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Abstract

In this thesis, I developed code in the MEEP finite-difference time domain classical
electromagnetic solver to simulate the quantum phenomenon of spontaneous emission
and its enhancement by a photonic crystal. The results of these simulations were fa-
vorably cross-checked with semianalytical predictions and experimental results. This
code was further extended to simulate spontaneous emission from the top half of a
sphere, where the top half is a dielectric material and the bottom half is a metal, in
order to determine how effective the metal is at reflecting the emission toward the
top. Separately, I used the SCUFF-EM boundary element method classical electro-
magnetic solver to simulate absorption and scattering, together called extinction, of
infrared light from nanoparticles, and used those results to optimize the nanoparticle
shapes and sizes for extinction at the desired infrared wavelength.
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Chapter 1

Maxwell's Equations and

Computational Methods

1.1 Maxwell's Equations and Solvable Systems

The evolution and propagation of light is governed by Maxwell's equations, which in

a general medium can be written as

V-D=pf (1.1)

V B =0 (1.2)

1B
V x E = O(1.3)

C at

V x H = Jf + D) (1.4)

where Lorentz-Heaviside units have been employed to allow the electric flux density

D, magnetic flux density B, electric field E, and magnetic field H to all have the same

units. A further consequency of this choice of units is that the vacuum permittivity

and permeability are set to unity: EO = yo = 1. Maxwell's equations can be used in

15



conjunction with the constitutive relations

D =E E (1.5)

B = p -H (1.6)

to provide a full theory of electrodynamics in a material medium. In general, E and

p may be functions of position x (inhomogeneity) or frequency w (dispersion), in

which case the constitutive relations hold at every individual position and frequency.

Additionally, c and jy may be complex, where the imaginary part is indicative of losses

in the system. Finally, anisotropies may make c and yL into two-index tensors, and

nonlinearities may make e and 1L depend explicitly on the fields E and H, though for

the rest of this thesis, anisotropic and nonlinear materials will both be neglected. In

principle, given sources pf and Jf and boundary conditions on the fields, it should be

possible to turn the crank of Maxwell's equations to show how all the fields evolve in

space and time. There are two examples of this to motivate the rest of this thesis.

The first example is of a general photonic crystal. Much of this material is adapted

from [8] with some further assumptions to better reflect the systems being considered

here. It is convenient to assume that there are no free charge or current sources in

the spatial region of interest, that L = 1 for every position and frequency, and that

e is real & positive to ignore losses for the moment (though the assumption about E

can be relaxed without much added difficulty). With those assumptions in mind, and

only considering a monochromatic wave so that only the dependence of E on position

is relevant (but without making further assumptions at the moment regarding how E

varies with position), then Maxwell's equations become

V- (E(r)E(r, t)) = 0 (1.7)

V H(r, t) = 0 (1.8)

1&H(r t)(19
V x E(r, t) = ' (1.9)

V x H(r,t) - E(r) aE(rt) (1.10)
C at

16



under these conditions. The reason why only the spatial dependence and not the

dispersion relation of E needs to be considered is because only a monochromatic wave

(constant w) is being considered. That is because any function can be written as a

superposition
1 0

X(r, t) = X(r, w)e-iwt dw (1.11)

so picking out a particular frequency w simply means that

X(r, t) = X(r)e-i'wt (1.12)

for these electromagnetic fields X E {E, H} (where the factor of (27r)-2 has been

absorbed into the spatial dependence of the vector field).

Once that has all been done, these fields can be plugged into Maxwell's equations,

yielding

V - (E(r)E(r)) = 0 (1.13)

V - H(r) = 0 (1.14)

as the transversality conditions, and

V x E(r) = "'H(r) (1.15)
C

V -H(r) = -- E(r)E(r) (1.16)
C

as the results of the dynamical equations. Eliminating E(r) from these conditions

yields a general eigenvalue equation

V x (e- 1 (r)V x H(r)) = H(r) (1.17)

which is the master equation for the magnetic field in a general configuration of media

determined by the position-dependent E(r). The operator

V x (E- 1 (r)Vx)

17



can be shown to be Hermitian, so the eigenvalues ()2 are real, and can further be

shown to be nonnegative because c is positive throughout space.'

If E is chosen to be a periodic function of position - that is, if E(r + R) = 6(r)

for a countably infinite set of translation vectors R that are linear superpositions of

lattice basis vectors - then the linear operator

V x (c'(r)Vx)

is also periodic with the same periodicity in space. By Bloch's theorem, this means

that the magnetic field eigenfunctions can be written as

Hk(r) = eik-ruk(r) (1.18)

where k is a wavevector lying within the irreducible Brillouin zone (henceforth called

simply the Brillouin zone for brevity) of the reciprocal to the lattice defining E(r).

Moreover, uk(r) is a vector function that is periodic in position in the same way that

e(r) is, meaning that uk(r + R) = uk(r) for the same countably infinite set of R as

before. Such a system is called a photonic crystal, because the dielectric function

repeats itself in space according to a crystal lattice structure. A key feature of the

photonic crystal is the existence of a photonic band gap, in analogy with the electronic

bandgap in a semiconductor crystal. This analogy can be taken further in the specific

case of a simple 1-dimensional photonic crystal, where the dielectric function is an

alternating layering of two different materials. If the layers were in fact the same

material so the dielectric slab was uniform, there would be continuous translational

symmetry, and all frequencies would be accessible for all wavevectors as there would

be no Brillouin zone. However, introducing a discrete translational symmetry breaks

the continuous translational symmetry and shrinks the set of states to lie within

the Brillouin zone; the frequency bands as functions of k must fold upon themselves

'The inverse dielectric E-1 is the reciprocal of c, or if there are anisotropies, the inverse matrix of
; it is not the mathematical inverse function of E(r, w) (which is impossible for a function of multiple

arguments anyway).

18



to fit in this zone, and introducing the discrete translational symmetry causes gaps

to emerge between different bands. No electromagnetic field states (wavevectors k,

without considering polarization for the moment) may exist for frequencies in those

gaps. The existence of photonic band gaps has been a relatively recent discovery

showing the novel ways that electromagnetic waves can be manipulated, and has

led to other discoveries such as enhancement of absorption or reflection at certain

wavelengths, and as will be discussed in this thesis, enhancement of spontaneous

emission.

The second example of an exactly solvable system is electromagnetic scattering

from a dielectric sphere of radius a and dielectric constant E sitting in a vacuum.

Here it is assumed that E is homogeneous within the sphere, though it may be lossy

(and the dispersion relation is ignored by considering only monochromatic fields).

This derivation is adapted from [3] where the only further assumption that has been

made is that yi = 1, which is reflective of the materials that will be considered later

in this thesis as well. For time-harmonic electromagnetic fields with no free charges

or currents, Maxwell's equations read

V E(r) = 0 (1.19)

V H(r) = 0 (1.20)

V x E(r) = -W H(r) (1.21)
C

V x H(r) = - iw E(r) (1.22)

where c(r) is a step function changing between the desired homogeneous E inside the

sphere and 1 outside the sphere (which is the surrounding vacuum). These equations

combine to give the Helmholtz equations V 2X(r) + k 2X(r) = 0 for X E {E, H}
2=w 2 c(r)where k2 = ' . It turns out that the general vectors M(r) = V x (rO(r)) and

N(r) = }V x M(r) can act as electromagnetic fields as well, provided that 4 also

satisfies the Helmholtz equation V2 40(r) + k2 0 (r) = 0. It can be shown that the even

19



solutions ('e') and odd solutions ('o') for 0 can be written as

Oemn(r) = zn(kr)Pmn(COS(9)) cos(m0) (1.23)

omn(r) = zn(kr)Pmn(cos(0)) sin(mp) (1.24)

where zn is a spherical Bessel function (in or yn, or the linear combinations yielding the

spherical Hankel functions h or h$) of order n and Pmn is an associated Legendre

function of order (m, n). For the remainder of this derivation, the argument r will be

made implicit for brevity. Here, m and n are both integers satisfying m > 0 and n >

m. The spherical Bessel functions, associated Legendre functions, and trigonometric

functions each satisfy completeness and orthogonality relations; these should be true

because the Helmholtz equation is an eigenvalue equation for the Hermitian operator

-V 2 , and every Hermitian operator has a complete & orthonormal eigenbasis along

with real eigenvalues. In terms of these, the definitions of the vector normal modes

of the sphere Memn, Mom, Nemn, and Nomn follow from the relations of M to 0 and

of N to M.

In terms of these, it can be shown that an incident plane wave electric field

Einc = Eoeikrcos(O)ex (1.25)

can be expanded in terms of vector normal modes of the sphere as

Einc =O E 0 in 2n + 1 (1) -iN(1 (1.26)
n1 n(n + 1) oin em)

where the superscript (1) indicates use of j rather than any of the other spherical

Bessel function types (yn, hn , or hn)). The boundary conditions are that the tangen-

tial components of E and H must be continuous across the boundary of the sphere,

where the total fields outside are the sums of incident and scattered fields. Enforcing

20



these boundary conditions means that the scattered electric field is

Esca = E0 Z 2n + 1 ianN(j - bn (1.27)
n= n(n + 1) \ l b

where the superscript (3) indicates use of the particular Hankel function h$l, with

Hsca found according to V x E = ikH. By further enforcing the boundary conditions

and orthogonality relations, the scattering coefficients an and bn can finally be written

in terms of the Riccati-Bessel functions

On(X) = Xjn(X) (1.28)

-n(x) = xh()(x) (1.29)

(where the letter # has been used instead of b to avoid confusion with Vemn and '0mn

from above) as

mcn (mx)#O'(x) - #n (x)#' (mx)
an = n(1.30)

m#n(mX)$' (x) - n(x)#'n(mx)

a=O(mx)#'n(x) - mq3 (x)#'n(mX) (1.31)
On(TX) n ()- M~n (X)q$'n(MX)

where here x = ka is the product of the sphere radius with the wavenumber in

the vacuum, m is (possibly complex) sphere index of refraction, and primes denote

derivatives evaluated at the specified argument.

Only very special cases of these systems, such as modes of a one-dimensional

lossless photonic crystal, or scattering from a homogeneous dielectric sphere, can be

described analytically. Otherwise, in general, computational methods are needed.

Two of them in particular are described below.

1.2 MEEP

The MIT Electromagnetic Equation Propagation software (MEEP) is one of many

computational electromagnetic solvers available, as detailed in [11]. It is a finite-
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difference time domain (FDTD) algorithm, which means that it discretizes space and

time into a lattice, sets up the sources and boundary conditions, and discretely evolves

the fields in space and time through Maxwell's equations. In particular, an FDTD

approach discretizes space into a lattice spaced by the resolution a and time into steps

r as well, so that derivatives in space

O(x, y, z, t) v(x + a, y, z, t) - v(x - a, y, z, t)
9X 2a

and in time
av(x, y, z, t) v(x, y, z, t + r) - v(x, y, z, t- -)

at 2r

are finite differences for any quantity v. This way, the differential Maxwell equations

become difference equations, which can be solved given boundary conditions in space

and time through recursion. The particular boundaries may include sources, initial

field profiles, computational cell boundaries such as metallic walls, or dielectrics within

the computational cell.

There are three small subtleties to be addressed with regard to the discretization

of space and time. The first is that MEEP discretizes time in much the same way

that it discretizes space. Because it sets c = 1 (as further discussed below), space and

time are considered to be of the same units, so the time resolution is simply related

to the spatial resolution by a constant prefactor. This is called the Courant factor,

and all calculations used in this thesis set the Courant factor to } so that the number

of time steps in a MEEP time unit is twice the number of spatial steps in a MEEP

length unit.

The second is that MEEP uses a Yee lattice. In 3 dimensions, space is discretized

into cubes called voxels centered on a point in the discrete computational lattice and

with side length equal to the inverse of the spatial resolution (e.g. if the resolution

is set to 10; so that there are 10 spatial steps in one MEEP length unit, then the

side length of the voxel is ). Ordinarily, the fields might all be computed at center

of the voxel. In MEEP, however, the electric field E and electric flux density D

are both computed at the centers of the edges of the voxel, while the magnetic field
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H and magnetic flux density B are both computed at the centers of square faces

of the voxel. For one, this means that if the fields at a certain point are desired,

interpolation must be carried out to account for the separation of the edges from

each other or the faces from each other. For another, if derived quantities such as

the Poynting flux S = Re(E x H*) (when complex fields are used, and when c = 1)

are desired, further interpolation must be done to account for the half-voxel offset

between the edge centers and the face centers. The subtlety about the Courant factor

as well as this subtlety are both very technical points, as the implications of the

Courant factor and Yee lattice are not directly used, so they are never dealt with

again in this thesis.

Regarding the last part, the third subtlety is that MEEP generally interpolates

everywhere. One immediate consequences of this are that if point sources are desired

but the point of interest does not directly lie on the discrete computational lattice,

MEEP will put sources at the nearest lattice points to the desired point and weight

the resulting sources by the distances of those lattice points from the desired point.

Another is that MEEP performs subpixel averaging of the dielectric function by de-

fault, so sharp cutoffs or transitions in the the dielectric function from one region to

another are smoothened. This subpixel averaging of the dielectric function is observed

in the work done in this thesis, but generally does not pose problems per se.

