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ABSTRA CT

A low order model was created to analyze a small scale gas bearing designed for
the MIT microfabricated gas turbine engine. The journal has a diameter of 4.1 mm and is
designed to spin at 2 million rpm. Due to microfabrication constraints, the bearing will
have a very low length to diameter ratio (O(.1)) and a very large clearance to radius ratio
(0(0.01)). As a result, the bearing lies outside the standard operating regime and stable
operation is a challenge. The model presented in this paper is able to predict the
bearing's behavior under hydrodynamic, hydrostatic and hybrid operation. The model is
an application of Newton's second law of motion to the journal, after it has undergone a
sudden perturbation from an assumed stable operating point. The equations include
stiffness coefficients taken from a numerical simulation of the compressible Reynolds
equation, and damping coefficients taken from a short width Full-Sommerfeld solution.
The equations of motion are then modified, and rewritten in matrix form using variables
relevant to the bearing literature. By studying the eigenvalues of the linear model, it is
possible to determine at any operating point: 1) whether the journal can sustain stable
operation, and 2) the whirling frequency of the journal. The model's results have been
validated for hydrodynamic operation based on the Half-Sommerfeld and Full-
Sommerfeld model coefficients.

Analysis shows that the best way to operate the bearing is in a hybrid mode where
the bearing relies on hydrostatics at low speeds and hydrodynamics at high speeds.
However, in transitioning from hydrostatic to hydrodynamic operation, the model shows
that the bearing is prone to instability problems and great care must be taken in the
operating schedule.

Thesis Supervisor: Kenneth S. Breuer
Title: Visiting Associate Professor of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

1.1 M.I.T. Microengine Project

MIT is active in the development of micro-electro-mechanical systems (MEMS)-

based gas turbine engines and turbo-generators. These devices will be manufactured

using semiconductor micro-fabrication procedures and will be produced in large

numbers. Mechanically, they are based on high speed rotating turbo-machinery. Figures

(1-1 and 1-2) depict the gas turbine engine and the flow path through it."'2

3.7mm

Rotor Exhaust i Nozzle Guide Vane
Turbine

21 mm

Figure 1-1: Cross-section diagram of the microengine turbojet.'
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LOOKING AFT LOOING FORWARD

Figure 1-2: 3-D diagram of the demonstration turbojet, depicting a radial outflow compressor and a
radial inflow turbine.3

Air enters through the inlet and then passes through the compressor, which increases

its stagnation pressure. The flow is then diffused through the diffuser vanes and travels

radially outwards until it reaches the edge of the engine, where its direction is reversed so

as to make it enter the combustor, where it is burned with hydrogen. The air then travels

through the turbine nozzle guide vanes, and is expanded in the turbine blades, which use

the flow's energy to drive the compressor. Finally, the flow is exhausted through the

exhaust ports. For the gas turbine engine, the exhausted flow has remaining energy in it,

which is used to produce thrust. In the turbo-generator, where a micro-generator - used

to produce electricity - is inserted inside the engine, the exhaust flow has little remaining

energy in it, and as a result, marginal thrust is produced.

The microengine is fabricated by deep etching and bonding single-crystal silicon

wafers.5 It measures 21mm in diameter and 3.7mm in thickness. It has been designed to

produce 11 grams of thrust (17W of power) with a pressure ratio of 2:1 and is expected to

consume 16 grams/hour of H2 (Table 1-1).3 Once an operational engine is built, it is

hoped that further refinement will allow the engine to produce over 50 Watts of electrical

or propulsive power. Such power densities are similar to those of large aircraft engines

and ground-based turbine generators.

12



Table 1-1: Demonstration turbojet characteristics. 4

Parameter Micro-Engine Value

Thrust 1ig

Fuel burn (Hydrogen) 16g/hr

Engine weight 2g

Turbine inlet temperature (TT4) 1600 K (242 1*F)

Exhaust gas temperature 9700C

Rotor angular speed 1,200,000 rpm

The microengine turbojet has many applications including the propulsion of micro

air vehicles such as the one shown in Figure (1-3). The propulsive efficiency of the

turbojet at the low flight speeds required by such vehicles is estimated to be less than

20%.4 However, the overall efficiency of the system will still be higher than that of any

current micropropulsion system (such as electric motors powered by batteries).

Figure 1-3: Micro Air Vehicle (MAV) mock-up.4 (courtesy of Prof. Drela)

13



Like the turbojet, the turbo-generator has many potential applications. For example,

it could be used to produce portable electric power, replacing conventional batteries in a

wide variety of consumer electronic devices as well as military equipment. 2 Preliminary

calculations show that the turbo-generator could have approximately twenty times the

energy density of a conventional battery.4

1.2 Motivation

Efficient operation of the microengine requires that the rotor tip Mach number be of

order unity. For the 6mm diameter rotor used by the microengine, this translates to 1.2

million rpm.4 Using conventional ball bearings is not an option because of excessively

large frictional losses and high wear rates. However, two other solutions are available.

The first, magnetic bearings, was deemed unfeasible due to its high level of complexity.

Gas bearings were considered as the second option. In this solution, the rotor spins on a

thin film of air that separates it from the stationary part of the engine. Although far from

simple, gas bearings were chosen for the microengine.

The advantages of using gas bearings are that they have very low drag and little

wear. However, they also have several disadvantages. First, making the rotor spin stably

is challenging and can only be achieved under very specific conditions. Second, external

pressure sources may be required to create the necessary conditions. Finally, and most

importantly, the rotor must maintain stability while accelerating from rest to full speed.

Extensive research on this topic has been performed by Orr6 and Piekos15 at both the

experimental and analytical level. The experiments confirmed the feasibility of gas

bearings and the analytical research resulted in the production of several extensive

numerical models predicting the gas bearing's behavior. To supplement the above

models, however, a lower order model was also developed. It is able to simulate the

operation of the bearing as a function of the speed, and quickly predict its performance

trends, suggesting possible paths leading to full speed operation. It is this model that

shall be discussed in this thesis.
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1.3 Gas Bearings

1.3.1 Nomenclature and General Model

In order to proceed, it is important to define a few terms and describe the geometry

of a gas bearing (Figure 1-4).

tWr

0)

Figure 1-4: Gas bearing geometry and nomenclature

The journal (rotor) is the rotating part of the setup. It spins at an angular velocity,

w, inside of the bearing (stator) which is stationary. The journal's radius is r. Its length

(or thickness) is L and its mass is m. When the journal's center is placed on the bearing's

center, the spacing between the outer edges of the two, is called the clearance, c. The

ambient pressure of the air surrounding the journal is denoted by Pa and the viscosity of

the air by pt.
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An external force, denoted by w, may be applied to the journal. A coordinate

system is drawn such that the x-axis is parallel to the direction of this force. The external

load may cause the journal's center to move away from the bearing's center. The

distance between the two is called the eccentricity and is denoted by e. When the

eccentricity is normalized by the clearance, the result is called the eccentricity ratio and is

denoted by E (where e = e/c). The angle between the x-axis and the line connecting the

journal center to the bearing center is called the attitude angle and is denoted by <P. The

ratio of the diameter to the length of the journal is called A (where A = 2r/L) and the ratio

of the clearance to the radius is called yV (where yV = c/r).

1.3.2 Bearing Design

In order to achieve stable operation, it might be necessary to load the journal so as

to make it operate in a hydrodynamic mode, where it spins at a non-zero eccentricity

ratio. In conventional gas bearings this load can come from the weight of the journal

itself. However, since our bearing is so small, its weight is insufficient. As a result, the

journal is loaded by applying differential pressures to its surfaces. This is achieved by

placing it on top of an aft plate (Figure 1-5) which, for the purposes of this analysis,

consists of two separate plena which are externally pressurized. When different pressures

are applied to these plena, the journal experiences a net load force and is pushed away

from the center of the bearing. The pressure in the high pressure plenum is denoted by

PpH and the pressure in the low pressure plenum is denoted by PPL.

16



Stator
(Bearing) Rotor

(Journal)

High Pressure
Plenum PPH

AP

Atmospheric Interrow Turbine
ePressure Pi,Pressure Patm PesrP~t Main Pmain

Low Pressure
Plenum PPL

Aft Plate

High Pressure
Plenum PPH

Low Pressure
Plenum Pp,.

Figure 1-5: Bearing rig schematic: The aft plate consists of two separate plena which can be pressurized
to any desired pressure, PPH and PpL. By applying different pressures to the plena the journal is loaded.

An external pressure source is also used to provide the main turbine air pressure,

Pmain, which drives the turbine. The pressure of the air between the stator and the turbine

blades is called the interrow pressure, Pi,. The pressure difference between the interrow

pressure and the plena pressures is called the axial pressure difference and is denoted by

AP. This pressure difference can drive an axial flow and is a source of hydrostatic

stiffness. Finally, since the exhaust of the turbine is exposed to the surrounding
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atmosphere, the turbine exhaust pressure is assumed to be atmospheric and is denoted by

Patin.

1.3.3 Bearing Rigs

In trying to make the engine operational, a macro-bearing rig was built by Orr6 , and

a micro-bearing rig was built by Lin7 . The purpose of the rigs was to validate bearing

design tools and to study bearing and rotordynamic behavior in these systems. The rigs

were constructed based on the schematic shown in Figure (1-5). The macro-rig is 26

times larger than the turbojet's turbine and uses conventional instrumentation.

Experiments performed using this rig validated the feasibility of gas bearings for both

hydrodynamic and hydrostatic operation. The micro-rig (Figure 1-6), on the other hand,

is approximately the same size as the turbojet's turbine. Due to its size, instrumentation

is very limited, something which makes its operation very cumbersome. Experiments

using this rig are still underway and the latest runs reported a rotational speed of 1.4

million rpm. In this thesis, we will only be examining this rig. The following table

summarizes most of its characteristics.

