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by

Jeffrey C. Prouty
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on May 9, 2014, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Physics

Abstract

We continue the work of Abbate et al. in [1], in which a factorization formula for
the thrust distribution in electron-positron collisions was developed in the frame-
work of soft-collinear effective theory. We extend the analysis of thrust to the peak
region of the distribution, in which a nonperturbative soft function encoding the ef-
fects of large-angle soft gluon radiation plays a significant role. We write the soft
function as an infinite sum of basis functions and use a truncated version in our cal-
culations, allowing us to fit for the basis coefficients ci with all available thrust data
from center-of-mass energies Q = 35 to 207 GeV. To characterize the soft function
independently of a particular parameterization, we present fit results for its cumulant
moments, denoted Q'i, up to i = 4. We compute experimental uncertainties from the
fits and theory uncertainties using a random scan in the space of the undetermined
parameters of the theory. Our approach significantly improves the fit in the peak
region, reducing the minimum X 2/d.o.f. value from to 5.29 using the best fit form the
tail region without fitting basis functions, to 1.23 using five basis functions. We find
Q, = 0.387 (0.003)exp (0.026)pert GeV, indicating that the peak region determines
Q, with considerably more precision than the tail. For the second cumulant moment,
we find Q'2 = 0.032 (0.002)exp (0.011)pert GeV2 . We also estimate the third and
fourth cumulant moments, obtaining Q' = [3.5 (0.7)xp t (.)pert] x 10- GeV 3 and
Q' = [-0.7 (3 .8)exp (11.9)pert] X 10-4 GeV4 .

Thesis Supervisor: Iain Stewart
Title: Professor, Department of Physics
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Chapter 1

Introduction

The production of hadrons in electron-positron annihilation provides one of the best

methods for analyzing the predictions of both perturbative and nonperturbative quan-

tum chromodynamics [3]. When an electron and a positron annihilate into a photon

or Z boson, there is some probability of producing a quark-anitquark pair. Confine-

ment ensures that when such an event occurs, the asymptotic states are hadrons. The

process by which these hadrons form from the quarks and gluons produced during and

immediately after the collision is called hadronization. The fluctuation of the boson

into a quark-antiquark pair occurs on a timescale of 1/Q, where Q is the center-of-

mass energy of the collision, while hadronization occurs on a much larger timescale of

1/AQCD, where AQCD is the energy at which the running coupling a, becomes large

enough for perturbation series to diverge. As such, the physics of hadronization may

be considered separately from pair-production for sufficiently high Q.
Hadrons produced in e+e collisions have a rich jet structure dictated by QCD.

Measurements of the jet structure provide us with a means of studying how the fi-

nal state hadrons are kinematically distributed [4]. One approach to studying the

jet structure of the final-state hadrons is to define an event shape variable, a func-

tion characterizing the distribution of hadrons in a particular event. Several recent

achievements have significantly improved the theoretical descriptions of these event

shape variables. In the work of Gehrmann et al. in Refs. [24, 25] and of Weinzierl in

Refs. [26, 27], the O(al) contributions to the 2-, 3- and 4-jet final states were deter-
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mined. Additionally, soft-collinear effective theory (SCET) [28, 29, 30, 31] provides

a systematic framework in which to treat nonperturbative corrections [33, 34] and

compute at all orders in a, the hard, collinear, and soft contributions to jet produc-

tion [35, 36, 37]. SCET builds on earlier QCD all-order factorization results from

Refs. [38, 39, 40].

In this thesis we are concerned with the variable thrust, most commonly defined

by

T =max; , (1.1)

where ; are the momenta of the final-state hadrons. In [1], Abbate et. al developed

a factorization formula for the thrust differential cross section from e+e- collisions in

the SCET framework. They performed a precision global fit for a, in the so-called tail

region of the distribution, defined below. The purpose of this work is to extend this

analysis to another region, which we call the peak, in which uniform soft radiation

has a significant impact on the cross section (note that whenever we refer to the cross

section, we mean the differential cross section with respect to thrust). Following [1]

we work with the alternative variable r = 1- T, which we still call thrust, so that the

range of r is [0, 0.5]. Low values of thrust under this definition are associated with

pencil-like two-jet events, each of which carry half of the total momentum in opposite

directions. Higher values are associated with more jets, with the momenta of the

hadrons more evenly distributed in space. For r < 1/3, the physics is governed by

three different energy scales. The hard scale is defined by /IH ~ Q, the center-of-mass

energy of the collision. The jet scale is given by pij ~ Qf~ and is determined by the

typical momentum transverse to t, the direction of greatest net momentum in each

hemisphere. The soft scale characterizes the energy of uniform soft gluon radiation,

with Ls ~ Qr.

The thrust distribution may be divided into three regions, in which different phys-

ical effects play the dominant role. In the peak regionr 2AQCD/Q, so that the hard,

jet, and soft scales are approximately Q, VAQCDQ, and AQCD, respectively. In this
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region k has a strongly peaked maximum. Since yas > AQCD, hadronization effects

play an important role. In the SCET framework this statement implies that the dif-

ferential cross section is affected at leading order by a nonperturbative distribution,

which we call the nonperturbative soft function, denoted Smod. In the tail region,

associated with three-jet and broader two-jet events, the soft scale becomes much

larger than AQCD, and so the soft radiation can be included plus a series of power

corrections using perturbation theory. Finally, in the far-tail region the distinction

of scales no longer has meaning, and accurate predictions can be made using only

perturbation theory with power corrections.

The analysis in [1] by Abbate et al. has provided a high-precision determination

of a,(mz) by fitting to the tail region of the thrust distribution. The purpose of

this thesis is to characterize the distribution in the peak region. The peak region

is sensitive enough to the soft function that its higher moments become significant

and must be fit to the experimental data. We denote the i-th moment of the model

function by R. These moments are renormalization scheme-dependent, and details

regarding their definition is given in Section 2.3. In the tail-region fits only the first

moment of the distribution, Q1, plays a significant role, and so the fits in [1] were

performed in (a8 , Q1) space. In the peak region we find that available e+e- collision

data determines Q, with considerably more precision. By also fitting moments Q2,

Q3, and Q4, we obtain a significantly improved description of the experimental data.

This fit to higher moments is achieved by writing the nonperturbative soft function

as a sum of orthogonal basis functions, developed by Ligeti et al. in [9], and treating

the coefficients of these basis functions ci as our fit parameters.

