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Abstract

Novel compact X-ray sources using coherent ICS have the potential to positively impact
a wide range of sectors by making hard x-ray techniques more accessible. However, the
analysis of such novel sources requires improvements to existing simulation routines to
incorporate Coulomb forces among particles and effects related to the phase of emitted ra-
diation. This thesis develops a numerical routine for calculating the radiation scattered by
electrons counter-propagating with a linearly-polarized, Gaussian laser pulse. The routine
takes into account electron-electron repulsion and the constructive and destructive interfer-
ence between the radiation emitted by each electron, making it suitable for characterizing
the properties of inverse Compton scattering (ICS) sources where the electron density varies
on the order of the laser wavelength. Finally, an analysis of the emission characteristics for
an example ICS source with coherent emission at 10 nm wavelength is included. The
source uses a 2 MeV electron bunch and a 1 /pm wavelength laser. The coherent emission
demonstrates a significantly narrowed linewidth and greatly increased output power when
compared to traditional ICS.

Thesis Supervisor: David E. Moncton
Title: Adjunct Professor of Physics, Department of Physics

Thesis Co-Supervisor: William S. Graves
Title: Principal Research Scientist, Nuclear Reactor Laboratory

3



4



Acknowledgments

I would like to thank Boris Khaykovich, Bill Graves and David Moncton for allowing me to

research within their group throughout my undergraduate studies.
Likewise, I would like to thank my parents: Franca and Giulio Resta, for their support

and encouragement over these past four years.

5



6



Contents

1 Introduction 13
1.1 Overview of ICS for Hard X-ray Generation . . . . . . . . . . . . . . . . . . 13
1.2 Overview of Coherent ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Classical E&M Derivation for ICS 21
2.1 The Gaussian Plane-Wave Laser Pulse ..................... 21
2.2 The Gaussian Beam Laser Pulse . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Derivation of the Equations of Motion for Plane-Wave Approximation . . . 25
2.4 Calculating Scattered Radiation . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Sampling Radiation from Multiple Electrons . . . . . . . . . . . . . . . . . . 28
2.6 Ideal Electron-Electron Separation . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Time-Averaged Equations of Motion and Radiation Drift . . . . . . . . . . 32
2.8 Space-Charge effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Numerical Methods for ICSSim 35
3.1 Integration of Time-Average Motion . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Calculation of Space-Charge Effect using Octree . . . . . . . . . . . . . . . 36
3.3 Simulation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Analysis of an Example ICS Source 39
4.1 Initial Electron Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Determining Optimal Electron Bunch Separation . . . . . . . . . . . . . . . 40
4.3 Resulting Radiation Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusion 47

7



8



List of Figures

1-1 Illustration of an electron-photon collision along with the parameters used in
the text. Note that 0 is taken as the angle between the initial direction of
travel of the electron and the direction of travel of the scattered photon. For
a typical ICS setup, pf points in the same direction as pi. . . . . . . . . . . 14

1-2 Plot of the energy of scattered photons by an electron for an electron kinetic
energy of Ek = 2 x 106 eV and laser wavelength of A = 10-6 m corresponding
to an initial photon energy of 1.24 eV. The energy for scattered photons at
0 = 0 is 117 eV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1-3 Plot of Gaussian electron density distribution. Note that the distribution is
well contained within the range -1/2 to 1/2. . . . . . . . . . . . . . . . . . . 19

2-1 Illustration of the vectors used in the far field approximation. The gray
polygon represents the electron distribution, Rcm(tcm) is the center of mass
of the electron distribution, ri(tr) is the location of the ith electron, and R is
the observation point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3-1 Illustration of the space subdivisions (left) and node tree (right) for the gen-
eration of an Octree with three electrons. In the first step, the first electron
is added to the root node. When the second electron is added (step 2), the
space of the root node is subdivided into eight subsections and, the root node
adds both electrons to the node representing the respective subsection it is
in. Each node in the tree carries out a similar process as is illustrated in step
3 when the third electron is added. . . . . . . . . . . . . . . . . . . . . . . . 37

4-1 Illustration of the square density used for the initial distribution of the elec-
trons along with the parameters used in the text. Note that within each
period of the beam, the electrons occupy a region given by the product of
the fill-fraction ff and the period of the density Ab. Note that in the case the
fill factor ff = 1.0, the macroparticles are uniformly distributed along the z
ax is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4-2 Initial distribution of simulation macroparticles in the X and Y direction. In
total 106 macroparticles were used in the simulation. . . . . . . . . . . . . . 41

4-3 The last nine microbunches in the initial electron distribution to visualize
the average distribution of macroparticles within a microbunch. The total
distribution contains 400 of such microbunches. . . . . . . . . . . . . . . . . 42

4-4 Comparison of the output intensity as a function of the period of the electron
distribution Ab for both a coherent (ff = 0.5) and incoherent (ff = 1.0) case. 42

9



4-5 Emitted intensity profile for the example ICS source parameters for a fill-
factor of ff = 0.5 representing a coherent ICS source. We can see that the

peak intensity is around 2.9e - 6 W/m2 . . . . . . . . . . . . . . . . . . . . . 43
4-6 Spacial distribution of the average radiated energy for a fill-factor of ff = 0.5,

representing a coherent ICS source. . . . . . . . . . . . . . . . . . . . . . . . 44

4-7 Emitted intensity profile for the example ICS source parameters with a fill-
factor of ff = 1.0 representing a comparable incoherent ICS source. Do to

the low intensity, statistical fluctuations within the distribution of the 106
macroparticles are sufficient to visibly alter the computed profile of the beam.