Maxwell's equations are scale-invariant, meaning that multiplying the length and

time scales by the same constant factor yields the same frequency eigenvalues and

magnetic field eigenfunctions of the master equation 1.17 provided that the dielectric

function is appropriately rescaled as well. For simpletphotonic crystals, this rescaling

of the dielectric function may be the same constant factor at all positions, while for

more complicated structures, the dielectric function may need to be rescaled differ-

ently at different points. This has the consequence that different dielectric functions

at different length scales may produce the same eigenvalues and eigenfunctions, so if

the desired goal is to produce a certain eigenfunction and eigenvalue pair, then the

problem reduces to either fixing the dielectric spatial profile and determining at which

length scale it should exist, or fixing the length scale and determining which dielectric
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function will produce these modes. Because of this freedom, MEEP does not impose

units on the user. It sets c = 1, and it makes all lengths and times be in units of

the user-picked length scale a, all cyclic frequencies V in units of a- 1, and all angular

frequencies w in units of 21ra- 1 . Moreover, because only linear systems are being con-

sidered (i.e. c does not depend on the electromagnetic fields), the units of the fields

themsleves are irrelevant, as usually the fields are used only to give dimensionless

ratios such as transmission coefficients or flux enhancement factors.

Finally, the equations that MEEP ends up discretizing (in units where c = 1) are

D = cE (1.32)

B = pH (1.33)

aD
-= V x H -JD - ODD (1.34)

- = -V x E- JB - UBB (1.35)
at

along with the general boundary conditions

V - D(r, t) = - V - (JD(r,t') + DD (r, t')) dt' (1.36)
to

V - B(r, t) = - JV - (JB(r, t') + UBB(r, t')) dt' (1.37)
to-

where the particular value of to does not actually matter. In general, the permittivity

E and permeability p may depend on r and w and may be anisotropic (but are usually

assumed to be linear, though MEEP is capable of handling nonlinearities), and the

electrical conductivity UD and magnetic conductivity 0 B may be functions of r but

are independent of w. Regarding that last point, JD is the usual electric current

density, while JB is the magnetic current density; JB may be interpreted literally

as the current of moving magnetic monopoles, which do not exist but which can in

many cases produce perfectly physical fields (giving an alternative and sometimes

easier approach to deriving desired field profiles).Additionally, because the general

boundary conditions involve integrals over time of the flux of current density, then
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static electric or magnetic monopole sources may not be used, and dynamic electric

or magnetic monopole sources are included in the current density definitions by way

of the continuity equation V -J = -P.

The remaining boundary conditions are specific for each problem that can be

solved in MEEP. The computational cell must of course be a finite size, and condi-

tions may be imposed along one or more axes upon the faces of the computational

cell normal to those axes. One or more of the boundaries of the cell may be perfectly

metallic in either field (JD or UB is infinite), meaning the fields go to zero at the metal

walls. Alternatively, one or more axes of the cell may have associated periodic bound-

aries with wavevector k lying within the irreducible Brillouin zone (i.e. in t along

the direction of the periodic boundaries, where a is the length of the computational

cell in that direction), so that fields satisfy Bloch's theorem X(r + R) = eik.rX(r)

where R is any integer superposition of basis vectors for the periodic lattice. Finally,

one or more axes of the cell may have the faces of the cell normal to those axes cov-

ered with a finite thickness of perfectly matched layers (PML). PML does not exist

in reality but only exists for computational convenience; it is a material that ramps

on absorption/conductivity gradually over its thickness from the interior of the cell

to the face of the cell, so that fields incident upon PML will be absorbed and only

minimally reflected. Theoretically, PML should absorb any frequency of light incident

at any angle without reflecting it, but empirically as implemented in MEEP, PML

only works well for a small range of incidence angles. That said, because the systems

studied in this thesis are not surrounded by metallic walls and do not have periodic

boundaries along all axes, PML is the most realistic boundary condition along those

axes that do not have periodic boundaries.

Beyond those standard boundaries, any material may be added anywhere in the

computational cell forming even more boundary conditions. As described above, these

materials may be lossy, dispersive, anisotropic, or conductive with regard D or B.

Further boundaries come in the form of sources. In MEEP, rather than specifying

an initial field profile, the user can specify an initial current source profile. Each

source can be either a point or an extended region, and each source is the product of
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user-specified or built-in functions of space J(r) and time f(t) so J(r, t) = J(r)f(t).

If a more complicated function that cannot be separated into spatial and temporal

parts is desired, multiple sources, each with different spatial and temporal compo-

nent functions, can be specified to exist at the same point or over the same region.

Hence, MEEP essentially steps through Maxwell's equations in discrete form in a

finite computational cell subject to all of the above conditions and restrictions.

1.3 SCUFF-EM

In contrast to MEEP, the Surface Current/Field Formulation of Electromagnetism

(SCUFF-EM) solver uses the boundary element method (BEM) to solve electromag-

netic problems [7, 1]. SCUFF-EM is primarily built to solve electromagnetic scat-

tering problems, and the key to the operation of SCUFF-EM is the electromagnetic

equivalence theorem. For this problem, it is necessary to consider linear, isotropic

functions e and M, in which a boundary can be drawn that has a well-defined interior

and exterior. Inside this boundary will exist volume currents J that produce elec-

tric fields E and magnetic fields H; no volume magnetic currents exist because no

magnetic monopoles exist. However, it is possible to replace these volume currents

with surface electric currents K and surface magnetic currents N at the boundary,

satisfying the boundary conditions K = n x AH and N = -n x AE in appropriate

units. Here, Af = fout - fin for any quantity f across a boundary, and n is the

unit normal vector pointing to the exterior of the surface at each point along the

surface. Moreover, because scattering problems such as those solved by SCUFF-EM

are focused on determining scattered fields exterior to a particle, typically the inte-

rior fields are of less relevance than the exterior fields. This means that the interior

fields can be absorbed into the surface current definitions, leaving K = n x Hut and

N = -n x Eut as the redefined surface currents. Hence, the surface electric and

magnetic currents are essentially rotations of the magnetic and electric fields, respec-

tively, at the surface. For example, for a perfect electrical conductor, the magnetic

current must vanish, so what is left is N = 0 and K = n x Hout. Despite the facts
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that magnetic monopoles do not exist and no physical current is completely confined

to a surface, these fictitious surface currents do in fact reproduce the correct fields

E and H everywhere outside of the boundary. SCUFF-EM can handle regions of

homogeneous, isotropic, linear materials, so the surface currents are most naturally

confined to the boundaries of these regions of different dielectric functions.

For classical electromagnetic scattering, SCUFF-EM first calculates the equivalent

surface currents according to the equivalence theorem whose implications are outlined

above. SCUFF-EM then determines the scattering Green's function for the given set

of material regions and their boundaries; this Green's function is generalized to pro-

duce the (physical) fields from both (fictitious) surface electric and magnetic currents.

Finally, this Green's function is convolved with the surface currents at each boundary,

with the results added together to yield the scattered electromagnetic fields. SCUFF-

EM discretizes the boundaries by triangular panels and expands surface currents in

terms of vector basis functions along those panels, but this discretization along with

other approximations performed in the computation of the scattering problem are

largely hidden from the end-user once the relevant regions and surfaces are specified.

The method of using SCUFF-EM for solving the scattering problems considered in

this thesis is as follows. The user creates a GEO file that represents the geometry of a

boundary in consideration; this is usually a closed boundary of a solid object. The user

then uses the GMSH tool to convert this into a MSH file containing information about

how the surface is discretized. This is then incorporated into a SCUFFGEO file, which

also contains information about the material properties (essentially just the dispersion

relations e = E(w) and p = [(w)) of the interior and exterior regions to the boundary.

Finally, this SCUFFGEO file, along with information about the relevant frequencies to

consider, as well as the polarization and direction of incident electromagnetic waves, is

passed along to SCUFF-SCATTER (a subprogram of SCUFF-EM), which then solves

the scattering problem given the geometric configuration and parameters; the results

include, among other information, scattered and absorbed powers at each frequency.

Note that SCUFF-EM uses different units in different contexts, though it consistently

uses SI definitions of electromagnetic quantities in setting co and po to have nontrivial
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numerical values. By making use of the scale-invariance of Maxwell's equations to

set a length scale appropriate for scattering problems, all length scales, such as those

specified in GEO files, are in terms of a = 1 pm. This means that frequencies w (and

v = !) passed into SCUFF-SCATTER are in terms of c = c , and the default27ra ljLm'

incident electric field amplitude is lEinc = 1 -, where the intensity of that field is

1EinE 12 given the vacuum impedance Zo = ~ 377 Q in SI units. By contrast,

the frequencies w passed into the SCUFFGEO file are converted into SI units, so the

functions c(w) and p(w) should be written with that in mind, although c(w) and P(w)

are taken to be the relative permittivity and permeability, respectively, rather than

the absolute quantities after multiplication by co or po. Additionally, the scattered

and absorbed powers are reported in SI units as well, so the cross section in (pm)2 is

the power in SI units divided by the intensity described above.
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Chapter 2

Spontaneous Emission and its

Simulation

2.1 Spontaneous Emission and Enhancement in a

Small Cavity

The first part of this thesis considers the enhancement of fluorescent emission by a

photonic crystal. Generally, fluorescent emission is essentially spontaneous emission of

light by atoms or molecules decaying from an excited state down to a ground state in

which the excited state has a very short lifetime. From time-dependent perturbation

theory, Fermi's golden rule gives

Re-g = 47r21eg12 p(we,g) (2.1)

as the transition rate of molecules from an excited state e to the ground state g,

where hwe,, is the energy difference between the two states, Pe,g is the dipole matrix

element for transitioning between the excited and ground states, and

h 3s
p(w) = h3 h (2.2)

7 e kBT -1
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is the Planck distribution of intensity (density of states) as a function of frequency

for light at thermal equilibrium with molecules in the excited and ground states at

temperature T.

That said, this is just the rate of spontaneous emission of photons from excited

molecules into the vacuum. As Purcell discovered, the rate of spontaneous emission

depends not only on the molecules themselves but also on the surrounding environ-

ment, so if the molecules are placed in an optical cavity and if the frequency of photons

spontaneously emitted is the same as that of a resonance in that cavity, then the rate

of spontaneous emission will increase depending on the quality factor of the cavity as

well as the volume of the resonance mode in that cavity.

For the particular example similar to what Purcell studied of a molecule in a

small cavity of mirrors with a tiny hole inside, the Purcell enhancement is better

described as an enhancement of the local density of states, because the cavity being

so small and localized means that the density of states will depend not only on the

frequency but also heavily on the position of observation outside of the cavity. Much

of this derivation is adapted from [12] with the assumption that p = 1. The cavity

will have resonances a with orthogonal (in a) electric eigenfields E(a)(r) and real

eigenfrequencies w(,,) solving

2

~-1(r)V x (V x E(a)(r)) = E(a)(r) (2.3)

where it has been assumed that p = 1 through all space. Whereas the density of

states (DOS) is given by

DOS(w) = 3(w - Wta)) (2.4)

assuming no degeneracies, the local density of states (LDOS) weights the summand

by the energy density as

LDOS(r, w, ) =e6( -C(ir ))tEi(r) I w,(r) (2.5)

where 1 is one of the three Cartesian directions. This way, if t he energy density
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contribution from one direction of the field vanishes at any point outside the cavity,

then photon states also vanish locally at that point. In this case, the eigenfield

normalization has been chosen such that

I E(a)*(r) -e(r)E(")(r) dar = 1

for convenience, so e(r)E * (r)j2 is a normalized energy density contribution from

fields along direction 1.

That all describes free eigenfields with the cavity. If there are sources present, the

cavity eigenfield equation is modified to be the inhomogeneous equation

2-

E 1 V x (V x E) - E = Z-1J (2.6)
C2 C2

where the source J(r) has no explicit time dependence remaining by virtue of assuming

a time-harmonic source. In particular, because the Purcell enhancement is most

simply stated as the radiation enhancement of a single point dipole when put in a

cavity, it is useful to consider a point dipole current J(r) = S(r - ro)el where ro

is the location of its dipole, el is the Cartesian direction of the dipole for a fixed

1 E {1, 2, 3}, and the units are chosen so that the amplitude of the dipole is unity

(and also that c = 1). Through a Green's function approach, this can be simply

solved for the electric field in terms of the eigenfields of the cavity and their overlap

with the source. However, the response fields diverge on resonance unless some loss

is present with each resonance, and this loss can be written either as an imaginary

part of the dielectric (Im(E) = 0 and Im(E) < 1) or as an imaginary part of the

eigenfrequency ((a).= W(c) - i7() with -y(a) < W(a)). Replacing w(c) with c() yields

the response fields

E(r)E= iwZ())2 - E()*(r) -J(r) d3r (2.7)

E (c)WZr Ef(c) (ro) (2.8)
a
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where the first equality is generally true and the second equality is true for a point

dipole current source along a given direction 1. Plugging this into the equation for

the total radiated and absorbed power (though the units are slightly different from

power due to the field normalization choices)

P =-Re E* J ( r) dr (2.9)
2 \

for the point dipole source & response fields as given above and enforcing the assump-

tions of small loss yield

7(a)(Q Iaro2
',4.d . 2 + -Y2 1E r)(2.10)

(a) 7(a)

as the total radiated and absorbed power. When the loss is zero, the Lorentzian

peaks in the power become Dirac delta functions, in which case the total power

becomes proportional to the local density of states at the location of the point dipole:

LDOS(ro, w, l) ; E(ro)P(ro, w), where the approximation holds for small loss and

becomes exact for vanishing loss. For small loss, picking a resonance a, examining

the frequency exactly at w = w(a), and summing over all three possible values of 1

to get the average LDOS from a randomly oriented dipole yields a contribution of
2Q to the LDOS from that resonance, where

Q(a) = WOO (2.11)
27(a)

is the quality factor of the resonant mode, and

f E(r)JE(a)(r)1 2 d3r (2.12)

maxf(r)IE(a)(r)1
2

r

is the mode volume of the resonant mode (where in this derivation the numerator of

the mode volume is unity due to the normalization choice). Thus, the enhancement

to the LDOS from placing the molecule inside a cavity is given by the factor L for
r(s)

a resonant mode a.
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2.2 Spontaneous Emission Enhancement from a Pho-

tonic Crystal

As opposed to a small, localized resonant cavity as in Purcell's original analysis,

the system being primarily considered in this thesis is a large photonic crystal slab

which can support delocalized eigenfields with long electromagnetic lifetimes. This

photonic crystal is among the first systems to support interactions between organic

molecules and inorganic materials allowing for enhancement of spontaneous emission

by the organic molecules. Such enhancement would be of immense use to imaging and

sensing, both for further studies in fundamental photonics, as well as for applications

to biology and biomedicine.

