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Theory of self-resonance after inflation. II. Quantum mechanics
and particle-antiparticle asymmetry

Mark P. Hertzberg,* Johanna Karouby,† William G. Spitzer, Juana C. Becerra, and Lanqing Li
Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
(Received 21 August 2014; published 22 December 2014)

We further develop a theory of self-resonance after inflation in a large class of models involving multiple
scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak
breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop
an understanding of the resonance structure from the underlying many-particle quantum mechanics. We
begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to
perturbative processes. We show that the dominant resonance structure is determined by (i) the
nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics
to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90,
123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up
Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including
Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that
when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ-particles and
anti-ϕ-particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as
shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D
89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry
from this preheating era.
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I. INTRODUCTION

Inflationary cosmology provides an account of several
otherwise puzzling features of the Universe, namely the
large-scale homogeneity, isotropy, and flatness [1–3].
Recent observations are in good agreement with the basic
predictions of inflation, including a nearly scale-invariant
spectrum of primordial fluctuations, Gaussianity, etc.
Recent tantalizing evidence of primordial B-modes [4]
would provide information about the inflationary energy
scale. Altogether, although the full details of inflation are
not known, significant progress is being made, both
observationally [5–7] and theoretically [8–16].
However, the post-inflationary era ismuchmore uncertain.

This era is essential for understanding the transition from the
inflaton into other fields, including the Standard Model
degrees of freedom. In this post-inflationary era, tremendous
power can be generated on small scales from particle
interactions. Indeed various forms of resonance can take
place, including self-resonance, as quantum perturbations of
the inflaton are “pumped” by the homogeneous background.
Many interesting works, often investigating the coupling

to other fields, have appeared in the literature [17–38]. This
includes Refs. [17,18], which emphasized a coupling of the
inflaton ϕ to a daughter field χ, with interactions such as

∼g2ϕ2χ2 or ∼gϕχ2. Under certain circumstances, this can
cause a dramatic growth in χ, that goes beyond standard
perturbation theory. Other interactions include coupling to
gauge fields [27,29], coupling to fermionic fields [24,25],
and the metric itself [22]. Self-resonance, where the
inflaton pumps its own fluctuations, can occur for poten-
tials with nonlinearities, including the quartic term∼λϕ4, as
discussed in Ref. [19]. In some parameter regimes (namely
negative λ), this can produce an abundance of coherent
structures, such as oscillons; see Refs. [34–36]. In this
work, we focus on the important issue of self-resonance of
the inflaton, and assume couplings to other fields are small.
We will understand the structure of the self-resonance from
the point of view of many-particle quantum mechanics and
apply the results to a model of baryogenesis, which appears
to go beyond the existing literature.
During this phase, a detailed understanding of the

relationship between the classical field approximation and
the quantum behavior of many particles is important. But
perhaps themost important feature of the early Universe that
remains uncertain is the generation of all the matter in the
Universe. This is thought to arise from the decay of the
inflaton. If subsequent interactions are sufficiently symmet-
ric between particles and antiparticles, then no net baryon
number will be left over. Hence it is essential to formulate
models of the generation of asymmetry between particles
and antiparticles. In this paperweaddress these quantum and
particle-antiparticle asymmetry issues.
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This is the second in a two-part series of papers. In the
first paper [39] we introduced a large class of interesting
models, namely, models with an arbitrary number of scalar
fields, organized by an internal OðN Þ symmetry. Since
couplings to other fields can be small (as is often assumed
for the flatness of the inflationary potential to be technically
natural), it can sometimes be the case that self-resonance
after inflation is most important. With multiple fields, we
showed in Part 1 [39] that the field decomposes into
adiabatic and isocurvature modes. We showed that the
spectrum is gapless, as required by the Goldstone theorem,
and derived the growth rates (“Floquet exponents”) from
the appropriate time-averaged pressure and densities. We
saw that the resonance structure could be particularly
efficient at relatively long wavelengths, as it is dominated
by the first instability band. We found that for positive self-
couplings, the adiabatic mode is stable and the isocurvature
modes are unstable, while for negative self-couplings, the
adiabatic mode is unstable and the isocurvature modes are
stable. This was derived from the background pressure
associated with the adiabatic mode, and an auxiliary
pressure associated with the isocurvature modes.
In this second paper, we introduce quantummechanics in

two important respects to extend the classical field theory
analysis of Part 1 [39]. First, we understand the stability
structure from the point of view of many-particle quantum
mechanics. The behavior of adiabatic and isocurvature
modes at long wavelengths can be understood in terms of
nonrelativistic quantum mechanics. We describe the (some-
times subdominant) higher instability bands perturbatively,
using Feynman diagrams involving annihilation and decays
of the parent inflaton into relativistic daughter particles. As
an important stepping stone to this analysis, we first
perform a (classical) small-amplitude analysis, which con-
nects to the Feynman diagrams directly. Second, we
quantize the inflationary fields. We put the inflaton in its
Bunch-Davies vacuum initial conditions. We then track the
modes under Hubble expansion. We show how the resonant
modes can grow approximately exponentially in the slow
redshifting regime. We compute the final power spectra of
adiabatic and isocurvature modes.
These spectra set the probability distributions for the

fields. We draw from these probability distributions. For the
case of two fields, with a U(1) symmetry, we find that when
the isocurvature instability is active, the inflaton fragments
into separate regions of particles and antiparticles. In this
way, the symmetry between particles and antiparticles is
spontaneously broken.
In the case of a complex inflaton, we go further and

introduce an explicit breaking of the U(1) symmetry. In
some models, the breaking can lead to an over abundance
of inflaton particles over antiparticles (or vice versa). This
may further lead to the cosmological baryon asymmetry if
the inflaton can decay into quarks appropriately, as was
shown by some of us recently in Refs. [40,41]. Here we

include the leading corrections from self-resonance. We
show how to use the symmetric theory to obtain these
leading corrections. The asymmetry is found to be propor-
tional to an integral over the difference in power spectra
between the adiabatic and isocurvature modes. So while
each of these is individually UV divergent, the difference
leads to a finite contribution.
The outline of this paper is as follows. In Sec. II we

present the class of models under investigation and recap
numerical results for dimension-four potentials. In Sec. III
we derive analytical results for small inflaton amplitudes,
for both the first and second instability bands. In Sec. IV we
discuss the connection of our results to the quantum
mechanics of many particles. In Sec. V we include
Hubble expansion in the analysis. In Sec. VI we quantize
the fields and sample the ground-state wave functionals to
present the fields in position space. In Sec. VII we apply
our results to inflationary baryogenesis models. Finally, in
Sec. VIII we discuss our findings and conclude.

II. SYMMETRIC AND ASYMMETRIC THEORIES

Many high energy particle physics models involve one or
more scalar fields coupled to gravity. Since scalar fields
can, under appropriate conditions, lead to an effective
equation of state w ≈ −1, they can lead to a period of
inflation. As in Part 1 [39], we considerN scalar fields and
organize them into a vector

~ϕ ¼ fϕ1;…;ϕN g: ð1Þ

Later we will specialize to the case of two scalar fields. In
that case it is particularly convenient to organize them into a
complex scalar as follows:

ϕ ¼ ϕ1 þ iϕ2ffiffiffi
2

p : ð2Þ

We now discuss the structure of the dynamics. Since we
will emphasize quantum effects in this paper, it is appro-
priate to recall that the inflationary action is only an
effective field theory, since gravitation is nonrenormaliz-
able in four dimensions. However, in a weakly coupled
model, corrections from the leading two-derivative action
are typically small (though exceptions are possible). So
here we assume, for simplicity, that all higher-order
derivative corrections to the Einstein-Hilbert action are
small. Furthermore, we specialize to canonical kinetic
energy in the Einstein frame. Since inflaton couplings
are usually small in order to achieve small fluctuations, this
is technically natural. So we take the action for N scalar
fields to be (signature −þþþ, units ℏ ¼ c ¼ 1)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
δij∂μϕ

i∂μϕj − Vð~ϕÞ
�

ð3Þ
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where MPl ≡ 1
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
is the reduced Planck mass. In the

Appendix of Part 1 [39] we developed some results for
more general potentials, including higher-derivative cor-
rections and nontrivial metrics Gij on field space. But these
generalizations are not important for our analysis here.
Ignoring higher-order corrections, the residual freedom

is in the choice of the potential Vð~ϕÞ. In Part 1 [39] we
exclusively studied symmetric potentials that carry the
internal rotational symmetry

ϕi → Ri
jϕ

j ð4Þ
where R is a rotation matrix acting on field space. Formally
this implied an OðN Þ symmetry and the potential may be

written as Vð~ϕÞ ¼ Vðj~ϕjÞ. Here we often focus on these
symmetric potentials, but we also allow for a breaking of
the symmetry. So we decompose the potential as

Vð~ϕÞ ¼ Vsðj~ϕjÞ þ Vbð~ϕÞ: ð5Þ
The term Vs is a symmetric potential that carries the internal
rotational symmetry, while Vb does not. For most of this
paper we ignore the breaking term and utilize the symmetry
to simplify the analysis. We then make use of the breaking
term in Sec. VII to provide an asymmetry between particles
and antiparticles. This breaking of a symmetry means that
particle number is not exactly conserved, potentially leading
to the matter-antimatter asymmetry.

A. Classical evolution (preliminary)

We begin by discussing the evolution of the classical
background. The metric is established by inflation to be the
standard flat Friedmann-Robertson-Walker metric

ds2 ¼ −dt2 þ aðtÞ2dx2 ð6Þ
where aðtÞ is the scale factor.
The evolution of the classical field is, in general,

complicated. When the symmetry breaking term Vb is
present, the field tends to get kicked around in field space.
If the breaking is small, then it is roughly a kind of elliptic
behavior. This will play a role later in Sec. VII, where we
discuss baryogenesis.
On the other hand, if the breaking term is negligible, then

the motion simplifies considerably. Inflation tends to erase
angular momentum, even in field space. This leads to the
multifield inflaton moving radially in field space. As in
Part 1 [39], the purely radial motion for the background
shall be denoted by the field ϕ0ðtÞ. From varying the
action, we obtain the standard equation of motion for a
homogeneous scalar field

ϕ̈0 þ 3H _ϕ0 þ V 0ðϕ0Þ ¼ 0 ð7Þ
where H ¼ _a=a is the Hubble parameter. During slow-roll
inflation, the second and third terms dominate. After infla-
tion, as is the focus of this work, the first and third terms
dominate and the second “friction” term is subdominant.

