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Abstract

In the face of large increases in the number of passengers and flights, busy airports worldwide have
been trying to optimize operating efficiency and throughput and minimize congestion on a daily
basis. In the case of departures, measures can be taken at the gate, on the taxiway system or at
the runway queue to minimize departure delays and/or the cost of unavoidable delays. This cost
includes needless fuel consumption and noxious emissions. In this thesis, we focus primarily on
runway queue optimization.
The first part of this work consists of designing a generic simulation which models specific days of
operations at an airport. Using as input the schedule of operations specific to the modeled airport,
the simulation processes all departures and stores the characteristic times of the process for each
departing aircraft. The quantities of interest are either incrementally computed by the simulation
or modeled using probability distributions derived from airport-specific data.
We then present a dynamic programming approach to sequencing departing aircraft at the runway
queue. Two algorithms are presented based on the idea of Constrained Position Shifting, which
maintains a high level of fairness in the order in which aircraft gain access to runways, while
also improving efficiency by comparison to First Come First Served sequencing. The objective
of the first algorithm is to minimize makespan, and that of the second to minimize delays. We
then focus on a specific airport, which has been experiencing one of the fastest growth rates in
the industry. We analyze the output of our simulation as applied to this airport and accumulate
insights about congestion at the departure runways. We next apply this sequencing algorithm to
this specific airport using multiple demand profiles that represent both the current traffic levels,
as well as anticipated future ones that would result in more congestion. We give quantitative
arguments to confirm the positive impact of the optimization on the airport's operations. We also
emphasize the importance of the aircraft mix on the techniques' performance and show that the
sequencing algorithms provide higher benefits (in terms of reducing delays) as the mix becomes
more heterogeneous.

Thesis Supervisor: Amedeo R. Odoni
Title: Professor of Aeronautics and Astronautics
and of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Problem and Motivation

During the last few decades, a steady increase in the number of flights and traveling passengers

has compelled many airports to try to address severe congestion problems and attempt to optimize

their operations to the maximum extent possible. Growth rates have been different in different

parts of the world, but have been averaging about 3-4% per year overall. However, in Asia, the

total number of aircraft movements experienced a 6.5% increase in 2012, while the number of paw-

sengers increased by 8% (ACI). The numbers from 2013 are very similar. Globally, IATA expects

a 31% rise in passenger demand by 2017. These demand forecasts imply a much larger increase of

delays at many of the worlds busiest airports.

In light of these issues, several initiatives have been proposed to improve the overall efficiency of

airport operations. In 1998, Idris identified the runway as the primary bottleneck of the arrival

and departure processes and emphasized the need for efficient measures to deal with this critical

source of delays [10]. To minimize negative effects, active measures can be taken at the gate, on

the taxiway system or at the runway queue itself. Among all the approaches used to improve these

processes, we focus on two particular ones in this work. The first primarily deals with optimally

timing the release of aircraft from their gates. In other words, the main idea consists of keeping a

departing aircraft at its gate when an excessive number of aircraft are active on the taxiway system

in order to reduce time on the taxiways and conserve fuel. The second set of techniques we consider

comprise the central focus of this thesis and consist of sequencing departures at the runway queue.
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There have been many papers published on the subject of sequencing airplanes on the runway to

reduce delays and to maximize throughput rate. However, there are not yet any applications of

these models using real data that discuss the effects of sequencing on departure delays. Most of the

applications of sequencing in the literature have dealt with the sequencing of arrivals as opposed

to departures.

The work presented in this paper was done in collaboration with a real airport, which we will refer

to as AIRPORT throughout this paper. This airport provided us with data that we use for both

modeling and optimization purposes. Our main task consists of studying whether or not the airport

can benefit from the above mentioned sequencing methods. We investigated these questions and

developed a simulation that models every step of the departure process of all aircraft scheduled

to depart from AIRPORT on a given day. This simulation not only helps anticipate traffic prob-

lems by identifying peak congestion periods at the airport, but will also be the framework for our

computational experiments when we evaluate the performance of the sequencing techniques. We

show that the results depend strongly on specific properties of the airport's operations, such as its

traffic levels and its aircraft mix (classification of aircraft by weight for air traffic control purposes).

Although the current conditions at AIRPORT do not lead to significant improvements as a conse-

quence of departure sequencing, we find strong results with increased traffic and a heterogeneous

aircraft mix, especially when focusing on minimizing the average delay per aircraft.

1.2 Literature Review

The body of literature dealing with airport congestion management has greatly expanded over

the years and is characterized by a vast array of different methodologies and approaches. For

the purposes of summarizing the literature applicable to this work, we provide an overview of

the main contributions made in the field with respect to two particular topics. More specifically,

we focus on works addressing the evolution of the sequencing techniques introduced above, as well

as the theory behind the optimal threshold above which no aircraft should be released from its gate.

We consider first papers dealing with controlling the rate at which aircraft are released from

their gate. At congested airports, the taxiing times have been a significant source of delays and fuel

14



loss. In light of this problem, many researchers have focused on methods to reduce taxing times

to the minimum necessary. A large number of papers produced in the last decade focus on deter-

mining the optimal release time of an aircraft from its gate. The fundamental principle of these

techniques relies on keeping the aircraft at its gate when the system is too busy. More precisely,

the main motivation behind these methods is the following: as we send aircraft on the taxiway

system, the departure throughput intuitively increases at first. However, there exists a threshold

above which the throughput does not benefit from sending additional aircraft on the system. When

the occupancy is above this threshold, we consider the system as busy. The objective is to develop

a control strategy to limit the flow of aircraft getting from their gate to the taxiway system. The

first work about congestion management at the apron is [9], in which Pujet, Delcaire and Feron

introduce their simple N-control strategy, used in their Departure Planner. Since then, other pa-

pers delved into this matter, presenting variants of these methods. More recently in [14], Simaiakis,

Sandberg, Balakrishnan and Hansman developed their own Pushback Rate Control Strategy (PRC)

and tested it to quantify the savings in fuel and delays. This more sophisticated method serves as

a more practical approach for real-time processing of flights. In particular, their method predicts

the departure throughput over an upcoming 15 minute interval and provides the Airport Traffic

Control Tower with a recommended rate at which they should release aircraft from their gate.

Although we did not focus on finding the optimal threshold for our airport of interest in this paper,

we did limit the number of aircraft allowed on the taxiway system to 10 aircraft. This number is

a reasonable critical size for the current traffic at the modeled airport. We increase this threshold

to 15 aircraft when we analyze traffic for other demand profiles.

As already noted, we will be largely dealing in this work with applying sequencing of departures

at the runway in order to minimize either the total amount of time ("makespan") it takes for a

string of aircraft. to take off or the total delay these aircraft will suffer while waiting to take off.

Roger Dear introduced such sequencing techniques for the first time in 1976, presenting them as

Constrained Position Shifting methods, or CPS [8]. After observing the inefficiency of the First

Come First Served (FCFS) discipline, he identified the need for a dynamic scheduling of landing

aircraft, through sequencing in the air. The CPS techniques allow aircraft to be shifted from their

FCFS position, while ensuring that the number of shifts does not exceed a pre-specified number.
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These constraints on the number of shifts allowed per aircraft are defined to avoid unwanted prop-

erties, such as the potential for indefinite delay and the computational intractability of solutions

in real time, which is due to the fact that the solutions have to be updated with each new arrival.

Dear proves the theoretical efficiency and flexibility of these methods and led the way to other

papers focusing on these new optimization methods. Psaraftis [13] focused a few years later on

the tractability of these methods using dynamic programming and working with different objective

functions. More specifically, he considered the problem of sequencing N identical groups of aircraft

and proved these instances to be solvable in polynomial time of the number of aircraft sequenced

and exponential time of the number of groups N. These methods are thus practical when the

number of groups to be sequenced is small, which will be the case in this paper.

In 1990, Neuman [12] studied several sequencing algorithms and discussed their performance. He

also observed that for heavy traffic, the delays vary a lot for different traffic samples, even when

the same statistical parameters are used. A few years later, researchers began looking more closely

at the optimization of the departures process [1]. Most of the previous research had focused on

modeling the arrival flow without considering its complex coupling with departures. They were the

first to deal with the sequencing of departures. This same year, Beasley introduced a mixed integer

programming formulation for the arrivals sequencing problem and tested it through computational

experiments [5]

In 2002, Atkins [2] presented a decision tool which provides accurate predictions of future demand

and recommended a departure sequence for each runway that maximizes throughput. This tool was

sponsored by the NASA Ames Research Center. Carr (2004 [7]) and Bohme (2005 [6]) also used

CPS to model fairness and aimed at finding techniques that could solve efficiently the sequencing

problem.

More recently, Balakrishnan and Chandran presented scalable dynamic programming algorithms

scheduling arrivals under CPS [3] [4]. For different frameworks and objective functions, the au-

thors developed an efficient approach which can be considered as based on network optimization.

These are the algorithms that we will adopt for our departures sequencing work and will apply to a

real airport's operations in this work. In 2008, Lee [11] also presented new dynamic programming

formulations, trying to find a compromise between runway throughput and robustness.
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1.3 Outline

In this thesis, we first describe in Chapter 2 a generic simulation of the departure processes that

we have developed. We present the different types of delays computed by the simulation as well

as the records that are maintained every time an aircraft takes off. Chapter 3 provides a detailed

description of the sequencing algorithms that will be implemented and used in coordination with

our simulation. We introduce two variants of an algorithm first presented by Balakrishnan &

Chandran in [3]. The first one aims at minimizing the makespan, i.e. the time spent between the

first and last takeoff of the sequence, while the second focuses on minimizing the average delay per

aircraft in the sequence. In Chapter 4, we apply our simulation to the specific case of AIRPORT

and use the set of both flight variables and global congestion variables stored for each departure

to obtain insights about the traffic characteristics of the airport's operations. We then conduct a

series of experiments and evaluate the impact of the sequencing algorithms on the queuing delays

of departures for both the current traffic levels as well as more congested demand profiles. We

show that increasing traffic intuitively improves the impact of the CPS techniques. We analyze the

impact of the aircraft mix on these results and conclude that a more heterogeneous mix leads to

improved optimal solutions.
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Chapter 2

Simulating the departure process

2.1 Goals and Definitions

The first part of this work consists of designing a generic simulation environment that captures

the characteristics of airport departure processes. Emphasis is placed on making allowances in

the simulation for use of optimization features that can be applied during two specific phases of

departure processes. These optimization features, which are likely to be adopted with increasing

frequency at the world's busiest airports, are:

o The option to decide whether to release or not a departing flight from its gate, depending on

the total number of departing aircraft which are already either taxiing toward the departure

runway(s) or waiting for takeoff next to the runway.

o The possibility of sequencing departing aircraft on the takeoff runway(s) - i.e., deciding the

order in which they will take off - subject to fairness constraints.

One of the objectives of the simulation will be to act as a tool for evaluating the potential of these

optimization techniques to improve an airport's operations.