This photonic crystal, pictured in figure 2-1, has a band structure with multiple

bands. This means that eigenfields must be labeled by both the continuous crystal

momentum k within the first Brillouin zone as well as the corresponding resonant fre-

quency Wk to fully specify the mode. The photonic crystal in question is a rectangular

slab of silicon nitride (Si3 N4) with circular holes made at the centers of square unit

cells; the slab is 250 nm thick. In the experiments done on this system, the holes have

been drilled 55.5 nm from the top surface down. The photonic crystal is bonded on

top of a substrate of silicon dioxide (SiO 2 ), and the whole system is immersed in a 1

millimolar solution of active rhodamine 6G (R6G) dye molecules in passive methanol,

where the methanol-R6G solution fills the shallow holes and forms a 2 pm-thick layer

above the photonic crystal.

Because the methanol solution is uniform and isotropic above the photonic crystal,

and because multiple bands exist in the band structure, it makes less sense to discuss

the LDOS here, as position is less relevant for a slab that is periodic and almost

infinitely large in 2 dimensions compared to the size of a detector. Instead, the spectral

density of states, which considers the states available to photons at a particular

direction given by the crystal momentum k (within the first Brillouin zone) and

corresponding resonant frequency Wk is more relevant.

Much of the derivation that follows is an expansion of the discussion in [14],
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Figure 2-1: 2-dimensional cross-sectional schematic (not to scale) of the photonic
crystal studied in [14]: methanol is in light blue, silicon nitride is in green, silicon
dioxide is in light gray, and radiating dilute R6G molecules in methanol solution are
dark red arrows upon the light blue background

as the semianalytical method and general experimental setup form the basis for the

computational analysis of a similar photonic crystal system as discussed in this thesis.

Thus motivated, the decay rate of molecules with number density No into a photonic

crystal is

7rNowliqe 12  1ZWk
r(W) =e _ro~i,| 2| -Ek Wk(r) 12 d 3r (2.13)

S 3h gain medium 7r (W - Wk) 2 + (AWk) 2

k,wk

where AWk is the half-width at half of the maximum (HWHM) of the mode (k, Wk)
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(called y in the previous section), IIge,gI 2 is the square of the norm of the dipole

transition matrix element, and SI units with eo have been used in this expression

as these are more conducive to experimental verification in this instance. For this

expression to work, the dipoles are assumed to be homogeneous & isotropic in the

solution and are assumed to be randomly polarized (so this decay rate is an average

over all polarizations); moreover, this expression is easiest to computationally and ex-

perimentally verify when resonances are far apart. As with the small cavity, the decay

rate is gotten through a Green's function approach, but rather than expanding the

Green's function in eigenfields of the system, it has been expanded instead in normal-

ized Bloch states Ek,wsk(r) which have finite lifetimes given through the quality factor

Qk,wk= 2wk ; this avoids the divergence of the decay rate on resonance when using

proper eigenfields which have infinite lifetimes, as was encountered in the previous

section. Replacing sums over k with integrals over k in the two dimensions parallel

to the slab weighted by A in analogy with a solid-state crystal, picking out a par-

ticular resonance (k, Wk), setting w = Wk, and dividing by the total electromagnetic

energy to enforce normalization of the Bloch states gives

F(k,wkg) = ANO I/pe,2g 12 (2.1)IF~kW) 67r2 hC0  Cfk,WkQk,k (.4

where Qkwk = 2-s' is the total quality factor of the resonance in the photonic crystal

and

fgain medium e(r)IEk,Wk(r)1
2 d3r

' f(allof space) e(r')|Ek,Wk (r') 2 d3r'

is the confinement factor of the electric field energy within the gain medium, which

for this system is the methanol/R6G solution.

Meanwhile, the decay rate of these dipoles atop an untextured silicon nitride slab

is given by
AN2 IPg12 ndeffo = N 7rhcff (2.16)

6irhe0 A

where A = is the wavelength of the resonance in vacuum, n is the index of

refraction of the silicon nitride slab, and deff is the distance above the slab within
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which 1 - - ~ 86% of the electric field energy remains, as the electromagnetic fields

are assumed to be evanescent (exponentially decaying in space) through the lossy gain

medium away from the slab. This looks quite similar to the formula F- = '"2

for decay into free space, with a few differences (aside from factors of 27rc arising

from the use of w versus A). The first is that the wavelength of the resonance in the

silicon nitride slab is different from the wavelength in vacuum by the factor 1. The

second is that the decay rate of one dipole needs to be multiplied by the number of

dipoles, which is effectively ANodeff, where again A is the area of the slab and No is

the number density of dipoles, while d4 f, in characterizing how lossy the gain medium

is, also then characterizes what thickness of dipoles above the slab can actually couple

their radiation to the slab for enhancement. The third is that the extra factor of 2

comes from considering only radiation to the region above the slab, because that is

where experimental measurements can most easily be made. The fourth is that only

one factor of A is present rather than three as in the case of the small cavity: this can

be intuitively understood as a consequence of the periodicity in the plane parallel to

the slab, so enhancement will only be seen for observers moving along one dimension,

which is the perpendicular axis of the slab.

The enhancement factor is then calculated as

A = 1+ - (2.17)
"o Qr,top

which is the usual general expression multiplied by a factor that accounts for the

fraction of photons that decay by radiating only through the top: decay processes

include radiating through the top (r,top), radiating through the bottom (r,bottom),

or being involved in a nonradiative decay (nr) such as (but not limited to) absorption,

so that Qr= o + Qrbsttom + g. Moreover, the number 1 has been added to the

ratio because in addition to enhancing the decay rates of certain modes (k, Wk), the

photonic crystal can inhibit certain modes altogether. This would mean that those

modes are unable to couple to the photonic crystal, so the measured photon emission

is purely a result of direct emission into the far-field. In the limit of a very large
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volume of methanol/R6G solution sitting atop the photonic crystal, so many more of

the dipoles are unable to couple to the slab compared to those dipoles that are able to

do so; this leads to the emitted flux becoming identical to that in the situation where

the silicon nitride slab is untextured, meaning that the enhancement factor should be

unity in such a situation. Plugging in the expressions for F and Fo yields

A = 1 + A Q'(2.18)
7rndeff Qrtop

as the enhancement of resonant decay from randomly polarized homogeneous isotropic

dipoles atop a photonic crystal slab compared to similar decay from the untextured

slab for the same mode. After accounting for the differences in experimental setup

and corresponding assumptions, this formula agrees with that in 14].

While this formula is generally true, the fluorescent modes considered in this thesis

have Qr oc -, so that the radiative portion of the quality factor diverges at the center of

the Brillouin zone, and the total quality factor at that point comes entirely from Qnr.

Moreover, from the equation I = - + -, it can be shown that the quantity 2 is

maximized when Qr = Qnr, which occurs at a specific (usually small) value of k along

a particular direction in the Brillouin zone; this is called the Q-matching condition.

Hence, when considering a particular mode (k, Wk) along a particular direction for k

(so that k = k/c), A starts at 1, increases with k until the Q-matching condition is

achieved, and then decreases again as k increases further. It is these modes (that have

diverging Q, at the Brillouin zone center and have a definite Q-matching condition

producing an increase in the enhancement followed by a decrease as k increases along

a given direction) that are primarily considered in this thesis.

2.3 Random Currents in MEEP

All of the above derivations require quantum mechanics at some level. At the very

least, quantum mechanics is needed to describe dipole transitions in an atom as used

in Fermi's golden rule. A proper treatment of spontaneous emission would consider
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the electromagnetic degrees of freedom to be quantized as well, but this additional re-

quirement can be circumvented by considering a statistical thermodynamic treatment

of classical electromagnetic degrees of freedom (as per the Planck density of states in

a vacuum). Yet MEEP is unable to simulate even the quantum nature of molecules,

let alone the quantum nature of electromagnetic fields. Hence, a different approach

is needed. Spontaneous emission can be characterized by classical statistical electro-

magnetic fields, and the quantum particle nature of light itself is less relevant when

considering the enhancement of spontaneous emission by a photonic crystal. Thus,

all that should matter is that the electromagnetic fields radiating from molecules in

the simulation in MEEP are stochastic, satisfying relations that reproduce the photon

density of states for an emitter in a vacuum when the radiating molecule is indeed in

a vacuum.

In particular, the response of a dipole density P(r, t) to a deterministic applied

electric field E(r, t), which is usually written as

02p ap .2p-a+'Y- +WP=OE

where wo is the resonant frequency of this oscillator, 7 is the finite linewidth of the

resonance, and o is the conductivity, can be modified to read

a2p op
-+ +y--+WP = oE+ Q (2.19)

where Q(r, t) is a stochastic applied field defined at every point in space and time.

Much of the discussion that follows parallels that in [5]. Substituting harmonic

(e-iwt) time dependence for each quantity in the previous equation yields

aE(r, w) Q(r,w)P(r, w) = 2 2  . + 2  -2 (2.20)

as the polarization density in terms of the deterministic and stochastic applied fields.

As D = E + P, then it is convenient to define X(r, w) = Q"'-, so that V x H =w( -W -i)

S(J + OD) becomes modified to either V x H = (J + -L (D + X)) or V x H =
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((J + !) + !2), depending on whether it is more convenient to see Q as resulting

in a stochastic electric flux density as in the former or a stochastic current density as

in the latter. The latter interpretation is more relevant for the physics considered in

[14] that also underlies this thesis. This is because the stochastic current densities are

what correspond to probabilistic quantum dipole transitions in the actively radiating

molecules. The only further condition that Q needs to satisfy, as derived by Rytov

[13], is a fluctuation-dissipation relation

(Qi(r, w)Q*(r', w')) = ba-y ew )J(r - r') (2.21)

where o- and -y are the parameters from the original deterministic damped driven

oscillating dipole density, and b is a constant involving only numerical factors and

factors of c depending on the system of units. This is derived from the fluctuation-

dissipation relation for X in conjunction with the permittivity

0-
E(w) = 1 + 2 - (2.22)

from the deterministic damped driven oscillating dipole density as well as the Planck

density of states from before. MEEP is able to simulate classical stochastic currents

that satisfy this autocorrelation function because all the quantum physics lies in the

autocorrelation function, so as long as the particle nature of light is unimportant,

no further consideration of quantum physics beyond that needs to be present in the

simulation. MEEP calls this a noisy Lorentzian susceptibility, because the stochastic

currents are called as part of a material definition rather than as a source definition;

this arises due to the equivalence of Q contributing to either J or D, and the con-

stitutive relation D = EE allows for construing Q as being absorbed as part of the

definition of c.
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Chapter 3

Comparison of Semianalytical

Predictions and FDTD Results

3.1 Photonic Crystal Emission Simulation

One of the main goals of this thesis is to simulate spontaneous emission enhancement

from a photonic crystal through a classical FDTD solver like MEEP, as this has been

seldom done before. Moreover, validation of these computational methods to sim-

ulate spontaneous emission enhancement would allow for further computational de-

velopments such as computationally optimizing a structure for spontaneous emission

enhancement before experimentally testing it. For this thesis, a very similar system

to what has been experimentally tested in [14] is simulated in MEEP. However, there

are some key differences to keep in mind.

1. The biggest difference is that the simulations are in 2 dimensions rather than

3; this was done for the sake of time, because 3-dimensional computations are

extremely costly in MEEP, yet there is nothing in the formula for spontaneous

emission enhancement that depends on the dimensionality of the system. Re-

latedly, the switch from 3 dimensions to 2 also causes information about the

3-dimensional cylindrical hole shape to be lost in 2 dimensions, as a cylinder

when simulated in 2 dimensions along its axis looks like a rectangle; this means
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that strictly speaking, if this simulated system were to be reconstructed exper-

imentally, it would look more like a 1-dimensional rectangular grating than a

2-dimensional photonic crystal.

2. In the 2-dimensional case, if the hole is drilled. only to a depth of 55.5 nm from

the top for consistency with the experiments done on this structure, almost all

of the modes with diverging Qr at the Brillouin zone center are too close to

other modes with much smaller finite values of Qr (i.e. very large linewidths).

This difference arises from the above point, which is that information about the

hole shape is lost when simulating the 3-dimensional structure in 2 dimensions.

This means it will not be possible to see those modes show a increase followed

by a decrease in A as k increases.

