defined as reducing the cumulative carbon cap (ecap) 25%

from BAU, 3) a "moderate" target, defined as reducing ecap 50% from BAU, and 4) a

"difficult" target, defined both by reducing ecap 75% from BAU and meeting a final

period emissions cap equivalent to approximately 80% below year 2010 BAU emissions.

All other parameters and constraints are implemented as they are in the reference model.

The full learning version of the model (with both LBD and LBS) is used for this and all

following experiments, unless otherwise noted.

Focusing first on investment patterns in Figure 5-1, the set of R&D investments and

installed capacities under a weak emissions target can be compared with the BAU (no

cap) results. For ease of explanation, the BAU reference model results from Chapter 4.7

are replicated here. Note that while wind R&D investment neither changes in magnitude

nor shifts temporally from BAU, coal with CCS R&D gradually enters from Period 1 on.

For both technologies, it can be seen that it is optimal to invest in R&D first, and then

build new capacity once their capital costs fall. Under this cap however, it is optimal to

invest early in wind and begin building it as soon as its capital costs are even slightly

reduced (in Period 2). Alternatively, it is optimal to invest in coal with CCS R&D

technology more slowly and relatively moderately, waiting for it to get as cheap as

possible, and then building it later or just in time to meet the final target when there is no

other choice. This is seen by the fact that at the end of the 60-year planning horizon, new

coal with CCS capacity only just begins to appear. Compared to the BAU scenario, new

coal with CCS capacity displaces a small portion of new (conventional) coal capacity in

order to meet the carbon target.
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To meet a more moderate emissions reduction target of 50% below BAU (Figure

5-1), wind R&D investment and new capacity patterns continue unchanged from their

BAU magnitudes and trajectory. However, coal with CCS technology R&D investment

increases and peaks within the 60-year planning horizon under the moderate target,

allowing it to become cost competitive with other low-emission technologies earlier and

thus also being built earlier, by Period 6. Figure 5-2 presents the trajectories of capital cost

and corresponding knowledge stocks for each of the emerging technologies in each

scenario. A maximum rate of change constraint for installed wind power capacity,

combined with its low resource availability rate, also has a role in promoting new coal

with CCS capacity to enter the system. As explained in Chapter 4, the installed capacity

for each of the emerging technologies in any one period must not exceed twice its own

installed capacity in the preceding period. Thus, over the long planning horizon defined

in this problem, there is incentive to invest in a second low-emission technology to meet

the final cumulative cap.

Finally, to reach a strong cumulative emissions target plus a stringent final period

(Year 60) emissions cap, dramatic changes are seen in the optimal R&D investment

trajectory and in the capacity mix (Figure 5-1). In this scenario, nuclear power R&D

investment enters and is strong and swift, and coal with CCS R&D increases in the early

periods and peaks earlier as well. Throughout this time, wind R&D continues

unchanged. The changes that are witnessed occur because coal with CCS (with its only

90% carbon capture rate), and wind (with its lower resource availability rate) do not

provide enough opportunity to reach the stringent target. For this, a zero-emission

technology, "guaranteed" to provide vast emission reduction due to its baseloaded nature
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is needed (and therefore targeted). Simply put, the other technologies cannot do enough

for such strict targets, so the optimal near-term policy favors the most capable

technology. Under the strong target scenario, nuclear power displaces almost all new

coal capacity from the BAU, weak, and moderate target scenarios, with some additional

new coal with CCS capacity making up the balance.

A relevant question here is why under the strong target scenario does nuclear

power R&D investment and new capacity not dominate either coal with CCS or wind

power, or both? Why does R&D investment (and corresponding new capacity) occur

early, but then drop to a negligible amount only to leave room for the more expensive

capital cost technology (Figure 5-1)? The answer relies on the complex cost structure of

the generating technologies themselves. The decision to add new capacity depends both

on the capital cost of the technologies, as well as other fixed costs and variable costs. In

the case of nuclear power, while the capital cost is lower than coal with CCS to begin

with, its fuel cost (a dominant portion of its variable cost) is higher. In the case of this

problem and specific modeling framework, nuclear technology's capital costs decrease

from the R&D investment, but its variable costs remain unchanged. On the other hand,

investing in coal with CCS for example, allows the capital cost to decrease, and after a

certain point the balance of its fixed and variable costs exceed nuclear power in terms of

cost competitiveness. Therefore, the overall R&D focus is still on the coal with CCS and

wind even under the strong target, but nuclear R&D investment and new capacity fills in

during the early periods before coal with CCS is cost competitive enough. Nuclear

power's zero-emission characteristic also helps secure a spot for its investment under this

strong target scenario.
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Figure 5-1 Optimal R&D investments (left) and installed capacities (right) for various carbon
reduction target stringencies
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carbon reduction target stringencies
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Comparing the optimal emissions trajectories in Figure 5-3 below supports the

results outlined above. In the first two scenarios of a weak 25% and moderate 50%

reduction from BAU, the general strategy is to inch the system towards meeting the

cumulative goals, but to wait until later-until there is no other choice-to begin building

(and operating) still expensive low-carbon technologies (i.e., coal with CCS). In these

scenarios, optimal generation patterns for the technologies follow optimal installations

fairly closely (See Figure 5-4 and Figure 5-1 for a comparison of generation and installed

capacity per period under all carbon targets). This changes under the strong target, where

the challenging overall and final strict caps are present, leaving the optimal emissions

path a result of investing both in R&D and building and operating new nuclear plants

early. Under this strong target, operations no longer mimic installation patterns, and

nuclear power generation comprises up to half of the total generation in order to meet this

strict final target. This occurs because the system needs nuclear power installed in order

to meet the stringent cap, but once nuclear power is installed, it must be run (e.g. it is

baseloaded).
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Figure 5-3 Optimal emission profiles (caps) for various carbon reduction target stringencies9
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Figure 5-4 Optimal electricity generation by technology per period under BAU (a), weak (b),
moderate (c), and strong (d) carbon targets

9 Note the small difference between BAU and weak target emissions time profiles. The profiles track each
other closely for the first 60-years of the planning horizon, but diverge in the terminal periods (years 65-
100) of the problem.
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5.2 Optimal Investment Strategy v. Endogenous Learning Dynamics

The next three numerical experiments explore in detail the technological learning

dynamics introduced in the model. The first, described in this section, extends a

comparison begun in Chapter 4.7 by studying the impact of the specific learning

mechanism on the optimal capital and R&D investment strategy, and associated

emissions profiles. Chapter 4.7 presents the reference version of the numerical model,

which consists of both learning-by-doing (LBD) and learning-by-searching (LBS) for all

emerging technology groups. It further compares the results to results from a version of

the model with no learning dynamics incorporated. The present analysis provides a more

detailed look at the impact of the individual learning-by-doing pathway versus learning-

by-searching pathway on the optimal investment portfolio. As Chapter 3 describes, many

modern electricity generation capacity planning and policy analysis models contain some

form of learning-by-doing, but few incorporate endogenous learning-by-searching. The

goal of this numerical experiment is to develop a refined sense of the specific impact of

incorporating learning-by-searching into this type of a model. The comparison between

the BAU reference model and the BAU no-learning model in Chapter 4.7 also

highlighted the existing, but subtle, change in emissions profiles between the two.

Unpacking the impact of LBD versus LBS in this change is also of interest.

Figure 5-5 shows R&D investment and installed capacities from scenarios with no

learning, LBD only, LBS only, and both LBD and LBS under BAU. For ease of

discussion, relevant results from Chapter 4.7 are replicated again below. First note that

under a no-learning or LBD only scenario, there is no learning-by-searching mechanism

included in the model and therefore no pathway to invest in R&D to reduce capital costs;
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in these cases R&D investment are necessarily zero for all technologies. Results show no

changes in installed capacities between the LBD only, LBS only, and LBD and LBS

scenario; the only slight difference between these scenarios and the no-learning scenario

is a small increase in wind installed capacity in Period 3 from the no-learning scenario.

On the other hand, R&D investment in the LBS only scenario is nearly four times the

R&D investment in the LBS and LBD scenario. The overall goal of this R&D

investment is to reduce the capital cost of wind power as much as possible before large

additions of new wind capacity, but this shows that in the presence of both LBD and

LBS, less R&D investment is needed to achieve the same cost reductions. The reasoning

behind this is that the model considers LBD a relatively "free" capital cost reduction

mechanism-once a technology has an installed capacity base, it can learn 10. Therefore,

for the same installed capacity goals, the LBS only scenario, which cannot benefit from

this additional free mechanism, needs more investment to reach the same target. Total

system costs (NPV) from the four scenarios under BAU from least-cost to highest-cost

are: $6.048 trillion (LBS and LBD), $6.081 trillion (LBD Only), $6.322 (LBS Only), and

$6.461 trillion (No Learning). Such values suggest that results from current energy and

policy analysis models without adequate representations of learning-by-searching may be

over-estimating costs, possibly biasing cost-benefit analyses using these types of models.

10 Note that learning-by-doing (LBD) is not entirely free, as it does still require investment in the actual
capital.
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Figure 5-5 Optimal R&D investments (left) and installed capacities (right) for various learning
scenarios under BAU
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The impact of learning-by-doing and learning-by-searching on the optimal

investment strategy is further explored under the 50% BAU moderate carbon target

scenario to determine if the behaviors from the BAU scenario above persist. Results are

shown in Figure 5-6 below. First, when a moderate carbon target is present, new capacity

decisions are dominated by the goal to reach the cumulative carbon target and are

insensitive to changes in the learning dynamics introduced in the model. This follows

from the fact that LBS (as used in this model) does not reduce capital costs sufficiently to

change the cost structure of the technologies and cause technology switching at this

objective. Overall, the different learning pathways (or lack of learning pathways) afford

an opportunity to meet the target at a lower (or higher) total system cost, but the physical

system that needs to be reached and in place by the end of the planning horizon is

constant under a specified cap. As discussed in Section 5.1 above, under the moderate

target new capacity decisions are focused on wind power technology in the early periods

and coal with CCS technology more gradually in the later periods.

The behavior of the R&D investment decisions track this capital investment

requirement, and share the same general distinctions as in the BAU scenario above.

Namely, R&D investment in wind is much higher in the LBS only scenario than when

LBS and LBD are present, with a peak investment level approximately four times peak

investment when both learning mechanisms are present (Figure 5-6). An increase under

the LBS only scenario is also seen for coal with CCS technology when compared to the

LBD and LBS scenario, showing once again that in the presence of "free" capital cost

reduction, less active R&D investment is needed to allow the technology to be cost-

competitive under this carbon cap. However, the increase in R&D investment level is
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less drastic under the LBS scenario in the coal with CCS case than in the case of wind.

Peak R&D investment in coal with CCS reaches only approximately 150% of the

investment level under both learning mechanisms.

The reasoning for this difference is three-fold. First, the difference can be

attributed to the generally lesser amount of the technology required to meet this specific

carbon target level (wind power continues to be the dominant technology required to

meet this target). Second, the difference results from the specific characteristics of the

technologies' learning dynamics. As Table 5-1 at the end of the chapter shows, coal with

CCS has a much more inelastic (and thus slower for the same R&D level) learning-by-

doing rate than wind; the result is that when LBD is taken away from wind technology

learning, a larger amount must be recovered from the LBS pathway. The opposite is true

with coal with CCS, an additional reason why only modest increases in coal with CCS

R&D investment is seen in the LBD only scenario. Third, wind power enjoys a relatively

large existing installed capacity base in the physical system, which allows it to take

advantage of the LBD pathway more readily than coal with CCS, which starts out with a

negligible amount of capacity. Thus, coal with CCS remains relatively "locked-out" of

the LBD cost-reductions when compared to wind, which means that when the LBD

pathway is cut off, coal with CCS has less to "lose" from it.
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Figure 5-6 Optimal R&D investments (left) and installed capacities (right) for various learning
scenarios under a MODERATE (50% BAli) carbon target
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Next, Figure 5-7 below shows the per period emissions levels associated with the

optimal investment strategies for the different learning scenarios. As a reminder, the

comparison between the BAU reference model and the BAU no-learning model in

Chapter 4.7 highlighted an existing, but subtle, change in emissions profiles between the

two models. Here, the impact of LBD versus LBS in this change is unpacked and

extended to the moderate carbon target scenario.
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Figure 5-7 Per period carbon emission trajectories for various learning scenarios under a BAU (a)
and MODERATE (b) carbon target

Figure 5-7a shows that under BAU per period emission profile differences are

simply the result of a single learning mechanism being present in the model. The thicker

black series in the graphs show the emission trajectory resulting from the no-learning

scenario, whereas all other three series (LBD Only, LBS Only, and LBD and LBS) are

identical. A discussion of why the dip in emissions is seen later, with no learning

present, is provided in Chapter 4.7 above; this numerical experiment shows that the

particular learning pathway does not affect how near-term emissions are allocated inter-

temporally to meet the cumulative carbon target. Only in the case of no learning is the

capacity mix significantly different enough to affect operation of, and thus emissions

from, the physical system.
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The same comparison is made under a more stringent carbon target in order to see

if this behavior holds (Figure 5-7b). In fact, when a moderate carbon target is present,

emission profile trajectories are also completely dominated by the goal to meet the cap

and the learning pathway plays no role in emissions patterns. Thus, as Figure 5-7b shows,

there is no change between the scenarios with different learning mechanisms. The result

here is simply a change in total system cost across the different scenarios, with the order

of least costly to most costly being: LBD and LBS, LBD Only, LBS only, and No

Learning. This can be explained by the result discussed in Figure 5-6 above, where there

was also no change in installed capacity mixes across the different learning scenarios.

Once a physical system (and generation technologies) are in place, there is a single

optimal operation plan for that system to meet demand.

Under a specific cumulative carbon target then, because the learning pathways are

not sufficient to induce technology switching in capital investments, the focus becomes

more on choosing the optimal combination of R&D investments for capital cost-

reductions for the necessary technologies to be installed and operated to meet the cap.

Under a carbon target, the result here suggests that there is a single optimal installed

capacity trajectory, and by extension a single optimal emissions profile. In the next two

numerical experiments, it is interesting to see that these behaviors hold.
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5.3 Impact of Knowledge Stock Strength on Optimal Investment Strategy

A motivation for disaggregating the dynamics by which new knowledge is created

from R&D effort (in contrast to earlier works that directly equate new knowledge to

amount of R&D dollars invested) is the opportunity to study how characteristics of

technology-specific knowledge stocks and dollars invested in R&D might differently

affect the production of new knowledge, and therefore optimal R&D and capital

investment strategies. As described in Chapter 3, recent empirical studies point to a

variation between technologies on this effect, and the current literature (both empirical

and modeling) is dominated by lumping the knowledge stock contribution into one

category, or by using identical parameters across technologies to represent changes in

knowledge over time. Thus, the next numerical experiment is a study of the optimal

investment strategy given different values for the parameter 4, the contribution of

knowledge stock (HEBACKtg) to new knowledge (NEWHEBtg) in the innovation

possibilities frontier (IPF) below-or the "strength" of effect from the accumulated

knowledge stock:

NEWHEBt,g = agREBACKg HEBACKg.

In this experiment, the full endogenous learning model with emissions targets

imposed is used. Sensitivity of the optimal R&D and generating capacity investment

strategy on the value of 0 for each emerging technology is tested separately, holding all

other technology knowledge stock contributions at their reference model values. Results

are first compared under the 50% BAU (moderate) carbon target scenario using a "high,"
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"reference," and "low" value for 0. In each scenario, the "high" value corresponds to a

phi value of 0.8, the "medium" value to the reference value 0.54; and the "low" value to a

phi value of 0.1. This range is chosen to retain the decreasing returns to scale Cobb-

Douglas form of the reference IPF (i.e., the sum of elasticities less than 1) and

diminishing returns to research (phi between 0 and 1). The reference value for the

corresponding elasticity on R&D investment in the IPF is 0.1, allowing the sum of

elasticities to range from 0.2-0.9. Figure 5-8 and Figure 5-10 show the resulting R&D

investment and associated installed capacities from the wind and coal with CCS analyses,

respectively. Supporting Figure 5-9 and Figure 5-11 show the capital cost trajectories and

corresponding knowledge stock trajectories for the wind and coal with CCS analyses,

respectively. Due to their insensitivity, full sets of figures for the nuclear and solar

sensitivity analyses have been omitted (for brevity) but their results are also discussed

below.
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Overall, sensitivity of the optimal R&D investment level on the strength of the

knowledge stock effectiveness for new technology knowledge is modest. In the case of

wind power, as * increases, investment in R&D increases-from a peak investment level

of approximately $430 million under low 4 to just over $600 million under the highest 4.

However, neither installed capacity nor generation change. Additionally, increased wind

R&D investments as a result of increased knowledge stock strength do not affect

investment or new installation for the other emerging technology categories (i.e., coal

with CCS R&D investments stay constant, nuclear and solar power investments are

unaffected).

Each of these results is to be expected. First, the low resource availability factor

for wind power means that it only provides a percentage of demand, before it is more

economic for another technology to be installed and operated to meet a larger portion of

the demand while still keeping emissions low. This creates an environment where wind

fills a niche and it is difficult to bump it from this niche, limiting the value of R&D

investment in this technology for minimizing total system costs. Additionally, as shown

in Figure 5-9, although the knowledge stock for wind technology can even grow

exponentially (at the highest 4 level), the change in actual capital costs is relatively

insignificant when considering how inexpensive wind technology already is compared to

the other technologies (unnoticeable on the graph, the difference is between

approximately $357 million/GW-knowledge unit for 4 = 0.1 to $209 million/GW-

knowledge unit for the highest 4 = 0.8). Relative to its starting capital cost of $2438

million/GW-knowledge unit, the percentage reduction by the end of the planning horizon

is 85% for 4 = 0.1 compared to 91% for 4 = 0.8. The next cheapest technology in terms
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of final capital cost is nuclear power at $2472 million/GW-knowledge unit. Considering

its zero fuel cost and low other variable cost, wind power therefore is simply limited here

by its resource availability and imposed capital installations rate of change constraints

(otherwise it would certainty dominate the entire physical system at these low costs).

Second, additional R&D investment in wind technology is independent of other

technology R&D decisions because knowledge creation for one technology group is not

linked to knowledge creation for another technology group in the current modeling

framework; knowledge accumulation and new knowledge creation are limited to "within

technology" dynamics. Clearly, the possibility that knowledge creation in one

technology can affect opportunities to generate new knowledge in another technology

group is very real. However, for the purposes of introducing the new modeling

framework and keeping it tractable, solely "within technology" dynamics are considered.

Third, as shown in Section 5.2 above, the specific carbon target dominates the

generating capital deployment (installment) plan. The fact that the optimal installed

capacities are insensitive to changes in the strength of the knowledge stocks here

confirms this finding, and adds to the notion that the role of learning in this problem as

formulated, is relatively weak-enough to reduce overall system costs to meet a specified

cumulative carbon target and installation plan, but not strong enough to induce

technology switching.

Figure 5-10 shows that as b increases for coal with CCS, R&D investment increases

substantially. The same general trajectories exist for R&D and generating capacity

investments across levels of phi: a gradual increase in R&D investment over time,

peaking at approximately Period 10, and gradual addition of new coal with CCS capacity
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with an emphasis on the later periods when meeting the cumulative carbon cap is more

imminent. Like the wind case above, the actual generation deployment plan does not

change across coal with CCS phi levels either. The difference across levels simply

reflects the relationship between total R&D invested and a less effective knowledge

stock: a peak investment of approximately $250 million for 4 = 0.1 to $675 million for 4

= 0.8.

Associated capital cost trajectories and knowledge stock trajectories in the low 4

and high 4 case are given in Figure 5-11, but in contrast to the wind case above, they show

the greater cost changes for coal with CCS when 0 increases, and more drastic increases

in knowledge stock. For the lowest level of 0 = 0.1, the capital cost for coal with CCS is

approximately $3278 million per GW-knowledge unit; for the highest level 0 = 0.8, the

capital cost declines to $2817 million per GW-knowledge unit-a total of 9% additional

reduction from the original capital cost of $5099 million per GW-knowledge unit for

stronger knowledge stock. Likewise, the cumulative knowledge stock witnesses 5361-

fold increase when 4 = 0.8, compared with a 32-fold increase when 0 = 0.1. In contrast,

the wind knowledge stock in the wind analysis above only saw a 4512-fold increase at

the highest 4 = 0.8 level and a 31-fold increase at the lowest 0 = 0.1 level.

This behavior for coal with CCS in response to changes in phi can be explained

by considering the necessary role of coal with CCS in the deployment plan to meet the

moderate cumulative carbon target, and the lack of an existing installed capacity base to

begin with. The capital cost (CAPC) for a technology, g, at time, t, shown again below,

remains a function of both the technology's cumulative knowledge stock (HEBACK-
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"learning-by-searching") and the technology's cumulative installed capacity base

(CAPACITY-"leaming-by-doing").

CAPCtg CAPCOg
(CAPACITYtg )(HEBACKtg)

With wind technology, the existing installed base is already relatively sizable (when

compared to the negligible coal with CCS the system begins with). As resource

availability and installed capacity rate of change constraints become active, coal with

CCS technology has more room to grow within the system, and is needed to meet the

cumulative cap. Due to limits on the maximum amount of additional capacity the system

can handle between one period and the next, and the significantly lower LBD and LBS

elasticities (il and 12, respectively) in the capital cost equation for coal with CCS than

wind, the focus is placed on growing the coal with CCS cumulative knowledge stock

quickly in order to reduce costs as much as possible. Additional R&D investment

provides the mechanism for doing so, by feeding the innovation possibilities frontier.

The above result is a nice example of how constraints in the operation of the electric

power system and the characteristics of individual technologies can affect R&D

investment and technological learning differently for two different technologies with the

same level of effectiveness for how the knowledge stock contributes to new knowledge.