Table 1-2: Micro-bearing rig geometric parameters

Variable Micro-Bearing
Rig Value

Mass (in) 10 mg

Radius (r) 2.05 mm

Clearance (c) 12 im

Length (L) 300 jim

Ratio (ig) 5.85x10 3

Ratio (X) 13.3

Design Speed (OWdesign) 2,000,000 rpm

18



Turbine Rotor
exhaust

Journal Bearing
Axis of
rotation

Figure 1-6: Micro-bearing rig die-cut cross-section. (courtesy of C.C. Lin)7

1.4 Modes of Operation

There are three modes of operation for gas bearings: hydrodynamic, hydrostatic,

and hybrid. By varying the plena pressures in the bearing rig, we can control the mode of

operation. Each mode has its own stability characterisitics.

1.4.1 Hydrodynamic Operation

Hydrodynamic operation is based on the inherent properties of the thin film of

fluid separating the journal from the bearing."'9''" Under this mode, the journal must

operate off of the bearing's center and therefore must be loaded. Off center operation

19



results in an assymetric pressure distribution in the lubricating film. This opposes the

externally applied load and thus introduces stiffness to the system. The eccentricity ratio

adjusts itself until the two forces are equal. As would intuitively be expected, increasing

the externally applied load results in an increase in the equilibrium eccentricity ratio.

In addition to providing stiffness to the journal, the pressure distribution also acts

as a source of damping. Both of these effects increase with increasing eccentricity ratio

and tend to infinity. This is fortunate because it means that any amount of stiffness or

damping can be achieved by simply increasing the load. However, it is also unfortunate

in the respect that the journal may have to operate extremely close to the bearing in order

for appropriate levels of stiffness and damping to be developed.

The advantage of hydrodynamic operation is that the stiffness and damping arise

from the rotor motion itself. However, there are two disadvantages. The first, and most

important one, is that stable operation requires that the journal is spinning at high

eccentricity ratios. The second one is that in order to achieve any eccentricity ratio the

journal has to be externally loaded, something which may require the use of an external

pressure source.

1.4.2 Hydrostatic Operation

Hydrostatic operation provides stiffness to the journal by supplying pressurized air

to the journal-bearing gap. 1 12 The classical setup of a hydrostatic bearing is shown in

Figure (1-7).

Journal
(rotor)

Bearing Externally Pressurized
(stator) Air Supply

Figure 1-7: Center-injection hydrostatics. Externally pressurized air is supplied to the center of the
journal, thus introducing hydrostatic stiffness.
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Either an array of holes or a slot is made at the center of the bearing so as to allow the

pressurized air to flow into the journal-bearing gap. This type of setup is called center

injection hydrostatics.

In order to understand the principle of hydrostatic operation, the above system is

modeled as a group of resistors (Figure 1-8), in which pressure acts as voltage and flow

rate acts as current.

Patmosphere

Rfilm

PsuppIy Pintermediate

Rrestrictor

Patmosphere

Figure 1-8: Hydrostatic operation / resistor analogy

The pressure of the air that is being provided to the journal-bearing gap is denoted by

PSUPPly and is fixed by the operator. The holes providing the air to the gap act as

restrictors and are modeled as a fixed resistance, Rrestrictor. The pressure at which the air

first contacts the journal is denoted by Pintermediate. As the air flows through the journal-

bearing gap, there is another pressure drop that is a function of the film thickness. The

film is therefore modeled as a variable resistance, Rfiim, which is directly related to the

eccentricity ratio. Finally, the pressure of the air exiting the gap is fixed at atmospheric

pressure, Patmosphere. Since the pressure difference between Patmosphere and Psupply is fixed,

the value of Pintermediate is proportional to the ratio of the two resistances and increases as

the eccentricity ratio increases. This effect introduces hydrostatic stiffness to the journal.

21



As the supply pressure increases, the hydrostatic stiffness of the system is also expected

to increase. This is because a given change in eccentricity ratio results in a larger change

in the intermediate pressure, and consequently a larger restoring force. Also, it is

important to note that, unlike hydrodynamic operation, the stiffness is only moderately

sensitive to the eccentricity ratio.

Another way hydrostatics can be introduced to the system is by supplying

pressurized air at the end of the bearing instead of the center. This type of arrangement is

called end-injection hydrostatics (Figure 1-9) and was first discovered in the macro-rig by

Orr6 and Piekos' . It is identical to center injection hydrostatics with the exception that

there is only one film resistor instead of two. The current micro-bearing rig uses this

form of hydrostatics.

Bearing Journal
(stator) (rotor)

Aft
Plate Externally Pressurized

Air Supply

Figure 1-9: End-injection hydrostatics. Externally pressurized air is supplied to the end of the journal,
thus introducing hydrostatic stiffness.

The advantages of hydrostatic operation are that the bearing operates at an

eccentricity ratio of zero and that its stiffness can be directly controlled by simply

adjusting the pressure in the plena. The disadvantage, however, is that an external

pressure source is required.

1.4.3 Hybrid Operation

Hybrid operation refers to the situation where both hydrostatics and

hydrodynamics are present. In fact, the bearing rig can only operate in a hybrid mode.

Purely hydrodynamic operation cannot exist because the loading of the journal requires

pressurized air in the plena, something which unavoidably introduces hydrostatic effects
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to the system. Technically, purely hydrostatic operation also cannot exist because

hydrodynamic effects, which are due to the inherent properties of the fluid film, are

always present. However, at eccentricity ratios close to zero, these effects can be

considered negligible.

1.5 Tools for Analysis

1.5.1 Analytical Solutions

Two common analytical solutions for hydrodynamic operation are offered by the

Half and Full-Sommerfeld models.8'9"0 Both models are based on the incompressible

form of the Reynolds Equation and the Equation of Motion. The incompressible

Reynolds Equation is based on the following assumptions:

e Viscous forces >> Inertial forces

e The fluid film is treated as having a constant viscosity

e Zero slip at the fluid-solid interface

e The curvature of the film is small (i.e. r >> c)

e Incompressible fluid

Both models are for incompressible fluids (i.e. liquid bearings), and they are identical,

with the exception that the Half-Sommerfeld model assumes that the fluid cavitates along

half of the journal-bearing interface - something which is commonly observed in liquid

bearings. It is important to note that the assumption of an incompressible fluid makes

these models invalid for our bearing. However, they provide a means of validating our

model as well as some insight, as will be explained later on.

1.5.2 Low-Order Projection Solutions

The low order projection solutions are based on the compressible form of the

Reynolds Equation coupled with the Equation of Motion.6,'14 In solving these equations,

the pressure film is represented as a truncated Fourier series where a Galerkin

projection" is used to determine the coefficients. This results in a series of ordinary
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differential equations based on which a linear stability analysis is performed. This type

of analysis was initially performed by Cheng and Pan' 3 and was extended by Jacobson' 4

in order to get more precision. Later, Orr6 extended the analysis even further and was

able to get results that were identical to those of the full numerical simulation, that will be

explained in the next section.

1.5.3 Full Numerical Simulation

The full numerical simulation, developed by Piekos, is based on a compressible

form of the Reynolds equation coupled with the Equation of Motion. It uses an orbit

method, which is a numerical experiment in time. Its results are very precise, even at

high eccentricity ratios. The only disadvantage of this code, is that it is very time costly.

1.6 Need for a Low Order Model

The tools that are available are mostly designed to analyze hydrodynamic and

hydrostatic operation. However, our gas bearing can never operate in a pure

hydrodynamic or hydrostatic mode. As a result, it was realized that there was a need for

a low-order model capable of analyzing hybrid operation. This need resulted in the

model we present. It draws upon the stiffness and damping coefficients predicted by the

full numerical simulation and is capable of predicting the stability of the rotor under any

operating condition. Due to its simplicity it is very fast but not very precise - especially

at higher eccentricity ratios. Nonetheless, its purpose is to indicate trends in hybrid

operation, and its most important aspect is that it is able to simulate the operation of the

bearing as a function of the speed, once given a certain plena pressure schedule.

1.7 Thesis Outline

In Chapter 2 we introduce the mathematical basis of the model and the stiffness and

damping coefficients upon which it relies. Further, we explain the procedure for going
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from the plena pressures and the turbine main air pressure to determining wheather stable

operation is achievable.

In Chapter 3 hydrodynamic and hydrostatic stability boundaries are constructed.

Several hybrid pressure schedules are examined to determine the most feasible way for

reaching full speed operation. Finally, in Chapter 4 we discuss our conclusions.
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CHAPTER 2

STABILITY MODEL

In this chapter, we introduce the governing equations of our stability model. We

then re-write them in non-dimensional form and explain how to solve them. Then, we

examine the stiffness and damping coefficients that are available for our model and

establish which ones will actually be used. Finally, we explain how to evaluate the

stability characteristics of the bearing given the bearing's angular speed and plena

pressures.

2.1 Governing Equations

We first assume that the journal is spinning in equilibrium with an external load,

Wr, applied to it (Figure 1-4).16 This load may be zero for the case of purely hydrostatic

operation. The journal will also be experiencing an internal force due to hydrodynamics

and/or hydrostatics. This reaction force is broken into its components in the x and z

directions and is denoted as wx and wz respectively. Newton's second law of motion

suggests the following:

0 = e cos j L L (2-1)
0 M at2 e sin (1 0 WZ

We then assume that the bearing is perturbed from its initial position by an amount Ax

and Az. To model this perturbation we perform a first-order Taylor expansion of w, and

26



(2-2)

where:

ax

-z aw,
ax

kz aWX
az

az

b = W

=i

b =

at~ (2 -3)Y1

Note that the first term in the expansion is based on the fact that the journal is initially in

equilibrium (i.e. initially wr = (wx)o and (wz)o = 0).

