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THE VARIATIONAL POISSON COHOMOLOGY

ALBERTO DE SOLE1 AND VICTOR G. KAC2

To the memory of Boris Kupershmidt (11/27/1946 – 12/12/2010)

Abstract. It is well known that the validity of the so called Lenard-
Magri scheme of integrability of a bi-Hamiltonian PDE can be estab-
lished if one has some precise information on the corresponding 1st vari-
ational Poisson cohomology for one of the two Hamiltonian operators.
In the first part of the paper we explain how to introduce various coho-
mology complexes, including Lie superalgebra and Poisson cohomology
complexes, and basic and reduced Lie conformal algebra and Poisson
vertex algebra cohomology complexes, by making use of the correspond-
ing universal Lie superalgebra or Lie conformal superalgebra. The most
relevant are certain subcomplexes of the basic and reduced Poisson ver-
tex algebra cohomology complexes, which we identify (non-canonically)
with the generalized de Rham complex and the generalized variational
complex. In the second part of the paper we compute the cohomology of
the generalized de Rham complex, and, via a detailed study of the long
exact sequence, we compute the cohomology of the generalized varia-
tional complex for any quasiconstant coefficient Hamiltonian operator
with invertible leading coefficient. For the latter we use some differential
linear algebra developed in the Appendix.
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1. Introduction

The theory of Poisson vertex algebras is a very convenient framework for
the theory of Hamiltonian partial differential equations [BDSK].

First, let us introduce some key notions. Let V be a unital commutative
associative algebra with a derivation ∂. The space g−1 = V/∂V is called the
space of Hamiltonian functions, the image of h ∈ V in g−1 being denoted
by
∫
h. The Lie algebra g0 of all derivations of V , commuting with ∂, is

called the Lie algebra of evolutionary vector fields. Its action on V descends
to g−1.

A λ-bracket on V is a linear map V ⊗ V → F[λ] ⊗ V , a ⊗ b 7→ {aλb},
satisfying the following three properties (a, b ∈ V ):

(sesquilinearity) {∂aλb} = −λ{aλb}, {aλ∂b} = (∂ + λ){aλb},

(skewcommutativity) {bλa} = −{a−∂−λb},
where ∂ is moved to the left,

(Leibniz rule) {aλbc} = {aλb}c+ b{aλc}.

Denote by g1 the space of all λ-brackets on V .
One of the basic constructions of the present paper is the Z-graded Lie

superalgebra

(1.1) W ∂,as (ΠV ) = (Πg−1)⊕ g0 ⊕ (Πg1)⊕ . . . ,

where g−1, g0 and g1 are as above and Πgi stands for the space gi with re-
versed parity. For

∫
f,
∫
g ∈ Πg−1, X,Y ∈ g0 and H ∈ Πg1 the commutators

are defined as follows:
[∫

f,
∫
g
]

= 0 ,(1.2)
[
X,
∫
f
]

=
∫
X(f) ,(1.3)

[X,Y ] = XY − Y X ,(1.4) [
{ . λ . }H ,

∫
f
]
(g) = {fλg}H

∣∣
λ=0

,(1.5)

{fλg}[X,H] = X({fλg}H)− {X(f)λg}H − {fλ,X(g)}H .(1.6)

In Section 5 we construct explicitly the whole Lie superalgebra W ∂,as(ΠV ),
but for applications to Hamiltonian PDE one needs only the condition
[H,K] = 0 for H,K ∈ Πg1, which is as follows (f, g, h ∈ V ):

(1.7) {{fλg}K λ+µh}H−{fλ{gµh}K}H+{gµ{fλh}K}H+(H ↔ K) = 0 .

A λ-bracket { . λ . } = { . λ . }H is called a Poisson λ-bracket if [H,H] = 0,
i.e., one has

(Jacobi identity) {fλ{gµh}} − {gµ{fλh}} = {{fλg}λ+µh}.
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The differential algebra V , endowed with a Poisson λ-bracket , is called a
Poisson vertex algebra (PVA) [DSK1]. Two Poisson λ-brackets { . λ . }H and
{ . λ . }K on V are called compatible if (1.7) holds, which means that their
sum is a Poisson λ-bracket as well.

One of the key properties of a PVA V is that the vector space V/∂V
carries a well-defined Lie algebra structure, given by

(1.8)
{∫

f,
∫
g
}
=
∫
{fλg}

∣∣
λ=0

, f, g ∈ V .

Moreover, V is a left module over the Lie algebra V/∂V with the well-defined
action

(1.9) {
∫
f, g} = {fλg}

∣∣
λ=0

, f, g ∈ V ,

by derivations, commuting with ∂, of the associative product in V and of
the λ-bracket. In particular, all the derivations Xf = {

∫
f , . } of V are

evolutionary; they are called Hamiltonian vector fields.
Two Hamiltonian functions

∫
f and

∫
g are said to be in involution if

(1.10)
{∫

f,
∫
g
}
= 0 .

Given a Hamiltonian function
∫
h ∈ V/∂V and a Poisson λ-bracket on V , the

corresponding Hamiltonian equation is defined by the Hamiltonian vector
field Xh:

(1.11)
du

dt
=
{∫

h, u
}
, u ∈ V .

The equation (1.11) is called integrable if
∫
h is contained in an infinite-

dimensional abelian subalgebra of the Lie algebra V/∂V with bracket (1.8).
Picking a basis

∫
h0 =

∫
h ,
∫
h1
∫
h2, . . . of this abelian subalgebra, we obtain

a hierarchy of integrable Hamiltonian equations

(1.12)
du

dtn
=
{∫

hn, u
}
, n ∈ Z+ ,

which are compatible since the corresponding Hamiltonian vector fields Xhn

commute.
The basic device for proving integrability of a Hamiltonian equation is the

so-called Lenard-Magri scheme, which is the following simple observation,
first mentioned in [GGKM] and [Lax]; a survey of related results up to the
early 90’s can be found in [Dor]. Suppose that the differential algebra V is
endowed with two λ-brackets { . λ . }H and { . λ . }K and assume that:

(1.13)
{∫

hn, u
}
H

=
{∫

hn+1, u
}
K

, n ∈ Z+ , u ∈ V ,

for some Hamiltonian functions
∫
hn ∈ V/∂V . Then all these Hamilton-

ian functions are in involution with respect to both brackets { . λ . }H and
{ . λ . }K on V/∂V .

Note that we do not need to assume that the λ-brackets are Poisson nor
that they are compatible. These assumptions enter when we try to prove
the existence of the sequence,

∫
hn, satisfying (1.13), as we explain below.
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Indeed, let H,K ∈ Πg1 be two compatible Poisson λ-brackets on V .
Since [K,K] = 0, it follows that (adK)2 = 0, hence we may consider
the variational cohomology complex (W ∂,as(ΠV ) =

⊕∞
j=−1Wj , adK), where

W−1 = Πg−1, W0 = g0, W1 = Πg1, . . . . By definition, X ∈ W0 is closed
if, in view of (1.6), it is a derivation of the λ-bracket { . λ . }K , and it is
exact if, in view of (1.5), X = {hλ·}K

∣∣
λ=0

for some h ∈ W−1. Now we
can find a solution to (1.13), by induction on n as follows. By Jacobi iden-
tity in W ∂,as(ΠV ) we have [K, [H,hn]] = −[H, [K,hn]], which, by inductive
assumption, equals −[H, [H,hn−1]] = 0, since [H,H] = 0 and H ∈ W1 is
odd. Thus, the element [H,hn−1] ∈ W0 is closed. If this closed element is
exact, i.e., it equals [K,hn] for some hn ∈ W−1, we complete the nth step of
induction. In general we have

(1.14) [H,hn−1] = [K,hn] + an ,

where an is a representative of the corresponding cohomology class. Looking
at (1.14) more carefully, one often can prove that one can take an = 0, so
the Lenard-Magri scheme still works.

The cohomological approach to the Lenard-Magri scheme was proposed
long ago in [Kra] and [Ol1]. However, no machinery has been developed
in order to compute this cohomology. In the present paper we develop

such a machinery by introducing a “covering” complex (W̃ ∂,as, adK) of the
complex (W ∂,as, adK), whose cohomology is much easier to compute, and
then study in detail the corresponding long exact sequence.

What does this have to do with the classical Hamiltonian PDE, like the
KdV equation? In order to explain this, consider the algebra of differential

polynomials Rℓ = F[u
(n)
i

∣∣i = 1, . . . , ℓ ; n ∈ Z+] with the derivation ∂, defined

on generators by ∂(u
(n)
i ) = u

(n+1)
i . Here one should think of the ui as func-

tions, depending on a parameter t (time), in one independent variable x,
which is a coordinate on a 1-dimensional manifold M , and of ∂ as the deriv-

ative by x, so that u
(n)
i is the nth derivative of ui. Furthermore, one should

think of
∫
h ∈ Rℓ/∂Rℓ as

∫
Mhdx since Rℓ/∂Rℓ provides the universal space

in which integration by parts holds.
It is straightforward to check that equation (1.11) can be written in the

following equivalent, but more familiar, form:

(1.15)
du

dt
= H(∂)

δh

δu
,

where δh
δu is the vector of variational derivatives

(1.16)
δh

δui
=
∑

n∈Z+

(−∂)n
∂h

∂u
(n)
i

,

andH(∂) = (Hij(∂))
ℓ
i,j=1 is the ℓ×ℓmatrix differential operator with entries

Hij(∂) = {uj∂ui}→. Here the arrow means that ∂ should be moved to the
right. It is not difficult to show that the skewcommutativity of the λ-bracket
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is equivalent to skewadjointness of the differential operator H(∂), and, in
addition, the validity of the Jacobi identity of the λ-bracket is, by definition,
equivalent to H(∂) being a Hamiltonian operator. Furthermore, the bracket
(1.8) on Rℓ/∂Rℓ takes the familiar form

(1.17) {
∫
f,
∫
g} =

∫
δg

δu
·

(
H(∂)

δf

δu

)
,

and one can show that this is a Lie algebra bracket if and only if H(∂) is a
Hamiltonian operator [BDSK].

Given λ-brackets {uiλuj} = −{uj−∂−λ
ui} ∈ Rℓ[λ] of any pair of generators

ui, uj , one can extend them uniquely to a λ-bracket on Rℓ, which is given
by the following explicit formula [DSK1]

(1.18) {fλg} =
∑

1≤i,j≤ℓ
m,n∈Z+

∂g

∂u
(n)
j

(∂ + λ)n{ui∂+λuj}→(−∂ − λ)m
∂f

∂u
(m)
i

.

This λ-bracket defines a PVA structure on Rℓ if and only if the Jacobi
identity holds for any triple of generators ui, uj, uk [BDSK].

