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Abstract

This thesis analyzes HD 82074, a solar-mass and low-metallicity subgiant star, using
ground-based asteroseismology with the CHIRON spectrometer at the Cerro Tololo
Inter-American Observatory (CTIO) and interferometry with the CHARA array on
Mt. Wilson. The physical parameters of subgiant stars are of particular interest
in the exoplanetary field due to their importance in understanding the relationships
between planet occurrence rate and stellar properties such as age, metallicity and
mass. Potential systematic uncertainties in the canonical stellar models make it
especially important to independently determine the masses and radii of these stars.
We determine HD 82074's radius using interferometry from CHARA, and we combine
this result with measurements of the spacing and frequencies of the asteroseismic
oscillations of HD 82074 to determine a stellar mass. We find that the star has a
radius of 3.96 0.12 solar radii and a mass of 1.20 0.11 solar masses. While the
radius is in excellent agreement with predictions from spectral analysis, the mass is
2.9-o- greater than the predicted mass. This suggests that errors of stellar models
may be underestimated for low-metollicity or evolved stars. This study makes HD
82074 the third subgiant for which a physical radius is confirmed interferometrically
and one of ten asteroseismically studied subgiants.
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Chapter 1

Introduction

Today, there are well over one thousand discovered exoplanets and several thousand

exoplanet candidates [62]. Exoplanetary systems are diverse and often dissimilar to

our own Solar System. Unlike the nearly circular orbits which are aligned with the

equator of the sun to within ten degrees, exoplanets have been found to have a range

of eccentricities and inclination angles relative to their host star. Additionally, we

have discovered Jupiter sized planets whose semi-major axes are only a fraction of

the size we see for gas giants in our system. This unexpected range of features has

helped drive the exoplanetary field to conduct a wide range of exoplanet surveys in

order to understand the distribution and formation of planets and their host stars.

With our current sample size, we are just beginning to be able to answer some of

these overarching statistical questions.

However, the biases and limitations of our detection methods impede our progress

in understanding exoplanetary systems. Each method occupies a distinct sector of

exoplanetary parameter space which it can probe under realistic time and resolution

constraints, as seen in Figure 1-1. For each technique there are also intrinsic de-

generacies between planetary and stellar parameters. In fact, with the exception of

direct imaging, all detection methods of exoplanets are indirect measurements relying

heavily on the planet's host star.

For example, one of the first and most successful detection methods relies radial

velocity measurements. Radial velocity (RV) surveys look for the "wobble" in stars,
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Figure 1-1: Confirmed exoplanets from The Extrasolar Planets Encyclopedia. Five

methods of exoplanet detections are shown: radial velocity measurements which are

described in the text (blue stars); Transiting planets which uses the dip in stellar light
as an exoplanet passes in the line of sight (red circles); Microlensing which searches

for abnormalities in typical microlensing events as two stars overlap in our line of

sight (black triangles); Timing variations which arise from pulsar signal variations or

variations within another exoplanet's orbit. These methods cover distinct ranges of

parameter space for exoplanets.

or changes in the star's velocity in the observer's line of sight. For a star hosting an

exoplanet, the amplitude (K) of the observed radial velocity of the star is given by:

K =27ra sin(i)

R\/1 - e 2

where a. is the semimajor axis of the stellar orbit, i is the inclination angle of the

planet and P is the period of the planet. The inclination angle is defined such that
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i = 0* when the orbit of the planet is perpendicular to the observer's line of sight

("face-on"), and i = 900 when the orbit of the planet is parallel to the observer's

line of sight ("edge-on"). This relationship can be combined with Kepler's third law,

p2 G(M2M,) am , to provide the simple relationship:

K - 2rG ,* MSin (j) 1
K / (M.+MP)2 /3  / 2 (1.2)

ef (1.2)
285msi (p -1/3 M, M. )-2/3( sin(i)2

1 yr MJs, Me \vr -e

It is clear that radial velocity measurements tend to detect more massive planets

with edge-on orbits around lower mass stars. Indeed, this fact has guided RV surveys

to focus on lower mass FGK dwarfs as seen in Figure 1-1. It is also evident that for any

given K measurement there is degeneracy amongst the parameters in Equation 1.2.

While the period and eccentricity can generally be detangled from the RV time series,

there is a lingering degeneracy between the mass of the planet and the mass of the host

star. Either another detection method must be used (with its own set of limitations),

or an independent estimate of the star's mass is necessary to break the degeneracy.

In addition to better understanding the planets themselves, characterization of

the stars can help answer questions about the environments in which exoplanets

form. For massive gas giants (such as the hot Jupiters typically detected by RV

studies), there are two widely supported theories: core accretion and disk instability

[47, 81. Core accretion predicts that planet formation begins with the coagulation of

particles and collision of planetesimals until the planet core reaches a critical mass of

10-20 Earth masses. At this mass, the core rapidly accretes gas from the surrounding

protoplanetary disk material. The core accretion theory predicts an increase in planet

abundance with stellar metallicity and mass due to shorter accretion timescales and

broader formation regions within the disk, respectively [13, 31, 36, 551.

In contrast to this bottom-up approach, the disk instability model predicts that gas

giants form as the massive, unstable protoplanetary disk rapidly cools and fragments

[31]. Disk instability predicts no dependence of planet formation on stellar properties,
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including mass and metallicity [10, 9]. Notably, the independence between stellar mass

and planet abundance is due to the short lifetime of the planet formation (- 103

yrs) versus the lifetime of the disk (; 3 Myr) for low mass stars. This timescale

discrepancy correctly predicts the possibility of giant mass planets around M dwarfs

and naturally predicts planets around more massive stars [10].

The evolution of planetary systems can also be understood through studies of host

stars. Any planetary formation and evolution theory must explain the great diversity

seen in exoplanetary systems across every stage of the host stars life. In general, larger

planets are expected to form beyond the ice line of a star, where more solid grains

are available for accretion. However, as previously stated, Jovian planets can be seen

well within one AU of the host star. To account for this discrepancy, theories invoke

migration mechanisms of planets within the protoplanetary disk. Giant planets which

are sufficiently close to their host star after migration are expected to spiral closer

to their host stars via tidal transfer of angular momentum [45]. The effects of stellar

evolution and interaction on these planetary dynamics are uncertain.

Recent Doppler surveys show a ,positive correlation between stellar mass (and

metallicity) and planet abundance, with a deficit in giant planets with periods on the

order of days around massive stars (>1.3 solar masses). These results are from RV

surveys of M dwarfs, FGK dwarfs and evolved subgiants known as "retired A stars"

[33, 31]. These results support the core accretion model. Additionally, the paucity

of massive stars with short-period, massive planets suggest that protoplanetary disks

of massive stars may inhibit the formation of such planets. Because the RV method

is biased towards the detection of massive, closer-in planets, the apparent gap in

short-period planets is not an effect of observational bias [32].