We can see that as a result of these fluctuations, the peak intensity is slightly
off center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-8 Emitted peak intensity as a function of the number of electrons within the

beam for both the coherent ff = 0.5 and incoherent ff = 1.0 case. As

expected, while the incoherent case scales like the total number of electrons
within the beam, the incoherent case scales like the square of the total number
of electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10



List of Tables

4.1 Parameters for an example ICS source. To simulate the output from a similar

incoherent source, we simply set the fill-factor to 1.0, resulting in a uniform
distribution along the Z direction. . . . . . . . . . . . . . . . . . . . . . . . . 40

11



Notation
Three-dimensional vectors are denoted with an arrow on top: v, ,
Four-dimensional vectors are denoted in bold: p, r, ...
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Permittivity of free-space: co
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Angular-frequency: w
Transpose of a tensor is denoted by a super-script T (eg. pT).
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Chapter 1

Introduction

Today x-rays provide an indispensable tool for analyzing the structure of matter in a wide

area of applications from medical imaging, to the inspection of industrial components, to

a number of uses in the physical, chemical and biological sciences. While many of these
applications are only made possible thanks to the versatility of conventional or rotating-

anode-based x-ray sources, improved flux and brilliance is in great demand for the hard

x-ray regime. Current methods for generating hard x-rays, such as synchrotrons and free-

electron lasers (FELs), require large storage rings or long (- 1 km) linear accelerators. As

a result, the prohibitively large and expensive nature of such sources limits the availability
of a wide range of hard x-ray techniques.

The development of a compact source has the potential to enable modern x-ray science
at institutions such as pharmaceutical companies and universities to accelerate analysis
work which would currently require scheduling and sending samples to a distant facility.

Recently, a novel approach using coherent inverse Compton scattering (ICS) from elec-

trons counter-propagating with an infrared laser may provide a less-expensive and more
compact solution for generating x-ray beams comparable with 3 rd generation synchrotrons

[31. The technique relies on using a nano-cathode field-emission array (FEA) to produce
bundles of electrons spaced on the order of the x-ray wavelength.

While a large number of codes exist for simulating ICS and FEL interactions (PARMELA,
GENESIS, ELEGANT, COMPTON, ... ), these codes either assume that the phase of the
radiation being emitted by each electron is uncorrelated, relying on approximations where
the electron density varies over a characteristic length much larger than the laser wavelength
or ignore the effects of Coulomb repulsion. As a result, such simulation codes are poorly
suited for determining the emission properties for a coherent ICS source.

This thesis attempts to address the need for an ICS simulator which is able to track the
phase of the radiation emitted by each electron, and take into account effects due to electron-
electron repulsion. In doing so, it attempts to provide an additional tool to facilitate the

design and analysis of such ICS sources currently under consideration.

1.1 Overview of ICS for Hard X-ray Generation

There are two approaches within the literature for understanding the basic principle behind

ICS sources, one from a Quantum-particle viewpoint and the other from the classical field

theory of E&M.

For the quantum-particle standpoint, consider a relativistic collision between an electron

13
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pf qf

Figure 1-1: Illustration of an electron-photon collision along with the parameters used in

the text. Note that 0 is taken as the angle between the initial direction of travel of the

electron and the direction of travel of the scattered photon. For a typical ICS setup, pf
points in the same direction as pi.

and a photon. Let pi and qi denote the initial four-vector momentum for the electron and

photon respectively and pf and qf the final four-vector momentum. In terms of common

parameters,

pn =ynm (c, Vn),

qn = (1, kn) ,

where Wn and kn are the angular-frequency and direction of travel of the photon, m and vn
are the mass and velocity of the electron and, -yn is given by,

1

Using conservation of momentum,

pf + qf = pi + qj,

we can determine an expression for the final momentum of the electron, mainly,

pf = pi + qj - qf.

Taking the four-vector inner product of both sides of the above equation, and using the fact

that, since 71 = 1T

a - -bT= (a - -bT) T

= b - rj- aT

we find that,

Pf - 71 - Pf = (pi + qi - qf) - Tj - (pi + qi - qf)T
TTTTT T

=sn7 einit i + p and7-i - 2piinterqms -ofor comon +parme +an qi-fyg,

Using the definitions for p and q in terms of more common parameters and simplifying,

14
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Figure 1-2: Plot of the energy of scattered photons by an electron for an electron kinetic

energy of Ek = 2 x 106 eV and laser wavelength of A = 10-6 m corresponding to an initial

photon energy of 1.24 eV. The energy for scattered photons at 0 = 0 is 117 eV.

it is found that,

m2c2  2 )+ 2, Wf,M c2 =M mc2 - 2-yimhwi (Vi - ki - c) + 2 V4(i -kf c (ki kf - )c '

which can be solved to determine the angular-frequency of the scattered photon Wf,

Ui (c - Vi - ki

(C - V64 -kf +k ci-fWf= 1.)ic

Figure 1-2, plots the behavior of Equation 1.1 as a function of the angle 9 between 'i and

kf for photon and electron energies of a sample ICS source. With the understanding that a
laser consists of a distribution of photons, we can see that an electron counter-propagating
with a laser will result in scattered photons propagating in the electron's direction with a

much higher energy. It is this property of ICS that makes it suitable for the generation of

hard X-rays.

15



1.2 Overview of Coherent ICS

To understand the effect periodic electron distributions have on the intensity emitted in

coherent ICS, let us investigate the phenomena using Classical E&M in the non-relativistic

limit where the electron velocity v < c.

Consider a linearly-polarized plane-wave propagating in the negative . direction. Let-

ting,

z + ct,

E = Eo cos(k4),

k =-7

the E&M fields of the plane-wave are given by,

E= Eq, (1.2)

B - x E = .. (1.3)
C C

Let r' denote the position of an electron. Using the Lorentz force equation,

F = q (E+ r x B ,(1.4)

the non-relativistic equations of motion can be readily found,

= 0

.. qE (I+ z
z =

=Z - _qE~y
m C

Since we assume that the electron velocity v < c, we can ignore terms of the form f2 /c
in the above equations, reducing them to,

fxr= 0,

.. qE _qEo

y- m = cos(k (r, + ct)),M m
fz = 0,

which can be easily integrated by noting that,

rx = vt + xo,

rz = vzt + zo,

and hence,

f= qE cos(k ((vz + c)t + zo)), (1.5)
m

ry= - qE0 2 cos (k((vz +c)t) + kzo) + vyt + yo. (1.6)
mk2(Vz + C)2

16



To simplify calculating the radiation emitted, let us assume that the motion of the
electrons deviate slightly from a ballistic trajectory along the z-axis,

F(t) - (vzt + zO) &.