The main input for the simulation will be an exhaustive schedule of operations (departures and

arrivals) on a given day. For each of the departures on this schedule, we would like to compute the

total time of its departure process, as well as the different types of delays accumulated all along

the process.
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To this end, we first need to properly define this departure process, from the aircraft's release from

the gate to its takeoff from the runway. We start by providing our definitions of the system S and

of the departure process.

Definition 1. The system S at a given time is defined as the set of aircraft that are pushing back

from their departure gate, or are taxiing, or are queuing next to the runway for takeoff at that time.

Definition 2. The departure process of a given flight X is defined as the sequence of events that

occur from flight X's scheduled departure time to its takeoff. We will refer to the total time of this

departure process as the TTDP of the aircraft.

We can split this process into four different phases.

" Aircraft ready at the gate

The aircraft is ready to leave the gate and requests clearance to do so. If the number of

aircraft that the system S contains at that instant is smaller than or equal to a pre-specified

number, then clearance is given and the aircraft starts pushing back. Otherwise, the aircraft

waits for the traffic load to become lighter.

" Aircraft is ready to enter the taxiway system

After completing pushback, the aircraft is ready to leave the apron and start moving towards

its runway.

" Aircraft queuing at the runway

After traveling between gate and runway on the taxiway system, the aircraft reaches the

departure runway and begins queuing for takeoff.

" Aircraft takes off

The aircraft is in first position in the queue for takeoff. We make sure the separation require-

ments from the previous departure are respected, then check for possible conflict with arrivals

using the same runway and release the aircraft for takeoff. Once the aircraft takes off, this

marks the end of the departure process.

Note that the first phase of the process involves the concept of a crowded system. We therefore

define the critical size of the system S.
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Definition 3. The critical size of the system S is defined as the number C of active aircraft (pushing

back, taxiing, queuing) above which no other departure is allowed to leave its gate.

To conclude with these definitions, we observe that the evolution of the system S over a certain

timespan is characterized by the departure processes of all flights scheduled to leave their gate in

that timespan.

Now that the process has been defined, we need to identify the quantities of interest, to guide the

implementation of our simulation.

2.2 Quantities to Measure and Notations

The simulation's main objectives are not only to model realistically an entire day of departure pro-

cesses, but also to measure and store the different delays and other characteristic times experienced

by the aircraft all along the process. These characteristic times include the following:

At the gate

" Gate delay (dg): If the system S is too busy, the aircraft is kept at its gate until an aircraft

takes off. The additional time spent at the gate will be considered as gate delay. It is

computed incrementally during the run of a simulation.

" Runway inspection delay (di): Airports around the world typically inspect their runways at

pre-specified times during the day for "foreign objects" that may have fallen on the surface

of the runway and might impede or pose a hazard to7 aircraft operations. These inspections

are generally referred to as inspections for Foreign Objects Damage (FOD). By far the most

famous accident caused by a foreign object on a runway is the Concorde accident at the

Charles de Gaulle International Airport (CDG) in Paris in 2000, which resulted in the death

of all 109 people on board the airplane and of 4 more on the ground. In general, it is estimated

that foreign objects cause around US$4 billion in costs to the air transport industry, due to

damages to a aircraft and associated repairs, flight delays and airport maintenance 1. Our

simulation computes any delays to aircraft due to FOD inspections. We will refer to this type

of delay as the "runway inspection delay".

'http: //wvw. faa. gov/news/fact -sheets/nevs- story. cfm?newsId=i5394
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" Waiting for clearance (dclearanc): When the aircraft is ready to leave its gate, it must request

clearance before starting the pushback. Some waiting time may be incurred until a response

to the request is received.

* Pushback time (tpushack): The aircraft needs to pushback from its gate before entering the

taxiway system.

On the taxiway system

" UTT: The Unimpeded Taxi Time of an aircraft corresponds to the time it would spend on

the taxiway system if there was no traffic, given the aircraft's gate and the runway end from

which it will depart.

* Taxiing delay (dt): This quantity is a measure of the extra-time spent on the taxiway system

due to conflicts with other arriving or departing aircraft which are also taxiing.

At the runway queue

" Queuing delay (dq): This delay corresponds to the time spent by the aircraft on the runway

queue until it is in first position, This delay is incrementally computed by the simulation, and

is equal to the sum of the separation requirements between departures that were preceding

our aircraft in the queue, plus any additional delay these other departures may have incurred

due to conflicts with aircraft landing on the same runway.

" Conflicts with arrivals (da): When an aircraft reaches the first position in the departures

queue, it might still encounter a conflict with one or more arriving aircraft that are expected

to land on the runway. The quantity da is set equal to any delay due to such conflicts. Note

that the quantity dq defined above already accounts for any delays that preceding departures

suffer as a result of conflicts with landing aircraft.

It is important to note at this point a critical modeling choice that has been made with regard

to our simulation. We have chosen not to model the conflicts that may occur between taxiing air-

craft on the taxiway system, i.e, the conflicts that will cause the taxiing delays dt. The reason for

this choice is that conflicts on taxiway systems are entirely dependent on the local geometry of the
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airport under consideration. Thus, to simulate taxiway conflicts, one has to develop a finest-grain

representation of the taxiway network, as well as model accurately the precise movements of air-

craft on that network. The development of a "microscopic" simulation of this type requires a large

amount of effort and, even more important, makes it necessary to develop a different simulation

tested for each modeled airport. Our objective, instead, is to develop a "mesoscopic" simulation

model, which tracks every departing aircraft individually, but does not simulate the way it moves

through the taxiway network. For this purpose, we propose to simulate taxiing delays, dt, only in

a statistical sense. To do so, we shall use empirical data from each modeled airport to represent

dt as a random variable with a probability density function that fits the data. (A specific example

will be provided in Chapter 4). This approach simplifies greatly the development of the simulation

model. It is justified by the fact that the focus of our model is on estimating the benefits that

can be obtained from the two optimization features describes in the previous section (i.e., keeping

departing aircraft at the gate when the taxiway system is crowded and sequencing of departures).

A number of other specific assumptions made in the simulation model will be described in

Chapter 4.

In summary, the sum of all the quantities defined above gives the total time associated with the

departure process of any departing aircraft. This sum will be referred to as TTDP (Total Time of

Departure Process) from now on. To summarize, for each aircraft:

TTDP = dg + di + dciearance + tpushback + UTT + dt + dq + da (2.1)

2.3 Data

2.3.1 Operations Data

Basic Operations Schedule: Input for the simulation

To implement the simulation, detailed data should be provided for the subject airport. Foremost is

an actual or hypothetical schedule of daily operations. For each departing flight in a day of interest,
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this should include the scheduled time of departure, in addition to information such as flight number,

gate of departure, type of aircraft, unimpeded travel time between the gate of departure and every

possible end of departure runways, etc. An example of the most basic schedule data for a flight is

given in Table 2.1 below.

Flight ID Gate Terminal Aircraft Type Runway End Scheduled Time of Departure

Table 2.1: Basic operations data, used as input for our simulation: row of headers

Detailed TTDP Breakdown: Improved modeling

In addition to the information described above, a set of more detailed data would improve the

performance of the simulation model by making it possible to calibrate certain important model

parameters. Ideally, this would mean the availability of highly detailed information for a large

subset of all the departures from the subject airport. An example is given in Table 2.2, in which,

for one of the main airlines using the airport (or for several of the main airlines), data have been

reported on the precise times associated with the various phases of the departure process of each

of the flights in the dataset. Such data can help improve the modeling of certain quantities such

as the pushback time tpu8hback or, more importantly, the taxiing delay dt. The idea is to use this

extensive dataset to extract some of the raw parameters of the simulation and derive new ones. As

a result, we should be able to find reasonable statistical estimates for the quantities of interest.

Flight ID Date STD Taxi Start Takeoff Time Pushback Taxi-out

Table 2.2: Detailed data about the TTDP breakdown of departures, used for modeling: row of
headers

2.3.2 Auxiliary Data

Unimpeded taxi times

To improve the accuracy of our estimates of taxiing times, we need airport-specific unimpeded

travel times from every gate to every runway end that can be used for initiating a takeoff run.
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Separation Requirements Matrix

To maintain safety, aircraft must be separated from each other according to specified air traffic

control (ATC) requirements during landing and takeoff operations. The ATC separation require-

ment between any pair of aircraft typically depends on the maximum takeoff weights (MTOW) of

the two aircraft. For this purpose, all aircraft are classified into a small number of categories. For

example, the International Civil Aviation Organization (ICAO) classifies all aircraft types into four

categories: Light, Medium, Heavy, Super-Heavy. The required separations are then specified

for each aircraft pair. For instance, when the takeoff of a Heavy (H) is followed by the takeoff of a

Medium (M) from the same runway, then the required minimum separation between the two air-

craft may be 120 seconds. Conversely, if a M aircraft is followed by a H, the separation requirement

may be 90 seconds.

These separation requirements are typically provided in the form of a matrix of separations.

An example of such a matrix of separations for departures from the same runway is given below as

equation 2.2, where the column indicates the leading aircraft of the pair and the row indicates the

trailing aircraft in the pair. The separations are given in seconds.

SH H M L

SH 150 90 90 90

H 150 90 90 90

Tseparation = (2.2)

M 180 120 90 90

L 180 120 90 90

The optimization of departures sequences, which is the main focus of this study, will rely heavily

on this matrix, as will be seen in Chapter 3. It should be noted that the separations indicated in

the matrix of equation 2.2 vary from airport to airport, as they depend on the practices of ATC

operations providers in each country.
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2.4 The implementation

We have now described the generic departure process that is modeled by our simulation, as well as

defined the different quantities that will be measured and stored.

To execute the departure process according to the defined rules, we have implemented an event-

paced simulation using Python as our programming language. We use an object called a Priority

Queue as the principal way to capture the processing of departures. This object turns out to be

very well suited to our needs. The entries contained in the Priority Queue are kept sorted according

to an attribute of our choice, in such a way that the lowest valued entry is retrieved first.

For each of the ends of the departure runways, we create a Priority Queue and include in it all

the departures that are scheduled to leave from that end, sorted by scheduled departure time. We

then process these queues separately, one at a time. The processing of departures in the Priority

Queue associated with any particular runway end on a simulated day works as follows:

All aircraft start in the same state, namely "At the gate". We begin by retrieving the first

aircraft from the queue, which will be the first aircraft scheduled to depart from that runway

end on that day. Once the aircraft requests clearance and receives a response, the aircraft begins

pushing back, as long as no runway runway inspection is taking place and the system S is not in

critical size. The aircraft is now in a new state: "About to taxi" and is placed back in the queue

with his updated current time. We then repeat the process, retrieving the first aircraft in the

Priority Queue and processing it depending on the state it is in. The simulation stops when all

of the departures scheduled have gone through the four different stages: "At the gate", "About to

taxi", "At runway", "Taking off". At that point, all the departures are processed, which means all

aircraft have taken off.

A detailed description of what happens in each stage of the departure process for a given aircraft

is as follows:

* "At the gate"

- If the system S is not in critical size:
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* If there is no time overlap with a period when runway FOD inspections are being

conducted:

- Add clearance delay and pushback time to the aircraft.

