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Abstract—In this paper, we present a real-time and energy-
efficient multi-scale object detector using Histogram of Oriented
Gradient (HOG) features and Support Vector Machine (SVM)
classification. Parallel detectors with balanced workload are
used to enable processing of multiple scales and increase the
throughput such that voltage scaling can be applied to reduce
energy consumption. Image pre-processing is also introduced to
further reduce power and area cost of the image scales generation.
This design can operate on high definition 1080HD video at 60
fps in real-time with a clock rate of 270 MHz, and consumes 45.3
mW (0.36 nJ/pixel) based on post-layout simulations. The ASIC
has an area of 490 kgates and 0.538 Mbit on-chip memory in a
45nm SOI CMOS process.

I. INTRODUCTION

Object detection is needed for many embedded vision
applications including surveillance, advanced driver assistance
systems (ADAS), portable electronics and robotics. For these
applications, it is desirable for object detection to be real-time,
robust and energy-efficient. Histogram of Oriented Gradients
(HOG) is a widely accepted feature for object detection [3],
which provides a reasonable trade-off between detection accu-
racy and complexity compared to alternative richer features [4].

Real-time processing is necessary for applications such as
ADAS, and autonomous control in unmanned aircraft vehicles
(UAV), where the vehicle needs to react quickly to changing
environments. High frame rate enables faster detection to allow
more time for course correction. High resolution images enable
early detection by having enough pixels to identify objects at
far distances. Finally, in both UAV and portable electronics,
the available energy is limited by the battery whose weight
and size must be kept to a minimum. For ADAS on the other
hand, the power consumption is limited by the heat dissipation
[7]. Thus, energy-efficient object detection is also desirable.

Objects can appear in different sizes and distances as shown
in Fig. 1. Thus, it is essential that detectors support multiple
image scales to detect objects with variable sizes. In this paper,
we will describe a hardware-friendly real-time energy-efficient
HOG-based object detector, with multi-scale support for robust
and accurate detection on high definition video.

II. PREVIOUS WORK

The majority of published implementations for HOG-based
object detection are on CPU and GPU platforms. In addition
to consuming power in the hundreds of Watts (e.g., Nvidia
8800 GTX GPU consumes 185W [8]), which is not suitable

Fig. 1: Images from INRIA person database [1] with different
pedestrian sizes based on their distance from the camera.

for embedded applications, they often cannot reach high def-
inition (HD) resolutions. Implementation in [2] achieves high
throughput on a GPU at 100 fps using the approach presented
in [4] to speed up feature extraction, but with a resolution of
640x480 pixels.

For higher throughput, FPGA-based implementations have
recently been reported. In [6], HOG-based detector is imple-
mented on an FPGA and can process 1080HD (1920x 1080
pixels) at 30 fps with a single scale support. An ASIC version
of this design is presented in [9] with dual cores to enable volt-
age scaling down to 0.7 V with power consumption of 40.3mW
for 1080HD at 30 fps. In [5], the detector is implemented on an
FPGA and can process 1080HD at 64 fps multi-scale support
by time-multiplexing 18 scales across 3 successive frames.
It should be noted that these implementations have relatively
large on-chip memory requirements (e.g., [9] uses 1.22 Mbit
on ASIC, and [5] uses 7 Mbit on FPGA), which contributes
to increased hardware cost.

III. OVERVIEW OF HOG ALGORITHM

Fig. 2 shows a block diagram of the steps involved in
object detection using HOG features. The image is divided
into non-overlapping 8x8 pixels patches called cells, where
gradients are calculated for each pixel. A histogram of the
gradient orientations with 9 bins is generated for each cell.
The histogram is then normalized by its neighboring cells to
increase robustness to texture and illumination variation. For
each cell, the normalization is performed across blocks of 2x2
cells resulting in a final 36-dimension feature.

As mentioned in Section I, scaling is an important factor in
object detection algorithms since there is no prior knowledge
about object distance/size. The precision-recall curve shown in
Fig. 3 is one way to measure the detection accuracy. Increasing
the number of scales, by reducing the scale factor, increases
Average Precision (AP)! from 0.166 with single scale to 0.4
with scale factor of 1.05 (44 scales per 1080HD frame).

! Average precision measures the area under precision-recall curve. Higher
average precision means better detection accuracy.