These important results rely on spectroscopic measurements of the aforementioned

"retired A stars", or evolved subgiants. Subgiants are stars which brighter than dwarf

stars yet dimmer than giant stars. They are stars ending the process of hydrogen fu-

sion within their cores, but have not yet ascended the red giant branch. Subgiants

make excellent RV targets because they are cooler and rotate more slowly than their

main sequence counterparts. This both increases and narrows the observable absorp-
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tion lines within their spectra [23]. While main sequence A star's broadening and

velocity 'jitter' which limits Doppler precision to 90-200 m s- 1, retired A stars have

internal noise on the order of 5 m s-1 [63, 25].

However, the measured properties of "retired A stars" may suffer from systematic

error and large uncertainties which were unaccounted for. This is partially due to

crossings of stellar evolutionary tracks along the Hertzsprung-Russell (HR) diagram.

The HR diagram is a plot of brightness versus spectral type for many stars. Because

these properties change as a function of time, metallicity and density, HR diagrams are

often used to determine the basic physical properties of stars. This is a straightforward

process for main sequence stars, but the evolutionary tracks of subgiants with masses

between one and two solar masses cross over one another. This can be seen in Figure 1-

2. Uncertainties are also unaccounted for in the assumptions made by the stellar

models. Notably, the mixing length (the characteristic length a cell of material will

move within a star), is set based on solar observations. However, the assumption that

the mixing length should be constant across the HR diagram is not well tested [49].

The difference between a 1.3Mesubgiant and a 1.7MEsubgiant is only a difference on

200K in Te. and 0.2 dex in [Fe/H], acquired by a change of 5% in mixing length.

Additional systematic errors may exist within the analysis method itself. The

spectral analysis method, Spectroscopy Made Easy (SME), which is used in these

studies has known systematic errors (Valenti & Fisher 2005) [42]. For example, Torres

et al. (2008) found correlations between Tff and [Fe/HJ in SME, and systematic

differences in Tff and metallicity between SME and line-by-line spectral analysis

which can lead to systematic mass-estimate errors as large as 15% for sun-like stars.

This can be corrected by forcing the spectroscopic surface gravity to match the model-

predicted surface gravity, but the correction intrinsically assumes that the model grids

are accurate [571. The uncertainties of the analysis for cooler, less dense stars like

subgiants are not well studied.

Based on these arguments and a expected observational bias towards lower mass

stars due to their lifespan on the subgiant branch, Lloyd (2011,2013) concludes that

these "retired A stars" may in fact be a population of evolved F- or G-type stars,
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Figure 1-2: HR diagram showing B-V color versus absolute V magnitude of host
stars with planets found before May 2011. Hosts with M, > 1.5Meare shown in filled
circles, while hosts with M, < 1.5Meare shown in open circles. The dotted-line box
shows the parameter space of the sample of evolved stars in Johnson et al. (2006)
(0.5 < Mv < 3.5; 0.5 < B-V < 1.0). The shaded region contains 28 hosts with
M, > 1.5Meand 3 with M, < 1.5MD. The lines are evolutionary tracks of hosts of
1.2, 1.5 and 1.8Meranging in metallicity from -0.4 to 0.2. These tracks were derived
from Yonsei-Yale isochrones. Figure taken from Lloyd (2011) [42, 64].

with masses closer to a solar mass. While it is uncertain whether the lifespan of G-

versus A- type subgiants has a significant effect the RV survey results, the previous

arguments do indicate a discrepancy that might arise from misidentifying the true

population of "retired A stars" [30].
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This theory was independently tested by Schlaufman & Winn (2013), using the

stellar velocity dispersion of the subgiant population in question[52}. All stars form

through highly dissipative, dense gases which create relatively a low velocity distri-

bution in the stellar population at the time of creation. For older stars, the velocity

dispersion of older generation stars tends to be higher. This is due to interactions

between the stars and the surrounding molecular gas, as well as density perturbations

within the spiral-disk of the galaxy [5]. Because massive star's have a higher rate of

nuclear fusion, they spend less time on the main sequence. Therefore, higher mass

stars in the subgiant stage are typically younger than their lower mass counterparts.

In turn, this implies that massive (A-type) star populations should have less velocity

dispersion relative to the less massive populations (F- and G-types) [52J. This test

revealed that the velocity dispersion of the "retired A stars" is consistent with that

of F5- to G5-type stars and inconsistent with that of A5- to FO-type stars.

The true class of these stars can reveal whether their population of planets is

simply a dynamic consequence of their age or characteristic of massive host stars in

general. If the retired A stars have over-estimated masses, the lack of short period

planets around the subgiants may indicate that tidal capture during the evolution

of the star plays a large role in planetary dynamics. Moreover, the increased planet

frequency in these subgiants compared to main-sequence F- and G- dwarfs may point

to a systematic flaw in the measured metallicities [42].

Rather than relying on evolutionary models or indirect measurements, stellar

masses can be accurately measured using asteroseismology. Asteroseismology is the

study of stellar oscillations caused by pressure and temperature perturbations which

are often excited through convection. In short, acoustic waves are refracted towards

the star's cooler surface, where they are reflected against the star's outer boundary, or

the photosphere. The reflections are again refracted and reflected, creating a periodic

signal on the stars surface. The signal can be used to determine the density, surface

gravity and age of the star [1, 29]. s This asteroseismic signal is detected using RV

measurements or photometry. For subgiants and giants, the expected RV signal for

the lower order modes is on the order of 1 m/s. This resolution has become possible
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from terrestrial telescopes within the last two decades due to vast improvements in

spectrographs. The expected dominant frequency is on the order of several hours,

while the decoherence time of these modes is on the order of days [28, 6}. Photo-

metric measurements of subgiants can also be made with high precision instruments

capable of detecting flux variations on the order of 20 parts per million.

In this thesis, we will explore the possibilities of asteroseismology in evolved stars.

Specifically, we will study HD 80274, a G-type subgiant. In Chapter II we will

give the theoretical background of the source of these oscillations. In Chapter III

we will present our observational strategy and observations using CHIRON for the

subgiant HD 82074. In Chapter IV we will present our interferometric measurements

of radius for HD 82074. In Chapter V we will present the methods for studying these

mechanisms, and we will summarize the results in Chapter VI.
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Chapter 2

Theoretical Background

Asteroseismology is the study of subsurface oscillation within stars. The understand-

ing of these oscillations modes can lead to a general insight of stellar interiors by

tracing the eternal battle between internal excitations of the star and its fundamental

restoration forces.

2.1 Excitation and Restoration Processes

Stellar modes are typically excited by either stochastic processes or the r mechanism.

Stochastic processes arise from convection in the upper layers of the star. The large

temperature gradient in this area leads to near-sonic to super-sonic, turbulent motion

of material. This turbulent noise excites the observable eigenmodes of star. The

modes have a characteristic lifetime in which the mode dampens and the phases

decorrelate. Stochastic processes occur in main sequence stars less than 2MOand

evolved stars which are cooler than the instability strip [54, 50].