Results from the b sensitivity analysis for nuclear power and solar power confirm

a pattern that has emerged throughout the study. In the case of a moderate carbon cap,

neither technology is part of the capital deployment plan. Varying the strength of the

knowledge stock contribution to the creation of new knowledge (and ultimately
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opportunity for capital cost reduction) does not change this result in the case of either

technology. As phi varies from 0.1 to 0.8, neither R&D investments nor the need for

capital investments appear. Likewise, changes in the opportunity to generate new

knowledge do not affect opportunities or decisions made for any of the other

technologies.

Figure 5-12 and Figure 5-13 show the corresponding capital costs for the emerging

technologies in the case of a low and high phi level for both nuclear and solar.
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Figure 5-12 Capital cost and corresponding knowledge stock trajectories with low (left) and high
(right) NUCLEAR knowledge stock contribution strengths under a MODERATE (50% BAU)
carbon target

Nuclear technology remains too expensive as a combined package of fixed capital

and variable/fuel costs to be competitive at this carbon cap. Its existing installed capacity

base allows it to use LBD to reduce capital costs initially, but its eventual lack of need for

this carbon target actually causes an implicit "forgetting" mechanism to kick-in and after

Period 2 capital costs for nuclear technology actually increase gradually. This increase is
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also due to the fact that older nuclear plants retire from the system, causing the installed

capacity base to decrease. Overall, the nuclear knowledge stock reaches a higher

cumulative value under a stronger knowledge stock contribution level, but remains

limited due to the lack of emphasis on the technology and R&D investments.

Figure
(right)
target

5-13 Capital cost and corresponding knowledge stock trajectories with low (left) and high
SOLAR knowledge stock contribution strengths under a MODERATE (50% BAU) carbon

Solar technology exhibits a similar pattern, with no R&D investments and no new

capacity additions under the moderate carbon cap across all possible values for phi. Like

nuclear power, it is not part of the deployment plan for this cap level; a combination of its

high initial capital cost and limited resource availability rate do not allow it to play a role

in meeting the current goal. In contrast to nuclear power, solar capital costs continue to

decrease over time because of its much higher LBD elasticity (0.41504 compared to

0.05889 for nuclear) and also the lack of retirements imposed in the modeling
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framework, keeping installed capacity constant over time. Thus, as the knowledge stock

grows, capital costs continue to decrease.

Overall, the results of the nuclear and solar phi sensitivity analyses confirm that

the cumulative carbon cap and corresponding deployment plan dictate how R&D

investments change. They show that the emerging technology learning pathways and

parameters used in the model are relatively insufficient for changing deployment

decisions, especially when considering the starting values for capital costs. Even the

strongest possible knowledge stock contribution rate in this case was not enough to cause

nuclear to trade places in cost-competitiveness with coal with CCS. For solar, its limited

resource availability, high initial capital cost, and low initial existing capital stock interact

to keep it "locked" out of achieving swift cost reductions in the model, particularly when

a more competitive non-emitting technology such as wind power is available.

Finally, Figure 5-14 shows summary results from a full sensitivity analysis of phi

levels on peak R&D investment levels for all technology groups under each of the three

carbon target stringencies. Associated installed capacities for each of the carbon targets

is included for discussion. Peak R&D investment behaviors correspond to the

discussions above. Under all three carbon targets, as phi increases, peak R&D

investments increase monotonically, at a rate influenced by its relative need to meet the

cumulative carbon target, initial installed capacity, and individual learning-by-doing and

learning-by-searching elasticities.

Under the weak target, both wind and coal with CCS technology peak R&D

investment increases gradually over phi. New wind capacity is the focus under this

cumulative carbon target, but its relatively large existing installed capacity base,
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maximum capacity constraint, and relatively easy ability to "learn" (high LBD and LBS

rates) keeps its R&D investment low. Coal with CCS in this scenario only plays a small

role, keeping its R&D investment low as well.

Under a more aggressive moderate carbon target, the behavior of wind R&D

investment does not change as it is already doing as much as it is capable of (and is

optimal to do), but coal with CCS R&D peak investment grows over phi at a faster rate

than under the weak target. This is explained by coal with CCS technology's increased

role in the capital deployment plan under the moderate target, its small initial existing

base, and its relatively lower LBD and LBS rates. As explained above, coal with CCS

technology's small existing base does not allow it to take advantage of the learning-by-

doing pathway as much, so the dominant pathway for initial capital cost reduction for

coal with CCS is through R&D investment to grow the cumulative knowledge stock. As

the objective is to meet total system needs at least cost, the faster growth for peak R&D

investment over phi values is simply a result of having the opportunity to bring the

capital cost of this scenario-required technology down more quickly. Investing more up

front is less costly than investing less and paying higher discounted costs later, or

choosing another technology.

Finally, under the strong target, the behaviors of wind and coal with CCS R&D

investment are not altered from the moderate target, but the nuclear technology peak

R&D investment is seen. The general behavior is the same as the other technologies and

peak R&D investment increases monotonically over phi. However, although the

deployment plan shows nuclear power to have a similarly strong role as coal with CCS in

meeting the stringent cumulative carbon cap, the rate at which peak R&D investment
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increases over phi is lower than coal with CCS. This can be explained by nuclear

power's much larger initial existing capital stock, which allows nuclear technology to

take advantage of the "free" learning-by-doing pathway as well as the learning-by-

searching pathway towards capital cost reductions. A higher phi in the case of nuclear

does not create the same incentive for ramping up R&D investment as it did for coal with

CCS technology.
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5.4 Impact of R&D Program Efficiency on Optimal Investment Strategy

The second parameter, j, of the innovation possibilities frontier represents the

contribution of R&D dollars invested in the production of new knowledge, which can be

considered an "efficiency" for the investment. The theoretical, empirical, and modeling

literature on innovation and the economics of technological change is replete with many

references to the uncertainty inherent in the returns to R&D investment; this third

experiment is devoted to a sensitivity analysis on this parameter. In doing so, it allows an

initial investigation into the potential effect of this uncertainty on optimal R&D

investment and emissions policies.

The full endogenous learning model with emissions targets imposed is again used,

and this section uses the same procedure as in the previous experiment of varying each

technology category 3 parameter separately, while holding other technologies at their

reference values (0.10). The parameter 0 is varied for each technology using a "high,"

"medium," and "low" value of 0.02, 0.10 (reference value), and 0.40, respectively. This

range for parameter values are once again chosen to retain the decreasing returns to scale

of the reference IPF, and the diminishing returns characteristic for energy research (beta

is between 0 and 1). Results between the scenarios are compared. For brevity, the results

from the sensitivity analyses on the wind and coal with CCS technology IPF [ parameter

are presented below graphically. Due to the lack of response under the moderate carbon

target with respect to their own R&D investment, their own new capacity addition, or

their impact on other technologies' R&D investments, capacity additions, or generation,

the nuclear and solar IPF [ parameter sensitivity results are discussed briefly afterwards.
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Figure 5-15 shows that as the efficiency of wind R&D increases from the low p =

0.02 to high p = 0.40, R&D investment grows (approximately 20 times, at the peak

investment level). However, this experiment again shows the independence of the

different technology's learning pathways. Increased R&D investment in wind affects

neither R&D investments nor new capacity additions for any of the other technologies;

coal with CCS technology plays a moderate role under this carbon target both in terms of

R&D investments and new capacity, but its own investment strategy stays constant

throughout changes in the efficiency of the wind technology R&D program. Likewise,

new own capacity additions for wind do not change throughout different R&D

investment strategies. This result is in line with the strong role of the carbon target in

designing the overall capital deployment plan, and the total system cost-reduction role of

the learning-pathways in this problem, rather than a technology-switching role. Finally,

as expected due to the lack of change in capacity plans, the emissions time profile

experiences no change throughout the technology IPF sensitivity analyses in this

experiment.
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Figure 5-15 Optimal R&D investments (left) and installed capacities (right) for different R&D
program efficiencies for WIND technology under a MODERATE (50% BAUJ) carbon target.

Figure 5-16 presents the capital cost and corresponding knowledge stock

trajectories for coal with CCS under the low and high IPF beta scenarios. As shown, the

knowledge stock for wind investment responds considerably to the high R&D program

efficiency, and at its peak, reaches a level approximately 18 times greater than the low-

level peak (note the difference in scales across the two scenario graphs). This is expected

given the much larger base values for R&D investment in the innovation possibilities
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frontier function, compared with the knowledge stocks in the previous experiment that

were all initialized at 1.0.

The more telling change is seen in the final capital cost reductions witnessed from

this change in R&D program efficiency and R&D investment level (Figure 5-17). The

overall actual capital cost reduction is sizable, in the range of 90% from the initial capital

cost of $2438 million per GW-knowledge unit. As shown however, the difference in the

capital cost reduction is quite small across the different levels of R&D program

efficiency-from $300 million per GW-knowledge unit to $222 million per GW-

knowledge unit at the end of the problem horizon. This corresponds to an additional 3%

reduction from the original capital cost. Such small cost impacts of the additional R&D

program efficiency helps explains why while total system cost is reduced from this

additional upfront R&D investment (from 6.369 to 6.345 trillion NPV), technology

switching through new capacity additions are not favored to meet the current cumulative

carbon target.
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Figure 5-17 Comparison of capital cost trajectories with low (o) and high (x) WIND
R&D investment efficiency under a MODERATE (50% BAU) carbon target

Figure 5-18 shows results from the coal with CCS R&D program efficiency

sensitivity analysis. As R&D efficiency grows, investment grows substantially

(approximately 25 fold, at the peak investment level in Period 10). Once again, R&D

investment for other technologies is unaffected, as are new capacity additions for any

technology, including coal with CCS.
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Figure 5-18 Optimal R&D investments (left) and installed capacities (right) for different R&D
program efficiencies for COAL WITH CCS technology under a MODERATE (50% BAU) carbon
target

Figure 5-19 below shows the corresponding capital cost and knowledge stock

trajectories for the emerging technologies under the cases when coal with CCS R&D

investment efficiency is low and high. The results show the relatively fast rate of

knowledge stock increase for coal with CCS under high investment efficiency and the

analogous relatively fast rate of decline for the capital costs for coal with CCS (notice the

swifter rate by which coal with CCS approaches the nuclear technology capital cost by
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the final period). Figure 5-20 emphasizes the capital cost trajectory of coal with CCS

individually for the low and high investment efficiencies for easier comparison. From the

initial capital cost of $5099 million per GW-knowledge unit, the low investment

efficiency achieves a 38% reduction in capital costs by the final period (to $3152 million

per GW-knowledge unit) while the high investment efficiency achieves a total of 45%

reduction (to $2779 million per GW-knowledge unit). This additional 7% reduction

contrasts with the small 3% additional reduction that wind technology capital costs

received through increased R&D program efficiency. As in the first and second

numerical experiment, this can be explained by the lower resource availability rate for

wind and the greater focus on baseload technologies with large emission reduction

potentials, for R&D investment and deployment under more stringent carbon targets.

Studying the specific R&D trajectories of wind versus coal with CCS shows that coal

with CCS has a longer phase of very large R&D investments compared to wind (six

instead of four periods).
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Figure 5-20 Comparison of capital cost trajectories with low (o) and high (x)
COAL WITH CCS R&D investment efficiency under a MODERATE (50% BAU) carbon target

Under this carbon target and corresponding capital deployment plan, both nuclear

technology and solar technology again play no role with respect to R&D investment or

new capacity additions. This fact remains constant irrespective of these technologies'

R&D program effectiveness. Even when the potential efficiency of R&D investments to

contribute to capital cost reductions are almost unrealistically high (at the highest levels
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of beta in the IPF), there is no change in the investment strategy. Graphical results for

these sensitivity analyses are not presented; final results are the same as those shown for

nuclear and solar power analyses under the previous experiment on the IPF phi

parameter. For nuclear power technology, it remains too expensive as a combined

package of fixed capital and variable/fuel costs to be competitive at this carbon cap. For

solar power technology, the story is the same-its capital cost simply remains too high

for it to be economic at this target stringency when wind power or another technology

can meet demand. This lack of change in their own investment strategies also extends to

a lack of any effect on other technologies' investment strategies or learning pathways.

Finally, Figure 5-21 shows summary results from a full sensitivity analysis of beta

levels on peak R&D investment levels for all technology groups under each of the three

carbon target stringencies. The main sensitivity analysis was performed on nine levels

for beta ranging from 0.02-0.18, around the reference value of 0.1. For additional

study, a beta level of 0.40 at the end of the range of possible values but that still ensured

the original decreasing returns to scale IPF formulation is also included and presented

below. Associated installed capacities for each of the carbon targets are again included

for discussion purposes. Results generally follow those from the previous sensitivity

analysis on knowledge stock effects, with a few exceptions.

First, under all three carbon targets, as beta increases, peak R&D investments

again increase monotonically at a rate influenced by the technology's relative need to

meet the cumulative carbon target and its installed capacity. Note that the rates of

increase are more linear at this small range of elasticity levels than the comparable graphs

for the phi sensitivity analysis, which explored a much greater range. Under the weak
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carbon target, the focus on wind power in the capital deployment plan matches the higher

rate of R&D investment increase for wind. This differs from coal with CCS technology,

which plays a larger role in the deployment plan in later periods. A higher beta

parameter means that for one dollar of R&D spent, a larger quantity of knowledge is

produced, thus bringing capital costs of this required technology down even faster.

Under the moderate target, the shift towards more coal with CCS helps balance the focus

towards a combination of the two technologies, matching the smaller difference seen in

the rate of R&D investment between the two technologies' growth across beta levels.

Lastly, under the strong carbon target for which nuclear power plays a role in the

investment strategy, the smaller difference between rates of R&D increase across beta

levels is maintained as all three technologies are required to meet this more stringent cap.

However, peak R&D investment for nuclear power under a strong carbon target

displays a different pattern across levels of R&D program efficiency than level of

knowledge stock effectiveness (phi). Note that at the highest levels of beta, nuclear

power peak R&D investment exceeds wind and coal with CCS peak R&D investment

(coal with CCS R&D investment is hidden behind the wind data point), while at the

lower beta levels, wind dominates. In the case of the phi sensitivity analysis, the nuclear

power R&D investment path remained below wind and above coal with CCS at the lower

phi levels, and coal with CCS dominated at the highest phi level.

The behavior here can be explained by a combination of 1) the fact that nuclear

power has a relatively large existing installed capacity base, whereas coal with CCS and

wind do not, 2) the necessity of nuclear power in the current deployment plan, and 3) the

general formulation of the IPF and two-factor learning curve (2FLC). Because nuclear
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power technology has a large existing capital base and will have additional capacity

additions under the strong target, there is an incentive to take full advantage of both its

LBD and LBS pathways for capital cost reduction. In order to do so, the cumulative

knowledge stock ought also to be large; the main pathway.to achieve this is through more

R&D investment in the IPF. Hence, the extra focus on nuclear at these high efficiency

levels is expected. Coal with CCS technology, for example, does not display the same

behavior at these high efficiency levels because the lack of an existing coal with CCS

capital base does not allow it to benefit as much from simultaneous LBD and LBS cost-

reduction pathways. Higher beta levels still spur additional R&D investments for all

three technologies, but the additional incentive to invest even more in nuclear at the

highest levels is unique to nuclear in this scenario.
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Figure 5-21 Peak R&D investments for different R&D program efficiencies (left) and installed
capacities (right) under three carbon targets

5.5 The Case for Solar Technology

In the numerical experiments above, the capital cost of solar technology remained

too high for it to be cost competitive with other available technologies to meet electricity

demand at the carbon stringencies studied. The absence of solar power in the optimal

investment strategy in these experiments is driven by three key interrelated factors. First,

the initial capital cost of solar technology used in the analysis is very high, far above that

for wind technology, which becomes the dominant intermittent renewable technology
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chosen for R&D and new capacity above. Thus, solar has a greater distance to travel

"down the learning-by-searching curve" in order to compete with wind. Second, the

initial capacity (cumulative experience) of solar is very low and it is thus also high on the

learning-by-doing curve. This low starting point does not allow it to take advantage of

experience-based cost reductions compared to other technologies in the model. Third,

solar power generates only in specific demand slices, with peak generation displaced a

few hours from when solar radiation is most intense. Thus, solar is a "niche" technology

in the model (even more so than wind); it is quite limited by its resource availability

given the system's current relative inability to store its generated power for use during

off-solar-peak times. All three of these characteristics work together to keep solar

technology at a competitive disadvantage.

To study the case of solar technology in more detail, in this experiment additional

constraints are imposed on the power system to find the conditions where solar does

become cost-competitive with the other available technologies. In this analysis, wind

technology does not learn (neither via LBD nor LBS) (e.g., it has already reached a

learning "limit"), new nuclear installations are not allowed (e.g., for political reasons),

and coal with CCS is severely constrained and can only reach a max capacity of ten

percent of peak demand(e.g., there are not enough viable or otherwise acceptable storage

sites available).

Figure 5-22 shows results from this analysis under a business as usual scenario for

carbon target stringency. Solar R&D investments displace wind in the earlier BAU

scenario (Section 5.1) when wind continued to learn. In terms of installed capacities,

however, solar installations only displace a small portion of new wind installations (and
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generation). Because solar only operates in specific demand slices, the system needs

another available technology to fill in to meet demand fully. In this constrained system,

wind (even non-learning wind), is the next most competitive technology. Due to the non-

learning nature of wind technology in this case, small amounts of coal with CCS R&D

investment and new capacity additions also appear under the BAU scenario; this is

different from the original reference scenario, when coal with CCS did not appear until

there was a carbon cap to meet. In this case, though it is capacity constrained, coal with

CCS continues to learn, and this makes it an attractive option for R&D investment and

capital cost reduction to minimize total system costs.

The emissions time profile of the BAU scenario tells a similar story to that of the

original reference BAU scenario. Emissions continue to rise (as there is no imposed

carbon cap) after an initial early dip in emissions. This characteristic corresponds to

aggressive retirements for old coal and old gas plants, and their corresponding no new

build constraints. As these old plants no longer generate electricity, they force the

physical system to settle to a new benchmark before the system pursues its true

unconstrained emissions path for the remainder of the problem horizon. Figure 5-23

presents the underlying knowledge stock trajectories per technology for the BAU

constrained system, and shows the constant knowledge stock (at 1.0) for non-learning

wind in this case, and the comparable rapid increase in solar and coal with CCS

knowledge stocks.
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Figure 5-22 BAU results for the constrained system:
total generation (c), and emissions per period (d)
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Figure 5-23 Knowledge stock trajectories under BAU in the constrained system

To study solar R&D investments and installations more closely in the context of

this constrained system, the carbon target stringency level is varied, and changes in the

R&D investment and capital installment patterns are compared. Weak (25% BAU) and

moderate (50% BAU) carbon stringencies are imposed; results are shown in Figure 5-24
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and Figure 5-25. Under carbon targets, R&D and new capacity investments for solar

disappear, while those for coal with CCS increase.

On the R&D side, after a carbon target is present, coal with CCS R&D investment

increases and remains constant across different targets. It also remains the only emerging

technology worth investing in. The optimal investment strategy dictates the amount of

coal with CCS required on the system (in both cases coal with CCS reaches its maximum

capacity at ten percent of total installed capacity), and in this constrained system, the

optimal (and maximum) level for R&D investment in this technology is reached quickly,

under even the weakest target. The fact that coal with CCS is the only viable R&D

investment is sensible here: 1) wind does not learn, so no amount of R&D investment

will cause capital costs to decrease, 2) new installations of nuclear are not allowed, so

although capital costs may decrease through R&D investment, the system cannot take

advantage of these reductions, and 3) solar power remains severely resource constrained,

diminishing its role in this carbon constrained situation.

On the capacity side, new coal with CCS capacity is added to reduce emissions

and meet the caps, but only to a point as the technology has a constraint on the amount it

can install in any one period. The balance of zero-emission technologies to meet the

carbon targets continues to be wind, though at a more expensive installation cost than

would otherwise be if it had been learning. As shown for both targets, wind continues to

play a large role in the capital deployment plan. This is reasonable in this scenario, as

once again: 1) coal with CCS is constrained and stops contributing to emission reductions

after a certain point, and 2) solar power only generates in specific demand slices and thus

needs another technology to fill in to meet the cumulative cap. As the carbon target
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stringency strengthens, another shift from new coal capacity additions towards new

natural gas combined cycle capacity additions takes place. This is also expected as the

emission rate for natural gas power plants is approximately half that of a coal plant, and

under a stricter carbon target, such lower emission technologies are needed to help meet

the cumulative cap.

Figure 5-25 shows the emissions time profile and total generation by technology

under each of the carbon targets. The shift of focus from new coal under the weak cap

towards large amounts of natural gas combined cycle is quite apparent through the

approximately 1:1 displacement of new coal generation to new natural gas combined

cycle generation to meet the associated caps. Once again, this change is expected given

the maximum rate of change constraints for new capacity additions for the additional

emerging technologies; the only slack in the system left to meet a more stringent target is

natural gas.

The general solar story is perhaps most obvious in the following scenario. In

terms of target stringency, there is no feasible solution for the constrained system

represented in this model to reach the "strong" target studied in the original experiment in

Section 5.1 above (75% BAU with (or without) and end cap). Wind and solar have

constraints on how quickly they can scale up, and combined with their low resource

availabilities, the system requires another technology to reliably meet demand.