The simplest example of a Hamiltonian operator is the Gardner-Faddeev-
Zakharov (GFZ) operator K(∂) = ∂. It is the observation in [Gar] that the
KdV equation

(1.19)
du

dt
= 3uu′ + cu′′′ , c ∈ F ,

can be written in a Hamiltonian form

(1.20)
du

dt
= D

δh1
δu

, where h1 =
1

2
(u3 + cuu′′) ,

and it is the subsequent proof in [FZ] that KdV is a completely integrable
Hamiltonian equation, that triggered the theory of Hamiltonian PDE. The
corresponding λ-bracket on R1 is, of course, given by the formula {uλu} = λ,
extended to R1 ⊗R1 → F[λ]⊗R1 by (1.18).

In a subsequent paper [Mag], Magri showed that the operator H(∂) =
u′ + 2u∂ + c∂3 is Hamiltonian for all c ∈ F, that it is compatible with the
GFZ operator, and that the KdV equation can be written in a different
Hamiltonian form

(1.21)
du

dt
= (u′ + 2u∂ + c∂3)

δh1
δu

, where h1 =
1

2
u2.

Moreover, he explained how to use this to prove the validity of the Lenard-
Magri scheme 1, which gave a new proof of integrability of KdV and some
other equations.

1Since in the literature the names Lenard and Magri scheme are alternatively used,
we decided to call it the Lenard-Magri scheme. The history of Lenard’s contribution
is colorfully described in [PS], where one can also find an extensive list of subsequent
publications on the subject.
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Of course, the λ-bracket corresponding to the Magri operator is given by

(1.22) {uλu} = (∂ + 2λ)u+ cλ3 ,

which defines (via (1.18)) a PVA structure on R1 for all values of c ∈ F.
The reader can find a detailed exposition of the applications of PVA to

Hamiltonian PDE in the paper [BDSK], where, in particular, some sufficient
conditions for the validity of the Lenard-Magri scheme and its generaliza-
tions are found and applied to the proof of integrability of many important
equations. However many Hamiltonian equations remain out of reach of the
methods of [BDSK], but we think that the cohomological approach is more
powerful (though less elementary) and we are planning to demonstrate this
in a subsequent paper.

In order to make our ideas clearer (or, perhaps, more confusing) we begin
the paper with a long digression, which goes from Section 2 through Section
10, to a general approach to various cohomology theories (in fact, the reader,
interested only in applications to the theory of integrable Hamiltonian PDE,
can, without much difficulty, jump to Section 11).

In Section 2, given a vector superspace V , we consider the universal Z-
graded Lie superalgebra W (V ) = ⊕j≥−1Wj(V ) with W−1(V ) = V . Uni-
versality here is understood in the sense that, given any other Z-graded Lie
superalgebra g = ⊕j≥−1gj with g−1 = V , there exists a unique, grading
preserving homomorphism g → W (V ), identical on V . It is easy to show
that Wj(V ) = Hom(Sj+1(V ), V ) for all j ≥ −1, and one can write down
explicitly the Lie superalgebra bracket. In particular, W0(V ) = EndV and
W1(V ) = Hom(S2V, V ), so that any even element of the vector superspace
W1(V ) defines a commutative superalgebra structure on V (and this corre-
spondence is bijective).

On the other hand, as observed in [CK], any odd element X of the vector
superspace W1(ΠV ) defines an skewcommutative superalgebra structure on
V by the formula

(1.23) [a, b] = (−1)p(a)X(a⊗ b) , a, b ∈ V ,

where p is the parity on V . Moreover, this is a Lie superalgebra structure if
and only if [X,X] = 0 in W (ΠV ). Thus, given a Lie superalgebra structure
on V , considering the corresponding element X ∈ W1(ΠV ), we obtain a
cohomology complex (C• = ⊕j∈ZC

j, adX), where Cj = Wj+1(ΠV ), and it
turns out that C• = C•(V, V ) coincides with the cohomology complex of
the Lie superalgebra V with coefficients in the adjoint representation. More
generally, given a module M over the Lie superalgebra V , one considers,
instead of V , the Lie superalgebra V ⋉M with M an abelian ideal, and by
a simple reduction procedure constructs the cohomology of the Lie superal-
gebra V with coefficients in M . This construction for V purely even goes
back to the paper [NR] on deformation theory.

In Section 3, assuming that V carries a structure of a commutative as-
sociative superalgebra, we let W as

−1(ΠV ) = ΠV , W as
0 (ΠV ) = Der V , the
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subalgebra of all derivations of the superalgebra V in the superalgebra
EndΠV = EndV (the superscript “as” stands for “associative”). Let
W as(ΠV ) = ⊕j≥−1W

as
j (ΠV ) be the full prolongation in the Lie superal-

gebra W (ΠV ), defined inductively for j ≥ 1 by

W as
j (ΠV ) =

{
a ∈ Wj (ΠV )

∣∣∣[a,W−1 (ΠV )]⊂W as
j−1 (ΠV )

}
.

Then odd elements X in W as
1 (ΠV ), such that [X,X] = 0, bijectively corre-

spond to Poisson algebra structures on V (with the given commutative asso-
ciative superalgebra structure). In this case the complex (W as(ΠV ), adX) is
the Poisson cohomology complex of the Poisson superalgebra V (introduced
in [Lic]).

Incidentally, one can introduce a commutative associative product on
W as(ΠV ), making it (along with the Lie superalgebra bracket) an odd Pois-
son (= Gerstenhaber) superalgebra. Here we observe a remarkable duality
when passing from ΠV to V : W as(V ) is an (even) Poisson superalgebra,
whereas the odd elements of W as

1 (V ) correspond to odd Poisson superalge-
bra structures on V .

Next, in Section 4 we consider the case when V carries a structure of
an F[∂] -module. Here and throughout the paper F[∂], as usual, denotes
the algebra of polynomials in an (even) indeterminate ∂. Motivated by the
construction of the universal Lie superalgebra W (ΠV ), we construct a Z-
graded Lie superalgebraW ∂(ΠV ) = ⊕∞

k=−1W
∂
k (ΠV ), which, to some extent,

plays the same role in the theory of Lie conformal algebra as W (ΠV ) plays
in the theory of Lie algebras (explained above).

Recall that a Lie conformal algebra is an F[∂]-module, endowed with the
λ-bracket, satisfying sesquilinearity, skewcommutativity and Jacobi identity
(introduced above). In other words, a Lie conformal algebra is an analogue
of a Lie algebra in the same way as a Poisson vertex algebra is an analogue
of a Poisson algebra.

We let W ∂
−1(ΠV ) = Π(V/∂V ) and W ∂

0 (ΠV ) = EndF[∂] V , and construct

W ∂(ΠV ) as a prolongation in W (Π(V/∂V )) (not necessarily full), so that
odd elements X ∈ W ∂

1 (ΠV ) parameterize sesquilinear skewcommutative λ-
brackets on V , and the λ-bracket satisfies the Jacobi identity (i.e., defines
on V a Lie conformal algebra structure) if and only if [X,X] = 0.

In the same way as in the Lie algebra case, we obtain a cohomology
complex (W ∂(ΠV ), adX), provided that [X,X] = 0 for an odd element X ∈
W ∂

1 (ΠV ), and this complex (after the shift by 1), is the Lie conformal algebra
cohomology complex with coefficients in the adjoint representation. In the
same way, by a reduction, we recover the Lie conformal algebra cohomology
complex with coefficients in any representation, studied in [BKV], [BDAK],
[DSK2].

Next, in Section 5 we consider the case when V carries both, a structure
of an F[∂]-module, and a compatible with it commutative algebra structure,
in other words, V is a differential algebra. Then in the same way as above,
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we construct the Lie superalgebra W ∂,as(ΠV ) (cf. (1.1)) as a Z-graded

subalgebra of W ∂(ΠV ), for which W ∂,as
−1 (ΠV ) = W ∂

−1(ΠV ) = Π(V/∂V ),

W ∂,as
0 (ΠV ) = DerF[∂] V ⊂ W ∂

0 (ΠV ) = EndF[∂] V , and W ∂,as
1 (ΠV ) is such

that its odd elements X parameterize all λ-brackets on the differential alge-
bra V , so that those satisfying [X,X] = 0 correspond to PVA structures on
V . This explains the strange notation (1.1) of this Lie superalgebra.

In Section 6 we construct the universal Lie conformal superalgebra W̃ ∂(V )
for a finitely generated F[∂]-supermodule V , and in Section 7 we construct

the universal odd Poisson vertex algebra W̃ ∂,as(ΠV) for a finitely generated
differential superalgebra V. These constructions are very similar in spirit to
the constructions of the universal Lie superalgebras W ∂(V ) and W ∂,as(V),
from Sections 4 and 5 respectively. The finitely generated assumption is
needed in order for the corresponding λ-brackets to be polynomial in λ.

Note that in the definition of the Lie algebra bracket on V/∂V , and its
representation on V , as well in the discussion of the Lenard-Magri scheme,
we needed only that V is a Lie conformal algebra. However, for practical
applications one usually uses PVA’s, and, in fact some special kind of PVA’s,
which are differential algebra extensions of Rℓ with the λ-bracket given by
formula (1.18). For such a PVA V we construct, in Sections 9 a subalgebra
of the Lie algebra W ∂,as(ΠV )

W var(ΠV ) = ⊕j≥−1W
var
j ,

where W var
−1 = W ∂,as

−1 , but W var
j for j ≥ 0 may be smaller. For example W var

0

consists of derivations of the form
∑

1≤j≤ℓ
n∈Z+

Pj,n
∂

∂u
(n)
j

, commuting with ∂, and

it is these derivations that are called in variational calculus evolutionary
vector fields. Next, W var

1 consists of all λ-brackets of the form (1.18), etc.
We call elements of W var

k the variational k-vector fields.
There has been an extensive discussion of variational poly-vector fields

in the literature. The earliest reference we know of is [Kup], see also the
book [Ol2]. One of the later references is [IVV]; the idea to use Cartan’s
prolongation comes from this paper.

In order to solve the Lenard-Magri scheme (1.13) over a differential func-
tion extension V of Rℓ with the λ-brackets { . , . }H and { . , . }K of the
form as in (1.18), one has to compute the cohomology of the complex
(W var(ΠV ), adK), where K ∈ W var

1 is such that [K,K] = 0, as we ex-
plained above.