The factorization formula developed by Abbate et al. is as follows:

d- ( d&s d&ns Ad&b\ k \
dr Idk r+ dr + dr 7 X Sm d (k - 2(RI is))

+ J ( - Q(1.2)
+0 ooaA Qc 

We explain its perturbative components, &s .,and ^s in Chapter 2 and its nonper-
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turbative component Sm0r in Chapter 3. We focus on the aspects of the factorization

formula which are particularly relevant for fits in the peak region and direct the reader

to [1] for more detail. In Chapter 4 we present our analysis of the peak region and

the results 6f our fits for moments of the soft function, including both experimental

and theoretical uncertainties. In Chapter 5 we present our conclusions and plans for

work in the future.
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Chapter 2

Perturbative Components

2.1 Singular and Nonsingular Distribution

The perturbative components of the differential cross section in Eq. (1.2) are con-

tained in a singular piece d, a nonsingular piece dins, and a term 'd9, which in-

corporates the effects of the mass of the bottom quark. The nonperturbative physics

is encoded in the soft function Smd. Here our main concern is to determine the soft

function in order to determine the nonperturbative physics involved in e+e- colli-

sions. As such, we give only a brief overview of the perturbative terms. Included in

this overview are the undetermined parameters of the theory relevant to fits in the

peak region, which are significant for our estimates of the theory uncertainty in the

moments of the soft function.

The contribution of singular terms in perturbation theory to the cross section

(assuming massless quarks) is given by

d D= Q Q-D ( p )UH(Q p', ) ds ds'J-r(s', pia)UJ(s - s', 1P, pUj)

x dk'U(k',tp, s e~2("I's) f ( QT - - k', Ps).

(2.1)

This singular partonic distribution contains terms oc ai Ink(r)/r and aj6(T) from
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perturbation theory. Here o' is the total hadronic cross section for quark production

given a current type I, and we have a hard function HI, a jet function J, and a

partonic soft function SPat. The U coefficients are renormalization group factors

for summing large logarithms at different energy scales. There are four different

renormalization scales at play in this formula: a hard scale pq, a jet scale Pj, a soft

scale ps, and a subtraction scale R. In general, their values need to be r-dependent

in order to sum logarithms and properly treat different regions, and so we use profile

functions to describe their r, dependence J1, 9]. The profile functions are discussed in

the next section.

Terms in the expansions of J, and SP't are known up to N3LL' order and O(a3),

and we use all of them in our highest order analysis. The order N3LL is defined by

terms of the form f $ (a., log(-r))k that contribute to log (EZ(r)), where log (Z(r))
k=O

is defined by E(r) = dr'd;. The prime denotes the inclusion of O(a) terms not
0

proportional to logarithms of r. There are three undetermined parameters, however,

which contribute to our theory uncertainty. The first, j, is an unknown coefficient

of a non-logarithmic term that appears in the jet function at O(a3). We set it to

zero by default and allow it to vary from -3000 to 3000 in our uncertainty estimate.

This range, and those of the two parameters that follow, are derived from Pad4

approximation; see [1] for more detail. The second, S3, is an unknown coefficient

of another non-logarithmic term at O(a3), this time appearing in the partonic soft

function. We also set it to zero by default and allow it to vary from -500 to 500.

Finally, the O(a') cusp anomalous dimension Pu'P is necessary to determine the

renormalization group factor UH, Uj, and Us at N 3LL and N3LL'. This parameter is

unknown, but can be approximated from the known lower coefficients using a Pad6

approximant. We thus take its central value to be 1553.06 and allow it to vary by

200% in our theory uncertainty estimation.

The nonsingular terms in perturbatiou theory are incorporated into the factoriza-

tion in the nonsingular distribution given by

14



IT,- -Q 0(. (2.2)

The superscript I denotes different currents just as in Eq. (2.1). The functions f,
are fixed-order partonic distributions determined in pure QCD with massless quarks.

Modifications are possible to incorporate QED and bottom quark mass effects; in our

peak analysis, we currently incorporate only QED effects. The O(a,) partonic thrust

distribution is known analytically [5], and the O(a2) and O(a') contributions are

available numerically in FORTRAN and incorporated into our calculations (respec-

tively, see [6, 7] and [8]).

In order to incorporate numerical uncertainties in the O(a2) and O(a3) distri-

butions, our code makes use of two parameters, labelled E2 and 63. Setting these

parameters to +1 corresponds to changing their associated distributions by 1U-.

We take both to be zero by default and vary both by +1 in our theory uncertainty

analysis. It should be noted that the third order distribution and its error function

also depend on the unknown coefficients s3 and j, and our analysis accounts for this

variation as well.

2.2 Profile Functions

Five different scales play a role in the factorization formula: PH , pLJ, I-s, paAs, and

R. For the singular partonic distribution -d!j, there are three: a hard scale pH, a

soft scale ps, and a jet scale pi, corresponding to the energy scales described in

Chapter 1. A single value cannot be chosen for each of these scales Ai and applied

to all values of r, because for ps and pj the scales must vary in different regions

of the distribution such that large logarithms are summed in the peak and tail, but

not in the far-tail region. The results for the pi are fixed in each region, but there

is freedom for how to connect them between reasons. We use r-dependent profile

functions to determine the scales, allowing smooth transitions between the regions.

We design these functions to be piecewise but continuous and smooth, such that the
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first derivative is also continuous. Here we concern ourselves with their properties in

the peak region.

Although the factorization formula is formally invariant under changes in the pro-

file functions which do not modify the hierarchy [1], the truncation of the perturbation

series for do, results in a deviation from the actual cross section that can be used to

estimate the theory uncertainty. As such, we introduce seven parameters which incor-

porate this theory error by allowing the profile functions to vary while still satisfying

their theoretical constraints. We will introduce each of them in this section.

The hard scale is constrained only by an event's center-of-mass energy, not by the

particular value of thrust. We therefore use the formula

PH (1) = eHQ, (2.3)

where eH is chosen from the interval [1, 2] and by default is set to 1. The profile

parameter eH encodes our theoretical uncertainty in the choice of hard scale.