This requires that v, = vy = xo = yo = 0 and, that the oscillatory term in the equation for
ry is relatively small compared to the distance at which the system is being observed. This
last requirement essentially places a constraint on the strength of the plane-wave.

Letting R denote the point where the radiation will be observed, the radiation from a
non-relativistic charge is then given by,

Erad = 21 (tr) x il x ii,
47rEoc nH

where,

S=R - f(tr )

C

If we let the observation point be on the z-axis such that R = RO;, we can simplify the
equation for the radiation to,

q A
Erad = n(tr) X ZJ X Z,

4lreoc2 n

where,

n = RO - Vztr - zo

tr = t - - + ZO
c c

ct - RO + zO
C -VZ

Finally, let us assume that the electrons are localized in a region of space of length
1 = Azo, such that Azo < RO. We note that the difference in tr for each of the electrons is
given by,

Atr = Azo
c -VZ

C

and hence, it follows that,
VzAtr < Ro.

Likewise, let us sample around the time,

t = Ro + t',
c

where ct' is on the order of the laser wavelength.

17



With these requirements, the equation for the radiation simplifies to,

Erad = 4droc2Ro ((tr) X ) X , (1.7)

where,

ct' + zO
tr =-

C - Vz

Combining Equations 1.5 and 1.7, we find that the electron radiation is given by,

-a q2 EO ck(vz + c) , VZ + C

47rE0mc2 R0  (c - vz) c - VZ +ZO Y

Switching to complex notation,

-. q2 EO a2c .ck(vz + c) ,
Erad = - 4rcomc2  xp yiky VZJzo) exp (C- J y.

We make one immediate observation, mainly that the angular-frequency of the emitted

radiation w, is given by,
= (vz + c)Wi

C - Vz

where we have used the relation wi = ck. This is consistent with Equation 1.1, when noting

that for this setup ki = -i and kf = s and, the necessary classical limit hwi < ymc2 is

respected.

We can now analyze the effects the spatial distribution of an electron pulse has on the

radiation emitted. Consider a line of electrons situated at the origin with a length l much

larger than the period of the radiation, but as required by the above derivation l < RO.

Let p(z) denote the density of electrons as a function of z such that,

Ne = p(z)dz,
-1/2

where Ne is the total number of electrons in the pulse. The electric-field at observation

point R is then given by,

-. q2 EO [/jl2 2c .ck(vz +c) t,
Erad = - 4 2 R _I exp (ik( z) p(z)dzj exp (t) . (1.8)

Two particular forms for p(z) are of interest. The first is a Gaussian distribution well

contained between -1/2 and l/2, for instance,

Ne Z 2
Pnc(z) = exp ,

orv __r' ( 2o.2

where we let o- = l/8. Figure 1-3 plots this distribution, demonstrating that it is well-

contained between -1/2 and 1/2.

Since the density is well contained, we find a good approximation to evaluating Equa-

tion 1.8 using the density pnc by approximating the integral as being over the range

18
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Figure 1-3: Plot of Gaussian electron density distribution.
well contained within the range -1/2 to 1/2.

(-oc, o). Doing so, we find that,

- q 2E 0
- 47reomc2Ro Nexp (

0.5 1.0 1.5 2.0

Note that the distribution is

2)
1 k
2 ( 1)

(c - Vz) 8
exp (.ck(vz + c)t

(C - vz)

Computing the time-average intensity,

(In,) =

4a N-12 2
SqJN 2expN
327r2 Omc 3 RO

(1.9)

(1.10)

The second functional form of interest is a distribution where electrons are separated

by a distance,

Az = A(c - vz)
2c

(1. 11)

where A is the wavelength of the plane-wave. Letting m be an integer such that 0 < m <

i/Az, this distribution is given by,

- aAz)

where J denotes the dirac-delta function. Evaluating Equation 1.8 using the density pc is

19
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simple,

-4 = q 2EO [1I/2 (/ 2c ) z) m Ne (1N 1 (ck(v, + c) ,'\Ic 4 2 exp ik c z Ne 6 H-- aAz - z dz exp i -kv) + c
4ircmc2 R0  -1/2 c - Vz a= m 1 \2 /c-VZ)

q 2 EO . 27r 1 .ck(v. +c)_ ,
= - Ne exp z x -ty

- 4ire0mc2 R0  Az 2) x (c -v oz

Computing the time-average intensity, we find,

(Ic) = E * . (1.12)
327r26jm2c3 R(

(1.13)

Comparing Ic above to Equation 1.10, we see that the exponential representing partial
constructive interference is missing, resulting in a much higher intensity for the coherent
case.

1.3 Outline of Thesis

While the arguments above are useful for illustrating the general concept behind a coherent
ICS source, a rigorous analysis taking into account additional factors such as space-charge
effects and the relativistic motion of electrons within a laser beam requires a numerical
simulation routine.

Chapter 2 follows a similar structure as Section 1.2 but in a more rigorous fashion.
Two realistic models for a laser pulse with a Gaussian energy distribution are discussed,
the radiation scattered by a relativistic electron is considered and finally, a method for
introducing space-charge forces is presented.

Chapter 3 discusses two numerical methods used within the software to implement
the routine discussed in Chapter 2. One of the methods is related to accelerating the
computation of space-charge forces on each electron by using an Octree, where as the other
method is related to how the equations of motion are integrated.

In Chapter 4, parameters for an example ICS source are analyzed. Both the energy and
spatial profile of the emitted beam as well as the dependency of the beam profile on the
spacing between the electron bunches is discussed for both a coherently and incoherently
radiating electron density.