- Append the aircraft to the list of departures on the {Apron} system.

- Set its status to "About to taxi" and place back in queue.

* If runway inspection is currently taking place:

- Add runway inspection delay and put the aircraft back in the queue.

- If the system is currently in critical size:

* Append the aircraft to the list of departures delayed at the gate due to traffic

* "About to taxi"

- Remove the aircraft from the list of departures on the {Apron} system.

- Add UTT and taxiing delay to the TTDP of the aircraft.

- Append the aircraft to the list of departures on the {Taxiway} system.

- Set its status to "At Runway" and place back in the queue.

* "At the runway"

- If this is the first time we check that aircraft at the runway:

* Remove the aircraft from the list of departures on the {Taxiway} system.

* Append the aircraft to the list of departures on the {Runway} system.

- If the aircraft was already at the runway the last time it was retrieved from the queue:

* If the aircraft is in first position in the queue:

Compute and store its queuing delay given its time of arrival at the runway and

update its actual time.

Check separation requirements given the previous takeoff's weight class and

potentially increment the queuing delay.

- Check interference with arrivals on the runway and add potential delay due to

conflicts with landing aircraft.
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- Set the aircraft's status to "Taking-off" and place back in the queue.

* If the aircraft is not in first position in the queue:

- Update queuing delay of the aircraft by setting its new time to the time of the

most recent takeoff.

- Place the item back in the queue

* "Taking-off"

- Update positions of all the aircraft in the runway queue.

- Add a row to the output file with all of the data stored for that flight.

- If there is an aircraft waiting to leave its gate, store that aircraft's gate delay and place

it back in the queue.

2.5 Output of the simulation

When we run the simulation for any specific airport, using as input the schedule of departures it

provided us for a given day, we process all flights from their gate to their takeoff. For every single

departure being processed, we record the set of event times we are interested in. Table 2.3 shows

an example, for a random departure schedule on a given day.

Flight ID TTDP dg di dcearance tpushback UTT dt dq da

Flight 123 34 7 0 5 8 6 3 3 2

Table 2.3: Output of the simulation for a random departure. The values were not taken from actual
results.

Using these first level outputs, the simulation also plots for the user the following charts:

" Evolution of TTDP with time of day

" Comparison of actual and computed TTDP (when the simulation is run using historic data).

" Detailed breakdown of the TTDPs of all the departures processed on that day. This chart

allows us to measure the impact of each type of delay on the TTDP, as well as the evolution

of this impact with the time of day.
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Moreover, the simulation has been designed such that at any point in time, we have access

to the occupancies of each part of the system. This additional data allows us to output other

charts, which display the evolution of these occupancies with the time of day. More precisely, the

simulation outputs:

* The total occupancy of the system S

" The occupancies of the apron, the taxiway system and the runway queue in three different

charts

" A timeline of whether the runway queue is busy or not, where "busy" is defined as a binary

variable which takes the value 1 when there is at least one aircraft in the queue and 0 otherwise.

This provides a visualization of the length of the busy periods of the runway during the day.
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Chapter 3

The optimization

3.1 Presentation

As introduced in the previous chapter, every aircraft departing from AIRPORT has to go through

the departure process, from pushback to takeoff. More specifically, each plane starts at the apron

then circulates on the taxiway system before queuing at the runway. Ideally, we would like to

optimize the airport's operations by acting at each step of the process. In this work, we did not

apply any method to improve the performance of the modeled airport on its taxiway system. At

the apron, our main action is to keep aircraft at their gate when the system S is too crowded, by

setting C optimally. Although recent research has determined the existence of a threshold above

which it is counter-productive to send aircraft on the taxiway, we did not focus on this optimization

matter. In this work, we will focus on the runway queue optimization, using sequencing techniques

at the runway.

As introduced earlier, two consecutive aircraft taking off from the same runway have to re-

spect separation requirements, which depend on their corresponding weight classes. The aircraft

are assigned to one of four classes according to their size: L (light), M (medium), H (heavy), SH

(super heavy). The matrix of separation requirements then defines the waiting times between every

two types of aircraft.

In summary, the sequencing techniques aim at reordering aircraft in the queue in order to

minimize delays that are created by these separation requirements. To remain practical, we give
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an upper bound to the number of shifts allowed per aircraft, adding fairness constraints to our

optimization. From now on, we will refer to this upper bound as K.

The input for these methods consists of a list of aircraft to sequence, associated with their

First-Come First-Serve (FCFS) arrival times at the runway queue. Suppose an aircraft arrives in

position p, at the runway queue according to the First-Come-First-Serve process. Then this aircraft

can occupy 2K + 1 positions P2 in the reordered queue:

pi - K <_p 2  pi + K (3.1)

This chapter focuses on the methodology and introduces the two main versions of the sequenc-

ing algorithm, which differ from each other only by the objective function to minimize. We will

then apply these alternatives to a specific airport in Chapter 4.

3.2 The sequencing algorithm

Roger Dear was the first one to write about sequencing techniques at the runway (Dear, 1976

[8]). In the literature, these techniques are known under the name of Constrained Position Shifting

methods, or CPS methods. Since then, some research has been done to find efficient algorithms

for practical implementation. We chose to implement the algorithm introduced by Balakrishnan &

Chandran [4]. In this section, we will present their work.

3.2.1 Sequencing to minimize makespan

The first version of the algorithm aims at minimizing what we call the makespan, i.e. the difference

between the takeoff times of the first and last departures. The specificity of this algorithm is that

it involves building an initial network, where each feasible sequence is represented by a path in the

network. Our first focus will consist of a detailed description of this CPS network.

The CPS network

We let n be the number of aircraft to be sequenced and we consider a series of such aircraft labeled

according to their FCFS order at the runway queue, i.e. (1, 2, ... , n).
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The CPS network is made of n stages, where a stage is an index associated with a position in the

queue (1 through n). The network follows the following rules:

" The position of an aircraft in a node corresponds to a position in the final sequence. More

specifically, the last aircraft from a node in stage p leaves in position p. For example, let

K = 1 and p = 4. If (i, j, k) is a node from stage p, then for every path of the network which

includes this node, i is the aircraft which leaves in position p - 2 = 2, j in position 3 and k

in position 4.

" A node in stage p is of length min (2K + 1, p).

" The nodes in stage p represent all feasible combinations of aircraft at that stage. Using the

same example as above, (3, 2, 4) is a possible combination of aircraft leaving in second, third

and fourth position: (3, 2, 4) is therefore a feasible node in stage 4. However, (4, 2, 3) is not a

feasible node, since aircraft 4 would leave in position 2, which is not allowed when K = 1.

" After building the network, we perform both a forward and a backward search to remove

nodes that do not belong to any path: we are pruning the network.

1-2-4

2 2-1 2-3-4 3-4-5 456Sn

2-1-3 5-4-6
2 1 5 3 4 6

3-6-5

3-2-4 4-3-5

3 2 1 4-3-6

Figure 3-1: CPS network in the case n = 6, K = 1. The dark nodes are the ones that were removed
from the network after pruning. This image was directly taken from [4].

As an example, we can build the network in the case where K = 1 and n = 6 shown in Figure

3-1. Consider six aircraft labeled 1 to 6 according to their FCFS position. Building the CPS

network would work as follows:
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Stage 1

In stage 1, a node includes a single aircraft. The only two aircraft which can leave in first position in

the reordered sequence are the ones that were originally in positions 1 and 2 in the FCFS sequence.

Stage 2

In stage 2, a node includes two aircraft, namely the ones leaving in first and second position in the

corresponding new sequence. The aircraft that can leave in second position are the ones labeled 1,

2 or 3. Given this observation we build the nodes (1, 2), (1, 3), (2, 1), (2, 3). Then we link these

new nodes to their predecessors in stage 1.

Stage 3

From stage 3 to stage 6, all nodes are of length 2K + 1 = 3. A node in stage 3 contains thus

the aircraft leaving in first, second and third positions. Again, given that each aircraft obviously

occupies exactly one position and there are three candidates for each of these positions, we add a

node for each combination of aircraft which satisfies the fairness constraints defined by K: (1, 2,3),

(1, 2,4), (1,3,2), (1,3,4), (2, 1, 3), (2, 1,4), (2,3,4). Finally, we add links from these new nodes to

their predecessors in stage 2.

We complete the network following the same procedure for the last three stages, always adding

links from the new nodes to their predecessors. To complete the initial network, we add a source

node corresponding to the beginning of the sequence and we link it to nodes in stage 1. Similarly,

we add a sink node that represents the end of the sequence, linking it to all nodes in stage n.

The last step consists of pruning this initial network by completing a forward then a backward

search. During the forward search for example, we observe that node (4,5,6) in stage 5 does not

have any successor and we thus remove it from the network. Moreover, everytime we delete a node,

we need to delete its predecessors that do not have any successor other than that node. In this

specific case, the absence of successor for node (4,5,6) leads to the deletion of the following nodes:

" (4,5,6) from stage 5

" (3,4,5) from stage 4
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e (2, 3, 4) and (1, 3, 4) from stage 3

* (2,3) from stage 2

Regarding the implementation of this CPS network, we made it more efficient by only building

nodes from stage p starting from the nodes from stage p - 1. This allows us to avoid building nodes

that do not have a predecessor, which makes the pruning easier. For large values of n, this method

proves to be very useful. We can now focus on the optimization itself, which highly relies on the

CPS network.

Notations

Other than the number of aircraft n, the matrix T and the K parameter, we also use the following

notations to describe the algorithm:

* Acps is the pruned CPS network.

" x(i) is the takeoff time of the final aircraft of node i.

* x*(i) is the takeoff time of the final aircraft of node i in the optimal sequence.

* .(p) is the set of nodes in stage p.

" e(i) is the FCFS time of arrival at the runway queue of the last aircraft in node i.

" P(i) is the set of predecessors of node i in the CPS network.

The constraints

There are three sets of constraints that we involve in our optimization.

" The separation requirements Tj between two consecutive nodes i and j. We define the

separation requirements between two nodes i and j to be the separation requirements between

the last aircraft of node i and the last aircraft of node j.

" The maximum number of shifts allowed per aircraft, that we refer to as K. In practice, K

can be equal to 1 or 2.
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e The arrival time at the runway queue for the last aircraft of node i, namely e(i), which we

will need to include in the implementation to make sure that no departure can take off before

its arrival at the runway.

Formulation

In summary, if i, is a node in stage p from the Afcps network, we would like to find a solution to

the following instance:

minimize
(il,---,in)EArcps

subject to

x(in)

x(ip) - x(ip-1) Tii,, p = 1,..., n.

X(ip) e(i,), p =,...,n.

Dynamic programming for optimization

We use dynamic programming to find the feasible sequence that minimizes the makespan. The idea

is to compute recursively the values of x*(j) for all nodes j in all stages.

More specifically, for a node i, in stage p, we compute x*(ip) using the following formula.