Having expanded the right side of Eq. (2-1) into terms consisting of differentials in x and

z the next step is to re-write the left side using similar terms. This is easily done when the

following geometric relationship is considered:

a2 e cos CD Aq

at 2 e sin CD A<
(2-4)

Finally, substituting Eq. (2-2) and Eq. (2-4) into Eq. (2-1) and remembering that wr is left

unchanged by the perturbation (i.e. Wr = (wx)o = const.) the following equation results:

(2-5)
M 0 A 'bXX bxY Ai) ' kxx kz Ax 'O

0 M AM bzx bzz At kz, kzz Az 0

This is the governing equation of the system.

2.2 Non-Dimensional Form of the Governing Equation

In order to make the analysis more general, Eq. (2-5) is non-dimensionalized by

introducing the following variables' 6:
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x z
Xnew = - Znew = - T = twO (2-6)

C C

Furthermore, the following parameters (commonly used in the literature of bearing

theory) are also introduced:

Bearing Number: A - (2-7)

m2 Pa

Mass Parameter: -=2 1 2 (2-8)
7 2l p2

Load Parameter: - = "' (2-9)
2rlPa

Sommerfeld Number: W = 2 12 (2-10)
pWrl A

For a fixed geometry, the bearing number may be thought of as the dimensionless form of

the speed. The mass parameter, as the dimensionless form of the mass of the journal, and

the load parameter as the dimensionless form of the externally applied load. Finally, the

Sommerfeld number is a function of several variables and turns out to be twelve times the

ratio of the load parameter to the bearing number. It is a particularly useful variable

because the incompressible theory (Half-Sommerfeld or Full-Sommerfeld) predicts a

unique relationship between Wr and the eccentricity ratio. As a result, any combination

of two of the variables , A and E, can be used to solve for the third through an

application of Eq. (2-10) and one of the incompressible models.

The next step is to introduce nondimensional forms of the stiffness and damping

coefficients:
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K1= =k B =Ob y (2-11)
Wr Wr

Ky = [-k] Bi= -- b= (2-12)
A[_wr _A _wr_

The first set of expressions are the conventional form of the non-dimensional

stiffness and damping coefficients. However, they are not used because they tend to

infinity at an eccentricity ratio of zero. This would complicate the analysis significantly,

especially when examining hydrostatic operation. This effect is due to the fact that the

externally applied load appears in the denominator of the expressions and its value is zero

at an eccentricity ratio of zero. In order to remedy this problem, we will be using the

conventional stiffness and damping coefficients multiplied by the ratio of the load

parameter to the bearing number.

Finally, the dimensionless form of the governing equation is obtained using Eq.'s

(2-5, 2-6, 2-7, 2-8, 2-9, and 2-12):

LA - + -W. -. + -- -- Y j = j (2-13)
0 Am AZ Bzx Bz AZ Kzx Kzz AZ 0

x and z refer to Xnew and Znew respectively and continue to do so throughout the rest of this

thesis.

The above equation depends on the bearing number which is treated as an

independent variable, the mass parameter which is mainly a function of the geometry,

and the stiffness and damping coefficients which are only functions of the eccentricity

ratio and the bearing number (this will be shown later).
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2.3 Solution Forms and Their Interpretation

In order to solve Eq. (2-13), the following variables are introduced:

AZi At

Using these two new variables, (Eq. 2-13) can be re-written in the form:

X = AX

ACJ

0 1

AM AM

N0 0

AM

0 0 0

KA BM

AM AM

KuM

AM

AM

1

BA

AM)

Ax)

Axi

Az7

Azi)

Now, the normal mode solution of Eq. (2-16) is of the following form:

Ax) ' Xh'

Axi Xh I

~AZI Zh)

=,7 e""'

where =--,
(0

Xh, Xhl, Zh, Zhl are constants
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Q is the set of eigenvalues of the matrix A in Eq. (2-16). It consists of four numbers,

some or all of which can be complex conjugate pairs and can be re-written as follows:

Q = ia + iQ, (2-19)

The solution shown in Eq. (2-17) can also be written as:

Ax) 'Xh

=Xhl (e"" cos(Q vot) + i sin(QOvat)) (2-20)

ALi Zhl

The real part of each of the eigenvalues, a, is the damping and corresponds to

how quickly a perturbation of the journal decays or grows. Although there are four

eigenvalues, only the one with the most positive real part is examined. This is because it

only takes one unstable mode to make the journal go unstable. If the real part of that

eigenvalue is less than zero, the system is classified as stable and if it is greater than zero,

the system is classified as unstable.

The existence of an imaginary part in the eigenvalues implies that a perturbation

will also cause the rotor center to start whirling around its initial position. The

dimensional whirling frequency is Acco. Q, itself will be called the whirl ratio and its

inverse will be called the critical speed ratio. Depending on the operating point being

examined, the journal can be whirling at one or two differently damped frequencies.

Unless otherwise noted, only the less-damped whirling frequency shall be considered

since it is the one that is most likely to be observed in an experiment.

2.4 Stiffness/Damping Models

In the previous section, we showed how the value of Q determines the bearing's

whirling frequency and whether it can operate stably. We also showed that this
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parameter depends on the values of the stiffness and damping coefficients.

our model has to draw upon stiffness and damping coefficients predicted by other models

or simulations.

2.4.1 Hydrodynamic Stiffness Coefficients

Hydrodynamic dimensionless stiffness coefficients based on the Half-Sommerfeld

model, the Full-Sommerfeld model, and the full numerical simulation were

examined.15 '16 '17 The equations describing the stiffness coefficients for the Half and Full-

Sommerfeld models are listed below:16

Half-Sommerfeld Model:

4 esin 2 + 3fE 2 sin cos+ 2e(1+e 2 )cos 2

xx = W I2 _ L 22 + (12) + ] (2-21)

__4 w(1+28
2 ) sin 2

WrA2 4(1 - c)2
(1+82) Ics2+ + sin (I)cos@ + 471C82
(i _ 2)3 4( _ E2)Y

[ isin2 (1 +8(1+382) ir(1 + 2E2 )cos 2 
'1

+ sin ccos- (

~4(1 _ E2)Y% (i- _ 2 3 ( 2 %Y

28(1+82)2
( 2)sin 2

(I_- E2)3

3wE2 sin (D cosF

1 _+

1 8[1682 +72(1_ 2Y
where, Wr =

22 (IE2)2
and D = tan- 7

4e

sin Dcos (D
E _ c21

sin 2 F
(1 2

+ cos2 I
( 2)Y
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4
K = 4

WeA2

Kzz =
WrA2

(2-22)

(2-23)

EeCos2 D

( _ 2)2
(2-24)

Full-Sommerfeld Model:

(2-25,26)

K. 2K=xw=
WrL 2

2
K,= -

WrA2

(2-27)

(2-28)

Therefore,



sn2 7 i + 7r(1+2e 2) Cos2 j
Wel2(I E2 % (1 _ E2)Y%

K,= 2 [(r) sin ctcose
WrA2 1 E2 %

Wr 2rE
X(1_E2)%

and D= 90"

Figure (2-1) depicts the coefficients based on all three models.

(2-31,32)

The plots for the full

numerical simulation were extracted by Breuer17 from Piekos'1 5 analysis.

Eccentricity Ratio

0.2 0.4 0.6
Eccentricity Ratio

0.8 1

101

Eccentricity Ratio

0.4 0.6
Eccentricity Ratio

Figure 2-1: Hydrodynamic dimensionless stiffness coefficients based on the Half-Sommerfeld model,
the Full-Sommerfeld model and the full numerical simulation, where X=13.3. The results of the full
numerical simulation are for bearing numbers of 0.25, 0.5, 1.0, and 2.0. Also note that for the Full-

Sommerfeld model, K..=K =0.
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According to the Half and Full-Sommerfeld models, the stiffness coefficients are

only functions of the eccentricity ratio. Further, they increase with increasing

eccentricity ratio. The models differ only because the Half-Sommerfeld model assumes

that the bearing cavitates. According to the Full-Sommerfeld model, the bearing has only

cross-stiffness. This means that whenever the journal is pushed in any direction, the

internal hydrodynamic forces will respond by creating a restoring force acting

perpendicular to the perturbation. This behavior does not allow for stable operation (at

any speed). However, in the Half-Sommerfeld model the assumed cavitation has the

effect of introducing direct stiffness to the bearing and as a result stable operation is

achievable.

Like the Half and Full-Sommerfeld models, the full numerical simulation shows that

the stiffness coefficients increase with increasing eccentricity ratio. However, it further

demonstrates that they are also functions of the bearing number. This dependence on the

bearing number arises due to compressibility effects which were not accounted for in the

Half and Full-Sommerfeld models. More specifically, it shows that the bearing has direct

stiffness which increases with increasing bearing number. It also predicts cross stiffness

coefficients which are identical to the ones predicted by the Full-Sommerfeld model at

eccentricity ratios below 0.8. At higher eccentrcity ratios, compressibility effects take an

increasingly important role and the two models predict different results. For our low-

order model, the stiffness coefficients from the full numerical simulation are used since

they most accurately represent the bearing. However the Half and Full-Sommerfeld

models will also be used for validation purposes.