The soft scale obeys ps - AQCD in the peak region. We use the formula

A07

(Po + a(r - to) 2 )(1 + es(r - to) 2 (r - 1/2)2),

(br + c)(1 + es(r - to) 2(T - 1/2)2),

(PH - d(1/2 - r) 2 )(1 + es(r - to) 2 (r _ 1/2)2),

r to

to < < ti

t 1 <_ t 2

1- > t2.

where es is another theory parameter, which we set to 0 by default or 1 in our

scans. The values of a, b, c, and d are fixed by imposing continuity and equality of

the first derivative at all three transition points. We find

16
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a PH ~ AO

(t1 - to)(t2 - tl -to + 1/2)'

b- = 2(pH - AO)

C po(t2 + 1) - pH(tO + t 1)
t2 - t 1 - to + 1/2

(1/2- t2)(t 2 - ti - to + 1/2)

Since the width of the peak region varies with Q, we define no = toQ and ni = t1Q.

We determine the theoretical uncertainty associated with the r value of these tran-

sitions by varying no and ni rather than to and t1 , because this way the variation is

uniform for all center-of-mass energies. The default values of no and n, are 2.5 GeV

and 5 GeV, respectively, and both are allowed to vary up or down in our theory scans.

The parameter no is varied by +1 GeV, while n, is varied in the range [3.5,5] GeV.

Note that we have decreased the range of variation of n, from that in [1], because

a more careful treatment of this uncertainty is needed for the peak analysis, and in

particular we must also maintain no < ni without biasing our choice of parameters.

Although t2 was varied in the theory uncertainty estimates for the tail region, here

we simply fix it at 0.33, as the particular value of ps at higher values of r has no

effect on the peak.

In [1], the flat region where r < to was not included in pLs, and instead, the

parabolic region extended from -r = 0 to t1 . While the parabola is fine for tail fits,

this approach shifts the peak of ! to the left substantially, and hence is not consistent

with a proper analysis of the peak region. Physically, we interpret the necessity of

the flat region as evidence that yus must be comparable to AQCD not only in the limit

where r -+ 0, but also for sufficiently small finite values of r, in order to correctly

account for the effects of hadronization. We also find that the cross section is highly

sensitive to the choice of no. Figure 2-1 displays it for three different choices, spaced

by 1 GeV, and illustrates the necessity of the flat region.

The jet scale obeys pj - VAQCDQ in the peak region, and thus it is natural to

take it to be -tHys. We modify this simple formula slightly to allow variation as a

17
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T

Figure 2-1: The thrust peak-region cross sections for three values of no, the parameter
which determines the length of the flat region of ps(T), at Q = mz. Central fit values
were used for the basis coefficients of the soft model function (up to c4) to illustrate
the effect of varying the parameter in isolation.

function of T:

y pHPS(7). (2.6)

This equation preserves the convergence of the scales in the far-tail region while

allowing significant variation of the jet scale in the peak region. We set the parameter

ej to zero by default and change it randomly to either 1 or -1 in our scan for

estimating theory uncertainty. As expected, the value of pUj in the peak region has a

much smaller effect than the value of ps, and so the choice of ej does not substantially

change the cross section.

There is also a subtraction scale R introduced in the gap formalism, discussed

below in Section 2.2. This scale must differ from ps at low values of T and then join

18
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with it to avoid summation of large logarithms at higher values of r. Just as with

ps, in the peak we must introduce a flat region from r = 0 to to. Between to and t1 ,

in order to impose continuity and differentiability, we must insert a cubic region with

no linear term; otherwise, the first derivative would be nonzero at the end of the flat

region. This gives us the formula

Ro, 7- < to

Ro + l1(T - to) 2 + P 2 r- to) 3, to r < t1
R(,r) =(2.7)

ps(r)(1 + eR(T - -R) 2 ) ti -r < TjR,

ps~ 00, r >TR-

Here eR is another varied in our scans (0 by default and varied to 1), but TR is fixed

to 0.25. Imposing continuity and differentiability at t1 gives us the values of pi and

P2 (when eR is set to 0):

3po + a t2 - 2 a to t1 + a t2

PiL (,to1 -~~)to (2.8)
l2p2

(ti - to) 3 '

with a given by Eq. (2.5). The profile functions PH, pJ, ,s and R, with their default

parameter values, are displayed in Figure 2-2.

There is also a scale [An governing the resummation of logarithms of r in the

nonsingular terms. To account for uncertainty in this resummation, we allow it to

have three possible values, given by

pH, n, =1

/ns = Ij(r), n, = 0 (2.9)

(pi (7-) + ps(Tr)), n, =-1

For peak fits we take n, = 1 by default rather than n, = 0, because we find that this

value is much more consistent with the experimental data. We still allow n, to take

on other values in our theory scan, but employ a weighting system to devalue choices

19



I-i

11H

0 0.1 0.2 0.3 0.4 0.5

T

Figure 2-2: The profile functions, with theory parameters set to their default values.

of theory parameters that are obviously inconsistent with experiment. More detail is

provided in Chapter 4.

2.3 The Gap Formalism

An important feature of the factorization formula presented in [1] is a subtraction

scheme that removes an O(AQCD) renormalon from the matrix element 2i present

in the MS scheme. We refer to this subtraction scheme as the R-gap scheme, and it

has a significant effect on our determination of the soft function's moments. Without

subtracting the renormalon the soft model function would depend largely on the

order in perturbation theory to which the cross section is calculated. Hence, here we

shall summarize it briefly. The approach presented here is based on results originally

derived in [2].
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In the MS scheme, the soft function is defined as a convolution of partonic and

nonperturbative components, written as

S,(k, p)= dk'Spart(k - k', ,)Smod(k'). (2.10)

Here the moments of Sr" are defined by

22R = dk k Smod(k). (2.11)

We introduce a gap parameter A, such that Smod(k) -+ Smod(k - 2A). The parameter

A contains the complete renormalon ambiguity, and we may split it into a perturbative

and nonperturbative component, writing

A = A(R, ps) + 6(R, ps), (2.12)

where A(R, ps) is a nonperturbative renormalon-free parameter, and 3(R, ps) is a

perturbative series. The parameter A is subtraction-scheme independent, while its

components depend on the choice of subtraction scheme, hence the necessity of the

profile function R(r) defined in section 2.2. We can then write the soft function as

S(f, ps) = dt' [e-2 (R,s~a/oeSpart(f - e', As)] r"'"d(e' - 2A(R, ps)). (2.13)

The derivative acting on Spart gives a renormalon free perturbative soft result from the

term in square brackets. The moments of the soft function are also now renormalon

free and given by

2"Qj(R, Is) = dk k Smod(k - 2A). (214)

The Qj quoted in our fits are thus subtraction-scheme dependent but free of the

renormalon which would render them numerically unstable and highly dependent on

the order in perturbation theory.
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Chapter 3

Nonperturbative Components

The soft model function incorporates nonperturbative effects into the factorization

formula for thrust. It accounts for the uniform soft-gluon radiation which leads to

soft hadrons in between and within jets, which is not included in perturbation theory.