In order to compute this variational Poisson cohomology, we construct,
in Section 10 a Z+-graded Lie conformal superalgebra (which is actually

a subalgebra of the odd PVA W̃ ∂,as(ΠV)) W̃ var(ΠV ) = ⊕j≥−1W̃
var
j with

W̃ var
−1 = V , for which the associated Lie superalgebra is W var(ΠV ). Since

the Lie superalgebra W var(ΠV ) acts on the Lie conformal superalgebra
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W̃ var(ΠV ), in particular, K acts, providing it with a differential dK , com-
muting with the action of ∂. We thus have an exact sequence of complexes:

(1.24) 0 → (∂W̃ var(V ), dK) → (W̃ var(V ), dK) → (W var(V ), adK) → 0 ,

so that we can study the corresponding cohomology long exact sequence.
To actually perform calculations, we identify (non-canonically) the space

W̃ var(ΠV ) with the space Ω̃•(V ) of the de Rham complex, and the space
W var(ΠV ) with the space of the reduced de Rham complex = variational
complex Ω•(V ).

We thus get the “generalized” de Rham complex (Ω̃•(V ), dK) and the
“generalized” variational complex (Ω•(V ), adK). The ordinary de Rham
and variational complexes are not, strictly speaking, special cases, since
they correspond to K = I, which is not a skewadjoint operator. However, in
the case when the differential operator K is quasiconstant, i.e., ∂

∂u
(n)
i

(K) = 0

for all i, n, the construction of these complexes is still valid.
In Section 11 we completely solve the problem of computation of coho-

mology of the generalized de Rham complex (Ω̃•(V ), dK) in the case when
V is a normal algebra of differential functions and K is a quasiconstant ma-
trix differential operator with invertible leading coefficient. For that we use
“local” homotopy operators, similar to those introduced in [BDSK] for the
de Rham complex.

After that, as in [BDSK], we study the cohomology long exact sequence
corresponding to the short exact sequence (1.24). As a result we get a com-
plete description of the cohomology of the generalized variational complex
for an arbitrary quasiconstant ℓ×ℓmatrix differential operator K of order N
with invertible leading coefficient. In fact, we find simple explicit formulas
for representatives of cohomology classes, and we prove that

dimHk(Ω•(V), adK) =

(
Nℓ

k + 1

)
,

provided that quasiconstants form a linearly closed differential field. These
results lead to further progress in the application of the Lenard-Magri scheme
(work in progress).

In the special case when K is a constant coefficient order 1 skewadjoint
matrix differential operator, it is proved in [Get] that the variational Poisson
cohomology complex is formal.

Our explicit description of the long exact sequence in terms of polydif-
ferential operators leads to some problems on systems of linear differential
equations of arbitrary order in the same number of unknowns. In the Ap-
pendix we develop some differential linear algebra in order to solve these
problems.

All vector spaces are considered over a field F of characteristic zero. Ten-
sor products, direct sums, and Hom’s are considered over F, unless otherwise
specified.
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We wish to thank A. Kiselev for drawing our attention to the cohomo-
logical approach to the Lenard-Magri scheme, I. Krasilshchik for correspon-
dence, and A. Maffei for useful discussions.

2. The universal Lie superalgebra W (V ) for a vector
superspace V , and Lie superalgebra cohomology

Recall that a vector superspace is a Z/2Z-graded vector space U = U0̄ ⊕
U1̄. If a ∈ Uα, where α ∈ Z/2Z = {0̄, 1̄}, one says that a has parity
p(a) = α. In this case we say that the superspace U has parity p. By a
superalgebra structure on U we always mean a parity preserving product U⊗
U → U, a⊗ b 7→ ab, which is called commutative (resp. skewcommutative)

if ba = (−1)p(a)p(b)ab (resp. ba = −(−1)p(a)p(b)ab).
An endomorphism of U is called even (resp. odd) if it preserves (resp.

reverses) the parity. The superspace End(U) of all endomorphisms of U
is endowed with a Lie superalgebra structure by the formula: [A,B] =

A ◦B − (−1)p(A)p(B)B ◦ A.
One denotes by ΠU the superspace obtained from U by reversing the

parity, namely ΠU = U as a vector space, with parity p̄(a) = p(a) + 1̄. One
defines a structure of a vector superspace on the tensor algebra T (U) over
U by additivity. The symmetric, (respectively exterior) superalgebra S(U)
(resp.

∧
(U)) is defined as the quotient of the tensor superalgebra T (U)

by the relations u⊗ v − (−1)p(u)p(v)v ⊗ u (resp. u⊗ v + (−1)p(u)p(v)v ⊗ u).
Note that S(ΠU) is the same as

∧
U as a vector space, but not as a vector

superspace.

2.1. The universal Lie superalgebra W (V ). Let V be a vector super-
space with parity p̄ (the reason for this notation will be clear later). We recall
the construction of the universal Lie superalgebra W (V ) associated to V .
Let Wk(V ) = Hom(Sk+1(V ), V ), the superspace of (k+1)-linear supersym-
metric functions on V with values in V , and let W (V ) =

⊕∞
k=−1Wk(V ).

Again, we denote its parity by p̄. We endow this vector superspace with
a structure of a Z-graded Lie superalgebra as follows. If X ∈ Wh(V ),
Y ∈ Wk−h(V ), with h ≥ −1, k ≥ h − 1, we define X�Y to be the fol-
lowing element in Wk(V ):

(2.1)

X�Y (v0, . . . , vk)

=
∑

i0<···<ik−h

ik−h+1<···<ik

ǫv(i0, . . . , ik)X(Y (vi0 , . . . , vik−h
), vik−h+1

, . . . , vik) .

Here ǫv(i0, . . . , ik) = 0 if two indexes are equal, and, for i0, . . . , ik distinct,
ǫv(i0, . . . , ik) = (−1)N , where N is the number of interchanges of indexes
of odd vi’s in the permutation. For example, if V is purely even, then
ǫv(i0, . . . , ik) = 1 for every permutation, while, if V is purely odd, then
ǫv(i0, . . . , ik) is the sign of the permutation σ ∈ Sk+1 given by σ(ℓ) = iℓ.
The above formula, for h = −1 gives zero, while for k = h − 1 gives
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X(Y, v0, . . . , vk). Clearly, X�Y is a supersymmetric map if both X and
Y are, hence X�Y is a well-defined element of Wk(V ). We then define the
bracket [· , ·] : Wh(V )×Wk−h(V ) → Wk(V ) by the following formula:

(2.2) [X,Y ] = X�Y − (−1)p̄(X)p̄(Y )Y�X .

Proposition 2.1. The bracket (2.2) defines a Lie superalgebra structure on
W (V ).

Proof. The bracket (2.2) is skewcommutative by construction. Moreover,
it is easy to see that the operation � is right symmetric, i.e., (X,Y,Z) =

(−1)p̄(Y )p̄(Z)(X,Z, Y ), where (X,Y,Z) = (X�Y )�Z − X�(Y �Z). The
right symmetry of � implies the Jacobi identity for bracket (2.2). �

According to the above definitions, W−1(V ) = V , W0(V ) = End(V ), and
the bracket between W0(V ) and W−1(V ) is given by the action of End(V )
on V . Moreover, for X ∈ Wk(V ) and Y ∈ W−1(V ) = V , we have

(2.3) [X,Y ](v1, . . . , vk) = X(Y, v1, . . . , vk) , v1, . . . , vk ∈ V ,

while for X ∈ W0(V ) and Y ∈ Wk(V ), k ≥ −1, we have

(2.4)

[X,Y ](v0, . . . , vk) = X
(
Y (v0, . . . , vk)

)

−(−1)p̄(X)p̄(Y )
k∑

i=0

(−1)p̄(X)s̄0,i−1Y (v0, . . . X(vi) . . . , vk) .

Here and further we let, for i ≤ j,

(2.5) s̄i,j = p̄(vi) + · · ·+ p̄(vj) .

Finally, if X ∈ W1(V ) and Y ∈ Wk−1(V ), k ≥ 0, we have [X,Y ] = X�Y −

(−1)p̄(X)p̄(Y )Y�X, where

(2.6)

X�Y (v0, . . . , vk) =
k∑

i=0

(−1)p̄(vi)(p̄(Y )+s̄0,i−1)X
(
vi, Y (v0,

i
ˇ. . ., vk)

)
,

Y�X(v0, . . . , vk)

=
∑

0≤i<j≤k

(−1)p̄(vi)s̄0,i−1+p̄(vj )(s̄0,j−1+p̄(vi))Y
(
X(vi, vj), v0,

i
ˇ. . .

j
ˇ. . ., vk

)
.

In particular, if both X and Y are in W1(V ), we get
(2.7)

X�Y (v0, v1, v2) = X
(
Y (v0, v1), v2

)
+ (−1)p̄(Y )p̄(v0)X

(
v0, Y (v1, v2)

)

+ (−1)(p̄(v0)+p̄(Y ))p̄(v1)X
(
v1, Y (v0, v2)

)
.

Remark 2.2. It follows from (2.3) that we have the following universality
property of the Lie superalgebra W (V ): for any Z-graded Lie superalgebra
g =

⊕∞
k=−1 gk with g−1 = V there is a canonical homomorphism of Z-graded

Lie superalgebras φ : g → W (V ), extending the identity map on V , given
by

φ(a)(v0, . . . , vk) = [. . . [[a, v0], v1], . . . , vk] , if k ≥ 0 .
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This map is an embedding if and only if g has no ideals in
⊕

k≥0 gk.

Remark 2.3. If V is a finite dimensional vector superspace, then W (V )
coincides with the Lie superalgebra of all polynomial vector fields on V
(this explains the letter W , for Witt).

Remark 2.4. If V is purely odd, then W (V ) coincides with the so called
Nijenhuis-Richardson algebra, which plays an important role in deformation
theory [NR].

2.2. The space W (V,U) as a reduction of W (V ⊕ U). Let V and U be
vector superspaces with parity p̄. We define the Z+-graded vector super-
space (with parity still denoted by p̄) W (V,U) =

⊕
k∈Z+

Wk(V,U), where

Wk(V,U) = Hom(Sk+1(V ), U).
It can be obtained as a reduction of the universal Lie superalgebraW (V ⊕

U) as follows. We consider the subspace

(2.8) Hom(Sk+1(V ⊕ U), U) ⊂ Wk(V ⊕ U) ,

defined by the canonical direct sum decomposition

Wk(V ⊕ U) = Hom(Sk+1(V ⊕ U), U)⊕Hom(Sk+1(V ⊕ U), V ) .

The kernel of the restriction map X 7→ X
∣∣
Sk+1(V )

is the subspace

(2.9)
{
X ∈ Hom(Sk+1(V ⊕ U), U)

∣∣X(Sk+1(V )) = 0
}
⊂ Wk(V ⊕ U) .

Hence we get an induced isomorphism of superspaces

(2.10) Hom(Sk+1(V ⊕ U), U)
/{

X
∣∣X(Sk+1(V )) = 0

} ∼
−→ Wk(V,U) .

Proposition 2.5. Let X ∈ Wh(V ⊕ U). Then the adjoint action of X on
W (V ⊕ U) leaves the subspaces (2.8) and (2.9) invariant provided that

(i) X(w0, . . . , wh) ∈ U if at least one of the arguments wi lies in U ,
(ii) X(v0, . . . , vh) ∈ V if all the arguments vi lie in V .