Cell Gradient Vector

Current cell with the 4
normalization blocks
Block 1 Block 2

8 cells

16 cells

Block 3 Bl

Cell Histogram

8x8 pixels

(9 bins)

Collect HOG features
over detection window
(4608 values)

Block Block Block Block ¥
G g e Detection

Window

Input Image

Cell Histogram Generation

HOG feature

Gradient
Calculation

—> Histogram

Histogram
Normalization

(36 values) Building

Window
Descriptor

Linear SVM
Classification

Detection

Fig. 2: Object detection algorithm using HOG features.
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Fig. 3: Precision-Recall curves for pedestrian detection using
different scaling factors: single scale (AP=0.166), scale of
2 (AP=0.275), scale of 1.2 (AP=0.391), and scale of 1.05
(AP=0.401, used in original HOG algorithm [3]).

Multi-scale detection is done by training one SVM clas-
sifier that has the size of the detection window. An image
pyramid is generated, which is composed of multiple scaled
versions of each frame. All image pyramid levels are then
processed by the same SVM classifier.

IV. HARDWARE ARCHITECTURE
A. Detector

The detector can be divided into HOG feature extraction
and SVM classification. Feature extraction (Fig. 4) includes
cell histogram generation, the histogram buffer, and histogram
normalization. SVM classification (Fig. 5) includes multiply-
and-accumulate (MAC) units to compute the dot product, the
accumulation buffer, and the SVM weights memory.

1) HOG feature extraction: A gradient filter [-1 0 1] is
used to generate a pair of horizontal and vertical gradients for
each pixel. The orientation and the magnitude of the gradient
are then calculated from this pair, and a histogram of 9 bins
is generated for the cell. Since the orientation is only used to
choose the histogram bin, the actual angle value of the gradient
orientation does not need to be calculated. Each gradient
bin can be determined by comparing vertical and horizontal

gradients multiplied by constant angle tangents representing
bins edges. Computing the L2-norm magnitude of gradients
requires a square root operation, which is relatively complex
for hardware implementations. In this work, an Ll-norm is
used for the magnitude to avoid using a square root with no
impact to detection accuracy.

As shown in Fig. 2, each cell requires its neighboring 8
cells for the normalization process. Accordingly, the resulting
9-bin cell histogram must be stored in a column buffer (0.055
Mbit for a single-scale detector), so that it can be accessed
later to compute the normalized histogram. The normalization
is done by dividing the 9-bin histogram by the block energy
(L2-norm) of each of the four neighbouring blocks. Unlike
the gradient magnitude calculation, using L1-norm for nor-
malization results in detection degradation [3]. The square root
module is implemented using a non-restoring architecture and
is shared across the four blocks. Finally, 9 sequential fixed
point dividers are used to generate the final HOG feature,
which is a 36-dimension vector for each cell.

2) SVM Classification: Linear SVM classifiers are usually
used for object detection in conjunction with HOG features [3].
In this work, the classifier is trained off-line and the SVM
weights are stored in an on-chip SRAM, so that the detector
can be configured for different objects. The bit-width of the
SVM weights is reduced to minimize both the memory size
and bandwidth. The 4608 SVM weights are quantized to a
4-bit signed fixed-point representation, with a total memory
size of 0.018 Mbit. HOG feature bit-width is chosen to be 9-
bit signed fixed-point representation to maintain the detection
accuracy.

The HOG feature of each cell is immediately used for
classification once it is extracted so that it is never buffered
or recomputed. All calculations that include the HOG feature
must be completed before it is thrown away. Accordingly,
the SVM classification, which involves a dot product between
HOG features and SVM weights, is done using an on-the-fly
approach similar to [9].

The on-the-fly classification block is shown in Fig. 5.
The processing is done using multiple MAC units. Each
MAC contains two multipliers and two adders to compute
and accumulate the partial dot product of two values of the
window descriptor and the SVM weights. For a 128x64
pixels pedestrian detection window size, each cell is shared
with 16x8 windows, but at different positions within each
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window. Using this approach, the accumulation values (17-
bit) are stored in column buffers instead of the HOG features
(36x9-bits) for a 19x reduction in memory (from 0.336 Mbit
to 0.018 Mbit) for a 1080HD frame.

B. Scale Generator

1) Scale Factor Selection: An image pyramid is generated
for each frame in order to support multi-scale detection. The
ratio between the size of successive levels in each dimension is
called the scale factor. There is a trade-off in selecting the scale
factor between the detection accuracy and number of cells to
process. Table I shows an exponential increase in the number
of cells per frame as more scales are used (i.e., reducing the
scale factor). Using a scale factor of 1.05 in [3] increases the
workload by more than 10x. In this work, a scale factor of
1.2 is chosen as it introduces only 1% reduction in AP, with
an increase of 3.2x in the workload rather than 10x.