It must be normalized, positive definite, and have support for k > 0. Rather than

choosing a particular analytic ansatz for Sm0 d, we represent it as a linear combination

of basis functions, which are chosen to satisfy all its known properties. This approach

allows us the flexibility to learn more about the function by incorporating successively

more basis functions. Following the approach of [9], we write

Sod(k, A, {ci}) = 0 c.f. (k)]2 (3.1)

where

2z3(2n +1)2
fn(z) = 8 3 -Pn (g(z)) (3.2)

and

g(z) = 2 (3 - e-4z(3 + 12z + 24z 2 + 32z3)) - 1. (3.3)

Here Pn are the Legendre polynomials. The basis functions fn(k/A) are displayed in

Figure 3-1 for reference. We always choose {c } such that E q = 1, which ensures

23
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Figure 3-1: The basis functions fi.

the proper normalization, f dk Smod(k) = 1. Our code supports calculations of

with basis coefficients from co up to c4 , allowing us the freedom to determine the first

through fourth moments of the soft model function. In our fits we treat Smd as a

function of ci through c4 and determine co to satisfy the normalization constraint.

Thus, we are able to explore the soft model function in a four dimensional parameter

space, which may be viewed from either the perspective of basis coefficients ci or

moments Qj.

The parameter A would be redundant if the infinite sum over all basis functions

could be carried out, but due to the truncation of the series, it instead acts as a

significant basis-selection parameter. Higher values of A shift the peaks of the basis

functions to larger values of k, while decreasing their heights to maintain normaliza-

tion. Using the first five basis functions, only certain values of A provide fast enough

convergence to achieve good fits to the data. We use the default value A = 0.55 GeV,

although we show that a wider range of values are all acceptable in Section 4.1. Inside

24
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this range, the best-fit values of the coefficients ci change as A is varied, but the values

of the moments Rj remain consistent. This result is sensible, as we should require

different proportions of the functions in a different basis to achieve a function with

the same physical consequences, which are encoded in the moments. Outside the

preferred range of A, the minimum x2 value increases, and both the basis coefficients

and the moments vary with A, indicating poor convergence. In the tail fits from [1],

A was varied in place of ci in order to effectively vary the first moment Q1. We are

reassured by the fact that the best-fit value of A from those fits falls within the range

of acceptable values for our peak analysis. We also find that tail fits in which lambda

is fixed at 0.55 GeV and c1 is varied reproduce the results of [1] for the central profiles.

We determine formulae for the Qj in terms of the basis coefficients ci by using

Equation 2.14, resulting in the following formulae:

= + A -
2

Q2 = 2 2+ A A f0+ A- 2
4

A - A 2  A 3 (3.4)
3 = 3  - Q,+ 3 A- Q2 -A- A32 4 8

Q4 = 4 n+2 A A i + 3 A2 A fN2+ A A1i+ Af4,2 2 16

where we determine the ni by integrating over the soft functions produced by setting

ci terms to nonzero values. Recall that the gap formalism introduces the parameter

A = A(puo, RO), such that the soft function entering the factorization formula is ac-

tually shifted in k-space. This shift results in the moments having A dependence,

effectively adding another fit parameter to the soft function. However, in practice

we find that the choice A has little effect on the fit values of the moments, as the ci

shift to compensate for changes in A. As such, we fix A = 0.025 GeV. The terms Qj,

which give the moments of the unshifted soft function, are
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= c5 + 1.O9Oc + 1.1O0c + 1.103c3 + 1.105c2 + 0.947coci + 0.201cOc 2

+ 0.190coc3 + 0.084coc4 + 1.014cic 2 + 0.250c1 c3 + 0.242cic 4 + 1.019c 2c 3

+ 0.263c 2c4 + 1.020c3c 4 ,

f2= 1.25cg + 1.713c2 + 1.789c + 1.817c2 + 1.831c2 + 2.131coci + 1.36coC2

+ 0.694coc3 + 0.484coc 4 + 2.516cic 2 + 1.333cic3 + 0.937cic4 + 2.609c 2c 3

+ 1.422c2c4 + 2.649c3c4,

na = 1.875c + 3.226c2 + 3.579c + 3.741c2 + 3.834c4 + 4.262coci + 3.O2Oc0c 2

+ 2.211coc3 + 1.726coc4 + 5.755cic2 + 4.159cic3 + 3.152cic 4 + 6.255c2c3

+ 4.587c2c4 + 6.510cac 4 ,

f4= 3.281c + 6.747ci + 8.086c2 + 8.8OOc2 + 9.251c4 + 8 .7 9 1coci + 7.749coc 2

+ 6.431coc3 + 5.435coc4 + 13.512cic 2 + 11.550cic3 + 9.690cic4 + 15.534c 2C3

+ 13.272c2c4 + 16.698c3 c4 .

(3.5)

Unfortunately, it is not possible to invert these equations to obtain ci(Ri) in order

to write the soft function as a function of its moments, since polynomial equations

have multiple solutions. Instead, we must perform fits in c-space and determine the

values of the moments by these equations, propagating uncertainties through them.

See Section 4.5 for more information.

The values of the higher moments are highly constrained by the values of the

lower moments, independently of fits to the data. For instance, the second moment

must satisfy the Cauchy-Schwarz inequality Q2/Q2 > 1. As such, when examining

the correlations between moments, as we do in our theory uncertainty scans, it is

more illustrative to work with the cumulant moments f'
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(3.6)
3' = Q3 - 3Q2Q1+2 211

Q'4 = Q4 -4Q 3 Q-3Q2 + 12Q 2 Q2 -6Q4

The higher cumulant moments are not affected by constraints in the same way the

Qj are. They are also intuitively simpler quantities familiar from statistics; Q' is the

mean of the distribution, Q' is the standard deviation, and Q' the is skewness. Fig-

ure 3-2 illustrates the behavior of the cumulant moments when the basis coefficients

vary about their central fit values. The fact that each moment behaves in a different

way illustrates the fact that our fit for the ci is related to a fit for the moment Q'.