Vp 2, Vi, E K(p)

Vil E .A(1) x*(ii)

x*(i,) = max{e(i,), min [x*(i,_) + Ti,,,_]},
ip-iEP(i,)

= e(ii)

The optimal makespan is then obtained by solving:

min x*(in)
ineA(n)

(3.5)

To recover the optimal sequence (i*, ... , i *), we start with our optimal node i * in J(n), then

recover its best predecessor i*_ 1 from stage n - 1. By repeating the process until we get to stage

1, we extract the optimal sequence. More precisely:
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i* = arg max x*(in),
iENr(n)

I = arg max x*(in_),
in-1EP(i*) (86)

i* = argmaxx*(ii),
iiEP(i*)

Complexity

* A node from the network has at most 2K+1 positions filled by as many aircraft. Each of these

positions can be occupied by 2K + 1 different aircraft. The number of nodes in each stage is

therefore O((2K + 1)2K+1) and the number of nodes in the network is O(n(2K + 1)2+K1).

o Moreover, a node in stage p is obtained from its predecessor only by removing the first aircraft

and adding one of 2K+ 1 possible aircraft as the pth aircraft to take off. From this observation,

we note that a node has at most 2K + 1 predecessors. For each node in the network, we can

therefore create at most 2K + 1 links to the previous stage; the total numbers of arcs in the

network can then be estimated as the number of nodes in the network multiplied by 2K + 1.

In other words, the network counts O(n(2K + 1)2K+2) arcs.

* Our forward and backward searches imply going through every arc at most twice.

* The dynamic programming goes through every arc once.

The complexity of the algorithm is thus equal to the number of arcs in the CPS network, which is

O(n(2K + 1)2K+2)

We can also point out that solving this problem is equivalent to solving a shortest path problem

within the CPS network, where each link between nodes is associated with a cost equal to the

corresponding separation requirement.
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3.2.2 Sequencing to minimize average delay

In this alternative, we aim at minimizing the average delay per aircraft. Although we still perform

the optimization using dynamic programming through a network, changing the objective function

actually involves significant changes in the implementation. We will describe here the detailed

algorithm introduced by the same authors in 2007 [3], starting with the definition of the average

delay network.

The average delay network

To build the average delay network JVAv9 Delay , we start from the basic CPS network fcps,

introduced previously. The idea behind this network is slightly more involved than the previous

one. We will hence need additional notations to present our new optimization problem.

" For a given final sequence defined by nodes (ii,.... ,in), we let x(ip), p E {1...n}, be the

departure time of the pth aircraft of that sequence, exactly as in the previous formulation.

" Every node i, from stage p in the original CPS network is associated with n - p +1 subnodes

in the new network, that we will refer to as (ip, j), where j E {1...n - p + 1}.

* Given a partial sequence (ii, ... ,ip), each subnode j of the node ip is associated with the

value f(ipj) = X(il) + x(i2) + ... + X(ip-i) + jX(ip).

To understand the intuition behind the use of the function f(ip, j), we need to start by looking

at the objective function. We would like to find the sequence that minimizes the sum of all the

delays. To do so, we start by defining the delay of an aircraft in the sequence.

Definition 4. Let (ii, ... ,in) be a feasible sequence from the CPS original network Afcps.

Let x(ip) be the takeoff time of the pth aircraft in the sequence, and e(ip) be the FCFS arrival time

at the runway queue of the last aircraft in node ip. Then, the delay of the pth aircraft to take off in

the final sequence is defined as:

X(ip) - e(ip) (3.7)
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Given definition 4, we can now define our new optimization problem as follows:

minimize
(iu,---,in)er s

subject to

(x(ii) - e(ii)) + (x(i 2 ) - e(i2 )) + .. . + (x(in) - e(in))

x(ip) - x(ip-1) > Ti_p, p = 1, ... ,n.
(3.8)

x(ip) e(ip), p = 1, ... , n.

ip E X(p), p = 1, ... ., n.

This minimization is done over all possible sequences (ii, i2,... ,in), i.e for all paths from the

original CPS network. Moreover the constraints are the same than the ones introduced in the

previous formulation. It is important to note that, for any path (ii, ... , in) in the CPS network,

each aircraft at the queue is the last, aircraft of exactly one node in the sequence. The quantity

Ei..n e(ip) is therefore equal to the sum of the FCFS arrival times at the queue of all n aircraft,

and is thus independent of the selected path. We can therefore write the problem in a more compact

way as follows:

minimize
(ii,..,in)EAcPs

subject to

x(ii) + X(i 2 ) + ... + x(in)

X(ip) - X(ip-1) > T_1 p, p = 1, ... ,n.

x(ip) e(ip), p =1, ... , n.

ip E /N(p), p = 1, ... , n.

We can then make the following observations:

" Solving our problem is equivalent to looking at all paths of the network and choosing the one

with the minimum value of f(in, 1). Note that there is one subnode per node in stage n.

" For each predecessor in_1 of a node in, there are 2 subnodes to consider.

- Case (1): The n th aircraft left at its FCFS time. In this case, x(in) = e(in), which
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implies:

f(in, 1) = x(ii) + x(i2) + .. . + x(in)

= x(ii) + x(i 2 ) + ... + x(in- 1 ) + e(in) (3.10)

= f (in_1, 1) + e(in)

- Case (2): The nth aircraft left directly after the previous aircraft, which means it had

to wait for the corresponding separation requirements. In such case, x(in) = x(in_ 1 ) +

Tinin_1, which implies:

f(in, 1) = x(ii) + X(i 2 ) + .. . + x(in)

= x(ii) + x(i 2 ) + ... + x(in_1) + (x(in-1) + Tii_1) (3.11)

= f(in_ 1, 2) + Tiin_1

* More generally, let ip be a node in stage p and ip- 1 be one of its predecessors. By repeating

the process introduced above, we observe that for every subnode (ip, j) of ip, there are two

predecessors among the subnodes of ip_ 1 , namely (ip- 1 , 1) and (ip- 1 , j + 1), which are linked

in the following way:

f (i,) P {f(iP-1,j + 1) + jT,_1 if x(ip) = x(ip_1) + T (3.12)

f(ip- 1, 1) + j.e(ip), if x(ip) = e(ip)

This reasoning helps us understand the idea behind these values f(ip, j) and the links between

subnodes at different stages. In summary, we build the network adding links as follows:

For every pair of nodes (ip, ip 1 ) where ip-1 is a predecessor of ip:

- Create a link between subnodes of the form (ip, j) and (ip- 1 , j + 1), associated with a cost of

jTii,_1.*

- Create a link between subnodes of the form (ip, j) and (ip_ 1, 1), associated with a cost of j.e(ip).

- Finally, add links from each subnode in stage 1 to the source node and from each subnode in

stage n to the sink node.
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Solving for the sequence with the minimum average delay is again equivalent to solving a shortest

path problem using the A/AvgDelay network and the costs defined above. Figure 3-2 shows a single

sequence from the new network, in the case where n = 6, K = 1.

tl t,+4t - t,+t2+...+3t4-- FA b-I . c

Kt+ t,+ +...+24 t,+4+...+4 t6C1

Figure 3-2: Fraction of the AAvgDelay network, corresponding to the sequence (2,1,3,4,6,5). The
figure only displays the nodes relative to that sequence as well as the subnodes corresponding to each
stage. This image was directly taken from [3].

Dynamic programming for optimization

When looking for the best predecessor of a node in in stage n, we loop through its predecessors.

For each of these predecessors in_1, we determine in which case would node in's last aircraft take

off. This is equivalent to determining which subnode to consider within in-1, which is done by

finding the max (f*(ini, 1) + e(in), f*(in-i, 2) + Tni ).

We then find the best among these predecessors, storing the predecessor itself from .Acps as

well as the relevant subnode. This is done by solving the following problem.

f*(in, 1) = min {max (f*(in_1, 1) + e(in), f*(in-1, 2) + T_-1 i)} (3.13)
in-IeP(in)

More generally, at the pth step of the algorithm, we compute the values of f* (ip, j) for all nodes
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i, and their subnodes j = 1,...,n - p + 1.

- Vi E J(1), Vj E {1,..., n}, f*(iij) = je(i), (3.14)

- Vp > 2, Vi E K(p), Vj E {1, ... , n - p +1},
(3.15)

f*(i , j) = min {max(f*(ip1, 1) + j.e(ip),f*(ip-1,j + 1) +j.Tii,_ 1)}
i,-iEP(i,)

To extract the optimal sequence, we proceed exactly as we did in the previous case. The only

difference is that, while backtracking stage by stage, we store not only the best predecessor from

Ar/ps but also the subnode from JAvgDelay that tells us in which case each aircraft took off (at its

FCFS time or after waiting to fulfill separation requirements).

Complexity

The average delay network is slightly more complex than the basic CPS network. In the end, this

alternative of the algorithm is extremely similar to the first one, the main difference being that

we are working at the subnodes level, which means we are dealing with a larger network. The

total number of subnodes is approximately equal to the number of nodes from the CPS network,

O(n(2K + 1)2K+1), times the number of subnodes per nodes, which can be upper bounded by n.

In other words, the number of nodes is O(n2 (2K + 1)2K+1). Given that each subnodes only has

2 predecessors, we conclude that the number of arcs is also O(n2 (2K + 1)2K+1). Therefore, the

overall complexity of the algorithm is this time 0(n2 (2K + 1)2K+2).
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Chapter 4

Computational Experiments:

Application to a Busy Airport

In the previous chapter, we introduced Constrained Position Shifting methods to sequence departing

aircraft in the runway queue. Now that we have presented a particular implementation of these

sequencing techniques, the next step consists of analyzing their performance on actual data. In

this chapter, we apply our implementation to optimize departure operations at a specific airport,

that we will refer to as AIRPORT from now on, for privacy issues.

Initially, we use the generic simulation introduced in Chapter 2 and perform multiple runs with

data which is specific to the airport's operations. Then, we analyze the results of these runs to

get some preliminary insights on the airport's current traffic levels. The idea is to gain a general

understanding of the airport's demand and to identify the main congestion periods on the departure

runways. Based on this study, we will then run our optimization on specific intervals of time, to

maximize the techniques' performance.

We observed that although AIRPORT has been growing particularly fast in the last decade, the

current demand is still relatively low compared to other major airports around the world. We will

therefore artificially increase traffic in order to apply our sequencing methods to different demand

profiles.
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4.1 Simulating AIRPORT's departure processes

4.1.1 The modeled airport at a glance

Before we run our generic simulation on the data provided to us by AIRPORT, we first need to

introduce basic information about the airport's operations.

Runways

The airport owns two runways, namely 09L-27R and 09R-27L . Most departures take off from

09L-27R . Although some departures do take off from the other runway, the takeoff times are too

spread-out for us to obtain interesting results from the simulation and the optimization. We will

thus focus on the runway 09L-27R. Table 4.1 shows the number of departing aircraft per runway

end.

Runway End 09L 27R 09R 27L

Count 260 170 32 3

Fraction (%) 56 36 7 1

Table 4.1: Counts of departures per runway end. 09L and 27R are two ends from the same runway.
Same for 09R and 27L.