20



Chapter 2

Classical E&M Derivation for ICS

To incorporate effects due to the phase of scattered radiation into our simulations, we have

selected to follow a derivation of ICS from the standpoint of classical E&M. The validity of

Classical E&M in analyzing the radiation from an electron assumes that the energy of the
electron is much greater than that of the incident photon [8],

hw < ymc2 . (2.1)

For the electron and photon energies under consideration this approximation is well justified.

2.1 The Gaussian Plane-Wave Laser Pulse

We begin by considering a simple model for a linearly-polarized Gaussian laser pulse as
consisting of a Gaussian distribution of energies in the plane-wave propagation mode. Let
us introduce the forward Fourier Transformation,

ff(w) = f(t)e-w'dt, (2.2)

and inverse Fourier Transformation,

1 ~.
f) = f(w)e*wtd. (2.3)

Consider the electric field of a simple monochromatic plane-wave of angular-frequency wo,
traveling in the -i direction,

E(z,t)p. = EO exp iWO t + + c.c.

Using the inverse Fourier Transformation, we find that the representation for this field in
frequency-domain is given by,

Empw(w) = E exp i - 27r6(wo -w),

From this frequency-domain representation of a mono-chromatic plane-wave, we can
identify that part of the expression is related to the amplitude of the plane-wave propagation
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mode and the other part is related to the normalized energy spectrum,

Empw(w) = Eoexp (io- 27rJ(wo - w).

freq.-domain plane-wave amplitude

The E-field of a mono-chromatic plane-wave can therefore be understood as the inverse

Fourier transformation of the product of the frequency-domain amplitude of the plane-wave

mode (E,) with the mono-chromatic energy spectrum (Fmc),

Empw(z, t) = , j Epw(w)Fmc(w)eiWdw, (2.4)

where,

Epw (z, w) = Eo exp (iw , (2.5)

Fmc(w) = 27r6(wo - w). (2.6)

To determine an expression for a plane-wave with a Gaussian energy distribution, we

introduce the energy distribution [11],

~ r (W - WO )2
F(w) = -exp - ,) (2.7)

where p is a parameter related to the width of the distribution.

The electric field of the Gaussian plane-wave pulse can then be determined with the

following,

Egpw(z,t) = tJ Epw(w)1g(w) eiwtdw

Egpw(z, t) = Eo exp -P (t + exp (iZ2 (t + (2.8)

From the above equation, we note that the 1/e width of the pulse (cto) is related to the
energy distribution parameter p by,

P C )2

= (.)d

As a result, we find that the representation for the electric-field of a Gaussian modulated
plane-wave is given by,

Egpw(z,w) = Eotov9 exp (-W WO)2tO) exp io , (2.9)

Egpw(zt) = Eoexp (Ct+ ) exp i -(ct + z)). (2.10)

We note that in the limit where the 1/e pulse length is much larger than the wavelength

22



corresponding to wo,
27rc

< cto,
WO

the second exponential term in Equation 2.10 results in a rapid oscillation compared to the
first exponential which is responsible for a slow modulation of the amplitude,

((Ct + Z)2 2

Egp(z, t) = Eo exp c2t2 exp (2 (ct + z))

Slow Amplitude Modulation Rapid oscillation

2.2 The Gaussian Beam Laser Pulse

The above equation for a Gaussian plane-wave is suitable for modeling situations in which
the electron bunch is transversely spread over a region of the laser where the profile is
relatively constant. However, if the transverse electron bunch size is comparable to the
transverse profile of the laser, a more accurate model which likewise encapsulates the trans-
verse Gaussian-like modulation of the laser is required. To determine such a representation,
we can perform a similar derivation as in Section 2.1, however using the Gaussian beam

mode instead of the plane-wave propagation mode.

The amplitude for a Gaussian beam along - in frequency-domain representation is
given by [11],

WO r2 ikr2
Eg(r,z,w)=Eo exp - 2 +ikz+ ,(2.11)

w(z) w(z) 2  2R(z)

where,

r = V/X2 + y2,

Beam Waist -w(z) = wo 1+ ( 1),

Radius of Curvature -+R(z) = z (+

/z
Gouy Phase -+71(z) = arctan - I

Diffraction Length -+zo = 0

Wave Number -÷kO = -.
C

By again using a Gaussian energy modulation [11],

~ Tr(( - w) 2
F(w)= -exp - ,

p 4p -

23



the expression for the Gaussian pulse is given by,

E(r, z, t)gg = 1 Ek(r, z, w)F(w)e"'wdw.

Determining an analytic expression for the above integral is difficult if we assume that
the waist size is independent of the wave number [11]. However, in the case of a confocal

resonator, the waist size depends on the wave number according to [9],

WO = 

where L is the length of the resonator.

Under these circumstances an analytic
for a Gaussian Beam pulse is given by,

E(r, z, t)gg = Eom(z) exp

expression can be easily derived [10]. The field

co)2
+ ikoir - iq( (2.12)

where cto is the 1/e length of pulse and,

ir 2M(Z)2 r2
= +-q(z)+z+ct,L 2

Gouy Phase -+il(z) = arctan -
( zo

-1/2

Diffraction Length

Length of resonator cavity

m(z) =( + - 2

q~z) =
q(z) = z 2 + z '

L
+zo = ,

-+L = woko.

We can rewrite Equation 2.12 to better illustrate the nature of the pulse. Letting,

< = ct + z,
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we note that,

E(r, z, t),g = Eom(z) exp (2 q2(z) - r4  +(ZX' r2q(z)# +02

Amplitude modulation

(.rm(z)2 q(z) (\\" exp (_ r -Z) +7(
2L(cto)2  +r Z)

Phase modulation

" exp, ( (ko - 2r2m(z)2
x exp i ko L(Cto)2 -

Fast oscillation

2.3 Derivation of the Equations of Motion for Plane-Wave
Approximation

We can determine an approximate relation for the radiation scattered by an electron by con-

sidering its motion within a monochromatic plane-wave. We begin with a general derivation

of the relativistic equations of motion for a single electron counter-propagating with a lin-

early polarized plane-wave in the negative i direction [7] [5].
Letting,

= z + ct,

E = Eo cos(ko + 61),

the E&M fields for a plane-wave traveling in the k = -s and linearly polarized in the Y
direction are given by,

-4 = EE

B= -k x E = -X.
C C

Using the Lorentz force law,
d5 t-*- -.