Initially, it was thought that because the formula for A should hold true for any

mode, it would be sufficient to simulate modes that have finite Qr at the Bril-

louin zone center. However, it was then found that A was almost constant over

the range of k considered, and the fluctuations in the enhancement calculated

from the FDTD method would dwarf any small upward or downward trend in

A as a function of k, rendering any comparison between simulations and the

semianalytical predictions meaningless. Hence, there would have to be a way

to produce modes of infinite Qr at the Brillouin zone center that would be far

enough away from modes of finite Qr that the former modes could be examined

by themselves. The only way to rectify this issue has been to make the holes

deeper; in fact, in the simulations, the holes are drilled all the way through the

slab so that the modes of infinite Qr at the Brillouin zone center are as far away

from other modes as possible.

3. A region of random dipoles can be simulated using the noisy Lorentzian sus-

ceptibility in MEEP. However, it is not possible to simulate a statistically ho-

mogeneous dilute solution of methanol and R6G in MEEP. Several alternative

methods of placing the active dipoles in a relevant region were tried.

The first method was to place the dipoles in the silicon nitride slab, making
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it radiate rather than the methanol. This is because the FDTD code for com-

puting A originated from code that was developed to reproduce the results of

guided resonances in a photonic crystal slab as detailed in [6]; that code was in

fact able to reproduce the results in that paper. However, when using that code

to simulate spontaneous emission enhancement for comparison to theoretical

predictions and experimental results as has been detailed above, a normaliza-

tion scheme had to be picked. The first normalization scheme used was a rough

heuristic that the average flux from the radiating photonic crystal outside of

a resonance should be approximately the flux produced on average by an un-

textured radiating slab. This was eventually determined to produce unreliable

results for the enhancement, as the enhancement was not consistent between

different resonances and between different sets of simulations (as multiple sim-

ulations of the same structure would be needed to average over the randomness

produced by the noisy Lorentzian susceptibility). The second normalization

scheme was to simulate the spontaneous emission flux from an untextured ra-

diating slab and divide the flux from a radiating photonic crystal slab by that.

However, because in each case the radiating dipoles homogeneously filled the

silicon nitride slabs, the normalization calculation had more dipoles than the

photonic crystal calculation, as the untextured slab had no methanol hole punc-

turing it or the dipoles inside the slab in that region.

The second method was to examine the energy density profiles of the desired

modes to determine how much passive methanol from the bottom of the hole

and above contains 86% (an approximation of 1- , coming from the definition

of deff) of the energy of that mode. This region of methanol would then be made

active with a noisy Lorentzian susceptibility. The region was determined to be

a cylinder filling the hole up to 65% of its height. There were two problems with

this too, though. The first was that by placing the dipoles only within a fraction

of the hole, the assumptions of homogeneity and isotropy of the dipoles were

broken, so the FDTD enhancement results could no longer be directly compared

to the semianalytical predictions. The second was that the normalization could
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no longer be done with respect to an untextured slab, because the dipoles were

being placed in a region (the hole) that by definition required texturing. Instead,

the normalization was taken to be the replacement of the silicon nitride slab with

passive methanol, while letting the dipole configuration otherwise remain the

same. This too was found to be inconsistent with the semianalytical predictions.

Thus, the closest analogue is to simulate a thin film of active methanol specified

with a noisy Lorentzian susceptibility sitting above the passive silicon nitride

slab and below a larger volume of passive methanol. To ensure consistency be-

tween the photonic crystal emission calculations and the untextured slab emis-

sion calculations, the dipole configurations must be identical, so the methanol

that fills the hole in the photonic crystal must be passive. The separation of

the active and passive methanol regions also means that the notion of deff is less

meaningful. In fact, it should simply be replaced by the thickness d of active

methanol simulated. When d is large, most of the active methanol above the

slab cannot couple to the slab, and the energy that does couple decays enough

through the thick lossy active methanol layer that it will not be seen in the

far-field either; there is thus no enhancement of spontaneous emission from the

photonic crystal slab as compared to the untextured slab. By contrast, when

d is small, almost all of the radiation from the active layer can couple to the

photonic crystal slab, so while the absolute magnitudes of flux in the photonic

crystal slab case and the untextured slab case will each be small due to the small

number of dipoles, the ratio will be quite large. Of course, the lower bound on

d due to the resolution of the simulation places an effective upper bound on A

that can be simulated.

4. As a final minor point, the finite extent of the computational cell means that it

is not possible to normalize the electric field energy in the gain medium to the

electric field energy in all of space when calculating the confinement factor a.

The expression

a - fgainmedium E(r) IE(r) 2 d3r
ffunl computational cell e(r') I E(r')12 d3r'
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is used instead.

These are the changes that must be made for the simulation to work correctly. There

is one other change that is done for convenience. The simulations are unburdened by

the inability of experimentalists to measure the spontaneous emission below the slab,

as flux planes can be placed anywhere in the computational cell. Therefore, the total

spontaneous emission flux is considered rather than only emission above the slab,

where the latter case is considered in [14]. This means that Qr,top can be replaced by

Qr to account for all of the spontaneous emission flux from the photonic crystal slab.

Additionally, it is assumed in the derivation of enhancement factor in the previous

chapter that the spontaneous emission from the untextured slab is sent equally above

and below the slab. To fix this and thereby account for the spontaneous emission flux

from both sides, the decay rate for the untextured slab simply needs to be doubled.

Hence, given the conditions above,

A = A1 + (3.2)
27rnd Qr

is the enhancement factor that should be seen in simulations for a given mode (k, wk),

where again n is the index of refraction of the silicon nitride making up the slab.

Note that the value of A in nanometers is given by the ratio of the length scale a

in nanometers to the numerical value of w in MEEP, as A = 2, and w in inverse

seconds is given by the MEEP value multiplied by 9. In these simulations, the

length scale is chosen to be a = 321.4 nm. A schematic of the photonic crystal system

simulated can be seen in figure 3-1. The silicon nitride slab is simulated by a passive

nondispersive slab of index n = 2.018, the silicon dioxide substrate is simulated by a

passive nondispersive block of index n = 1.45, the passive methanol is simulated by

passive shapes of index n = 1.33, and the active layer is simulated with base index

n = 1.33, with the other details to follow.
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Figure 3-1: Schematic (not to scale) of the photonic crystal simulated in MEEP in
2 dimensions: passive methanol is in light blue above and below the dark gray solid
lines, silicon nitride is in green, silicon dioxide is in light gray, and the active methanol
film is enclosed between two dark gray solid lines as dark red arrows on a light blue
background; dark yellow broken lines denote the two flux planes for computing fluxes,
and black on each end is the PML boundary

3.2 Finding Modes

Because spontaneous emission enhancement for photonic crystal resonant modes is

being analyzed, the first thing that should be done is to find the resonant modes.

This is done by performing the Harminv algorithm, as described further in Appendix

A, with a single broadband Gaussian dipole source: usually, this is done with a

central frequency of 0.6 and a frequency width of 0.8 in MEEP units. The command
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"run-k-points" can be used to find modes through the Harminv algorithm for several

different values of k at a time. Because the photonic crystal is oriented parallel to the

yz-plane, only ky and k, are meaningful for enforcing periodic boundary conditions,

and because the simulation is done in 2 dimensions, only k. remains. Henceforth, ky

and k are synonymous, with the latter used for the sake of brevity (except in cases

where more clarity is required). Typically, k would be varied to be not more than

0.02 x g where the correspondence between angle off of normal incidence to k is givena

approximately by -2~ '0ka for small k. This upper bound was chosen because the

boundaries at the extremes of the x-axis are made of PML: computations with PML

start to fail for higher angles (compared to 20) off of normal incidence unless the PML

is made extremely thick, which would then make the computations extremely costly.

Once the modes are found for each k for a broadband Harminv computation,

the ones that have diverging Q, at k = 0 are selected as desirable for the FDTD flux

computation. This is contingent on those modes being far away in frequency from any

other modes seen for all 3 possible current polarizations. Because these computations

are in 2 dimensions in the xy-plane, there is a splitting between TE and TM fields.

The TE fields Ex, Ey, and H, may arise from electric current sources along x or y,

while the TM fields Hz, Hy, and E_ may arise from electric current sources along

z. (Magnetic current sources are not considered here because the experiment in [141

with which these simulations are to be verified uses electric rather than magnetic

dipoles for producing spontaneous emission.)

The Harminv process for multiple k values is done twice for each current polar-

ization. The first time is for when the thin methanol film between the slab and the

thick methanol bulk is also made to be passive and nondispersive. The results of this

calculation are the resonance frequencies and the corresponding radiative lifetimes Qr

for each k; the output is Qr rather than Q because there is no absorption or other

nonradiative decay mechanism when the methanol film and all other dielectric compo-

nents are passive and nondispersive. The second time is for when the thin methanol

film is made to be dispersive and slightly lossy, which in this case is a Lorentzian

susceptibility with no noise. There is no noise because there should not be more
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dipoles present than the original single Gaussian source when finding resonant modes

for the photonic crystal, yet the dispersion and loss seen when the film is active should

be accounted for as well (which is why the thin methanol film remains a non-noisy

Lorentzian susceptibility for this particular calculation). Here, the results should

yield essentially the same resonance frequencies as before, but the quality factors Q
are lower because they include both radiative and nonradiative decay mechanisms.

These values of Q and Qr are plugged into the equation for the spontaneous emission

enhancement, along with n = 2.018 for the silicon nitride slab, d = 100 nm for the

thin methanol film, A = aE where WMEEP = g with a = 321.4nm, and a as

described below.

For computing a, one more Harminv computation needs to be performed. Rather

than inputting a broadband source, a narrow-band source with the central frequency

equal to the resonance frequency Wk and with a corresponding frequency width of

is excited. Moreover, because confinement in the gain medium can only occur
Q1,

when it is lossy, the Harminv computation is done when the thin methanol film has

a (non-noisy) Lorentzian susceptibility. The output is a set of HDF5 files, each of

which is a matrix containing values for a quantity of interest evaluated at each pixel

in the simulation. The quantity of interest here is the electric energy density EIE 12.

The integral of the electric energy density over the gain medium is discretized as

a sum over all pixels in the -thin methanol film, and the integral over all space is

discretized as a sum over all pixels in the computational cell. The ratio of these

sums is thus a. Because a is approximated to be constant over the range of k, this

Harminv computation only needs to be performed for one of the desired modes at

a single value of k. It was found for these computations that on average for the

desired modes, a ; 0.046, with the approximation being exact at k = 0.006 x 2, and

with deviations in a from this constant value being less than 2% over the range of k

considered. In figure 3-2, contour plot of an example energy density at k = 0.006 x 21a

is shown below the contour plot of the dielectric structure that MEEP simulates. Note

how this and other modes largely confine the energy density to the photonic crystal

slab. Also note that the smoother variation in the dielectric function across space
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despite the discretization across the lattice arises from subpixel averaging.
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Figure 3-2: Above: contour plot of e (relative dielectric) as a function of position, as
simulated in MEEP with subpixel averaging; below: contour plot of the electric field
energy (arbitrary units) as a function of position for k = 0.006 x 3, showing large
confinement of the mode within the silicon nitride slab

The modes that were found to be have infinite Qr at the Brillouin zone center and
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were farthest from other modes for current excitations along any direction were those

modes with a resonant frequency between 0.6111 x2" and 0.6136 x g (corresponding

to wavelengths between 523.8 nm and 525.9 nm), where the small decrease in w occurs

gradually as k is increased. These modes are excited by currents along the z-axis only;

this means that only the TM fields are resonant, while the TE fields are not. These

were the modes considered for FDTD flux computations.

3.3 Computing Emitted Flux
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Figure 3-3: Enhancement spectrum of the desired resonance around k = 0.006 x
with the FDTD results as blue dots and the Lorentzian fit as a red line

Once the modes are found and a is calculated for each desired mode, the FDTD

flux calculations can be performed. For the sake of time, only a single band (far

away in frequency from other bands at each k and for each current polarization) with

diverging Qr at k = 0 was considered. The thin methanol film was made active as a

noisy Lorentzian susceptibility with the same loss parameters as the Lorentzian sus-

ceptibility used with Harminv, and the active dipoles are excited at a narrow band (of
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width ,k) centered around the chosen resonance frequency wk. The full code used

is detailed in Appendix A. The system setup is otherwise largely the same as in the

Harminv calculations. Because the active medium is characterized by random noise,

the emitted flux is only meaningful after an ensemble average; it was determined that

averaging over 100 calculations is sufficient for the average emitted flux to converge.

For the particular mode for each k, a set of 100 calculations is performed for the

photonic crystal slab, and a set of 100 calculations is performed for the untextured

slab. Then, for each k, each set of 100 is averaged, and then the resulting average

photonic crystal slab flux is divided by the average untextured slab flux to yield the

enhancement as a function of frequency. This enhancement spectrum typically looks

like a Lorentzian as is theoretically predicted, but there is some amount of noise in

the enhancement spectrum, so the comparison is not exact. These discrepancies can

be overcome by nonlinearly fitting the FDTD-computed enhancement spectrum to

a Lorentzian function (with a baseline vertical shift of 1), and the peak of that fit

is taken to be the FDTD-calculated enhancement for that value of k. An example

enhancement spectrum is shown in figure 3-3 for k = 0.006 x 2, with the FDTD

results shown as blue dots and the nonlinear Lorentzian fit shown as a red line. Note

how compared to the Lorentzian fit, the FDTD enhancement appears to fluctuate

almost randomly with small amplitude from one frequency to the next. This is to be

expected because the time given for collecting the flux from random dipoles at each

frequency is large enough for convergence in the flux results for this mode.