Schedule of departures

Depending on the time of day, aircraft scheduled to leave from our departures runway will take off

either from 09L or 27R, according to the following schedule:

e 00:00-06:00 and 12:00-18:00: Departures take off from 27R.

e 06:00-12:00 and 18:00-00:00: Departures take off from 09L.

Figure 4-1 shows the hourly breakdown of the departures' STDs, which gives us a first idea of peak

hours at the airport. Note however that it is more important to us to get information about peak

hours at the runway queue itself. We are able to predict this breakdown of the arrival times in the

queue using our simulation, as will be shown later.

At a glance, it seems like peak hours at the runway appear around 8:00, 13:00 and later in

the day around 17:00. However, the corresponding peak values stay below 30 aircraft per hour.
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Figure 4-1: Hourly breakdown of the departures' STDs at AIRPORT.

We can therefore also expect the rate of aircraft per hour at the runway queue to remain below

this threshold. According to Balakrishnan and Chandran [4], trying to minimize makespan does

not have any impact for such low demand profiles. These preliminary observations give us a first

incentive to artificially increase traffic and create new demand profiles. Only then can we expect

our CPS techniques to lead to meaningful results.

Growth

In recent years, the airport has been growing significantly faster than most airports around the

world. Figure 4-2 shows the evolution of the total number of aircraft movements (departures

and arrivals) in the last five years. The numbers imply a steady increase of more than 5% per

year. These observations emphasize the need to anticipate a significant increase of the demand

in upcoming years. We will therefore present in this chapter an approximate way to artificially

increase traffic and run simulations for higher demand profiles.

Now that we have introduced some basic characteristics of AIRPORT's operations, we are ready

to run the simulation introduced in Chapter 2, using their operations data. In the next section,

we focus on the outcome of these runs to identify the congestion periods at the runway queue and

gain some insight before applying sequencing.
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Figure 4-2: Evolution of the total number of aircraft movements per year at AIRPORT. We observe
a stable annual increase of approximately 5%.

4.1.2 Data

Input for the simulation

The simulation runs are completed using AIRPORT-specific data provided to us for this series of

experiments.

The first type of data we use consists of a whole month of scheduled operations (departures and

arrivals). From this dataset, we extracted a specific day of operations corresponding to all flights

scheduled to depart or land on Friday, October 1 9 th, 2012. This subset of data will be used as

input for our simulation runs. Note that we chose to experiment on a Friday, which is the day of

the week with the highest demand at most major airports.

Auxiliary Data

Matrix of separation requirements

AIRPORT also provided us with two types of data that will be used for modeling the quantities of

interest as well as for the implementation of the simulation.

The first type is the airport's specific matrix of separation requirements between departures, shown

in equation 4.1, where the columns indicate the leading aircraft and the rows the trailing aircraft.

This matrix will be crucial for both the optimization and the computation of the queuing delays of
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all aircraft departing from AIRPORT.

SH H M L

SH 150 90 90 90

H 150 90 90 90
Tseparation = (4.1)

M 180 120 90 90

L 180 120 90 90

Table of Unimpeded Travel Times (UTTs)

The second type of data consists of a table that gives us access to the set of Unimpeded Travel

Times (UTT) from every gate to every runway end that can be used for initiating a takeoff run.

These taxiing times will allow us to increase the precision of our taxiing time estimates. Moreover,

we will see in the following paragraphs that these UTTs will help derive the taxiing delay from the

raw data given to us by AIRPORT..Note that a few pairs (Gate, Runway End) were not associated

with a UTT. To deal with this missing data, we simply used a detailed map of the airport which

displays all gates and runway ends. We then used simple extrapolation to obtain the missing UTTs,

based on the UTTs of neighboring pairs.

Modeling quantities of interest

In Chapter 1, we emphasized the importance of getting access to additional data that would provide

us with more detailed information about the departure processes of all flights taking off from the

airport. AIRPORT has provided detailed data for one of the most active airlines there, which

accounts for approximately 20% of departure from a specific week of operations during that month

of October. More specifically, for 20% of departures from that week, we have the following data:

ID Date I Gate Runway End STD Taxi Start I Takeoff Time Pushback Taxi Time

Table 4.2: Detailed data about the TTDP breakdown of departures at AIRPORT used for modeling:
row of headers.
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With a sample size of more than 700 observations, we are able to find reasonable statistical

estimates to model pushback time tpushback and taxiing delay dt.

Pushback time

For the first of these quantities, we constructed a histogram of the values of the pushback time in

our dataset and decided to model this variable as if drawn from a normal distribution with mean

/ = 6 minutes and standard deviation o- = 2 minutes. Figure 4-3 displays both the histogram and

the fit of the corresponding normal distribution.

Taxi delay

As explained in Chapter 1, we made a critical decision regarding the modeling of taxiing delays

at this airport. More specifically, we decided to provide a statistical estimate of that quantity

instead of modeling conflicts between aircraft on the taxiway system. From the variables shown in

Figure 4.2, we extracted the taxiing delay using the table of Unimpeded Travel Times (UTT). In

particular, for each flight in that dataset we defined the taxiing delay as follows:

dt = Taxiing Time - UTT(Gate, Runway End) (4.2)

We then drew a histogram of the values derived taxiing delay dt in the dataset and decided to

model that delay as a random variable drawn from a Gumbel distribution with parameters y = 4.7

minutes and o = 4.6 minutes. Note that if X is a random variable drawn from such a distribution,

, is a location parameter and o is the standard deviation, such that:

E[X] = p +7,

07r (4.3)
or = -

Note that 7 is the Euler-Mascheroni constant and f is a scale parameter. It is interesting

to note that the mean of our modeled taxiing delay is approximately equal to 6 minutes and 40

seconds. However, the standard deviation is relatively high, which shows how variable the taxiing

delay can be at AIRPORT. Moreover, note that a small number of flights have negative taxiing
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delay in our dataset. This means that for some flights processed by our simulation, the total time

spent on the taxiway system will be slightly lower than the corresponding UTT, which appears to

be contradicting the definition of the UTT. Since these negative taxiing delays rarely exceed 1 or

2 minutes and the probability of getting a negative value is relatively low (around 0.1), we will not

consider this as an issue for the purposes of our study. Figure 4-4 below shows the histogram and

the fit.
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Figure 4-3: Distribution of the pushback
times values, for a sample size of ap-
proximately 700 observations.
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Figure 4-4: Distribution of the taxiing

delay dt values, for a sample size of ap-

proximately 700 observations

The modeling presented above was integrated in the implementation, hence increasing the

precision of the simulation. We are now able to run the simulation for the specific case of AIRPORT.

The results are the subject of the next section.

4.1.3 Output of the simulation for the modeled airport

We made several initial runs of the simulation to get a better understanding of the traffic at

AIRPORT. This step of the study is crucial because it gives us insight into ways of applying

the upcoming optimization for this specific airport. Every major airport, such as the one we are

modeling, has its own congestion characteristics. Our generic simulation helps in identifying these

airport-specific features through a thorough analysis of its output.
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General observations about traffic on the system S

For these first runs, we use as input the schedule of operations from Friday, October 1 9 th, 2012.

The critical size C of the system S is set equal to 10 aircraft. Above this threshold, the system is

in critical size and no new aircraft can leave its gate, as explained in Chapter 2. For each aircraft

scheduled to depart on that day, we output the characteristic times of its departure process. More

specifically, we store the following quantities, shown in Table 4.3.

TTDP dg di dciearance tpushback UTT dt dq da

34 7 0 5 8 6 3 3 2

Table 4.3: Output of the simulation for a random departure on Friday, October 19th, 2012.

The first thing we can consider is the evolution of the TTDP with the time of day and compare

it to the actual TTDP experienced by the aircraft on that day. Figure 4-5 below displays the

computed TTDP and the actual TTDP for every aircraft.

100 . Computed TTDP vs. Actual TTDP

In

C

0~
C

8

6

2

03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
Time of day

Figure 4-5: For every departure time on the x-axis, the chart displays a red dot that corresponds to
the computed TTDP and a blue dot corresponding to the actual TTDP experienced by the aircraft.
There is for example an aircraft scheduled to leave its gate at 03:00. For this aircraft, our simulation
predicts a takeoff time around 3:25, while its actual takeoff time was around 3:15.

This chart allows us to make a few preliminary observations about traffic at the modeled air-
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port. We first observe a high variability of the TTDPs observed in practice, which is much higher

than in simulation. The simulation does not capture some of this variability, which is probably due

to unusual events such as late boarding of passenger, mechanical problems, etc. Moreover, we can

identify the main peak periods of that day, namely:

- 08:00 to 11:00

- 13:00 to 15:00

- 18:00 to 20:00.

Our analysis will therefore focus on these time periods, since we can expect the demand to be too

low for the sequencing to perform well outside of these peak hours.

Next, we can look at the breakdown of this TTDP for all aircraft that were processed on that

day. The purpose of this is to identify the steps of the process that are causing delays throughout

the day. We would also like to spot the periods of time during which aircraft are experiencing higher

queuing delays, since this is the type of delay that we would like to minimize using sequencing.

Such analysis would help us go a step further towards understanding the departure process at

AIRPORT. If we focus for example on the set of aircraft scheduled to leave their gate between 7:00

and 13:00, we observe particularly high queuing delays around 10:00 (See Figure 4-6).

Another indicator of congestion at the modeled airport is the evolution of the gate delay with the

time of day. Indeed, an aircraft experiences gate delay if and only if the system S is in critical

size at the time the aircraft is supposed to leave its gate. We observe particularly high gate delays

around 8:00 and 10:30, which confirms our initial observations about this period being one of the

busiest of that day. However, high gate delays do not allow us to draw any conclusions about the

congestion at the runway queue. The gate delay can be due to a high occupancy of the taxiway

system, which does not necesarily translate into long queues at the runway, since the taxiing delays

vary a great deal from an aircraft to another. Let us consider for example the gate delay around

8:00. The aircraft at the runway around this period are those that were scheduled to depart around

7:30. As seen on Figure 4-6, these flights do not show particularly high queuing delays, which

means that the gate delays observed at 8:00 are mostly due to congestion on the taxiway system.
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Figure 4-6: Each bar corresponds to a departure. The height of the bar gives us the flight's TTDP,

which is the sum of durations of all characteristic times of the departure process. Only flights

scheduled to leave their gate between 7:00 and 13:00 are displayed here. Note that bars corresponding

to flights with equal scheduled departure times are displayed next to each other, for comparison

purposes.

Analysis of the traffic at the runway queue

In this study, we are specifically interested in the intensity of congestion at the runway queue. To

start looking into this particular part of the system, we can consider the hourly breakdown of the

FCFS arrival times at the runway queue, which are stored by the simulation. The chart is shown

in Figure 4-7. As explained earlier, this hourly breakdown is a better congestion indicator than the

hourly breakdown of the STDs (Figure 4-1). We observe peaks from 8:00 to 9:00, 14:00 to 15:00

and 19:00 to 20:00. Note that these periods could have been intuitively anticipated, given the peak

hours at the gate identified in Figure 4-1.