An interesting result, based on the full numerical simulation, comes when the non-

dimensional direct stiffness', in their conventional form (Kxx and Kzz), are divided by the

bearing number. Figure (2-2) depicts the results for Kxx:
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Figure 2-2: Hydrodynamic dimensionless direct stiffness (in conventional form) divided by the bearing
number, based on the full numerical simulation for bearing numbers of 0.25, 0.5, 1.0, and 2.0, where

X=13.3. At low eccentricity ratios all the stiffness curves collapse onto a single curve.

At eccentricity ratios below 0.8, all the curves collapse onto a single line. This

happens because the bearing has such a large ratio of diameter to length.17 Since the full

numerical simulation stiffness coefficients are only available for bearing numbers 0.25,

0.5, 1.0, and 2.0, it is necessary to sometimes extrapolate the direct stiffness coefficients

for a certain bearing number by simply using the stiffness coefficient values from one of

the known bearing numbers. More specifically, when examining the direct stiffness

coefficients at bearing numbers between 0.25 and 2, interpolation procedures are used.

However, when examining the direct stiffness coefficients at bearing numbers either

below 0.25 or above 2.0 the following simple extrapolative equations are used:

For A <0.25: For A > 2.0:

A A
Kii = KiiJA = 0.2s Kii =- KiiA = 2.0 (2-33)

0.25 2.0

The cross stiffness coefficients are treated in the exact same way as the direct

stiffness coefficients with the exception that the Ki; plots already collapse onto a single

curve for eccentricity ratios below 0.8. As a result the extrapolative problem is solved

much more easily.
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It is important to realize, however, that when looking at stiffness coefficients that

are either below a bearing number of 0.25, or above a bearing number of 2.0, and

simultaneously at eccentricity ratios above 0.8, the results are subject to some error. This

error, however, is negligble at the low bearing numbers and relatively small at the larger

bearing numbers.

In Figure (2-3) the Sommerfeld number, as function of the eccentricity ratio (and

bearing number), has been plotted for all three models. The Sommerfeld number

increases monotonically with increasing eccentricity ratio according to all of the models.

This implies that for a given bearing number, if the load is increased, the eccentricity

ratio is also expected to increase

10

Ed Piekos code

0 --- Full Sommerfeld Model
10 ---- Half Sommerfeld Model

E 10

10

10

0 0.2 0.4 0.6 0.8 1
Eccentricity Ratio

Figure 2-3: Sommerfeld number (12CfA) based on the Half-Sommerfeld model, the Full-Sommerfeld
model and the full numerical simulation. The results of the full numerical simulation are for bearing

numbers of 0.25, 0.5, 1.0, and 2.0, where X=13.3.

As expected, the Half-Sommerfeld results differ slightly from the Full-Sommerfeld

results. However, what is interesting is that the full numerical simulation predicts

idendtical Sommerfeld numbers as those of the Full-Sommerfeld model up to an

eccentricity ratio of 0.8, at which point, once agaain, compressibility effects take an

increasingly important role.
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2.4.2 Hydrostatic Stiffness Coefficients

A code developed by Piekos' 5 , is used to determine the hydrostatic stiffness

coefficients. This code predicts the relationship between the natural frequency of the

journal as a function of the axial pressure difference, AP, and the value of X. The

relationship is relatively insensitive to the eccentricity ratio and is depicted for our gas

bearing (X = 13.3) in Figure (2-4). For the purposes of this thesis a fourth order

polynomial was fit to it:

" = -0.0053Ap 4 +0.320Ap 3 -9.867Ap 2 + 282Ap

I

10
AP (psi)

(2-34)

20

Figure 2-4: Hydrostatic natural frequency of the journal as a function of the axial pressure difference

As a result, once the pressure difference across the bearing is known, it is possible

to determine the expected natural frequency of the journal, assuming that there are no

hydrodynamic forces acting upon it. Once the natural frequency is determined, from Eq.

(2-34), the next step is to determine the actual hydrostatic stiffness of the system. This is

done by using the following simple equation:

k = o- m (2-35)

Also, since the setup is symmetric, the stiffness coefficient in the x-direction has to be the

same as the stiffness coefficient in the z-direction:
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k. = k (-6

Finally, the above stiffness coefficients are converted to the non-dimensional form by

using Eq. (2-37), which results from Eq's. (2-3, 2-6, and 2-12)):

(2-37)Ki= kii
2LPaA

Figure (2-5) shows both the hydrodynamic and hydrostatic direct stiffness

coefficients for bearing numbers of 0.25 and 2.0 and for axial pressure differences of ipsi

and 5psi:
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0.8 1

Figure 2-5: Hydrodynamic and hydrostatic stiffness coefficients for A = 0.25, 2.0 and AP= ipsi, 5psi.
At low bearing numbers the hydrostatic dimensionless stiffness can be substantial, but as the bearing
number increases, the hydrodynamic dimensionless stiffness becomes increasingly important.

As can be seen, at low bearing numbers the hydrostatic dimensionless stiffness

can take on very large values, comparable (and in some cases larger) than the

hydrodynamic dimensionless stiffness coefficient. However, as the bearing number

increases the value of the hydrostatic dimensionless stiffness decreases, thus making

hydrodynamics take an increasingly important role.
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2.4.2.1 Better Models for Hydrostatics

In our model, we assume that the effect of the axial pressure difference, AP, is to

introduce a restoring force which is equal to the stiffness, due to the pressure difference,

multiplied by the journal's displacement:

Fhydrostatic = -kX (2-38)

However, in a paper written by Larson and Richardson,"' 12 it is suggested that this force

is not just a function of the hydrostatically induced stiffness and displacement. Instead, it

is given by:

Fhydrostatic _ L & R = -k 1X (2-39)
( r2D+1

where tiand T2 are lead and lag time constants which are based on the geometry of the

bearing, and D is a differential operator with respect to time (D = d/dt). Their analysis is

based on the fact that it takes a finite amount of time for the film pressures to change in

response to the motion of the journal. This suggests that the bearing should portray signs

of viscoelastic behavior, something which is not accounted for in our model.

2.4.3 Hydrodynamic Damping Coefficients

It was not possible to extract hydrodynamic damping coefficients from the full

numerical simulation. As a result the only available damping coefficients were the ones

from the Half and Full-Sommerfeld models. The equations describing these coefficients

are listed below.16

Half Sommerfeld:

__4 7rsin 2 (D 4EsinDcos@ D r(1+2E2 )cos 2
D (2-40)

W 2 (1 - 27% (1- g2)2 2(1-I2 %
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&ZB= =a 4 2E sin2 3x2 sin Dcos4 2E cos21

WrX (1-E27 2(1-E2) ~ (1_ 2

Bz =4 (1+ 2E 2 )sin 2 ' 4E sin D cosD 7 cos2 (D
B+ - +

Wr[ 2 (1- 2)Y (1-c 2) 2  2(1-2 )Y2

Full Sommerfeld:

B.= - sm2D+ + cos2 IJ

Wrf (1 E2% _ E2)Y%

B., = B,, 4 r - sin Dcoso
Wr ( E2W%

Bu= 4 7l(1+2E2) sin 2D+ 7rcos2]

Wre (2- _2epict _ t2ho%

Figure (2-6) depicts these coefficients.
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Figure 2-6: Hydrodynamic dimensionless damping coefficients based on the Half and Full-Sommerfeld
models.

As expected, both the models predict that the damping coefficients are only

functions of the eccentricity ratio, and increase with increasing eccentricity ratio. The

Half-Sommerfeld model predicts both direct and cross damping coefficients whereas the

Full-Sommerfeld model predicts that there are only direct damping coefficients.

Without any damping coefficients from the full numerical simulation, the damping

coefficients that will be used in our model shall come from the Full-Sommerfeld model.

This of course introduces some error to the results, since compressibility effects are not

accounted for, but it is nonetheless, the best available option. Also, simple tests showed

that the bearings performance trends are relatively insensitive to the damping models and

mostly depend on the stiffness models used.

2.4.4 External Couette Flow Damping

Since the distance between the journal and the aft plate is relatively small, the

magnitude of possible Couette flow damping was computed and compared to the

damping due to hydrodynamics. Figure (2-7) shows the area over which Couette flow

was assumed to exist:
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Figure 2-7: Surface over which Couette flow damping shall be calculated

The variation of velocity for Couette flow' 8 is as follows:

(2-46)U =
d

where u is the velocity of the flow at any point in the profile, uO is the relative velocity at

which the surfaces are moving, y is the vertical location in the profile and d is the

separation between the two surfaces. Now the shear stress is a function of the slope of

the profile and the coefficient of viscosity and is given by:

au

ay
(2-47)

Manipulating the two above equations, and using the fact that the shear stress is equal to

the shear force per unit area, the following result is obtained:
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Fshear = [ 0 ] =buu =bz:u o (2-48)
d _ 2-8

Evaluating the bracketed expression determines the value of the Couette flow damping.

It is then converted to the appropriate non-dimensional form using Eq. (2-49), which

arises from (Eq 2-3, 2-6, and 2-12):

Bi =1  ble (2-49)
12MpL

For the micro-bearing rig, the value of the Couette flow non-dimensional damping

coefficient turns out to be 4.81x10-5 whereas the value of the damping coefficients

predicted by the Full-Sommerfeld model at an eccentricity ratio of zero is 6x10-3. The

Couette flow damping coefficient is approximately two orders of magnitude smaller than

the damping predicted by the Full-Sommerfeld model and as a result can be considered

negligible. However, there could be other forms of unaccounted external damping, such

as Coulomb damping. Examining these possibilities, however, goes beyond the scope of

this thesis.