In Sec. V we will properly track the behavior for ϕ0,
where we self-consistently solve for the Hubble parameter
H from the Friedmann equation

H2 ¼ 1

3M2
Pl

�
1

2
_ϕ2
0 þ Vsðϕ0Þ

�
: ð8Þ

This leads to a redshifting of the background (classical)
fields that will influence the self-resonance of the pertur-
bations in an important fashion.

B. Quantal evolution (preliminary)

Due to quantum mechanics the field cannot have a well-
defined value, so there are necessarily quantum fluctua-
tions. Focusing then on the symmetric case, we can
decompose these fluctuations into those that are parallel
to the radial motion of the background δϕ∥, and those that
are orthogonal to the background δϕ⊥. Later in Sec. IV we
will be precise about the quantization of these fluctuations.
But for now it suffices to treat them as any form of
fluctuation, either classical or quantum, even though its
origin is necessarily quantum. We expand the field around
the background as

~ϕðx; tÞ ¼ ~ϕ0ðtÞ þ δ~ϕðx; tÞ ð9Þ
where

δ~ϕðx; tÞ ¼ fδϕ⊥1ðx; tÞ;…;δϕ⊥N−1ðx; tÞ;δϕ∥ðx; tÞg ð10Þ
and we have put the background motion in the N th
direction, without loss of generality, in the symmetric
theory. Later in Sec. VII we will allow for a general
direction for the asymmetry theory.
Expanding the perturbations (classical or quantal) to first

order we have

̈δϕ∥ þ 3H _δϕ∥ þ
�
k2

a2
þ V 00ðϕ0Þ

�
δϕ∥ ¼ G; ð11Þ

δϕ̈⊥i þ 3Hδ _ϕ⊥i þ
�
k2

a2
þ V 0ðϕ0Þ

ϕ0

�
δϕ⊥i ¼ 0 ð12Þ

where we have Fourier transformed to k-space. For the
orthogonal components, we have included an “i” index,
where i runs over i ¼ 1;…;N − 1; each equation carries
the same structure due to the symmetry.
We note that at linear order one can include linearized

corrections to the metric, such as the Newtonian potential. It
is possible to make a gauge choice in which the fluctuating
dynamical degrees of freedom are solely described by the
scalar field fluctuations. In the gauge in which there are
spatially flat hypersurfaces, the function G is

G ¼ 1

a3M2
Pl

d
dt

�
a3 _ϕ2

0

H

�
δϕ∥: ð13Þ

One can show that on sub-Hubble scales, such corrections are
small; in particular they are suppressed relative to the terms
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included in Eqs. (11) and (12) by ∼a2H2=k2. On the other
hand, for order Hubble or super-Hubble scales, such correc-
tions can be important. For simplicity, we ignore such
corrections in this work, and we suspect this will not change
our central conclusions. In fact we will see that our primary
effects occuron length scales that arenot parametrically larger
than the Hubble length, so this simplification is reasonable.

C. Floquet results for dimension-four potentials

As we describe explicitly in Sec. VI Awhere we quantize
the perturbations, the mode functions satisfy these classical
equations of motion. In this case, it is useful to develop
a numerical recipe to solve these equations. Here we
provide a brief recap of the central numerical results
found in Part 1 [39].
Importantly, we need a form for the potential Vs. We

consider the regime well after inflation, where the potential
should be well approximated by its leading-order operators.
Since the potential is assumed to carry an internal rotational
symmetry, we can expand it as

Vsð~ϕÞ ¼ V0 þ
1

2
m2j~ϕj2 þ λ

4
j~ϕj4 þ � � � : ð14Þ

For sufficiently small field amplitudes, these leading
dimension-four terms will dominate the dynamics. Such
a regime will normally arise after a sufficient amount of
redshifting has occurred. A counterexample would be if
some of the above coefficients happen to vanish; we will
consider this possibility in Sec. III. For large amplitudes,
higher-order corrections to the potential may be important
(we mention a toy example in Sec. VII C).
In Part 1 [39] we described the recipe to obtain the

Floquet exponents μk, which govern any possible expo-
nential growth in the modes. This is rigorously defined
when the background is oscillating periodically. This is a
good approximation in the limit in which the oscillation
time scale is short compared to the Hubble time. We will
return to these details later in Sec. V. For now we truncate
the potential to purely dimension ≤ 4 terms and numeri-
cally solve for the corresponding Floquet exponent using
the method of Part 1 [39].
In Fig. 1 we recap the results for the Floquet

exponent from Part 1 [39]. We have plotted the dimen-
sionless quantity μkðrHÞ. Here r is the dimensionless
parameter

FIG. 1 (color online). Contour plot of the real part of the Floquet exponent μk for dimension-four potentials as a function of wave
number k and background amplitude ϕa withm2 > 0. In the left panels λ > 0 and in the right panels λ < 0. The upper panels are for δϕ∥

and the lower panels are for δϕ⊥. We have plotted μk in units of rH where r≡ ffiffiffiffiffijλjp
MPl=m, k in units of m, and ϕa in units of

m=
ffiffiffiffiffijλjp
. (This is taken from Part 1 [39].)
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r≡
ffiffiffiffiffijλjp
MPl

m
: ð15Þ

It is found to control the amount of resonance in the
problem. As we show in Sec. V, for r ≫ 1, μk=H can be
large and there is significant resonance; otherwise there is
rather insignificant resonance. The variable μk=ðrHÞ is
convenient here as it scales out the physical parameters. In
the left panel we have taken the coupling λ > 0 and in the
right panel we have taken the coupling λ < 0. In the upper
panel we study the parallel, or “adiabatic,” perturbations. In
the lower panel we study the orthogonal, or “isocurvature,”
perturbations. We see clearly that for λ > 0 there is a large
instability for the isocurvature mode, while for λ < 0 there
is a large instability for the adiabatic mode. There is also a
band originating from k ¼ ffiffiffi

3
p

m at small amplitudes for the
adiabatic mode only for either sign of λ.
Furthermore, in Fig. 2 we allow for a Higgs-type

potential with m2 < 0 and λ > 0. In this case we have

focused on just the first instability band. We see that it
begins at k ¼ 0 for the parallel perturbations, and at
k ¼ jmj= ffiffiffi

2
p

for the isocurvature perturbations.
We will explain the above observations in this paper

from the underlying quantum mechanics of many particles.
As a step in this direction, we begin with the analytical
treatment of perturbation theory at small amplitude.

III. SMALL AMPLITUDE:
ANALYTICAL RESULTS

In the previous section we presented numerical results on
the behavior of all the perturbations, and in Part 1 [39] we
presented analytical results at long wavelengths using a
pressure analysis. It is also important to have analytical
results at both long and short wavelengths. This can be
achieved if we focus on small amplitudes of the inflaton
field; this will eventually arise after sufficient redshifting.
At small amplitudes, we can perform a weakly coupled

expansion around the almost free theory. To do so, we
assume there exists a mass term which dominates the
oscillatory behavior of the background giving rise to almost
harmonic motion. Plus we add interactions that are sub-
dominant leading to anharmonic behavior, and this can
possibly drive resonance in perturbations. We write the
potential as an expansion

Vsð~ϕÞ ¼ V0 þ
1

2
m2j~ϕj2 þ λ

2q
j~ϕj2q þ � � � ð16Þ

where we assume q is an integer q ≥ 2 which governs the
leading interaction term around small field values. Of most
interest is the case q ¼ 2, which gives rise to a standard
dimension-four interaction term. On general effective field
theory grounds, we would expect this quartic term to exist.
It is conceivable that the quartic term vanishes and that the
leading interaction term begins at q ¼ 3 or higher. For now
we simply allow for a general integer power, and specialize
to the quartic case q ¼ 2 when necessary.

A. Background evolution

We begin by studying the positive mass squared case
(m2 > 0). Later we shall study the negative mass squared
(tachyonic) case in Sec. III D. So for now, we set the
vacuum energy V0 ¼ 0 and allow the interaction’s coupling
λ to be either positive or negative.
As before, the background evolution ~ϕ0 is taken to be

radial. The equation of motion is

ϕ̈0 þm2ϕ0 þ λϕ2q−1
0 ¼ 0: ð17Þ

Wewould like to solve this in a small-amplitude expansion.
So let us expand the background ϕ0 as

ϕ0 ¼ ϵϕ1 þ ϵ2q−1ϕ2q−1 þ � � � ð18Þ

FIG. 2 (color online). Contour plot of the real part of the Floquet
exponent μk for dimension-four potentials as a function of wave
number k and background amplitude ϕa with m2 < 0 and λ > 0.
The upper panel is for δϕ∥ and the lower panel is for δϕ⊥. We have

plotted μk in units of rH where r≡ ffiffiffi
λ

p
MPl=jmj, k in units of jmj,

and ϕa in units of jmj= ffiffiffi
λ

p
. (This is taken from Part 1 [39].)
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where ϵ is a small dimensionless constant that sets the
power counting. The functions ϕ1;ϕ2q−1;… are functions
of time to solve for.
Naively, we would like to substitute this expansion into

the equation of motion directly and match powers of ϵ.
However this would lead to secular behavior as the driving
terms would carry the same frequency as the natural
frequency defined by the harmonic terms. To avoid this
problem, we need to identify a shifted frequency. We do
this by introducing a new time variable as follows:

τ≡ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ϵ2q−2

p
ð19Þ

where the upper “þ” sign is for λ > 0, as the interaction
will raise the fundamental oscillation frequency, and the
lower “−” sign is for λ < 0, as the interaction will lower the
fundamental oscillation frequency. This also allows us to
define the value of ϵ uniquely, as we will see shortly. So
with respect to τ we have the equation of motion

d2ϕ0

dτ2
� ϵ2q−2

d2ϕ0

dτ2
þm2ϕ0 þ λϕ2q−1

0 ¼ 0: ð20Þ

Now using the expansion (18) and matching powers at
OðϵÞ gives

d2ϕ1

dτ2
þm2ϕ1 ¼ 0: ð21Þ

We write the solution as

ϕ1 ¼ ϕa1 cosðmτÞ ð22Þ
where we have dropped an overall phase. Here ϕa1 is a type
of amplitude. At this leading order, the full amplitude for ϕ0

is related to this by

ϕa ¼ ϵϕa1: ð23Þ
Then using the expansion (18) and the solution for ϕ1 from
Eq. (22) and matching powers at Oðϵ2q−1Þ gives

d2ϕ2q−1

dτ2
þm2ϕ2q−1

¼ �m2ϕa1 cosðmτÞ − λϕ2q−1
a1 cos2q−1ðmτÞ: ð24Þ

The right-hand side acts as a driving term. We need to
remove the piece that is proportional to cosðmτÞ as it would
otherwise drive a resonance leading to secular behavior. For
any integer power q, the final cosine has a leading harmonic
given by

cos2q−1ðmτÞ ¼ Cð2q − 1; qÞ
22q−2

cosðmτÞ þ h:h ð25Þ

where C is the binomial coefficient and “h:h” represents
higher harmonics. We substitute this into Eq. (24) and
demand that the coefficient of cosðmτÞ vanishes. This leads
to a unique value for the amplitude ϕa1, which we find to be

ϕa1 ¼ 2

�
m2

Cð2q − 1; qÞjλj
� 1

2q−2
: ð26Þ

This finalizes the background solution ϕ0 at leading order
as ϕ0 ¼ ϵϕ1, with ϕ1 given by Eqs. (22) and (26) and ϵ
parametrizing the amplitude.

B. First instability band

We now examine the behavior of perturbations about this
background. For the sake of brevity, here we will present a
unified treatment of the adiabatic and isocurvature modes,
rather than separate analyses.
By switching to the new time variable τ, the Hill’s

equation becomes

d2

dτ2
δϕþ hðτÞδϕ ¼ 0 ð27Þ

where hðτÞ is the periodic pump with respect to the τ
variable. It is given by

hðτÞ ¼ k2 þm2 þ γλϕ2q−2
0 ðτÞ

1� ϵ2q−2
ð28Þ

where we have divided throughout by the factor 1� ϵ2q−2

to make the second derivative term in Hill’s equation
canonical. In h we have introduced the factor γ which
distinguishes the two classes of modes as

γ ¼
�
2q − 1 for δϕ∥;
1 for δϕ⊥:

ð29Þ

Since the driving term is given by λϕ2q−2
0 , we would like to

expand this in terms of harmonics using our leading-order ϵ
result of the previous subsection. We find a constant term
and a piece promotional to cosð2mτÞ as follows:

λϕ2q−2
0 ¼ �m2ϵ2q−2

2q − 1
½qþ ð2q − 2Þ cosð2mτÞ þ h:h� ð30Þ

where again “h:h” represents higher harmonics.
Substituting this into hðτÞ and working to leading nonzero
order ∼ϵ2q−2 reorganizes h into the form of the so-called
Mathieu equation

hðτÞ ¼ Aþ 2B cosð2mτÞ ð31Þ
where for now we drop higher harmonics; these will only
be important for the second instability band that we discuss
in the next subsection. We find that the Mathieu B and A
coefficients are

B ¼ �γm2ϵ2q−2
q − 1

2q − 1
; ð32Þ

A ¼ k2 þm2 þ γ̄B=γ ð33Þ

where

HERTZBERG et al. PHYSICAL REVIEW D 90, 123529 (2014)

123529-6



γ̄ ¼
�
2q − 1 for δϕ∥;

−1 for δϕ⊥:
ð34Þ

We note that in the first instability band k ∼ ϵq−1 so we have
not included powers of ϵ that multiply k2 when expanding
out the denominator that appears in h.
Now the Mathieu equation can be solved by performing

a harmonic expansion as follows:

δϕðτÞ ¼
X
ω

eiωτδϕωðτÞ ð35Þ

where the frequencies are summed over integer multiplies
of the mass m, i.e., the fundamental frequency, with
−∞ < ω < þ∞. Here we assume the δϕω are slowly
varying in time. Substituting this into the Mathieu equation
and matching harmonics, gives the following coupled
system of ordinary differential equations (ODEs):

2iω
d
dτ

δϕω þ ðA − ω2Þδϕω þ Bðδϕω−2m þ δϕωþ2mÞ ¼ 0

ð36Þ
where we have dropped the second-order derivative d2

dτ2 δϕω

since δϕω is slowly varying. Notice that odd harmonics are
only coupled to odd harmonics, and even harmonics are
only coupled to even harmonics.
The first instability band comes from studying the

fundamental frequenciesω ¼ þm and ω ¼ −m. To leading
order, these evolve independently of the higher harmonics,
allowing us to truncate this system to just these frequencies.
This leads to the following pair of ODEs:

d
dτ

�
δϕþm

δϕ−m

�
¼ i

2m

�
A −m2 B

−B m2 − A

��
δϕþm

δϕ−m

�
: ð37Þ

The eigenvalues of this matrix give the Floquet exponents
to leading order for small amplitudes

μk ¼
1

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − ðA −m2Þ2

q
ð38Þ

(we should take both signs of the square root to get both
Floquet exponents). Substituting the above values for B and
A into this and eliminating ϵ in favor of the physical
amplitude ϕa using Eqs. (23) and (26), we obtain the
following result for the Floquet exponent:

μk ¼
k
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αγ̄λϕ2q−2

a − k2
q

ð39Þ

where

α≡ Cð2q − 1; qÞðq − 1Þ
22q−3ð2q − 1Þ ð40Þ

(for q ¼ 2; −αγ̄ ¼ −3=2 for δϕ∥, −αγ̄ ¼ þ1=2 for δϕ⊥).
Since the first term inside the square root is proportional to
−γ̄λ, with all other factors positive, we see that the

existence of an instability band is determined by the sign
of −γ̄λ. So this proves that if λ > 0 there is an instability for
the isocurvature mode (γ̄ ¼ −1 < 0) and if λ < 0 there is an
instability for the adiabatic mode (γ̄ ¼ 2q − 1 > 0). So
again we find an entire class of potentials whose stability is
complementary between adiabatic and isocurvature modes.
For the cases in which there is an instability band, the

right-hand edge of the band has the shape

kr;edge ¼
ffiffiffiffiffiffiffiffiffiffiffi
−αγ̄λ

p
ϕq−1
a : ð41Þ

For the important case q ¼ 2, this gives a linear relationship
between kr;edge and the amplitude ϕa. The left-hand edge of
the instability band is at

kl;edge ¼ 0 ð42Þ
which connects to the long-wavelength analysis of Part 1
[39]. For a fixed amplitude ϕa, the Floquet exponent is
maximized for kmax ¼ kr;edge=

ffiffiffi
2

p
. The corresponding

maximum Floquet exponent is

μmax ¼
−αγ̄λϕ2q−2

a

4m
ð43Þ

(so μmax ∝ ϕ2
a for q ¼ 2).

Altogether this explains the width and shape of the first
instability bands seen earlier in Fig. 1. Furthermore, when
q ¼ 2, we see that μk for the adiabatic mode can be related
to μk for the isocurvature mode by the replacement

λ → −
λ

3
: ð44Þ

This is in agreement with the result we proved in Part 1
[39], where we derived an auxiliary potential and Taylor
expanded for small amplitudes.
Out of interest, let us take the small-k limit of this result.

This leaves a result for μk that is linear in k, as we proved it
should be in Part 1 [39] where we did a general long-
wavelength analysis, and the Goldstone theorem ensured a
gapless spectrum. If we are both at small wave number and
small amplitude (the lower left corner of the stability charts)
we obtain from Eqs. (39) and (40) the following relation-
ship among the speeds:

c2I ¼ −
c2S

2q − 1
ð45Þ

whose sign governs the stability structure. Indeed for the
case q ¼ 2, we obtain c2I ¼ −c2S=3.

C. Second instability band

In the previous subsection we discussed the ϵ expansion
that governs the behavior at small amplitudes, and applied
it to the first instability band. In principle one can go further
and study any band to any desired order in perturbation
theory. Here we mention the key leading-order results of
the second instability band. We continue to study m2 > 0,
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but now we specialize to q ¼ 2, i.e., dimension-four
potentials.
In the previous subsection we found the solution to

OðϵÞ in Eqs. (22) and (26) (by taking q → 2). For the
next band, we need the background solution to Oðϵ3Þ.
Without going through the full details, we find that the
result to this order is

ϕ0 ¼ðϵϕa1þ ϵ3ϕa3ÞcosðmτÞþ ϵ3
λϕ3

a1

32m2
cosð3mτÞ ð46Þ

where

ϕa1 ¼
2mffiffiffiffiffiffiffiffi
3jλjp ; ϕa3 ¼ ∓ m

24
ffiffiffiffiffiffiffiffi
3jλjp : ð47Þ

Substituting this into the perturbation equations leads to a
Hill’s function h that is more complicated than the standard
Mathieu equation, namely

hðτÞ ¼ Aþ 2B cosð2mτÞ þ 2C cosð4mτÞ ð48Þ
where we have gone to the required number of harmonics.
The coefficients are required to Oðϵ4Þ, and we find them
to be

B ¼ γm2

72
ð�24ϵ2 − 23ϵ4Þ; ð49Þ

C ¼ γm2

36
ϵ4; ð50Þ

A ¼ m2

�
1�

�
2γ

3
− 1

�
ϵ2 þ

�
1 −

25γ

36

�
ϵ4
�

þ k2ð1∓ ϵ2 þ ϵ4Þ ð51Þ

where we again use γ from Eq. (29) with q ¼ 2; so γ ¼ 3
for δϕ∥, and γ ¼ 1 for δϕ⊥.
We then substitute them into the harmonic expansion