Combined with the fact that the scale up of coal with CCS is also constrained, and

nuclear remains at dramatically low capacities (due to no new builds and retirements),

natural gas combined cycle and single cycle combustion turbines are once again the only

technologies available to meet demand. While emission rates for natural gas power
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plants are low, they are simply not low enough to meet the strict cumulative carbon

target. However, it is noteworthy that when the coal with CCS scale-up constraint is

lifted and the cap stringency raised slightly, coal with CCS R&D investments,

installations, and operations dominate and a feasible solution is reached. The above

scenarios provide a telling premise about the value of technologies like solar in this

analysis under carbon cap constraints-they can remain too resource constrained to play

a necessary role in meeting long-term carbon targets for a power system without effective

storage.
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Figure 5-25 Optimal emissions time profiles (left) and electricity generation by technology (right) for
various carbon reduction targets in the constrained system

5.6 Impact of Status Quo Policy on Optimal Investment Strategy: The
Wind Production Tax Credit (PTC)

In the final experiment, the impact of a status quo energy policy on the optimal

R&D and capital investment strategy is studied. As discussed in more detail in the

system overview in Chapter 2, several types of regulatory policy instruments exist to

create economic signals for industry investment in specific low-carbon generating

technologies. Incentive-based instruments, or subsidies, are but one type of these

mechanisms; they tend to act as price signals to guide entities' decision making in a

specific direction. Such instruments include direct government expenditures or grants for

specific technology adoption or action, tax credits (production-based or investment-

based), low interest-loan offers or guarantees, and support for research and development

of certain technologies (demonstration plants, etc.). As discussed earlier, incentives such
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as grants and tax credits can direct technological change through encouraging generation

companies to bring new technologies to the market before manufactures are able to

produce the technology in quantities large enough to be cost competitive with current

technologies.

The U.S. experience with the federal production tax credit (PTC) for wind power

between 1992 and 2007 provides an example of the effect that incentives can have

towards technology adoption (Figure 5-26). Enacted in 1992, although with lapses in

funding during specific years in between, the wind PTC is still active at present. It

provides producers with 2.2# per kilowatt-hour for electricity generated from an eligible

wind farm. The figure illustrates the growth in wind power generation capacity in the

U.S. once the PTC took effect, as well as impacts of the PTC lapses in specific years.
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Figure 5-26 Impact of Production Tax Credit on Wind Power Capacity Growth in the U.S.
(Wiser, Bolinger, & Barbose, 2007)
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The following experiment explores the impact of the wind PTC on the optimal

investment strategy, both for R&D and new capacity decisions. While the emphasis on

production tax credits for utilities is on technology deployment (i.e., new capacity

additions), this experiment explores the effect such potential increases in new capacity

for wind can also have on the R&D focus in the system. The reference model is used for

the analysis, along with the versions of the model with carbon scenarios imposed so that

impact under different carbon targets can be studied. The wind PTC is simulated in the

model through decreasing the variable cost parameter for wind power. Originally, this

cost is 0.519# per kilowatt-hour, so to test the impact of the optimal strategy under a wind

PTC, the variable cost for wind becomes -1.681# per kilowatt-hour. Results under the

wind PTC scenarios are compared to the case without a wind PTC.

Figure 5-27 present results from the wind PTC case under business-as-usual (BAU)

compared with the reference results (no wind PTC) under BAU, and shows no change in

either the optimal R&D investment or capital installment strategy. Furthermore, no

change in investment strategy for wind or any other technology was witnessed under any

of the carbon target cases; for brevity these figures have therefore been omitted. Even

unrealistically high wind PTCs of ten or one hundred times the current level are not

enough to cause additional building and operating of wind in these scenarios. In the

problem as currently defined and numerically implemented, it is simply sub-optimal to

build additional wind plants than the next most competitive (less resource constrained)

technology. Overall, these results suggest that the wind PTC does not appear to be the

best pathway to spur technology switching in the capital deployment plan (and thus, the

R&D investment plan).
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Figure 5-27 Optimal R&D investments (left) and installed capacities (right) by technology under
BAU for the Wind PTC case and the REFERENCE (No Wind PTC) case.

Two points help explain these results. First, under the optimal plans, wind power

plants are called upon to generate electricity too minimally for a production-based (per

kilowatt-hour) incentive to affect the optimal technology investment strategy. Therefore,

while increases in the amount of electricity generated in each demand slice and over time

are witnessed as a result of the wind PTC, these increases are not enough to incentivize a

change in the capital deployment plan (or the optimal R&D investment plan). On the

other hand, direct cuts to the initial wind technology capital cost do noticeably change the

optimal investment strategies. While the capital deployment plan still does not change,

with more direct upfront capital cost reduction, optimal R&D investments decrease

considerably in each period. This suggests that the model, as formulated and numerically

implemented with the specific cost and technical data sets used, may be more appropriate
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to study the effect of direct investment-based subsidies for capital deployment, rather

than indirect production-based incentives.

Second, presence of the wind PTC does not affect R&D investment in wind in

either direction. One might contemplate whether since the wind PTC already provides

one pathway for cost reduction for using wind power, if R&D investment to bring the

capital cost of the technology down might be depressed. In this case, the role of the

learning pathway (and unchanged R&D investment) is simply to bring the total system

cost down even further than it is under the reference case (to $5.725 trillion NPV from

$6.048 trillion NPV, respectively). While the PTC does affect the total variable cost for

wind in each period (wind power plants are operating more frequently under the PTC

benefit), they are still not operating enough to incentivize a deviation from the original

capital deployment plan (and thus R&D investments trajectory).

Finally, although it is beyond the scope of this dissertation, it is also worth noting

that the lack of R&D investment changes across the reference and wind PTC case could

partially be due to the fact that the innovators in the current modeling framework are a

lumped entity that includes all private equipment manufacturers, private R&D labs, and

government-sponsored R&D labs, that take part in R&D for electricity generation

technologies. Thus, the framework for these upstream innovators to respond to a change

in downstream capacity-based behaviors is not represented adequately enough to fully

assess the effects on R&D investment strategies.

Beyond the wind PTC, there are also several additional changes that are either

currently occurring or can take place in the system to help wind technology deployment

move forward. Strategic interconnections between grids and regions demand response
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programs, storage capability (although minimal), and additional flexibility through siting

and supporting generation capacity can act to help the deployment (and development) of

wind technology along. Testing the effect of these types of changes in the system using

the new modeling framework is left for future work.

5.7 Summary and Key Insights

The following section provides a summary of the previous two chapters, presents

highlights of results from the reference model and numerical experiments above, and

draws initial conclusions about the generalizability of the results across different

technologies and environmental situations.

Overall, Chapter 4 and 5 reinforce the importance of the improved decision

support tool for studying combined emissions and technology policy questions applicable

to the unique electricity sector. Appendix C supports the usefulness of an engineering

cost-based approach that resolves the physical and operational constraints of the

underlying electric power system. Operational constraints in the electricity system

noticeably affect both the type and quantity of capital investment in new power plants, as

well as in the amount of socially optimal R&D allocated to the different technologies

across time. This is an important effect that popular economic models based on levelized

costs and pre-determined operations parameters do not capture. It shows that these

models may be overestimating the flexibility with which the system operates, and thus,

possibly underestimating costs and overestimating actual returns on R&D. An

engineering cost or hybrid modeling approach should therefore be used when

investigating tangible emission reduction possibilities from the electricity sector. Section
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5.3 shows the usefulness of incorporating learning-by-searching dynamics within such

decision models, and suggests that models without adequate representations of both

learning-by-doing and learning-by-searching may be overestimating the costs of further

developing the electric power system (with or without specific environmental objectives).

The reference model and sensitivity analyses conducted provide several

interesting insights about the subtle links between the innovation process, the economic

processes of cost-competition between the technologies, and engineering constraints

inherent in the power sector. The numerical experiments also serve as a confirmation

that the new model is behaving in accordance with the physical and economic operation

of the electricity system, providing reassurance that the model is suited for electricity

industry analysis. Short summaries of each of the experiments are presented below, as

well as the key insights gained from performing them.

Reference Model Investment Strategy (Chapter 4.7)

Chapter 4.7 presents results from the reference model under business-as-usual (BAU,

no carbon cap). This model includes both learning-by-doing and learning-by-searching

pathways with innovation parameters calibrated to the empirical literature on energy-

sector technological change. Key insights:

(1) Under business as usual, the optimal investment strategy involves investing solely in

wind R&D and new wind power capacity. Wind is far enough "down" both the

learning-by-doing curve that a small amount of investment yields comparably large

overall cost reductions, and this acts to directly bring the net present value for

expanding and operating the system down.
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Optimal Investment Strategy v. Carbon Target Stringenca (Section 5.1)

This experiment studies the optimal investment strategy across various carbon

target stringencies. A binding cumulative carbon cap is placed over the optimization and

the goal remains to choose R&D investments and new capital investments to meet total

system electricity demand at least cost. Three scenarios are studied and compared to the

reference (BAU) scenario: a "weak" target defined as 25% below the BAU reference

scenario, a "moderate" target at 50% below BAU, and a "strong" target at 75% below

BAU plus a final-year target defined as achieving approximately 80% below year 2010

actual power sector emissions. The full learning-model (LBS and LBD) is used for this

analysis; the only change made is in imposing the cumulative carbon caps. Key insights:

(1) Under increasing carbon target stringency, it is even more important to invest big and

invest early in "base-load" electricity technologies (the power plants that are on the

ground and running the majority of the time), as this is where the largest emission

reductions can be gained. Under a very strict emissions target, there is a clear

dominant strategy of investing in nuclear power and coal with CCS power.

(2) The optimal strategy under a carbon target (even under the strongest carbon target

when nuclear and coal with CCS R&D and new capacity investments dominate)

requires a portfolio approach to meeting electricity demands. Realistic maximum

capacity scale-up and resource availability constraints for different technologies

within the system, and their relative fixed costs (capital and other fixed) and variable

costs (fuel and other variable) dictate that no one or few technologies can completely

meet electricity demanded (or R&D investments).
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Optimal Investment Strategy v. Endogenous Learning Dynamics (Section 5.2)

This experiment tests the optimal investment strategy under different learning

dynamics included in (or excluded from) the numerical model. Under BAU and a

moderate carbon target (50% BAU), the scenarios tested include: 1) a "no learning"

scenario where no technology is permitted to learn (and reduce capital costs) via either

learning-by-doing or learning-by-searching, 2) an "LBD Only" scenario where all four

emerging technologies (coal with CCS, nuclear, wind, and solar) are permitted to reduce

capital costs via a one-factor learning-by-doing pathway based on cumulative installed

capacity, 3) an "LBS Only" scenario where all four emerging technologies are permitted

to learn via a one-factor learning-by-searching pathway based on cumulative knowledge

stock, and 4) an "LBD and LBS" scenario, which matches the Chapter 4 reference model

scenario where all four emerging technologies are permitted to learn via a two-factor

learning-by-searching and learning-by-doing pathway. All innovation parameters in each

of these scenarios are kept at their corresponding reference parameters. Key insights:

(1) From least total system cost (NPV) to highest total system cost, under both BAU and

the moderate target, the order of scenarios is LBD and LBS, LBD Only, LBS Only,

and No Learning. In each of these scenarios, the same constraints are met and all

electricity demand is met. This suggests that results from current models without

representations of both learning pathways may be over-estimating costs and affirns

the value of including an R&D learning pathway in energy decision models.

(2) Under a specific carbon target, new capacity decisions are dominated by the goal to

meet the cumulative carbon target and are insensitive to changes in the learning
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dynamics within the model. Overall, the different learning pathways (or lack of

learning pathway) are insufficient to reduce capital costs by an amount necessary to

induce technology switching in the capital deployment plan. In the modeling

framework presented here, the learning pathways afford an opportunity to meet a

specified target at a lower total system cost, but the physical system that needs to be

reached and in place by the end of the planning horizon is constant under a specified

cap.

(3) The behavior of R&D investment decisions tracks the capital investment requirement

to meet the specified cumulative carbon cap. Also, in the presence of "free" capital

cost reduction from learning-by-doing, it is optimal to invest less in R&D for a given

technology. The reduction in R&D investment is based on the amount of the

technology required to meet the specified carbon target, the specific parameters of the

technology's learning rates, and the amount of installed capacity of the technology,

which dictates how much it can take advantage of the learning-by-doing pathway.

(4) The carbon emissions time profile is also relatively insensitive to the learning-

pathway included. Overall, per period emissions are driven almost exclusively by

two items: the specific cumulative carbon cap target, and whether there is a learning

mechanism included in the model. Following (2), the learning-pathways are not

sufficient to induce technology switching in capital deployment, and each capital

installment plan has one optimal generation dispatch plan associated with it to meet

demand in each period. As the emissions profile is completely dictated by the

generation plan, it is also insensitive to changes in the learning pathways. In each

case, the optimal strategy also includes waiting to reduce emissions until the later
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periods when it is necessary to meet the cumulative target. In hindsight, such a

response makes sense in this type of a least-cost optimization model with discounting,

but it is not initially obvious given the possibility that small investments in a high-

potential, high-learning low-carbon technology category could have yielded early and

drastic capital cost reductions such that it was more economical to build and operate

that technology over others.

Impact of Knowledge Stock Strength on Optimal Investment Strategy (Section 5.3)

This experiment studies the effect of strength of knowledge stock in the

innovation possibilities frontier (IPF) on the optimal R&D and capital investment

strategy under the BAU and three carbon target stringencies. The reference model is

used, and the parameter varied is "phi" in the IPF. The parameter is varied one at a time

for each technology, holding all other technologies at their reference beta 0.54 value.

Results from imposing a "low (0.1)," "medium (0.54-reference)," and "high (0.8)"

value for phi are compared under a moderate (50% BAU) carbon target. A full

sensitivity analysis on peak R&D investments using a range of values between 0.1 and

0.9 is also performed under all three carbon targets. Key insights:

(1) As phi increases, peak R&D investments increase monotonically, at a rate influenced

by its relative need to meet the cumulative carbon target, its initial installed capacity,

and its individual learning-by-doing and learning-by-searching elasticities.

(2) Changes in the R&D investment strategy for one technology do not affect decisions

about R&D or capital investment for other technologies (emerging or non-emerging).
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(3) Inexpensive, intermittent resource constrained technologies such as renewable wind

power fills a niche in the system, and it is difficult to remove them from this niche.

For these technologies, their low natural resource availabilities mean that while they

are cheap and carbon-free, they are only able to contribute to a portion of meeting the

cumulative carbon target. At some point, a shoulder or base-load technology such as

coal, natural gas, or nuclear must physically be deployed to balance demand. In the

current modeling framework (and calibrated learning parameters), this physical

constraint results in a minimum amount of focus (R&D and capital investment)

placed on the technology at all times in any scenario, but also on a maximum limit to

how valuable R&D investment will be on minimizing total system costs.

(4) Expensive, resource constrained technologies with limited installed capacity bases

(such as solar power in the stylized numerical implementation) remain locked out

from playing a significant role in reducing carbon emissions in any of these scenarios,

regardless of the potential strength of its learning pathways.

Impact of R&D Program Efficiency on Optimal Investment Strategy (Section 5.4)

This experiment studies the effect of R&D program efficiency (parameter beta in

the IPF) on the optimal R&D and capital investment strategy under the BAU and the

three carbon target stringencies. The reference model is once again used, and beta is

varied individually for each technology. Results from imposing a "low (0.02)," "medium

(0.10-reference)," and "high (0.4)" value for beta are compared under a moderate (50%

BAU) carbon target. A full sensitivity analysis on peak R&D investments using a range

of values between 0.02 and 0.40 is also performed under all carbon targets.
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(1) The overall capital cost reductions from R&D investments can be sizable in absolute

terms, but the difference in reduction potential across different R&D program

efficiencies is a function of the constraints (e.g., maximum capacity scale-up rate, or

resource availability) a specific technology faces in the system.

(2) Peak R&D investments increase monotonically with program efficiency, again at a

rate influenced by the technology's relative need to meet the cumulative carbon

target, and its installed capacity.

(3) At very high R&D program efficiencies under a strong cap, there is an additional

incentive to increase the rate of R&D investment for nuclear power. The role of

nuclear power in the optimal installment plan under this target, combined with its

large initial capital stock, provides an opportunity to take advantage of very large cost

reductions via both LBD and LBS. Such a result suggests that imposing a constant

parameter value across all technologies (as is the trend in most current studies) may

be keeping R&D investments artificially too low or too high relative to each other.

Additionally, as the technological change literature cites uncertainty inherent in this

process (R&D investment leading to technological change), and recent empirical

study (Popp et al, 2012) contains evidence that the shape of the uncertainty profile

may be technology specific, this experiment generally serves to motivate a need to

consider technology-specific uncertainty along this dimension of the innovation

process.
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The Case for Solar Technology (Section 5.5)

Solar technology remains shut out of the optimal R&D and capital investment

allocation scheme under the objective and cumulative carbon cap constraints studied

throughout most of the analyses above. In this experiment, a constrained system scenario

is used to study the conditions for which solar technology investments are favored. This

constrained environment consists of no wind learning (neither via LBD or LBS), no new

builds for nuclear power, and a maximum capacity constraint for coal with CCS

technology at 10 percent of total installed capacity. All other conditions and parameters

are held at reference values and the reference model is used. Key insights:

(1) Under the severely constrained system and no carbon cap, solar power R&D and

capital installments enter the optimal investment strategy. However, once a carbon

cap is imposed, both solar R&D and capital investment disappears and other

technologies dominate the optimal investment path in order to meet more stringent

targets. The reason for this solar "shut-out" remains a combination of solar power's

own niche characteristic (contributing to emission reductions only to the extent that

its limited resource availability allows), its initial very high capital cost, and its initial

very low existing capital base. The last two characteristics make it very difficult for

solar power to take advantage of either its learning-by-doing or learning-by-searching

potential.

(2) Natural gas fired power, particularly highly efficient combined cycle plants, plays a

large role in the constrained system as carbon stringency increases. Despite its non-

learning characteristic, a combination of its relatively lower carbon emission rate

(approximately half of a traditional coal plant), the maximum capacity scale-up
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constraint for other technologies, and low resource availability rate for solar, creates a

situation where this is the next best technology to meet demand under hard carbon

targets in a constrained system. Under the hard target, generation from natural gas

fired power plants meets almost 50% of system demand.

Impact of Status Quo Energy Policy on Optimal Investment Strategy (Section 5.6)

The purpose of the final experiment is to test the impact of real-world policies on

the optimal investment strategies in emerging technologies. The policy studied is the

U.S. federal wind technology production tax credit (PTC), enacted in 1992, and providing

2.20 per kilowatt hour of electricity produced from eligible wind farms. Under the

assumption that all wind farms in the model are "eligible," the PTC is studied by

decreasing the variable cost of wind power by the amount of the wind PTC. Results from

including the wind PTC under BAU and all three carbon targets are compared to the

reference model without the wind PTC and discussed. Key insights:

(1) In each of the scenarios studied, the wind PTC (as implemented) fails to spur

technology switching in the capital installment plan, and thus in the R&D investment

plan. A test where the wind PTC is artificially increased to one hundred times the

current benefit shows that even at unrealistically high PTC levels, the optimal

investment strategy for wind power remains insensitive. Overall, the minimal rate

that wind power plants operate on the system allow the PTC to incentivize additional

generation, but not additional actual deployment. A second test where the initial

capital cost of wind technology is reduced (e.g., representing an installation subsidy)

shows considerable decreases in the optimal R&D investment over time. This result
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suggests that as formulated and numerically implemented, the current modeling

framework may be more suited to subsidy-type policy analyses.

The dual purpose of Chapters 4 and 5 is to 1) introduce the structure of a new

modeling framework for simultaneously studying optimal technology capital and R&D

investment strategies for the electric power generation industry that considers detailed

dynamics of the process of technological change, and 2) demonstrate uses and

capabilities of the framework through several numerical experiments. In doing so, two

generalizable technological phenomenon of the system are revealed.

First, while the technology categories in this study were depicted by names such

as solar, wind, and nuclear (and based on the technology types characteristic of the

existing U.S. power system), the insights drawn about their behaviors in the system and

sensitivities are intended to be technology-independent. For example, the stories and

trends depicted for nuclear power are typical of any zero-carbon near-fully base-loaded

technology with a very high initial capital cost and good learning potential (high learning

rates and a large existing capital stock). Any such technology would exhibit the effects

seen here of dominance during the most stringent carbon targets.

As another example, the behaviors depicted of wind technology would be

consistent with any intermittent renewable technology with natural resource constraints,

favorable learning parameters, and a relatively high existing capital stock base that

allowed it to take advantage of "free" learning-by-doing. Additionally, the maximum

capacity scale-up constraint imposed upon wind in order to simulate realistic institutional,

political, and physical constraints the system may face in quickly increasing capacities,
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produced results that any other similar capacity constrained technology would need to

work around.

The second generalizable phenomenon seen in this study is associated with the

concepts of demand-pull and technology-push, and their interaction with one another.