= (E + r4 x B), (2.13)
dt

the equations of motion can be easily determined, mainly,

dpx -
dt

dpy (1z~
d =q 1+ - E,
dt C)
dp= 

- -qE Y.dt

From the above, we note that px is a constant of motion px pxo. Likewise, the equation

for py can be easily integrated since,

dt
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Hence,

d~dpy _z

=O qp 11 + -z E,
dt do ( C)

Py= qEO sin (ko + 1) + c2. (2.14)
ck

Noting that the total energy of the particle is given by E = ^ymc 2 and that,

dE .. dfp
dt dt

d(-ymc 2 ) _4

using the fact that fr (rx B~ =

d(ymc2 ) .
=tqr -E,dt

= qfy E,

a simple expression for the derivative of y can be determined,

dy _ qYE (2.15)
dt mc2

Solving for y in the above expression, and substituting it into the derivative for pz, we find,

dpz dy

dt dt '

and hence,

pz = cl - ymc,

where cl is a constant of integration.

Finally, using the fact that the inner product of the four-momentum is given by,

-M2C2 T 
. . PTI

-M2C2 _72 22 2+ P + P2 + P .

and plugging in our determined expressions for px,py and pz, we find that,

-m C= _72M C2 + PXO + P2y + C1 - 2-ymcci_+ 2M2C2'

-M2 c2 = P2 + p + c2 - 2-ymcci,

solving for y,

M2c2 + P2 + P2 + C2
X 

-1  (2.16)

2mcci
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We note that the expression for the momentum of the electron are trivial to integrate

with respect to 0, since,

d-
dt

=c +z,= c+
Pz

,YM
cl

-Ym

Therefore, using,

dt ~m
dqo di?_

dt doby

an expression for the position of the electron can be easily determined,

rX = - + C3,
Cl

1 = qEo
Iy= o + 61)+20 Q

Ci \ ck2 J

1 qEo 2
rz - 2

- m2C

1
1 sin(2kO + 261)

4k

12 2 2 2+px - Cl+ C2 +

qEo
+ 2c2 ck2 cos(ko + 61)

ck2

qE0 2 + C5. (2.19)

2.4 Calculating Scattered Radiation

The electric field for a point charge in arbitrary motion is given by [4],

)= q L [(c2 -v 2)-+ x (- x)]
47rco ( -.U)3

B(R, t) = - x (, t)

where,

Position of particle -+i(tr)

Velocity of particle -+= i(tr)

Acceleration of particle -+ = F(tr)

Observation point -+R

Vector from emission to observation point -+X = R - F(tr)

Retarded time -+tr = t -
C

U= cx- V4
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However, since only terms which scale like 1/ x I propagate to infinity, the radiation from

a point charge in arbitrary motion is given by,

q kF1I
Erad(R, t) = 47reo (- )3 [Y x (u x d)], (2.22)

B(JIt) =j- x E(R't).
C

To determine the acceleration vector a we note that,

d _ d P 1 dpi + dy

dt dt k7m ~ym dt m dt

Using the expressions derived in Section 2.3 for ', d-y/dt and, dfl/dt, we find that,

qpypx Eo cos (ko + 6 1)

q 3m3c2  IY
a = 2 Eo cos (k# + 61) (c - U/ . (2.23)

\2m cymcJ
_Pyc1 Eo cos (k# + i)

2.5 Sampling Radiation from Multiple Electrons

While the exact electric field from a single electron can be easily determined using Equa-

tion 2.22 in conjunction with the derived expressions for the motion of the electron, summing

the radiation from multiple electrons using such an exact approach is complicated by the

fact that the expressions for the equation of motion are a function of #, while the electric

field must be summed with respect to time. Methods explored to overcome this difficulty

while introducing no additional approximations proved to be too computationally intensive

or unreliable, especially since many quantities of interest (such as intensity) are time aver-

age values of the electric field. However, we can introduce two reasonable approximations

that simplify the problem.

First, we approximate the motion of the electron as being ballistic as it traverses one

wavelength of the laser. From Equations 2.14 we can see that if,

qEo

ck

then the oscillations in the y component of the momentum are relatively small compared to

the total momentum of the electron. As a result, we can consider the electron as effectively

having a constant velocity 6(to) as it traverses one wavelength of the laser, such that,

f(tr) = V(to)(tr - to) + f(to) (2.24)

and,

c(t ) -i (to),

is approximately constant. Under this ballistic assumption we can rewrite Equation 2.23
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Figure 2-1: Illustration of the vectors used in the far field approximation. The gray poly-
gon represents the electron distribution, RnM(tcn) is the center of mass of the electron
distribution, i(t,.) is the location of the ith electron, and R is the observation point.

as,

qEoa= cos(k+61) - (2.25)
m

where,

12
9 = 2 (-vXvY, cv- +c -v , vy(vZ + c)) . (2.26)

Using Equation 2.22 we now see that the electric field is given by an equation with the form
of a plane-wave,

q2EO |
rad (Ft) - 4 - -- )3 [z x ((c1 - ) x #)] cos (ko + 61), (2.27)

Evd 47com (cX - X v
Oscillating Term

Amplitude

which has a quasi-periodic value within the interval,

2ir
o = .7r (2.28)k

From the definition for #, and using Equation 2.24 we see that,

A0 = CAtr + AZ, (2.29)

= (c + -7)At- . (2.30)

Under a ballistic approximation tr has a quadratic form. However, if we introduce
an additional far field approximation, we can determine a simpler expression for tr. As
illustrated in Figure 2-1, let R be the location of a pixel on the detector, Rcm,(tcm) be the
center of mass of the electron distribution, n= R - Rcm(tcm) and where,

tcm = - - Rc n(tom)
C

In the limit in which the detector is far away with respect to the size of the electron
distribution such that,