Another interesting way of visualizing runway queue congestion is by drawing a timeline dis-

playing the runway occupancy according to the time of day. To do so, every time an aircraft X gets

to the runway, we store whether or not the runway is busy. Note that we consider the runway to be

busy if there is at least one aircraft that needs to take off ahead of aircraft X. On the visualization,
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Figure 4-7: Hourly breakdown of the FCFS arrival times at the
departures from Friday, October 1 9 th, 2012.
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Figure 4-8: Occupancy of the runway queue with time of day, shown for three time periods: 06:00-
12:00, 12:00-18:00 and 18:00-00:00. Every data point represents a flight, with an x-value corre-
sponding to its FCFS arrival time at the runway. The datapoint is colored in red or green depending
on whether or not there is a queue when the aircraft gets to the runway.

we display busy times with red dots, while the rest of the time is displayed using green dots. Figure

4-8 shows the results for the time periods 06:00-12:00, 12:00-18:00 and 18:00-00:00.

As expected from our analysis of the TTDP, we observe a high occupancy rate from 10:00 to

11:00 as well as from 14:00 to 15:00 and 18:00 to 19:00. During these periods, the runway queue

seems continuously active in the sense that we almost systematically have at least one aircraft

queuing.

More generally, we can also extract from this visualization the fraction of time the runway appears

to be busy, as shown in Table 4.4. It is interesting to note that 40% of the time, the departures

runway is busy in the sense defined above. Moreover, if we do not consider the 00:00 to 06:00

period, that same departure runway is busy 45% of the time. These relatively high numbers not

53

0 3

ii1i
18 19 20 2117 22 23

I 
I

I I

7



only provide us with further insight regarding the traffic at the runway queue, but also allow us to

anticipate positive results for our CPS techniques.

Time period 00-06 06-12 12-18 18-00 All day

Time with occupied Runway 12% 46% 40% 50% 39%

Table 4.4: Occupancy of the runway in each of the four daily time periods.

Now if we look into more details of the occupancy of the system S, we can get additional

quantitative insight regarding congestion at the runway queue. As explained in Chapter 2, the

simulation keeps track of the occupancies of each part of the system (apron, taxiway system,

runway queue). We are therefore able to plot the evolution of these quantities with the time of day,

as shown in Figures 4-9, 4-10 and 4-11.

Figure 4-11 shows that the system is in critical size during the peak periods we identified above

(08:00-11:00, 13:00-15:00, 18:00-21:00). When we look a level deeper, we observe that within these

peak periods, congestion can be due to either a busy taxiway or a busy runway (or both). As

expected from our interpretation of Figure 4-6, the gate delay experienced by flights scheduled

around 08:00 is mostly due to a high occupancy of the taxiway system: during that period, we

observe a taxi occupancy varying between 8 and 10 aircraft while the runway queue occupancy

varies between 2 and 3 aircraft. However, we do observe high runway queue occupancies around

10:00 and 18:00, with a number of aircraft at the queue that varies between 4 and 6.

Other than the intensity of the traffic at AIRPORT, there is another factor that can impact the

performance of our sequencing methods, namely the homogeneity of what we call the aircraft mix.

4.1.4 The aircraft mix

We call aircraft mix the proportion of aircraft in each weight class, considering all departures on a

given day. In their paper, Balakrishnan-Chandran wrote about the importance of this aircraft mix.

Their conclusion is that the more heterogeneous this mix is, the better the results will be when

applying sequencing. This statement implied a need to look more closely at the aircraft mix in the

specific case of our modeled airport.
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Figure 4-11: Total number of active aircraft with time of day. By active aircraft, we refer to aircraft

that are pushing back, taxiing or queuing for takeoff. Note that the occupancy of the system cannot

exceed the critical size set for the simulation, which is 10 in our case.

It turns out that most aircraft departing from AIRPORT belong to one of two classes: Medium

(M) or Heavy (H). Table 4.5 presents the detailed aircraft mix at Airport.

Weight Class L M H SH

Count 1 250 166 13

Fraction 0% 58% 39% 3%

Table 4.5: Aircraft mix at AIRPORT.

This lack of heterogeneity in the aircraft mix will have a negative impact on the performance

of the sequencing methods. In particular, since the overwhelming majority of aircraft are either

Medium or Heavy, we can take a look at the submatrix of the separation requirements, corre-
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sponding to the separations between these two weight classes.

H M

H 90 90
Tseparation = (4.4)

M 120 90

Note that although the aircraft mix seems particularly homogeneous, this submatrix still clearly

indicates that the queue could benefit from a switch between two aircraft from weight classes M

and H. Suppose an aircraft X of type H is in first position in the queue, followed by aircraft Y of

type M. The initial makespan is equal to 120 seconds. Switching these two aircraft would allow us

to save 30 seconds in makespan, which is equivalent to decreasing makespan by 25%. In terms of

delays, the initial average time spent in the queue is 0+120 = 60 seconds, while switching aircraft

X and Y leads to an average delay of 0+90 = 45 seconds, which corresponds to a 25% improvement

again. This trivial example helps emphasize the potential impact of sequencing on the airport's

operations.

4.1.5 Methods of application

To conclude, the current demand at AIRPORT seems relatively low, with rates of aircraft at the

runway that remain below 30 aircraft/hour. According to Balakrishnan & Chandran [4], these rates

are actually not high enough for sequencing to perform at all in terms of makespan. However, we

do observe some particularly congested periods at the runway queue, mainly around 10:00, 15:00

and 18:00. To deal with these particular congestion characteristics, we are going to apply our

sequencing methods using two different approaches. Each of these approaches will be tested using

both objective functions introduced in the previous section.

Moreover, we will also apply the same set of techniques to other demand profiles. In order to

help AIRPORT anticipate its growth, we will artificially increase traffic to measure the impact of

sequencing when the traffic is increased by 10, 20 or 30%.
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Method 1: Apply to peak periods

One way of applying our sequencing algorithm would consist of focusing on the higher traffic peri-

ods. A first approach is thus to apply our CPS implementation to sequences of flights scheduled to

arrive at the runway around the previously identified peak periods. More precisely, we will run our

sequencing techniques on three different periods: 08:00-11:00, 13:00-15:00 and 18:00-21:00, During

a run of the simulation we process the departures one by one. Every time an aircraft gets to the

runway during one of these peak periods, it is included in the list of aircraft to be sequenced.

Practically, AIRPORT can run our simulation ahead of time using their upcoming schedules of

departures. This would allow them to anticipate peak periods for that day and know which de-

partures will probably be included in the sequencing. Note that these peak periods probably do

not change much from one day to the next, given the minimal variability of the schedules at the

airport.

Method 2: Apply to a larger numbers of long sequences

A more dynamic approach consists of looking more closely at the evolution of the runway occupancy.

While running the simulation, each time we observe 4 or more aircraft whose FCFS arrival times at

the runway are close enough to one another, we will store this sequence and refer to it as a "long"

sequence. We then apply CPS techniques independently to each of these long sequences. Using

this method, our optimization essentially consists of consecutively applying sequencing methods to

a significant number of series of 4 or more departures.

Note that Method 2 is in a sense "included" in the Method 1 defined above. In the first ap-

proach, we sequence a significant number of airplanes scheduled to depart during the peak periods

identified previously. In other words, we look at the benefits of sequencing such number of aircraft.

Method 2 will then only focus on a fraction of these aircraft. More specifically, we are zooming

within the peak periods from Method 1 to find the most congested sequences. The main difference

therefore consists of the way the savings are recorded. We will look into more details at the benefits

of this approach.
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4.1.6 Artificial increase of the demand

The previous sections justified the need for a methodology to artificially increase traffic at AIR-

PORT. This would allow us to anticipate the airport's growth which is expected to engender a 30%

increase of traffic in the next twenty years. Moreover a more congested demand profile can lead to

significant improvements for the results of the CPS techniques. This is why we will create demand

profiles with traffic increases of 10%, 20% and 30%.

To increase traffic by 20% for example, we consider the initial schedule of departures, sorted by

scheduled departure times. Then, we choose to simply move along this schedule and insert a new

aircraft after every five departures. This new aircraft will have the following properties:

" Its scheduled departure time will be the average of the scheduled departure times of the two

original aircraft between which it was inserted. If we insert an aircraft between aircraft 1

(STD = 10:34) and aircraft 2, (STD = 10:38), the new aircraft will be given a scheduled

departure time of 10:36.

" About its weight class, we are going to try two different approaches.

- The first one will be based on the assumption that the aircraft mix will remain unchanged

in the next years. In that case, the new aircraft's weight class will be chosen randomly

from the set [L, M, H, SH], where the probability that the class is picked is directly

linked to its current presence in the aircraft mix.

- In a second approach, we will suppose that the aircraft mix will become more hetero-

geneous in the upcoming years. The more we increase traffic, the better we are able to

balance traffic. To do so, we keep the initial homogeneous traffic and associate most of

the new aircraft with the weight classes Light or Super Heavy. In that case, the proba-

bilities of picking a class are chosen as displayed in Table 4.6. Note however that it is

very unlikely to actually observe an increase in light traffic in the upcoming years. We

will analyze the impact of hypothetical new aircraft mixes on the sequencing results.
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Weight Class L M H SH

Unchanged Mix 0 0.58 0.39 0.03

Heterogeneous Mix (10%) 0.06 0.52 0.35 0.07

Heterogeneous Mix (20%) 0.08 0.48 0.33 0.11

Heterogeneous Mix (30%) 0.09 0.45 0.37 0.09

Table 4.6: Probabilities of weight class assignment for artificially inserted aircraft.

4.2 Computational Experiments

To display the results of our experiments, we will successively discuss the performance of Method

1 and Method 2. For each of these methods, we will present the relative improvements according

to both objective functions and for different demand profiles. Each of the performance numbers

introduced in this section will be the result of 100 simulation runs. Before we begin modeling, we

need to properly define our improvement metrics for both objective functions.

Minimizing makespan

To measure the performance of the CPS method on the total makespan, we will use the following

metric:

[x(ion) - x(i*)] (4.5)
[x(ino) - x(i)](

where we use the following notation:

- (i?, ... , iO) is the set of nodes that corresponds to the FCFS sequence.

- (i, ... , i*) is the set of nodes that corresponds to the optimal sequence.

- X(it) is the departure time of the last aircraft of node it from stage t.

Minimizing average delay

Similarly, we define another metric to measure the performance of the CPS method on the average

delay:

Ep=..n (to - e(io)) - p..n (t* - e(i*)) (4.6)

p=l..n (t9 - e(iO))
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where we use the following notation:

- (io,..., i4) is the set of nodes that corresponds to the FCFS sequence.

- (i*, ... , i*) is the set of nodes that corresponds to the optimal sequence.

- e(ip) is the FCFS arrival time at the runway of the last aircraft of node i, from stage p.

- (tO, ... , tO) is the set of takeoff times of each aircraft in the FCFS sequence.