The economics of technological change literature points to the need for both demand-pull

mechanisms and technology-push mechanisms to be present for the most successful

innovation (e.g., Nemet & Kammen, 2007). The two-factor learning environment in this

model lends evidence to this; it is the technologies that enjoy either a relatively large

existing capacity base or have the potential for long hours of operation (potential for

learning-by-doing) that also enjoy allocations for R&D investment. This is most clearly

seen in the case of solar power, where the technology remains shut out of R&D and

capital investments due to its initial high capital cost, relatively low existing capital base,

and lack of adequate operation potential. This combination allows neither learning-by-

doing nor learning-by-searching reductions to be optimal (when other technologies,

particularly wind which is cheaper and already more abundant, can play the role of solar

power). The responses of solar power in this study are intended to be technology-

independent as well, characteristic of any technology that fills a niche role in the system

(given its low resource availability), prohibitively high initial capital cost, and low

existing capital stock. Such technologies may need to be transplanted into a different

system in order to flourish without additional support.
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Table 5-1 Model Assumptions and Parameter Definitions for Numerical Experiments

Section Name

Optimal Investment v.
Carbon Target Stringency

Optimal Investment v.
Endogenous Learning

Dynamics

Optimal Investment v.
Knowledge Stock Strength

Optimal Investment v.
R&D Program Efficiency

The Case for Solar
Technology

Optimal Investment under a
Wind PTC

Corresponding Parameter
and

Reference Value

ecap = 260,000

?1g, ? 2 g (Reference
LBD and LBS Elasticities from

Table 4-2 See Notes)

D= 0.54*

P = 0.10*

q14a= 0.25154, r12 mgd =
0.10470

NEWCAPACITYtnucfar# 0

var_om_ratei,, = 0.00519

Experiment Parameter Value(s)

75% BAU (Weak Target): 195,000
50% BAU (Mod Target): 130,000

25% BAU (Strong Target): 65,000 +

End Cap*

No Learning: q1, 12 = 0.00
LBD Only: ?11 = Ref.; 72 = 0.00
LBS Only: q1 = 0.00; 2 = Ref.

LBD and LB S: 7i,,72 = Ref.

D= [0.1,0.9] **

p = [0.02, 0.18]** &

p = 0.40**

I/gg 72.w = 0
max-capaCitycoatca,= 0. 10
NEWCAPACITYn.ucdea= 0

varom_rateqn = -0.01 6 81

Notes

All values are in Million Metric Tons
* Requires per period emissions after
Period 12 to be < - 80% below 2010
emissions (2500 Million Metric Tons)

Reference / Table 4-2 Values:
Coal w/ CCS: q1 = 0.05889; 12 =
0.02915
Nuclear: q11 = 0.05889; r2 = 0.02915
Wind: 71= 0.25154; 12 =0.10470
Solar: il = 0.41504; 112 = 0.15200

* For all emerging technologies
(coal_ccs, nuclear, wind, and solar)
** One technology varied at a time,
holding other Ds at reference value

* For all emerging technologies
(coalccs, nuclear, wind, and solar)
** One technology varied at a time,
holding other Ps at reference value

All values are in million $ per GWh
* Wind PTC is 2.20 per kWh
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Chapter 6 Investment Planning under Endogenous
Technological Change Uncertainty:
Description of the Stochastic Modeling
Framework

This chapter presents the structure and solution approach for the reference

electricity R&D and generation capital investment problem under endogenous

technological change uncertainty. A key motivating research question of this dissertation

is how the optimal investment strategy in a deterministic setting changes when

uncertainty and learning are explicitly considered in a formal stochastic setting. The

problem is thus now formulated as a formal sequential decision under uncertainty

problem, where the decision maker has the opportunity to learn about the uncertainty and

revise his decisions over time. The solution to the problem is a flexible investment

strategy, which adapts to technological change outcomes from R&D.

The first section presents the formulation of the sequential decision under

uncertainty problem, highlighting the common elements from the deterministic analyses

in Chapters 4 and 5. The second section explains the method for characterizing and

representing the technological change uncertainty, applied within the stochastic modeling

framework, and describes the empirical motivation for doing so. The final section

presents an approximate dynamic programming implementation developed and utilized

for solving the new stochastic problem. The methods used for sampling and

approximating a cost function for a high-dimensional solution space are emphasized.
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6.1 Formulation of the Sequential Decision under Uncertainty Problem

Chapters 4 and 5 present a model that solves for the optimal electricity technology

R&D and capital investment plan to reliably meet electricity demand under a range of

different carbon emissions targets, assuming perfect information. Learning-by-searching

(LBS) technological change is endogenous in the numerical model used for the analysis,

allowing R&D investments to lower the capital cost of installing new generation capital

over time. The question therefore is one of inter-temporally balancing 1) the near-term

cost of investment in R&D and the long-term benefit of lowered future capital costs, with

2) the cost of installing power plants at their current costs and the benefit of the early

emissions reductions they might afford. Because multiple technology groups have the

opportunity to be improved through the LBS pathway and be installed to generate

electricity, there is also a question of intra-temporal balancing between investing among

different technologies (e.g., R&D portfolio and capital investment portfolio

optimization).

In the previous problem, however, the amount of technological change (e.g.,

capital cost reduction) that results from a given level of R&D investment is known with

perfect foresight. The inquiry made through this and the following chapter removes this

limiting assumption, allowing for direct investigation of the optimal inter-temporal and

intra-temporal investment strategy under endogenous technological change uncertainty.

6.1.1 Overall Framework

The nature and structure of the underlying problem is maintained from that of the

deterministic study design of Chapters 4 and 5, but with adjustments to highlight the
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effect of uncertainty and learning on the optimal strategy. The planning horizon for the

model remains at 60-years, but time steps are now 10 years long to allow for six distinct

decision periods. All time-indexed exogenous parameters and endogenous variable

representations used in the original 5-year step model previously are adjusted to account

for these longer time steps. The analysis here is repeated under different cumulative

carbon target scenarios-a business-as-usual (BAU) scenario with no carbon cap and a

50% below BAU scenario with a carbon cap-in order to understand how different

possible carbon target stringencies affect the optimal investment path under uncertainty.

The stochastic version also loosely approximates the structure of the U.S. electric

power generation system with respect to total installed capacity, electricity demand, and

electricity demand growth. However, the number of generation technology groups is

reduced to five in order to represent more generic power plant technology types:

conventional coal, coal with carbon capture and sequestration (CCS), natural gas

combined cycle, natural gas combustion turbines, and wind. The main goal of the

stochastic investigation is to develop the numerical modeling framework for decision

support under uncertainty, and to understand if and how the investment strategy under

uncertainty differs from a deterministically designed strategy. This insight can be gained

from focusing on a small number of technologies that span a spectrum of key technology

characteristics. These five technology groups have been chosen because they represent

baseload (conventional coal and coal with CCS), "shoulder" load (natural gas combined

cycle), "peak" load (natural gas combustion turbine), and intermittent renewable (wind)

technologies. Therefore, although the cost structures for these technology groups have

been adopted from the respective technologies used in the original 10-technology model,
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for the purposes of illustration these technologies can be thought of as representing a

general class of technology. Table 6-1 presents the generation cost data associated with

these technology groups, as used in the stochastic study. The structure and parameters

used for the technological change module and the representation of electricity system

operations are also identical to that of the original model.

Finally, a non-linear programming (deterministic) formulation of this 5-

technology model, using an identical solution approach as that described in Chapter 4 for

the full 12-period, 10-technology model, exhibits a similar behavior as the full

deterministic model with respect to R&D investment strategy and generating capacity

additions under the different cumulative carbon targets (see Appendix D Part 1). This

provides confidence in use of the reduced-form model for the current analysis.
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Table 6-1 Generator Cost Data for 5-Technology Model

Heat Rate
[MMbtu/MWh]

Initial Capital
Cost [$/kW-

knowledgeunit]
Fixed O&M Cost

[$/kW-yearl

Initial Fuel Cost
[$/MMBtu] Other Variable

Cost [$/MWh]
Emissions Rate

[lbs/MMbtu]

Annual
Availability

Rate [%]

Conventional 494.816 22.5 8.80 3167 35.970 2.07 4.25 204.12 85

Coal with CCS 1.00 - 12.00 5099 76.620 2.07 9.05 20.41 85

Gas Combustion 280.890 36.0 6.43 1003 14.620 9.10 3.11 121.83 85Turbine I2_ .382 -_9.7_ _665_6.7_ _ _9.1_ _9.87 _ _ 21.83_9 _
Gas Combined 120.382 -9.70 665 6.700 9.10 9.87 121.83 90

CyCycle___ ______ _____________________________________ ____________________________

2438 28.070 5.19 30

Sources: (Adapted from) National Renewable Energy Laboratory, 2009; EIA, 201 lb.
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6.1.2 Decisions and Uncertainties

Of the five technology groups represented in the model, coal with CCS and wind

technologies represent "emerging" technologies and have the ability to learn through both

learning-by-searching (LBS) and learning-by-doing (LBD) to endogenously decrease

their capital costs. Uncertainty is introduced through the LBS pathway for these

technologies, to represent alternative plausible outcomes of investing in R&D programs.

The uncertainty is incorporated as representing differing returns on R&D investment.

Figure 6-1 shows a conceptual diagram for the introduction of uncertainty in the new

model. Full details about the characterization and specific point of entry in the numerical

framework are provided in Section 6.2 below.

Incremental Return?

/ \

R&D Expenditures- Technology Lower Generation
Knowledge Stocks Technology Costs

\ atm Wo R&

Figure 6-1 Conceptual diagram of the relationship between R&D investment and technological
change (A single period is represented)

The variables to be optimized in the stochastic model include R&D investments

for the two emerging technology groups-coal with CCS and wind-in each of the six

decision periods. Capital investment decisions are fixed for the stochastic analysis based

on the results of the deterministic model. For a given cumulative carbon target, capital

investment is insensitive to changes in R&D outcome. As explained in detail in Chapter

5, this is due to the fact that the LBS pathway included in the numerical model does not
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reduce capital costs sufficiently to change the relative preference ordering for investment

within a given carbon scenario. Therefore, given the objective of the stochastic analysis

to understand the effect of technological change uncertainty (i.e., R&D outcome

uncertainty) on the optimal investment strategy, capital investment decisions for all five

technologies are fixed at their optimal deterministic paths for a given carbon target. "
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Pwed I Dedtsicn an Peel4d 2 Dedsimn LUM Pwid 3 Dedslon: Lamm:
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chwWg chbnwe Ch..V

Ddsim PAWde:
R&D bnvmsmawn

Figure 6-2 Schematic of sequential R&D investment decisions under
technological change uncertainty

Figure 6-2 provides a schematic of the multi-period sequential decision under

uncertainty problem. R&D investment decisions are made for each of the two technology

groups in each decision period, prior to learning about the amount of technological

change those R&D investment decisions will contribute to. R&D decisions are

Note that the trajectory for capital investments in the stochastic model is being fixed because it is the
same as the optimal deterministic trajectory. However, this does result in the only open decision variables
being the optimal (stochastic) trajectory of R&D investments in coal with CCS and wind technologies, in
order to minimize costs via LBS.
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represented as a continuous range of investment values in the problem, although they are

operationally (finely) discretized for the numerical implementation. After each decision

stage, the decision maker learns about the realized technological change for each

technology group, and has an opportunity to revise his next decision based on the

technology "state of the world" he finds himself in. Alternate plausible outcomes are

represented as continuous probability distributions in the numerical implementation.

6.1.3 Mathematical Formulation

Formally, the stochastic program is shown in Equation 6.1.1, where REBA CKg,, is

the R&D investment level into technology group g in decision stage t, Og, is the uncertain

technological change for technology group g in stage t, and C, is the discounted total

system cost in stage t computed by the underlying electricity R&D and capital investment

planning model equations.

min C1 + min EO,,[C 2 + -- ] (Eq. 6.1.1)REBACKg9.,1+ REBACKg,2

The framework of stochastic dynamic programming is employed to numerically

solve the sequential decision under uncertainty problem. The approach uses the Bellman

equation (Bellman, 2003) to decompose the multi-period problem into a simpler set of

conditions that must hold for all decision periods, t:

Vt = minREBACK,,t[Ct + E [Vtn+ (REBACK,,, Og,t)]} (Eq. 6.1.2)
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Using Equation 6.1.2, each decision period is then solved separately for the

optimal investment strategy, conditional on the state of the world. As Equation 6.1.2

shows, it does so by balancing the near-term (current) total system costs with expected

future system costs. Figure 6-3 schematically depicts this optimization of the Bellman

Value function that occurs in each decision period. Current costs increase over current

period R&D investments, as the R&D effort must be paid for in the current time periods.

Expected future costs decrease as a function of current period R&D investments, as the

capital costs of the technologies decrease over time and R&D investments. Finally, when

combined, these cost trajectories result in a function over current period R&D

investments that can be optimized.

0 LAII
U>

C. -.

W E

+ U

Current Period R&D Current Period R&D Current Period R&D

Figure 6-3 Schematic of the stochastic dynamic programming optimization method of balancing
near-term costs and expected future costs

Figure 6-4 and Figure 6-5 below show the actual current stage costs and expected

future costs as a function of each of the possible R&D investment decisions in the first

stage, holding the investment decision for the other technology constant at its optimal

stochastic decision. The costs shown are from a BAU scenario. Note that Figure 6-3 is

meant only to schematically depict the balancing of current stage and expected next state
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costs; functional forms of actual decision problems vary widely. In this electricity

technology investment planning problem, the current cost linearly increases in R&D

investments, and the expected future costs exponentially decrease in R&D investments.
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Figure 6-4 Current stage costs as a function of coal with CCS (top) and wind (bottom) R&D
investment in first decision period when R&D investment efficiency is uncertain2

12 Current stage costs are a function of single technology R&D decisions (while holding the other
technology R&D constant).
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Figure 6-5 Expected future costs as a function of coal with CCS (top) and Wind (bottom) R&D
investment in first decision stage when R&D investment efficiency is uncertain 13
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6.2 Characterization of Technological Change Uncertainty

6.2.1 Representation in the Numerical Model

Technological change uncertainty is represented in the sequential decision model

as a multiplicative shock to the parameter representing the efficiency of R&D within the

innovation possibilities frontier (IPF). For reference, the IPF and related equations of the

dynamic technological change module from the deterministic model are shown again

below in Equations 6.2.3-6.2.5. The structure of the module is identical in the stochastic

framework. Shown in Equation 6.2.3, the uncertainty (0) is placed around the parameter

1, which ultimately results in different realizations for cost reduction of CAPCg,, the

capital cost in time period t for technology g, through incremental returns on the R&D

investment (NEWHEB), and subsequent endogenous growth of the cumulative knowledge

stock (HEBACK).

NEWHEBt,g = agREBACKP;(ot)H EBACK, (Eq. 6.2.3)

CAPCt,g ='PCA EA (Eq. 6.2.4)
(CAP ACITYt,g )(HEBACKt, g()

H EBACKt+,,, = N EW HEBt,g + &g HEBACKt,g ( Eq. 6.2.5)
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6.2.2 Characterization

Probability density functions are used to capture the uncertain nature of the

innovation process and R&D (Mansfield, 1968; Evenson & Kislev, 1975). In the

reference stochastic model, the multiplicative shock to the R&D efficiency parameter is

characterized by a Lognormal probability density function (PDF), with location

parameter, g = 0, and scale parameter, a = 0.5 (Figure 6-6). The mean of the shock is

adjusted to 1.0 to ensure that the mean of the stochastic version is identical to the

deterministic model.

Reubne Logamnnal PDF O(w4, salm. -. 5)

ci3 --

0A -

0.5

0.8

0.7

0.1

0

0 '0S 1 1.5 2 25 3 35 4 4.5 5

Figure 6-6 A reference Lognormal probability distribution (pj=O; a= 0.5) is used to represent a
"shock" to R&D investment efficiency and inherent stochasticity and skewness in R&D outcomes 4

A Lognormal distribution is used as the reference PDF because empirical

evidence shows that the probability distributions for describing outcomes of innovation

processes are also highly skewed, with the majority of returns to R&D being small

14 To ensure that the deterministic model mean is preserved, samples from the Lognormal distributions
used in the stochastic model are mean-adjusted; the PDFs shown above is the original PDF.
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incremental improvements to the existing knowledge stock and far fewer opportunities

for high-value "breakthrough" returns (Jaffe & Trajtenberg, 2002; Pakes, 1986; Scherer

& Harhoff, 2000).

Figure 6-7 shows examples of such skewed distributions for returns to electricity

technology-related R&D (Popp et al., 2012). There are several alternative empirical

indicators for returns to innovative effort. Patents counts, along with the numbers of

forward citations they receive by other patents, are commonly used to simultaneously

represent the quantity and quality of the R&D return (Jaffe & Trajtenberg, 2002;

Griliches, 1990; Popp, 2002; Popp et al., 2012). The figures present the distribution of

forward citations received by patents from a given filing year granted by the U.S. Patent

and Trade Office (USPTO) from other patents within the same technology field. They

show that many patents are never cited and that a long upper tail exists with a small

number of highly cited patents. Popp et al. (2012) notes that the general skewed nature of

these distributions hold across different technologies and throughout time.

Moreover, while each of the profiles for R&D returns is skewed, they also retain

characteristic shapes. Some technology groups display a "high risk-high reward" profile

type, which corresponds to frequent opportunities for very small returns and rare

opportunity for very large returns-a characteristic "exponential" shape. Other

technology groups display a return profile more akin to "slow and steady progress" in the

innovation process, corresponding to more frequent moderate returns. These

characteristic profile shapes also appear to endure over a wide range of patent filing

years.
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Figure 6-7 Forward citation frequency distributions for wind (top), solar (middle), and nuclear
(bottom) energy U.S. patents (Popp et al., 2012) 15

15 The horizontal axis shows the number of forward citations received; the vertical axis shows the number
of patents receiving that many citations.
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Assigning specific distribution types and parameters to specific technology

groups within the reduced 5-technology model is beyond the scope of the dissertation.

However, qualitatively motivated by the existence of these different profiles, alternate

PDFs are used in the analyses that follow in Chapters 7 to highlight the overall effect of

skewness and uncertainty on the optimal investment strategy. For example, to study the

effect of skewness explicitly, the distribution for the shocks are applied as an Exponential

PDF (X = 1.0) and compared to a symmetric Normal PDF (g = 1.0, a = 1.0). (Figure 6-8).

Exponential PDF Used (Lambd -w 1.0)

0.9

CL

0.3-

0.2-

0.1

0 1 2 3 4 5 t 7 8 9 10
x

Figure 6-8 An Exponential probability distribution (X= 1.0) is used to represent a "shock" to R&D
investment efficiency and the general skewed nature of R&D outcomes.

The shocks are sampled as i.i.d. (e.g., uncorrelated over time) based on previous

studies of technological change that indicate there is no evidence of correlation over time

in the shocks or noise around the mean trend (Popp et al., 2009; Parpas & Webster,

2012). Finally, in order to retain the decreasing returns to scale Cobb-Douglas form of

the reference IPF (i.e., the sum of elasticities less than 1) and diminishing returns to
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research (beta between 0 and 1), the shocks are constrained to values between 0.2 and 4.0

such that the final parameter value for R&D efficiency is between 0.02 and 0.40. This

mimics the approach taken in the deterministic study and sensitivity analyses.

6.3 Approximate Dynamic Programming Implementation

The stochastic dynamic programming (SDP) problem formulated above is a finite

horizon problem, and traditionally solved as a Markov Decision Problem (Bertsekas,

2007) using a backward induction algorithm. The algorithm exhaustively iterates over

the state, decision, and uncertainty spaces for each decision period to calculate the exact

Bellman Value function and corresponding "policy" (decision strategy) function in each

period. Because the decision and state spaces are all continuous, this approach requires

discretization for each variable. For the full stochastic problem formulated above, there

are at least two state variables that must be known at each stage in order to make the next

decision: the knowledge stocks for the emerging technology groups (HEBACK,(t) and

HEBACK 2(t)). In the problem formulated above, new generating capacity decisions are

fixed; otherwise, this would add another six state variables to the list as installed

capacities for each of the five technology groups plus the total cumulative carbon dioxide

emissions level. All of these variables require knowledge of their own value, or another

endogenous variable's previous value to calculate the next value (See Chapter 4 or

Appendix A).

In addition to the state variables, conventional dynamic programming also iterates

over discretized values of the decisions, wind energy R&D investment (REBACK(t)) and

coal with CCS R&D investment (REBACK 2(t)), and the corresponding R&D efficiency

219



shocks for coal with CCS and wind (01(t) and 02(t), respectively). This results in at least

a 6-dimensional problem in each of the six decision periods, which is already a very large

problem even if the discrete intervals are at an unsatisfyingly coarse resolution.

Instead of traditional backward induction, a new approximate dynamic

programming (ADP) algorithm is used for efficiently solving this problem, shown in

Algorithm 1 (Webster, Santen, & Parpas, 2012) and explained in detail below. ADP is a

family of methods (e.g., Bertsekas & Tsitsiklis 1996; Powell 2007) that approximates the

value function in each period by adaptively sampling the state space to focus on lower

expected value states until the Bellman Value function converges. Thus, the

dimensionality of the original problem is dramatically reduced. Figure 6-9 conceptually

illustrates this dimensionality reduction between conventional stochastic dynamic

programming and approximate dynamic programming for a hypothetical five-period

decision under uncertainty problem. Two critical design choices in any efficient ADP

algorithm are: 1) the sampling strategy, and 2) the value function approximation,

described next.
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Algorithm 1:
Electricity Technology R&D and Capital Investment Planning ADP

Input: Decision periods, N, bootstrap iterations, bs, possible decisions, REBACKI and
REBACK2, uncertainty variables, 01 and 02 ~ LN(O,a), system state so E S at time to, system state
transition equations F(REBACKI, REBACK2, 01, 02), convergence criterion, 1'.

Phase I Initialization-Bootstrap: While iteration i < bs,
1. Forward Pass
Loop over t from 1 to N, Latin Hypercube Sampling from 01 and 02, and REBACK) and
REBA CK2, and set current cost as:

Ct(si) = C(FCt + VCt + REBACK1t + REBACK2t)(1 + p)-t,

where s, is the current system state, FCt and VC, are simulated current total fixed and variable costs
from the electricity generation problem, and p is a discount rate.

2. Backward Pass

Loop over t from N to 1, setting the Bellman Value as:

vt(si) = (Ct(si) + vt+1 (y1 sI)),

where y, is the sampled next system state resulting from REBA CK1, and REBACK2, and 01, and 02,
and vN is a pre-defined terminal value.