Rcm(tem) - i (t) I < ft - Rem (tcm),
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we can use the approximation that [6],

X =|R - F(tr )|

I~ - Rcm(tcm)I -- Fi(tr) - 1cm(tcm) - . (2.31)

As a result, the expression for tr becomes,

kFI
tr = t -

C

C(t, - tcm) = c(t - tem) - 1- Acm(tcM)| + (F-(tr) - 0cm(ter))

c(t - tcm) - I- RcMr(tcm)I + (C(tcm) - 1cr(tcr))
(tr - tcm) = (C -(tcm) i)

From the definition of <5, Equation 2.27, and the above expression for tr - tem, we find that

the emitted radiation is given by,

Erad = A cos (k(ctr + rz(tr)) + 61),
= A cos (k (c(tr - tem) + vz(tr - tem) + rz(tem) + ctm) + 61),

hence,

k(c + v,, )Erad = A cos I 1 c (C(tr - tcm) - - Nem(tcm))

k(c+ v,)
+ v-) ((F(tcm) - RCm(tcM)) i)

+k (ctcm + rz(tem)) + 61], (2.32)

where,

A q2EO LFIA =4i2om IzI - 3 [ x ((ci' -,Y) x j)]. (2.33)
4,7rEom (clx'l - X -6

From Equation 2.32 we can see that the angular-frequency of the emitted radiation is
given by,

Wf = aiwi, (2.34)

where we define,

C + -. (2.35)
c - v -n

The above expression agrees with its quantum counterpart (Equation 1.1), as long as the
assumed limit of classical E&M (Equation 2.1), is taken into consideration.

If we assume that the radiation scattered by an electron at each point within a laser is
given by a Gaussian distribution of energies, a method for computing the radiation scattered
by multiple electrons becomes immediately evident. Under this assumption, the amplitude
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of the scattered radiation for the ith electron is given by,

q2E(t, i) 1
Ai(wf) = 4erxom 2aiVr3

(wf /ai - WO)2

4p - . 3 [Yi x ((c .i -
(clYi I - xi -vi)

The total electric field emitted by all of the electrons is,

Ai cos (Wf ((t
tcrn) .1 - Cn(tCm)| i +

i

Oi = 'i (((tcm) -cm(tcm)) rz(tcm).

Switching to complex notation,

N

Etot(wf) = Ai exp (iwf ((t tcm) R - cm (tcm) + iwi69 + ioi)

= Aexp (iwi6i + i6i) Iexp (iw!

As a result, the time average intensity is given by,

I(Wf) = 'Etot2,2

hence,

N 2

I(wf) = 2 Ai exp (iwi6O + i61 )

Finally, the total intensity is the found by integrating over wf,

hot = I(wf)dwf.

In conclusion, we have determined a method to incorporate phase into our calculation

for the emitted radiation. Equations 2.38 and 2.39 summarize the procedure used in our

simulation for sampling the emitted radiation.

2.6 Ideal Electron-Electron Separation

From Equation 2.38 we can see that the ith and jth electrons radiate in-phase when,

27ra = wi69 - wj6j,

where a is an integer.
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v ) x 1)].

(2.36)

where,

(2.37)

((t - tem) - Rcm(tcm)

(2.38)

(2.39)

ft) + (teM +



If we assume that the electrons are traveling with the same velocity vector, such that

ai = aj, and let ft = i, we find that,

2ra (ai + 1)(i(tcm) - ij(tcm))
C

Az
= wi(as +1)c'

C

hence for a = 1,

Az = A(c -vz) (2.40)
2c

where A is the wavelength of the laser. We note that this is the same ideal separation as in

the non-relativistic case (Equation 1.11).

2.7 Time-Averaged Equations of Motion and Radiation Drift

To incorporate additional effects such as space-charge forces and effects due to the finite

length of a laser pulse, we can determine an approximate time averaged form of the equation

of motion by averaging over a period for q,

1 fO+2k rj do$,

and introducing a variable for the averaged q, mainly (#) = # + 7r.

Doing so, we find that the time average position of the particles is given by,

() = () + C3,
C1

(Y)= C2(#)+ C4
C1

(z) = - (Mc2 + p_ c_ + C2 + + c_ 12c2 Xl 2 +k}2J

Notice that while the time averaged expressions for x and y are independent of the laser

field strength, the time average expression for z contains a term proportional to -Es. This

term, results in a time averaged drift of the electron in the direction of k as the electron is

exposed to the laser field.

Likewise, the expressions for the time averaged momentum of the electron are given by,

(Px) X
Cl

(P )= 
2

C1

1 = - C2 +P 2 - 2 qEo 2 )
(Pz) 2 2 Im 1 2 +-cikc2

ck J2
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2.8 Space-Charge effects

Due to the relativistic motion of the electrons, the static Coulomb force,

qiqj rij

47rEo IiI
3 '

is only valid in the rest frame of the electron distribution. However, as a result of the non-

simultaneity of special-relativity, computing the repulsion forces in the rest frame would

complicate the integration of the motion of each electron in the lab frame due to the fact

that, the static Coulomb forces experienced by each electron at a given moment in time in

the rest frame, are experienced by the electrons in the lab frame at different times.

As a result, we decided to use a different approach by using Equation 2.20 in conjunction

with a ballistic approximation to determine the force on a given electron in the lab frame

based on the current position of the other electrons.