In this case adX induces a well-defined map on the reduction W (V,U), via
the isomorphism (2.10).

Proof. The proof is immediate from the definition of the Lie bracket (2.2)
on W (V ⊕ U). �

Remark 2.6. An element X ∈ W1(V ⊕ U) defines a commutative (not nec-
essarily associatve) product · on the superspace V ⊕ U . In this case, con-
ditions (i) and (ii) in Proposition 2.5 exactly mean that V · V ⊂ V and
that (V ⊕ U) · U ⊂ U . Moreover, the induced action of adX on W (V,U) is
independent of the product on U .
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2.3. Prolongations. Let V be a vector superspace, and let g0 be a sub-
algebra of the Lie superalgebra End(V ). A prolongation of g0 is a Z-
graded subalgebra g =

⊕∞
k=−1 gk of the Z-graded Lie superalgebra W (V ) =⊕∞

k=−1Wk(V ), such that g−1 = W−1(V ) = V and g0 coincides with the
given Lie superalgebra.

The full prolongation W g0(V ) =
⊕∞

k=−1W
g0
k (V ) of g0 is defined by letting

W g0
−1(V ) = V, W g0

0 (V ) = g0 and, inductively, for k ≥ 1,

W g0
k (V ) =

{
X ∈ Wk(V )

∣∣ [X,W−1(V )] ⊂ W g0
k−1(V )

}
.

It is immediate to check, by the Jacobi identity, that the above formula
defines a maximal prolongation of the Lie superalgebra W (V ).

2.4. Lie superalgebra structures. By definition, the even elements X ∈
W1(V ) are exactly the commutative (not necessariy associative) superalge-
bra structures on V : forX ∈ W1(V )0̄ we get a commutative product on V by
letting uv = X(u, v). Similarly, the skewcommutative superalgebra struc-
tures on a superspace L with parity p are in bijective correspondence with
the odd elements of W1(ΠL): for X ∈ W1(ΠL)1̄, we get a skewcommutative
product on L by letting

(2.11) [a, b] = (−1)p(a)X(a, b) , a, b ∈ L ,

and vice-versa [CK].
Furthermore, let X ∈ W1(ΠL)1̄, and consider the corresponding skew-

commutative product (2.11) on L. The Lie bracket of X with itself then
becomes, by (2.7),

[X,X](a, b, c) = 2X�X(a, b, c)

= −(−1)p(b)2
{
[a, [b, c]] − (−1)p(a)p(b)[b, [a, c]] − [[a, b], c]

}
.

Hence, the Lie superalgebra structures on L are in bijective correspondence,
via (2.11), with the set

(2.12)
{
X ∈ W1(ΠL)1̄

∣∣ [X,X] = 0
}
.

Therefore, for any Lie superalgebra L, we have a differential dX = adX,
where X in (2.12) is associated to the Lie superalgebra structure on L, on
the superspaceW (ΠL). This coincides, up to a sign in the formula of the dif-
ferential, with the usual Lie superalgebra cohomology complex (C•(L,L), d)
for the Lie superalgebra L with coefficients in its adjoint representation (in
equation (2.15) below we give an explicit formula for the differential dX for
an arbitrary representation M). Thus the complex C•(L,L) has a canoni-
cal Lie superalgebra structure for which the differential dX (but not d) is a
derivation.

In the next section we construct, by reduction, the Lie superalgebra coho-
mology complex (C•(L,M), d) for the Lie superalgebra L with coefficients
in an arbitrary L-module M .
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2.5. Lie superalgebra modules and cohomology complexes. Let L
and M be vector superspaces with parity p, and consider the reduced super-
space W (ΠL,ΠM) =

⊕∞
k=−1Hom(Sk+1(ΠL),ΠM) introduced in Section

2.2, with parity denoted by p̄.
Suppose now that L is a Lie superalgebra and M is an L-module. This is

equivalent to say that we have a Lie superalgebra structure on the superspace
L⊕M extending the Lie bracket on L, such that M is an abelian ideal, the
bracket between a ∈ L and m ∈ M being a(m). According to the above
observations, such a structure corresponds, bijectively, to an element X of
the following set:

(2.13)

{
X ∈ W1(ΠL⊕ΠM)1̄

∣∣∣∣
[X,X] = 0 ,X(L,L) ⊂ L,
X(L,M) ⊂ M, X(M,M) = 0

}
.

Explicitly, to X in (2.13) we associate the corresponding Lie superalgebra
bracket on L given by (2.11), and the corresponding L-module structure on
M given by

(2.14) a(m) = (−1)p(a)X(a,m) , a ∈ L, m ∈ M .

Note that every element X in the set (2.13) satisfies conditions (i) and (ii)
in Proposition 2.5. Hence adX induces a well-defined endomorphism dX of
W (ΠL,ΠM) such that d2X = 0, thus making (W (ΠL,ΠM), dX ) a complex.
The explicit formula for the differential dX follows from equations (2.6) and
from the identifications (2.11) and (2.14). For Y ∈ Wk−1(ΠL,ΠM), we have

(2.15)

(dXY )(a0, . . . , ak) =
k∑

i=0

(−1)αiai
(
Y (a0,

i
ˇ. . ., ak)

)

+
∑

0≤i<j≤k

(−1)αijY ([ai, aj ], a0,
i
ˇ. . .

j
ˇ. . ., ak) ,

where,

(2.16)
αi = 1 + (p(ai) + 1)(p̄(Y ) + s0,i−1 + i+ 1) ,

αi,j = p̄(Y ) + (p(ai) + 1)(s0,i−1 + i+ 1)
+(p(aj) + 1)(s0,j−1 + j + p(ai) + 1) ,

and, recalling (2.5), we let, for i ≤ j,

(2.17) si,j = p(ai) + · · ·+ p(aj) .

Note that, in the special case when M = L is the adjoint representation,
the complex (W (ΠL,ΠM), dX ) coincides with the complex (W (ΠL), dX )
discussed in Section 2.4. In the special case when L is a (purely even) Lie
algebra and M is a purely even L-module, we have p̄(Y ) ≡ k mod 2, and
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the above formula reduces to

(2.18)

(dXY )(a0, . . . , ak) = (−1)k
( k∑

i=0

(−1)iai
(
Y (a0,

i
ˇ. . ., ak)

)

+
∑

0≤i<j≤k

(−1)i+jY ([ai, aj ], a0,
i
ˇ. . .

j
ˇ. . ., ak)

)
,

which, up to the overall sign factor (−1)k, is the usual formula for the Lie
algebra cohomology differential (see e.g. [Bou]).

In conclusion, the cohomology complex (C•(L,M) =
⊕

k∈Z+
Ck(L,M), d)

of a Lie superalgebra L with coefficients in an L-module M can be defined
by letting Ck(L,M) = Wk−1(ΠL,ΠM) and d = dX .

Remark 2.7. We have a canonical representation of a Lie superalgebra L on
each Wk(ΠL,ΠM) = Hom(Sk+1(ΠL),ΠM), that we denote by a 7→ La, a ∈
L (the Lie derivative). It is easy to check that La = ad[a,X]. Hence,
defining the contraction operators ιa = ad a, we have Cartan’s formula La =
[ιa, dX ]. This, together with the observation that, whenM = L is the adjoint
representation, dX is a derivation of the Lie bracket in W (ΠL), leads us to
believe that our choice of signs for the differential, contractions and Lie
derivatives in the Lie superalgebra cohomology complex is the most natural
one. In fact, one checks that the most general choice of signs which keeps
Cartan’s formula valid up to a sign is the following:

dX(Y ) = ǫ(p̄(Y ))[X,Y ] , ιa(Y ) = δ(p(a))ǫ(p̄(Y ) + 1̄)[a, Y ] ,

where ǫ and δ are arbitrary functions: Z/2Z → {±1}. In this case Cartan’s
formula has the form La = δ(p(a))[ιa, dX ]. Our choice of signs is ǫ = δ = +1.
The usual choice, see e.g. [Bou], in the case when L and M are purely even,
is δ = +1 and ǫ(k̄) = (−1)k, which corresponds to (ιa0(Y ))(a1, . . . , ak) =
Y (a0, a1, . . . , ak). But this choice cannot be extended to the super case, if
we require Cartan’s formula to hold (up to a sign).

3. The universal (odd) Poisson superalgebra for a
commutative associative superalgebra A and Poisson

superalgebra cohomology

Recall that a Poisson (resp. odd Poisson (=Gerstenhaber)) superalgebra
P, with parity p, is a commutative associative superalgebra endowed with
a bracket [· , ·] which makes P (resp. ΠP) a Lie superalgebra, satisfying the
following Leibniz rule:

[a, bc]− [a, b]c = (−1)p(a)p(b)b[a, c]
(
resp. = (−1)(p(a)+1̄)p(b)b[a, c]

)
.

Usually the commutative associative product on P is denoted by · in the
Poisson superalgebra case, and by ∧ in the odd Poisson superalgebra case.
For example, if (A, g) is a Lie superalgebroid over a commutative associative
algebra A, then SA(g) has a natural structure of a Poisson superalgebra, and
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SA(Πg) has a natural structure of an odd Poisson superalgebra, with the
bracket on g extended by the Leibniz rule.

Remark 3.1. If P is a Poisson (resp. odd Poisson) algebra, we can consider
the opposite Poisson (resp. odd Poisson) algebra Pop, with the reversed
product, and the opposite bracket, [a, b]op = −[b, a].

3.1. The universal odd Poisson superalgebra ΠW as(ΠA). Throughout
this section, we let A be a commutative associative superalgebra with parity
p, and let Der(A) be the Lie superalgebra of derivations of A, i.e., linear maps

X : A → A satisfying the Leibniz rule X(ab) = X(a)b+ (−1)p(a)p(b)X(b)a.
Consider the universal Lie superalgebra W (ΠA) =

⊕∞
k=−1Wk(ΠA) as-

sociated to the vector superspace ΠA, with parity denoted by p̄. The Lie
superalgebra Der(A) is a subalgebra of W0(ΠA) = End(ΠA), so we can
consider its full prolongation, as defined in Section 2.3, which we denote by

W as(ΠA) =
∞⊕

k=−1

W as
k (ΠA) ⊂ W (ΠA) .

Proposition 3.2. For k ≥ −1, the superspace W as
k (ΠA) consists of lin-

ear maps X : Sk+1(ΠA) → ΠA satisfying the following Leibniz rule (for
a0, . . . , ak−1, b, c ∈ A, k ≥ 0):
(3.1)

X(a0, . . . , ak−1, bc) = X(a0, . . . , ak−1, b)c+ (−1)p(b)p(c)X(a0, . . . , ak−1, c)b .