3. Construct First Estimate of Value Function: When i = bs, use MLS to set:

fi(s) = (s)r.(s),

where (D is a row vector of basis functions that depend on the state, s, and ro is a column vector of
coefficients that solves:

min (1t (se) - (si)ro(SO)
ro s

for all sampled states sL

Phase II Main Loop-Optimization: While iteration i > bs,
1. Forward Pass
Loop over t from 1 to N, sampling 01 and 02 randomly and choosing decisions REBACKI and
REBACK2 that achieve:

min [Ct(s1) + Efjvt+1(y1Is1)1],
REBACK1.REBACK2

where

E fvt+1 (yI Jsj)} = Vi (REBACKlt, REBACK2t,01t82t).

Set current cost, C, (si), as in Phase I.

- Continued on next page -
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6.3.1 Sampling Strategy

The solution algorithm consists of two phases. In Phase I, the bootstrap phase, a

Latin Hypercube Sampling approach (McKay, Beckman, & Conover, 1979) is used to

explore both the decision space over all periods and the uncertainty space. These sample

paths are simulated forward, and the resulting Bellman Values for the sample states and

decisions are saved for each decision period. The full set of bootstrap sample Bellman

Values are then used to produce the first estimate of the value function approximation for

each decision period, using the method described below. One critical advantage of
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Algorithm 1 (continued)

2. Backward Pass
Loop over t from N to 1, setting the new Bellman Value as:

vt(si) = (Rt (s1) + - (y Isi)),

where yj is the sampled next system state.

Update r (s)

if si E S, set:

Vt(Sj) = Ct(si) + v'c+1(Y IS),

else if si e S, add vt(s) to the existing set of saved samples.

Exit when:

where C represents the change in the moving average of the total Bellman Value in the initial stage.

Output: Optimal first-period decisions, REBACK1* and REBACK2*, value function
approximations, vt*(s).



forward sampling is that it enables a reduction in the number of states needed to

approximate the value function.

In Phase II, the shock to R&D efficiency in each period is randomly sampled to

obtain a sample path, and optimal decisions in each period are chosen using the current

value function approximations for the value of the next state, and simulated R&D and

generation capacity investment planning equations for the current costs. The overall

sampling approach is an efficient (stratified) pure "explore" strategy in Phase I and a pure

"exploit" strategy in Phase I. Figure 6-10 illustrates the algorithm sampling through these

phases for a single run. The algorithm's pure explore strategy during Phase I is clearly

shown through iterations 1 to 1000, where the entire decision space is searched to gather

information about the Bellman Value function. Phase II is also clearly seen from

iteration 1001 to 2000, where the pure exploit strategy takes over and the algorithm

focuses on promising (i.e., low expected value) states until eventually converging on the

final decision.
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First-Period Optimal R&D Investment in Wind Over ADP Samples

2500

C0)
202000
0

S1500

< 1000
w
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Iteration (Sample) Number

Figure 6-10 Optimal first-period R&D investment decision for wind energy technology over ADP
samples (Two sampling phases are seen, pure explore (iteration 1 -1000) and pure exploit (iteration 1001 -
2000))

6.3.2 Bellman Value Function Approximation

The goal of value function approximation in an ADP algorithm is to reconstruct

the "true" Bellman Value function that would normally be calculated by an exhaustive

SDP algorithm. Figure 6-11 illustrates the method of reconstructing a three-dimensional

Bellman Value function from sampled points in ADP, compared to the original SDP-

derived function. Unfortunately, due to the dimensionality of the problem under study

and the computational time required to exhaustively search through all possible decisions,

states, and uncertainties, creating the true Bellman Value surfaces via SDP is not a

practical solution. Several approaches exist to approximate value functions, including

linear and non-linear global regression, separable piece-wise linear approximation, and

various non-parametric interpolation-based methods.

225



True value function from SDP

1 o 0 El 0 ID

81

Approximat. value function from ADP

0 o e 0 E 00 0 0
0 /0 0 0 001 a 0 0 a
0/0 0 * D000 4 0 0

0 a 101 0 *0 0
1I CO0 0 40. !0 0 0 10

L2!. 0 1 40

State 2 State 1

Figure 6-11 Illustration of value function approximation via ADP, compared to the original value
function from conventional SDP via backward induction 16

The approach used to approximate the value function in this study draws from the

statistical interpolation literature, approximating the expected value of being in any state

as a reduced-form function of key features. Because of the forward sampling, not all

state variables required for backward induction are needed as the key features or basis

functions (Bertsekas & Tsitsiklis, 1996). For this application, the fundamental structure

is one of balancing near-term costs of R&D investment against long-term costs from

installing capital-expensive power plants. Thus, in terms of the state variables described

above, the key features needed to approximate the value function are the knowledge

stocks for the emerging technologies wind and coal with CCS, HEBACKI(t) and

HEBACK2(t), respectively.

The approach employed is a moving least squares (MLS) (Fasshauer, 2007)

method to interpolate the value function at a given state within a specified neighborhood.

16 A global (parametric) linear OLS regression was applied in the ADP illustration above.
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Meshfree methods such as MLS have been applied to other problems requiring

interpolation in high-dimensional space such as scattered data modeling, the solution of

partial differential equations, medical imaging, and finance (Fasshauer, 2007). In the

context of stochastic optimization, MLS was applied in Parpas and Webster (2011) in an

iterative algorithm that solves for the stochastic maximum principle. In Webster, Santen,

and Parpas (2012), it was applied in the context of the dynamic programming principle in

a novel numerical decision under uncertainty problem for global climate policy.

The MLS approximation of the value function is:

)= (s)f(s) (Equation 6.2.6)

where D is a row vector of basis functions and r is a column vector of coefficients that

solves,

minj t(st) - )(si)f(si))2  (Equation 6.2.7)
Si

for sample states s, within some neighborhood of the state s. This method requires

solving many "local" regressions over the course of a single run, one for each point to be

interpolated in each decision period, during each iteration. However, these regressions

are generally for a small number of samples in the immediate neighborhood, and

therefore computation time is not compromised. Furthermore, the algorithm developed

and applied here uses linear basis functions for each local regression, which has the
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advantage of approximating a large class of value functions, including those with

multiple non-convexities where a parametric value function approximation approach may

be challenging to apply. To store samples from all previous iterations and efficiently

search for samples within a given neighborhood for the interpolation, a kd-tree data

structure is used (Fasshauer, 2007). Figure 6-12 shows a representative surface of the

Bellman Value function by the state variables, coal with CCS knowledge stock

(HEBACKI(t)) and wind knowledge stock (HEBACK2(t)), for the second decision period

from the stochastic model. Appendix D Part 2 presents results from validating the new

ADP model.

x 10

Wind knowledge Stock (HEBACk2) Coal with CCS Knowledge Stock (HEBACKi)

Figure 6-12 Representative surface of Bellmnan Value function by state variables, coal with CCS
knowledge stock (HEBACK1(t)) and wind knowledge stock (HEBACK2(t))

The next chapter presents results from the stochastic modeling analysis,

comparing the stochastic investment strategy to the deterministic strategy. It also

discusses the effect of uncertainty level and distribution shape, and the effect of

technology characteristics on the optimal investment strategy.
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Chapter 7 Investment Planning under Endogenous
Technological Change Uncertainty: Results
and Discussion

This chapter presents results from the stochastic investment planning model,

described in Chapter 6. Three analyses are performed and discussed. In Section 7.1,

results from solving the stochastic model with reference distributions for R&D efficiency

are presented and compared to the optimal deterministic R&D investment strategies. In

Section 7.2, the impact of applying empirically-motivated skewed distributions to

represent the uncertainty in R&D efficiency is demonstrated. In Section 7.3, results from

a sensitivity analysis investigating the impact of the overall level of risk (i.e., variance) in

R&D efficiencies are presented. For reference, Table 7-9 at the end of the chapter

summarizes the key assumptions and parameters that vary across the different analyses.

7.1 Reference Model: Optimal Investment Strategies with and without
Uncertainty

The goal of the first stochastic analysis is to determine whether and how the

optimal R&D investment strategy under technological change uncertainty differs from

the optimal investment strategy determined under the assumption of perfect information.

To answer this question, reference distributions for R&D efficiency for the two emerging

technologies are assumed, and results from solving the stochastic model with and without

this uncertainty are presented.

As described in Chapter 6, the reference version of the stochastic model is a 6-

stage, 5-technology, cost-minimizing, long-term electricity generation R&D and capital
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investment planning model. To represent uncertainty about technological change and the

ability to learn about uncertainty and revise decisions between stages, the planning

problem is formulated as a formal sequential decision making problem under uncertainty,

and numerically solved using approximate dynamic programming (ADP) techniques.

The decision variables represent the amount of R&D investment into two emerging

electricity generation technology categories-"coal with CCS" and "wind"; capital

investment decisions are fixed in the current problem. Technological change uncertainty

is represented as a multiplicative shock to an R&D investment "efficiency" parameter,

which stimulates alternate plausible capital cost reductions in the emerging technologies.

The reference stochastic model uses a Lognormal probability distribution to represent the

uncertainty and skewness in R&D investment efficiency, with location parameter, g = 0

(mean adjusted so that the mean equals 1), and scaling parameter, a = 0.5. The mean of

1.0 for the shock distribution ensures that the mean of the stochastic versions are identical

to the deterministic versions. Optimal investment strategies are compared under two

policy scenarios: a business-as-usual (BAU) carbon emissions scenario (no constraining

cumulative carbon cap) and a 50% below BAU carbon emission scenario (analogous to

the "moderate" cap in the Chapter 4 and 5 deterministic analyses). For comparison, the

deterministic optimal investment strategy is also solved for, by applying a Normal

distribution and reducing the variance close to zero.

7.1.1 Deterministic Optimal Investment Strategy

To approximate the deterministic investment strategy, uncertainty is "removed" in
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the ADP model by applying a Normally-distributed multiplicative shock to the R&D

investment efficiency parameter with a mean = 1.0 and very small standard deviation

(0.01). (Results from validating the ADP model are given in Appendix D Part 2).

Figure 7-la shows the optimal deterministic investment strategy under BAU, and

the associated optimal generation capacities are shown in Figure 7-lb. Figures 7-2a and

7-2b show results from the 50% below BAU carbon cap scenario. Tables 7-1 and 7-2

provide the values associated with these graphs. For discussion purposes, Table 7-3

displays the new capacity additions to the system under each cap.

R&D Investment by Technology
1200

oo

-U-coalccs

0
1 2 3 4 5 6

Period

Installed Capacity by Technology
1500

U wind
1200

900 O gas ct

600 - gas-ccgt

300 M coalccs

0 Holdcoal
1 2 3 4 5 6

Period

Figure 7-1 Optimal R&D investments (top) and installed capacities (bottom) by technology
under BAU
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Figure 7-2 Optimal R&D investments (top) and installed capacities (bottom) by technology under a
CARBON TARGET (50% BAU). *Note wind R&D investment is based on the second y-axis.

Table 7-1 R&D Investments (in Million USD) by Technology, Period, and Carbon Target

Technology / Period 1 2 3 4 5 6

BAU (No Carbon Cap)
Coal with CCS 0 0 0 0 0 0

Wind 946.36 106.60 81.60 33 0 0
50%BAU Carbon Cap

Coal with CCS
Wind

361.32
887.52

650.28
0

365.72
24.72

22.24
33.12

0
0

0
0
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Table 7-2 Installed Capacity (in Gigawatts) by Technology, Period, and Carbon Target

Technology / Period 1 2 3 4 5 6

BAU (No Carbon Cap)
Coal with CCS 1 1 1 1 1 1

Wind 35.30 109.72 438.88 461.32 484.91 509.71
50%BAU Carbon Cap

Coal with CCS 1 4 16 64 256 305.83
Wind 35.230 141.18 438.88 461.32 484.91 509.71

Table 7-3 NEW Capacity Additions (in Gigawatts) by Technology, Period, and Carbon Target

Technology / Period 1 2 3 4 5 6

BAU (No Carbon Cap)
Coal with CCS 0 0 0 0 0 0

Wind 74.42 329.16 22.44 23.59 24.80 0
50%BAU Carbon Cap

Coal with CCS 3 12 48 192 49.83 0
Wind 105.89 297.69 22.44 23.59 24.80 0

There are two structural assumptions of the model that are important to

understand these and all of the following analyses. First, new generating capacity is built

and paid for at time period, t, but does not appear as part of the installed capital base and

become operational until time t +1. Second, R&D investments at time t result in capital

cost reductions at time t+1 (costs in the first period are fixed at their initial capital costs).

Under BAU (no carbon cap), the optimal strategy is to invest in R&D only in

wind, and at a relatively aggressive amount ($945M) (Figure 7-la). The aggressive R&D

investment in wind in the first period is optimal because of the dramatic wind deployment

plan in Period 3. While a portion of wind is built in the first and other periods, the

majority (329 GW) of the total 475 GW is built in the second period. Thus, wind R&D

investment is aggressive in the first period in order to reduce capital costs in the second
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period. Wind R&D continues at a lower level through Period 4, when it reaches its

lowest point ($33M). This continued R&D investment in wind matches the continued

(lower) deployment in later periods. Overall, the majority of wind capacity investments

(and thus R&D investments) take place in early periods, despite the option of building it

later. This result is explained by the relatively low capital and fuel costs for wind to

begin with, compared with other technologies (discussed in detail in Chapters 4 and 5).

Coal with CCS plays no role in the physical system under BAU, and is thus allocated

zero R&D funds.

Under a carbon emissions target (50% below BAU), two changes are seen in the

optimal R&D investment strategy relative to the strategy without a carbon cap, and

driven by the changes seen in the capacity mix. First, $360 million is invested in coal

with CCS in the first period, in order to begin building the knowledge stock and reducing

capital costs before large coal with CCS deployments in later periods. This R&D

continues through Period 4, increasing and then decreasing, to continue reducing capital

costs. The more gradual R&D investment in coal with CCS technology is attributed to

the more gradual addition of coal with CCS technology in the system (compared to

wind). Second, wind R&D investment in the first-period is reduced slightly from the

BAU scenario, from $945M to $880M, and dramatically declines in the next three

periods. This can be explained by noting the shift of the timing of wind deployment in

this scenario. To meet the more stringent cumulative emissions target, more zero-

emission wind power needs to be deployed and operational during the second period,

which requires it to be built during the first period, before R&D investments can alter the

capital costs. Thus, wind R&D investment is reduced in the first period, in line with the
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fact that less wind capacity is being built in the period after capital cost reductions will

have taken place.

7.1.2 Stochastic Optimal Investment Strategy

The decision problem under uncertainty is modeled by applying the reference

mean-adjusted Lognormal distribution of the shock (g = 0; o = 0.5) to the R&D

investment efficiency parameter. Mean adjusting the shock distribution to 1.0 ensures

that the original mean R&D efficiency parameter is preserved, while still allowing for

uncertainty and skewness in R&D returns. Table 7-4 provides the values for the

deterministic and stochastic first-period optimal strategies, for comparison, and a

summary of these results under the two carbon scenarios are shown in Figures 7-4. In the

stochastic model, the optimal investment strategy for the second through sixth period is a

distribution of investments, which are conditional on the "state of the world" in that time

period. Thus, for these periods, the distribution of optimal strategies is shown (with a bar

that marks the 5 th and 95th percentiles of the optimal strategy), and compared with the

deterministic optimal strategy (Table 7-5 and Figure 7-5 and 7-6).
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Table 7-4 Stochastic v. Deterministic Optimal First-Stage Investment Strategy (in Millions USD)

Technology Stochastic Deterministic Difference
BAU (No Carbon Cap)

Coal with CCS 0 0 0 (0%)
Wind 1146 946 +200 (+21%)

50% BAU Carbon Cap
Coal with CCS

Wind
230
857

361
888

-131 (-36%)
-31 (-3%)

0

C
0

First-Period R&D Investment by Technology
(BAU)

1200

900

600

300

0
windcoalccs

Technology

First-Period R&D Investment by Technology
(50% BAU Carbon Cap)

1200

900

600

300

0
coalccs wind

Technology

" Deterministic

" Stochastic

* Deterministic

" Stochastic

Figure 7-3 Comparison of first-period optimal R&D investment strategy with and without
uncertainty under BAU (top) and 50% BAU Carbon Cap (bottom)
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Table 7-5 Distribution of
(in Million USD)

Stochastic v. Deterministic Optimal Investment Strategies Periods 2-6

Period 2 3 4 5 6
coal With CCS
BAU

Deterministic 0 0 0 0 0
Stochastic (p05) 0 0 0 0 0
Stochastic (p5 0 ) 0 0 0 0 0
Stochastic (p95) 0 0 0 0 0

50% Cap
Deterministic 650 366 22 0 0

Stochastic (p05) 111 48 0 0 0
Stochastic (p50) 302 224 0 0 0
Stochastic (p95) 835 580 36 0 0

Wind
BAU

Deterministic
Stochastic (p05)
Stochastic (p50)
Stochastic (p95)

50% Cap
Deterministic

Stochastic (p05)
Stochastic (p50)
Stochastic (p95)

107
20
52
137

0
0
0
0

82
20
40
104

25
0

36
96

33
20
20
52

33
19
24
56

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0
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Coal with CCS R&D Investment Under Uncertainty
BAU (No Carbon Cap)
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Figure 7-4 Optimal R&D investment strategies with and without uncertainty under BAU for Coal with CCS (left) and Wind (right)

Coal with CCS R&D Investment Under Uncertainty
50% BAU Carbon Cap

* Deterministic

* Stochastic
(plus p05 and
p95)

1 2 3 4 5 6

Period

Wind R&D Investment Under Uncertainty
50% BAU Carbon Cap

C 1000
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600
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200
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p95)
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Figure 7-5 Optimal R&D investment strategies with and without uncertainty under a 50% BAU Carbon Cap for Coal with CCS (left) and Wind (right)
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Under technological change uncertainty, the optimal near-term (first-period) R&D

investment strategy can be different than the optimal deterministic strategy. The

direction and magnitude of the change in strategy depends upon the technology and the

timing of new capacity deployment.

Under BAU, the optimal first-period wind R&D investment strategy under

uncertainty is over 20% higher than under the assumption of perfect information (Figure

7-4a). Future period decisions are conditional on new "states of the world," with respect

to observed technological change and previous R&D investment decisions, but as Figure

7-5b shows, after the first period, the median stochastic investment strategy follows the

deterministic investment strategy closely. The first-period R&D increase is attributed to

the very large wind capacity additions in Period 2. Under BAU, the majority of new

wind capacity is added in Period 2, with only small new additions occurring in other

periods. Thus, the decision maker in this situation has a single "chance" to take

advantage of the potential increased R&D returns under uncertainty. Small corrections in

the event of low returns can then be made in later decision periods. Coal with CCS R&D

investment does not experience any changes under BAU, as it does not play a role in the

system under this carbon target and therefore has no R&D investments.

Under a carbon cap, the wind R&D investment change (decrease) under

uncertainty decreases to within 3% of the deterministic strategy. In this scenario, the

difference is not significant, and is an artifact of the minor variability that is inherent to

the ADP method. The pattern of R&D investment behavior in this scenario is also driven

by the timing of new capacity deployment, and provides intuition about the direction and

magnitude of the change. The decrease in investment under uncertainty is due to the
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changing deployment pattern over time for wind across the carbon target. Under the

carbon target, new wind capacity (an additional 30 MW compared to BAU) is added in

Period 1, before R&D investments can affect capital costs. Thus, there is less incentive

to spend more towards R&D, even under uncertainty. Table 7-5 and Figure 7-5b shows

that in later decision periods, the distribution of optimal investment strategies includes

the possibility of increasing R&D, which would occur if observed technological change

had been high and the previous decision not to increase R&D had taken place.

With respect to R&D investment in coal with CCS, the first-period optimal

investment under uncertainty is 36% less than the deterministic investment (Figure 7-4b).

This is attributed to the later period deployment plan for coal with CCS under this carbon

target (Table 7-4). The majority of new coal with CCS capacity is added in Periods 3

through 5, allowing for time to observe the rate of technological change for some time

before large investments have to be made. Thus, the optimal strategy involves decreasing

R&D investment in the near term, in order to wait and learn before future decisions have

to be made. Figure 7-6a illustrates this pattern of decreased investment continues through

Period 2, after which the median of the distribution of optimal investments includes

investing the same or more as the deterministic strategy. It is also noteworthy that coal

with CCS R&D investment does in fact still take place beginning in the first period, even

though the majority of deployment does not take place until later periods. The reason for

this is because of the path dependent nature of the problem. Early R&D investment

begins building the technology knowledge stock base, which allows one to take

advantage of even larger capital cost reductions in future periods in the case of high

returns.
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The results from this analysis provide two key insights. Overall, when

uncertainty and learning are formally considered in the electricity R&D investment

planning problem, the optimal near-term strategy can be different than the optimal

strategy determined under perfect foresight. However, when a technology is needed to

meet a particular carbon target-defined by the specific role the technology plays and

how it interacts with other technologies on the system to reliably meet electricity

demand-dictates whether a change in strategy from the deterministic case is optimal,

and if so what the direction and magnitude of the change is. When the technology is

required in bulk in the near term, and there will be fewer opportunities for R&D to build

the knowledge stock and decrease total costs in the future, the incentive is to increase

R&D. However, when the technology is required further in the future, there is greater

incentive to decrease near-term investment and "wait and see" technological change

outcomes. These two results are important because they reveal that the amount and

timing of deployment for emerging technologies in the physical system affect the level of

innovative effort that should be taken on their behalf.