3.4 Comparing to Semianalytical Results

Seen in figure 3-4 is a comparison between the enhancement as calculated by semi-

analytical methods, shown as a red line, and FDTD computations, shown as blue

dots. The relative difference between the two sets of results varies between 0.4% and

6.9%, and on average the relative difference is 3.4%. As expected, the enhancement as

calculated from the semianalytical model starts from 1 at k = 0 and shows an upward

trend followed by a downward trend as k increases, as is characteristic of a mode of
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Figure 3-4: Comparison of the enhancement of the desired mode at each k between
semianalytical predictions (red curve) and FDTD computations (blue dots)

infinite Qr at the Brillouin zone center; the enhancement calculated from the FDTD

computations almost exactly follows this trend as well. Hence, this method of using

classical stochastic currents in an FDTD electromagnetic solver to simulate random

emission (even when the source of the randomness is actually quantum mechanical in

nature, as in spontaneous emission) is effective.

3.5 Half-Sphere System

In most nanophotonic systems, a semianalytical model cannot be created to describe

spontaneous emission from such a system; the photonic crystal system described

above is an exception rather than the rule. In the majority of cases, then, it would be

useful for experimentalists to have an idea of what features might be seen in sponta-

neous emission in a nanophotonic system before conducting the experiment, and the

only other way to know in advance is to perform simulations through computational

electromagnetic solvers such as MEEP.
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Figure 3-5: 2-dimensional cross-sectional schematic (not to scale) of the half-sphere
system simulated in MEEP in 3 dimensions: active "silicon nitride" of n = 2.018 is
the dark red arrows on the light blue background, passive "metal" of n = 100 is in
green, and vacuum is in white; dark yellow broken lines denote the flux planes for
computing fluxes (of which there are 10 in 3 dimensions), and black surrounding the
system is the PML boundary

In this section, a system called the "half-sphere" system is discussed. This system

could be encountered experimentally if a spherical nanoparticle is partially implanted

in tissue and the half that is visible outside the tissue can fluoresce, while the half

that is embedded in the tissue is made of a metallic substance. A schematic of this

system is seen in figure 3-5. A metal is expected to reflect light in large ranges of

wavelengths, so if the fluorescing half is called the top and the passive metallic half is

called the bottom, it would be reasonable to expect that the emitted flux spectrum

will be more biased in the direction of the top than the bottom, compared to a sphere

that uniformly fluoresces.

Such a system can be simulated in MEEP in a similar way to the photonic crystal

system above. Here, instead of periodic boundary conditions, the boundaries of the

computational cell are fully covered with PML, as this sphere is taken to be isolated.

53



* Top
0.06 * Bottom

S0.04 *

0.02-

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 (27c/a)

Figure 3-6: Comparison of flux spectra above (blue dots) versus below (red dots) the
half-sphere system

The sphere was set to have a radius of 0.2a. The active top half was taken to be

radiating "silicon nitride"1 of base index n = 2.018, and this was again simulated with

a noisy Lorentzian susceptibility. That said, MEEP was unable to simulate the passive

metallic bottom half with the dispersive lossy dielectric function of an actual metal

like gold. Instead, the bottom half was taken to be a passive nondispersive dielectric

of index n = 100. This is still acceptable because the large index contrast between the

bottom half and the top half (and the vacuum surroundings too) means that despite

the lack of direct reflection due to the absence of skin depth, most light that enters the

bottom will be totally internally reflected and come out of the top anyway. Moreover,

the index contrast between the bottom and the surrounding vacuum is larger than

the index contrast between the bottom and the top, so more internal reflection will

occur at the former boundary than at the latter. Index contrasts creating a bias in

the direction of flux emission were seen even in the photonic crystal system, where the

slab has index n = 2.018, the substrate has index n = 1.45, and the methanol above

Quotes around the material names are indicative that this system has not been experimentally
studied as of yet, so the only relevant information to be considered for simulation is the index n.

54



has index n = 1.33. There, howeer, the largest index ratio is approximately 1.5, so

the difference in the emitted flux to the top versus the bottom from equidirectional

emission was very small; anyway, in that case, the information about differences

in directionality were erased by considering only the enhancement of total emission

(in both directions) above the photonic crystal slab over total emission above the

untextured slab. In this system, by contrast, the quantity of interest is in fact the

difference in directional emission, and the difference is generally amplified due to the

much larger index contrast between the bottom hemisphere and the top hemisphere

as well as the surrounding vacuum.

Five rectangular flux planes surrounded the top hemisphere and another five sur-

rounded the bottom, with the total from each respective set of five flux planes taken

to be the top or bottom flux spectrum. The results are shown in figure 3-6, where

the spectrum for the top is shown as blue dots and the spectrum for the bottom is

shown as red dots. For every frequency, on average, the flux from the top is about

2.5 times the flux from the bottom. As only a rough comparison was desired, no

further attempt was performed to make this more rigorous, and the time for the flux

planes to collect data was not further checked to ensure convergence (though the ap-

parent random fluctuations in the spectrum from one frequency to the next is likely

indicative of convergence).

3.6 Future Investigations

The success of the FDTD computational method in reproducing the semianalytical

predictions of spontaneous emission enhancement by a photonic crystal, combined

with the separate validation of those semianalytical predictions by experiment, lends

the computational method to further use in suggesting future experimental directions.

In particular, the spontaneous emission enhancement by a photonic crystal being

intimately tied to the spectral density of states suggests that the spontaneous emission

enhancement can be nonlinearly optimized by appropriately modifying the photonic

crystal structure. From solid-state physics, the density of states as a function of w is
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related to the derivative of k with respect to the w in a given band, so when w varies

very slowly with k, it would be reasonable to expect that the density of states becomes

very large for that value of w. It would then be interesting to see if a photonic crystal

that is computationally optimized specifically for spontaneous emission enhancement

is the same structure as the photonic crystal optimized to produce a flat band over a

large range of k in one or more directions in the Brillouin zone.

The FDTD computational method when applied to the half-sphere system needs

to be more rigorously checked for convergence in both the flux collection time and the

number of averages performed. Once that is done, it would be interesting study one

(or two) other systems. Another system to consider would be one that replaces the

passive nondispersive high-index "metal" with a material that has dielectric resonances

in the visible regime, as these dielectric resonances may produce new behavior in

the flux spectra of interest. A third system would be to consider an alternative

method of reflecting electromagnetic emission preferentially in one direction: instead

of creating a sphere where the low-index top hemisphere radiates and the entirety

of the bottom hemisphere is a passive metal, the entire sphere could be a radiating

low-index material, but the exterior of its bottom hemisphere could be coated with a

thin metal layer.
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Chapter 4

Nanoparticle Scatterers of Infrared

Light

4.1 General Quasistatic Structures

The second part of this thesis considers the absorption and scattering of infrared

light by metallic nanoparticles. Not as much work has been done in characterizing

nanoparticles that efficiently scatter and absorb infrared light as has been done in the

visible regime, so it would be useful from the standpoint of basic physics to examine

what differences arise. Moreover, if nanoparticles can be designed to efficiently scat-

ter and absorb infrared light, these properties can be used for medical and military

applications, such as tissue imaging through scattering, tumor destruction through

absorption, or obscurance through absorption and scattering.

When light is incident on a dielectric or metal particle, the particle is said to be

quasistatic when its size is significantly smaller than the wavelength of the incident

light. This is because the particle is small enough that the spatial variation of the

incident electromagnetic fields over the range of the particle can be neglected, and only

the time variation needs to be considered. In general, light incident on a particle can

be absorbed or scattered, and the cross sections C of absorption or scattering, each

of which is respectively the absorbed or scattered power divided by the intensity of

the incident electromagnetic field, can be added to yield the extinction cross section
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CeXt = Cas + Csca; this extinction cross section is a measure of how effective the

particle is at inhibiting coherent transmission of the incident light. Often, a more

useful metric of this inhibition is the extinction cross section per unit volume C4, as

this allows for comparison of the performance of particles of many different sizes for

a given wavelength of incident light; for light incident on a single particle, this is just

the extinction cross section of that particle divided by its volume.

As per [10], for certain values of (complex, frequency-dependent) 6, a quasistatic

particle can have a self-sustaining surface tharge distribution even without an incident

electromagnetic field. If light of a wavelength that excites one of these resonant values

of C is incident on the particle, the resonant surface charge distribution will then

maximize -=. The angle-averaged extinction cross section per unit volume is

Cext = 27r Im ( pn (4.1)V 3A n Ln - (w

for any vacuum wavelength A of incident light. Here, the index n labels the differ-

ent resonant surface charge distribution, pn is related to (but not exactly) the dipole

moment of that charge distribution, Ln is the depolarization factor of that charge

distribution which describes how an electric field incident on a particle is partially

canceled by its polarizability and its free charges, and (w) = - where the (com-

plex) electric susceptibility x(w) = E(w) - 1. Resonant extinction occurs when the

frequency w is such that L = r(w), where the subscripts r and i denote the real and

imaginary parts, respectively, of a complex number.

The depolarization factor Ln is generally known for common particle shapes, but

bounds can still be placed on the extinction cross section per unit volume only knowing

the material properties and incident wavelength (without knowing the particle shape).

In particular, as the materials considered here are metallic with 0 < - < in

the relevant frequency range, the shape-independent upper bound on the resonant

extinction cross section per unit volume is

Cet <27r 2X(1+ Xr) + X?(3 + 2Xr + 4X2) +2X (4.2)
V 3A Xi(?+ (1+ Xr)2)

58



where the dependence on w has been suppressed for brevity. This equation remains

true for general quasistatic particle shapes in both the visible and infrared regimes,

and may remain true even outside of those regimes as well.

4.2 Infrared Half-Wavelength Structures

From basic antenna theory, a dipole antenna whose total length is half of a wave-

length of the desired electromagnetic radiation maximizes radiated power by virtue

of maximizing the voltage difference between the ends of the antenna, thereby max-

imizing the current amplitude as well. Similar considerations may hold for metal

structures absorbing or scattering incident light. Given this, an extensive study of

ellipsoidal metal particles with sizes around a quarter or half of a wavelength (i.e. not

quasistatic) of incident infrared light has been performed in [2], using FDTD com-

putational tools. The ellipsoidal structures were extremely prolate (rods) or oblate

(disks). The dimensions of the ellipsoids, conductivity, incident wavelength, and ori-

entation angles were all varied to yield extinction cross sections per unit volume as

well as other scattering and absorption quantities of interest.

The study in [2] uses the Drude model

E(w) = 1 - Co (4.3)
Eow(wr + i)

where i = VT, ao is the zero-frequency conductivity, r is the relaxation time of

free electrons in the metal, and Eo is the permittivity of free space (depending on

units). Furthermore, when one of the dimensions of the ellipsoid becomes smaller

than 100 nm, an empirical correction by the aspect ratio is required, given by

h
h +(4.4)1+ h

where h is the aspect ratio, which is - for a rod ellipsoid of equatorial diameter D

and axial length 1 > D, or - for a disk ellipsoid of axial thickness T and equatorial

diameter D > T. That study found that making rods and disks out of aluminum,
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which has o- = 2.81 x 107 s and T = 8.88 x 10-15 s, optimizes the angle-averaged Cptm V

for unpolarized light of A = 10 pm. In particular, the optimal structures generally

have at least one dimension close to half of the wavelength of the incident light. One

particular figure of merit for comparison' is that a rod of length 4.8 Am and equatorial

diameter 0.1 pm has - ~ 22 (pm)- 1 for unpolarized incident light of A = 10 pm.

4.3 Quasistatic Structures in the Infrared Regime

Z

X\ 

.

Figure 4-1: Example meshes of quasistatic structures considered, including a rod
(left) of length 2400 nm & equatorial diameter 92 nm, and a torus (right) of major
radius 36 nm and minor radius 2.5 nm

The structures extinguishing infrared light studied in this thesis, by contrast to [2],

were structures that were either smaller than half of a wavelength or were quasistatic

structures compared to infrared light of A = 10 pm. Two main types of structures

considered were (prolate) rod ellipsoids as well as tori, for which example meshes are

shown in figure 4-1. If the equatorial radius of the rod is small enough compared to

its long radius (which itself is small compared to the wavelength of light considered),

then such a rod that has an alternating current applied to it would behave very much

like a Hertzian electric dipole antenna. By contrast, a small torus of a comparable

size to a Hertzian dipole antenna has a reduced dipole moment compared to the

Hertzian dipole antenna, so if the applied current is the same as in the case of the

'Unfortunately, simulations in SCUFF-EM were unable to exactly reproduce the results from
this existing study, though general trends in the extinction cross section per unit volume were
easily reproducible. Simulations in SCUFF-EM were able to reproduce well-known analytical and
numerical results for both dielectric and metal spheres, so it is unclear what other information may
have been needed from the existing study for simulations in SCUFF-EM to better reproduce those
results. The figure of merit quoted is a recalculation using SCUFF-EM, not the number listed in
that paper.
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rod, the radiated power should be less for a loop; tori only perform comparably

to rods at the scale of half of a wavelength. Likewise, a quasistatic torus with an

alternating current applied to it would behave very much like a small magnetic dipole

antenna. Given this, it is reasonable to presume that thin rod ellipsoids will be very

effective at absorbing and scattering infrared light too, while tori will be comparatively

less effective. That said, because extinction mechanisms behave rather differently in

the quasistatic regime compared to the half-wavelength regime, there may strictly

speaking be no reason to believe a priori that one type of structure will perform

better than the other.