The K mechanism is a pseudo-periodic process in which shell of material is per-

turbed and moves radially to maintain equilibrium. This radial movement causes a

change in the opacity (or temperature) within the shell. For example, a shell of He I

may drift deeper within the star and compress and ionize to He II. The local opacity,

or the ability for electromagnetic radiation to pass through the region, raises as He I

ionizes. Trapped heat raises local pressure. The shell then expands, cools and allows
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recombination to occur. As the shell cools it begins to contract once again and repeat

the cycle. This process mainly occurs within the instability strip of the HR diagram,

such as Cepheid variables and 6 Scuti stars.

Rarer sources of variability are the E mechanism and convective blocking. In the e

mechanism, the stars core heats due to a short-term acceleration in nuclear reaction

rate, causing the nearest material to expand, cool and again shrink. This mechanism

may excite g modes in 6 Scuti variables and Wolf-Rayet stars [41, 71. Convective block-

ing occurs when perturbations arise in the transitional region between the convective

and radiative zones of the stars, but the convection rate is too slow to transport this

energy efficiently, leading to driven pulsations.

These modes are further classified by their restoration forces: pressure (p modes),

buoyancy (g modes) and surface gravity (f modes). The distinction between these

classes is formalized by defining the buoyancy (or Brunt-VisAM) frequency (N) and

the acoustic frequency (SI). While both frequencies scale with the square-root of the

average density of the star, N scales linearly with the surface gravity, and St scales

linearly with the sound speed. P modes have angular frequencies (w) greater than N

and S1, while g modes have angular frequencies less than N and S1. F modes exist

only on the surfaces of stars, so this classification does not apply. Each type (p, g

and f modes) are associated with a unique physical phenomenon:

p modes: Longitudinal density waves in convective zones cause p modes. The

properties of p modes are defined by the local sound speed, which primarily depends

on pressure and temperature. They are essentially radial modes trapped in a cavity

formed by the stars sharp outer layer and rapidly increasing density and temperature

gradients near the core. The gradients cause the wave to bend according to Snell's

law as they encounter higher sound speeds near the core. The depth to which these

waves can penetrate depends on the order (n) of the waves, which will be defined in

the next section.

g modes: Gravitational or buoyancy forces drive g modes in stars. Radial motion

of matter across the density gradient drives corrective buoyant forces. G modes are

confined to the radiative zones of stars where their frequencies will be less than the
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Brunt-Vaisala frequency. Because evolved stars tend to have outer radiative zones,

g modes are visible in mainly evolved stars and are not well studied within our own

sun. P modes and g modes can overlap in evolved stars where the radiative region is

large; this phenomenon is called a mixed-mode. Figure 2-1 shows the propagation of

p and g modes in a Sun-like star [4].

f-modes: F modes occur on the surface of stars or on the boundary between

convective and radiative zones. These modes have the same restorative force as g

modes: buoyancy. However, f modes are surface gravity waves which have no radial

nodes and approximately no radial dependence. F modes are appropriately described

as short surface gravity waves in the "deep water" limit, or in the limit at which the

distance to the absolute lower boundary is much less than the amplitude of the waves

themselves [44].

a)I b)a

Figure 2-1: Propagation of acoustic and gravity waves in a Sun-like star. Panel (a)
demonstrates how the p mode paths bend radially outwards with increasing depth,
until reaching their various inner turning points" and undergoing total internal re-
fraction. Panel (b) traces a g mode ray path which is trapped in the inner radiative
layer of the star. The ray path of the g modes depend heavily on the star's core
conditions [22, 2]. Figure taken from Aerts et al. (1996).
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2.2 Spherical Harmonics

Approximating the star as spherically symmetric, the various oscillations can be de-

scribed mathematically in the (r,0,0) coordinate system, where r is the distance from

the center of the star, 9 is the colatitude and # is the longitude. The oscillatory

modes solve the spherical wave equation:

1 02
A2t c(r)2  (2.1)

which can be written as:

G(r, 0, 4, t) = a(r)Y" (9,4) exp(-i21rvt) (2.2a)

te(r, 0,k, t) = b(r) 1 80' exp(-i27rwt) (2.2b)

b(r) OY,m(9 ,)
t#(r, , 0t) = -- ~ (' exp(-i21rvt) (2.2c)sin6 0 01

where 6,(e and te are displacements of matter, a(r) and b(r) are amplitudes of

the displacement which encode c(r), v is the frequency and Y' m(0, 4) are spherical

harmonics. Given a c(r), these solutions are completely specified by three numbers:

1. n, the overtone of the mode

2. 1, the degree of the mode which specifies the number of surface nodes present.

3. m, the azimuthal order whose absolutelvalue specifies how many surface nodes

are lines of longitude. The azimuthal order can range from I to -1.

Sample harmonics are shown in Figure 2-2 and the typical frequencies and degrees I

of the modes is shown in Figure 2-3.

2.3 Asymptotic and Scaling Relations

For low-order p modes, the inner turning point for modes (in which wave experiences

total internal refraction) becomes very close to the core of the star. This implies that
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Figure 2-2: Sample spherical harmonics, Y"1 (0, 0). Blue represents a positive pertu-

bation while red reresents a negative perturbation. Image taken from Ahern (2009)

[3].

the path length that low order p modes travel is approximately constant. For large n,

the radial spacing of the nodes become approximately equidistant, and perturbations

in the gravitational essentially cancel due to the rapid variation. Neglecting the effect

of the change in gravitational field as a function of radius is known as the Cowling

approximation [21]. The Cowling approximation has proven to be in good agreement

with polytropic models and solar observations [15, 60, 16].

Assuming n > 1 and using the Cowling approximation, we can relate ,, N and

d2 r r 2 N2 2

dr2 c(r)2 ( 2 W2
(2.3)

For positive K8, r has an oscillatory solution, r ~ cos(f K, 2dr + )$). P modes
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Figure 2-3: Frequency of modes versus their degree 1 for a Sun-like star. In the upper
right corner, a few corresponding overtones (n) are listed for reference. The overtones
for the g modes are negative by convention. Solid lines, rather than discrete modes,
are used for clarity. The figure illustrates that p modes increase in frequency with
increasing overtone and degree, while g modes decrease with overtone but increase
with degree. A single f mode is seen crossing the phase space of both g and p modes.
Figure from Aerts et al 2010 [19].
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with large n have frequencies which are much greater than N. In this regime, K. ~

(W2 - S12). When we plug in the definition of S, and divide by w, this leads to

Durvall's law [24]:

w R L 2e2 1/2 dr(24

,.t :;22 C

Where L = I + 1 and rt is the inner turning radius defined such that ' =

[27, 161.