7.2 Effect of Skewness on Optimal Investment Strategy under Uncertainty

The next analysis is motivated by the empirical literature on technological change

showing that outcomes to the innovation process are not only uncertain, but that they are

highly right-skewed, with frequent opportunities for low-return outcomes and rare

opportunity for high-return outcomes (See Chapters 3 and 6). This analysis explores the

specific effect on the optimal R&D investment strategy under uncertainty if the emerging

technologies follow an uncertain R&D efficiency pattern similar to the skewed
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distributions found in the literature. To test this, an exponentially-distributed shock with

X = 1 is applied to the R&D efficiency parameter, and compared to when it follows a

Normally-distributed shock with pt = 1 and a = 1. These distributions have identical

means and variances, and differ only in the skewness. The Normal distribution has a

skewness of zero, while the exponential distribution with X = 1.0 has a right skewness

value of 2.0. Figure 7-7 compares the two distributions applied. Optimal R&D

investment strategies are studied under the two carbon scenarios (BAU and 50% BAU),

and results from the exponentially-distributed versus Normally-distributed R&D

efficiencies are compared.

Exponential and Normal Probability Density Functions Uad

Exponential (lambda = 1)0.9 Normal (mu = 1. sigma = 1)
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0 05 1 1.5 2 26 3 3.5 4 45 5
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Figure 7-6 Normal and Exponential probability distributions used to represent "shocks" to R&D
investment efficiency with and without skewnesss

Table 7-6 and Figure 7-8 present the results of the optimal first-period R&D

investment strategies under the exponential PDF and under the Normal PDF.
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Table 7-6 Optimal First-Period R&D Investments under Different R&D Efficiency Profiles
(in Million USD)

Carbon Scenario Normal PDF
R = 1; a = 1

Exponential PDF
) = 1.0

Investment Decrease
from Normal to

Exponential
BAU (No Cap)

Coal with CCS 0 0 0
Wind 1246.48 1124.84 121.64 (9%)

50% BAU Carbon Cap
Coal with CCS

Wind
387.44
1032.44

316.04
852.96

71.40(18%)
179.48 (17%)

Figure 7-7 Optimal First-Period R&D investments for different R&D efficiency profiles under BAU
(top) and a 50% BAU Carbon Cap (bottom)
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Under BAU, coal with CCS does not play a role in the physical system (i.e., no

capacity is added). Therefore, optimal R&D investments remain at zero across both risk

profiles. However, under a carbon target, introducing skewness in the uncertainty (more

opportunity for lower returns but rare opportunity for very high rewards) results in an

almost 20% reduction in near-term R&D investments compared to that under symmetric

uncertainty (Table 7-6 and Figure 7-8b). Following from the discussion in Section 7.2,

the timing of new capacity additions plays a role in explaining this behavior. Under a

carbon target, the majority of coal with CCS deployment is in the later periods. Thus,

there is abundant opportunity to influence its capital costs through early R&D

investments. This strong learning-by-searching (LBS) pathway to reduce its capital cost

exposes the R&D effort to the uncertainty, and with more frequent opportunities for low-

return, there is an incentive to decrease the amount invested upfront (and avoid potential

losses). This pattern of incentive to decrease investment under skewed distributions

continues throughout future periods as well. While there is an opportunity to learn and

revise between decision periods, the median optimal investment tendency is to reduce

R&D investment compared to the optimal strategy under symmetric uncertainty.

The effect of skewness on the optimal investment strategy for wind is also to

decrease near-term R&D by approximately 10% and 20%, under the BAU and a carbon

cap, respectively (Table 7-6 and Figure 7-8). As is the case with coal with CCS, the

introduction of skewness and more opportunity for low returns to R&D decreases the

optimal investment strategy compared to a more symmetric risk. Moreover, the smaller

amount of wind R&D investment that takes place under the carbon cap (due to more

wind capacity being added in the first period), allows the decrease in R&D under a
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skewered uncertainty to be more pronounced. This is directly analogous to the changes

in R&D investment seen in the first analysis on optimal investment strategy under

uncertainty and no uncertainty. Under uncertainty and a carbon cap, the first period wind

R&D investment was less than under BAU because there was less benefit to receive from

investing in first-period R&D. Here, R&D investment in the first period incentives an

even greater reduction in investment when the opportunity to receive high valued returns

is lower.

Overall, this analysis provides an example that right-skewed uncertainties such as

those experienced in the innovation process can result in incentives to reduce R&D

spending when compared to symmetric uncertainties. The timing of technology

deployment in the system and the opportunity to learn in later periods, determines the

magnitude of these changes. Additionally, the analysis highlights the value of using a

formal stochastic decision model to study the effect of risk profiles on the optimal

investment strategy under uncertainty and learning. A common assumption might be that

with less frequent opportunities for high returns, the best investment decision is to

increase near-term R&D in order to try and increase the chances of obtaining a good

outcome. However, this analysis shows that in the presence of such skewed uncertainty,

the optimal decision is to take "small steps" and wait and see about interim technological

change.

7.3 Effect of Overall Level of Risk on Optimal Investment Strategy

The final experiment explores the impact of the overall level of uncertainty (risk)

in technological change on the optimal investment strategy. The first analysis
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demonstrated that the introduction of uncertainty in R&D efficiency with a moderate

variance and skewness can cause either a decrease or increase in the optimal hedge

against uncertainty, depending on the timing of a technology's capacity deployment plan.

The second analysis investigated the specific impact of skewness of the R&D outcomes

on the optimal investment strategy, holding the mean and spread constant between two

distributions tested. That analysis shows that right-skewness creates an incentive to

decrease near-term R&D when compared to a symmetric uncertainty. In this section, the

impact of increasing levels of variance on the optimal investment strategy is studied.

Increasing variance represents a wider spread of the risk-more frequent R&D outcomes

that are higher or lower than the average. The goal of this analysis is to investigate

whether the characteristic of overall risk level impacts the optimal investment strategy

under uncertainty, and how this impact may differ across technology types.

Once again, optimal investment strategies under BAU and a 50% BAU

cumulative carbon target are compared. The risk level is explored by applying Beta

distributed shocks with scale parameters (a, p) = (1, 4), (2, 8), (4, 16), and (8, 32) and

means of 1.0, to the reference (deterministic) R&D efficiency parameter for each

emerging technology17 . First-period results are shown in Table 7-7, followed by Figure 7-8

and Figure 7-9.

17 The corresponding variance levels for these distributions are 0.0267, 0.0145, 0.0076, and 0.0039, which
represents changes in variance of approximately a factor of 2. These distributions also have small changes
in skewness, but skewness changes by a much smaller amount (approximately 25%).
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Table 7-7 Optimal First-Stage Investment Strategy under Varying Risk Levels (in Million USD)

Technology Beta(1.4)
Variance =

0.0267

Beta(2,8)
Variance =

0.0145

Beta(4,16)
Variance =

0.0076

Beta(8,32)
Variance =

0.0039
BAU (No Carbon Cap)

Coal with CCS 0 0 0 0
Wind 1139 1177 1150 1042

50% BAU Carbon Cap
Coal with CCS

Wind
20
907

74
861

241
862

350
875
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Figure 7-8 Optimal first-stage R&D investment strategies by level of uncertainty under BAU for Coal with CCS (left) and Wind (right)
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Figure 7-9 Optimal first-stage R&D investment strategies by level of uncertainty under 50% BAU for Coal with CCS (left) and wind (right)
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The results for coal with CCS R&D investment across uncertainty levels and

carbon caps will be discussed first. As usual, under BAU there is no R&D investment in

coal with CCS, because it will not be deployed without a carbon emissions cap.

However, under a carbon cap the optimal R&D in coal with CCS increases as uncertainty

in R&D efficiency increases (Figure 7-9 above). Moreover, the optimal investment

strategy is quite sensitive to changes in the variance. This is due to the delayed nature of

coal with CCS capacity deployment and therefore there is abundant time to learn and

observe interim technological change. The potential for increased high returns from the

increased spread creates an opportunity to start (aggressively) building the knowledge

stock base for coal with CCS early, which can help reduce capital costs substantially by

the time most of the technology needs to be deployed. "Corrections" to the aggressive

near-term R&D are then made in later decision periods as additional information about

the technological change uncertainty is collected. Therefore, the more likely a first-

period high R&D return is, the more worthwhile it is to invest big early in coal with CCS.

The optimal first-period R&D investment in wind under both BAU and the 50%

carbon cap remains relatively insensitive across overall risk levels (Figure 7-8 andFigure

7-9). The small differences seen are again an artifact of the minor variability inherent in

the ADP method. This insensitivity can be explained by the results of the previous

analyses, which demonstrate that the timing of capacity deployment and (lack of)

opportunity to learn and revise decisions over time influence the optimal R&D decision

paths. Again, the upfront nature of the wind capacity deployment plan creates an

incentive to invest heavily upfront in wind R&D, but leaves little room for learning and

revising in later periods. Without this opportunity to learn in the interim before large
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capital deployments and "correct" previous decisions, the incentive to increase near-term

R&D in the hopes of applying it to a high return rate (and begin building a knowledge

stock) does not exist. The lower overall R&D magnitudes under the 50% BAU carbon

cap are also witnessed in this analysis. This is expected given the shift in additional wind

capacity additions to Period 1 before R&D investments can alter costs.

To summarize the key findings in this analysis, the optimal near-term R&D

investment strategy for a given technology tends to increase with the overall risk level

(i.e., variance). However, the size of the increase is based on the 1) the capacity

deployment plans of the respective technologies, and 2) the overall opportunity or lack of

opportunity to learn and revise decisions over time (and potentially begin building a large

knowledge stock base). In the case of wind power, for example, the lack of opportunity

to learn about uncertainty and revise decisions creates a negligible change in R&D

investments across different levels of risk. Overall, the main result from this analysis is

that at increasingly high variance levels where the opportunity to benefit from high

returns grows, the incentive is to take the "chance" to begin building a large knowledge

stock base early, and correct in future decision periods if necessary.
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Table 7-8 Model Assumptions and Parameter Definitions for Stochastic Model Analyses

Analysis Name

Reference Model: Optimal
Investment Strategies with
and without Uncertainty

Corresponding Parameter
and

Reference Value

O, - N (p=1,a=0.01)*

Analysis Parameter Value(s)

Og -LN (p4=0,a=0.5)

Notes

* 0 is the multiplicative shock applied
to p, the R&D efficiency parameter of
the "Innovation Possibilities Frontier
(IPF)"
The Normal PDF with small variance
approximates the deterministic
solution.

Effect of Skewness on
Optimal Investment
Strategy

Effect of Overall Risk
Level on Optimal
Investment Strategy

0, - N (pt=1,a=1)

N/A

0, ~ Exp (X=1)

0, - Beta(a=1,P=4)**
0, - Beta(a=2,p=8)**

0, - Beta(a=4,p=16)**
0, ~ Beta(a=8,p=32)**

* Mean = 1.0; Variance = 0.0267,
0.0145, 0.0076, 0.0039, respectively
(by a factor of approximately 2).
Skewness also changes across these
parameters, but at a much slower rate
(approxitmately 25%).
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Conclusion

This chapter presents final remarks on the dissertation and its findings. Section

8.1 reviews the purpose of the dissertation and its contributions, summarizing the key

insights from the analyses performed as they relate to the research questions posed at the

beginning. Section 8.2 discusses the implications of the results for policy, emphasizing

the role that quantitative modeling can play in informing energy and climate policy.

Section 8.3 states the main limitations of the new quantitative modeling framework.

Finally, Section 8.4 lists several opportunities for future research.

8.1 Dissertation Summary

This dissertation has presented a new decision support framework that enables

quantitative analysis of socially optimal R&D and capital investment decisions for the

electric power generation sector. Effective management of long-term problems such as

climate change will require decisions about technology adoption and new technology

development in this high carbon-emitting energy sector. The long infrastructure lifetimes

of power plant investments mean that deployment decisions made today will influence

carbon-dioxide emissions far into the future. Additionally, new technology development

and R&D decisions can help reduce the overall costs of mitigating emissions, but there

are multiple technology investments to choose among and returns to R&D are inherently

uncertain. These features of the "deployment versus development" question create

unique challenges for policy makers charged with managing cumulative carbon-dioxide

emissions for the electric power generation sector.
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Motivating this dissertation is that at present, national-scale electricity generation

capacity expansion models can evaluate several aspects of the interaction between

environmental policies and the electric power industry, but ultimately lack one or more of

three overarching features jointly necessary to provide useful insights about an optimal

balance between R&D program and power plant investments. The models lack (1)

resolution of the critical structure of the electricity sector, (2) an explicit endogenous

representation of the effects of learning-by-searching technological change, and/or (3) an

efficient decision-analytic framework to explore technology investment options under a

range of uncertain technology futures.

The new modeling approach presented here explicitly accounts for the

complementary roles that generating technologies play within the electric power system,

the physical integration constraints they face, and the economics at play in electric

utilities' least-cost investment decisions, given the economics of technological change. A

stochastic version of the model enables consideration of the characteristics of the

uncertainty in technology innovation, and identifies flexible, adaptive R&D strategies for

decision makers to consider. Together, these features of the modeling framework help

reveal insights for technology deployment and development decision making, and thus

carbon emissions reduction, in this unique sector.

8.1.1 Summary of Key Insights

A set of analyses using both deterministic and stochastic versions of the new

model yielded answers and insights to the three research questions posed at the beginning

of the dissertation.
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Question 1: What is the optimal intra- and inter-temporal balance between

electricity generation capital investments and R&D investments under technological

change uncertainty?

Under a specific cumulative carbon emissions reduction target, generation capital

investment plans are determined by the relative cost and performance features of

individual technologies, and their potentials for learning-by-doing. For example, under a

business-as-usual carbon scenario (no emissions cap), the optimal strategy involves

building abundant new conventional technologies such as coal plants to fill the

"baseload" of electricity demanded, new natural gas plants to fill "shoulder" and "peak"

loads, and new wind power plants to fill electricity demands at all levels. Each of these

technologies has relatively inexpensive capital costs. However, under more stringent

carbon scenarios with carbon emission caps, the optimal strategy involves focusing on

new low-carbon coal with CCS plants and new zero-carbon nuclear plants to fill the

baseload (where generous carbon reduction opportunities can be achieved). In general,

capital investment decisions for building these initially expensive "emerging" baseload

technologies are delayed until later periods to comply with their scale-up constraints, and

once more cost reductions from learning-by-doing have been achieved.

For a specific carbon target, R&D investment strategies track generation capital

investment needs. Under technological change uncertainty, the optimal R&D investment

strategy is to assign aggressive amounts of R&D upfront to emerging technologies that

need to be deployed in the near term. This is the case for technologies such as wind

power across all carbon reduction targets. The initially low costs associated with wind
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power encourage its early deployment so that it can begin to help meet cumulative carbon

targets. Subsequently, this early deployment encourages R&D investments in the near-

term when reductions in capital costs can still benefit total system costs. For

technologies that will not be deployed until later, the optimal strategy is to invest less in

R&D in the near-term, and wait and learn about technological change outcomes before

investing later. This is seen in the case of technologies such as coal with CCS

technology. Coal with CCS plants have high initial capital costs, encouraging modest

near-term R&D and higher future R&D (to take advantage of discounting and the

combined effect of learning-by-doing). Under technological change uncertainty, this

deployment pattern incentivizes a "wait and see" rule with respect to learning-by-

searching.

Question 2: How does the optimal investment strategy under uncertainty compare

to the deterministic investment strategy design?

A key motivation for this dissertation is the lack of current decision support

models that appropriately consider uncertainty and learning in long-term planning for

energy and environmental issues. As discussed in detail in Chapter 3, most current

quantitative decision making tools rely on either 1) deterministic structures and Monte

Carlo analyses or scenario-based analysis, which does not consider learning between

decision periods, or 2) stochastic structures with low resolution in the number of time

periods, decisions, and uncertainties, to manage dimensionality burdens. In this

dissertation, a six-period stochastic sequential decision making model is presented,

having the ability to make multiple technology R&D decisions under technological
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change uncertainty, with learning and revising between decision periods. The second

research question above is posed to verify that the new sequential decision under

uncertainty modeling platform provides additional valuable information to the decision

maker over current modeling tools.

Results reveal that compared to the optimal deterministic investment strategy, the

optimal strategy under moderate technological change uncertainty is to increase near-

term R&D investment for technologies that need to be deployed in early periods, and

decrease near-term R&D investment for technologies where the "wait and see" rule

applies. This is seen in the case of wind and coal with CCS technologies in the analyses

above. Given the low-cost characteristics for wind technology, early deployment of wind

plants is encouraged. Under uncertainty, as there is only minimal time to benefit from

potential high R&D returns (and less time to learn and revise), the incentive is to increase

near-term R&D investment in order to take advantage of any potentially large capital cost

reductions. In later periods when there is less deployed, these potentially large capital

cost reductions would have less value. The high-capital cost and low-carbon

characteristics of coal with CCS technology dictate that the majority of coal with CCS

plants be deployed in later periods (under a carbon cap), after several periods cost

reductions from learning-by-doing and learning-by-searching have passed. Under

moderate uncertainty, this delay in capital deployment incentivizes lower near-term R&D

investments compared to the optimal deterministic strategy, and encourages following the

"wait and see" rule to take advantage of the opportunity to learn and revise decisions

before making large R&D investments. Moderate near-term R&D investment is still
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optimal, however (as opposed to no R&D investment) because beginning to build the

knowledge stock early is important in this path-dependent problem.

Overall, these results show that technology cost and performance features drive

optimal capital deployment timing, and under moderate technological change uncertainty,

this timing and the associated opportunity to learn and revise drives whether it is optimal

to increase or decrease near-term R&D investments from the optimal deterministic

strategy.

Question 3: What role do R&D program risk profiles and specific electricity

generation technology characteristics have in investment planning under

uncertainty for the power sector?

Chapters 3 and 6 discuss in detail the skewed distributions that characterize the

uncertainty in R&D investment outcomes. Moreover, new empirical evidence suggests

that different energy technology categories can display characteristic shapes, or risk

profiles. Some technology groups such as solar power or nuclear power tend to display

"high-risk, high-reward" profiles, marked by abundant opportunity for low returns to

R&D investment and rare opportunity for extremely high returns to R&D investment.

Other technology groups such as wind power may be marked by "slow and steady

progress" profiles, with more opportunity for moderate rewards than the high-risk, high-

reward group. Each of these risk profiles is also characterized by different levels of

variance.

The analyses conducted in the dissertation reveal that these two characteristics of

the relative risk profiles-the right-skewness of the profile, which represents high
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probability of low returns to R&D, and the overall risk (variance)-affect the optimal

R&D investment strategy under uncertainty. First, as skewness increases, optimal R&D

investment decreases from the optimal R&D investment under a symmetric uncertainty.

This result generally holds across technology types and carbon scenarios. Second, as

variance increases, the optimal near-term investment increases. However, the magnitude

of the increase/decrease relative to no uncertainty depends on the magnitude and timing

of the original optimal deterministic R&D investment (which as discussed above, is

driven by the specific technologies' cost characteristics and deployment plan). In

general, the more near-term R&D investment in a technology that is optimal under

perfect information, the less an increase in variance will lead to a further increase in

optimal R&D under uncertainty.

This is seen in the example of optimal coal with CCS versus wind technology

R&D under different R&D program risk profiles. Under a carbon cap, near-term coal

with CCS R&D remains relatively modest. As described above, this is because of its

high initial capital costs and "wait and see" incentive in the sequential decision making

framework. However, this modest near-term R&D investment encourages aggressive

increases in R&D as the variance (more opportunity for higher returns) increases. The

opposite is seen for optimal R&D investment in technologies such as wind power, which

due to its low-cost and upfront capital deployment already sees more aggressive near-

term R&D spending. In general, this large upfront R&D investment reduces the overall

sensitivity to increasing variance in R&D returns.
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8.1.2 Academic and Practical Contributions

A central question in the current climate policy debate is how to balance near-

term emission reductions through capacity deployment and future emissions reductions

through investments in R&D for alternative energy technologies. The results of this

study can provide valuable intuition, and a modeling approach for others to apply to

study similar policy questions. The framework can easily extend to studying balanced

policies for many other electricity-sector pollutants, too. Also, by developing the

improvements on a simple research-scale model first, the structure is transparent and thus

easier to transfer and adapt to other domains.

Academically, the research contributes to the public policy and power systems

research communities by producing a new framework for studying adaptive power sector

emission reduction strategies under technological change uncertainty, and for integrating

with other active areas of electricity planning research. It also contributes to the

developing engineering systems research community by documenting the value of a

system-level view of the interactions between policy, innovation, and the power sector,

and integrating three previously distinct disciplines (electricity generation expansion

planning, technological change economics, and decision and uncertainty analysis) to

study a complex, large-scale problem that was previously intractable. It also informs an

emerging approximate dynamic programming research community by applying the

method to a new, large scale problem. Finally, this research contributes to the

technological change branch of economics by transparently presenting one of the first

applications of including electricity sector dynamics and learning-by-searching
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technological change into a formal model for making investment decisions under

uncertain technological change.

8.2 Implications for Policy

Quantitative energy and climate policy modeling has been used as a pathway to

inform government and industry policy decisions for the electric power sector for many

decades. Early planning models were used to aid individual utilities in developing low-

cost generation capacity expansion strategies, making decisions about new utility

connections, and operating their existing facilities optimally. As the U.S. electric power

industry grew and became more physically connected, regional and national-level

planning was informed by quantitative models that could answer questions about power

flow, electricity coverage across large expanses of land, and optimal new generator

locations. In the wake of electricity market deregulation in portions of the country,

quantitative models began to help regulatory agencies understand the implications of the

different market rules they were setting. The models also helped individual utilities

gauge the profitability of potential generation and sales decisions. Finally, with respect

to the natural environment and overall sustainability goals, quantitative decision support

models have influenced some of the most widespread environmental laws in the country,

including the U.S. Clean Air Act and Clean Air Act Amendments of 1990, and the more

recent sulfur dioxide and U.S. Acid Rain rule, both affecting virtually every major

electric generation facility in the country.