2.5 Solution Techniques

In operating the bearing rig, the only parameters that can be regulated by the user

are the low pressure plenum pressure, the high pressure plenum pressure, and the turbine

main air pressure; and the only variable which is of interest to the user is ii. In this

section we will show how to determine the value of i based on the values of PPH, PPL,

and Pmain. Figure (2-8) schematically depicts the procedure that will be followed.
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Figure 2-8: Functional dependence of variables

Step 1: Determination of 0, Pint, Pa, AP, and Wr

The angular speed of the rotor is a function of the main turbine air pressure Pmain.

The inverted functional relationship was predicted using MISES (a 2-D turbomachinery

code developed by Professor Mark Drela) and is shown in Eq (2-50), and Figure (2-9).

21

Pmain = Pa[ (Or 0.956818+ (or 0.82273+1 (2-50)
= (500) 500

co~
E

1

Rpm

Figure 2-9: Rotor rpm vs. main turbine air pressure
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The pressure after the air has flowed through the turbine blades is atmospheric and

MISES predicts that the pressure between the stator and rotor blades should be the

average of Pmain and Patm:14

P _nt = P,nain + P""t (2-51)
2

Pa, which was introduced earlier, is the ambient pressure, and is set to be the

weighted average of all the pressures in the journal-bearing gap. A linear pressure

distribution between the interrow pressure and the plena pressures is assumed and the

ratio of the areas of the plena is 2:1:

Pint PPH PPL
Pa =-+- + (2-52)

2 3 6

The net load force experienced by the rotor is computed by computing the average

pressures acting on each section of the journal and by multiplying these pressures by the

appropriate areas:

rP nt+ PPHJA t P int+ PPL (2-53)
2 2

where Ah = A, = (1/3)2nrL = 1.07x10-6m2

Since there are two plena, the pressure in the aft side of the bearing is not uniform.

As a result, the pressure difference across the rotor is also computed as a weighted

average of the pressure differences:

- 2(PPH - P int + (PPL - Pi., (2-54)
3 3
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Step 2: Determination of M , C, A, and the Hydrostatic Stiffness

The mass parameter is computed using Eq. (2-8). The load parameter is

computed using Eq. (2-9). The bearing number is computed using Eq. (2-7). And the

hydrostatic stiffness coefficient is predicted using Eq. (2-34, 2-35, and 2-37).

Step 3: Determination of the Eccentricity Ratio

When examining the general case of hybrid operation, the stiffness' Kq are

composed of hydrostatic and hydrodynamic stiffness'. More specifically:

Kxz = KX - hydrodsynanic Kzx = Ks _ysrodynamie (2-5 5)

Kxx = Kxx _ ydrosynani + Kxx _hydrostatic Kzz = Kzz _hydrodynamic + Kzz _ hydrostatic (2-56)

The value of the hydrostatic stiffness' has already been determined. Also, since the

bearing number is known, the value of the hydrodynamic stiffness' is a known function

of the eccentricity ratio (based on the results of the full numerical simulation). As a

result, the total stiffness' of the system are also known functions of the eccentricity ratio.

In order to determine the actual eccentricity ratio, we first realize that when K is

multiplied by A, the following relationship arises:

A Ki -- (2-57)

The product of Ki , and A expresses the rate of change of the load parameter with respect

to the eccentricity ratio. We then proceed by supposing that the externally applied load

is no longer applied in a direction parallel to the x-axis but is applied in such a direction

so that the displacement of the rotor is in only in the x-direction (i.e. Ez = 0).

Representing it in non-dimensional form by two components: (x and (z in the x and z

directions respectively, Eq. (2-58) results:
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r a rAK. AKrz (2-58)

However, since Ez = 0 and also aIi = 0, Eq.

simpler equations:

f = AKxxd&
0

(2-58) when integrated, reduces to two

S= fAKud (2-59)

Adding the two load parameter components, the following resultant load is obtained:

+ 2
(2-60)

In Eq. (2-60), the load parameter is a function of the eccentricity ratio. But the actual

value of the load parameter has already been computed. By iterating over the upper

bound of the integrals in Eq. (2-59), we match the known load parameter with the one

determined by Eq. (2-59 & 60) and thus determine the eccentricity ratio.

Step 4: Determination of the Hydrodynamic Stiffness and Damping

Given the eccentricity ratio and the bearing number, the hydrodynamic stiffness

coefficients are computed using the results from the full numerical simulation. Also the

hydrodynamic damping coefficients are computed using the Full-Sommerfeld model.

Step 5: Determination of the Total Stiffness

The total stiffness coefficients are obtained by adding the hydrostatic direct

stiffness coefficients to the hydrodynamic stiffness coefficients, as was already shown in

Step 3.
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Step 6: Determination of Q

All the required information is inserted into Eq. (2-16) and the values of Q are

determined by finding the eigenvalues of the matrix A.

2.5.1 Determination of Stability Boundaries

Instead of looking at the value of Q only at specific operating points, it is of great

value to be able to draw stability boundaries that define where the transition from stable

to unstable operation occurs, and how different loading schedules change the stability

characteristics of the rig.

2.5.1.1 Hydrodynamic Stability Boundaries

As has been mentioned in earlier sections, purely hydrodynamic operation is not

possible using our bearing rig. However, we will examine it anyway, so as to get a

physical understanding of its characteristics.

The first two steps shown in the schematic in Figure (2-7) are skipped and the

value of M is set to a certain constant, based on the geometry of the bearing. Also, the

hydrostatic stiffness coefficient is set to zero. A small bearing number is chosen and

Steps 2-6 are iterated over increasing values of the load parameter until the value of EL

switches from positive to negative, indicating that the bearing has transitioned from

unstable to stable operation. This procedure is repeated for increasing A until the design

speed is reached. Every time s switches from positive to negative, the values of the

load parameter, the bearing number and the whirling frequency ratio are recorded.

Finally, the results are plotted on the (-A plane and the critical speed ratio vs eccentricity

ratio plane. The second plot is a conventional way of plotting stability boundaries and

represents the ratio of the speed to the whirling frequency as a function of the eccentricity

ratio when operating neutrally stable.
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2.5.1.2 Hydrostatic Stability Boundaries

Predominantly hydrostatic operation is possible using our bearing rig and the

following procedure is used to determine hydrostatic stability boundaries. The plena

pressures are set to the same value so that no loading is introduced. A small plena

pressure is chosen and Steps 1-6 are iterated over increasing main turbine air pressure

until the value of a switches from negative to positive, indicating that the bearing has

transitioned from stable to unstable operation. This procedure is repeated for increasing

plena pressures. Every time a switches from negative to positive, the values of the

bearing number, the plena pressures, and the whirling frequency ratio are recorded.

Finally, the results are plotted on the bearing number vs plena pressure plane and the

critical speed ratio vs the eccentricity ratio plane.

2.6 Summary

In the first part of this chapter we showed how to determine whether the bearing

could spin stably, and the value of its whirling frequency, based on the stiffness and

damping coefficients, the mass parameter and the bearing number. Realizing that the

user of the rig can only manipulate the plena pressures and the main turbine air pressure,

we then showed how to determine the same stability parameters by using only these three

later variables. Finally, we demonstrated how to draw hydrodynamic and hydrostatic

stability boundaries whose purpose is to give us a more intuitive understanding of gas

bearing operation.
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CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, we first validate our model using the Half and Full-Sommerfeld

model coefficients by predicting hydrodynamic stability boundaries and comparing with

those found in the bearing literature. Then a hydrodynamic and hydrostatic stability

boundary is determined using the coefficients from the models that were suggested in

Chapter 2. Finally, several hybrid pressure schedules are examined in search of a viable

path to full speed operation.

3.1 Hydrodynamic Stability Boundaries

3.1.1 Model Validation

In order to validate our model, a hydrodynamic stability boundary is constructed

using the Half-Sommerfeld model coefficients (Figure 3-1), based on the procedure

described in Section 2.5.1.1.
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Figure 3-1: Hydrodynamic stability boundary, on the (-A plane, based on the Half-Sommerfeld model
coefficients.

As expected, for a given bearing number, the bearing switches from unstable to

stable operation as the eccentricity ratio is increased. Furthermore, at low bearing

numbers, the bearing requires small eccentricity ratios to run stable but as the bearing

number is increased, larger eccentricity ratios are required. An interesting fact is that as

the bearing number is increased, the stability boundary asymptotes to an eccentricity ratio

of approximately 0.76. This is one of the characteristics of the Half-Sommerfeld model

and is one form of validation of our model.

The stability boundary can also be seen plotted on the critical speed ratio vs

eccentricity ratio plane:
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Figure 3-2: Hydrodynamic stability boundary, on the critical speed ratio vs eccentricity ratio plane,
based on the half Sommerfeld coefficients. Sumperimposed on the stability boundary is a set of data points
obtained from the bearing literature.16

The most interesting feature of the plot is that at eccentricity ratios below 0.6 the

stability boundary rests at an approximately constant value of 2. This is known as half-

frequency whirl and is referred to very often in the bearing literature. It implies that the

journal has to be whirling at a frequency greater than half of its spinning frequency, in

order to be stable. After an eccentricity ratio of approximately 0.76, the plot goes to

infinity implying that the journal can be whirling at any fraction of the spinning

frequency and still be stable. Superimposed on the plot are data points from the bearing

literature, and as can be seen the model's results seem to be in perfect agreement with the

literature. 16

The Full-Sommerfeld model was also used to determine a stability boundary but,

as expected, stable operation could not be achieved, even when very large loads were

applied to the bearing.
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3.1.2 Hydrodyanmic Stability Boundary

Having validated our model, using the Half and Full-Sommerfeld model

coefficients, hydrodynamic stability boundaries using the full numerical simulation

stiffness coefficients and the Full-Sommerfeld damping coefficients were constructed.