Again, for large n and low degree modes, rt is close to the center of the star

(rt = ) : 0), and therefore the second term of the integrand is typically much

small than unity. Using this fact, we can take a second order approximation and find

that:

V4,i = AV(n + + E) + Do (2.5)2

.where e is a constant reltated to the polytropic index of the star. The polytropic index

roughly describes the overall density distribution of the star, although e is particular

sensitive to surface conditions. For a sun-like star, we expectd E - 1.4 and for a fully

convective star (such as a red giant) we expect E ~ 0.7. A more precise definition of

e can be found in Christensen-Dalsgaard & Hernandez (1992) [18].

AV is the large separation and is the inverse of the sound travel time for a wave

to propagate from the surface of the star to the core and back:

AV = 2 = 1
'n,1 - Vn-1, (2.6)

where c(r) is the sound speed and R is the stellar radius. Do is a small correction

related to the age of the star through the small separation 5v, defined as

C5Vn,l = l'n,l -Vn-~1,1+2 (2.7)

Under this second order expansion, Do is defined as N-+,2

A similar expansion can be performed in the limit that w2 < S2, corresponding
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g modes. In contrast to p modes, the period of g modes are asymptotically approxi-

mated by:

li - ]1 (n + e) (2.8)

Here, e is a small correcting constant and ll, is equal to:

II = 27r2 -dr) (2.9)(fr

Using these relations and basic physics, we can relate the asteroseismic observables

with intrinsic properties of the stars. For example, the adiabatic sound speed is the

speed of sound within the star when the equation of state can be described by p oc p7 ,

where p is the pressure and y is the adiabatic index. Assuming the ideal gas law and

the adiabatic approximation hold, the speed of sound c is proportional to /(T), the

average temperature. Using dimensional analysis and Equation 2.6, we see that Av

should scale as I. Pressure can be approximated as the gravitational force of the

star overs its area. Using the ideal gas law and the pressure scaling approximation,

we find that (T) oc MIR. Thus, AV oc (M/R3)1/2 oc y/lF [37]. Scaling to the density

of our sun:
1/2

AV ,iHz (2.10)

Likewise, the frequency of the mode with maximum power (ima) should scale with

the acoustic cutoff frequency of the star (vc). The cutoff frequency is defined by the

dynamical timescale of the atmosphere and scales as c,/H,, where H, is the pressure

scale height of the atmosphere. Frequencies above this cutoff are able to propogate

directly through the stellar atmosphere. Here H, oc T/g, where g is the surface

gravity of the star (GM/R2) [40]. Assuming an adiabatic sound speed, we find that

vmax oc g/V". We can once again scale to the sun :

VM) = g ) T7 ) ~/Hz (2.11)
gU2 5777K

Using Equations 2.10 and 2.11,. we can directly calculate R. and M. from the
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observables Vm and Aw and by plugging in solar properties:

T1/2
R = (7.84 x 10-2) 2*2 RO (2.12a)

M = (2.66 x 10~8) 3  M, (2.12b)

Additional empirical relations have been determined for the expected amplitude ve-

locity of the largest mode (v0,8 ) and the overtone of the maximum-power frequency

(n.) [38, 20]:

Van = L/L9 (23.4 t 1.4) cms~1  (2.13a)
M/Mo

( M/M0  /
nmax ~ 22.6 -) 1.6 (2.13b)

(Teff/5777K)(R/Ro)

Because these relations are so simplistic, they have been used to create "asteroseismic

Hertzsprung-Russell (HR) Diagrams", which typically plot a function of AV, v,,

and effective Temperature. An example can be seen in Figure 2-4. These tools are

becoming increasingly important as the astronomical community begins to streamline

asteroseismic techniques as a method for understanding planets' host stars.

2.4 Theoretical Spectra

Only a fraction of the theoretically infinite number of eigenmodes described can be

excited. For p modes, the natural lower frequency limit comes from the fundamental

radial mode, or the single oscillation between the core and the surface of the star.

The natural upper limit is the aforementioned acoustic cutoff frequency.

Additionally, there exists an intuitive observational bias for lower degree modes

due to the partial cancellation of higher order modes when the observer integrates

radial movement over the full surface of the star. This can be quantified by integrating

the expected RV response (or intensity response) of the star over its solid angle.

Explicitely, the spatial response function for radial velocity is:
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Figure 2-4: Example of an asteroseismic "HR" diagram. Here, a function of effective
Temperature Tff is plotted against a function of Av and metalliciy [Fe/H]. The colored

tracks represent masses ranging from 1.3M 0 (in magenta) to 1.6M®(blue) in steps of

0.1M®. The line types represent different metallicities, shown in the legend. The

tracks beging to overlap in the shaded grey region. Figure taken from Lundkvist et

al. (2014) [43].

S1(RV) = 2-v2+1 2 W(6)PilmI(cos(O)) cos(6)2 sin(O)d9 (2.14)

where PimI (cos(9)) is the mIh order Legendre polynomial which arises from taking

the real part of the spatial harmonics Yi,m. W(9) is a limb-darkening function. The

spatial response function for intensity takes a similar form, dropping a factor of cos(O)

which arises in the RV equations due to the projection in the observer's line of sight:

S1(I) = 2\21 + 1 j W(6)P1mI(cos(9)) cos(O) sin(9)dO (2.15)
S0
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The expected spatial response function is shown in Figure 2-5, which highlights

that modes of degree 1 = 1 are observationally favored for spatially-unresolved stars.

2 4 6
degree (1)

8 10

Figure 2-5: Spatial response functions integrated over a uniformly illuminated disk
for different mode degrees, with m=O. (Note that a change in m corresponds to a
change in the overall orientation of the harmonics. The effect of orientation is shown
in Figure 2-6. The red model shows the response function in photometric data, while
the blue model shows the expected response in RV measurements. The dotted lines
account for limb-darkening of the form W(9) = 1-0.75(1-cos())+0.22(1- cos 2 (6))
[54, 17]. A negative value of the spatial response function indicates that the overall
response is less than the unperturbed reference.

There is an additional observational bias dependent on the star's inclination with

the line of site. The relative power within any given mode for a star with inclination

i is given by [26]:

, ) (1 - Pl)! [pIm(cos(i))I 2
(1 +ml)! L'

(2.16)
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The relative mode power is shown in Figure 2-6 for various degrees and orders.

1.0

0.8

S0.6

0.4-

0.2 .

0.0 10 20 30 40 50 60 70 80 90
Inclination i

Figure 2-6: Mode visibility as a function of stellar inclination angle. Modes vary in
1 and m. Colors signify 1 values of 0 (blue), 1 (red), 2 (green) and 3 (black). Line
styles represent m values of 0 (solid), 1 (dotted), 2 (dashed) and 3 (dot-dashed). [54]

For stars which can be spatially resolved (the Sun), the modes form a "comb" of

frequencies with a Gaussian envelope centers on vmax. The comb consists of alternat-

ing even and odd degree modes spaced by Av/2 (following Equation 2.5), with odd

modes typically of lower power than their even counterparts. The Suns RV spectrum

is shown in Figure 2-7 for reference.