Proof. It follows by an easy induction on k ≥ 0. �

Remark 3.3. Equation (3.1) and the symmetry relations imply the following
more general formula, for every i = 0, . . . , k:

(3.2)
X(a0, . . . , bici, . . . , ak) = (−1)p(ci)(si+1,k+k−i)X(a0, . . . , bi, . . . , ak)ci

+ (−1)p(bi)(p̄(X)+s0,i−1+i)biX(a0, . . . , ci, . . . , ak) ,

where sij is defined in (2.17).

We next define a structure of commutative associative superalgebra on
the superspace ΠW as(ΠA), making it an odd Poisson superalgebra. Let
X ∈ ΠW as

h−1(ΠA) and Y ∈ ΠW as
k−h−1(ΠA), for h ≥ 0, k − h ≥ 0, and

denote by p(X) and p(Y ) their parities in these spaces. We define their
concatenation product X ∧ Y ∈ ΠW as

k−1(ΠA) as the following map:
(3.3)

(X ∧ Y )(a1, . . . , ak) =
∑

i1<···<ih
ih+1<···<ik

ǫa(i1, . . . , ik)(−1)p(Y )(p̄(ai1 )+···+p̄(aih ))

×X(ai1 , . . . , aih)Y (aih+1
, . . . , aik) ,

where ǫa(i1, . . . , ik) is as in (2.1) for the elements a1, . . . , ak ∈ ΠA.
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Proposition 3.4. The Z+-graded superspace G(A) =
⊕∞

k=0 Gk(A), where
Gk(A) = ΠW as

k−1(ΠA), with parity denoted by p, together with the concate-
nation product ∧ : Gh(A) × Gk−h(A) → Gk(A) given by (3.3), and with the
Lie superalgebra bracket on ΠG(A) = W as(ΠA), is a Z+-graded odd Poisson
superalgebra.

Proof. First, we prove that X ∧ Y in (3.3) is an element of ΠW as
k (ΠA),

namely, it is a map Sk(ΠA) → ΠA and it satisfies the Leibniz rule (3.1).
For the first assertion, it is convenient to rewrite equation (3.3) as a sum
over all permutations:

(X ∧ Y )(a1, . . . , ak) =
1

h!(k − h)!

∑

σ∈Sk

ǫa(σ(1), . . . , σ(k))

×(−1)p(Y )(p̄(aσ(1))+···+p̄(aσ(h)))X(aσ(1), . . . , aσ(h))Y (aσ(h+1), . . . , aσ(k)) .

Here we used the symmetry relations for X and Y . Using this, it is then
immediate to check that

(X ∧ Y )(aτ(1), . . . , aτ(k)) = ǫa(τ(1), . . . , τ(k))(X ∧ Y )(a1, . . . , ak) ,

for all permutations τ ∈ Sk, namely, (X ∧ Y )(a1, . . . , ak) is supersymmetric
in the variables a1, . . . , ak ∈ ΠA, as we wanted. Next, we show that X ∧ Y
satisfies the Leibniz rule (3.1). We have
(3.4)

(X ∧ Y )(a1, . . . , ak−1, bc) =
∑

i1<···<ih<k
ih+1<···<ik=k

ǫa1,...,ak−1,bc(i1, . . . , ik)

× (−1)p(Y )(p̄(ai1 )+···+p̄(aih ))X(ai1 , . . . , aih)Y (aih+1
, . . . , aik−1

, bc)

+
∑

i1<···<ih=k
ih+1<···<ik<k

ǫa1,...,ak−1,bc(i1, . . . , ik)(−1)p(Y )(p̄(ai1 )+···+p̄(aih−1
)+p̄(bc))

×X(ai1 , . . . , aih−1
, bc)Y (aih+1

, . . . , aik) .

In the first term of the RHS of (3.4), we have, since ik = k,
(3.5)
ǫa1,...,ak−1,bc(i1, . . . , ik) = ǫa1,...,ak−1,b(i1, . . . , ik) = ǫa1,...,ak−1,c(i1, . . . , ik) ,

and we can use the Leibniz rule for Y to get:

Y (aih+1
, . . . , aik−1

, bc) = Y (aih+1
, . . . , aik−1

, b)c

+(−1)p(b)p(c)Y (aih+1
, . . . , aik−1

, c)b .

On the other hand, in the second term of the RHS of (3.4), we have, since
ih = k,
(3.6)

ǫa1,...,ak−1,bc(i1, . . . , ik) = ǫa1,...,ak−1,b(i1, . . . , ik)(−1)p(c)(p̄(aih+1
)+···+p̄(aik ))

= ǫa1,...,ak−1,c(i1, . . . , ik)(−1)p(b)(p̄(aih+1
)+···+p̄(aik )) ,
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and we can use the Leibniz rule for X and the commutativity of the product
on A, to get

X(ai1 , . . . , aih−1
, bc)Y (aih+1

, . . . , aik)

= (−1)p(c)(p(Y )+p̄(aih+1
)+···+p̄(aik ))X(ai1 , . . . , aih−1

, b)Y (aih+1
, . . . , aik)c

+(−1)p(b)(p(c)+p(Y )+p̄(aih+1
)+···+p̄(aik ))X(ai1 , . . . , aih−1

, c)Y (aih+1
, . . . , aik)b.

Furthermore, we have

(3.7) p̄(bc) = p̄(b) + p(c) = p(b) + p̄(c) in Z/2Z .

Putting the above formulas in equation (3.4), we get the desired Leibniz rule
for X ∧ Y .

We now prove that formula (3.3) for X∧Y defines a product on the super-
space ΠW as(ΠA) which is both commutative and associative. Recall that
we are denoting the parity on W as(ΠA) by p̄ and on ΠW as(ΠA) by p. Hence,
given a1, . . . , ah ∈ ΠA and X ∈ W as

h (ΠA) ⊂ Hom(ShΠA,ΠA), the element
X(a1, . . . , ah) ∈ ΠA has parity p̄(X) + p̄(a1) + · · · + p̄(ah). It follows that
X(ai1 , . . . , aih)Y (aih+1

, . . . , aik) has parity 1̄+p(X)+p(Y )+p̄(a1)+· · ·+p̄(ak)
as an element of ΠA. Hence, X ∧ Y has parity 1̄ + p(X) + p(Y ) as an ele-
ment ofW as(ΠA), or, equivalently, it has parity p(X)+p(Y ) as an element of
ΠW as(ΠA). This shows that ΠW as(ΠA), endowed with the wedge product
(3.3), is a superalgebra. Since A is a commutative superalgebra, we have
X(ai1 , . . . , aih)Y (aih+1

, . . . , aik) = ±Y (aih+1
, . . . , aik)X(ai1 , . . . , aih), where

± = (−1)(p(X)+p̄(ai1 )+···+p̄(aih ))(p(Y )+p̄(aih+1
)+···+p̄(aik )). This immediately im-

plies the commutativity of the wedge product (3.3). Moreover, given X ∈
ΠW as

h−1(ΠA), Y ∈ ΠW as
k−h−1(ΠA), Z ∈ ΠW as

ℓ−k−1(ΠA), and a1, . . . , aℓ ∈
ΠA, we have, using associativity of A, that both (X ∧ (Y ∧ Z))(a1, . . . , aℓ)
and ((X ∧ Y ) ∧ Z)(a1, . . . , aℓ) are equal to

∑

i1<···<ih
ih+1<···<ik
ik+1<···<iℓ

ǫa(i1, . . . , iℓ)(−1)p(Y )(p̄(ai1 )+···+p̄(aih ))+p(Z)(p̄(ai1 )+···+p̄(aik ))

×X(ai1 , . . . , aih)Y (aih+1
, . . . , aik)Z(aik+1

, . . . , aiℓ) ,

proving associativity of the wedge product.
To complete the proof of the proposition, we are left to prove that the Lie

bracket on W as(ΠA) satisfies the odd Leibniz rule,

(3.8) [X,Y ∧ Z] = [X,Y ] ∧ Z + (−1)p̄(X)p(Y )Y ∧ [X,Z] ,

thus making ΠW as(ΠA) an odd Poisson superalgebra. This follows imme-
diately from the following lemma.

Lemma 3.5. The left and right Leibniz formulas for the box product (2.1)
of W as(ΠA) hold:

(3.9)
X�(Y ∧ Z) = (X�Y ) ∧ Z + (−1)p̄(X)p(Y )Y ∧ (Z�X) ,

(X ∧ Y )�Z = X ∧ (Y �Z) + (−1)p(Y )p̄(Z)(X�Z) ∧ Y .
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Proof. The first formula in (3.9) is obtained, by a straightforward compu-
tation, using the definitions (2.1) and (3.3) of the box product and of the
wedge product, and the Leibniz rule (3.2) for X : Sh+1(ΠA) → ΠA. The
second formula in (3.9) is also obtained by a straightforward computation,
using (2.1) and (3.3). �

�

Remark 3.6. Assuming that A is a purely even commutative associative al-
gebra, we may consider the Lie algebroid (A,Der(A)), the associated odd
Poisson superalgebra of polyvector fields SA(ΠDer(A)), and also the op-
posite odd Poisson superalgebra SA(ΠDer(A))op, defined in Remark 3.1.
Then, we have a homomorphism of Z+-graded odd Poisson superalgebras
φ : SA(ΠDer(A))op → G(A) = ΠW as(ΠA), given by

φ(X1 ∧ · · · ∧Xk)(a1, . . . , ak) = det(Xi(aj))
k
i,j=1 .

Indeed, it is easy to check that the map φ is a homomorphism of associative
superalgebras. Moreover, since it is the identity on A ⊕ ΠDer(A), it is
automatically a Lie superalgebra homomorphism, due to the Leibniz rule.
In fact, the map φ is an isomorphism provided that Der(A) is a free module
over A of finite rank, for example when A is the algebra of polynomials in
finitely many variables. In general, though, this map is neither injective nor
surjective.

3.2. Poisson superalgebra structures and Poisson superalgebra co-

homology complexes.

Proposition 3.7. The Poisson superalgebra structures on a commutative
associative superalgebra A are in bijective correspondence, via (2.11), with
the set

(3.10)
{
X ∈ W as

1 (ΠA)1̄
∣∣ [X,X] = 0

}
.

Proof. By the results in Section 2.4 the elements X ∈ W1(ΠA)1̄ such that
[X,X] = 0 correspond, via (2.11), to the Lie superalgebra structures on A.
Moreover, to say that X lies in W as

1 (ΠA) means that the corresponding Lie
bracket satisfies the Leibniz rule, hence A is a Poisson superalgebra. �

It follows from the above Proposition that, for any Poisson superalge-
bra structure on A, we have a differential dX = adX on the superspace
W as(ΠA), where X in (3.10) is associated to the Lie superalgebra struc-
ture on A. This differential is obviously an odd derivation of the Lie
bracket on W as(ΠA), and an odd derivation of the concatenation product
on ΠW as(ΠA). We thus get a cohomology complex (G(A), dX ).