The boundaries were drawn for mass parameters of 0.4, 0.9, and 2.0 and compared to the

ones produced by the full numerical simulation. The reason why the boundaries were

drawn for three different mass parameters, is that as the bearing number is increased the

value of the mass parameter is expected to also increase due to the changing value of the

ambient pressure and rotor radius. The mass parameters are expected to start at values

slightly above 0.4 and end, at the design speed, at values slightly below 2.0. Figure (3-3,

and 3-4) depict the results.

10 10' Stable

Stable

2. = 0.

0 - - -

10 M=0 102

10 10 10 10
Bearing Nurnber - A Bearing Number- A

(a) (b)

Figure 3-3: Hydrodynamic stability boundaries, on the (-A plane, for = 0.4, 0.9, and 2.0. (a) Based
on the low order model and (b) based on the full numerical simualtion.'

As can be seen the two models predict similar trends and only differ in that the

full numerical simulation shows boundaries lying at slightly higher eccentricity ratios

than the low order model dose. However, the deviation between the two models is

acceptable since the purpose of the low order model is to only indicate trends in the

behavior of the bearing.
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Returning to the figures, several things can be observed: First, as the bearing

number is increased, larger loads are required for the bearing to stay stable. This trend is

similar to the results of the Half-Sommerfeld model. Second, as the bearing number is

decreased the stability boundaries asymptote to constant eccentricities. This implies that

even at small speeds, the bearing has to be operating at relatively large eccentricity ratios.

This is different from the Half-Sommerfeld model where the stability boundaries go to an

eccentricity ratio of zero as the bearing number is decreased. This result is also expected

to cause a very large problem during startup, specifically at zero speed, since it will be

impossible to load the bearing ever so slightly so as to achieve a finite eccentricity.

Third, as the bearing number is increased, the eccentricity ratio of the stability boundaries

decreases. This effect is due to compressibility effects and makes hydrodynamic

operation look better as the speed is increased. Fourth, as the mass parameter is

increased, the load parameter required to run stable for a given bearing number is

increased. Along with the increase in the load parameter, there is also an increase in the

eccentricity ratio, which leads to the conclusion that lower mass parameters are better.

Remembering that the mass parameter depends on the ratio of the clearance to the radius

of the journal, raised to the fifth power, it is realized that the performance of the bearing

could be improved dramatically if the clearance was changed by only a very small

fraction. This decrease in clearance (since the radius of the rotor is set by the overall

system design), has been pursued, but the micro-fabrication techniques currently

available are not able to do any better than twelve micro-meters, for the given length of

the journal. Finally, as the bearing number is increased, the stability boundaries seem to

be relatively insensitive to the mass parameter. This can be seen in the plot, where all the

boundaries seem to collapse onto a single line at the higher bearing numbers. This leads

to the conclusion that, if hydrodynamics are to be used only at high speeds, decreasing

the mass parameter is not as important.

The plot shown in Figure (3-4) depicts the same stability boundaries as the ones in

the previous plot, but the axes are now the critical speed ratio vs the eccentricity ratio:
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Figure 3-4: Hydrodynamic stability boundaries, on the critical speed ratio vs eccentricity ratio plane, for

M = 0.4,0.9, and 2.0.

Plotting the stability boundaries on these axes, also reveals several facts: First, at

a bearing number of zero, the stability boundary shows that the critical whirling

frequency is half of the spinning frequency. This result was also obtained for the Half-

Sommerfeld model, for a range of low bearing numbers - where the eccentricity ratio

was below 0.6. Second, as the bearing number is increased, the critical whirling

frequency is expected to become a smaller fraction of the spinning frequency. Finally, as

was observed in the previous plot, lower mass parameters cause the stability boundaries

to lie at lower eccentricity ratios.

Having developed some basic physical insight in hydrodynamic operation, it is

important to understand, as was mentioned earlier, that purely hydrodynamic operation is

not possible in the current setup of the rig, because side loading will always introduce

some amount of hydrostatics. This implies that these stability boundaries should only be

used to understand the physics of hydrodynamic operation and should not be used as

actual stability boundary predictions.
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3.2 Hydrostatic Stability Boundary

Following the procedure described in Section 2.5.1.2, hydrostatic stability

boundaries were constructed and are depicted in Figures (3-5, and 3-6).
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Figure 3-5: Hydrostatic stability boundary on the critical speed ratio vs. eccentricity ratio plane.

As can be seen in Figure (3-5), all the operating points lie on the critical speed

ratio axis, since the eccentricity ratio at all times is zero. The interesting feature to

notice, however, is that independent of the plena pressures, in order for the bearing to be

stable, its whirling frequency has to be greater than half of its spinning frequency. This

stability boundary is a characteristic of hydrostatic operation.

Figure (3-6), shows the stability boundary on the bearing number vs. plena

pressure plane:
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Figure 3-6: Hydrostatic stability boundary on the A vs plenum pressure plane.

As can be seen, the larger the pressure that is applied to the plena, the faster the

journal can spin before going unstable. The reason is that as the plena pressures are

increased, the hydrostatic direct stiffness coefficients are also increased, resulting in a

stiffer bearing which can run stable up to higher speeds. Another important feature, is

that as the plena pressures are increased, the stability boundary starts decreasing slope

indicating that at larger plena pressures, large plena pressure increases will only result in

small increases in the maximum bearing number. Remembering that full speed operation

is between a bearing number of 3 and 5, it is realized that, based on this model, purely

hydrostatic operation would require an extremely large amount of external pressurization.

3.2.1 Effects of External Damping on Hydrostatic Stability Boundary

Experimental results, in both the macro rig and micro rig have shown that the

bearing was able to operate hydrostatically at critical speed ratios that were significantly

greater than 2. The only explanation that can be given to this observation is that there

exists some unaccounted external damping, or that the viscoelastic behavior suggested by

the Larson and Richardson paper has a substantial role in our micro-bearing. Figure (3-7)

depicts the effect of additional external isotropic damping on the hydrostatic stability
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boundary. The critical speed ratio vs. the amount of external damping having been

plotted for a bearing operating at a tip speed of 85ms-1 (approximately 400,000rpm).
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Figure 3-7: The effects of additional external damping on the hydrostatic stability boundary for a journal
operating hydrostatically, at a tip speed of 85ms'.

Remembering that the Full-Sommerfeld damping at an eccentricity ratio of zero is

approximately 0.006, it is seen that an order of magnitude larger damping would be able

to increase the critical speed ratio, of the hydrostatic stability boundary, by a factor of ten.

This result confirms our initial belief that external damping could be causing the large

critical speed ratios observed in the experiments.

3.3 Pressure Schedules

Section 2.5 explained how to determine the value of Q for one operating point

(given the plena pressures and the main turbine air pressure). However, in order to

examine possible paths that will lead us to full speed operation, it is necessary to actually

define certain pressure schedules that will allow us to climb from zero speed to full speed

and maintain stable operation at all times.
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The structure of the pressure schedules that will be examined is such that the turbine

main air pressure is the independent variable and the low and high pressure plena

pressures are expressed as functions of it:

PPH - gage = Padd + a(Pmain - Patm) - Padd + aPmain - gage

PPL - gage = Padd - P ( Pmain - Patm) = Padd + (Pmain _ gage) (3-1)

Padd is a constant pressure, which will be provided from some external source. It will be

used to introduce hydrostatics to the system at low speeds, acting as a start-up assist, and

will typically range from 0-5psi. a and $ are constants representing what fraction of the

turbine main air gage pressure is supplied to the high and low pressure plena,

respectively. The value of a, and $ will always be kept below 1 so as to make the whole

system autonomous.

In examining any specific pressure schedule, the values of Padd, a, and 0 will be

assigned a certain constant value and the procedure described in Section 2.6 will be

iterated over Pmain ranging from zero pressure to the pressure required for full speed.

Several combinations of Padd, a, and 3 shall be examined so as to determine the best, and

most feasible path to reach full speed. It is important to realize however, that this is a low

order model and several assumptions have been made. The results are not to be

interpreted as exact solutions to what the bearing is going to do for a given pressure

schedule. Instead they are to be used as guides to understand what trends the operation of

the bearing will have as a function of the three parameters described above. In the

iteration, all the variables are tracked. For example the whirling frequency, the

eccentricity ratio, the mass parameter, the bearing number and several others are all

stored and can therefore be plotted once the code has run successfully.

First we will examine a purely hydrostatic pressure schedule where all of the main

turbine air pressure is supplied to the plena:

PPH _ gage (Pmain - Patm) Pmain gage

PPL gage (main - Patm) Pmain _ gage
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In Figure (3-8), the turbine main air pressure and the inter-row pressures have been

plotted as functions of the spinning frequency of the journal. Superimposed on the plot is

a line representing the pressure that is required to be applied to the plena in order for the

bearing to spin stably. Finally, a line representing the ratio of the available pressure

difference: Pnain-Pin, vs. the required pressure difference, is plotted:
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Figure 3-8: Hydrostatic pressure schedule for tx = 1, and 1. The main turbine air pressure and the
inter-row pressure are plotted as functions of the rpm of the journal. The difference between the two -
APadailable - represents the available pressure difference that could be used for the journal to perform
hydrostatic operation autonomously. The APnotf line represents the amount of pressure difference that is
required for the bearing to be stable at any certain spinning frequency. Finally the ratio line represents the
ratio between APequireci and APavailable-

The x-axis was chosen to be the spinning frequency of the journal instead of the

bearing number because the ambient pressure for the APequired line and the P'j and P,,,

lines was substantially different and as a result equal bearing numbers corresponded to

different spinning frequencies. The plot clearly leads to the conclusion that, based on our

model, autonomous hydrostatic operation is not feasible, because the required axial

pressure difference is over ten times more than the available axial pressure difference.