2) Scale Generation Architecture: For a scale factor of 1.2,
a total of 12 pyramid levels are generated for a 1080HD frame.
Fig. 6 shows a block diagram of the scale generator module.
On-the-fly processing is used to generate the scales in order
to minimize on-chip memory size.

Pixels are only read once from the external memory. A 3x3
averaging filter is used to low pass filter the original image
before downsampling to prevent aliasing, and then pixels
are stored in the pixel buffers. The 12 scales are generated

TABLE I: Scale factor effect on detection accuracy, with
number of cells per 1080HD frame in the image pyramid.

Scale Factor AP #scales #cells Increase
Single-scale | 0.166 1 32,400 1.0x
2 0.275 4 43,030 1.3x
1.4 0.337 7 65,530 2.0x
1.3 0.372 9 78,660 2.4x
1.2 0.391 12 104,740 3.2%
1.1 0.398 23 184,450 5.7x
1.05 0.401 44 344,220 10.6 %
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Fig. 6: Scale generation architecture.

as follows: the fifth and ninth levels are approximated with
octaves (downsampled by 2) to reduce the number of levels
that require interpolation, and three scales are generated from
each octave (including the original image) with a scale factor
of 1.2 using bilinear interpolation. Three SRAMs are used as
pixel buffers for each octave, as illustrated in Fig. 6, and are
read by the interpolation block. Interpolation for scaled image
generation begins as soon as the required pixels are available
in the pixel buffer. The width of the pixel buffers is chosen to
cover the required pixel support for the three successive scales.
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fps (right) for the three different detectors configurations.?

C. System Architecture

Multi-scale detection increases the power consumption
relative to single-scale due to the scale generation overhead and
the processing for the additional scales. If a single detector is
used, the frequency and voltage must be increased to process
these additional scales while maintaining the throughput of
single-scale; thus in this work, multiple detectors are used in
order to either maintain or reduce the clock frequency and
voltage.

Three different configurations are tested for the shared
parallel detectors architecture: one, three and five detectors.
In each configuration, all detectors are identical, except that
the size of the histogram and SVM accumulator buffers
increase based on the number and size of scales processed
by each detector. For the parallel configurations, the scales are
distributed between the detectors to have a balanced workload.
The detectors are also synchronized such that they use the same
SVM weights at the same time; thus a single SVM memory can
support all detectors with no additional memory bandwidth.

Fig. 7 shows the trade-off between area, power and
throughput in each architecture. As expected, large energy re-
duction is achieved by using three parallel detectors compared
to a single detector. Although the five-detector architecture
gives a lower energy point, the three-detector design is se-
lected because it offers a better energy versus area trade-off.
Fig. 8 shows the overall detection system using three parallel
detectors with balanced workload.

V. IMAGE PRE-PROCESSING

A. Coarse Resolution of Pixel Intensity

The pixel buffer size is 0.363 Mbit, which is half of the
total memory size in the system. The image pixels can be
quantized below the original 8-bit to reduce the size of the
pixel buffer and to reduce the size of the multipliers in the

2Energy numbers for 0.6 V and 1.1 V supplies are estimated from a
ring oscillator voltage versus power and frequency curves. SRAM minimum
voltage is 0.72 V.
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(a)

Fig. 9: Pedestrian image in (a) original and (b) gradient
representations. Image is taken from INRIA person dataset [1].

interpolation block. Fig. 11 shows the AP versus pixel intensity
bit-width. As the HOG features are fairly robust to quantization
noise, the pixels can be quantized to 4-bit for an AP of 0.372
versus 0.389 for 8-bit.

B. Detection on Gradient Image

HOG feature is a function of edge orientations and it should
have consistent performance for detection on other image
representations that preserve edge orientations. Fig. 9 shows
two representations of the same pedestrian: one is the original
intensity image, and the other is the gradient magnitude image.
The gradients are calculated using a simple [-1 O 1] filter.
Edges that compose the pedestrian contour are visible in both
images. To further demonstrate that detection on gradient
images can be reasonable, Fig. 9 shows also a visualization of
trained SVM templates for both original and gradient images.
Both templates capture similar pedestrian characteristics (e.g.
head, shoulders, legs).