From Equation 2.20, we find that the force on electron i by electron j is given by,

i = qi (jr-i) + V-i x Bj(ri) -

Using,
1 -

B3y = -si xE,
c

we find that,

F(( = q g 3 (c2 -v?)ili) + ( x ((c - i ,)), (2.41)
F3 47reo ( X -i Cig c

where,

xij = i (t) - ij (tr ),

i = csi - i6j,

tr= to - ,
C

and where to is the current time. Using the ballistic approximation on electron j that,

ij (tr) = (tr - to) l + ij (to),

Equation 2.41 can be easily computed. The total force on electron i can then be determined

by summing over all of the other electrons,

Fi =Z Fij. (2.42)
isi

To simplify implementation, we can assume to good approximation that the electrons are

effectively at rest with respect to each other in the sense that,

We note that under this approximation, our method for computing space-charge forces is
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equivalent to computing the forces in the rest frame using the static Coulomb force and

then transforming into the lab frame.
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Chapter 3

Numerical Methods for ICSSim

This chapter discusses various numerical algorithms used in the code written as part of this

thesis.

3.1 Integration of Time-Average Motion

To calculate the trajectory of the electrons, it is necessary to integrate the equations,

dt F Y

dFi A
dt -ymi'

where F()i is given by Equation 2.42. Using the relation that,

(P) +

we find that,

dt5

dt - ci)2 ,M

As a result, we use a modified form of the leapfrog integration technique [2], accurate

to second order. At a given time step t, the position and momentum of each electron are

updated according to,

i (t) = zi(t - At) + i(t - At/2)c
pi(t - At/2)2 + mc 2

-(t + At/2) = i(t - At/2) + Fi(zi(t))At,

where At is the stepping size.
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3.2 Calculation of Space-Charge Effect using Octree

For a large number of particles (~ 106), determining the space-charge force by using Equa-

tion 2.42 directly is computationally intensive. However, we note that since the space-

charge force has essentially a 1/r2 dependence, the largest contributions are provided by

neighboring electrons, where as groups of electrons located at distances larger than their

characteristic size can be approximated by a single charge at the center of the group. As

a result we can accelerate space-charge calculations by using an Octree structure to cluster

distant macroparticles in a similar manner as in the Barnes-Hut algorithm [1].
The acceleration algorithm proceeds as follows. At each time step, the list of electrons is

first traversed to determine the average velocity, and the center and size of the distribution.

Next, an Octree is generated covering the space of the electron distribution. The Octree

begins with a root node, corresponding to the entire space. When an electron is added to

a node, the node uses the electron's total charge and position to keep track of the center of

mass and total charge of all of the electrons ever added to it. Next the node checks whether

an electron is already assigned to it. If not, the electron is assigned to the node. If so, the

node subdivides its space into eight sections, creating one new child-node for each of the

eight subsections, and then adds the electron assigned to it and the newly added electron

to the respective child-node based on which subsection they reside in, initiating a similar

process for the child-nodes. The end result is a tree structure where each node is either

assigned to an electron, or contains the center of mass and total charge of the electrons

residing within a certain subsection of the total space.

To compute the space-charge force on an electron, the Octree is traversed starting from

the root node. For each child-node within the tree we check whether,

W < (3.1)
Xni

where wn is the width of the space the node represents, xni is the distance from the electron

to the node in the rest frame of the distribution and is a variable parameter (by default

= 0.5). If the above condition is met, then the total charge and center of mass of the

node is used to approximated the sum of the forces from the electrons stored underneath

it. If not, then the process is repeated for all of the child-nodes, until either a node meets

the sufficient criteria or a node which is assigned to an electron is found. We can see that

in the limit that = 0.0 the algorithm is equivalent to simply computing the direct sum.

3.3 Simulation Overview

We now provide an overview of the simulation routine. The simulation is conducted entirely

in the lab reference frame, with the electrons traveling along the . direction and the laser

pulse along the -i direction. The electron distribution is represented within the simulation

by a number of macro-particles (~ 106), each with a potentially varying mass and charge.

At the start of the simulation, the laser pulse is positioned in a state such that after a

given time t2f it reaches its focus at the origin of the coordinate system. Likewise, letting

v, be the average velocity of the electron distribution along the z-axis, the center of mass of

the electron distribution is positioned at a distance zo = -Vzt 2f. As a result, after a given

time t2f both the center of the laser and the center of the electron distribution overlap at

the origin of the coordinate system. Finally a detector is located a given distance Ro along
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Figure 3-1: Illustration of the space subdivisions (left) and node tree (right) for the gen-

eration of an Octree with three electrons. In the first step, the first electron is added to

the root node. When the second electron is added (step 2), the space of the root node

is subdivided into eight subsections and, the root node adds both electrons to the node

representing the respective subsection it is in. Each node in the tree carries out a similar

process as is illustrated in step 3 when the third electron is added.
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the i direction and is given a specific time td at which to sample the radiation. For most

applications, we would like to sample the radiation emitted when the center of the laser

and electron distribution overlap. Hence,

td = t2f + o

C

The routine proceeds as follows. First, the retarded sample time of the center of mass

is computed using,

tcm = td IRo - Rcm(tcm)|
C

Next the equations of motion are integrated according to the method described in Sec-

tion 3.1 until the time tcm is reach. Once this time has been reached, the radiation observed

by the detector is sampled using the new values for the velocity and positions of the elec-

trons with the procedure established in Section 2.5. To compute Equation 2.39, the integral

over Wf is numerically approximated by sampling discrete values for Wf, according to,

tot = I(f)dwf,

N

wheefc - (N a AWf ,
n=0

where both the center of the sampled distribution wf c and Awf are specified parameters.
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Chapter 4

Analysis of an Example ICS Source

Using the simulation routine we have just described, we will now analyze the radiation pro-

duced by an example ICS source using both a coherent and incoherent electron distribution.

The parameters for our example ICS source are listed in Table 4.1.

4.1 Initial Electron Distribution

Figure 4-1 illustrates the square density modulation we have used for the initial spatial dis-

tribution of the electrons within our simulations. This density modulation is characterized

by the period of the distribution Ab, the fill-factor ff, the total number of microbunches N,
the x and y RMS size and the total charge within the pulse. The distribution is created

by first evenly distributing the total charge between all of the macroparticles and then ran-

domly assigned each macroparticle to a microbunch within the pulse. The macroparticles

within each microbunch are then arranged along the z-axis within the space described by
the fill-factor according to a uniform distribution, while being arranged along the x and y
axis according to the Gaussian distribution described by the respective rms parameter. Fig-

ures 4-2 and 4-3 plot the x,y and z profiles of the initial macroparticle distribution generated

by this method.