Echelle diagrams are typically used to study these modes. These plot the ra-

dial order or observed frequency against the frequency modulated by Av. Deviation

from the theoretical vertical lines indicates mixed modes or other second-order effects

present. Compared to the sun, the RV spectra of other stars is typically sparse due
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to shorter temporal baselines and the stochastic nature of the modes. An echelle

diagram of the Sun is shown in Figure 2-8

2.5 Constraints on Radius from Interferometric Mea-

surements

A direct measurement of the stellar radius using interferometry in conjunction with

the asteroseismic measurements allows the stellar mass to be constrained with either

a measurement of Av or vm,, rather than both. This allows us to make two, in-

dependent estimates of mass. In general, astronomic interferometry synthesizes the

signals received by several telescopes. Together these telescopes have a large effective

diameter determined by their separation which allows the interferometer to create

high-resolution images.

In the simplest case, a pair of radio telescopes have their voltage outputs multiplied

and averaged, so that (V1V2) = (v) cos(") =-R, where V4 and V2 are proportional

to the electric field produced by an astronomical point source, b is the vector baseline

connecting the two antennas, J is a unit vector along the direction in which both

telescopes point and c is the speed of light. v is proportional to the sources flux

density, S. R is also known as the correlator. This is generalized to an n-array of

telescopes by using pairs of telescopes as baselines.

For an extended source, the correlator can be broken into its cosine (Re) and sine

(R.) components which are calculated by integrating over the source. We define the

visibility as V,(b -8^/A) = Re - IR,. By definition the visibility is normalized such

that V,(O) = 1.

For stars, the visibility as a function of b- S/A can be fit to the Fourier transform

of a uniformly bright disk or the Airy function. This is a function of OUD(b - S/A)

OUD(b/A), where 9 OU is the measured angular diameter of the object:

2J, (7reu*
VA= (2.17)

A
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where J1 is the first order Bessel function.

However, stars experience limb-darkening, a phenomenon in which the edges of

the star appear dimmer due to the lower optical depth. A first-order limb-darkened

disk model is sufficient to correct for this effect [11]:

V = + (1 - ,p) + ps(7r/2) 1/2 J 2( (2.18)

where z = 7rbOLD/A, J.(x) is the nlh order Bessel function and OLD is the angular

diameter corrected for limb-darkening. t\ is the limb-darkening coefficient dependent

on stellar parameters.
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asteroseismic observables, as well as the3 aegree classification for a selection of the
models. Figure taken from Aerts et al. (2010) [2].
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Chapter 3

CHIRON Radial Velocity

Measurements

3.1 Target Selection

HD 82074 (a = 090 29' 32".41,6 = -04* 14' 47".88, J2000) is a yellow G6 subgiant

located in the constellation Hydra [59]. It has an apparent V magnitude of 6.26

and a distance of 56 2 parsecs. We selected HD 82074 from a collection of nearby

subgiants which have been previously observed and analyzed spectroscopically by our

team. This will allow us to directly compare the results of the spectroscopic modeling

and the asteroseismic results. Within this dataset, we select a subgiant which is visible

from Cero Tololo within the spring observational period. We additionally choose a

star which has an expected oscillatory signal (~ 2.2 m/s for HD 82074) which is

larger than the instrumental limitations (-, 1.5 m/s). Additionally, the star must be

relatively bright both to achieve a high signal to noise ratio (SNR) and to keep the

duty cycle relatively short. HD 82074 has a predicted vi' ~ 200pHz from spectral

analysis (see below), corresponding to an oscillatory period of ~ 85 minutes. With

an apparent V magnitude of ~,6.3, we expect the integration time around 13 minutes,

or around 15% of the predicted period.

HD 82074 was previously analyzed using the Spectroscopy Made Easy (SME) soft-

ware [56]. SME generates synthetic spectra by simulating radiative transfer through
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the atmosphere of a star using Kurucz models and atomic line data available from the

Vienna Atomic Line Database [46, 58]. SME is able to vary abundances, temperature,

surface gravity, oscillator strengths, rotational velocity and micro/macro-turbulence

within the star. Typically, the effective temperature, luminosity and metallicity are

inputted parameters. The observed spectra are matched to the synthetic spectra

and best parameters are found using a Levenberg-Marquardt minimization [53, 58].

The models produced by SME can be used to create a grid of evolutionary models,

which are interpolated to estimate uncertainties in stellar properties (as discussed in

Chapter 2) [30].

From this analysis, it is predicted to have a mass of 0.93 0.6 Meand a radius of

3.94 0.13RO. With these parameters, we estimate a period of 83.3 minutes and am-

plitude of ~2.16 m/s a frequency spacing of ~ 16.65ptHz using Equations 2.12a, 2.12b.

3.2 Observational Strategy

To devise an efficient observing strategy, we model the expected RV source and sim-

ulate our ability to accurately predict the stellar parameters. We generate a comb of

frequencies spaced by Av/2 with a broad Gaussian envelope, as shown in Figure 3-1.

Because the excitation of modes is a stochastic process, we allow each frequency mode

to be produced by a discrete string of excitations which have an e-folding time of ~3

days. (An example of the process is shown in Figure 3-2). The true mode lifetime of

subgiants is highly uncertain, ranging from 3-7 days [14]; we choose the lower bound

of this range as a precaution. The amplitude and lifetime of each mode is selected

randomly from Gaussian distributions centered on their expected values.

We compare the results of our model with RV data taken of HD 142091 with

the HIRES spectrometer on Keck, using the same cadence and temporal baseline.

HD 142091 is a known subgiant host star of an exoplanet with an orbital period of

1251 15 days and m, sin i=1.6 Jupiter masses [51, 35]. With the orbital solution

removed, the subgiant exhibits oscillations characteristic of asteroseismology, with an

amplitude of a few meters per second and a period of --1 hour. Although the baseline
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Figure 3-1: Sample of the Gaussian envelop of frequencies used to generate the sim-
ulated stellar oscillations. Solar parameters were used to generate this figure.

for this observation is too short to measure any asteroseismic parameters, we are able

to successfully recreate datasets with similar amplitudes and frequencies using our

model. Figure 3-3 shows a sample data set compared to the HIRES data.

We adjust the cadence for the expected integration time (~ 12 min for a SNR of

100) and the expected error from the CHIRON instrument (~ 1.5 m/s) in the form

of Gaussian noise. We vary total days observed, hours observed per night and the

temporal gap size between nights of observation.

We find that ~ 8 days is sufficient to recover Av for a subgiant to within 10%,

given a minimum of ~ 4 hours of observation per night. The results for a simulation of

HD 142091 is shown in Figure 3-4. We follow these general guidelines when requesting

observational time.
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Figure 3-2: Sample of a mode excitation for an average mode lifetime of 1 day and

average amplitude of 1 m/s. Note that each simulation uses tens of modes to fully

simulate the asteroseismic signal, but only one such mode is shown in this Figure.