- (t*, ... , t*) is the set of takeoff times of each aircarft in the optimal sequence.

Note that each aircraft X is associated with exactly one position p, in the initial sequence and

one position P2 in the optimal sequence, which means that there exists a unique pair (p1, P2) such

that e(i51) = e(i2 ) = FCFS(X). Therefore, p=..n e(i) = Zp=1..n e(i). Given this observation,

our metric actually becomes:

EP=1..n p E=1..n t 47
EP=1..n (to - e(ipo))

4.2.1 Method 1

Current demand

We first focus on the performance of our CPS implementation on the current level of operations at

AIRPORT. As observed in the previous section, the rate of aircraft at the runway queue does not

reach the threshold of 30 aircraft per hour. In agreement with Balakrishnan & Chandran's results

in [4], we notice that minimizing makespan does not yield any improvements for AIRPORT when

we apply Method 1 to its current operations. This is why we will focus on the impact of sequencing

on the average delay per aircraft. A summary of the results is displayed in Table 4.7 below.

First, we observe that the current demand profile leads to an average queuing delay per aircraft

of approximately one minute during the peak hours. In other words, an aircraft spends on average

a minute in the runway queue before taking off.

When every aircraft is allowed to move up or down one position from its original FCFS position at

the runway queue (K=1), the sequencing techniques lead to a 4 to 5% decrease in average delay,

which corresponds to approximately 2 to 3 seconds saved per aircraft.

For K=2, the aircraft is allowed to move up or down two positions from its FCFS position. Such
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Time Period # of Average Average Delay Saved per Aircraft
Aircraft Delay

Sequenced per
Aircraft

K=1 K=2

8-11 67 (22/hr) 60 sec 3.0 sec (4.8%) 4.1 sec (6.7%)

13-15 49 (24/hr) 54 sec 2.3 sec (4.2%) 3.1 sec (5.4%)

18-21 69 (23/hr) 54 sec 2.6 sec (4.7%) 3.8 sec (6.7%)

Table 4.7: Results obtained when applying Method 1 to AIRPORT's operations. For each demand
profile, CPS methods were applied 100 times on each time period. We display here the average
number of aircraft sequenced in a run, the average delay per aircraft experienced in the queue as
well as the absolute and relative improvements for K = 1 and K = 2. Only the results relative to
the average delay optimization are shown here because the makespan minimization does not lead to
interesting results.

relaxation of the fairness constraints intuitively leads to a higher improvement in average delay of

5 to 7% per aircraft. Therefore, the results are better when the aircraft is slightly less constrained.

We will also observe that higher traffic can lead to higher gaps between the performances of K = 1

and K = 2.

Higher demand profiles

The idea is to observe whether or not increasing traffic significantly improves the performance of

sequencing. We ran simulations for different demand profiles with traffic increases of 10%, 20%

and 30%. The analysis of these three new profiles is relevant for the case of AIRPORT since it will

allow us to anticipate the potential levels of future delay and assess the extent to which sequencing

of departures could mitigate some of this delay. The results are displayed in Figure 4.8.

The first thing to observe is a steady increase of the average delay as a function of the traffic

increase. This delay doubles from one to two minutes when the traffic is increased by 30%. The

analysis shows that the more we increase traffic, the higher the average delay per aircraft and the

more seconds we save per aircraft. Moreover, the results obtained for K = 2 are again better than
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Traffic Increase Time Period # of Average Average Delay Saved per Aircraft
Aircraft Delay

Sequenced per
Aircraft

K=1 K=2

8-11 75 (25/hr) 79 sec 4.5 sec (5.56%) 6.3 sec (7.8%)

+10% 13-15 55 (27/hr) 73 see 4.3 sec (5.6%) 5.7 sec (7.5%)

18-21 77 (26/hr) 71 sec 4.1 sec (5.7%) 5.6 sec (8.0%)

8-11 82 (27/hr) 130 see 8.9 sec (6.7%) 14.5 sec (11.1%)

+20% 13-15 60 (30/hr) 115 see 11.2 sec (9.5%) 17.0 sec (13.6%)

18-21 84 (28/hr) 104 see 9.1 sec (8.5%) 12.8 sec (11.9%)

8-11 87 (28/hr) 145 sec 11.7 sec (7.7%) 17.1 sec (11.9%)

+30% 13-15 65 (33/hr) 155 sec 17.2 sec (10.8%) 27.0 sec (17.0%)

18-21 90 (30/hr) 124 sec 11.3 sec (9.2%) 16.4 sec (12.7%)

Table 4.8: Table of results when applying. Method 1 to higher demand profiles at AIRPORT. For
each demand profile, CPS methods were applied 100 times on each time period. We display here
the average number of aircraft sequenced in a run, the average delay per aircraft experienced at the
queue as well as the absolute and relative improvements for K = 1 and K = 2. Again and for
similar reasons, only the results relative to the average delay optimization are shown here.

the ones obtained for K = 1, and the gap between these two different sets of constraints increases

with the average delay experienced by aircraft, as seen in Figures 4-12 and 4-13.

We ran another set of simulations for the same demand profiles, but this time assuming a

more heterogeneous aircraft mix, as explained in the previous section. Note that our approach to

artificially insert planes in the schedule implies that the higher the traffic, the more heterogeneous

the mix becomes because we are mostly injecting Light and Super Heavy aircraft in the schedule.

The results show that a more heterogeneous mix leads to even higher reductions of the average

delay, although such a change in the mix slightly increases the initial average delay per aircraft.

We compared the results above with the ones obtained from this new aircraft mix in Table 4.9. For

comparison purposes, we only display the results for the time period 18:00-21:00; the other periods

experience similar improvements.
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Figure 4-12: Evolution of the rela-
tive improvements of sequencing with
the traffic increase, for K=1 and K=2.
We display the results obtained for the
18:00-21:00 period.
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Figure 4-13: Evolution of the rela-
tive improvements of sequencing with
the average delay, for K=1 and K=2.
We display the results obtained for the
18:00-21:00 period.

Traffic Increase Homogeneous Heterogeneous

Average delay K=1 K=2 Average delay K=1 K=2

+10% 71 sec 5.7% 8.0% 79 sec 6.73% 9.65%

+20% 104 sec 8.5% 11.9% 127 sec 8.93% 13.8%

+30% 124 sec 9.2% 12.7% 140 sec 10.3% 14.3%

Table 4.9: Comparison of the performance of sequencing for the heterogeneous and homogeneous

aircraft mixes. Results are displayed for traffic increases of 10, 20 and 30%. Note that the higher
the traffic, the more heterogeneous the mix.

4.2.2 Method 2

The previous method did not allow any improvements regarding the makespan of the sequences.

We will now focus on the second approach, which brings additional optimization opportunities to

AIRPORT. The idea is to apply sequencing to every sequence of four aircraft or more whose FCFS

arrival times at the runway queue are close to each other. More specifically, we consider two aircraft

in the queue close to each other if there are less than 60 seconds between their corresponding FCFS

times. Depending on the traffic intensity, we will see that the number of series which are sequenced

per run varies and is particularly low when we analyze the current demand. However, our CPS

implementation aiming at minimizing makespan will perform better on such "long series".
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Current Demand

We first focus on applying Method 2 to the current operations at AIRPORT.

It is important to note that in this framework, the heteregoneous aircraft mix has a negative impact

on the raw results. Let's prove this point through an example. Given the domination of the Medium

weight class, some of the congested series we stored might be uniquely composed of aircraft of type

M. For such series, sequencing does not bring any improvement. When we compute our results for

Method 2, we take the average over 100 simulation runs. For each of these runs, the simulation

stores the congested sequences, among which it is likely to find such trivial series because the av-

erage number of aircraft per stored series is no more than 4. The greater the number of such series

in the simulation, the more the computed performance will be underestimating the actual value of

the techniques.Therefore, we decided to compute the average improvements over series that include

at least one Heavy aircraft. Although this measure will not be sufficient to entirely counteract the

underestimation, it will still help reduce it. The results of the experiments are shown in Table 4.10.

Average Delay Delay saved Average makespan Average makespan saved

K=1 K=2 K=1 K=2

115 sec 4.6s (4.0%) 7.9s (6.9%) 344s 11.1s (3.3%) 21s (5.9%)

Table 4.10: Results obtained when applying Method 2 to the current operations at AIRPORT. The

numbers are averages computed over 100 simulation runs. We display here the average delay and
makespan relative to these series and the improvements that are made with both objective functions,
for K = 1 and K = 2.

We observe that for these long series of 4 aircraft or more, the average delay per aircraft is

slightly under 2 minutes, which is approximately twice the average delay experienced during the

two to three hour long peak periods experiencing the same demand. These high delays are intu-

itively expected, since we are looking at the most congested series within these peak periods. Note

that with the current demand, we are only able to spot on average 3 congested long series per run.

Moreover, we computed an average of 4.4 aircraft per sequence with the current demand, which

means that only a small number of aircraft (13 per run on average) are involved in the optimization.

It is therefore important to keep in mind that although the analysis may lead to high improvements,
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only a few aircraft are actually impacted by this method.

Regarding the average delay, queuing theory asserts that higher delays should lead to higher im-

provements in percentages. However, as explained earlier, the results in terms of average delay are

lower than they should be due to a certain number of trivial series. The figures displayed should

therefore not be considered as a contradiction, but should rather be seen as a limitation for Method

2 with such an homogeneous mix.

More importantly, the main result obtained from Method 2 consists of the average makespan

saving obtained from sequencing. The average makespan of the long series studied in Method 2 is

about 6 minutes. The CPS techniques allow us to save approximately 11 seconds when K = 1 and

21 seconds when K = 2. Note that these improvements are in complete agreement with the ones

obtained by Balakrishnan and Chandran [4]. Indeed, for a slightly more heterogeneous mix than

the one we deal with and for a rate of 60 aircraft per minute, they computed average improvements

of 3% for K = 1 and 6% for K = 2 (See 4-14).

0.14 - Rate = 20 aircraft/hr, k = 1
-x--- Rate = 20 aircraftlhr, k = 2

-N--- Rate = 20 aircraft/hr. k = 3
0.12 - -- -- Rate = 40 aircraft/hr, k = I

-+- Rate = 40 aircraftlr. k = 2
0.10 -- - Rate = 40 aircraft/hr. k = 3

--- -- Rate = 60 aircrafthr, k = I
-- 0-- Rate =60 aircraft/r, k = 2

0.08 -- &-- Rate = 60 aircraft/hr, k = 3

. -- A - - ---- -------- --- ----- ----- -- -

0.04 ---

0.02 a . 41-4 ~ -: E~

0.001
10 20 30 40 50

Number of aircraft

Figure 4-14: Percentage improvement in makespan using CPS over FCFS for a slightly more hetero-

geneous mix than the one at AIRPORT. The chart was directly taken from Balakrishnan, Chandran
[4'

From now on, in the analysis of Method 2's benefits, we will only focus on the makespan

minimization, since the average delay minimization does not add significant value to the results

obtained in Method 1.