We quote best-fit values and experimental uncertainties on the ci, the Qj, and the Q'

for i = 1, 2, 3, 4, along with theory uncertainties on the Q',
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Chapter 4

Numerical Analysis

We use thrust data from the LEP experiments ALEPH, OPAL, L3, and DELPHI,

along with SLD from SLAC, JADE and TASSO from DESY, and AMY from KEK in

our analyses, with Q values varying from 35 to 207 GeV. Data from Q = 14 and 22

GeV is also available from TASSO, but we exclude it, because at these energies the

bottom quark mass is large enough that it must be treated in a more sophisticated way.

Since the default data set in [1] took r = 6/Q as the boundary between the peak and

tail regions, for peak region fits, we use data in the range [0, 6/Q] by default in order

to analyze an independent dataset. The data is binned, and we keep all bins whose

midpoint falls below the maximum allowed value of 7. We include the following center

of mass energies from each data set: Q = {91.2, 133, 161, 172, 183, 189, 200, 206} GeV

from ALEPH [23], Q = {91, 133, 161, 172, 177, 183, 189, 197} GeV from OPAL [20,

21, 22], Q ={41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 161.3, 172.3, 182.8,

188.6, 194.4, 200.0, 206.2} GeV from L3 [14, 15], Q ={45, 66, 76, 89.5, 91.2, 93, 133,

161, 172, 183, 189, 192, 196, 200, 202, 205, 207} GeV from DELPHI [16, 17, 18, 19],

Q = 91.2 GeV from SLC [13], Q = {35,44} from JADE [12], Q = {35,44} GeV from

TASSO [10], and Q = 55.2 GeV from [11].

In order to compare the binned data with our theoretical distribution for d,
a d-r

it is necessary to integrate the distribution over the 7 values spanned by each bin.

To perform the peak fits we use a x2 minimization procedure in four-dimensional

ci-space (with the additional basis coefficient, cO, fixed by normalization), with a,
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fixed by its tail-fit value. We justify the decision to fix a, by noting that when fits

are performed at a wide range of fixed a, values, the moments Ri and the minimum

x2 value vary slowly, on an order significantly greater than the 1- uncertainty in a,

from the tail region fits. The tail region fixes a, more precisely, while the peak region

fixes the moments of the soft model function. We discuss this decision in more detail

in Section 4.3.

In practice, we compute the values of the coefficients of each ci? and cic term

appearing in the integral of g over the r range for each bin in our collective dataset.

We then compute X2 (ci, c2 , c3 , c4 ) using an inverse correlation matrix. The diagonal

terms of the correlation matrix contain the statistical and systematic uncertainties

for each bin, added in quadrature. Given the lack of information about correlations

between bins in the experimental results, we use two different models for the off-

diagonal terms of the matrix. The simpler of the two, which we refer to as the

uncorrelated method, assumes that the systematic uncertainties associated with each

bin are independent of each other. The minimal overlap method assumes that the

systematic uncertainties associated with each bin are positively correlated, but it

conservatively estimates the amount by which they are correlated using the formula

aj= min[A!Y, A.Ys] 2 . By default, tail fits from [1] used the minimal overlap method.

However, in the peak region we find that this method leads to erratic behavior in

the best fit with variations of a, and may not be appropriate. As such, we use the

uncorrelated method for our peak fits, although the minimal overlap method is used

to ensure consistency with the tail, as described in Section 4.4.

For many choices of theory parameters, the x2 function in four-dimensional c-

space contains local minima. Unfortunately, imposing normalization with co intro-

duces square roots and makes it intractable to solve the system of equations resulting

from setting the partial derivative of x2 with respect to each ci to zero. Instead, we

employ a minimization algorithm, which takes care to avoid becoming trapped in a

local minimum. We initially use a grid-search approach which samples the c-space on

a uniform four-dimensional grid and then runs a simple gradient-based minimization

algorithm from the minimum point sampled. Theoretically, this approach is guar-
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Figure 4-1: Minimum x2 values for different choices of A. Including more basis
functions increases the range of A over which a good fit to the experimental data is
possible.

anteed to succeed for a sufficiently fine grid. We restrict our grid to the 4-sphere

centered at ci = C2 = c3 = C4 = 0 with r = 0.64 in order to ensure that fo is the

dominant basis function. This choice helps ensure that the fitting algorithm selects

a minimum in c-space for which the fit converges quickly enough to a reasonable soft

function.

4.1 Choice of Basis

As described in Chapter 3, the soft function is represented by a linear combination

of normalized basis functions whose width is characterized by a parameter A. In

principle this parameter is redundant, because the soft function can be written as an

infinite sum of basis functions for any choice of A. However, in order to characterize

the soft function by fitting to the data, we must truncate this sum. For computational

reasons we use only the first five basis functions, fitting the coefficients ci through c4
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and adjusting the value of co to impose normalization. As such, only certain choices

of A provide fast enough convergence to the best fit soft function.

We find that a wide range of A values, the lowest being 0.5 GeV, give comparable

fits when basis functions up to f4 are included. A plot of the best-fit value of X2 at

varied A for fits up to c2 , c3, c4 is displayed in Figure 4-1. This plot makes evident

the weakening of the dependence on A as higher ci are included in the fit. Once c4

is included, any choice of A between 0.5 and-1.15 GeV gives a comparably good fit.

(At higher values of A the minimization algorithm falls to converge, and so an upper

bound on good choices of A cannot be given at this time.)

For our peak fits with any choice of profiles parameters, we choose A = 0.55 GeV.

Although this value does not give the absolute minimum X2 , it is a convenient choice,

as at this value m/d.o.f. does not decrease significantly when c4 is included in the

fit. As such, the uncertainty in c4 in this basis can be thought of as accounting for

the truncation uncertainty in the series. Although both A = 0.55 and 0.9 GeV satisfy

this criterion, A = 0.55 GeV is approximately the value obtained in previous tail-fits

in which A, as opposed to c1, was treated as the fit parameter, so we use the same

value for convenience.