As discussed in Chapter 2, at present the energy and climate policy modeling

community finds itself with the large task of helping federal government policy makers
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and other stakeholders at all levels understand the environmental and cost implications of

potential future national carbon dioxide emissions reduction policies (i.e., climate policy).

Many of these modeling efforts are geared towards informing policy makers about

economy-wide (e.g., welfare) impacts of implementing general types of climate policies

as well as specific government proposed climate policies. One recent example of such an

effort is the quantitative economic modeling that was performed to assess the economic

implications of the 2009 American Clean Energy and Security Act (ACES) (and its

multiple predecessors in the years immediately prior). A variety of academic institutions,

government agencies, trade and industry groups, consulting firms, and non-government

organizations performed modeling analyses (or contracted with others to perform

analyses on their behalf), and the results were used in directly shaping the language of the

legislation. Other modeling analyses study questions specific to an energy sector such as

how a specific sector might respond to a prescribed economy-wide climate policy, or how

a policy might be optimally designed to meet the needs (e.g., emission reduction goals,

reliability, etc.) of a specific sector.

Discussed throughout this dissertation, one of the great challenges to such energy

and climate policy modeling efforts is the matching of quantitative models to the real-

world decision making process. Current modeling tools for planning within the energy

and electric power sectors are not structured to match the manner in which policy makers

and other stakeholders actually make decisions. Due to numerous uncertainties,

decisions about long-term problems such as how best to develop the electric power sector

to manage climate concerns need to be made at different time intervals, between which
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additional information about the state of the world (e.g., actual technology evolution,

current exogenous policies) and outcomes of past decisions are collected and assessed.

At the same time, authorities charged with making decisions about how to best

allocate limited financial resources across specific technology R&D areas are calling for

a need to consider uncertainty in their decision making and are beginning to outline plans

for doing so. For example, in September 2011, the U.S. Department of Energy outlined

its new plans for a portfolio approach for energy and electricity R&D investments. A

guiding principle the agency plans to use in developing its portfolio is to hedge against

uncertain outcomes of currently assumed and "reasonably assured" technology pathways

with "higher-risk transformational work," (DOE, 2011). However, quantitative tools for

allocating R&D between these pathways either do not exist, or are computationally

intractable at the scale and structure needed.

This dissertation presents a new method that can quantitatively evaluate R&D

investment portfolio designs under uncertainty. The purpose of the dissertation is not to

resolve each detail required to assign specific dollar values to different partitions of the

portfolio, but to illustrate the method on a stylized example. With appropriate data, the

models could be scaled up to provide a quantitative decision support tool for the type of

policy context described by DOE above. Rigorous calibration of all parameters to the

latest empirical energy and technological change data available, inclusion of additional

generation technologies and demand-side dynamics, and many other features are

necessary to develop the modeling framework presented in this dissertation into an

industrial-scale model useful for directly informing government or industry about specific

magnitudes for the decisions they should make.
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Additionally, it is worth noting that the "optimal" investment strategy revealed

through such numerical models may not reflect the optimal strategy that should be

followed when the full range of institutional and operational constraints of the larger

"electricity and innovations systems nexus" are considered. Issues such as changes in

government agency funding, extraordinary opportunities for specific technology

collaborations, and stakeholder support or opposition for specific decisions can create an

array of implementation and administrative contexts that must be addressed. While

quantitative tools like the model presented here are a valuable mechanism for informing

policy making, they are but one of many inputs to a wider deliberative process.

Still, the quantitative modeling framework is built, and the overall insights gained

from the analyses performed with the new tool help by 1) providing awareness about the

features needed to scale the model up for real-world decision support, and 2) informing

decision makers charged with strategic R&D portfolio planning for the electricity

generation sector about some general actions to either seek out or avoid-as part of an

overall policy making process. For example, if institutional or other barriers to

deployment of a specific technology group are anticipated, and thus deployment delayed,

it may be wise to invest in R&D for that technology more modestly in the near-term and

learn about interim technological change before investing more heavily. As another

example, if two comparable technology groups (in terms of cost structures, deployment

capability, etc.) are being assessed for R&D funding allocation and one is thought to

follow a more "high risk-high reward" profile, results shown here suggest that it can be

beneficial to invest more slowly in the near-term in the riskier technology. Overall,

results reveal that under uncertainty, the decision to invest in R&D is not a simple "more
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or less" decision. Instead, the decision is highly influenced by the question of when a

particular technology might be needed in order to achieve specific objectives (e.g.,

emission reductions).

8.3. Limitations of the New Modeling Framework

The new modeling framework presented in this dissertation brings together three

established, but relatively separate fields of research-electric power systems modeling,

the economics of technological change, and decision analysis. Within each of these

areas, research has steadily progressed through empirical inquiry, methodological

inquiry, or both. However, to keep the new modeling framework presented here

computationally tractable and sensible for development and testing, several details that

could otherwise make the model more useful as an applied, industrial-scale numerical

model have been purposefully left out. This section presents a non-exhaustive list of

some of these decisions within each of the three research areas identified above, and thus

reviews limitations of the current modeling framework. Section 8.4 directly reflects upon

many of these limitations, outlining future research opportunities.

8.3.1 U.S. National-Level Electric Power Systems Modeling

As discussed in Chapter 4, the new modeling framework operationalizes

electricity generation sector "technological change" as a reduction in the capital

investment costs of new power plants. This method is utilized due to 1) the prevalence of

this operationalization in the technological change empirical and modeling literatures, 2)

data limitations in operationalizing it using other means, and 3) a need to choose a
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pathway to incorporate technological change for the purposes of model development.

However, as Chapter 2 mentions, there are many pathways for technological change to

affect electricity generation sector planning.

On the "supply side" of the electricity generation expansion planning problem,

advances in technology through basic science and applied R&D can also affect technical

performance characteristics of power plants, such as reduction in operating heat rates

(i.e., the efficiency with which primary fuel-based energy is converted into electrical

energy) or increase in the efficiency with which pollutant emissions are captured, both of

which would decrease the variable and operational costs of generating electricity as well.

Additional pathways for total cost reduction have not been incorporated in the current

version of the model.

Also excluded from the model are the numerous technology advances occurring

on the demand side of the electricity generation expansion planning "equation." A key

objective of expansion planning is to build adequate electricity generation infrastructure

in order to reliably meet future electricity demand. However, numerous efforts to

improve the efficiency with which electricity is consumed (e.g., energy-efficient

residential appliances) and the time of day it is consumed (e.g., time of day pricing,

commercial and residential contracts for regulating electricity time of use, "smart grid"

development) will affect the amount of electricity demanded during a given day or year,

and thus the amount of generation infrastructure to build. Additionally, a large shift

towards plug-in electric vehicles in the transportation sector will increase the amount of

electricity demanded, potentially requiring additional infrastructure to support the

increased demand (Short & Denholm, 2006). On the other hand, successful innovation in

266



fuel cells and other emerging technologies to introduce large-scale storage on the

electricity grid can have the opposite effect and potentially decrease the amount of new

generating infrastructure or types of technologies needing to be built (Sullivan, Short &

Blair, 2008). Each of these technology areas-demand energy efficiency, plug-in electric

vehicles, and electricity storage (among others)-are actively involved in the innovation

process, and will thus affect the design of optimal electricity R&D and capital

investments under uncertainty. Future versions of the framework presented here should

include such demand-side innovation efforts.

Lastly, there are many emerging technology areas that are excluded from this

initial modeling framework that will help the framework scale for industrial-scale

application. The U.S. electric power generation sector is represented using ten

technology categories and their respective cost structures and performance characteristics

(the stochastic modeling framework reduces this to five). However, industrial scale

national-level applications typically use a minimum of twenty different categories to

represent additional emerging technologies (e.g., offshore wind, ocean wave technology),

and disaggregate existing technologies to better represent their different costs and

characteristics (e.g., conventional pulverized coal plants, supercritical pulverized coal

plants, integrated gasification combined cycle coal plants). Scaling the model to include

these additional technologies is a relatively straightforward process, although outside the

scope of this dissertation.

The second key limitation in using the current model for decision support in

government R&D investment planning is the lack of representation of the heterogeneous

nature of the U.S. electricity generation market. The current modeling framework uses a
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centralized approach to capacity expansion, making the assumption that 1) a hypothetical

central planner is charged with making operation and new capacity addition decisions for

the entire U.S. electricity generation system, or 2) the system operates under perfect

competition. While such an assumption can be appropriate for the long-term strategic

nature of the current research, it does not represent the true nature of the underlying

system. Currently, about half of the U.S. operates under a market-based structure and

individual companies make decisions about their new capacity investments. Resolving

such details using a decentralized planning approach could reveal additional insights and

be useful for national-level policy setting (e.g., Kilanc & Or, 2008).

8.3.2 Representing Technological Change

Limitations in the modeling framework with respect to representing the dynamics

of technological change stem from the aggregation of public and private R&D pathways

in the model, the types of technological change excluded in the model, and the challenges

inherent in integrating results from innovative empirical research into quantitative

numerical models for energy and climate policy.

One of the key limitations in the new modeling framework is its inability to

distinguish between public and private innovation processes. In the current model, public

and private R&D is represented as a lumped entity, which performs R&D activities for

electricity generation technologies. This decision was made in order to build as simple a

model as possible to begin developing the numerical framework, but as Chapter 2

discusses, much of the R&D effort for electricity generation technologies takes place in

the private sector. As private entities face different incentives for pursuing R&D
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activities than public entities, disaggregating the model's R&D sector may reveal more

information about the effect of technological change on the optimal total R&D

investment strategy. For example, due to the lack of differentiation between public and

private R&D activity, the response of "upstream" private manufacturers to increased

"downstream" demand through new capacity additions is not adequately represented.

Likewise, the public and private sector tend to play different roles in the innovation

process-with public R&D targeted more towards advances in basic science and private

R&D more towards applied activities and commercialization (Deutch, 2005). The

current model treats all R&D used for an aggregated "technological change."

Next, there are several pathways for technological change in the energy sector,

only some of which are explicitly captured in the current model. The current model

applies only learning-by-doing (LBD) and learning-by-searching (LBS) for emerging

technology categories in order to construct and demonstrate use of the numerical

platform. However, other important sources for technological change include knowledge

spillovers from innovative activity occurring for other technologies within the same

industry, or even outside the industry. It can also include a general background

(economy-wide) rate of technological change that simultaneously affects all technologies.

Implicit in the current model is the assumption that all other technological change is

captured through the LBD and LBS pathways, but a fairer representation would explicitly

account for it.

Finally, there is a general lack of empirical data and analysis available to directly

calibrate the multiple learning parameters used in the dissertation model, and this creates

a limitation. Historical two-factor learning rates for emerging technologies such as coal
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with CCS technology are not yet available, due to its relatively new use in the electricity

generation sector. Most learning rates that are available are based on demonstration

projects or from its use in enhanced oil recovery applications. As mentioned in Chapter

3, private R&D data is not publicly available for econometric analysis (or other purposes)

and therefore integration into numerical models is not straightforward. Empirical

research that has been performed to estimate rates for technological change via other

means such as patent data or expert elicitation pose other challenges (e.g., interpretation,

calibration) for integrating into technology-specific partial equilibrium models. Thus, the

technological change module used in the current model represents a springboard for

testing several alternative learning rates and pathways of technological change, as well as

for rigorous more rigorous calibration to results from empirical data studies.

8.3.3 Decision Making under Uncertainty Modeling

There are two main limitations in the dissertation's methods with respect to their

ability to make decisions under uncertainty; both concern the type of uncertainties able to

be considered. First, a key uncertainty in the electricity and innovations systems nexus

studied in this dissertation is the amount of cumulative emissions reduction required from

the generation sector. This is directly related to the notion that there is great uncertainty

in the earth system response to rising carbon dioxide levels, and uncertainty about what

types of future climate policies will be implemented to tackle emissions reduction goals.

Unfortunately, the current version of the model lacks the ability to study optimal

investment strategies under uncertain carbon caps because the pathway for making

decisions about additional generating capacity is not yet active in the stochastic model.
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Sensitivity analysis in Chapter 5 provides some initial intuition about the behavior of the

optimal R&D and capital investment strategy under varying carbon targets, but this does

not formally integrate uncertainty and the opportunity to learn and revise investment

decisions between periods. Activating the generation capacity investment decisions

within the stochastic model is a non-trivial task, requiring additional methodological

work in the field of operations research.

The second key limitation in the structure of the decision under uncertainty model

presented in the dissertation, and often inherent in the nature of quantitative modeling of

socio-technical systems, is the lack of decision support for certain unforeseeable

uncertainties. A review of key uncertainties that electricity and energy system modelers

often consider in their quantitative models is provided in Chapter 2. However, a separate

category of uncertainties exists that describe "game-changing" activities-currently

unimaginable events, with little data to support their integration into quantitative models,

and for which the probability of their occurrence is unknown. With respect to new

technologies to help reduce or eliminate carbon dioxide emissions from the electric

power sector, such revolutionary technologies may be unintended consequences from

otherwise dedicated R&D activities, or from entirely new pathways. A limitation of the

modeling framework presented here is that it does not have a strong ability to explicitly

capture the effects of such uncertain technological change. In the current model,

integration of technological change uncertainty necessarily requires upfront assumptions

about the initial costs and performance characteristics for technologies included in the

model, and doing so would essentially place the hypothetical technology into one of the

already existing technology groups. An interesting global energy model that attempts
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something similar does so by integrating nuclear fusion technology into their technology

suite, but necessarily chooses a technology "type" to assign to its game-changer (Lechon

et al., 2005). One method of implicitly accounting for such uncertainties involves

considering what the impact of the game changing technology would be in the system

(e.g., dramatically reduced electricity demand, unlimited free fossil fuels) and

incorporating uncertainty in that variable or parameter. However, overall this limitation

encourages the use of separate, simultaneous decision support tools aimed more towards

managing these types of uncertainties such as more formal, qualitative scenario planning

techniques.

8.4. Future Work

There are a number of significant extensions to this dissertation work that can

better capture important details within the U.S. electric power sector, represent

technological change, and design an even more efficient algorithm for exploring optimal

investment decisions under uncertainty.

First, while the dissertation model uses the United States as a case, and purposely

incorporates only the minimum constraints representing the physical electricity system

due to a focus on developing the modeling framework, there are several layers of detail

that can improve the results. Four immediate opportunities for research include: 1)

separating public and private R&D by including opportunity cost constraints across R&D

efforts and defining a profit-maximizing private R&D sector (currently, the model

considers a single R&D sector and thus the socially optimal level of R&D); 2)

disaggregating electricity demand balancing areas to formally represent the spatially
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heterogeneous nature of U.S. electricity supply and demand; 3) transforming the

underlying (currently centralized) capacity planning model to consider the competition

that defines much of the actual U.S. electric power generation sector; and 4) extending

the current model to include energy efficiency and demand-side technological change,

distributed generation technologies (e.g., electric vehicles), and additional pathways for

technology-based cost reduction (e.g., through increased power plant efficiencies).

There are also two main immediate opportunities for research on the ADP

stochastic decision model. First, investigating alternative "explore-exploit" sampling

strategies for reducing the search space when solving for the optimal policy will further

increase the speed and precision of the model. Currently, a single run of the model uses

approximately 3-4 minutes of CPU time, and this can be reduced further with alternative

sampling strategies. Increasing the efficiency with which the algorithm solves will also

be useful for the second research opportunity, which will greatly increase dimensionality:

activating the new capacity decisions within the stochastic model. Doing so will require

utilizing alternate techniques for value function approximation instead of the method

applied in the current model, but will ultimately allow for several additional types of

inquiry.

Finally, results from this research illuminate the need for additional empirical

study on technological change within specific electricity sector technology categories.

The majority of current research in gathering and analyzing data to study technological

change within the energy sector remains too aggregated to be integrated into technology-

specific engineering-cost models such as the model developed here. For the purposes of

model development and illustration, aggregated data was utilized in this dissertation, but
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future versions can consider calibrating to more specific technology types if and when the

data become available. Furthermore, additional empirical study linking inputs to public

and private innovation (separately) to outcomes, and characterizing the uncertainty

underlying these outcomes, would be extremely useful for the electricity systems

modeling community to begin scaling up decision under uncertainty modeling

frameworks such as the one introduced in this dissertation for practical policy making.
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Appendix A Full Formulation of the Electricity Generation
Capital and R&D Investment Planning Model

period
generation technology category

dispatchable technology categories
non-dispatchable technology categories
no new build technology categories
emerging (learning) technologies

demand slice
annual discount rate

fix-omrateg
durationd
fuel cost,,
fuel-growth-rate g
varom_rateg
hebscaleg
retirejrateg
CAPCo,g
1/1g

ag, fig, #g
og
demandd
emissionrateg
ecap
availability-rateg

demand peak
k
reservemargin
initial-capacityg
instalLuprateg****

fixed O&M cost for technology g
length (in hours) for demand slice d
fuel cost for technology g in period t
annual fuel cost growth rate for technology g
variable O&M cost for technology g
knowledge stock scaling parameter for technology g
per period retirement rate for technology g
initial capital cost for technology g
learning-by-doing elasticity for technology g
learning-by-searching elasticity for technology g
innovation possibilities frontier parameters for technology g
per period knowledge stock discount rate for technology g
power level (gigawatts) for demand slice d
carbon emission rate for technology g
cumulative carbon emissions cap
availability rate (including maintenance & outages) for
technology g
power level (gigawatts) for peak demand slice
annual demand growth rate
reserve margin (%) for electricity reliability
initial installed capacity for technology g
maximum installed capacity rate of change between periods for
emerging technologies

Exogenous variables

RR,
KK,
FP,g

accumulated social discount factor in time t
accumulated demand growth factor in time t
accumulated fuel cost growth factor in time t for technology g

275

Indices and exogenous parameters

t

g

d
r



Endogenous variables

REBACKt,g
NEWCAPA CITYg
FC,

VCg
TOTALCAPCt,g
TOTAL_FIX_OM, g
PWROUTt,d,g

CAPCt,g
NEWHEBt,g
HEBACK,g
NETLOADt,d

R&D investment for technology g in period t
new capital installations for technology g in period t
total fixed costs in period t
variable costs for technology g in period t
capital investment costs for technology g in period t
total fixed O&M costs for technology g in period t
total electricity generation for technology g in demand slice d in
total emissions in period t
capital cost for technology g in time period t
new human knowledge for technology g in period t
human knowledge stock for technology g in period t
net electricity demand (total demand less non-dispatchable

generation technologies) in demand slice d in period t

Objective

minNEWCAPACITYtg,REBACKt~g NPV

Objective Function Equations

RRt = (1 + r)-s(t-1)

NPV = Z'T[FCg + VCt,g + REBACKgJ * RRt

FCt = EG TOTALCAPCt,g + ZG TOTALFIX OMt,9

TOTALFIX_.OMt,g = 5 CAPACITYt,gfix-omrateg

FP,= 1 + (fueLgrowthrateg 5(t-1)

(1)

(2)

(3)

(fixed costs per period) (4)
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VCt,g = 5 E3 PWROUTtAg durationd (fuel-costt,,gFPt,g + varom rate9 )
(variable costs per period) (5)

TOTALCAPCt,g = CAPCt,gNEWCAPACITYt,9 hebscalet,g

NEWCAPACITYt~g = CAPACITYt, - [CAPACITYt- 1,9 (1 - retirerate9,)]

(6)

(7)

C APC t, = CAPCo,9
,9 (CAPACITY S)(HEBACK 2)

NEWHEBtg = a9 
1 REBACKP HEBACKO5t,g t,g

(2-factor learning curve) (8)

(annual innovation possibilities frontier) (9)

HEBACKta+,g = 5 NEWHEBt,, + (1 - 6g)HEBA CKt,g(knowledge stock accumulation) (10)

Et = 5 Z'DG emission rate PWROUTt,d,Qdurationd

Constraints

ZTEt ecap

jgG: PWROUTt,d,g* = NETLOADt,d

(emissions per period) (11)

(cumulative emissions cap) (12)

(electricity demand balance) (13)

KKt = (1 + k)5(t-1)

NETLOADt,d = demanddKKt - PWROUTtAg**

PWROUTt,dg CAPACITYt,,

Xi PWROUTt,d,gdurationd CAPACITYt,g * 8760 * availabilityjrateg
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(15)

(16)



Zd PWROUTt,d,g-, = CAPACITYtg .availabilityrate,, (17)

ZG CAPACITYt,, > demand peak x KKt(1 + reservemargin)
(reliability requirement) (18)

CAPACITY1,g = initial-capacity, (starting with the existing system) (19)

CAPACITYt+,,..., install_uprateg,,,, x CAPACITYt,9 ,,,
(maximum rate of change for installed capacities) (20)

NEWCAPACITYt,... = 0 (no new builds) (21)
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Appendix B Innovation Possibilities Frontier Calibration

The purpose of this appendix is to detail the method for calibrating the innovation

possibilities frontier (IPF) parameters used in the new modeling framework to established

data in the literature. The IPF corresponds to Equation 9 in the full model described in

Appendix A, and provided again below.

NEWHEBtg = ag]REBACKPg HEBACKO (annual innovation possibilities frontier ) (9)

As described in the Chapter 3 literature review and in the presentation of the

deterministic modeling framework in Chapter 5, previous relevant numerical models for

decision making in the energy and environment realm use a single variable to represent

the dynamics that produce new knowledge. These models typically assume that new

knowledge is a direct function of the dollars invested into R&D for a specific technology,

often a one-to-one relationship. They then assume that the total knowledge stock for a

specific technology grows as a function of this new knowledge, although often

accounting for depreciation of the existing knowledge stock. Such a framework

resembles the following:

HEBACKt+,,g = REBACKtg + (1 - Sg)HEBACK,g

where HEBACK,,g is the knowledge stock at time, t, for technology, g, REBACK,,g is the

amount invested into a research and development program at time, t, for technology, g,
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and &g is a technology-specific per-period depreciation rate for the knowledge stock for

technology, g.