(35). Previously we studied the first instability band by
tracking the leading odd harmonics ω ¼ −m;þm. To study
the second instability band we need to look at the leading
even harmonics ω ¼ −2m; 0;þ2m. The ω ¼ 0 mode is
easily solved for, leaving just two unknown coefficients.
We note that these couple to ω ¼ −4m;þ4m, giving finite
corrections. However, a reasonable approximation for the
central results, arises from just focusing on the ω ¼
−2m;þ2m harmonics. We find that the 2 × 2 matrix
problem for the second instability band takes the form

d
dτ

�
δϕþ2m

δϕ−2m

�

¼ i
4m

�
A− 4m2− B2

A C− B2

A

B2

A −C 4m2þ B2

A −A

��
δϕþ2m

δϕ−2m

�
: ð52Þ

The eigenvalues of this matrix are the Floquet exponents of
the second band

μk ¼
1

4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
C −

B2

A

�
2

−
�
A − 4m2 −

B2

A

�
2

s
: ð53Þ

The full expression for μk after substituting in the above
values for A;B;C is somewhat complicated, but it suffices
to discuss its features.
Firstly, let us discuss at what k value the band starts at in

the small-amplitude limit. If we take ϕa → 0, then B → 0,
C → 0, and A → k2 þm2, and μk becomes

μk → � i
4m

ðk2 − 3m2Þ: ð54Þ
Hence the value of k� that sets the imaginary part of μk to
zero, and hence corresponds to the start of the instability
band, is

k� ¼
ffiffiffi
3

p
m: ð55Þ

In Sec. IV wewill explain this wave number as arising from
4ϕ → 2ϕ particle annihilations.
Next, we discuss the shape and width of the instability

band. If we work only to Oðϵ2Þ we find that both the left-
hand and right-hand edges of the instability band coincide.
As a function of amplitude this merely provides the overall
bending of the band. If we express this in terms of the
amplitude ϕa, we find that to Oðϵ2Þ we have

kedge ¼
ffiffiffi
3

p
mþ ð6 − γÞ

4
ffiffiffi
3

p λϕ2
a

m
: ð56Þ

On the other hand, we find a splitting between the left- and
right-hand edges at Oðϵ4Þ. This splitting, which gives the
width of the band, is found to be

Δk ¼ kr;edge − kl;edge ¼
γjγ − 1j
64

ffiffiffi
3

p λ2ϕ4
a

m2
: ð57Þ

So for the isocurvature modes (γ ¼ 1) the width is zero.
This means there is no instability band. This is in accord
with the bottom panel of Fig. 1. On the other hand, for the
adiabatic modes (γ ¼ 3) there does exist a finite width and
hence a narrow instability band. From Eq. (56) we see that
this band bends to the right (higher k) for λ > 0, or bends to
the left (lower k) for λ < 0, as we increase the amplitude.
This explains the features seen in the narrow instability
band in the upper panel of Fig. 1. Since this band is due to
4ϕ → 2ϕ annihilations, as we explain in Sec. IV, it requires
energy density perturbations, and so it makes sense that it
does not exist for the isocurvature modes.

D. Negative mass squared

We now consider the case of negative mass squared
(m2 < 0 and λ > 0) at small amplitudes. So we now study a
Higgs type of potential and expand around the true vacuum

j~ϕj ¼ ϕvev ¼ jmj= ffiffiffi
λ

p
. We put the vacuum expectation

value (VEV) in the N th direction in field space and write
the field as
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~ϕ ¼
�
ϕ1;…;ϕN−1;

jmjffiffiffi
λ

p þ σ

�
: ð58Þ

The dimension-four potential becomes

V ¼ 1

2
m2

σσ
2 þ λ3

3
σ3 þ λ

4
σ4

þ λ3
3
σ
X
i

ϕ2
i þ

λ

2
σ2
X
i

ϕ2
i þ

λ

4

�X
i

ϕ2
i

�
2

ð59Þ

where the sum over i is from 1 to N − 1 of the Goldstones
ϕi. The mass of the σ field and the cubic coupling are

mσ ¼
ffiffiffi
2

p
jmj; ð60Þ

λ3 ¼ 3
ffiffiffi
λ

p
jmj: ð61Þ

Let us discuss the radial motion of the background
described by the field σ0. This satisfies the equation of
motion

σ̈0 þm2
σσ0 þ λ3σ

2
0 þ λσ30 ¼ 0: ð62Þ

We again use a small-ϵ expansion to solve this to leading
order. Due to the cubic interaction, there will be both odd
and even harmonics in the expansion. We will not go
through the full details, but we find that to leading order, the
solution is

σ0ðτÞ ¼ ϵ
2mσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3jλ − 10λ23=ð9m2
σÞj

p cosðmστÞ: ð63Þ

This result is general for any choice of λ and λ3. Of course
by using the relationships in Eqs. (60) and (61) the
denominator can be simplified. Compared to the analysis
of Sec. III B, where there was no cubic term, we see that in
some sense the “effective” λ has been shifted to

λ → λ −
10λ23
9m2

σ
¼ −4λ: ð64Þ

With this understanding we can immediately use Eq. (39)
(with q ¼ 2) to write down the answer for the Floquet
exponent in the first instability band for the parallel, or
adiabatic, perturbations. We find

μk ¼
k

2mσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6λσ2a − k2

q
: ð65Þ

We now see the opposite behavior of the adiabatic mode for
m2 < 0 compared to m2 > 0. Now we see that for λ > 0
there is an instability band for small k. On the other hand,
when m2 > 0 we only saw such a band for λ < 0. This
makes sense from the point of view of the pressure analysis
of Part 1 [39]. Indeed one can check that the cubic term
induces a negative pressure for small amplitudes, even
though the quartic term is positive. For sufficiently large
amplitudes, the pressure returns to being positive, as the
positive quartic term dominates, and the band is shut off for

small k. This explains the change between Figs. 1 and 2. In
the λ > 0,m2 > 0 plot for the parallel perturbations we saw
that a thin band started at k ¼ ffiffiffi

3
p

m. In the m2 < 0 plot for
the parallel perturbations we saw this band thicken and
extend all the way down to k ¼ 0, in agreement with our
new analysis.
For the orthogonal, or isocurvature, perturbations the

equation of motion for small amplitudes is

δ̈ϕ⊥i þ ðk2 þ
ffiffiffiffiffi
2λ

p
mσσa cosðmσtÞÞδϕ⊥i ¼ 0: ð66Þ

In fact we will not require the distinction between τ and t
for this leading-order analysis, so we have written the
argument of the cosine as mσt. Since this is of the form of
the Mathieu equation, we can follow the steps used in
Sec. III B to readily obtain the Floquet exponent. We find

μk ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8λσ2a −

�
4k2

mσ
−mσ

�
2

s
: ð67Þ

We now see that this band no longer begins at k ¼ 0;
instead it begins at

k� ¼
mσ

2
¼ jmjffiffiffi

2
p : ð68Þ

This is precisely what is observed in the lower panel of
Fig. 2. The reason the band does not exist at small k is
because of the complementary behavior to the adiabatic
mode. Since the “ordinary” pressure is negative due to the
cubic term rendering the adiabatic mode unstable for small
k, the “auxiliary” pressure is positive rendering the iso-
curvature modes stable for small k. Nevertheless there is a
thick instability band beginning at k ¼ mσ=2; we shall
explain its origin as the decay of the “Higgs” field into a
pair of Goldstones ϕi in the next section.

IV. MANY-PARTICLE QUANTUM MECHANICS

In the previous sections we have seen several interesting
results, including physical explanations in terms of pres-
sure, a small-amplitude analysis, etc. Some of the salient
results are as follows (and they are particularly true at small
amplitudes):

(i) At small k and m2 > 0, the adiabatic mode is
unstable for λ < 0, and the isocurvature modes are
unstable for λ > 0.

(ii) At small k and m2 < 0, the adiabatic mode is
unstable (we require λ > 0 here).

(iii) At k ∼
ffiffiffi
3

p
m and m2 > 0, the adiabatic mode is

unstable (for either sign of λ).
(iv) At k ∼ jmj= ffiffiffi

2
p

and m2 < 0, the isocurvature modes
are unstable.

In this section we will give the underlying quantum-
mechanical explanation for each of these facts. We will
particularly emphasize point (i) which most clearly
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highlights the complementary behavior between adiabatic
and isocurvature modes; their relative stability is deter-
mined by the sign of λ.
The reason there should be a quantum-mechanical

explanation is that underlying the field theory should be
a more fundamental description in terms of many quantum
particles. Indeed the above classical scalar field theory
analysis is only a good approximation if it approximates the
behavior of some kind of condensate of scalar bosons.

A. Nonrelativistic theory

Let us begin by focusing on dimension-four potentials
with m2 > 0 and λ ≠ 0. For k ≪ m we should be able to
use the nonrelativistic treatment of a collection of massive
scalars. In the case of a complex field, there are two kinds
of identical species: particles ϕ and antiparticles ϕ̄. In the
nonrelativistic regime these particles only interact with one
another via 2ϕ → 2ϕ scattering from a four-point vertex;
see upper panel of Fig. 3. The associated matrix element is
a constant, namely M ¼ −3iλ. By Fourier transforming,
we obtain the following two-body potential:

Vðx1 − x2Þ ¼
3λ

4m2
δðx1 − x2Þ ð69Þ

where x1 and x2 are the positions of a pair of particles/
antiparticles. By considering Nϕ particles and Nϕ̄ anti-
particles and summing, we obtain the following quantum
Hamiltonian:

Ĥ ¼
XNϕ

a

p̂2
a

2m
þ
XNϕ̄

ā

p̂2
ā

2m
þ

XNϕ;Nϕ

a<b

Vðx̂a − x̂bÞ

þ
XNϕ;Nϕ̄

a<b̄

Vðx̂a − x̂b̄Þ þ
XNϕ̄;Nϕ̄

ā<b̄

Vðx̂ā − x̂b̄Þ ð70Þ

where we have indicated particles by the indices a and b,
and antiparticles by the indices ā and b̄. So a positive λ
implies a repulsive force between the particles (and anti-
particles), while a negative λ implies an attractive force
between the particles (and antiparticles). In fact this is also
true if we went beyond the quartic interaction ∼λϕ4 to a
general potential ∼λϕ2q with q ≥ 2 an integer. Say for
q ¼ 3, we have a three-body contact interaction, whose
attraction/repulsion is determined by the sign of λ.
Let us imagine an initial homogeneous configuration of

equal numbers of particles and antiparticles. Indeed for a
classical background that evolves radially in field space,
the background number density of particles minus anti-
particles is zero. If λ > 0, the particles will want to remain
evenly distributed due to their mutual repulsion. On the
other hand, if λ < 0, the particles will want to clump
together under their mutual attraction. A cartoon of this
behavior is depicted in the upper panel of Fig. 4. (In the
figure we drew particles and antiparticles from Gaussians
centered around each of the four quadrants to illustrate
this.) This is the physical explanation of why the adiabatic
mode is stable with λ > 0 and unstable with λ < 0 for small
k. At the nonlinear level, this can produce localized
structures known as oscillons [34–36,42], which eventually
annihilate away [37]. When there is an overabundance of
particles to antiparticles (see Sec. VII) this can produce
stable objects known as Q-balls [43].
But what about the isocurvature mode? If λ > 0 the

particles will try to repel each other and remain with a
homogeneous energy density, with ε ¼ mðnϕ þ nϕ̄Þ in the
nonrelativistic limit. However there are different types of
homogeneous configurations, since we have two species
available. For instance, the particles and the antiparticles
can remain homogeneous. Or the particles can move to
certain regions in space, while the antiparticles move to
other regions of space, in such a way that the total energy
density remains constant. This latter arrangement involves
a change to n ¼ nϕ − nϕ̄, the local number density of
particles minus antiparticles, i.e., an isocurvature mode.
Either arrangement seems to minimize the energy.
However, it is the latter arrangement that is favored due
to Bose-Einstein statistics, which favors particles clumping
with particles, and antiparticles clumping with antiparticles.
A cartoon of this behavior is depicted in the lower panel of
Fig. 4. (In the figure we drew particles and antiparticles
from Gaussians centered at opposite quadrants to illustrate
this.) This explains why the isocurvature mode is unstable
when λ > 0 for small k. This last pair of arguments explains
result (i) and the low-k region of Fig. 1.

FIG. 3. Representative Feynman diagrams of two important
nonrelativistic processes. Upper panel: 2ϕ → 2ϕ scattering from
a four-point vertex. Lower panel: 2σ → 2σ scattering from a
three-point vertex (relevant for the Higgs potential).
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Form2 < 0 and λ > 0we can expand around the vacuum
expectation value for the field. This induces a cubic
interaction for the Higgs field σ, as we explored in
Sec. III D. This three-point interaction alters the 2 → 2
scattering, as given by the Feynman diagram in the lower
panel of Fig. 3. The adiabatic modes carry a mass (the
“Higgs” particles) and so we can take the nonrelativistic
limit. In the nonrelativistic limit these matrix elements can
be computed and Fourier transformed. The result is again a
delta-function potential with the coupling altered as
λ → −4λ, precisely as we saw earlier in Eq. (64). This
switches the sign of the potential. For λ > 0, the two-body
potential is now attractive, due to the three-body σ
exchanges. Hence it makes good sense that the adiabatic
mode is now unstable. This argument explains result (ii)
and the low-k region of Fig. 2.

B. Relativistic theory

Returning again to a regular mass term with a quartic
interaction, we now allow for relativistic processes to occur.
Since the homogeneous background is a dense condensate
of bosons, a quartic interaction can lead to annihilations.
Due to the conserved particle number, we are allowed
to have processes, such as 2ϕþ 2ϕ̄ → ϕþ ϕ̄. This
is the leading annihilation process, whose corresponding
Feynman diagram is given in the upper panel of Fig. 5.
Since the annihilating particles are homogeneously distrib-
uted, they can be taken to be nonrelativistic. The effective
mass per particle is m in the small-amplitude limit. So the
kinematics of this process is

4m ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2�

q
⇒ k� ¼

ffiffiffi
3

p
m: ð71Þ

Notice that since this process occurs simply due to
kinematics, it will occur regardless of the sign of λ. The
only significance of λ is that it alters the effective mass of
the homogeneous clump at finite amplitudes. So for λ > 0
the effective mass of the annihilating particles is raised,
causing the corresponding outgoing k to be raised. The
opposite is true for λ < 0. We also note that a process such
as this involves a redistribution of the local energy density,
and hence it is an adiabatic mode. These arguments explain
result (iii) and the thin bands of Fig. 1.
Finally we consider the Higgs type of potential, and

consider relativistic processes. Since the ϕi (i ¼ 1;…;
N − 1) are massless, a basic decay process can take place
between the background Higgs field and the daughter
Goldstones σ → ϕi þ ϕi. This process is given in the lower
panel of Fig. 5. The kinematics of this process is

FIG. 4 (color online). A cartoon of the behavior of (non-
relativistic) particles ϕ in red and antiparticles ϕ̄ in blue.
In the upper panel, λ < 0, and we depict both particles and
antiparticles as attractive with statistically uniform number
density (n ¼ nϕ − nϕ̄). In the lower panel, λ > 0, and we depict
particles clumping with particles and antiparticles clumping with
antiparticles with statistically uniform energy density [ε ¼
mðnϕ þ nϕ̄Þ in the nonrelativistic limit].

FIG. 5. Representative Feynman diagrams of two important
relativistic processes. Upper panel: 2ϕþ 2ϕ̄ → ϕþ ϕ̄ annihila-
tion. Lower panel: σ → ϕi þ ϕi decay (relevant for the Higgs
potential).

THEORY OF SELF-…. II. QUANTUM MECHANICS … PHYSICAL REVIEW D 90, 123529 (2014)

123529-11



mσ ¼ 2k� ⇒ k� ¼
jmjffiffiffi
2

p : ð72Þ

Since the phase space of one particle decay is much greater
than the phase space of four particle annihilations, this band
should be much thicker than the band described above in
the unbroken theory. We also mention that other annihi-
lations are presumably allowed in the broken theory, such
as σ þ σ → ϕi þ ϕi. However this will still result in a rather
thin band, beginning at k� ¼

ffiffiffi
2

p jmj, and beyond the
regime plotted in Fig. 2. Altogether these arguments
explain result (iv) and the thick band in the lower panel
of Fig. 2.

V. PERTURBATION GROWTH WITH
HUBBLE EXPANSION

Earlier when we computed the growth of fluctuations,
we ignored the effects of Hubble expansion. In this section
we would like to reinstate the effects of expansion.
Accordingly, we return to the important case in which
the background field evolves radially in field space, as
initially established by inflation.
The expansion causes a breaking of the periodicity of the

pump hðtÞ as the background amplitude and perturbation
wave number redshift. So, strictly speaking, this means that
we can no longer use Floquet theory. Instead we can
numerically solve the linearized equations to capture the
evolution, which we will do shortly in Sec. V B. On the
other hand, the Floquet theory is still very useful to provide
qualitative and semiquantitative results, as we now explain.

A. Slow-redshift approximation

If we continue to study modes that are subhorizon,
then we can introduce an approximate treatment of the
expansion. The idea is that on the scales of interest, the
background changes only slightly over a periodic of

oscillation. So this presents a type of slow, or “adiabatic,”
approximation wherein we can utilize Floquet theory on
short time scales, as well as account for the slow redshifting
in an approximate fashion (note that the use of the word
“adiabatic” here does not refer to the adiabatic modes
discussed elsewhere in this paper).
The first alteration is to take the Floquet exponent from

the previous section μk and replace its argument by the
physical wave number kp

k → kpðtÞ ¼
k

aðtÞ ; μk → μkp ð73Þ

as it is this quantity that appears in the equation of motion.
Second, we note that Hubble expansion introduces a
redshifting in the amplitude of the pump. The details
depend on the choice of the potential V. We can summarize
this as an effective evolution in the amplitude as

ϕa → ϕaðtÞ ð74Þ
which we take to be slowly varying. There is also an
overall rapid oscillation in the perturbations, captured by
some quasiperiodic function fðtÞ. At late times this is
roughly fðtÞ ≈ cosðmtþ θÞ, where θ is some phase
(see Fig. 6).
Third, since the Floquet exponent is now time dependent

due to redshifting, the growth is altered. The adiabatic
approximation is to replace the exponential growth by an
integral as follows (we denote the real part of the Floquet
exponent by μkp here):

exp½μkðt − tiÞ� → exp

�Z
t

ti

dt0μkpðt0Þ
�

ð75Þ

where ti is some initial time (say, the end of inflation). Now
it is convenient to use the chain rule to recast the integral
over time as an integral over physical wave number, as this
is what the Floquet exponent explicitly depends on. Using
Eq. (73) we can express this as

FIG. 6 (color online). Evolution of the background ϕ0 with Hubble expansion after inflation for dimension-four potentials, with
m2 > 0 and λ > 0. In the left panel r≡ ffiffiffi

λ
p

MPl=m ¼ 200 (slower redshifting). In the right panel r≡ ffiffiffi
λ

p
MPl=m ¼ 5 (faster redshifting).

We have plotted ϕ0 in units of m=
ffiffiffi
λ

p
and t in units of 1=m. At somewhat earlier times, the field slow-rolls during inflation.
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Z
t

ti

dt0μkpðt0Þ ¼
Z

kif

kpðtÞ
d ln kp

�
μkp
H

�
ð76Þ

where the integrand is evaluated along the appropriate
curve in the Floquet chart (see the dashed green curve in
Fig. 7). Note the limits of integration: we have placed
the late-time wave number kpðtÞ at the lower end point, and
the initial wave number kpi at the upper end point, so the
integral is ordered in a standard way.
So altogether, a rough inclusion of Hubble expansion is

to write the field fluctuations as

δϕðk;tÞ
δϕðk;tiÞ

∼
�
ϕaðtÞfðtÞ
ϕaðtiÞ

�
exp

�Z
kif

kpðtÞ
d lnkp

�
μkp
H

��
ð77Þ

where μkp is the (real part of the) Floquet exponent for
either the adiabatic or isocurvature modes, as appropriate.
For dimension-four potentials, it is convenient to intro-

duce the parameter r≡ ffiffiffiffiffijλjp
MPl=jmj, as mentioned earlier.