In addition to A, the soft function is determined by the parameter A, which shifts

the function to the right as part of the gap formalism (see Section 2.3). Although A

could be treated as a fit parameter, in practice we find that the choice of A has little

effect on the best-fit values of the moments. By default we take A to be 0.025 GeV,

which is slightly lower than the 0.05 GeV previously used for tail fits. When we vary

A by 0.025 GeV we find that the differential cross section changes imperceptibly, but

0.025 GeV gives a slightly better minimum X 2 (1.22 when 0.025 GeV is used and 1.23

when 0.05 GeV is used). The best-fit values of the basis coefficients, however, vary

significantly, as does the shape of the soft function. More details on the consistency

of these two observations will be given in Section 4.6.
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Figure 4-2: The percent each Qj increases or decreases when higher basis functions
are added.

4.2 Number of Basis Functions

We performed fits with two, three, four, and five basis functions included. To use

fewer than five basis functions, we simply set ci = 0 for i > n, where n corresponds

to the highest order function included. The overall x2 value decreases with each new

function included; for central profile fits up to ci, c2, c3 , and c4 , respectively, we find

minimum x 2 values of 480.0, 259.5, 247.2, and 241.7. Dividing by the number of

degrees of freedom, with 202 bins included in the fit by default, these correspond to

minimum values of

2.42, up to ci,

2 1.31, up to c 2 ," = < (4.1)
d.o.f. 1.25, up to c3 ,

1.23, up to c4 .
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Figure 4-3: The best-fit cross section as higher basis functions are added.

The decrease in difference between minimum x2 values as higher ci are included

indicates that the fit is more sensitive to the lower moments than the higher ones, as

expected. Figure 4-2 displays the relative changes in the size of each moment as basis

functions are added to the fit. It is clear that including c2 has the greatest impact

not only on the best-fit x 2 value, but also on each of the moments Qi.

The resulting cross sections (including one for which co is simply set to 1) at

Q = mz are displayed in Figure 4-3. This plot makes it apparent that most of the

decrease in x 2 comes from the ability of the fit to reach the data in the first few bins.

Physically, this corresponds to the measurable effects of hadronization increasing for

thinner jets. The rightward shift as higher moments are properly accounted for is also

expected, because the broadening due to uniform soft radiation should cause fewer

events to occur as T approaches zero. It should be noted that the cross section in

the first bin, from T = 0 to 0.01, is sensitive to the inclusion of bottom quark mass

effects, which are not included here.

The soft functions corresponding to the cross sections in Figure 4-3 are displayed
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Figure 4-4: The best-fit soft function as higher basis functions are added.

in Figure 4-4. Convergence is less obvious from this plot than from the cross sections

and x 2 values, and it is possible that the shape of the soft function could change

significantly upon inclusion of a higher basis function such as f5 in the fit. We em-

phasize that the structure of the best-fit soft function over small changes in momenta

does not characterize the true shape of the soft function. Instead, the moments of

the best-fit soft function approximate the moments of the true soft function, giving

a bulk representation of the shape. An infinite number of functions with identical

moments up to Q4 could give equivalent fits, as the data is not sensitive enough to

determine the higher moments and differentiate between these functions. To illustrate

this point, we construct a reasonably-shaped momentum-space distribution without

oscillatory behavior, project it onto the basis functions fo through f4, and display the

fit using the resulting soft function against our best fit in Section 4.6.
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Figure 4-5: Varied a, minimum x2 values. A polynomial best-fit to the points is
included with a cubic term to account for the slight asymmetry about the minimum.

4.3 Variation of ac

In our peak fits we fix the value of a, to its best-fit value from the tail. The value of

as(mz) is determined much more precisely by the tail fits, since the cross section there

is sensitive to only a single moment of the soft function, Q 1. For the central profiles,

[1] found a8 (mz) = 0.1135 (0.0002)experiment (0. 0 0 0 5)hadronization (0- 0 0 09 )perturbative.

Taking the uncertainties to be uncorrelated, this gives a total l- error of approxi-

mately 0.0010. For comparison, a plot of the minimal x 2 value for fits in ci-space for

various values of a,(mz) is displayed in Figure 4-5. The 1or uncertainty in a, in the

peak due to experiment and hadronization, but not yet accounting for perturbative

parameter variations, is approximately 0.0012. Here the value with only experimental

uncertainty is already larger than the tail's l- limit including theory uncertainties.

We exploit this fact by fixing a,(mz) in the peak region to the value determined in

the tail, which greatly improves the efficiency of our fits.
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Figure 4-6: A comparison of the best fits produced from peak and tail data in the
tail region.

4.4 Choice of Data

By default, we define the end of the peak region to be 6/Q for purposes of inclusion

of data in the fit. When this value is contained between a bin's endpoints, we keep

the bin if its median r value is less than or equal to 6/Q and throw it out if it is

greater. The choice of 6/Q matches the definition of the tail region in [1], and so we

make the same default choice for consistency. Note, however, that the best fit cross

section does systematically deviate above the first few bins of the tail region when

this choice is made. Figure 4-6 illustrates this deviation.

Although this deviation may appear problematic, taking into account the corre-

lations between uncertainties in the bins, it does not have a serious impact on our

results. In Figure 4-7 we compare the results of the minimal overlap method and

the uncorrelated method as we include higher 7 data in the fit. Without allowing for

correlations between the systematic uncertainties, we see that Q1 is driven down by

the tail data and the minimum X2 /d.o.f. initially increases, which would naively indi-
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Figure 4-7: A comparison, between the uncorrelated and minimal overlap methods,
of how the minimum x 2 value and Q 1, measured in GeV, change as a function of
how much data is included in the fit. The parameter Qmax, also measured in GeV,
determines the cutoff point, where Tcutoff = Qmax/Q. Uncertainties in Q1 denote just
the experimental uncertainty, without taking into account uncertainty due to higher
moments. The higher Qi behave similarly to Q1 for both methods and therefore are
not displayed.

cate a lack of consistency between the peak and tail's requirements for Q 1. Allowing

for correlations, however, we see that the minimum value of X2/d.o.f. consistently

decreases, and Q1 is driven downwards only slightly, within the experimental uncer-

tainty from the fit. We therefore conclude that we can continue to use 6/Q as the

upper end of the peak region for inclusion of data in the fit.