However, this result is in contradiction with experimental results, where the bearing was
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spun up to 1.4 million rpm, based on what we believe to be purely autonomous

hydrostatic operation (i.e. the pressures in the plena were equal and less than the main

turbine air pressure). Possible reasons for this discrepancy are that a) there is some

unaccounted external damping, b) the bearing is under the influence of viscoelastic

effects, or c) the bearing was actually undergoing hydrodynamic operation.

Despite the fact that it appears as if our hydrostatic model may not be perfect, it is

still acceptable to use it in order to predict the trends in the behavior of the bearing under

different operating protocols. Also, even though the experiments showed that

autonomous hydrostatic operation seems to be viable, the air mass flow through the

journal-bearing gap was approximately 20-30% of the estimated total engine flow, which

is unacceptably high. As a result, we will now examine several hydrodynamically

dominated, hybrid pressure schedules, starting with a lightly loaded case and zero initial

hydrostatic start-up assist:

PPH gauge = 0.3 (Pnain - Patn) = 0.3 Pain _ gauge

PPL gauge = 0

Figure (3-9) depicts the most important features of this pressure schedule:
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Figure 3-9: Pressure schedule results for a = 0.3, and Pad = 0. (a) depicts the gauge pressures of the
main turbine air, the high and low pressure plenum pressures and the axial pressure difference. (b) depicts
the normalized damping of the bearing. (c) depicts the critical speed ratio as a function of the eccentricity
ratio. (d) depicts the eccentricity ratio.

The first plot simply traces the gauge pressures of the main turbine air, the high

pressure plenum, the low pressure plenum, and the axial pressure difference across the

rotor. As can be seen, the low pressure plenum is vented and remains at a constant value

of zero, whereas the high pressure plenum follows a path which is only a fraction of the

main turbine air pressure. Also, as the speed is increased, the axial pressure difference,

which started at zero, turns negative, representing the fact that the inter-row pressure is

increasing at a faster rate then the average pressure of the two plena is. The second plot,

which depicts the overall damping of the system, immediately reveals that the bearing is

unstable at low speeds and turns stable as the speed is increased. The third plot shows

how the critical speed ratio, starts at a value of 2, and increases with increasing speed due

to the fact that the spinning frequency is increasing at a faster rate than the whirling

frequency is. The fourth plot depicts the value of the eccentricity ratio, which is

relatively constant, as a function of the bearing number. Initially its value is below 0.86

and based on Figure (3-3(a)), the fact that it is unstable at low bearing numbers was

expected a priori.

Insisting on trying to make a hydrodynamically dominated bearing that will run at

all bearing numbers, we move to moderate loading and leave the hydrostatic start-up

assist unchanged, at a value of zero:
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PPH - gauge = 0.4 (Pain - Panm) = O.4Pmain - gauge

PPL - gauge = 0
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Figure 3-10: Pressure schedule results for a = 0.4, and Pa = 0. (a) depicts the gauge pressures of the
main turbine air, the high and low pressure plenum pressures and the axial pressure difference. (b) depicts
the normalized damping of the bearing. (c) depicts the critical speed ratio as a function of the eccentricity
ratio. (d) depicts the eccentricity ratio.

The increased load successfully pushed the journal to large enough eccentricities

so as to assure stable operation at all speeds. The critical speed ratio, as expected, shows

similar trends as those observed when a was 0.3. However an important problem arises.

The bearing rig setup is not ideal and as a result, at infinitesimally small speeds, the
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journal cannot be loaded so precisely so as to maintain an eccentricity ratio between 0.86

and 1.

The above problem is tackled by assigning a finite value to Padd so as to introduce

hydrostatics to the system at low speeds. As a result we re-examine the previous

moderately loaded case but this time we introduce a weak hydrostatic start-up assist.

PPH gauge =1psi + 0.4(P.ain - Pat.) = 1psi + 0.4P..ain - gauge

PPL _ gauge 1 psi
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Figure 3-11: Pressure schedule results for a = 0.4, and Pa = 1. (a) depicts the gauge pressures of the
main turbine air, the high and low pressure plenum pressures and the axial pressure difference. (b) depicts
the normalized damping of the bearing. (c) depicts the critical speed ratio as a function of the eccentricity
ratio. (d) depicts the eccentricity ratio.

The results show that the bearing was able to run stable at all the bearing

numbers, but most importantly, it started at an eccentricity ratio of zero. As the bearing

number was increased, so was the applied load, and as a result, the journal was moved

back to the large eccentricity ratios it was operating at, in the previous example. The plot

of the critical speed ratio initially is increasing at a constant rate. This is because at the

low eccentricity ratios the bearing is operating pre-dominantly hydrostatically. As a

result its whirling frequency is unaffected by the increasing eccentricity ratio, whereas its

spinning frequency is increasing and therefore, the ratio of the two appears to be

increasing. Just after an eccentricity ratio of 0.8, the bearing starts operating pre-

dominantly hydrodynamically. As a result, the whirling frequency is seen to increase.

The plot shows a decreasing ratio at first, because the whirling frequency is increasing at

a faster rate than the spinning frequency is increasing. Once, the eccentricity ratio

reaches its largest value, however, the rate at which the whirling frequency is increasing

is smaller than the rate at which the spinning frequency is increasing. As a result, the plot

shows an upward trend after the peak eccentricity ratio has been achieved. The important

thing to conclude from Figure (3-1 ic), is that the transition from hydrostatic to

hydrodynamic operation is observed as a change from a positive slope to a negative

slope.
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In order to examine the effect of increasing the hydrostatic start-up assist, the

following pressure schedule was then examined:

PPH gauge = 2 psi + O.4(P.in - Pann) = 2 psi + 0.4Piain _gauge

PPL _ gauge= 2psi
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Figure 3-12: Pressure schedule results for a = 0.4, and Pw = 2. (a) depicts the gauge pressures of the
main turbine air, the high and low pressure plenum pressures and the axial pressure difference. (b) depicts
the normalized damping of the bearing. (c) depicts the critical speed ratio as a function of the eccentricity
ratio. (d) depicts the eccentricity ratio.

As would intuitively be expected, the increased pressure in the plena make the

eccentricity ratio change from a value of zero to its constant value, at a higher speed than
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in the previous case. This is because the hydrostatics are now stronger, and it requires a

larger load (and therefore higher bearing number) in order to push the journal to higher

eccentricity ratios. However, in this case, the bearing starts stable - due to hydrostatics,

but then becomes unstable, for a range of bearing numbers, until it finally becomes stable

again. The reason why it is unstable during this range, is that the hydrostatic stiffness is

not strong enough to keep it stable, but in the mean time is not allowing it to move to

higher eccentricity ratios, so that the hydrodynamic stiffness' can kick in and maintain

stability. This is a very important aspect of hybrid operation. If the of value of Padd was

to remain at 2psi and the bearing had to be made stable, the value of a would have to be

increased all the way to 0.7 so as to push the unstable range of bearing numbers into the

stable regime. Physically, the higher loading would be causing the eccentricity ratio to

increase faster and hydrodynamics to come into effect at a lower bearing number, before

the bearing had a chance to go unstable.

Overall, it seems that hydrodynamic operation is good at higher bearing numbers

and hydrostatic operation is good at lower bearing numbers. Full speed operation could

ideally be achieved using only hydrodynamics but the bearing rig is not ideal and as a

result hydrodynamics cannot be the only form of support of the bearing at low bearing

numbers. Hydrostatic operation, on the other hand, should only be used to support the

bearing at low bearing numbers, because based on this model, as the bearing numbers are

increased, very large pressures are required to keep it stable. This is in disagreement with

the experimental results. However, experiments do favor the conclusion that hydrostatics

should only be used at low speeds, but for a different reason - the air mass flow rates

required for high speed hydrostatic operation are too high. Moreover, it seems that the

best solution is to perform hybrid operation, where the bearing is initially operating

hydrostatically, and then transitions to hydrodynamic operation, as the speed is increased.

Hybrid operation has several good features associated with it, but it is also very

hard to perform. Specifically, when transitioning from hydrostatic to hydrodynamic

operation, as was explained earlier, it is very easy to either be applying to high a value of

Padd or to low a value of c.
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3.3.1 An Alternative Hybrid Path

The problem, in the previously suggested hybrid pressure schedules is in the

transition from hydrostatic to hydrodynamic operation. One way around this problem,

would be to remove the additional pressure from the plena once a small bearing number

is reached, and essentially jump from one form of pressure schedule to another. For

example, initially the pressure schedule shown in Figures (3-11) could be followed and at

a bearing number of 0.1 the additional pressure would be shut off and all the curves

would jump to the values depicted in Figures (3-9). This would remedy the problem but

would also introduce another problem, which would be determining when to turn off the

additional pressure. If the additional pressure is turned off too soon, two things could

happen. Either the hydrodynamics could be too weak to support stable operation, or the

non-idealities of the setup would not allow proper loading of the journal and would cause

it to crash by either overloading it or by not loading it enough. If the additional pressure

is turned off too late, the bearing might have already crashed because of the reasons why

the previously mentioned hybrid operating protocols could crash.

3.4 Mode Bifurcation

In Chapter 2, it was mentioned that the solutions to Eq (2-16) could possibly give

two whirling modes at any operating point. Until now, only the least damped one has

been referred to, since it is expected to be the one which will be observed in the

experiments. Despite this fact, in this section, we will examine what the second, highly-

damped mode looks like. Figure (3-13), which is based entirely on hydrodynamic

operation, depicts both the whirling ratios as a function of the eccentricity ratio at a

constant bearing number of 4.5, and a constant mass parameter of 1.7:
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Figure 3-13: Frequency bifurcation. Both the whirling frequency ratios have been plotted as a function
of the eccentricity ratio for a constant bearing number of 4.5 and a constant mass parameter of 1.7. The
frequencies are identical at low eccentricity ratios but after an eccentricity ratio of 0.7, they bifrucate. The
higher frequency of the two is the least damped one and therefore the one that is expected to be observed.