The modeling framework used in this dissertation seeks to unpack the mechanism

by which knowledge stock accumulates over time and new knowledge is created. New

knowledge creation occurs via the IPF shown in Equation 9 above-as a function of both

the level of R&D investment in a specific technology and the current level of the

cumulative knowledge stock. The knowledge stock then accumulates as a function of

this new knowledge:

HEBACKt+ig = NEWHEBt,g + (1 - 6g)HEBACKt,g (10)

Using this framework requires finding suitable parameters a, [, and j for each

technology for the IPF. While detailed empirical calibration of IPF parameters to new or

improved data is beyond the scope of this dissertation, there was interest in being able to

study the behaviors of both R&D investment efficiency and knowledge stock efficiency

individually. Additionally, there is general interest in the energy decision modeling and

endogenous technological change community to explore alternative forms for

incorporating learning dynamics into numerical models (Clarke et al., 2004); this

dissertation partially seeks to contribute to that discussion.
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Method

The innovation possibilities frontier for each emerging technology (coal with

CCS, nuclear, wind, and solar) is calibrated to retain the final capital cost reduction

amounts expected from published two-factor learning-by-searching rates in the literature.

Overall, the role of the innovation possibilities frontier is to create new knowledge

(Equation 9), which feeds into a cumulative technology-specific knowledge stock

(Equation 10) used to reduce capital costs through the following two-factor learning

curve (Equation 8 in Appendix A),

CAPCtg = CAPCOg (2-factor learning curve) (8)
'S(CAPACITY a)(HEBACKt9g)

where CAPC,,g is the capital cost of technology g in time period t, CAPCo,g is the initial

capital cost, CAPACITY,,8 is the total installed capacity of technology g in time period t,

HEBACK,,g is the knowledge stock for technology g in time period t, and qig and r/2 g are

the learning-by-doing and learning-by-research elasticities for technology g, respectively.

The goal of the calibration is to achieve as closely as possible, the amount of

capital cost reduction expected through the learning-by-searching pathway for each

technology based on published two-factor learning-by-searching rates (LSR), but instead

using the full IPF-mechanism for the underlying growth of HEBA CK,,g. (The learning-by-

doing (LBD) pathway is not changed, and published two-factor LBD rates are used.)

Using published two-factor LSR and learning-by-doing rates (LDR), a trajectory for

capital cost (CAPCtg) as a function of knowledge stock (HEBACK,,g) and cumulative

installed capacity (CAPACITY,,g ) is first computed. Both knowledge stocks and
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cumulative capacity are initialized to 1.0 and for simplicity, double every period. The

calibration for the IPF then aims to grow a knowledge stock that results in the same rate

of capital cost reduction as the original learning-by-searching rate (LSR); the rate of

capital stock growth remains at 100% per period.

Published LSRs and LDRs in Barreto and Kypreos (2004) are used for the

calibration. These rates describe the cost reduction that occurs from a doubling of the

knowledge stock, and follows directly from the traditional experience curve "progress

ratio" concept (Ibenholt, 2002).

LDR = 1 - 2,

LSR = 1 - 2,

where the parameters 1 and ?12 are technology specific. Table B-I provides the rates used

to develop the capital cost trajectory of the original (target) cost reduction curve, and the

corresponding learning indices (q] and 12) used for the two-factor learning-curve in the

dissertation model.

Table B-1 Learning-by-Searching Rates and Indices by Technology Category

Technology LSR Corresponding LSR Corresponding
LDR Index (1) LSR Index (12)

Coal with CCS* 0.04 0.05889 0.02 0.02915
Nuclear 0.04 0.05889 0.02 0.02915
Wind 0.16 0.25154 0.07 0.10470
Solar 0.25 0.41504 0.10 0.15200

Source: Barreto and Kypreos (2004).
* Coal with CCS technology is assumed to learn at the same rate as nuclear power technology in this
dissertation.

Next, to calibrate the IPF for each technology, new knowledge created needed to

accumulate into a knowledge stock that allowed capital costs to decline at the same rate
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as the target curve when used in the two-factor learning-curve formulation (Equation 8)

with the LSR and LDR indices from Table B-1. To do so, existing values from the

literature for two of the three IPF parameters were applied (Popp, 2006), and the third

parameter was solved for using a least-squares minimization method. The parameters for

f (elasticity of new knowledge with respect to R&D investment) and 4 (elasticity of new

knowledge with respect to knowledge stock) in the published literature are for a single

lumped energy technology group, so they are held constant across the four technologies

here. Following Popp (2004), 0 = 0.10 and 1 = 0.54. Finally, to compute capital cost

reductions through the IPF, levels for knowledge stock, capital stock, and R&D

investment for each technology are needed. All knowledge stocks are initialized at 1.0 in

the model. Therefore, an initial value of 1.0 is used, and all subsequent values for the

knowledge stock are a result of applying the knowledge stock accumulation in Equation

10 above, with a corresponding annual depreciation rate of 0.01. Capital stocks grow at

an exogenous rate of 100% per period, in line with the method used for the target curve.

Following Barreto and Kypreos (2004), values applied for annual R&D investment are

given in Table B-2.

Table B-2 Annual R&D Investment by Technology (in Million USD)

Technology Annual Total R&D Investment
Coal with CCS** 773

Nuclear 773
Wind 409
Solar 409

Source: Barreto and Kypreos (2004).
* Values in Barreto and Kypreos are given in 1998 dollars; for the purposes of calibration this is retained.
** Coal with CCS technology is assumed to have the same level of investment as nuclear for the purposes
of calibration.

283



For each technology IPF, these values for R&D investment, capital stock, initial

knowledge stock, parameters p = 0.10 and = 0.54, a knowledge stock depreciation rate

of 1%, and a target capital cost trajectory from the original published LSR and LDRs,

combined with Equations 8, 9, and 10, are used to determine an optimal value for the

scalar a in the IPF through a simple least-squares minimization technique. Results from

this optimization are shown in the figures below, depicting both the original target capital

cost curve for each technology, and the final curve after the IPF calibration. Final values

for a are given in Table B-3.

Table B-3 Calibrated IPF Parameter Values for Deterministic Reference Model

Technology IPF a IPF p IPF $
Coal with CCS** 0.3910 0.1 0.54

Nuclear 0.3910 0.1 0.54
Wind 0.4389 0.1 0.54
Solar 0.4539 0.1 0.54
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Figure B-i Original capital cost trajectory for coal with CCS technology and final capital cost
trajectory for coal with CCS technology after 1FF calibration
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Figure B-2 Original capital cost trajectory for nuclear technology and final capital cost trajectory for
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Figure B-3 Original capital cost trajectory for wind technology
wind technology after IPF calibration
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Figure B-4 Original capital cost trajectory for solar technology and final capital cost trajectory for
solar technology after IPF calibration

285



THIS PAGE INTENTIONALLY LEFT BLANK

286



Appendix C The Case for Representing Electricity System
Dynamics in Energy Decision Models

The following appendix motivates the need to represent a minimum degree of

realism of the unique dynamics of the power system when studying electricity sector

investment decisions and emissions reduction potentials. As discussed in the Chapter 3

literature review, many interactions are often missed in economic models that assume

fixed operations and various exogenous trajectories to study electricity investment

planning and related emissions. Also, as explained in Chapter 4.4, there are a wide range

of constraints and dynamics involved in how the physical electric power system operates

which make the operations and investment planning problem so distinct.

This appendix presents results from a brief numerical experiment where two key

constraints in the optimization problem are relaxed in order to simulate removing the

representation of two important dynamics in the current modeling framework. The

constraints chosen for removal aim to simulate the relatively rudimentary level at which

electricity system operations are commonly represented in many well-known economic

models in use today for energy sector investment planning and policy analysis.

The first constraint relaxed for the simulation involves removing the net-load

approach used for the energy demand balance requirement. As described in Chapter 4.4

in detail, a net-load approach is used to represent the reality that in an electric power

system without effective storage capability, power generated must equal power

consumed. The net-load approach requires that this equality be met after total power

generated from intermittent renewable resource technologies such as solar power, as well

as total power generated from highly-operationally-constrained base-loaded technologies
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such as nuclear power, are subtracted from the amount of electricity demand which much

be met. This approach allows modeling to first-order the effects of intermittent

renewable resources, and as the dominant operational constraint of nuclear power plants.

It does so by assuming that when these sources are generating power, that power is being

used to satisfy demand (rather than being otherwise shed or curtailed). Traditionally, in

less sophisticated electricity operations and investment planning models, as well as in

modem larger economic models used for policy analysis, these effects are ignored and it

is assumed that technologies such as solar and nuclear are able to meet electricity

demanded in the same manner as a natural gas plant or a coal-fired power plant-that is,

they are able to be turned "on" and "off' on demand. In the relaxed version of the

problem, all technologies compete equally to meet the full amount of electricity

demanded.

The second change in the model allows all installed generators on the system to

be available to generate at any time during the day (e.g., they are all "dispatchable"

technologies). In the reference model, given its high diurnal variability, solar power is

constrained to producing electricity to meet a portion of electricity demand only during

peak solar incidence times, and otherwise does not produce (when the sun is not shining).

In the relaxed version of the model, solar power is assumed to be dispatchable, along

with all of the other technologies. In doing so however, solar power's resource

availability rate is also decreased from 90% available and generating in only peak slices,

to 30% available to generate during all time slices in order to continue simulating its

limited resource availability rate. This use of solar power's capacity factor is in-line with
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how such an intermittent, temporally-constrained resource is represented in top-down or

less detailed models.

Figure C-I and Figure C-2 show the results from the reference model under business-

as-usual (BAU) (no carbon cap) and from the relaxed version of the model, to simulate

more rudimentary power system dynamics, respectively. As usual, R&D investment

decisions and installed generating capacities are provided; per period generation by

technology and per period emissions trajectories are also shown for both sets of results.

The difference in results is readily apparent. Under the relaxed constraints, solar

technology R&D investment appears; this is not the case under the reference model with

a minimum degree of operational realism. Additionally, this new solar R&D investment

appears to offset a small fraction of wind R&D investment in all periods. Installed

capacities follow this plan, with new solar technology capacity additions beginning in

Period 4 (in place of a portion of the wind capacity in the reference model scenario).

New (conventional) coal capacity is also added at a faster rate beginning in Period 2

under the relaxed constraints. This shift to investing in solar R&D under the relaxed

constraints is not surprising given the assumption that the solar generators are able to

operate at any time during the day, on demand. Under the reference model, solar power

remains locked out of development due to its high initial capital cost, low resource

availability, specific learning characteristics, and general lack of role under realistic

carbon targets. However, under the relaxed constraints, the assumption that solar

availability is much more flexible gives it an unrealistic operations capability, and thus in

the context of this relaxed model, there is a false incentive for its development.
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A second key difference between the two model results is in the emissions profile,

and underlying generation (operation) of the system to meet demand. Under the relaxed

constraints, the tendency is to be more lenient with emissions in the near-term, allowing

emissions to increase before settling to a benchmark from which emissions grow

unconstrained. The reason for this can be explained by the difference between the

generation by technology graphs from the two results. In the reference model, nuclear

power is base-loaded and therefore required to run and fill a certain percentage of

demand. This simulates relatively realistic operations of nuclear power plants which are

very operationally constrained and if installed, do tend to operate near maximum capacity

most of the time. However, in the relaxed version of the model, although nuclear power

is installed, it does not generate any electricity to meet demand. This is because the base-

load representation of nuclear power was removed from the model and it now has to

compete with other technologies to meet demand. This results in the system choosing to

operate additional (or for longer) less capitally-expensive and less fuel-expensive old coal

and new coal-fired plants, and some additional combined cycle natural gas-fired plants, in

place of nuclear plants. As a result of these increased carbon-emitting technologies,

emissions increase in the relaxed case to a higher level.
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Figure C-2 Relaxed model results under BAU (no carbon cap): R&D Investments (a), Installed
Capacities (b), Total Generation by Technology (c), and Emissions Per Period (d)

Figure C-3 and Figure C-4 additionally show the full set of results from the reference

model and the relaxed model, respectively, both under a moderate (50% BAU) carbon

target. The trends and differences between the two models under a moderate carbon

target follow the same general pattern as those witnessed under BAU. Under the relaxed
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constraints, solar R&D investment is present, and reduces a fraction of wind R&D

investment. New capacity additions follow this R&D investment pattern. Coal with CCS

technology R&D investments are also exaggerated under the relaxed constraints, as are

its new capacity additions. Under the moderate target, a focus is placed on coal with

CCS technology given its low carbon emission rate, but overall the emphasis placed on it

in this scenario is again due to the lack of nuclear power generation. Cheaper fuel at a

lowered capital cost allows coal with CCS to become very cost-competitive when the

need to run nuclear plants is not considered. An even blunter difference between the two

model results is seen in per period emissions under the moderate carbon target. Near

term emissions still increase due to the shift to carbon-emitting technologies instead of

zero-emission nuclear, but the majority of emissions reduction is shifted to the later

periods under the relaxed constraints when cheap coal with CCS plants can meet the

majority of electricity demanded.

Overall, the difference between the reference model and the relaxed constraints

model shown here highlight the value in considering power system dynamics and

characteristics of the physical electricity system when making R&D and capital

investment decisions (either with or without environmental targets). The relaxed

constraints model here simulates what many well-known energy decision making and

policy analysis models use to represent the power system, and as shown here, this can

lead to an exaggerated focus on technologies (e.g., solar power) that may not realistically

be able to contribute to the minimum objective of reliably meeting electricity demand as

much as hoped. This can lead to unrealistic expectations for emerging technologies, thus

wasting funds and failing to truly minimizing total system costs.
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Appendix D Approximate Dynamic Program Model
Validation

This appendix presents results from validating the numerical models used for the

stochastic analysis in Chapters 6 and 7. There are two steps in this validation. First,

Chapter 6 explains that a six 10-year period, 5-technology model is used, which diverges

from the more comprehensive twelve 5-period, 10-technology model used for the

deterministic analyses in Chapters 4 and 5. Therefore, Part 1 of the appendix presents

evidence that a new (deterministic) six-period model behaves in a qualitatively similar

manner as the full-scale deterministic model, imparting confidence that it is an

appropriate platform to build upon for the stochastic extension of the study. The second

step is to confirm that the deterministic six-period model and a new stochastic six-period

model with no uncertainty, behave similarly. Part 2 presents the results from validating

the approximate dynamic program used to solve the reference stochastic problem.

Part 1 3-Stage Model Validation

To gain confidence that the reduced 6-period, 5-technology R&D and generation

capacity investment planning model is appropriate to build upon in the stochastic

extension of the dissertation, it is important that the model performs in a similar manner

as the original deterministic model used to gain the insights from Chapter 4 and 5. In this

way, model behavior under uncertainty can be validated by sensitivity analysis results

from Chapter 5, and new insights gained from the stochastic study in Chapters 6 and 7

can be more easily compared with the deterministic study. The goal of this step in the
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validation is that the overall patterns in R&D and new capacity investments across the

different carbon target scenarios studied behave similarly.

Figure D-1 shows optimal R&D investments and installed capacities for the

reduced model and the original model under the BAU carbon scenario. R&D

investments in wind are witnessed in both cases, with no other R&D investments in other

technologies. In terms of installed capacity, both models' electricity systems are

dominated by conventional coal baseload throughout most periods, followed by a

moderate amount of natural gas capacity. Both systems also see a similar "build outs" of

wind power after the initial periods, when the cost of wind technology decreases

sufficiently from learning. Coal with CCS technology capacity-the fifth technology

available-is not seen in the reduced model or in the original model where it is available

from the larger suite. Finally, nuclear and hydropower is not seen in the reduced model

because they are not available in the suite of technologies to choose from.
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Figure D-1 Comparison of optimal R&D investments and installed capacities across the reduced 6-
period model (left) and the original model (right), under BAU
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Figure D-2 shows the optimal investment strategies across the two models under a

moderate carbon target scenario (50% below BAU). The dominant changes seen in the

original model when moving from a BAU scenario to a 50% below BAU carbon target

scenario is the introduction of coal with CCS R&D investment, later term capacity

additions of coal with CCS, and importantly, a phase-out of conventional coal new

capacity additions. Each of these trends is witnessed in the reduced model as well. Coal

with CCS R&D investments appear, and capacity is added in the later periods when it is

absolutely necessary to meet the cumulative carbon cap. Note that the relatively gradual

introduction of coal with CCS R&D compared with the wind R&D, and the lower peak

coal with CCS R&D than peak wind R&D is also similar between the two models.

Capacity additions for conventional coal are also phased out in the reduced model, as its

high carbon emission rate no longer allows it to be a preferred technology under this

more stringent cumulative cap.
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Figure D-2 Comparison of optimal R&D investments and installed capacities across the reduced 6-
period model (left) and the original model (right), under a 50% below BAU (MODERATE) carbon
target

One noteworthy dissimilarity between the two models is that in the reduced

model, wind R&D investments decrease when a carbon target is imposed. In the original

model, wind R&D investments are quite insensitive to changes in the carbon cap and

other technology's R&D. The reason for this is that in the original model, the wind

capital installment strategy is relatively unchanged between different carbon scenarios. It

is a cheap source of zero-carbon electricity with a strong potential to learn (through both

LBD and LBS), and thus plays an important role in the system with or without a carbon

cap. In the original model, the installed capacity tends to reach the maximum capacity

scale-up constraint in the early periods, and then levels out for the remainder of the

problem horizon.

In the reduced model, however, the wind capital installment strategy exhibits non-

negligible change across the carbon scenarios. Under BAU, most of the wind is installed
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in the second period (online in the third period), whereas under the moderate target a

portion of this wind (30 GW) is built upfront in the first period (not visually observable in

the graphs above). Wind plays this more flexible long-term planning role in the reduced

model because of the lack of other zero-emission technologies available to help meet the

caps. In the original model, the addition of nuclear power to the investment strategy was

an option (for example), whereas in the reduced model wind and coal with CCS are the

only two zero carbon options. Because coal with CCS reaches its capacity scale-up

constraint, wind power becomes the only technology available to help meet additional

more stringent carbon caps. The R&D investment pattern across carbon scenarios simply

matches this need.

Under BAU, wind R&D investment is high because there is an opportunity to

bring the capital cost of the technology down considerably before needing to install it

later. Under a moderate target, wind R&D investment decreases because more of the

capital investment must take place upfront to meet the cumulative emissions cap. While

it is worthwhile to note that this difference in the two models exists, it does not signify a

major structural or behavioral difference that would preclude the reduced model from

providing insights during the stochastic analysis. Overall, the reduced model displays the

same qualitative behavioral patterns as the original 12-period, 10-technology model.
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Part 2. Approximate Dynamic Program Validation

The second step in validating the numerical model used for the stochastic analysis

is to ensure that the reference approximate dynamic programming (ADP) version of the

new 6-period, 5-technology model produces similar results as the deterministic NLP

model, when no uncertainty in technological change is present. Removing the

uncertainty in the ADP approximates the deterministic solution. Table D-1 shows the

resulting optimal decisions under each of the carbon target scenarios after 2000 iterations;

Figure D-3 and Figure D-4 following the table present the results graphically.

Table D-1 Comparison of Deterministic NLP and Deterministic ADP 6-Period Model Optimums

Model Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

COAL WITH CCS
BAU

NLP 0 0 0 0 0 0
ADP 0 0 0 0 0 0

Moderate Cap
NLP 410.92 689.32 838.46 136.55 0 0
ADP 361.32 650.28 365.72 22.24 0 0

WIND
BAU

NLP 1162.04 62.12 44.06 24.23 0 0
ADP 946.36 106.60 81.60 33 0 0

Moderate Cap
NLP 991.00 62.28 44.17 24.28 0 0
ADP 887.52 0 24.72 33.12 0 0
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Figure D-4 Comparison of optimal coal with CCS (left) and wind (right) R&D investment results
from deterministic NLP and ADP models under a carbon target (50% BAU).

Under BAU, the resulting first-period optimal decisions from the ADP version

consistently converge to within approximately 20% of the NLP optimal decision. Under

the imposed carbon target, convergence between the ADP and NLP first-stage optimal

solutions narrows to within approximately 10% for both technologies. Additionally, the

direction and magnitudes of the ADP results are consistent over different runs, and the

qualitative behaviors for the R&D investment decisions across all time periods match the

deterministic results.

Under BAU, the deterministic results display wind R&D investment only.

Moreover, this investment occurs at a relatively aggressive rate in the first period,

followed by a dramatic decline in later periods. The ADP results match this pattern

(Figure D-3). Under the carbon cap, the major behavioral change in the deterministic
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results is that coal with CCS R&D enters, but at only about half the magnitude as the

wind R&D investment. This is consistent with the ADP results, as coal with CCS R&D

is present under the carbon cap, but is only $361M versus the $888M wind R&D

investment. Additionally, first-period wind R&D decreases from the BAU to the carbon

cap scenario in the deterministic NLP-a pattern that is replicated in the ADP with no

uncertainty.

Overall, while quantitative (magnitude-based) differences are present between the

deterministic NLP and ADP with no uncertainty, they are relatively minor, and

qualitative behaviors match well. However, for the purposes of analysis and

interpretation in Chapters 6 and 7, all results from the stochastic analysis that discuss the

effect of uncertainty on the optimal investment strategy are benchmarked against the

"deterministic" solution from the ADP with no uncertainty model to eliminate a potential

bias.
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