Therefore, if the airport is particularly interested in minimizing makespan, Method 2 is an
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interesting approach since it allows the airport to focus on the most congested sequences within

the peak periods, for which sequencing aircraft can have a significant impact on the makespan.

However, with the current demand levels, we are only able to find on average 3 of such long series

per run, which means that the overall impact on the airport's operations is still low. We will now

show that increasing traffic allows us to involve more aircraft in the optimization when applying

Method 2.

Higher demand profiles

For higher demand profiles, we only display the results from the makespan optimization, since

this is the main contribution from Method 2. We observe that the average length of a long series

only increases slightly with traffic, from 4.4 per sequence with the current demand to 4.8 per

sequence when traffic is increased by 30%. Thus, the average makespan does not change much

and the savings per sequence are similar to the ones obtained with the current demand. The main

difference between demand profiles consists of the number of long series found by the simulation.

Whereas the optimization only involves on average 13 aircraft with the current demand, it can

involve around 45 aircraft when the traffic is increased by 30%. In terms of fraction of the total

number of departures, this is equivalent to a change from 3% to 8% of aircraft directly involved in

the optimization.

Traffic Average number Average Average Average makespan saved
Increase of sequences per length of a makespan

run long sequence

K=1 K=2

+10% 5 4.5 353 sec 12.1 sec (3.2%) 23.8 sec (6.5%)

+20% 8 4.7 370 sec 14.7 sec (3.7%) 27.6 sec (7.1%)

+30% 9 4.8 370 see 13.5 sec (3.5%) 24.0 sec (6.2%)

Table 4.11: Complete table of results when applying Method 2 to AIRPORT's operations. For each
demand profile, the CPS methods were applied 100 times for both objective functions. We display
here the average number of series that are sequenced per run, the average size of these series, the
average delay per aircraft computed over these series and the improvements that are made, for
K=1 andK=2.
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4.2.3 Final remarks

We can summarize the results of these experiments as follows:

" Method 1 does not help minimize the makespan during the peak periods. However, from an

average delay of 60 seconds per aircraft, we manage to save 5% to 7% depending on how we

choose the parameter K. With higher demand profiles, the average delay per aircraft doubles

and the CPS implementation leads to even higher improvements that can go up to 17% per

aircraft when the average delay is about 155 seconds per aircraft.

" Method 2 involves many fewer aircraft but helps improve the makespan of a few series of

4 aircraft or more. This makespan can be improved by up to 5%. Although this zoom into

the peak periods has a positive impact on the makespan, Method 2 does not add value to

Method 1 in terms of average delay saved per aircraft.

" The aircraft mix has an impact on the performance of sequencing. We observed it in the

case of Method 1, but we could also show similar results for the makespan in Method 2.

In summary, the more heterogeneous the mix of aircraft at AIRPORT over the next years,

the higher the initial average delay per aircraft is and the more benefits are obtained from

sequencing aircraft at the departures runway. Moreover, for the specific case of Method 2, the

homogeneous mix leads to underestimating performance, as seen in terms of average delay.

* To conclude, depending on its goals, AIRPORT could benefit from combining both meth-

ods presented in this chapter to take advantage of all given opportunities. While sequencing

to minimize delays on peak periods, it is also possible to re-sequence the most congested

series within these periods and minimize their makespan. The combination of both meth-

ods can therefore provide significant optimization opportunities to help improve AIRPORT's

operations.

4.2.4 A word about the benefits of keeping aircraft at their gate

As part of the study, we also obtained a rough estimate of the taxiing delay that can be saved from

limiting the number of aircraft on the system at any given time.

Using our hypothetical capacity C of 10 aircraft, we computed that approximately 900 minutes
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are spent by departing aircraft at their gate due to this measure. This number was obtained by

summing the gate delays dg of all aircraft scheduled to depart from AIRPORT during that day.

In other words, if we were not applying this late release approach, 900 extra minutes would have

been spent by aircraft on the taxiway with their engine turned on. If we approximate the cost of

a minute spent on the taxiway to be $60, this is equivalent to saving $54000 on that day.
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Figure 4-15: Evolution of the gate delays with the traffic increase.

We then decided to study the evolution of this total gate delay with the traffic levels at the

modeled airport. In order to do so, we applied the same rough analysis for different demand profiles

and for a same critical size C of 15 aircraft. The output is shown in Figure 4-15. We observe a

non-linear increase of the gate delays at AIRPORT, which means that the higher the demand is,

the more savings can be obtained from keeping aircraft at their gates. For example, when the

demand is increased by 25%, the extra-time spent by aircraft at their gate is approximately 1600

minutes, which corresponds to saving $96000 on that day.

Although we have not analyzed in detail the impact of this measure taken at the gate, the simula-

tion therefore suggests that very substantial benefits can be obtained from a well determined limit

C of the system occupancy. A more rigorous analysis would allow AIRPORT to find the optimal

control strategy, in terms of optimal threshold C.
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Chapter 5

Conclusion

5.1 Summary of the results

This thesis illustrates the benefits of sequencing departures at the runway queue for a specific air-

port which provided us with their operations data. We first designed a generic simulation which

allows us to model the processing of aircraft from their gate to their takeoff. This simulation allows

us to keep track of the characteristic times of the departure processes of all aircraft as well as

the evolution of the system occupancy throughout the day. Using this tool, we managed to get a

deep understanding of the airport's actual traffic characteristics. More specifically, we were able to

identify the peak periods and provide quantitative estimates of the evolution of the system with

the time of day. We then applied state of the art sequencing algorithms to explore the optimization

opportunities at AIRPORT.

To do so, we developed two potential optimization frameworks to apply our Constrained Posi-

tion Shifting (CPS) techniques. In the first approach, namely Method 1, we sequence aircraft on

each of the peak periods of time identified through the analysis of the simulation output. With

the current traffic levels, each of these peak periods can involve up to 70 aircraft, which spend on

average 60 seconds in the runway queue. The optimization can help reduce this delay by up to

7%, which is equivalent to 4 seconds per aircraft. However, this method does not allow any im-

provements regarding the makespan of the sequence. The second approach, or Method 2, consists

of applying sequencing independently to the most congested series from these peak periods. These
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series are made of four aircraft or more which arrive at the runway very close to one another. For

these very congested series, we manage to save up to 20 seconds of a 340 second average makespan,

which corresponds to a 6% improvement. However, with the current traffic levels, we only find

three such long series per run of the simulation. Therefore, with the current demand at AIRPORT

and its strongly homogeneous aircraft mix, the improvements obtained from sequencing turn out

to be relatively small.

To anticipate the potentiel levels of future delay, we then artificially increased traffic and created

new demand profiles. The delays saved by sequencing departures at the runway queue were shown

to be an increasing function of the traffic levels at AIRPORT. Moreover, we tested our optimiza-

tion models for two different methods for increasing traffic. In the first approach, we made sure

to maintain the current aircraft mix while adding departures to the schedule. In the second one,

we assumed a more heterogeneous aircraft mix by injecting more Light and Super-heavy aircraft

in the schedule. We observed that the more heterogenous the mix is, the better we performed

when sequencing aircraft in the queue. For a traffic level increased by 30% (which is a reasonable

estimate of the airport's operations for 2030), the first framework can involve up to 90 aircraft per

peak period that experience delays in the queue of more than 2 minutes. We are able to reduce this

average delay by 30 seconds, which corresponds to a 17% improvement. For this same artificially

inflated traffic of 30%, we now detect 9 long series as opposed to only 3, and we still save up to 6%

per series on the makespan. The second framework therefore involves more than 40 aircraft, i.e.

three times as much as it did with current traffic levels.

To conclude, given its fast expected growth, AIRPORT could significantly benefit from sequenc-

ing its departures in the queue. These techniques would help optimize their operations, particularly

in terms of average delay per aircraft. Moreover, AIRPORT could largely benefit from a more het-

erogeneous aircraft mix, although such a mix would imply a higher average initial delay per aircraft.

In other words, the sequencing would perform even better if, as an example, AIRPORT's operations

start including more small aircraft in their fleet. However such change in the airport's fleet seems

for now unrealistic.
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Finally, we managed to get a rough estimate of the benefits obtained from the late release

of aircraft from their gate. In case the system is in critical size, we control the flow of aircraft

reaching the taxiway system by preventing new aircraft from pushing back from their gate. Using

a reasonable critical size C for AIRPORT, we approximate the savings to more than $50000 per

day with the current demand. Moreover, these benefits increase non-linearly when we increase the

traffic levels. Although we did not look for the optimal threshold since it was not the focus of

the thesis, we emphasized the positive impact which can be obtained from adopting such control

strategies.

5.2 Further Research

A first area for future work would consist of improving the generic simulation designed to model the

departure processes of all aircraft from an airport. More precisely, we did not validate rigorously

the output of the simulation. We noticed for example in Figure 4-5 a high variability of the TTDP

in real life that we do not capture using our simulation. It would be for example interesting to

work on stochastically estimating this external delay, which is probably due to rare factors such as

mechanical problems. Focusing more on such modeling points could add value to the simulation

and lead to a more precise analysis of the traffic, which implies a better understanding of the con-

gestion characteristics.

A rigorous study of control flow strategies would be another major area for future research. In

other words, we could focus on finding the optimal threshold C above which the throughput does

not benefit from sending additional aircraft on the taxiway system. If a rough estimate such as the

one we presented in this work leads to such significant savings, we can then expect to obtain even

higher benefits in terms of fuel and money from finding this optimal critical size. Indeed, choosing

an arbitrary C like we did can lead to an overutilization of the apron: keeping aircraft at their gate

for too long implies for example the unavailibility of the corresponding gates for arriving aircraft.

For airports in the United States, it has been shown that the optimal threshold varies between 10

and 20 aircraft. For example, in the specific case of Boston Logan airport, Simaiakis [15] used his

Pushback Rate Control (PRC) strategy to find an optimal maximum rate of 15 aircraft per minute,
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with a total available space of the system S estimated to be 30 aircraft.

When we applied sequencing to AIRPORT's operations, we did not take into account the in-

terference with arrivals. In other words, the delays da due to conflicts with arrivals have an impact

on the time spent by aircraft in the runway queue. Although adding such constraints could lead

to better solutions in terms of average delay per aircraft or total makespan, it will not highly alter

the optimal sequence since the number of arrivals on the departures runway at the modeled air-

port is relatively low. Dealing with this issue would basically consist of dynamically changing the

costs associated to links of the CPS network, checking at every stage whether or not there will be

interference between the current aircraft and an arriving one.

Finally, we chose to consider operations from a Friday at AIRPORT, which is the day of the

week which is the most likely to experience congestion. It would be interesting to measure the

impact of sequencing for other days of the week in order to find a yearly estimate of the savings

that could be obtained from CPS techniques. Similarly, we chose to consider a day of October and

looking at other months of the year may lead to different results. Although this is unlikely given

the generally stable weather conditions at AIRPORT, there might be particular seasonality issues

to take into account in the model, such as bird migration.
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