Each excitation has a decay time and lifetime (time until which the next mode is

excited) chosen from a Gaussian distribution centered on 1 days and 3 days (or 3

e-folding times). The amplitude of each excitation is chosen from a Gaussian distri-

bution which is centered on the expected value from the comb of frequencies, such

as those shown in Figure 3-1. Each distribution has a width of half its central value.

The period of the oscillation is one hour. The inset, circular window is a zoom-in of

the outlined region.

3.3 CHIRON Observations

We observed HD 82074 on the 1.5m telescope at CTIO in Chile. CHIRON is a

highly stable cross-dispersed, fiber-fed echelle spectrometer which has demonstrated

1 m/s precision in RV spectroscopy. This accuracy is obtained using an iodine-cell

calibration method [12, 34]. In this technique, starlight is sent directly through an

iodine absorption cell in the spectrometer entrance slit. The cell provides hundreds of

lines which can be used as calibrations for RV measurements, and each line encodes

the intrinsic spectrometer point spread function (PSF). The PSF model is created

by observing a nearby, rapidly rotating B star. These stars are essentially featureless

blackbodies which imprint no additional lines on the iodine template. To recover RV
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Figure 3-3: Comparison of real RV data and simulated data. The left panel is data

taken from the Keck telescope of HD 142091 (blue) with a fit of multiple sine waves

(green). The right panel shows simulated RV data using the same temporal baseline

and sampling for a star with similar properties to HD 142091. Twelve modes are

activated in this model, which were generated using M. = 1.8M®, R, = 4.71R® and

L* = 12.3LE, the parameters found using SME fitting in Johnson et al. (2008).

measurements, method works as follows: A deconvolved stellar template is taken of

the target with a higher SNR and resolution than other observations but without the

iodine cell in place. The theoretical iodine template is then multiplied by this stellar

template and the product is convolved with the PSF. This spectrum is then used as

a template for other observations. The radial velocities are extracted by comparing

observed spectra to synthetic spectral models which allow for the wavelength scale,

spectrometer PSF and Doppler shift to act as free parameters . For HD82074, we use

HR 4172 as our calibration B star.

We observed in the wide slit mode (R=80,000-90,000 in the optical) from Feb. 12,

2014 to Feb 28, 2014 for a total of 8 nights. We measured for ~ 3.5 hours each night.

The calibrated data is shown below.
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Figure 3-4: Histogram of 1000 simulated RV light curves on an 8 day baseline with 4
hours of observation per night. The input star has a properties matching HD 142091
with added Gaussian noise on the order of 15%. The derived mass distribution has a
mean of 1.8Mewith standard deviation of 0.19MD.
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lines are spaced by 83 minutes, the expected maximum-amplitude period for stellar
mass and radius estimated using SME.
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Chapter 4

CHARA Interferometric

Observations and Results

4.1 CLASSIC Observations

We use the CHARA array on Mt. Wilson, California to directly measure the radius of

HD 82074 given the parallax of 17.97 0.50 microarcseconds [59]. This measurement

will allow us to tightly constrain the asteroseismic data, and thus the mass of the

star. The CHARA array is an interferometric array of six telescopes, each with a

1-meter diameter. The array is capable of ~,200 microarcsecond resolution.

We use CHARA in the CLASSIC observational mode which uses two telescopes

within the array. We observed in the H-band which has an effective wavelength of

1.673 microns. The data were taken between March 3, 2014 and April 21, 2014. The

data is shown in Table 4.1. Calibrators with known angular diameters were selected

from the JMMC Stellar Catalogue and used to estimate visibility errors [39].

We model HD 82074 using the limb-darkened disk model (Equation 2.18). We use

the effective wavelength of CHARA's H-band filter for A. The linear limb-darkening

coefficient (px) is determined by interpolating the ATLAS model grid by Claret &

Bloeman (2011) to the spectroscopic estimates of Teff = 4996 44K, log g = 3.22

0.06 dex and [Fe/H] = -0.43 0.3 dex. We note that our surface gravity, log g, is one

of the uncertain parameters derived from SME. We therefore calculate limb-darkening
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Table 4.1. Summary of CHARA Observations

MJD Baseline [m] Visibility Error Calibrators

56730.182 305.09 0.6336 0.0569 HD 82043, HD 86694
56730.197 310.6 0.6423 0.0211 HD 82043, HD 86694
56730.211 313.04 0.6296 0.0556 HD 82043, HD 86694
56737.186 312.16 0.6661 0.0384 HD 82043, HD 86694
56737.196 313.41 0.6549 0.0379 HD 82043, HD 86694
56768.234 249.08 0.7279 0.0264 HD 82043, HD 86694
56768.265 247.93 0.759 0.0508 HD 82043, HD 86694

coefficients for log g ranging from 2.5 to 4 dex. This corresponds to a ~ 80% error in

the calculated surface gravity, which could arise from an 80% error in mass or 50%

error in radius. Within this range (and the range of [Fe/H]'s uncertainty), the value

of A, ranges from 0.3364 to 0.3406 in the ATLAS model. This change in i, has no

discernable effect on the model. We adopt p\ = 0.3385, the average, for our analysis.

We use a Levenberg-Marquardt minimization algorithm to minimize the X2 value

of our fits to both a uniform disk model and a limb-darkened model for our seven data

points. Each model has one degree of freedom. We find that 0UD = 0.641 0.007 mas

and OLD = 0.662 t 0.007 mas. The uniform-disk model and limb-darkened model fits

have X2 values of 2.20 and 2.17, respectively. They are shown in Figure 4-1. Using

this angular diameter and a parallax of 17.97 0.50 mas, we calculate a solar radius

of 3.96 0.12R.
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Figure 4-1: CHARA interferometric measurements and best fit models. The blue
solid line indicates the best-fit, limb-darkened model. The blue dashed lines show the
1-a- uncertainties. The best-fit uniform-disk model is also overlayed in green, but is
not distinguishable from the limb-darkened models.

51



52



Chapter 5

Analysis

5.1 Significance Spectra

To analyze the RV time series we make use of the SigSpec algorithm [481. SigSpec,

short for "Significance Spectrum", is a statistical technique used to analyze noisy

and unevenly sampled data. SigSpec is an extension of Lomb-Scargle least-squares

spectral analysis method (LSSA). LSSA (and Sigspec) modifies the discrete Fourier

transform by introducing artificial time gaps to shift observations to equally-sampled

times. SigSpec additionally calculates the likelihood that the amplitude of the ob-

served signal could be obtained if the data were noise. This likelihood is given as the

measurement sig:

RA2 log(e)sig(A) 4(V 2) sock (5.1)

where A is the calculated amplitude of the angular frequency (w), R is the number

of pairs (t,, v,) in the time series, (v2) is the variance of the RVs, and sock is defined

as the function:

sock(w, 0) = + 0) sin2 (5.2)

Here, ao, #o and 90 define the sampling profile:
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R-1 R-1
R E sin(2wtr) - 2( E cos(wt,))

tan(20) = r=O (5.3)
E sin(wt,))
r=O

C,2 2 R-1 R-1 2

r=0 r=O
r-1 R-1

2= R Esin2(wtr - 0) - (Z sin(wt,. - 0)) (5.5)
r--O r %P

The sock function is analogous to the spectral window used in DFT analysis.