At low eccentricity ratios, both the frequencies have the same value. However, at

an eccentricity ratio of approximately 0.7, a frequency bifurcation is observed. This

suggests, that after eccentricity ratios of 0.7, two whirling modes will be present. It is

important to realize, however, that only a small section of the plot, at high eccentricity

ratios, represents possible, stable, operating points since only hydrodynamic effects are

present. As a result, the actual bifurcation of the frequency, is just a mathematical

abstraction, and could not be experienced under this type of protocol.

Figure (3-14), examines both the whirling frequencies for the pressure schedule

depicted in Figure (3-11), and allows us to see if any such bifurcation could physically

occur. In this case, the hydrostatics are allowing the lower eccentricity operating points

to actually be stable. The frequencies are not normalized by the spinning frequency, as

they previously were, because in this case when moving along the x-axis, the spinning

frequency itself is changing. If the whirl ratios were plotted instead, the graph would be

depicting both the changing spinning frequency and the changing whirling frequency,

which would make the results unclear.
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Figure 3-14: Frequency bifurcation for the pressure schedule where a = 0.4 and Pada = 1psi. Both the
whirling frequencies have been plotted as a function of the eccentricity ratio. A bifurcation occurs at an
eccentricity ratio of approximately 0.7. At lower eccentricity ratios, the whirling frequencies are identical
to the natural frequency that is associated with the hydrostatics that are present.

Remembering that this plot is substantially different from the one shown in the

previous figure, in the fact that the bearing number is increasing along the curves, and

whirling frequency is plotted instead of the whirling frequency ratio, several interesting

things are noticed. A bifurcation is once again observed at an eccentricity ratio of

approximately 0.7. As the eccentricity ratio is increased, the least damped frequency

increases rapidly, whereas the highly-damped frequency drops to zero and then increases.

At the lower eccentricities, the whirling frequencies are identical to the hydrostatic

natural frequency. This is expected, however, since at those low eccentricities, the

hydrostatic stiffness is the dominant one. However, at higher eccentricities, as the

hydrodynamics are introduced, the least-damped frequency clearly depicts the stiffening

of the bearing.

3.5 Operating the Rig

Since the results of this model should only be used to develop some physical insight

in the operation of the bearing rig and not to predict exact pressure schedules that will
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guarantee stable operation, the following list of possible problems and suggested

solutions was created.

Finite a and Padd = 0:

Observation: The bearing cannot start

Reason: 1) The system is not ideal and the bearing is not getting loaded as

expected at the very low speeds during start-up.

or 2) Assuming that is was getting loaded appropriately, a could be too

low and therefore the eccentricity ratio would be too small to allow

the bearing to perform stable hydrodynamic operation

or 3) Assuming that it was getting loaded appropriately, a could be too

high and therefore the eccentricity ratio would be so large that the

bearing would crash..

Remedy: 1) Add a finite value of Padd so as to make the eccentricity ratio zero

right at strart-up.

Finite a and finite Padd:

Observation: The bearing cannot start

Reason: 1) The bearing actually has to start but goes unstable once the speed

is increased even slightly, and the operator is observing that the

bearing cannot start, whereas the bearing is starting but

immediately crashes as the speed is increased.

Remedy: 1) Look at the remedy of the next observation

Observation: The bearing starts but starts going unstable ones the bearing number is

increased

There are two separate cases for which this could be occurring:

A) The hydrodynamics, alone, at that bearing number can support stable operation.

Reason: 1) Assuming that transition to hydrodynamic operation is being

pursued, the hydrostatics are not strong enough to support the

bearing but in the mean time are not allowing the bearing to move
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to high enough eccentricity ratios so that the hydrodynamic

stiffness takes over.

Remedy: 1) a) Decrease the value of Padd so as to allow the bearing to transition to

hydrodynamic operation.

b) Increase the value of a so as to cause the bearing to transition to

hydrodynamic operation. This is not recommended however, since

it might cause the bearing to crash at higher bearing numbers, by

overloading it.

B) The hydrodynamics, alone, at that bearing number cannot support stable operation

because the value of a is too low

Reason: 1) Assuming that transition to hydrodynamic operation has already

been achieved, the value of a is too low to keep the journal at large

enough eccentricity ratios so as to operate stably.

2) Assuming that transition to hydrodynamic operation is being

pursued, the hydrostatics are not allowing the bearing to move to

large enough eccentricities, but even if they were, the bearing

would still go unstable since the hydrodynamics are not strong

enough.

Remedy: 1) Increase the value of a so as to increase the eccentricity ratio.

2) Increase the value of a so as to convert the situation to case A and

then deal with it accordingly.

Now, determining whether the bearing is operating under case A or case B, is impossible

because the operator does not have enough information.

Moreover, the procedures described above can only be performed on a trial and

error basis. They suggest possible solutions to problems and when one solution approach

doesn't work, another one should be tried. An important piece of information, however,

is the whirling frequency ratio. Based on this model, an increasing whirling frequency

ratio (as the bearing number is increased) can be interpreted as an indication that the

bearing has transitioned to hydrodynamic operation. The problem is that the other more

sophisticated models that have been developed,14 do not show such a dramatic increase in
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the whirling frequency ratio. One possible reason for the difference is that the damping

coefficients that were used in this model did not account for compressibility effects.

3.6 Summary

Several ways of operating the bearing were examined. As was shown, purely

hydrodynamic operation is best for high speeds, even though in an ideal experiment it

could work even at low speeds. Hydrostatic operation, on the other hand, is good for low

speeds and assures that the bearing will be operating at low eccentricity ratios. However,

at higher speeds, our model suggests that too much pressure is required for stable

operation. Even though this is in disagreement with experimental findings, both favor the

idea that hydrostatics should only be used at low speeds. As a result, it seems that hybrid

operation, which relies on hydrostatics at low speeds, and hydrodynamics at high speeds,

is the best way to operate the bearing.

In operating the bearing in a hybrid mode, however, a difficulty is encountered in

transitioning between hydrostatic and hydrodynamic operation. The problem arises due

to the fact that the hydrostatics may give out, but in the mean time may not allow the

bearing to move to higher eccentricities for hydrodynamic effects to kick in.

Finally, the second, highly-damped, whirling frequency was examined and was

found to be the same as the least-damped whirling frequency at low eccentricity ratios,

but at eccentricity ratio of approximately 0.7 a bifurcation was observed. After the

bifurcation, the least-damped frequency increased rapidly and the more heavily damped

frequency decayed to zero and started rising again at higher eccentricities. However,

since only the least-damped frequency is expected to be observed, only the trends of this

frequency have been examined throughout this thesis.
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CHAPTER 4

CONCLUSION

4.1 Summary of Work

In an effort to make the MIT micro-engine bearing operational, the model that was

presented in this thesis, was developed. It relies on the stiffness coefficients from a full

numerical simulation, and damping coefficients from the Full-Sommerfeld model. By

applying Newton's second law of motion to the bearing, a governing equation for the

bearing's performance was developed. Solutions to this equation were used to predict

whether stable operation of the bearing was achievable and what its whirling frequency

would be.

The model is based on several assumptions and its results are not very precise,

especially at higher eccentricity ratios. However, the objectives of this thesis were

successfully completed. The model was able to describe the expected behavioral trends

of the bearing under hybrid operation based on prescribed plena pressure schedules.

The results suggested that hydrodynamics work best at high speeds and hydrostatics

work best at low speeds. It was therefore concluded that the best way to operate the

bearing is in a hybrid mode, where at low speeds the journal is supported by hydrostatics

and at higher speeds it is supported by hydrodynamics. In transitioning between the two

modes, however, it was discovered that it was possible to crash the bearing due to the

interaction between the hydrostatics and the hydrodynamics. More specifically, the

hydrostatics could be too weak to support stable operation but also too strong to let the

journal move to higher eccentricity ratios, where the hydrodynamic stiffness' could take
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effect. Nonetheless, the model showed that the transition was possible if the correct

plena pressures were used.

In all the analysis, only the least-damped frequency was examined, because the

highly-damped frequency is not expected to be observed (due to its higher damping). A

brief examination of the second whirling frequency, showed that its value was identical to

the least-damped frequency, at low eccentricity ratios. However, at higher eccentricity

ratios, a bifurcation was noticed where the least-damped frequency started rapidly

increasing, whereas the highly-damped frequency remained quite constant.

4.2 Where Can the Model be Improved?

The low order model can be improved in several ways. First, in the hydrodynamic

analysis, the fluid film is treated as if it is de-coupled from the rotor's motion. This is not

correct. However, the effect of this de-coupling is subtle at low eccentricity ratios and

noticeable only at high eccentricity ratios. As a result, the low order model's predictions

are reasonably accurate up to eccentricity ratios of 0.8 at which point the model could use

some improvement. Also, a better hydrostatic model could be, such as the one suggested

by Larson and Richardson9 where the viscoelastic nature of the hydrostatic bearing is

included in the analysis. Finally, a better damping model could be used, where the

damping coefficients account for compressibility effects. A possible source for such

coefficients is the model developed by Orr6.

4.3 Overall Conclusion

The micro-bearing rig can exhibit stable operation, and successfully reach the

design speed, if the appropriate pressure schedules are used. The best way this can be

done, is in a hybrid mode where special attention should be given to the transition

between hydrostatic and hydrodynamic operation.
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