Remark 3.8. If A is a purely even Poisson algebra, then the odd Poisson
superalgebra SA(ΠDer(A)) of polyvector fields on A is the usual Poisson
cohomology complex, with the differential d = adX, where X is the bivec-
tor field defining the Poisson algebra structure on A [Lic]. In this case,
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the odd Poisson superalgebra homomorphism φ defined in Remark 3.6 is a
homomorphism of cohomology complexes.

3.3. The universal Poisson superalgebra W as(A) and odd Poisson

superalgebra structures on A. As in the previous section, let A be a
commutative associative superalgebra, with parity p and let Der(A) be the
Lie superalgebra of derivations of A. Instead ofW (ΠA), we may consider the
universal Lie superalgebra W (A) =

⊕∞
k=−1Wk(A), with parity still denoted

by p. As we shall see below, we arrive at a “dual” picture: W as(A) ⊂ W (A)
(defined below) has a natural structure of a Poisson superalgebra, while
elements X ∈ W1(A)1̄ such that [X,X] = 0 correspond to the odd Poisson
superalgebra structures on A.

The Lie superalgebra Der(A) is a subalgebra of W0(A) = End(A), so we
can consider its full prolongation, which we denote by

W as(A) =

∞⊕

k=−1

W as
k (A) ⊂ W (A) .

Proposition 3.9. For k ≥ −1, the superspace W as
k (A) consists of lin-

ear maps X : Sk+1(A) → A satisfying the following Leibniz rule (for
a0, . . . , ak−1, b, c ∈ A):
(3.11)

X(a0, . . . , ak−1, bc) = X(a0, . . . , ak−1, b)c+ (−1)p(b)p(c)X(a0, . . . , ak−1, c)b .

Proof. It follows by an easy induction on k ≥ 0. �

We next define a structure of commutative associative superalgebra on the
superspace W as(A), making it a Poisson superalgebra. Given X ∈ W as

h−1(A)
and Y ∈ W as

k−h−1(A), for h ≥ 0, k−h ≥ 0, we let their concatenation product
X · Y ∈ W as

k−1(A) be the following map:
(3.12)

(X · Y )(a1, . . . , ak) =
∑

i1<···<ih
ih+1<···<ik

ǫa(i1, . . . , ik)(−1)p(Y )(p(ai1 )+···+p(aih ))

×X(ai1 , . . . , aih)Y (aih+1
, . . . , aik) .

Note that ǫa(i1, . . . , ik) in (3.12) is not the same as in (3.3), since here we
consider a1, . . . , ak as elements of A, not of ΠA.

Proposition 3.10. The Z+-graded superspace P(A) =
⊕∞

k=0Pk(A), where
Pk(A) = W as

k−1(A), together with the concatenation product · : Ph(A) ×
Pk−h → Pk(A) given by (3.12), and with the Lie superalgebra bracket on
P(A) = W as(A), is a Poisson superalgebra.

Proof. First, we prove, in the same way as in Proposition 3.4, that X ·
Y in (3.12) is an element of W as

k (A), namely, it is a map Sk(A) → A
and it satisfies the Leibniz rule (3.11). Moreover, it is immediate to check
that (3.12) makes W as(A) a commutative associative superalgebra, using
commutativity and associativity of the product on A. To complete the
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proof of the proposition, we are left to prove that the Lie bracket on W as(A)
satisfies the usual Leibniz rule,

(3.13) [X,Y · Z] = [X,Y ] · Z + (−1)p(X)p(Y )Y · [X,Z] ,

thus making W as(A) a Poisson superalgebra. This follows immediately from
the following lemma.

Lemma 3.11. The left and right Leibniz formulas for the box product (2.1)
of W as(A) hold:

(3.14)
X�(Y · Z) = (X�Y ) · Z + (−1)p(X)p(Y )Y · (Z�X) ,

(X · Y )�Z = X · (Y�Z) + (−1)p(Y )p(Z)(X�Z) · Y .

Proof. The proof is the same as that of Lemma 3.5. �

�

Remark 3.12. Assuming that A is a purely even commutative associative
algebra, we may consider the associated Poisson algebra SA(Der(A)). Then,
we have a homomorphism of Z+-graded Poisson algebras φ : SA(Der(A)) →
P(A) = W as(A), given by

φ(X1, . . . ,Xk)(a1, . . . , ak) =
∑

σ∈Sk

X1(aσ(1)) . . . Xk(aσ(k)) .

Indeed, it is easy to check that the map φ is a homomorphism of associative
algebras. Moreover, since it is the identity on A⊕Der(A), it is automatically
a Lie algebra homomorphism, due to the Leibniz rule.

Proposition 3.13. The odd Poisson superalgebra structures on A are in
bijective correspondence, via (2.11), with the set

(3.15)
{
X ∈ W as

1 (A)1̄
∣∣ [X,X] = 0

}
.

Proof. The proof is similar to that of Proposition 3.7. �

It follows from the above Proposition that, for any odd Poisson superal-
gebra A, we have a differential dX = adX on the superspace W as(A), where
X in (3.15) is associated to the Lie superalgebra structure on ΠA. This
differential is obviously an odd derivation of the Lie bracket on W as(A), and
an odd derivation of the concatenation product on W as(A). We thus get a
cohomology complex (P(A), dX ).

4. The Lie superalgebra W ∂(V ) for an F[∂]-module V , and Lie
conformal superalgebra cohomology

In this section we repeat the discussion of Section 2 in the case of conformal
superalgebras. Recall that a conformal superalgebra is a vector superspace
R endowed with a structure of an F[∂]-module compatible with parity, and
with a λ-product, i.e., a linear map R⊗R → F[λ]⊗R, a⊗b 7→ aλb, satisfying
the sesquilinearity relations:

(4.1) (∂a)λb = −λaλb , aλ(∂b) = (λ+ ∂)(aλb) .
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A conformal superalgebra is called commutative (resp. skewcommutative)
if

(4.2) bλa = (−1)p(a)p(b)a−λ−∂b
(
resp. = −(−1)p(a)p(b)a−λ−∂b

)
,

where ∂ is moved to the left. In the skewcommutative case the λ-product
is usually called λ-bracket and it is denoted by [aλb]. If in addition to
skewcommutativity the λ-bracket satisfies the Jacobi identity,

(4.3) [aλ[bµc]]− (−1)p(a)p(b)[bµ[aλc]] = [[aλb]λ+µc] ,

R is called a Lie conformal superalgebra [K].
For an F[∂]-module R, one usually denotes by

∫
the canonical map R →

R/∂R.
Recall that, if R is a Lie conformal superalgebra, then the vector super-

space R/∂R has a well-defined structure of a Lie superalgebra, given by
[
∫
a,
∫
b] =

∫
[aλb]

∣∣
λ=0

, a, b ∈ R. Moreover, R is a left module over the Lie

superalgebra R/∂R, with the well-defined action
(∫

a
)
(b) = [aλb]

∣∣
λ=0

, a, b ∈
R, by derivations of the Lie conformal superalgebra R.

4.1. The Lie superalgebra W ∂(V ). Let V be a vector superspace with
parity p̄, endowed with a structure of an F[∂]-module, compatible with
the parity. Motivated by the construction of W (V ) introduced in Section
2.1, we construct in this section the Z-graded Lie superalgebra W ∂(V ) =⊕∞

k=−1W
∂
k (V ), which, to some extent, plays the same role in the theory of

Lie conformal algebras as W (V ) plays in the theory of Lie algebras.
For k ≥ −1, we let W ∂

k (V ) be the superspace of (k +1)-λ-brackets on V ,
as defined in [DSK2], namely,

(4.4) W ∂
k (V ) = Hom sym

F[∂]⊗(k+1)(V
⊗(k+1),F−[λ0, . . . , λk]⊗F[∂] V ) ,

with the parity p̄ induced by the parity on V . Here and further F−[λ0, . . . , λk]
denotes the space of polynomials in the k + 1 variables λ0, . . . , λk, endowed
with a structure of F[∂]⊗(k+1)-module, by letting P0(∂)⊗ · · · ⊗Pk(∂) act as

P0(−λ0) . . . Pk(−λk). Using the embedding F[∂] ⊂ F[∂]⊗(k+1) given by the
standard comultiplication, we get the corresponding F[∂]-module structure
on F−[λ0, . . . , λk], namely ∂ acts by multiplication by −(λ0+· · ·+λk). Thus,
W ∂

k (V ) consists of all linear maps

X : V ⊗(k+1) −→ F−[λ0, . . . , λk]⊗F[∂] V ,
v0 ⊗ · · · ⊗ vk 7→ Xλ0,...,λk

(v0, . . . , vk) ,

satisfying the following conditions:

(sesquilinearity) Xλ0,...,λk
(v0, . . . , ∂vi, . . . , vk) = −λiXλ0,...,λk

(v0, . . . , vk),
(symmetry) Xλ0,...,λk

(v0, . . . , vk) = ǫv(i0, . . . , ik)Xλi0
,...,λik

(vi0 , . . . , vik), for

all permutations (i0, . . . , ik) of (0, . . . , k).

Here ǫv(i0, . . . , ik) is the same as in (2.1).
For example, W ∂

−1(V ) = V/∂V . Furthermore, W ∂
0 (V ) = EndF[∂](V ),

namely the map Xλ : V → F−[λ]⊗F[∂] V is identified with the F[∂]-module
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endomorphism X : V → V given by X(v) = X−∂(v), with ∂ moved to the
left.

For k ≥ 0, we can identify, in a non-canonical way, F−[λ0, . . . , λk]⊗F[∂]V =
F−[λ0, . . . , λk−1] ⊗ V , by letting λk = −λ0 − · · · − λk−1 − ∂. For example,
W ∂

1 (V ) is identified with the space of λ-brackets

{· λ ·} : V ⊗ V → V [λ] , u⊗ v 7→ {uλv} ,

satisfying:

(sesquilinearity) {∂uλv} = −λ{uλv} , {uλ∂v} = (λ+ ∂){uλv},

(commutativity) {vλu} = (−1)p̄(u)p̄(v){u−λ−∂v}.

Keeping in mind the construction in Section 2.1, we next endow W ∂(V )
with a structure of a Z-graded Lie superalgebra as follows. If X ∈ W ∂

h (V ),

Y ∈ W ∂
k−h(V ), with h ≥ −1, k ≥ h− 1, we define X�Y to be the following

element of W ∂
k (V ):

(4.5)(
X�Y

)
λ0,...,λk

(v0, . . . , vk) =
∑

i0<···<ik−h

ik−h+1<···<ik

ǫv(i0, . . . , ik)

×Xλi0
+···+λik−h

,λik−h+1
,...,λik

(Yλi0
,...,λik−h

(vi0 , . . . , vik−h
), vik−h+1

, . . . , vik) .