The motivation behind processing gradient images is to
further reduce the pixel bit-width, and to reduce the switching
activity in the design. Fig. 10 shows the histograms for the
original and gradient representations of an example image. The
original image pixels values are well distributed across the
whole dynamic range of 8-bit. However in the gradient image,
most of the pixels are concentrated around lower values and do
not cover the whole dynamic range. Thus, the gradient image
can save one bit in pixel bit-width because of the dynamic
range reduction.
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Fig. 11 shows that original images give better AP at high
resolutions, however the difference is less than 2%. At 4-bit
pixel bit-width, both gradient and original images have same
AP. Reducing the pixel bit-width to 3-bit in the gradient images
reduces the AP by only 0.7%, but gives a 25% reduction in
pixel buffer size.

VI. SIMULATION RESULTS
A. Detection Accuracy

The INRIA person dataset [1] was used to evaluate the
impact of the modified parameters on the detection accu-
racy. These modifications include: using L1-norm for gradient
magnitude, fixed-point numbers representation, and generating
image pyramid with a scale factor of 1.2. Our implementation,
which supports multi-scale detection, without pre-processing
is close to the original HOG algorithm [3] with 0.389 AP
compared to 0.4. With pre-processing, our implementation
gives 0.369 AP.
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Fig. 12: (A) Single-scale with one detector at 0.6 V. (B) Multi-
scale with one detector at 1.1 V. (C) Multi-scale with three
detectors at 0.72 V. (D) Multi-scale with three detectors and
pre-processing at 0.72 V.3
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Fig. 13: Layout of the object detector core.

B. Architectural and algorithmic optimization results

Fig. 12 shows the design space of detection accuracy and
power numbers for different architectures at the same through-
put (1080HD at 60 fps). As expected, introducing multi-scale
detection results in a much higher detection accuracy, but with
a large overhead in power consumption (14X power increase
from A to B in Fig. 12). Using a parallel detector architecture
reduces the power by 3.4x due to less workload per detector,
which enables voltage and frequency reduction (from B to C
Fig. 12), without affecting detection accuracy.

Converting the input image to gradient, and reducing
the pixel resolution down to 3-bit, results in a 42% power
reduction in the scale generator block. The pixel buffer size is
reduced from 0.363 Mbit to 0.137 Mbit. Smaller multipliers are
used in the interpolation unit, resulting in 27% saving in logic
area. Detector power is also reduced by 17% due to smaller
subtractors and accumulators in the histogram generation unit,
and due to reduction in switching activity in the data-path.
This pre-processing achieves a 24% overall reduction of the
system power (from C to D in Fig. 12).

3Energy numbers for 0.6 V and 1.1 V supplies are estimated from a
ring oscillator voltage versus power and frequency curves. SRAM minimum
voltage is 0.72 V.



TABLE II: Area and power breakdown for object detector
architecture for both original and gradient images.

Original | Gradient
Pre-processing n/a 7
Scale Generator 240 167
Area (kgates) | poiocior 1 90 86
Detector 2 102 100
Detector 3 133 130
Total 565 490
Pre-processing n/a 0.5
Scale Generator 17.10 9.30
Power (mW) | Detector 1 13.10 10.10
Detector 2 11.60 9.50
Detector 3 10.15 8.05
SVM memory 7.85 7.85
Total 59.80 45.30

TABLE III: Design specifications for three time-shared parallel
detectors, with image pre-processing to 3-bit gradient image.

[9] This work
Technology 65nm CMOS | 45nm SOI CMOS
Area 33x12mm’ | 2.8x0.96 mm’
Gate count 502 kgates 490 kgates
Memory Size 1.22 Mbit 0.538 Mbit
Image resolution 1920x1080 1920x1080
Frequency 42.9 MHz 270 MHz
Frame rate 30 fps 60 fps
Scales 1 12
Supply 0.7V 0.72 V
Power 40.3 mW 45.3 mW
Energy 0.648 nl/pixel 0.364 nl/pixel

C. Hardware Complexity

The final architecture of the multi-scale HOG-based object
detector was implemented in a 45nm SOI CMOS process.
It has three parallel detectors, a scale generator and a pre-
processing unit. The core layout is shown in Fig. 13. The
area and power breakdown for both 8-bit original image
and 3-bit gradient image detectors are shown in Table II.
The pre-processing required for the gradient image detection
architecture introduces very small area and power overhead.
Table III presents a comparison between this work and the
ASIC implementation in [9]. This design can process 1080HD
video at 60 fps, with total power consumption of 45.3 mW at
a supply voltage of 0.72V. Although this work supports multi-
scale detection, its energy per pixel is less than the single scale
detector reported in [9] and on-chip memory size is only 0.538
Mbit.
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