We also note that the minimal overlap method consistently gives a higher best

fit Q1 by as much as 0.15 GeV. The uncorrelated method gives an Q 1 that is only

slightly greater than lor above the tail-fit value of 0.323 0.052 GeV in [1] and hence

is more consistent with the tail analysis. We take this observation as farther evidence

that the minimal overlap method does not properly handle correlations in the peak

region.
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Figure 4-8: Best fit with central
with the first bins at low Q, it
included in our analysis.

profiles at Q = 44 GeV. In order to obtain agreement
is likely that bottom mass effects would have to be

4.5 Central Profile Fit Results

For our fit with default profile parameters, we obtain c = 0.131, c 2 = 0.244, c3 = 0.141,

and c4 = 0.156 (ensuring co = 0.938 for normalization) with experimental uncertain-

ties given by o-c = 0.033, a, = 0.015, Ocr 3 = 0.084, and O-C4 = 0.054. We also obtain

the following correlation matrix:

-0
-0

-0
0

1 -0.024 -0.910 0.152

.024 1 0.013 -0.004

.910 0.013 1 -0.502

152 -0.004 -0.502 1

(4.2)

where [Ec]ij gives the correlation between ci and cj. To compute the uncertainties, we

first obtain the covariance matrix by approximating the x2 function, with co replaced

by \/ - - C2 - c2 - c2, as quadratic around the minimum point. The coefficients
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Figure 4-9: Best fit with central profiles at Q 200 GeV. In addition to the con-
sistency of the fit at high Q, this figure illustrates the importance of binning when
comparing the predictions of the theory to the data. The apparent disagreement of
the blue curve with the DELPHI data is misleading, as the DELPHI data uses wider
bins. Integrating over a range corresponding to that of the DELPHI bins demon-
strates that our theory agrees with the data, as the red curve illustrates.

of c? and cicj terms in the approximation are obtained using numerical approximations

of the second derivatives at the minimum point. This approximation has the form

4

X2 2 + Mc- 1 ] i (ci Cest)(C- c est) + 0 ((C cest)3) (4.3)
i,j=1

where c best are the best-fit values of the ci and Mc is the covariance matrix. We

find this approximation to be in agreement with the true x2 function over a range

considerably larger than that covered by the la error ellipses, allowing us to treat

the experimental uncertainties as Gaussian. We then obtain the elements of the

covariance matrix by inverting Mc- 1. The square roots of the diagonal elements of

Mc give the individual uncertainties oc,, and the elements of the correlation matrix

Ec are given by
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[Ec]ij = [M . (4.4)
I[RMc] ii [Mcljj

As explained in Chapter 3, the values of the coefficients ci are basis-dependent

and describe the nonperturbative soft function given a particular parameterization.

To give a more universal characterization, we report its moments Qj correspond-

ing to the best-fit values of the basis coefficients. For the central profiles, we find

Q, = 0.389 0. 0 0 3exp GeV, Q2 = 0.193 0.004exp GeV 2, Q3 = 0.112 0.004xp GeV3 ,

and Q4 = 0.071 0004 exp GeV4, where the experimental uncertainties quoted are the

square roots of the diagonal elements of the Q-space covariance matrix. Theory uncer-

tainties are not yet included and are discussed in Section 4.7. We obtain the following

correlation matrix:

1 0.825 0.653 0.555

0.825 1 0.962 0.918
En = .(4.5)

0.653 0.962 1 0.991

0.555 0.918 0.991 1

The Q-space covariance matrix is obtained from that of the coefficients ci through a

generalized error propagation formula:

Unj,,= Z)C1 c ,. (4.6)
k=1 e=1

The corresponding f' values can then be computed using Eq. (3.6). We obtain

Q' = 0.0417 0.002 4exp GeV2 for the second moment, ' = 0.00445 0.000 7 3 exp GeV3

for the third, and Q' = -0.0017 4 0. 0 0 3 8 eX, GeV4 for the fourth. No new information

is obtained from Q'l, since it is equivalent to Q1. The uncertainties are obtained using

the same error propagation method, and we find the correlation matrix
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1 0.322 -0.021 -0.476

0.322 1 0.695 -0.934
E = . (4.7)

-0.021 0.695 1 -0.778

-0.476 -0.934 -0.778 1

The relative uncertainties in f' are greater for higher cumulant moments, as we expect

given that the higher moments have a smaller impact on the cross section.

Although we generally plot the cross section at Q = mz because of the high preci-

sion of the data available at that energy, our fits our global. Figure 4-8 demonstrates

the consistency of the central profile fit at the lower value Q = 44 GeV. Although the

cross section at lower energies is more sensitive to variations in the soft function, this

figure illustrates that the cross section is constrained more by the mz data than the

low Q data due to the large experimental uncertainties at low Q. The fit is consistent

at high Q as well, as displayed in Figure 4-9.

4.6 The Shape of the Soft Function

The best-fit soft function presented in Figure 4-4 has multiple peaks, an unphysical

feature. This short-scale shaping should not be taken as a claim about the shape of the

actual soft function. Rather, the large-scale properties of the function, characterized

by its cumulant moments, are consistent with those of the true distribution. To

illustrate this point, we construct a more reasonably shaped distribution with similar

moments, project it onto our basis, and demonstrate that resulting cross section is

similar. We use a beta function given by

1 r(9-4) ( 2.6 (1-k)4.8 0 < k < 3.2A
Sbeta(k - 2A, A) 3.2 x r(3.6)r(5.s 3.2) 3.2 (4.8)

0, k < 0 or k > 3.2A.

This beta function has moments (taking into account the proper shifting by A) given
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Figure 4-10: The beta function and its projection into ci space.

by Q1 = 0.387 GeV, Q 2 = 0.167 GeV2 , Q3 = 0.079 GeV 3 and Q4 =0.040 GeV4,

which deviate from those of the best fit soft function by 0.5%, -15.5%, -29.5%, and

-43.7%, respectively. It is constructed to match the lower moments more closely,

since these have the strongest impact on the cross section. Figure 4-10 displays the

beta function and its projection onto the basis.