The spectral window is used to determine the effects of the time series sampling on

the spectrum by taking the DFT of a constant series with the same time domain.

Terrestrial data often suffers for daily gaps, which are seen in the spectral window as

peaks at integer multiples of ld-1 . Similarly, the sock function acts as weights for

sig measurement in order to take into account the influence of the temporal sampling

on the significance spectrum.

SigSpec iteratively removes the highest peak in the spectrum and checks its sta-

tistical significance. A cutoff sig limit of 3 (corresponding to a quoted ' chance

in finding that frequency from white noise) is chosen when generating the reduced

significance spectra. A weighting of 1/oi is used for the associated measurements.

The discrete Fourier transform of the 8 nights of data and the significance spectrum

are plotted in figure 5-1.

We compare our power spectrum to noise by randomly rearranging the RV mea-

surements and errors of the RV observations made with CHIRON while preserving

the time sampling. For 1260 trials, we find that the median, maximum sig detected is

2.85. The distribution is skewed towards larger sig values. We find that nearly every

simulation has a maximum sig detection of at least 2, while 44% have a maximum

sig detection of 3, our cutoff sig value. The distribution is shown in Figure 5-2. The

minimum sig value from our dataset that we consider in our analysis is 3.05, which

lies in the 6 0 th percentile of the distribution. If we assume that our calculated distri-
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Figure 5-1: DFT Power spectrum of radial velocity measurements (top panel, second

panel), its corresponding SigSpec spectrum (third panel) and the observational win-

dow function (bottom panel). In the SigSpec spectrum, blue lines indicate frequencies

with sig > 3.. The red lines correspond to frequencies with sig > 2. The second
panel shows the DFT power spectrum smoothing using a Hanning window of length

23[LHz. The lower frequencies may be attributed to correlated noise or low-frequency
stellar noise. There is a clear excess of power between 200pHz and 375pHz.

bution of trials is the true probability distribution of sigs from SigSpec, we find that

each of our measurements have at most a 40% chance of arising from white noise. We

explicitly state the measured frequencies, sig values and calculated probabilities of

that each frequency arises from white noise in Table 5.1. Additionally, noise typically

produces far fewer peaks with sig 2.0 than the power spectrum produced by our

dataset (~ 3 or fewer versus ~ 7). An example periodogram of noise is shown in

Figure 5-3 for comparison. 203, 257, 260, 287 and 362
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Table 5.1. Measured Significant Frequencies

Frequency [pHz] sig P(noise)

203 3.39 0.22
257 3.22 0.30
260 3.56 0.16
287 3.48 0.19
362 3.05 0.38

*
* ml
* Eu

EmsI Ii ~..L

-J .. ff

Si9

5

Figure 5-2: Distribution of sig values for 1260 simulations of
line indicated the median value of 2.85. (The mean value of
Red lines indicate calculated sig values from our dataset.

noise. The blue, dotted
the distribution is 2.9).

5.2 Determining vmax

Because the modes are excited stochastically, it is very difficult to accurately measure

1max without a long temporal baseline. The amplitude of each mode varies around an

average amplitude with each excitation. The baseline should be longer than several

mode lifetimes in order to these averages of each mode. For shorter baselines, the

theoretical Gaussian comb of frequencies in the RV power spectrum (described in

Chapter II) is generally not seen, leading to large uncertainties in vma.

The significant detections in Figure 5-1 at low frequencies < 50pHz either corre-

spond to temporally correlated error in the CHIRON measurements or granulation of
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Figure 5-3: DFT Power spectrum of shuffled radial velocity measurements (top panel,
second panel), its corresponding SigSpec spectrum (third panel) to simulate non-
periodic noise. The same temporal cadence and baseline is used. The red lines
correspond to frequencies with sig > 2. There were no frequencies detected with
sig > 3. The second panel shows the DFT power spectrum smoothing using a
Hanning window of length 23pHz.

the star and is therefore unlikely to be due to an asteroseismic signal [48]. Assuming

the radius measured by CHARA, the detected signal at ~ 566IHz would correspond

to a mass of 2.7MD, which is well above the mass predicted through spectroscopy

(M. = 0.93 t 0.06). It is therefore most likely that the maximum frequency (vmax)

lies within the excess power seen between 150[tHz and 400pHz. We detect five signifi-
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cant peaks in the power spectrum between 150yHz and 400pHz, at 203, 257, 260, 287

and 362 psHz. The weighted average of these frequencies (taking the significance val-

ues to be weights), the average frequency is 239pHz. We take the range of significant

frequencies found as the error on our maximum frequency. Using v. = 239+ UpHz

and Equation 2.12a:

vT1/2
R = (7.84 x 1 0 - 2 ) max ef R (5.6)

and the measured radius of HD 82074 using CHARA (3.96R1), this corresponds to

a mass estimate of 1.14+.M0 .

5.3 Determining Av

The autocorrelation of the discrete Fourier transform of the RV data (shown in Fig-

ure 5-4 shows no sign of excess power in the expected frequency range, apart from

daily aliasing at multiples of 11.57pHz, indicated that there is no clear detection of

To measure AV, we instead make use of the echelle diagram. Using equation 2.5,

we match the observations with expected vn, and fit parameters AV and e. We take

the small separation, 6v, to be 0.08Av based on Figure 5-5.

We use a Markov Chain Monte Carlo to fit the most significant frequencies (sig >

3.0) to the second-order model describes in Chapter IL This model simply consists of

four vertical lines in the echelle diagram, representing degrees of 0 to 3. Because we

have chosen 5v = 0.08Av, we reduced the degrees of the model to two: AV and e. AV

determines the distance between the vertical lines, while e determines the horizontal

overall shift. Therefore, we aim to maximize the likelihood:

n n

= --0.5 , - log (27r(o,2+ s2)) (5.7)
i=1 1=1
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Figure 5-4: Normalized autocorrelation of the DFT. Dotted lines indicate the ex-
pected daily aliasing frequencies.

where,

2 min [(n+ j+.I +,vi)2 _ ,2
2i +s2 o +s2 (5.8)

Here vi is the ith observed, significant frequency with associated error oi 1.14

where 1.14 is the theoretical frequency resolution (in pHz) defined by the reciprocal of

the total temporal baseline. s is an additional term to account for addition uncertainty

in the frequencies not account by o-. We allow n to vary from 0 to 40 and I to vary

from 0 to 3 in the calculation of the predicted frequency. We minimize the difference

between the predicted and observed frequency in our calculation of X2 .