The particular structures considered were rods and tori made of either aluminum

or silver. The code to do this is outlined in Appendix B. In each case, because the

structures had at least one dimension that was not larger than 100 nm, the correction

from equation 4.4 was used; for rods of length l and equatorial diameter D, h = ,I T,
while for tori of minor radius r and major radius R, h = n, as the torus has been

approximated to be a rod of equatorial diameter 2r and length 27rR bent into a circle.

Each torus was optimized for infrared extinction over the major radius R in the region

of 0.5 - 4 pm keeping the minor radius r fixed at 50 nm, or over the major radius R

in the region of 10 -50 nm keeping the minor radius r fixed at 2.5 nm. Likewise, each

rod was optimized over the length l in the region of 1 - 8 pm keeping the equatorial

diameter D fixed at 100 nm, or over the length l in the region of 80 - 300 nm keeping

the equatorial diameter D fixed at 5 nm. Additionally, the aluminum rod only was

separately optimized over the equatorial diameter D in the region of 40 - 120 nm

keeping the length l fixed at 2.4 ,am for comparison with results from [2]. The

optimization results are shown in figures 4-2, 4-3, 4-4, 4-5, & 4-6, and the optimal

results have been further compiled into table 4.1 for rods and table 4.2 for tori.

There are a few things that can be noted right away from the tables. The first is

that for each pair of material and shape, the optimal -4 is essentially unchanging

(where the tiny differences in those values may just be because of slight computational

differences such as different meshes), and the corresponding aspect ratio h remains

in a reasonably close neighborhood for each such pair. The second is that aluminum
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Figure 4-2: e optimization sweeps of aluminum rods over length with the equatorial
diameter fixed; top: equatorial diameter is 5 nm; equatorial diameter is 100 nm; note
that lines are merely to guide the eye and are not indicative of fitting or interpolation

outperforms silver for each shape, matching results from 12]. The third is that, as

expected, the tori perform worse than rods when the dimensions are smaller than half

of a wavelength. The fourth is that the optimal aluminum rods handily outperform
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Figure 4-3: 'ej optimization sweep of aluminum rods over equatorial diameter with
the length fixed at 2400 nm; note that lines are merely to guide the eye and are not
indicative of fitting or interpolation

the half-wavelength aluminum rod from [2] for A = 10 pm from [2], as that rod has

C ~et 22 (pm)- 1 , while these optimized rods have C ~ 110 (im)~ 1.V V

It should be possible to check the computed enhancement values against the qua-

sistatic formula in equation 4.1 for rods, as the depolarization factors are known,

as is . The depolarization factors for a prolate ellipsoid with radii r1 > r2 = r3

(so that 1 = 2r1 and D = 2r 2 ) are L (ln (r2 - 1)) (L and L 2 = L3 = 2.

Additionally, Pi = P2 = P3 = 1 for ellipsoids. As an example, for the optimal rod

Table 4.1: Optimal Rod Extinctions (h = :)

Material D (nm) 1 (nm) h- 1 ] (([m)--1) 11
Al 100 2640 26.4 113.978
Al 5 150 30 112.462
Al 90 2400 26.7 114.485
Ag 100 1900 19 66.7878
Ag 5 102 20.4 65.8244
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Figure 4-4: cjt optimization sweeps of aluminum tori over the major radius with the
minor radius fixed; top: minor radius is 2.5 nm; bottom: minor radius is 50 nm; note
that lines are merely to guide the eye and are not indicative of fitting or interpolation

of r1 = 1.32 pm and r 2 = r3 = 50 nm, then L, ~ 0.00426. If this rod is made of

aluminum, then for A = 10 pm, then e ~ 0.00272 + 0.00163i using the correction

from equation 4.4. It is clear that , $ L 1, yet this rod was computationally found
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Figure 4-5: C optimization sweeps of silver rods
diameter fixed; top: equatorial diameter is 5nm;
100 nm; note that lines are merely to guide the eye
or interpolation

over length with the equatorial
bottom: equatorial diameter is
and are not indicative of fitting

to optimize Cext. This implies that the rods with a length larger than 1 Am are notV

really quasistatic. This is corroborated by the fact that if the equation L, is
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Figure 4-6: Ce optimization sweeps of silver tori over the major radius with the
minor radius fixed; top: minor radius is 2.5 nm; bottom: minor radius is 50 nm; note
that lines are merely to guide the eye and are not indicative of fitting or interpolation

solved for the length while keeping the diameter fixed at 100 nm, then the optimal

length is 3.12 pm, which is essentially the result of assuming that even this long rod

falls within the quasistatic regime. For such a rod, then h- 1 = 31.2, and approximat-
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Table 4.2: Optimal Torus Extinctions (h = ')

Material r (nm) I R (nm) Ih ((h-m)~1)
Al 50 660 41.5 73.7225
Al 2.5 35 44.0 76.8535
Ag 50 470 29.5 43.9246
Ag 2.5 26 32.7 42.3449

ing equation 4.1 as t ;z: x l- (accounting for equation 4.4 as usual) by only

considering the contribution from L, = fr gives e 109 (Mm)- 1 ; this can be done

because the contributions from L2 and L3 in the sum are very small by comparison.

Because this calculation is an approximation, it is most fair to say that the computed

values for the optimal aluminum rods appear to be approximately the same as

this. Moreover, plugging D = 100 nm and L = 3.12 pm into equation 4.2 produces

< 220 (pm)- 1 , and that bound is double the value of 109 (Mm)- 1 found from

the depolarization factors. This is to be expected because incident fields can only

couple to the long axis of a prolate ellipsoid to excite surface charges and currents,

while fields can couple to the two surface axes of an oblate ellipsoid, so as per [10],

quasistatic oblate ellipsoids will generally be able to match the bound in equation

4.2 while quasistatic prolate ellipsoids will only attain half of the bound.

As another example, it is possible to check the above for the rod of length

150 nm and equatorial diameter 5nm. In this case, L1 e 0.00344 is much closer

to r a 0.00308, and the contribution of L1 to the bound in equation 4.2 gives

e 109 (pm)-1 again; this approximation comes from the computed structure,V

before trying to solve Li = . Then, solving L, = fr for a fixed equatorial diameter

of 5 nm and a variable length gives a length of 156 nm, which is significantly closer to

the computed optimal structure and has h- 1 = 31.2 and X ; -230 + 138i again. This

gives the same bound of $ < 220 (pm)-1 as in the previous paragraph, so again

the attained value is half of the bound due to the bound being attainable by disks

rather than rods. It would also seem that as the size of the rod increases, the optimal

h- 1 shifts below 31.2 calculated from the true quasistatic limit, while the optimized
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"'::110 (pm)- 1 remains roughly constant.

Returning now to the comparison of rods with disks, the depolarization factors

for an oblate ellipsoid of radii r1 = r2 > r3 are L, = L2 . and L3 ; 1- ", so L1

and L2 for an oblate ellipsoid involve a single factor of the aspect ratio, whereas L1 for

a prolate ellipsoid involves two factors of the aspect ratio. This implies that for the

depolarization factors to be similar (leading to approximately similar performances in

), an oblate ellipsoid would need h- 1 - 1000 to be equivalent to a prolate ellipsoid

with h- ~ 30. Disks of this aspect ratio cannot be manufactured at the quasistatic

length scale, while manufacturing disks even with a thickness of 10 nm would then

produce a face diameter of 10 pm; that is exactly equal to the wavelength of light

considered, so such a disk would be far from quasistatic, and new models must be

made to account for the absorption and scattering behaviors on that scale.

Therefore, in the infrared regime around A = 10 pm, the optimal structures that

are manufacturable are aluminum rods, and the performance is roughly constant

across length scales, from the quasistatic scale to the micron scale. Moreover, the

performance is better than that of a half-wavelength aluminum rod.

4.4 Future Investigations

The parameter space examined in this thesis was very limited compared to what

could be explored. The first extension would be to explore a larger range of the two

dimensions over which rod' and tori could be optimized. The second would be to

consider multiple wavelengths and optimize structures for the average " over that

range of wavelengths. Those two steps could be done using the same methods as have

been used for this thesis.

The third extension would then be to consider a much larger space of shapes

possible and optimize over those through shape calculus techniques. Based on results

in [101, it is entirely possible that the optimal particles could have weird shapes

compared to standard ellipsoids or tori, and could even have coatings made of different

materials and thicknesses.
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As noted in the previous section, disks are not considered because they would

require much higher aspect ratios compared to rods to be able to provide comparable

performance in P, so they would not be manufacturable. The general rule of only

considering structures that are "easy to manufacture" could then be formalized into a

criterion on the smoothness of the particle surface, so that optimization of the particle

shape and size would be subject to this smoothness constraint. On a broader scale,

such a smoothness criterion could be used for many more photonic, metamaterial,

and nanomechanical design problems. More relevant to this project, though, the

smoothness criterion would likely produce optimal structures that have coatings, as

coatings tend to reduce the aspect ratio of optimal structures with only small hits to

performance in C.
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Chapter 5

Conclusions and Outlook

In this thesis, the work on simulating spontaneous emission enhancement atop a

photonic crystal was done because not much work has been done yet for simulat-

ing quantum electromagnetic processes in classical electromagnetic solvers. By using

MEEP to simulate quantum dipole transitions by classical stochastic dipoles, sim-

ulating spontaneous emission enhancement atop a photonic crystal compared to an

untextured slab was successful, as it was validated by semianalytical predictions from

[14], and those semianalytical predictions were separately validated by experimental

results. Following this, it would be most useful to leverage the power of computational

science to actually optimize photonic crystal structures for spontaneous emission en-

hancement. This could be done by manipulating both geometries and materials used.

Moreover, basic crystal theory gives some ideas for what the band structure of a

photonic crystal with a very high spectral density of states for certain modes would

look like. The band structures of the photonic crystals directly optimized for spon-

taneous emission enhancement could be compared to those theoretically predicted.

Additionally, as a cross-check, photonic crystals could be computationally modified

to reproduce the band structure that would theoretically optimize the spectral den-

sity of states, and the performance in spontaneous emission enhancement could be

compared to those structures that are directly optimized for this objective.

The success of stochastic electrodynamics when used in computational solvers

as outlined above led to the simulation of an isolated nanoscale sphere, where the
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top hemisphere radiates and the bottom hemisphere is a passive high-index material

that behaves similarly to a metal in effectively reflecting significant fractions of in-

cident light above. This structure was shown to have a significant enhancement of

radiation detected above compared to below the sphere, as would theoretically be

expected. Following this, similar spherical structures that reflect radiation in one

direction could be considered, such as a nanoscale sphere that is homogeneously filled

with radiating dipoles, but only one hemisphere is thinly coated with a metal. This

could be generalized to the problem of optimizing the geometry of a nanoscale sphere

for radiation in one direction versus another along the axis about which the system

remains cylindrically symmetric.

I Separately, aluminum rods when made at scales smaller (sometimes significantly

so) than half of a wavelength were shown to outperform counterparts at half of a

wavelength long when considering extinction in the infrared regime. This conclusion

was reached by considering combinations of rod and torus shapes with aluminum and

silver materials. While it seems like aluminum generally performs best at infrared

extinction for any geometry, more general geometries could be considered through

shape calculus techniques, leading to perhaps nonstandard optimal shapes compared

to ellipsoids or tori. Moreover, optimal nanoparticles could be made of metals coated

with other materials as well. These could arise because of general considerations

about the smoothness of a shape, which dictates how easy it would be to manufacture

nanoparticles of that shape. In fact, if a general criterion for smoothness could be

come upon, that would have impacts far beyond optimization of nanoparticles for

infrared extinction.
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Appendix A

FDTD Spontaneous Emission

Computation Code

As further detailed in [9], the Harminv algorithm decomposes a field profile over a

range of frequencies into long-lived modes, giving the central frequency and lifetime of

each mode, among other information; it works most efficiently when the field profile

is made of only a small number of decaying sinusoids. The MEEP code used for

finding modes through Harminv in the photonic crystal system studied in this thesis

is detailed below. Additionally, the code used for FDTD enhancement computations

is shared with the code used to run Harminv, so that is detailed below as well.

materials

include "materials .scm") ; list of material definitions

material: si or custom material

define-param custom-eps? true) ; flag if [noisy] Lorentzian

susceptibility is used

define-param wO le-4) ; Lorentzian susceptibility central f

(value does not particularly matter as long as it is much

to 0 than to resonant frequencies of the slab)

define-param sigma0 1) ; Lorentzian susceptibility amplitud

requency

closer

e
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(define-param gamma0 10) ; Lorentzian susceptibility linewidth

(define eps-func custom-eps) ; shortcut for calling Lorentzian

susceptibility function

dimension

(define-param id-slab? false) ; this is not a 1D calculation

(define-param 2d? true) ; this is a 2D calculation

; flag for Harminv mode-finding versus FDTD flux computation

(define-param harminv? false)

geometry params (units of lscale)

(define-param computational-size 4) ; height of SiO substrate

; visible: this value is usually replaced as a parameter by 2

; to make the computational cell shorter and the calculations faster

(define a 321.4) ; length scale in nanometers

(define-param dpml 3.0) ; thickness of PML: this value is usually

replaced as a parameter by 1 to make the computational cell shorter

and the calculations faster

(define-param sin-thick (7 250 a)) ; thickness of SiN slab (250 nm,

converted to MEEP units by dividing by a)

(define sio-thick (+ dpml computational-size)) ; total height of SiO

substrate (part of it is covered by PML)

(define-param hole-diameter (7 161.7 a)) ; diameter of hole

punched in SiN slab (161.7 nanometers)