The cross section which results from using Sbeta is displayed in Figure 4-11, along

with the best-fit cross section for comparison. As we expect, at higher T the cross

sections are nearly identical, while at low T they deviate from each other. In particu-

lar, the incorrect higher moments cause the Sbeta cross section to miss the data in the

first bin entirely. The general consistency of the two fits, however, illustrates how a

suitable single-peaked distribution with similar moments to those of the best-fit soft

function can produce a correct cross section. The physical effects of the soft function

are encoded in its moments.
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Figure 4-11: A comparison of the best fit soft function with a more reasonable-looking
soft function, a beta function projected onto c-space.

4.7 Theory Parameter Scans

Following the approach of [1], we use a random scan to determine the theory un-

certainties of the cumulant moments. The parameters we vary in the scans were

introduced in Chapter 2; for convenience, their default values and ranges are given

in Table 4.1. Our scans contain 500 points, in which each parameter's value is inde-

pendently chosen from a flat distribution over its range. At each point we use our

minimization algorithm to determine fit values for the basis coefficients, from which

the cumulant moments are derived.

Unlike [1], in which the best fit value of x 2 did not change significantly between

parameter choices at N3LL', we find that the ability to obtain a reasonable fit in the

peak region depends strongly on the choice. As such, we impose a cutoff value for

the minimum x 2 and throw away points with minimum x 2 above this value. This

approach ensures that we do not bias our estimate of the theory uncertainties in Q'

with theory choices that do not agree with the data. With the minimum value of
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parameter default value range

no 2.5 GeV 1.5 to 3.5 GeV
ni 4 GeV 3.5 to 5 GeV
eH 1 0.5 to 2
ej 0 -1,0,1
es 0 -1,0,1
eR 0 -1,0,1
n. 1 -1,0,1

I "s 1553.06 -1553.06 to 4569.18
h 0 -3000 to 3000

0 -500 to 500

62 0 -1,0,1
63 0 -1,0,1

Table 4.1: The parameters varied in our theory scans, along with their values used in
our default profile fits. In the first group are parameters associated with the profile
functions, in the second are parameters from the singular distribution, and in the
third are parameters from the nonsingular distribution.

X2 for the central profiles equal to 241.7 with 198 degrees of freedom, we choose 275

as our cutoff for acceptable theories. Figure 4-12 gives the variation of our estimate

of the theory uncertainty in Q, as the cutoff value of x 2 above which points are

thrown out increases. The value 275 sits in the first plateau, so we believe that

it is a reasonable choice. To numerically estimate central values for the cumulant

moments and theory uncertainties, we take the maximum and minimum point kept

after imposing the cutoff. We estimate the central values by averaging the maximum

and minimum point, and we estimate the theory uncertainty by the half the difference

between the maximum and minimum point.

The results of our scans are displayed in Figure 4-13 and Figure 4-14, in which

x2 cutoffs of 275 and 350 have been respectively applied. We note that unlike for

the scan in the tail over (a,, Q1 ), the space explored by the moments does not shrink

at higher orders in perturbation theory. This behavior may be due to the fits being

performed at fixed a, = 0.1135 at all orders, or it may be due to the necessity of

using different requirements for the choice of cutoff x 2, which we have not applied.
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Figure 4-12: The variation in our theory uncertainty estimate of Q1 with respect to
the imposed X2 cutoff. The higher moments exhibit similar behavior.

In a future publication we plan to recompute the scans using variable a,, taken from

the best-fit value for the tail at each order. For now we estimate only the theory

uncertainties at N 3LL', where the value of a. is appropriate.

Using this method and taking the cutoff x2 to be 275, we find

Q, = (0.387 0.026theory)GeV,

' = (0.032 0.011theory)GeV 2,
2 (4.9)

Q' = (3.5 2.6theory) X 10 3 GeV3 ,

Q' = (-0.7 11.9theory) X 10- 4 GeV 4 .

Experimental uncertainties on the cumulant moments were given in Section 4.5, and

we quote the full results in Chapter 5. We note that Q1 is determined with consider-

ably more precision by peak fits than by tail fits. The analogous result for Q1 given in

[1] was 0.323 t 0.045 GeV, where the 0.045 is the theory uncertainty, which is almost

a factor of two larger than the theory uncertainty from the peak fit done here.
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Figure 4-13: Theory scans at N3LL', N 3LL, and N2 LL' are displayed. We neglect cor-
relations between cumulant moments at N 3LL' in our theory uncertainty estimation,
since it is clear that they are weak. Here a X2 cutoff of 275 has been imposed.
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Figure 4-14: For comparison with Figure 4-13, the same scans are displayed here with
a x2 cutoff of 350 imposed.
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Chapter 5

Conclusions

The purpose of this thesis has been to extend the analysis of thrust using SCET

by Abbate et al. in Ref. [1] to the peak region of the distribution. We make use

of a factorization formula that allows us to split the perturbative components of

the distribution into singular and nonsingular terms, governed by energy scales with

r-dependence that we incorporate through the use of profile functions. The factor-

ization formula also contains a nonperturbative soft function, which characterizes

uniform soft radiation. The effects of the soft function are particularly pronounced

in the peak region, and so fits to the experimental data there provide an excellent

method of determining its properties. We write the soft function as an infinite sum of

basis functions with coefficients ci, and it is these coefficients which we fit to the data

in our x2 minimization procedure. We then use these coefficients and their uncertain-

ties to determine the cumulant moments Q', which describe the physical properties

of the soft function independently of a particular parameterization.

We have demonstrated that including more basis functions in our fit for the soft

function improves the agreement with the experimental data substantially, with the

minimum reduced x2 from our central profiles fit at N3 LL' decreasing from 5.29 with-

out fitting basis functions (and setting co = 1) to 1.23 with the first five basis functions

included. We have also computed best-fit values for the Q' from i = 1 to 4 and com-

puted experimental and theoretical uncertainties and experimental correlations for

our central profiles at N 3LL' for each. To determine the perturbative uncertainties,
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we use a scan procedure, taking 500 random choices of the undetermined parameters

of the theory and performing fits to determine the Q' for each. For our final results

we find

Q, = (0.387 0.003exp 0.02 6 theory) GeV,

Q' = (0.032 . O.Olltheory) GeV 2

Q' = (3.5 0. 7 exp 2.6theory) X 10-3 GeV3,

Q' = (-0.7 i 3 .8exp 11.9theory) x 10-4 GeV4 .

We have obtained the most accurate characterization of the peak region for thrust

available at this time. This work will contribute to a future publication. There we

plan to address the impact of theory uncertainty at different perturbative orders in

greater detail.
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