While our implemented simulation routine is capable of handling a different velocity for

each macroparticle, in the simulations below we have decided to give each macroparticle the

p(z)
b1 b2 b3 bN

Ab ff - Ab

Figure 4-1: Illustration of the square density used for the initial distribution of the electrons

along with the parameters used in the text. Note that within each period of the beam, the

electrons occupy a region given by the product of the fill-fraction ff and the period of the

density Ab. Note that in the case the fill factor ff = 1.0, the macroparticles are uniformly

distributed along the z axis.
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Electron Pulse Parameters
Microbunches
Macroparticles
Kinetic Energy
Total Charge
Period
Fill Factor
x rms size
y rms size

400
106

2 x 106 eV
-1.60218 x 10-13 C

1.04630 x 10-8 m
0.5

10-6 m
10-6 m

Table 4.1: Parameters for an example ICS source. To simulate the output from a similar
incoherent source, we simply set the fill-factor to 1.0, resulting in a uniform distribution
along the i direction.

same velocity to more easily study effects due to the bunch separation. The velocity of the
macroparticles is related to the kinetic energy of a single electron within the distribution
according to,

Ek+EC 2

mc

where mc2 is the rest energy of a single electron. Likewise, simulations presented in this
section have been computed without space-charge effects.

4.2 Determining Optimal Electron Bunch Separation

Figure 4-4 compares the output intensity as a function of the period of the electron distri-
bution Ab f6r both the coherent (ff = 0.5) and incoherent (ff = 1.0) case. We note that
the period corresponding to the peak intensity for the coherent simulation results agrees
quite well with the theoretical ideal period of 1.04630 x 10- 8 m given by Equation 2.40.
In comparison, a scan of the incoherent case shows no strong variations in intensity, as
expected. We can likewise see that in the limit far from the ideal period, both the coherent
and incoherent distributions produce roughly the same intensity, while the ratio of coherent
to incoherent intensity close to the ideal period is ~ 105 , as expected when the emitted

fields add in-phase as compared to with uncorrelated-phases.
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Laser Pulse Parameters

Pulse Type Gaussian Plane-Wave
Peak Electric Field 3 x 106 N/C
Wavelength 10-6 M

Pulse Length 1.25 x 10-4 M

Detector Parameters
Distance from origin 1 m
Time at which to Sample 3.33605 x 10-9 s



oUUU

70000-

60000-

50000-

40000-

30000-

20000-

10000-

0
-6 -4

80000

70000-

60000-

50000-

40000-

30000-

20000-

10000

0-
-6 -4

-1 U
X [Am]

U
Y [Am]

Figure 4-2: Initial distribution of simulation macroparticles
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Figure 4-3: The last nine microbunches in the initial electron distribution to visualize the
average distribution of macroparticles within a microbunch. The total distribution contains
400 of such microbunches.
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Figure 4-4: Comparison of the output intensity as a function of the period of the electron
distribution Ab for both a coherent (ff = 0.5) and incoherent (ff = 1.0) case.
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4.3 Resulting Radiation Profile

Using the ideal period (Ab = 1.04630 x 10-8rn), we proceed to compute the spatial intensity
profile of the beam for both the incoherent and coherent case. Figure 4-5 plots the spatial
intensity profile of the output beam while Figure 4-6 plots the spatial profile of the average
radiated energy for the coherent ff = 0.5 case. We can see that the peak radiated intensity
is around 1.2e6 W/m 2 . For comparison, Figure 4-7 plots the intensity for the incoherent
ff = 1.0 case. From the two profiles we can see that the intensity from the coherent
electron distribution is around five orders of magnitude larger than that from the incoherent
distribution.

-0.6 -0.4 -0.2 0.0 0.2
x[mm]

0.4 0.6 0.8

Figure 4-5: Emitted intensity profile for the example ICS source parameters for a fill-factor
of ff = 0.5 representing a coherent ICS source. We can see that the peak intensity is around
2.9e - 6 W/n2
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Figure 4-6: Spacial distribution of the average radiated energy for a fill-factor of ff = 0.5,
representing a coherent ICS source.
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Figure 4-7: Emitted intensity profile for the example ICS source parameters with a fill-factor

of ff = 1.0 representing a comparable incoherent ICS source. Do to the low intensity, sta-

tistical fluctuations within the distribution of the 106 macroparticles are sufficient to visibly
alter the computed profile of the beam. We can see that as a result of these fluctuations,
the peak intensity is slightly off center.
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Figure 4-8: Emitted peak intensity as a function of the number of electrons within the
beam for both the coherent ff = 0.5 and incoherent ff = 1.0 case. As expected, while the
incoherent case scales like the total number of electrons within the beam, the incoherent
case scales like the square of the total number of electrons.
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Chapter 5

Conclusion

We have determined a method for incorporating both space-charge and phase effects into

the calculations of the radiation scattered during ICS and have implemented and used this

method to simulate the output characteristics for an example ICS source.
Likewise, we have used our simulation routine to identify the ideal electron distribution

period and have provided a comparison between the radiation emitted by a incoherent and

coherent electron distributions.
We conclude by summarizing the main approximations of our described technique. First,

space-charge calculations require that the electrons be traveling at a similar enough speed

such that the static Coulomb force is valid in the rest frame of the electron distribution.
Secondly, our method for sampling the scattered radiation requires that the strength of the
electric field of the laser is weak such that, in comparison to the total momentum of the
electron,

qEO

ck

Finally, our radiation sampling method requires that the electron distribution, at the time
of the radiation sampling, has a total length much smaller than the distance between the
distribution's center of mass and the detector.

We hope that the software and routine developed as part of this thesis will be useful in
the study and design of future ICS sources which take advantage of in-phase super-radiant
emission and, ultimately, in enabling for hard x-ray beams to become more accessible to
research and industry.
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