(define Lx (* 2 sio-thick)) ; total computational cell should be

; 14 MEEP units long in the direction perpendicular to the slab area

(define sin-x (* 0.5 sin-thick)) ; SiN slab should be centered so

that the bottom surface is at k = 0

(define sio-x (* -0.5 sio-thick)) ; SiO slab should be centered so
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; that the top surface is at x = 0

(define-param meth-thick (/ 100 a)) ; active layer is 100 nm

(define meth-x (+ sin-thick (* 0.5 meth-thick))) ; active layer

; should be centered so that its top surface and the SiN

; slab top surface coincide

(define-param syz 1) ; computational cell is periodic along the y

; (and z, if relevant) directions with a periodicity of 1 MEEP

; unit of length

(define-param sy (if ld-slab? 0 syz)) ; y-axis periodicity

(define-param sz (if (or id-slab? 2d?) 0 syz)) ; z-axis periodicity

; (if relevant)

(define-param output-ensemble? true) ; this will be true for

; FDTD flux calculations , where many of the same calculation

; will be done to average over random dipole configurations

(define-param flux-xcen (+ sin-x (* 0.5 sin-thick))) ; center of flux

; planes: this value is usually replaced by 1.7, which is above the

; active layer in this geometry (given the placement of the active

; layer and PML)

; polarization

(define-param pol Ex) ; current source excited , relevant only

; for Harminv: modes from Ez (Jz) are used in the final

; calculations , though modes from Ex (Jx) and Ey (Jy) are

; also checked to ensure that no modes are too close to each other

(print "field polarization = "pol "\n")

ensure purely uniform slab geometry (irrelevant for 2D)

(if id-slab?
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(begin

(set! sy 0)

(set! sz 0)

(set! 2d? false)

(set! r 0)

)

)

calculation params

(set-param! resolution 20) ; resolution , unchanged

(define-param navg 1) ; number of ensembles to run - convergence found

for navg = 100

(define-param Teq 500) ; time to wait for thermal equilibration

; unchanged

(define-param T 2000) ; time to run collect fluxes: this is

; changed as a parameter to 100000 (10^5) for convergence

; modes were analyzed in FDLTD flux calculations in a region of

; 6\omega/Q around the central frequency \omega, so fmin and fmax

; would be changed accordingly by passing different parameters:

these bounds were also used when calculated the confinement factor

from Harminv

(define-param nfreq 500) ; number of frequencies at which to

; compute flux (relevant only for FDTD flux calculations

; irrelevant for Harminv): usually set as a parameter to

300

(define-param fmin 0.685) ; flux fmax

(define-param fmax 0.695) ; flux f_min

(define-param fcen (* 0.5 (+ fmin fmax))) ; center frequency for
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; flux calculation

(define-param df (- fmax fmin)) ; frequency width for

; flux calculation

(print "geometry params: resolution

resolution ", slab thickness = "h", dpml = "dpml"\n")

(print "computational params: T = "T", Teq "Teq", nfreq

nfreq", fmin = "fmin", fmax = "fmax", navg "navg"\n ")

thermal noise amplitude (for noisy Lorentzian

actual value is less relevant ; also note that

susceptibility is used only for FDTD flux calc

regular Lorentzian susceptibility is used for

define dx (/ 1 resolution))

define dt (/ 0.5 resolution))

define amp

(if harminv? 0.0

(sqrt (/ (* 8 pi) T dt

(if id-slab? dx

(if 2d? (* dx dx)

(* 2 dx dx dx)

)

)

)

)

)

susceptibility ,

noisy Lorentzian

ulation , while

Harminv)

coordinates

coordinates

of single dipole source when

look rather random to excite

performing Harminv:

all possible fields
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; rather than only high-symmetry fields

(define src-cen-x 0.3234)

(define src-cen-y 0.2143)

(define src-cen-z 0.1132)

(define-param dT (* 1000 df)) ; time after fields are turned off

; before Harminv is performed: usually set to 10000 (10^4)

; as a parameter to allow for fields to decay sufficiently

(include "parallel .scm") ; allows for parallelizing the FDTD

flux computations across many processors

calls eps-func with parameters already set and with base

dielectric constant as the only free parameter: this is a

further shortcut definition of the noisy Lorentzian susceptibility

function

(define (set-custom-eps epsinfo) (eps-func epsinfo wO sigma0 gamma amp)

the following lines (up to the definitions of flux planes)

are for making the FDTD flux calculations easier to parallelize

across many processors by allowing computations at many k-points

(where here only ky is varied): however, this is only used for

Harminv with a broadband source, because the FDTD flux calculations

are done around specific modes whose central frequencies and

linewidths shift as k changes, so the FDTD flux calculations are only

done for one value of ky at a time

lists comprising external configurations

(define-param ky-min 0)

(define-param ky-max 0)

(define-param ky-interp 0)

(define ky-list
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(if (= ky-min ky-max)

(list ky-min)

(interpolate ky-interp (list ky-min ky-max))

)
)

(define-param kz-min 0)

(define-param kz-max 0)

( define -param kz-inter p 0)

(define kz-list

(if (= kz-min kz-max)

(list kz-min)

(interpolate kz-interp (list kz-min kz-max))

)

)

make lists of internal/external work to do, assumed to be a direct

product of internal = '(direct-product il i2 .. ) and external

'(direct-product el e2 ... ) lists

(define internal-work '())

(define external-work '()

(if output-ensemble?

(begin

(set ! external-work

(direct-product ky-list kz-list (arith-sequence 1 1 navg))

)
(set! internal-work '(1))

)
(begin

(set! external-work (direct -product ky-list kz-list ))

(set! internal-work (arith -sequence 1 1 navg))

)
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)

(define next (length external-work))

; number of (external) configurations

(define nint (len

; number of runs

( define

gth internal-work))

per configuration

nsims (* next nint ))

; total number of FDTD runs

(print "Computing a Total

nint " computations per co

(define

(define

of "next" configurations

nfiguration \n")

ngroups (max 1 (min (meep-count-processors)

mygroup (meep-divide-parallel -processes

; list comprising

(define work

(cdr

(list -split

(direct-product

)

)

)

with "

nsims)))

ngroups))

both internal/external work

internal-work external-work) ngroups mygroup

; get the index of el in L, or false if el is not in L.

(define (get-index el L)

(define (idx

(if (null? L)

#f

if (equal?

el L start )

el (car L))
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start (idx el (cdr L) (+ start 1))

)

)

)

(idx el L 0)

)

next list of fluxes , each with

define flux-left '() ; list of

above the slab

define flux-right '() ; list of

below the slab

define total-fluxes

(make-vector next

(arith-sequence 0.0 0.0 nfreq)

)

nfreq entries

fluxes (per frequency) from

fluxes (per frequency) from

; total of top and bottom fluxes (not really used due

to sign issue and due to interest in top versus bottom flux)

define total-topfluxes

(make-vector next

(arith-sequence 0.0 0.0 nfreq)

)
same as three lines above (technically a different

object is needed though)

define total -bottomfluxes

(make-vector next

(arith-sequence 0.0 0.0 nfreq)

)
; same

object

as

is

three lines above (technically a different

needed though)
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actually sets up and runs the flux calculation for each value of k

(map

(lambda (w)

(let*

((ew (cadr w)) ; external work parameters corresponding to run w

(ewi (get-index ew external-work)) ; index of this ext.

work in the external-work list

external (configuration) parameters

(ky (list-ref ew 0))

(kz (list-ref ew 1))

)

; set geometry

; computational cell should first be filled with

; passive nondispersive methanol of n = 1.33

(set ! default-material (make dielectric (index 1.33)))

; size of the computational cell (in 2D): note that the slab

; area is parallel to the the y-axis and the perpendicular

; (top/bottom) direction is the x-axis

(set! geometry-lattice (make lattice (size Lx 1 no-size)))

(set ! geometry

(list

; just in case , fill the computational cell again with

; passive nondispersive methanol (" infinity" means the

; full extent of the computational cell in that direction)

(make block

(center 0 0 0)

(size Lx infinity infinity)
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(material (make dielectric (index 1.33)))

)
; then add the slab of passive nondispersive

; silicon nitride (n = 2.018)

(make block

(center sin-x 0 0)

(size sin-thick infinity infinity)

(material (make dielectric (index 2.018)))

)
then drill through the central axis of the silicon nitride

with a cylindrical hole made of passive nondispersive

methanol (this piece is omitted for the normalization

calculation for the FDTD flux computation)

(make cylinder

(center 0 0 0)

(height Lx) (radius (/ hole-diameter 2)) (axis 1 0)

(material (make dielectric (index 1.33)))

)

; second *100 nm thick methanol film (atop the slab)

; should be active with the same base index (1.33)

(make block

(center meth-x 0 0)

(size meth-thick infinity infinity)

(material (set-custom-eps (* 1.33 1.33)))

)

final piece is the silicon dioxide substrate

below the silicon nitride slab

(make block
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(center sio-x 0

(size sio-thick

(material (make

0)

infinity infinity)

dielectric (index 1.45)))

further ensure correct setup of geometry

(set ! geometry

(list -transform-negative geometry

(lambda (o)

(and

(object-member? 'cylinder o)

(zero? (object-property-value o 'radius))

)

)

)

)

(set ! k-point (vector3 0 ky kz)) ; periodic boundary conditions

; given k (here only ky varies while kz = 0 always)

; PML of the desired thickness should only exist at the

; boundaries of the computational cell along the x-axis

(set ! pml-layers

(list (make pml (direction X) (thickness dpml)))

)
(if harminv?

(begin

source is a single dipole Gaussian pulse of desired

frequency center and width, and unit amplitude (the
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(

(

this runs Harminv over a range of ky values as taken

from parameters , but has been commented out to allow

narrowband Harminv calculations leading to calculation

of the enhancement factor

run-k-points dT

(interpolate ky-interp

;( list (vector3 0 ky-min 0) (vector3 0 ky-max 0))

)
(exit) ; end program after a full loop of run-k-points

(run-sources+ dT

(at-beginning output-epsilon)

(after-sources

(harminv pol

(vector3 src-cen-x src-cen-y 0) fcen df

)

)
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absolute values of field and flux quantities in MEEP

are far less relevant than properly-normalized ratios),

which turns off after 5 time widths

set ! sources

(list

(make source

(src (make gaussian-src (frequency fcen) (fwidth df)))

(component pol) (size 0) (amplitude 1.0)

(center src-cen-x src-cen-y 0)

)

)

)



;do not output power unless needed at the end

(at-end

output-efield -x

output-efield -y

output-efield -z

output-hfield -x

output -h f ie ld -y

output-hfield -z

output -dpwr

output-hpwr

output-tot -pwr

)

)

)

(begin

; set polarizations: set all E-field components for FDTD flux

(print "Flux calculation: setting sources\n")

(set ! sources

(list

(make source

(src

(make custom-src

(src-func (lambda (t) 0.0))

(end-time 0.0)

)

)

(component Ex) (center 0) (size 0)

)

(make source
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(src

(make custom-src

(src-func (lambda (t) 0.0))

(end-time 0.0)

)

)
(component Ey) (center 0) (size 0)

)

(make source

(src

(make custom-src

(src-func (lambda (t) 0.0))

(end-time 0.0)

)

)

(component Ez) (center 0) (size 0)

)

)

)

equilibration run (wait to reach steady state)

(print "Flux calculation: just before equilibration\n")

(run-sources+ Teq)

(print "Flux calculation: just after equilibration ,"

"before setting flux sinks\n")

adds flux planes above and below the slab

(set ! flux-left

(add-flux fcen df nfreq

(make flux-region

(center flux-xcen 0 0) (size 0 1 0)
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)

)

)

(set ! flux-right

fcen df nfreq

(make flux-region

(center (* -1 flux-xcen)

)
)

)
(print "Flux calculation:

0 0) (size 0 1. 0)

after setting flux sinks ,"

"just

(run-until T)

before calculation\n")

; flux planes calculated fluxes over time T

(print "Flux calculation: J

"before vector-set t

; sets each flux plane data

; the appropriate vector

ust after calculation ,"

otal -fluxes \n")

collection into

(vector-set

(map

total-topfluxes

(lambda (left total) (+ total left ))

(get-fluxes

(vector-ref

)

)

(vector-set

(map

flux-left )

total-topfluxes

total -bottomfluxes

ewi)

ewi
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(lambda (right total) (+ total

(get-fluxes flux-right)

(vector-ref total -bottomfluxes

)

)

(vector-set!