We use the stellar radius measured from the interferometric data as a prior by
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Figure 5-5: Diagram of Av vs the ratio of 5zv to Av. Solid lines show tracks for stars
with metallicity Z0=0.017, while dotted lines show tracks with metallicity Zo=0.011
and dashed lines show tracks with metallicity Zo= 0.028. Subgiants occupy the region
outlined in the red box.

checking the self-consistency of the model. For each step of the MCMC, we test a

new pair (Ai, ei). We use Av's, the measured radius and Equation 2.12a to calculate

a theoretical mass. Using the theoretical mass predicted from Av-, the measured

radius, the SME temperature and Equation 2.13 we can calculate a theoretical 1 max,th

. Realistically, Vmax,th should occur for an 0 th degree mode (1 = 0). Again using

Equation 2.5 and our pair (Avi, ei), we choose the p mode defined by v(rt, 0)~ which

minimizes IVmax,th - v(n, 0)1. We therefore establish the prior:

xp ( (imax,th - v(n, 0)s8 t) 2 )(9

0.0p- (5.9)/ 433

HDII120

Where oi is the uncertainty in Vmax,th propagated from the error of the radius mea-

surement.
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We run the MCMC for 500 iterations, with each iteration taking 500 steps through

parameter space. We eliminate the first 50 steps of each trajectory to account for

burn-in and average the final steps. Initial conditions are set broadly, with 0.7 < c _

2.0 and 15.5 < Av < 25.0. The range of e covers the entire physical range expected

in most stars. The range for Av covers a mass range of 0.81Meto 2.1ME, given a

radius of 3.96RO.

We find that = 18.73+01Az and e = 1.101U. Note that these error bars do

not include possible systematic errors. The scatter term, s is equal to 0.7-. Using

Equation 2.10, this corresponds to a stellar density of 0.139 0.001po. The best fit

has a X2 ~ 2.49, with two degrees of freedom (A,, and e) and 5 data points. This

corresponds to a reduced X2 = 0.83. The echelle diagram is shown in Figure 5-7, and

the posterior distribution of the parameters is shown in Figure 5-8.

We check if this is a spurious result by generating five random "peak" frequen-

cies between 200 pAHz and 370 pHz (approximately the range in which we find peak

frequencies) and fitting the noise to the same model. We assign each peak with a

sig = 3, the cutoff power in our study. Because the uncertainty of each frequency

goes as 1/sig, this low sig value gives each peak maximal uncertainty. We run 280

iterations of the 500-walker MCMC on the noise. The distribution of X2 values for

the best-fit solutions is shown in Figure 5-6. We find that the average, reduced X2 for

the best-fit solution (the maximum in the posterior distribution) is ~ 17, compared

to our reduced X2 value of 0.83 from the data. We additionally find that 18 of the 280

(6.4%) have a X2 < 2. Additionally, we find no iterations in which the best solution

has X2 < 2. and converges to a unique solutions (>50 MCMC walkers land within

1pHz of one another). Based on these results, we set an upper probability limit of

0.064 of finding a solution with reduced X2 < 2 if our result were due solely to noise.
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Figure 5-6: Distribution of reduced X2 values for the best-fit solutions to the echelle-
diagram model derived from 500 MCMC iterations using noise. The blue bars rep-
resent the distribution of X2 values for the iterations which have a unique solution
(>50 MCMC walkers land within 1pHz of one another). The red line indicates the
reduced X2 of our fit to the dataset.
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Figure 5-7: Echelle diagram for HD 82074 using Av f- 18.73. Observed frequencies
are shown in blue and the expected model is shown in red. Degree modes are indicated
near the top of the panel. Error bars represent the theoretical resolution given the
observational baseline divided by the squareroot of the significance.The reduced x 2

of the fit is ~0.83
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Figure 5-8: Posterior distributions for Av and e for 500 simulations. In the posterior
distribution for Av, the solution between 18 and 19ptHz contains - 65% of the walkers,
while the remainder is scattering between 21.5 and 25pHz.
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Chapter 6

Results

We have observed solar-like oscillations in the subgiant HD 82074 and measured its

radius interferometrically. We find that the radius (3.96 0.12Rto) is in excellent

agreement with the radius predicted using SME (3.95 0.13RG). Using Av, v,. and

the radius, we apply Equations 2.12a and 2.12b to obtain mass estimates of 1.20 0.11

Moand 1.14+-59 MO, respectively. The weighted average of these solutions is 1.19MO;

however, due to the large uncertainty on the v. estimate, we take the mass to be

1.20 0.11ME. This estimate is more massive than the value suggested by spectral

analysis (0.93 .06MG) by 2.45-o-. We summarize these results in Table 6.1.

We note that systematic uncertainties within our analysis have not been fully

studied. Improvements can be made on eliminating excess background noise which

may result in low-frequency granulation-changes of the star or instrumental errors.

Such noise may bias significant detections to lower frequencies. Low-number statistics

Table 6.1. HD 82074 Parameters

SME Value Asteroseismic Value

Mass (Mo) 0.93 0.06 1.20 + 0.11
Radius (R) 3.95 0.13 3.96 0.12

Az'(pHz) 18.74+0.14
vmaz(AHz) 239 40

1.1+04
Teff (K) 4996 44
L (LO) 8.64 0.62
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and spurious detections may also plague our dataset. We found that our lowest-

significant detection lies in the 60% percentile of a noisy sig distribution, implying

that it may have risen from noise. However, the agreement of the independent mass

estimates determined from Av and vm, seems unlikely to occur if our significant

frequency detections are simply noise.

Additionally, the simplistic vertical-line echelle diagram model, while appropri-

ate for the small number of data points, may be too simplistic to fully describe the

frequency separation. In particular, subgiants are know to experience "avoided cross-

ings" in I = 1 modes. This causes significant scatter around the I = 1 and I = 3 node

lines in the echelle diagram. We would also greatly benefit from more RV data for

both better resolution and the possibility of more significant frequencies. We have

one additional night of CHIRON time scheduled, and additional PAVO CHARA data

to be incorporated into this study.

The discrepancy we find in the mass estimates of HD 82074 made using SME and

asteroseismology suggests that stellar models may underestimate their uncertainty

or underestimate the mass of low-metallicity, low-density stars. A larger population

of subgiants with properties similar to HD 82074 is necessary to further test the

limitations of spectroscopy-based models.

HD 82074 adds to the growing population of asteroseismically studied subgiants

with one of the lowest metallicities and densities. Its placement on an "HR diagram"

of asteroseismology is shown in Figure 6-1. It serves as an important pivot point in

grounding stellar models in the evolved branches of the HR diagram.
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Figure 6-1: "Asteroseismology HR Diagram" from White et al. (2011) showing Av
against c. HD 82074 is shown with a large green diamond. The region of the diagram
containing other subgiant stars is highlighted in yellow. Note that the subgiants have
evolved off the main sequence, beyond the plotted tracks in this diagram [61].
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