The reason this parameter is useful is that the combination
μkp=ðrHÞ is independent of parameters at a fixed amplitude
and wave number, as reported in our earlier Floquet charts.
The exponent can be written as

exp

�
r
Z

kif

kp

d ln kp

�
μkp
Hr

��
ð78Þ

which shows that the growth is approximately exponential
in r. We say “approximately” because the details of the
motion through the band has some parameter dependence,
though it is relatively small.

B. Numerical results for growth

We have numerically solved for the background field
ϕ0ðtÞ, allowing for Hubble expansion, for different values
of r. For m2 > 0 and λ > 0 the result is given in Fig. 6. In

the left panel we have taken r ¼ 200 and in the right panel
we have taken r ¼ 5. As the plots show, for higher values
of r the redshifting is slow and for lower values of r the
redshifting is fast. So in the former case, the background
ϕ0ðtÞ is almost periodic on the time scale of a small number
of oscillations. This means that Floquet theory provides a
good approximation to the behavior, as described in the
previous subsection. In the latter case, the background
ϕ0ðtÞ changes rather significantly from one cycle to the
next, so the Floquet theory becomes less accurate.
It is, however, the case of large r that is of most interest

from the point of view of self-resonance. In the left panel of
Fig. 7 we have plotted the behavior of a redshifting physical
wave number and amplitude for a fixed comoving wave
number; k ¼ 0.4a0m, where a0 is the scale factor at
ϕa ¼ m=

ffiffiffi
λ

p
. We have chosen this as a representative wave

number that passes through the central instability band.
We have chosen m2 > 0 and λ > 0 here and shown the
instability associated with the isocurvature modes. For
λ < 0 (not shown here) we find the behavior to be
qualitatively similar for the adiabatic mode.
In the next section we will discuss the power spectra of

field fluctuations Pδϕðk; tÞ, which is related to the square of
the fluctuations δϕðtÞ. In the right panel of Fig. 7 we have
plotted the evolution of the power spectra, accounting for
Hubble expansion, for the same comoving wave number
k ¼ 0.4a0m. We see that the growth appears to be expo-
nential, but is reduced at late times as the redshift decreases
the value of μkp=ðrHÞ towards zero, and so its amplitude
asymptotes to a constant. There are of course rapid
oscillations on top of this.

VI. DISTRIBUTION OF DENSITIES δε;δn

In this section we discuss the quantization of the
perturbations δϕ and their initial conditions, and present

FIG. 7 (color online). Left panel: Contour plot of the real part of the Floquet exponent μk for dimension-four potentials as a function of
physical wave number kp and background amplitude ϕa for δϕ⊥, withm2 > 0 and λ > 0 (zoomed in region of Fig. 1’s lower left panel).
The dashed green line indicates the redshifting physical wave number and amplitude of a fixed comoving wave number k ¼ 0.4a0m,
where a0 is the scale factor at ϕa ¼ m=

ffiffiffi
λ

p
. We have plotted μk in units of rH where r≡ ffiffiffi

λ
p

MPl=m, kp in units of m, and ϕa in units of
m=

ffiffiffi
λ

p
. Right panel: Growth in power Pδϕ⊥ as a function of time for the same comoving wave number k ¼ 0.4a0mwith r ¼ 20. We have

plotted Pδϕ⊥ in units of 1=ða3mÞ and t in units of 1=m. For λ < 0 (not shown here) qualitatively similar behavior occurs for δϕ∥.
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results for the distribution of fluctuations in k space and
position space. We continue to account for Hubble expan-
sion where necessary.

A. Quantization of perturbations

When the background ~ϕ0 evolves radially in field space,
as preferred by inflation, the perturbations δϕ∥ and δϕ⊥ are
decoupled at linear order, as discussed in Sec. II B.
Since these modes are decoupled, they can be readily

quantized in the Heisenberg picture. We write the operator
for parallel fluctuations as

δ̂ϕ∥ðx;tÞ¼
Z

d3k
ð2πÞ3 ½v∥;kðtÞâke

ik·xþv�∥;kðtÞâ†ke−ik·x� ð79Þ

and the operator for orthogonal fluctuations as

δ̂ϕ⊥ðx; tÞ ¼
Z

d3k
ð2πÞ3 ½v⊥;kðtÞb̂keik·x þ v�⊥;kðtÞb̂†ke−ik·x�

ð80Þ

where v∥ and v⊥ are the respective mode functions. The
creation and annihilation operators satisfy the standard
quantization condition

½âk; â†k0 � ¼ ð2πÞ3δ3ðk − k0Þ; ð81Þ

½b̂k; b̂†k0 � ¼ ð2πÞ3δ3ðk − k0Þ: ð82Þ

As this is a free theory, the mode functions satisfy the
classical equations of motion that we previously discussed
for δϕ in Eqs. (11) and (12). So, allowing for Hubble
expansion, we have

v̈∥ þ 3H _v∥ þ
�
k2

a2
þ V 00ðϕ0Þ

�
v∥ ¼ 0; ð83Þ

v̈⊥ þ 3H _v⊥ þ
�
k2

a2
þ V 0ðϕ0Þ

ϕ0

�
v⊥ ¼ 0: ð84Þ

We assume that at early times, the mode functions are in
their Minkowski vacua, and then evolve; this is the Bunch-
Davies vacuum. So at early times we require the initial
condition

v∥;k; v⊥;k →
e−iωktffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωka3

p ð85Þ

where the frequency is ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2=a2

p
. In fact at early

times it is sufficient to use ωk → k=a.
We can go further and quantize the perturbations in

energy density δε and number density δn. We write the
operator for energy density (adiabatic) fluctuations as

δ̂εðx; tÞ ¼
Z

d3k
ð2πÞ3 ½zkðtÞâke

ik·x þ z�kðtÞâ†ke−ik·x� ð86Þ

and the operator for number density (isocurvature) fluctua-
tions as

δ̂nðx;tÞ¼
Z

d3k
ð2πÞ3 ½wkðtÞb̂keik·xþw�

kðtÞb̂†ke−ik·x�: ð87Þ

We can relate these density fluctuations to the field
fluctuations by using the quantized versions of the linear-
ized energy density and number densities, which we
defined in Part 1 [39]. This leads to the following relation-
ship between the density mode functions z and w and the
field mode functions v∥ and v⊥:

zkðtÞ ¼
�
_ϕ0

∂
∂tþ V 0ðϕ0Þ

�
v∥;kðtÞ; ð88Þ

wkðtÞ ¼ −
�
ϕ0

∂
∂t − _ϕ0

�
v⊥;kðtÞ: ð89Þ

In the subhorizon limit, the Floquet theory, pressure
analysis, and so on, of the earlier sections, determines
these mode functions.

B. Probability distributions

So we have the following physical variables of interest:

χ ¼ fδϕ∥; δε; δϕ⊥; δng ð90Þ

where the first pair are independent of the last pair. By
placing the field fluctuations in their ground state, the wave
functional Ψ for each variable is a Gaussian. In the
Schrödinger picture, the corresponding probability distri-
bution for any of these variables is

P½χ; t� ∝ exp

�
−
1

2

Z
d3k
ð2πÞ3

jχkj2
Pχðk; tÞ

�
ð91Þ

where Pχ is the power spectrum for each variable, defined
through the equal-time two-point correlation function as

hχ̂kðtÞχ̂k0 ðtÞi ¼ ð2πÞ3δ3ðkþ k0ÞPχðk; tÞ: ð92Þ

Since the background breaks the time-translation sym-
metry, the power spectra depend on time, as we have
indicated. It is straightforward to show that they are given
by the square of their corresponding mode functions

Pδϕ∥
ðk; tÞ ¼ jv∥;kðtÞj2; Pδεðk; tÞ ¼ jzkðtÞj2; ð93Þ

Pδϕ⊥ðk; tÞ ¼ jv⊥;kðtÞj2; Pδnðk; tÞ ¼ jwkðtÞj2: ð94Þ

This furnishes the probability distribution for the fields.
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We would also like to have the probability distributions
for their time derivatives. So let us define the variables

Π ¼ f _δϕ∥; _δε; _δϕ⊥; _δng: ð95Þ

We then also have a Gaussian distribution for these
“momenta” (these are not canonically normalized
momenta, as this would require the inclusion of additional
powers of the scale factor, etc.)

P½Π; t� ∝ exp

�
−
1

2

Z
d3k
ð2πÞ3

jΠkj2
PΠðk; tÞ

�
ð96Þ

where the power spectra for the momenta are given as the
square of the time derivatives of the corresponding mode
functions.
In order to simulate the fields, we can use these

probability distributions to draw the fields at a given
moment in time. Of course quantum mechanically, we
cannot specify both χ and Π simultaneously as they do not
commute with one another (uncertainty principle). On the
other hand, in order to provide the initial conditions of a
classical simulation, one can draw from both and then
evolve under the classical equations of motion. This
naturally loses the noncommutativity of the field and its
momentum conjugate, as is required for a classical simu-
lation. Interestingly, by drawing from both at an initial time,
then evolving under the classical equations of motion, then
repeating and ensemble averaging, one actually reproduces
the correct quantum expectation values in the linear
approximation.