The above formula, for h = −1 gives zero, while for k = h − 1 gives
X0,λ0,...,λk

(Y, v0, . . . , vk), which is well defined for Y ∈ V/∂V by the sesquilin-
earity condition on X. We observe that the box product (4.5) is well defined,
namely it preserves the defining relations of F−[λ0, . . . , λk]⊗F[∂] V . Indeed,
if Xλ0,...,λh

(v0, . . . , vh) = (λ0+ · · ·+λh+∂)F (λ0, . . . , λh; v0, . . . , vh), for some
polynomial F in λ0, . . . , λh with coefficients in V , then

(
X�Y

)
λ0,...,λk

(v0, . . . , vk) = (λ0 + · · ·+ λk + ∂)
∑

±F (. . . ) ,

which is zero in F−[λ0, . . . , λk]⊗F[∂]V . Similarly, if Yλ0,...,λk−h
(v0, . . . , vk−h) =

(λ0+ · · ·+λk−h+∂)G(λ0, . . . , λk−h; v0, . . . , vk−h), for some polynomial G in
λ0, . . . , λk−h with coefficients in V , then

(
X�Y

)
λ0,...,λk

(v0, . . . , vk) = 0, by

the sesquilinearity condition for X. Moreover, it is straightforward to check
that X�Y satisfies both the sesquilinearity and the symmetry conditions, if
X and Y do. Hence, � is a well-defined map W ∂

h (V )×W ∂
k−h(V ) → W ∂

k (V ).

We then define the bracket [· , ·] : W ∂
h (V ) ×W ∂

k−h(V ) → W ∂
k (V ) by the

same formula as before:

(4.6) [X,Y ] = X�Y − (−1)p̄(X)p̄(Y )Y�X .

Proposition 4.1. (a) The bracket (4.6) defines a Lie superalgebra structure
on W ∂(V ).

(b) We have the following canonical homomorphism of Z-graded Lie super-
algebras:

(4.7) W ∂(V ) → W (V/∂V ) , Xλ0,...,λk
7→
∫
X0,...,0 ,

where, as usual, for v ∈ V ,
∫
v denotes its image in V/∂V .
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Proof. The bracket (4.6) is skewcommutative by construction. To prove Ja-
cobi identity, it suffices to check that the box-product (4.5) is right symmet-

ric, i.e., (X,Y,Z) = (−1)p̄(Y )p̄(Z)(X,Z, Y ), where (X,Y,Z) = (X�Y )�Z −
X�(Y�Z) is the associator ofX,Y,Z. Let thenX ∈ W ∂

h (V ), Y ∈ W ∂
k−h(V )

and Z ∈ W ∂
ℓ−k(V ). We have, by the definition (4.5) of the box-product,

(4.8)(
X�(Y �Z)

)
λ0,...,λℓ

(v0, . . . , vℓ) =
∑

i0<···<iℓ−k

iℓ−k+1<···<iℓ−h

iℓ−h+1<···<iℓ

ǫv(i0, . . . , iℓ)

×Xλi0
+···+λiℓ−h

,λiℓ−h+1
,...,λiℓ

(
Yλi0

+···+λiℓ−k
,λiℓ−k+1

,...,λiℓ−h(
Zλi0

,...,λiℓ−k
(vi0 , . . . , viℓ−k

), viℓ−k+1
, . . . , viℓ−h

)
, viℓ−h+1

, . . . , viℓ

)
,

and
(4.9)
(
(X�Y )�Z

)
λ0,...,λℓ

(v0, . . . , vℓ)−
(
X�(Y�Z)

)
λ0,...,λℓ

(v0, . . . , vℓ)

=
∑

i0<···<ik−h

ik−h+1<···<iℓ−h+1
iℓ−h+2<···<iℓ

ǫv(i0, . . . , iℓ)(−1)p̄(Z)(p̄(vi0 )+···+p̄(vik−h
))

×Xλi0
+···+λik−h

,λik−h+1
+···+λiℓ−h+1

,λiℓ−h+2
,...,λiℓ

(
Yλi0

,...,λik−h
(vi0 , . . . , vik−h

),

Zλik−h+1
,...,λiℓ−h+1

(vik−h+1
, . . . , viℓ−h+1

), viℓ−h+2
, . . . , viℓ

)
.

We then observe that the RHS above is supersymmetric under the exchange
of Y and Z. This concludes the proof of part (a). For part (b), one easily
checks that the map (4.7) is a well-defined linear map of Z-graded super-
spaces, and it is a homomorphism for the box-products in W ∂(V ) and in
W (V/∂V ). Hence it is a Z-graded Lie superalgebra homomorphism. �

For X ∈ W ∂
k (V ) and Y ∈ V/∂V = W ∂

−1(V ), we have
(4.10)

[X,Y ]λ1,...,λk
(v1, . . . , vk) = X0,λ1,...,λk

(Y, v1, . . . , vk) , v1, . . . , vk ∈ V .

For X ∈ W ∂
0 (V ) = EndF[∂](V ) and Y ∈ W ∂

k (V ), k ≥ −1, we have

(4.11)

[X,Y ]λ0,...,λk
(v0, . . . , vk) = X

(
Yλ0,...,λk

(v0, . . . , vk)
)

−(−1)p̄(X)p̄(Y )
k∑

i=0

(−1)p̄(X)s̄0,i−1Yλ0,...,λk
(v0, . . . X(vi) . . . , vk) ,
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where s̄ij is as in (2.5). Finally, if X ∈ W ∂
1 (V ) and Y ∈ W ∂

k−1(V ), k ≥ 0,

we have [X,Y ] = X�Y − (−1)p̄(X)p̄(Y )Y�X, where
(4.12)

(X�Y )λ0,...,λk
(v0, . . . , vk)

=

k∑

i=0

(−1)p̄(vi)s̄i+1,kX
λ0+

i
.̌..+λk,λi

(
Y
λ0,

i
.̌..,λk

(v0,
i
ˇ. . ., vk), vi

)
,

(Y�X)λ0,...,λk
(v0, . . . , vk) =

∑

0≤i<j≤k

(−1)p̄(vi)s̄0,i−1+p̄(vj)(s̄0,i−1+s̄i+1,j−1)

×Y
λi+λj ,λ0,

i
.̌..

j

.̌..,λk

(
Xλi,λj

(vi, vj), v0,
i
ˇ. . .

j
ˇ. . ., vk

)
.

In particular, if both X and Y are in W ∂
1 (V ), we get

(4.13)

(X�Y )λ0,λ1,λ2(v0, v1, v2) = Xλ0+λ1,λ2

(
Yλ0,λ1(v0, v1), v2

)

+ (−1)p̄(v1)(p̄(Y )+p̄(v0))Xλ1,λ0+λ2

(
v1, Yλ0,λ2(v0, v2)

)

+(−1)p̄(v0)p̄(Y )Xλ0,λ1+λ2

(
v0, Yλ1,λ2(v1, v2)

)
.

4.2. The space W ∂(V,U) as a reduction of W ∂(V ⊕U). Let V and U be
vector superspaces with parity p̄, endowed with a structure of F[∂]-modules.
We define the Z-graded vector superspace (with parity still denoted by p̄)
W ∂(V,U) =

⊕
k≥−1W

∂
k (V,U), where

W ∂
k (V,U) = Hom sym

F[∂]⊗(k+1)(V
⊗(k+1),F−[λ0, . . . , λk]⊗F[∂] U) .

In the same way as in Section 2.2, W ∂(V,U) is obtained as a subquotient
of the universal Lie superalgebra W ∂(V ⊕U), via the canonical isomorphism
of superspaces

(4.14) U/K
∼

−→ W ∂
k (V,U) ,

where U and K are the following subspaces of W ∂
k (V ⊕ U):

U = Hom sym

F[∂]⊗(k+1)((V ⊕ U)⊗(k+1),F−[λ0, . . . , λk]⊗F[∂] U) ,

K =
{
Y
∣∣Y (V ⊗(k+1)) = 0

}
.

The following analogue of Proposition 2.5 holds:

Proposition 4.2. Let X ∈ W ∂
h (V ⊕ U). Then the adjoint action of X on

W ∂(V ⊕ U) leaves the subspaces U and K invariant provided that

(i) Xλ0,...,λh
(w0, . . . , wh) ∈ F−[λ0, . . . , λh] ⊗F[∂] U if one of the arguments

wi lies in U ,
(ii) Xλ0,...,λh

(v0, . . . , vh) ∈ F−[λ0, . . . , λh]⊗F[∂] V if all the arguments vi lie
in V .

In this case, adX induces a well-defined linear map on the reduced space
W ∂(V,U), via the isomorphism (4.14).
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4.3. Lie conformal superalgebra structures. By definition, the even
elements X ∈ W ∂

1 (V ) are exactly the commutative conformal superalgebra
structures on V : for X ∈ W ∂

1 (V )0̄ we get a commutative λ-product on V
by letting uλv = Xλ,−λ−∂(u, v). Similarly, the skewcommutative conformal
superalgebra structures on an F[∂]-module R with parity p are in bijective
correspondence with the odd elements of W ∂

1 (ΠR): for X ∈ W ∂
1 (ΠR)1̄, we

get a skewcommutative λ-bracket on R by letting

(4.15) [aλb] = (−1)p(a)Xλ,−λ−∂(a, b) , a, b ∈ R ,

and vice-versa.
Furthermore, let X ∈ W ∂

1 (ΠR)1̄, and consider the corresponding skew-
commutative λ-product (4.15) on R. The Lie bracket of X with itself then
becomes, by (4.13),

[X,X]λ,µ,−λ−µ−∂ (a, b, c) = 2(X�X)λ,µ,−λ−µ−∂(a, b, c)

= −(−1)p(b)2
{
[aλ[bµc]]− (−1)p(a)p(b)[bµ[aλc]]− [[aλb]λ+µc]

}
.

Hence, the Lie conformal superalgebra structures on R are in bijective cor-
respondence, via (4.15), with the set

(4.16)
{
X ∈ W ∂

1 (ΠR)1̄
∣∣ [X,X] = 0

}
.

Therefore, for any Lie conformal superalgebra R, we have a differential dX =
adX, where X in (4.16) is associated to the Lie conformal superalgebra
structure on R, on the superspace W ∂(ΠR), which makes it a cohomology
complex so that the differential dX is a derivation of the Lie bracket.

4.4. Lie conformal superalgebra modules and cohomology com-

plexes. Let R and M be vector superspaces with parity p, endowed with
F[∂]-module structures. Consider the reduced superspace W ∂(ΠR,ΠM) in-
troduced in Section 4.2, with parity denoted by p̄.