(map

(lambda (le

(get-fluxes

(get-fluxes

(vector-ref

)

)

(reset -meep)

work)

(i

(

(

f harminv?

print "Finished

this part only

it essentially

with associated

begin

total-fluxes ewi

ft right total) (+ total left right))

flux-left )

flux-right)

total-fluxes ewi)

Harminv! \ n"),

executes for the FDTD flux calculation:

processes the fluxes into a nice set of columns

frequencies

(print "Flux calculation: after vector-set total-fluxes

"before do vector-set total-fluxes\n")

(do (( i 0 (+ i 1))) ((= i next))

(vector-set ! total-fluxes i

(map (lambda (f) (/ f (meep-count-processors)))

(vector-ref total-fluxes i)
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)

)

(vector-set! total-topfluxes i

(map (lambda (f) (/ f (meep-count-processors)))

(vector-ref total-topfluxes i)

)

)

(vector-set! total-bottomfluxes i

(map (lambda (f) (/ f (meep-count-processors)))

(vector-ref total -bottomfluxes i)

)

)

)

(meep-end-divide -parallel)

(define total-flux (arith-sequence 0.0 0.0 nfreq))

(define total-topflux (arith-sequence 0.0 0.0 nfreq))

(define total-bottomflux (arith-sequence 0.0 0.0 nfreq))

(define freqs (get-flux-freqs flux-left))

(do (( i 0 (+ i 1))) (= i next),)

(vector-set! total-fluxes i

(map (lambda (f) (meep-sum-to-all f))

(vector-ref total-fluxes i)

)

)

(vector-set! total-topfluxes i

(map (lambda (f) (meep-sum-to-all f))

(vector-ref total-topfluxes i)

)

)
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(vector-set ! total-bottomfluxes i

(map (lambda (f) (meep-sum-to-all f))

(vector-ref total-bottomfluxes i)

)

)

(set! total-flux

(map (lambda (f t) (+ f t))

(vector-ref total-fluxes i)

total-flux

)

)

(set! total-topflux

(map (lambda (f t) (+ f t))

(vector-ref total-topfluxes i)

total -topflux

)

)

(set total -bottomflux

(map (lambda (f t) (+ f t))

(vector-ref total-bottomfluxes i)

total -bottomflux

)

)

(display-csv

(string-append "flux" (number->string i))

freqs

(vector-ref total-fluxes i)

(vector-ref total-topfluxes i)

(vector-ref total-bottomfluxes i)
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)

)

(map

(lambda (i ev) (print "external-work" i ":")

(map (lambda (v) (print ", " v)) ev)

(print "\n")

)
(arith-sequence 0 1 next)

external-work

)

)

)

(sleep 2)

The code for simulating the "half-sphere" is very similar to the above but with the

geometry, dimensions, and boundary conditions changed appropriately, so it will not

be included here. The two auxiliary files to make this program work are listed below.

The first, called as "materials.scm", contains the relevant material definitions used.

Define dispersive glass / fluid dielectric functions

(define-param length-scale le-6)

; default to units of 1 micron for these definitions

(define-param c 2.99792458e8) ; speed of light

; base unit is 2*pi*c/a, so divide by this much

; to get omega in MEEP units

(define wconv (/ length-scale c (* 2 pi)))

TODO: MEEP now admits

(E-polarizations (list of susceptibilities))
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; LIST OPERATIONS

perform pointwise operati

define (list-op op 11 12)

(if (number? 12)

(if (number? 11)

(op 11 12)

.(map (lambda (x)

(i f (number? 11 )

(map (lambda (x)

(if (= (length 11

(map (lambda

' ()))))

; square list

(define (list-sqr 11)

(if (number? 11)

(sqr 11)

(map (lambda (x)

on (op) on members of two lists

(op x 12 )) 11))

(op x 11)) 12)

) (length 12))

(x y) (op x y)) 11 12)

(sqr x)) 11 )))

MATERIAL DEFINITIONS

shortcut for calling Lorentzian

susceptibility with parameters

(define (make-lorentzian wO sigmaO gammaO)

(make lorentzian-susceptibility

(omega wO) (sigma sigmaO) (gamma gammaO)))

; shortcut for calling noisy Lorentzian

; susceptibility with parameters
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(define (make-noisy-lorentzian wO sigmaO gamma amp)

(if (= amp 0)

(make lorentzian-susceptibility

(omega wO) (sigma sigmaO) (gamma gammaO))

(make noisy-lorentzian -susceptibility

(noise-amp amp) (omega wO) (sigma sigmaO) (gamma gammaO))))

material definition for gold (Au)

(define (gold amp)

(let* ((einf 1)

(wO le-6)

(wp (* 1.37e16 wconv))

(sigmaO (/ (* wp wp) (* wO wO)))

(gammaO (* 5.317e13 wconv)))

(if (= amp 0)

(make medium (epsilon einf)

(E-polarizat ions

(make-lorentzian wO sigmaG gammaO)))

(make medium (epsilon einf)

(E-polarizat ions

(make-noisy-lorentzian wO sigma0 gamma0 amp))))))

; noisy Lorentzian susceptibility with custom index and parameters:

; eps(w) = epsinf + sigma * w0^2 / (wO^2 - w^2 - li*gamma*w)

; where the user inputs fO = wO/(2*pi), Gammao gammaO/(2*pi)

; and sigma into the lorentzian function

(define (custom-eps epsinf wO sigma0 gamma0 amp)

(if (= amp 0)

(make medium (epsilon epsinf)

(E-polarizat ions
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(make-lorentzian (/ wO (*

(/ sigmaO

(/ gammaO

(make medium (epsilon epsinf)

(E-polarizations

(make-noisy-lorentzian (7

2 pi))

wO wO)

(* 2 pi)))))

wO (* 2e

(7 sigmaO

(7 gammaO

amp)))))

pi))

wO wO)

(* 2 pi))

The second, called as "parallel.scm", contains code allowing for parallelization of

a computation with multiple ensemble runs across multiple processors in a node of a

computing cluster.

direct product of lists: a list of lists

containing (el e2 .. ) for every el in Li

and every e2 in L2, etcetera

define (direct-product . Ls)

(define (direct -product2 Li L2)

(apply append

(map (lambda (el)

(map (lambda (e2) (list el e2)) L2)) Li)))

(cond

((null? Ls) '()

((= (length Ls) 1) (car Ls))

((= (length Ls) 2) (direct-product2 (car Ls) (cadr Ls)))

(else (map

(lambda (el)

(cons (car el) (cadr el)))

(direct -product2 (car Ls)

(apply direct-product (cdr Ls)))))))
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; Split a list L into num more-or-less equal pieces

; returning the piece given by index (in 0..num-1),

; along with the index in L of the first element of

; the piece , as a car pair: (first-index piece-of-L).

(define (list-split L num index)

(define (list-sub L start len index rest)

(if (null? L)

(reverse rest)

(if (and (>= index start) (< index (+ start len)))

(list-sub (cdr L) start len (+ index 1) (cons (car L) rest))

(list-sub (cdr L) start len (+ index 1) rest))))

(if (or (>= index num) (negative? index))

(cons (length L) '())

(let ((block-size (quotient (+ (length L) num -1) num)))

(let ((start (* index block-size))

(len (min block-size (- (length L) (* index block-size)))))

(cons start (list-sub L start len 0 '())))))
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Appendix B

BEM Scattering Codes

Below is an example SCUFFGEO file. It lists the dielectric function for aluminum.

(Two are listed, but only one, which is the one in [2], is used.) Additionally, it lists

which geometric object/mesh should have the aluminum dielectric function associated

with it. By default, it sets the exterior region to be the vacuum.

MATERIAL Al

epsO 8.854e-12;

tau 8.88e-15;

sigmaO = 2.81e7;

waistrad 4.6e-2;

longrad 1.2;

Eps(w) 1 - (waistrad * sigmaO)/(epsO * w *

(longrad + waistrad) * (tau * w + i ));

ENDMATERIAL

MATERIAL AlDrudeRakic

eVtoW = 1.519100e15;
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EpsInf = 1;

wp = 2.3245e16;

gamma = 9.0913e14;

waistrad = 5e-2;

longrad 2;

Eps(w) = EpsInf - (waistrad * wp^2) /
longrad) * ( w^2 + i*gamma*w

((waistrad +

ENDMATERIAL

OBJECT TheAlRodFiber

MESHFILE RodFiber .msh

MATERIAL Al

ENDOBJECT

Below is the code used to calculate angle- and polarization-averaged Ck values

for each structure. Note that the axes are rotated for this rod, as it lies along the

x-axis, so the coordinate system is rotated as well. This is not the case for the tori, as

the tori lie in the xy-plane, but aside from those differences, the code is otherwise the

same. The parameters to be specified are the SCUFFGEO file, the list of frequencies,

and the maximum spherical polar angle (along with the maximum azimuthal angle if

azimuthal symmetry is absent, though this is not the case for the systems considered

in this thesis).

#include

#include

#include

#include

<cstdlib>

<iostream>

" libscuff .h"

"cubature . h"

using namespace scuff;
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typedef struct {
RWGGeometry *G;

HMatrix *M;

HVector *KN;

HVector *rhsneg_omega;

cdouble Omega;

double vol;

double solidangle;

} svdata;

calculate the volume of an RWGGeometry

double Volume (RWGGeometry *G)

{
double vol = 0.0, *x0, *xl, *x2, xc[3];

xc a dummy variable for VecCross

RWGSurface *S;

RWGPanel *P;

for(int ns=0; ns<G->NumSurfaces; ++ns) {
S = G->Surfaces [ns];

if( !S->IsClosed )

Warn("Volume-mayhbe.meaningless;, at, Ie ast" +

"one-surface-does-not-close-onit self");

for(int np=O; np<S->NumPanels; ++np) {
P S->Panels[np];

xO S->Vertices + 3*P->VI[O];

x1 S->Vertices + 3*P->VI[l];

x2 S->Vertices + 3*P->VI[2];

VecCross (xl, x2, xc);

vol += (1.0/6.0)*VecDot(xO,VecCross(xl,x2,xc));
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}

}
return vol;

}

calculate extinction at surface , with panel quantities

we assume RHS - RHS(-omega), which equals conj(RHS)

if omega=real

cdouble CalcExtSurf(HVector *KN, HVector *RHS)

{

PExt (0.0, 0.0);

Sign = 1.0;

nr=0; nr<KN->N; ++nr, Sign*=-1.0)

PExt += -0.5 * ZVAC * Sign *

RHS->Get Entry (nr) * KN->GetEntry (nr);

}
PExt *= (cdouble)

7/ normalizing to

return PExt;

2.0*ZVAC;

incident power 1/(2*ZVAC)

int sigma_ angle(unsigned ndim, const double

void *fdata, unsigned fdim,

{
double theta = x[0];

double phi = (ndim==2) ? x[1]

double nHat[3] = {cos(theta),

sin(phi) *

cdouble EO[3= {-sin(theta),

*x ,

double *fval)

: 0;

cos(phi) * sin(theta),

sin(theta)};

cos(phi) * cos(theta),
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sin(phi) * cos(theta)};

cdouble E1[31 {0, -sin(phi), cos(phi)};

define spherical coordinates

set up problem for BEM solution for each polarization

sv data *svd = (sv_data *) fdata;

PlaneWave PW = PlaneWave (E0, nHat);

svd->G-->AssembleRHS Vector (svd->Omega, &PW, svd->KN);

svd->M-->L USolve (svd->KN) ;

svd->G->AssembleRHS Vector ( cdouble (-1.0) * svd->Omega,

&PW, svd->rhs_ neg_ omega);

cdouble svl = CalcExtSurf(svd->KN, svd->rhs_negomega)

/ svd->vol;

PW.SetEO(E1);

svd->G->AssembleRHSVector (svd->Omega, &PW, svd->KN);

svd->M->LUSolve (svd->KN);

svd->G->AssembleRHSVector(cdouble(-1.0) * svd->Omega,

&PW, svd->rhs_ neg_ omega);

cdouble sv2 CalcExtSurf(svd->KN, svd->rhs_negomega)

/ svd->vol;

fval [0] = 1. / svd->solid_ angle * sin (theta) *

(real(svl) + real(sv2)) / 2.;

return 0;

}

set phi_min=phimax=O to integrate only over theta

int main (int argc , char **argv) {
if (argc<4) {
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std:: cerr << "Usage: scuff-sim-angleavg"

"GeoFileOmegaFileThetaMax"

"4[PhiMax]" << std::endl;

e xi t (EXIT_FAILURE);

}

input parameters

const char *geo file = argv [1];

const char *omega_file = argv [2];

double thetamax = atof(argv [31);

unsigned ndim;

double phi-max;

if (argc==4) {

ndim = 1;

phimax = 0;

} else {

ndim = 2;

phimax = atof (argv [4]);

}

double theta-min= 0;

double phi-min = 0;

// integration over (theta, phi) (or just theta)

double *xmin = new double [ndim];

double *xmax = new double [ndim];

xmin[0] = theta_min;

xmax[0] = thetamax;

if (ndim==2) {

xmin [1] = phi_ min;
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xmax[1 = phimax;

}
double solid _angle =1 - cos(theta_max);

i f (ndim==2)

solidangle *= phimax;

cubature (numerical integration) parameters

const unsigned fdim = 1; // sigma_ per_ vol

const double relerror = 1.e-3;

const double abserror = 0;

const size _ t maxeval = 1e5;

double err[fdim];

RWGGeometry *G = new RWGGeometry ( g e o _ file);

HMatrix *M = G->AllocateBEMMatrix ();

HVector *KN = G->AllocateRHSVector (;

HVector *rhsnegomega = G->AllocateRHSVector (;

HVector *OmegaList = new HVector (omega_file , LHMCOMPLEX);

double *sigmaper vol = new double[OmegaList->N];

double vol = Volume(G);

svdata svd {G, M, KN, rhsnegomega, 0, vol , solid _angle };

for (int i=0; i<OmegaList->N; ++i) {
cdouble omega = OmegaList->GetEntry ( i);

std::cout << "omega: " << omega << std::endl;

svd.Omega = omega;

find Cext/V for each angle and polarization and numerically

integrate to find angle- and polarization-averaged Cext/V

G->AssembleBEMMatrix (omega, M);

M->LUFactorize (;
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hcubature

std ::cout

(fdim, sigma _angle, &svd, ndim, xmin, xmax,

maxeval, abserror , relerror

ERROR_L2, sigma_ per vol + i , err);

<< sigmapervol [i] << std :: endl;

}

return 0;

}
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