C. Numerical results for distributions

We choose initial conditions of the Bunch-Davies
vacuum for modes that are deep inside the apparent horizon
during inflation, and evolve numerically. The late-time
power spectrum for dimension-four potentials is given in
Fig. 8 for r ¼ 20. By taking λ > 0 we see the difference
between the behavior of the nonresonant adiabatic mode
(upper panel) and the resonant isocurvature modes (lower
panel), while for λ < 0 (not shown here) we find the
opposite behavior. Since the individual power spectra for
δϕ oscillate, we have time averaged over a cycle to give the
late-time average value. We also see qualitatively similar
behavior for the corresponding power spectra for the
densities δε and δn.
We can use the above probability distributions to draw

sample distributions for the densities. To do so we
discretize on a cubic lattice. We call the box size L3 and
the lattice spacing Δx. The discrete set of allowed wave
vectors are

k ¼ 2π

L
ðmx;my;mzÞ ð97Þ

where mx;my;mz are integers. The maximum value of the
wave-vector components is π=Δx, so the maximum value
of the integers is L=ð2ΔxÞ.
The field in position space is a stochastic variable and

can be written as

χðxÞ ¼ 1

L3

X
k

χkeik·x ð98Þ

where the set of k is given above. The Fourier coefficients
χk are each drawn from the Gaussian distribution

P½χk; t� ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

q exp

�
−

jχkj2
2σ2kðtÞ

�
ð99Þ

where the variance is

σ2kðtÞ ¼ L3Pχðk; tÞ ð100Þ

and the reality condition requires χ�k ¼ χ−k.
At very early times, the physical wave numbers of

interest are given by the Bunch-Davies vacuum and

FIG. 8 (color online). Late-time power spectra Pδϕ of field
fluctuations as a function of comoving wave number k for
dimension-four potentials, with m2 > 0, λ > 0, and r ¼ 20. In
the upper panel are (nonresonant) parallel fluctuations Pδϕ∥

. In
the lower panel are (resonant) orthogonal fluctuations Pδϕ⊥ . We
have plotted Pδϕ in units of 1=ða3mÞ and comoving k in units of
a0m, where a0 is the scale factor at ϕa ¼ m=

ffiffiffi
λ

p
. For λ < 0 (not

shown here) the resonances are interchanged.
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essentially describe a free field in Minkowski space. We
draw on this distribution for the number density δn. The
result appears in the left panel of Fig. 9. This shows vacuum
fluctuations associated with virtual particles/antiparticles.
The Minkowski fluctuations are UV sensitive, as the field
fluctuations have power that goes as P ∝ 1=k. This leads to
a formally infinite variance for the field in position space
hχ2i. We have introduced a UV cutoff of kUV ¼ 3a0m in
this figure.
At late times, a range of modes grow exponentially. This

is predominantly for relatively low-k modes, as described
earlier. For λ > 0 the corresponding power spectra is given
in the lower panel of Fig. 8, which shows that there is large
power at finite wave numbers with some characteristic scale
around k ∼ 0.5a0m. A realization of the number density δn
is given in the right-hand panel of Fig. 9. This shows that
for a complex field the inflaton fragments into separate
regions of ϕ-particles and anti-ϕ-particles. We have plotted
δn in units of

ffiffiffi
λ

p
n0, where n0 is the background density of

particles (same as antiparticles) defined as n0 ≡ ε0=m. For
r ¼ 20 we see that the ratio approaches values of several
thousand. This is acceptable since the coupling λ can be
very small, so this can still be in the linear regime where the
perturbation δn is less than the background n0. For higher
values of r the growth is exponentially larger as discussed
in Sec. V. So this can easily lead to a large fragmentation of
the inflaton, which can lead to large nonlinearities beyond
the linear regime.
We also find that qualitatively similar behavior happens

for the energy density perturbations δε when λ < 0.

VII. APPLICATION TO BARYOGENESIS

In the previous sections we studied the behavior of the
inflaton fields after inflation in a class of models organized

by an internal rotational symmetry. The internal symmetry
means that the field carries a conserved particle number. It
is of interest to examine whether this conserved particle
number may be associated with the late-time conserved
baryon number.
However, as mentioned earlier, the slow-roll inflationary

phase will cause the inflaton to evolve radially in field
space, and the net particle number associated with this
ΔN ¼ Nϕ − Nϕ̄ (number of particles minus antiparticles)
vanishes. So in order to produce a nonzero net particle
number, we need to introduce a breaking of the symmetry.
In Refs. [40,41] some of us developed a method to achieve
this, as an inflationary version of the classic Affleck-Dine
mechanism for baryogenesis. This idea is particularly
appealing as it more easily satisfies constraints on cosmo-
logical isocurvature fluctuations, that can otherwise be
problematic for low-scale Affleck-Dine models. Some
interesting follow up works include Refs. [42,44,45].
In our previous work [40,41], only the homogeneous

ϕ0ðtÞ was considered; here we would like to include
corrections from the inhomogeneous δϕðx; tÞ that arises
from self-resonance.

A. Inflationary baryogenesis models

Let us focus on the case of a complex inflaton field ϕ.
For canonical kinetic energy and standard gravity, its
dynamics are governed by the choice of potential VðϕÞ.
Earlier in this paper, we imposed a global U(1) symmetry
on this potential so that it only depends on the magnitude of
ϕ; here we relax this. We decompose the potential in terms
of a symmetric piece Vs that respects the U(1) symmetry
and an asymmetric piece Vb that breaks the symmetry

Vðϕ;ϕ�Þ ¼ VsðjϕjÞ þ Vbðϕ;ϕ�Þ ð101Þ

FIG. 9 (color online). Two-dimensional slice of number density fluctuations δn in position space for dimension-four potentials, with
m2 > 0, λ > 0, and r ¼ 20. The left panel is at an initial time, which is dominated by UVmodes (cutoff at kUV ¼ 3a0m), associated with
virtual particles and antiparticles. The right panel is at a late time, which is dominated by IR modes that have exponentially grown,
associated with separate regions of real particles and antiparticles. We have plotted δn in units of

ffiffiffi
λ

p
n0 and comoving position in units of

1=ða0mÞ. For λ < 0 (not shown here) we find qualitatively similar results for the energy density fluctuations δε.
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where we have made it explicit that the potential now is a
function of two variables. We assume that the symmetry is
weakly broken. This means that the symmetric piece Vs is
the dominant piece of the potential, both during and after
inflation, and the asymmetric piece Vb is subdominant. In
order to recover the symmetry at late times, as the field
redshifts, we assume the symmetric piece includes a
(positive) mass term

VsðjϕjÞ ¼ m2jϕj2 þ � � � ð102Þ
where the dots indicate higher-order operators, such as
λjϕj4, that can lead to self-resonance; these higher-order
terms are even allowed to dominate at large field values
relevant for inflation. This symmetric potential Vs plays the
same role as the symmetric potential V we studied in the
earlier sections. At large field values, the higher-order terms
may organize the potential into one with negative pressure
or positive pressure, as we saw earlier. This then determines
which mode is resonant at long wavelengths.
Let us assume that the breaking term is dominated by a

single operator. We take this to be a power law of the form

Vbðϕ;ϕ�Þ ¼ λbðϕn þ ϕ�nÞ ð103Þ
where n ≥ 3 is the operator dimension of the U(1) break-
ing. Since n ≥ 3, and the symmetric piece includes the
quadratic mass term, the symmetry is indeed restored at late
times as the field redshifts to small values.
A couple of possible justifications of this Lagrangian are

(a) imposing a discrete Zn symmetry, and (b) promoting ϕ
to carry color charge; this allows for a color-singlet operator
that breaks the global U(1) as ∼ϵijkϕiϕjϕk (n ¼ 3) for
multiple generations. Each of these justifications has its
own advantages and disadvantages. For (a) it nicely
organizes the action into the desired form, but leaves open
the question of the origin of this discrete symmetry. In (b) it
naturally leads to the n ¼ 3 breaking term, but it is
nontrivial to give the inflaton charge since that will tend
to renormalize the self-couplings of the inflaton. Anyhow, a
full analysis of the embedding into microscopic physics is
not the focus of the present paper.
Let us turn our attention to the time evolution. The

full nonlinear equation of motion (including Hubble
expansion) is

ϕ̈þ 3H _ϕ −
∇2ϕ

a2
þ Vs

0ðρÞ
ρ

ϕþ nλbϕ�n−1 ¼ 0 ð104Þ

(where ρ ¼ ffiffiffi
2

p jϕj). By tracking the evolution of the
complex inflaton, we see that the final term causes an
alteration to the purely radial motion. Then, as demon-
strated in Refs. [40,41], this leads to a nonzero particle
number, which can later decay to quarks providing a baryon
asymmetry. The details of this final decay are model
dependent.

Since (i) the U(1) symmetry associated with the baryon
number is explicitly broken, (ii) the C and CP symmetries
are spontaneously broken by the inflaton’s VEV, and
(iii) the decay into quarks is out of equilibrium, the
Sakharov conditions for baryogenesis are satisfied.

B. Weakly broken symmetry approximation

At late times when the symmetry is restored, there is a
conserved net particle number given by

ΔN ¼ i
Z

d3xa3ðtÞ½ _ϕϕ� − _ϕ�ϕ�: ð105Þ

In principle, we could solve the full nonlinear equations of
motion for some set of initial conditions, and then integrate
over space to obtain ΔN. However, we would like to use
our previous analysis involving Floquet theory to obtain an
approximation to this.
First, let us take a time derivative of this quantity. We

note that it will not be conserved due to the presence of the
breaking term. It is straightforward to use the equation of
motion for ϕ to simplify _ΔN. By integrating the result, we
obtain

ΔNðtfÞ ¼ iλbn
Z

tf

ti

dtd3xa2ðtÞ½ϕnðx; tÞ − ϕ�nðx; tÞ�:

ð106Þ

Note that it is proportional to the strength of the breaking
λb, as it should be. We integrate over time from some initial
early time ti (say the start of inflation, where the number is
negligibly small since the comoving volume is so small) to
some late final time tf. In fact the answer will asymptote to
a constant as tf → ∞ as the particle number becomes
conserved at late times.
Since the expression for ΔN in Eq. (106) is proportional

to λb, then for a sufficiently weak breaking of the symmetry
(small λb) we can evaluate the quantity inside the integral to
zeroth order in λb. That is to say, we can use the symmetric
theory to determine ϕ as an input into the integral. This
means that the earlier results in this paper on self-resonance
in symmetric theories can be utilized here to tell us about
the net number of particles produced in asymmetric
theories in the weakly broken regime.
As usual we decompose the field into a background

piece and a perturbation. Since we can treat the field as
arising from the symmetric theory, we can take the back-
ground to undergo radial motion as usual. Let us call the
fixed angle in the complex plane of the radial oscillations
θi. It is then useful to decompose the field into background
and perturbations ϕ ¼ ϕ0 þ δϕ as follows:

ϕ0ðtÞ ¼
eiθiffiffiffi
2

p ρ0ðtÞ; ð107Þ

THEORY OF SELF-…. II. QUANTUM MECHANICS … PHYSICAL REVIEW D 90, 123529 (2014)

123529-17



δϕðx; tÞ ¼ eiθiffiffiffi
2

p ðδϕ∥ðx; tÞ þ iδϕ⊥ðx; tÞÞ: ð108Þ

We substitute this into Eq. (106) and expand to leading
nonzero order in δϕ. The result for the net number of
particles can be decomposed as

ΔN ¼ ΔN0 þ ΔNδ ð109Þ

where ΔN0 is the background contribution and ΔNδ is the
correction from perturbations. The background piece is
[40,41]

ΔN0ðtfÞ ¼ −λb
Vcomn
2

n
2
−1 sinðnθiÞ

Z
tf

ti

dta3ðtÞρn0ðtÞ ð110Þ

where Vcom is a comoving volume.
At linear order in the perturbations ∼δϕ, the contribution

to ΔN vanishes. This is becauseZ
d3xδϕðx; tÞ ¼ 0 ð111Þ

as the zero mode is entirely captured by ϕ0ðtÞ, by
definition. This means that the leading nonzero contribu-
tion to ΔN is quadratic in the perturbations ∼δϕ2. It is
useful to take the quantum expectation value of this result,
leading to variances of the fluctuations. We find the result

ΔNδðtfÞ ¼ −λb
VcomnCðn; 2Þ

2
n
2
−1 sinðnθiÞ

×
Z

tf

ti

dta3ðtÞρn−20 ðtÞhδϕ2ðtÞi: ð112Þ

The expression hδϕ2i is shorthand for the difference in the
variances hδϕ2i≡ hδϕ2

∥i − hδϕ2⊥i. The variances may be
expressed in terms of integrals over the power spectra as
follows:

hδϕ2ðtÞi ¼
Z

d3k
ð2πÞ3 ½Pδϕ∥

ðk; tÞ − Pδϕ⊥ðk; tÞ� ð113Þ

where Pδϕ∥
; Pδϕ⊥ are the power spectra from Sec. VI for the

symmetric theory. A plot of this finite difference in variance
is given in Fig. 10.
Due to statistical isotropy, the three-dimensional integral

over wave vectors, simplifies to a one-dimensional integral

Z
d3k
ð2πÞ3 →

Z
dkk2

2π2
: ð114Þ

Now we recall that the dominant exponential instability, if
present, is for relatively low wave numbers. On the other
hand, the asymptotically high wave numbers are deep in
Minkowski space corresponding to mode functions that

evolve circularly in the complex plane. So the power
spectra at high k are approximated by their Minkowski-
space values

Pδϕ∥
ðk; tÞ ≈ Pδϕ⊥ðk; tÞ ≈

1

2ka2
: ð115Þ

Hence each of the individual terms inside the k-integral in
Eq. (112) would give rise to a quadratic UV divergence.
However, the difference is finite. A nonzero difference
primarily arises from the finite-k regions in the Floquet
chart that carry an instability.

C. Numerical results for baryon asymmetry

We would like to report on results for the particle/
antiparticle asymmetry. A useful measure of asymmetry
comes by defining the asymmetry parameter as the differ-
ence between the particle and antiparticle numbers ΔN ¼
Nϕ − Nϕ̄ divided by their sum

A≡ Nϕ − Nϕ̄

Nϕ þ Nϕ̄
¼ nϕ − nϕ̄

nϕ þ nϕ̄
ð116Þ

where in the latter expression we have recast this in terms of
densities. Now the difference is well defined as it is
associated with a conserved quantity in the weakly broken
limit. However the sum is in general not well defined in a
relativistic theory. However at late times, we enter the
nonrelativistic regime, where it is given through the energy
density as nϕ þ nϕ̄ ¼ ε=m.
Let us begin with the homogeneous approximation.

Using the above expressions, we can write this as

A0 ¼ −cnλb
mn−4

λ
n
2
−1 sinðnθiÞ ð117Þ

FIG. 10 (color online). The late-time difference in variances
hδϕ2i≡ hδϕ2

∥i − hδϕ2⊥i from the exponential growth of IR modes
(the UV divergence cancels between the two terms) as a function
of the dimensionless coupling r for dimension-four potentials,
with m2 > 0 and λ > 0. We have plotted the variance in units of
m2ða0=aÞ3 and absorbed an overall negative sign (since the
orthogonal modes are resonant, the difference is negative).
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where

cn ¼
n

2
n
2 − 1

R
dtdaðtdÞ3ρdðtdÞn

a3εd
ð118Þ

is a type of “asymmetry coefficient.” Here td ≡mt,
ρd ≡

ffiffiffi
λ

p
ρ0=m, and εd ≡ λε=m4 are the dimensionless time,

field, and energy density, respectively. The end point of
integration and the denominator are to be evaluated at late
times. Note that the ratio of couplings in Eq. (117) should
be small. For n ¼ 3, the ratio is λb=ðm

ffiffiffi
λ

p Þ; this should be
small so that the breaking term is always subdominant to
the quadratic or quartic terms. For n ¼ 4, the ratio is λb=λ;
this should be small so that the asymmetric quartic term is
subdominant to the symmetric quartic term.
We have numerically computed the above integral to

determine the asymmetry coefficient cn. As an example, we
give the result in Fig. 11 for standard dimension-four
inflationary potentials with n ¼ 4. This shows that the
asymmetry grows relatively mildly as we increase r.
The correction from parametric resonance of perturba-

tions arises from computing the integral over time and wave
numbers in Eqs. (112) and (113). We have carried out these
integrals with the result given in the upper panel of Fig. 12
for standard dimension-four inflationary potentials. We
have plotted the asymmetry correction ΔNδ in units of
the homogeneous asymmetry value ΔN0 and rescaled by λ
and absorbed an overall minus sign. This shows that for
these parameters, the asymmetry is reduced (due to the
overall minus sign) relative to the homogeneous approxi-
mation. Also, we see there is exponential sensitivity to the
parameter r. So for large r a full nonlinear treatment would
be useful to take into account the effects of backreaction.
Nevertheless the numerical results here give a sense of
some of the overall qualitative behavior.
For negative quartic coupling we need to regulate the

potential at large field values. As a concrete example to
illustrate the possibilities, we consider the following toy
potential:

VsðjϕjÞ ¼
1
2
m2jϕj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jϕj2=Λ2
p ð119Þ

and we takem2 > 0. When Taylor expanded around ϕ ¼ 0,
this gives a positive mass and negative quartic term with
Λ ¼ m=

ffiffiffiffiffijλjp
. The potential grows more slowly than a

quadratic, namely as Vs ∼ jϕj at large field values, which
supports a phase of slow-roll inflation. Another class of toy
potentials was mentioned in Sec. V B 5 of Part 1 [39] for
0 < q < 1; those potentials are motivated by string axions
[46,47], which do not carry baryon number, so we do not
study them further here. With the potential (119) we
numerically solve for the baryon asymmetry, with the
result given in the lower panel of Fig. 12. In this case
the correction is enhanced relative to the background value.

VIII. CONCLUSIONS

In this paper we have further developed a theory of
self-resonance after inflation from Part 1 [39]. We have

FIG. 11 (color online). The coefficient c4 that controls the
homogeneous asymmetry as a function of the dimensionless
coupling r for dimension-four potentials, with m2 > 0, λ > 0,
and n ¼ 4.

FIG. 12 (color online). The relative correction to the baryon
asymmetry ΔNδ=ΔN0 (quantum fluctuations relative to classical
background) as a function of the dimensionless coupling r for
two different kinds of inflationary potentials with n ¼ 4. The
upper panel is for the dimension-four potential (with m2 > 0 and
λ > 0). The lower panel is for the toy potential of Eq. (119) (an
m2 > 0 and λ < 0model). We have plotted the relative correction
in units of λ and absorbed an overall minus sign.
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explained the deep reason for the self-resonance behavior
in terms of the underlying description of the quantum
mechanics of many particles.
In the nonrelativistic regime we reorganized the theory

into contact interactions between particles and antiparticles,
with the coupling strength given by λ. For λ > 0 the particles
(and antiparticles) exhibit repulsion, so the homogeneous
configuration established by inflation is stable against
adiabatic perturbations, while for λ < 0 there is mutual
attraction leading to the break up of the homogeneous
configuration and instability. On the other hand, the iso-
curvature modes have very different behavior than the
adiabatic modes. In particular, for λ > 0 the isocurvature
mode leads to an instability, despite the repulsion among the
particles (and antiparticles). The reason for this is that Bose-
Einstein statistics favor the particles clumpingwith particles
and the antiparticles clumping with antiparticles.
We also developed a small-amplitude analysis, which

captured not only the long-wavelength behavior, but also
the higher band structure, and we explained this in terms
of Feynman diagrams of annihilation and decay, where
appropriate.
We then performed the quantization of our perturbations.

As an example we computed the distribution of the number
density of particles minus the density of antiparticles for
λ > 0. For strong resonance, we showed that the inflaton
fragments into separate regions of particles and antiparticles.
Finally, we applied the quantization of the inflaton fields

to the case of particle-antiparticle asymmetry, which is
relevant to some models of baryogenesis [40,41]. We
showed that the symmetric theory can be used to compute
the leading-order behavior of the asymmetric theory in the

limit of weak symmetry breaking. We computed the
corrections to the homogeneous theory from the inhomo-
geneous theory due to self-resonance. The result involves
an integral over the difference in the power between the
adiabatic modes and the isocurvature modes. This differ-
ence is finite and is dominated by the resonant modes at
relatively long wavelengths.
Altogether, along with Part 1 [39], our work gives a

detailed theory of self-resonance after inflation in single
and multifield models. In Part 1 [39] we understood the
long-wavelength behavior using the Goldstone theorem.
Here we have provided the deep underlying physical
understanding of the entire resonance structure, with the
main structure determined by the attraction/repulsion of
particles.
An interesting direction for future work is to incorporate

corrections from possibly large fluctuations of the metric,
and explore gravitational-wave production. Another direc-
tion is to extend this theory by including couplings to other
fields beyond the inflaton, such as Standard Model fields.
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