Suppose now that R is a Lie conformal superalgebra and M is an R-
module. This is equivalent to say that we have a Lie conformal superalgebra
structures on the F[∂]-module R ⊕ M extending the λ-bracket on R, and
such that M is an abelian ideal, the bracket between a ∈ R and m ∈ M
being aλ(m), the λ-action of R in M . According to the above observations,
such a structure corresponds, bijectively, to an element X of the following
set:
(4.17){

X ∈ W ∂
1 (ΠR⊕ΠM)1̄

∣∣ [X,X] = 0 ,Xλ,µ(R,R) ⊂ F−[λ, µ]⊗F[∂] R,
Xλ,µ(R,M) ⊂ F−[λ, µ]⊗F[∂] M, Xλ,µ(M,M) = 0

} .

Explicitly, to X in (4.17) we associate the corresponding λ-bracket on R
given by (4.15), and the corresponding R-module structure on M given by

(4.18) aλ(m) = (−1)p(a)Xλ,−λ−∂(a,m) , a ∈ R, m ∈ M .

Note that every element X in the set (4.17) satisfies conditions (i) and
(ii) in Proposition 4.2. Hence adX induces a well-defined endomorphism
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dX of W ∂(ΠR,ΠM) such that d2X = 0, thus making (W ∂(ΠR,ΠM), dX ) a
cohomology complex. The explicit formula for the differential dX follows
from equations (4.12) and from the identifications (4.15) and (4.18). For
Y ∈ W ∂

k−1(ΠR,ΠM), we have

(4.19)

(dXY )λ0,...,λk
(a0, . . . , ak) =

k∑

i=0

(−1)αiaiλi

(
Y
λ0,

i
.̌..,λk

(a0,
i
ˇ. . ., ak)

)

+
∑

0≤i<j≤k

(−1)αijY
λi+λj ,λ0,

i
.̌..

j

.̌..,λk

([aiλi
aj ], a0,

i
ˇ. . .

j
ˇ. . ., ak) ,

where αi and αij are defined in (2.16). Note that, in the special case when

M = R is the adjoint representation, the complex (W ∂(ΠR,ΠM), dX ) co-
incides with the complex (W ∂(ΠR), dX ) discussed in Section 4.3.

In the special case when R is a (purely even) Lie conformal algebra and
M is a purely even R-module, we have p̄(Y ) ≡ k mod 2, and the above
formula reduces to
(4.20)

(dXY )λ0,...,λk
(a0, . . . , ak) = (−1)k

( k∑

i=0

(−1)iaiλi

(
Y
λ0,

i
.̌..,λk

(a0,
i
ˇ. . ., ak)

)

+
∑

0≤i<j≤k

(−1)i+jY
λi+λj ,λ0,

i
.̌..

j

.̌..,λk

([aiλi
aj], a0,

i
ˇ. . .

j
ˇ. . ., ak)

)
,

which, up to the overall sign factor (−1)k, is the usual formula for the Lie
conformal algebra cohomology differential (see [BKV], [BDAK] and [DSK2]).
In conclusion, the cohomology complex (C•(R,M) =

⊕
k∈Z+

Ck(R,M), d)

of a Lie conformal superalgebra R with coefficients in an R-module M can
be defined by letting Ck(R,M) = W ∂

k−1(ΠR,ΠM) and d = dX .

Remark 4.3. One can replace F[∂] by U(d), where d is a Lie algebra. Then,
following the same reasoning as above, for any d-moduleR one constructs the
Z-graded Lie superalgebra W d(ΠR), so that an odd element X ∈ W d

1 (ΠR)
such that [X,X] = 0 defines a pseudoalgebra structure on R and its co-
homology complex, cf. [BDAK]. This, and its relation to the variational
bicomplex, will be discussed in a forthcoming publication.

5. The Lie superalgebra W ∂,as(V) for a commutative associative
differential superalgebra V and PVA cohomology

Recall that a Poisson vertex superalgebra (abbreviated PVA) V, with par-
ity p, is a unital commutative associative differential superalgebra endowed
with a λ-bracket [· λ ·] which makes V a Lie conformal superalgebra, satisfy-
ing the following Leibniz rule:

(5.1) [aλbc] = [aλb]c+ (−1)p(a)p(b)b[aλc] .

For example, if R is a Lie conformal superalgebra, then the symmetric alge-
bra S(R) has a natural structure of a Poisson vertex superalgebra, with the
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λ-bracket on R extended to S(R) by the Leibniz rule (5.1). In analogy with
the notion of an odd Poisson superalgebra from Section 3, we also introduce
the notion of an odd Poisson vertex superalgebra. This is a unital commu-
tative associative differential superalgebra V, with parity p, endowed with
a λ-bracket [· λ ·] which makes ΠV a Lie conformal superalgebra, satisfying
the following odd Leibniz rule:

(5.2) [aλbc] = [aλb]c+ (−1)(p(a)+1̄)p(b)b[aλc] .

For example, if R is a Lie conformal superalgebra, then the symmetric alge-
bra S(ΠR) has a natural structure of an odd Poisson vertex superalgebra,
with the λ-bracket on R extended to S(ΠR) by the Leibniz rule (5.2).

5.1. Poisson vertex superalgebra structures. Throughout this section,
we let V be a unital commutative associative differential superalgebra, with
a given even derivation ∂, and with parity denoted by p. We let Der∂(V) be
the Lie superalgebra of derivations of V commuting with ∂.

Consider the universal Lie superalgebra W ∂(ΠV) =
⊕∞

k=−1W
∂
k (ΠV) as-

sociated to the F[∂]-module ΠV, defined in Section 4.1, with parity denoted
by p̄.

Proposition 5.1. Let, for k ≥ −1, W ∂,as
k (ΠV) be the subspace of W ∂

k (ΠV)

consisting of maps X : (ΠV)⊗(k+1) → F−[λ0, . . . , λk] ⊗F[∂] ΠV, denoted by
a0 ⊗ · · · ⊗ ak 7→ Xλ0,...,λk

(a0, . . . , ak), satisfying the following Leibniz rule
(for a0, . . . , ak−1, bi, ci ∈ V, i = 0, . . . , k):

(5.3)

Xλ0,...,λk
(a0, . . . , bici, . . . , ak)

= (−1)p(ci)(si+1,k+k−i))Xλ0,...,λi+∂,...,λk
(a0, . . . , bi, . . . , ak)→ci

+ (−1)p(bi)(p(ci)+si+1,k+k−i))Xλ0,...,λi+∂,...,λk
(a0, . . . , ci, . . . , ak)→bi ,

where sij are defined in (2.17). Then W ∂,as(ΠV) =
⊕∞

k=−1W
∂,as
k (ΠV) is a

subalgebra of the Z-graded Lie superalgebra W ∂(ΠV) such that W ∂,as
−1 (ΠV) =

ΠV/∂ΠV, and W ∂,as
0 (ΠV) = Der∂(V) is the Lie superalgebra of derivations

of V commuting with ∂.

Proof. Clearly, by definition, W ∂,as
−1 (ΠV) = ΠV/∂ΠV. Recall that, for k = 0,

we identify F[λ0] ⊗F[∂] ΠV = ΠV, and, via this identification, W ∂
0 (ΠV) =

EndF[∂](ΠV) = EndF[∂](V). One easily checks that an element X ∈ W ∂
0 (ΠV)

satisfies (5.3) if and only if the corresponding element in EndF[∂](V) is a

derivation of V of parity p̄(X). Hence, W ∂,as
0 (ΠV) = Der∂(V). We are left

to prove that forX ∈ W ∂,as
h (ΠV) and Y ∈ W ∂,as

k−h(ΠV), their bracket [X,Y ] =

X�Y − (−1)p̄(X)p̄(Y )Y�X lies in W ∂,as
k (ΠV), namely it satisfies the Leibniz

rule (5.3). Since (X�Y )λ0,...,λk
(a0, . . . , ak), hence [X,Y ]λ0,...,λk

(a0, . . . , ak),
is symmetric with respect to simultaneous permutations of the elements
a0, . . . , ak and the variables λ0, . . . , λk, it suffices to prove that [X,Y ] satisfies
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the Leibniz rule (5.3) for i = 0. In this case we have, by a straightforward
computation using the definition (4.5) of the box product,

(
X�Y

)
λ0,...,λk

(bc, a1, . . . , ak)

= (−1)p(c)(p̄(a1)+···+p̄(ak))
(
X�Y

)
λ0+∂,λ1,...,λk

(b, a1, . . . , ak)→c

+ (−1)p(b)p(c)+p(b)(p̄(a1)+···+p̄(ak))
(
X�Y

)
λ0+∂,λ1,...,λk

(c, a1, . . . , ak)→b

+
∑

i1<···<ih
ih+1<···<ik

ǫa(i1, . . . , ik)(−1)p(b)p(c)+(p(c)+p̄(Y ))(p(b)+p̄(ai1 )+···+p̄(aih ))

×X−λi1
−···−λih

−∂,λi1
,...,λih

(b, ai1 , . . . , aih)

× Y−λih+1
−···−λik

−∂,λih+1
,...,λik

(c, aih+1
, . . . , aik)

+
∑

i1<···<ik−h

ik−h+1<···<ik

ǫa(i1, . . . , ik)(−1)p̄(Y )p̄(X)+p(b)p(c)+(p(c)+p̄(X))(p(b)+p̄(ai1 )+···+p̄(aik−h
))

× Y−λi1
−···−λik−h

−∂,λi1
,...,λik−h

(b, ai1 , . . . , aik−h
)

×X−λik−h+1
−···−λik

−∂,λik−h+1
,...,λik

(c, aik−h+1
, . . . , aik) .

To complete the proof, we just observe that, if we exchange X and Y , the
two sums in the RHS get multiplied by (−1)p̄(X)p̄(Y ), hence they do not
contribute to [X,Y ]. �

Proposition 5.2. The Poisson vertex superalgebra structures on V are in
bijective correspondence, via (4.15), with the set

(5.4)
{
X ∈ W ∂,as

1 (ΠV)1̄
∣∣ [X,X] = 0

}
.

Proof. By the results in Section 4.3 the elements X ∈ W1(ΠV)1̄ such that
[X,X] = 0 correspond, via (4.15), to the Lie conformal superalgebra struc-

tures on V. Moreover, to say that X lies in W ∂,as
1 (ΠV) means that the

corresponding λ-bracket satisfies the Leibniz rule, hence V is a Poisson ver-
tex superalgebra. �

It follows from the above Proposition that, for any Poisson vertex super-
algebra V, we have a differential dX = adX on the superspace W ∂,as(ΠV),
where X in (5.4) is associated to the Lie conformal superalgebra structure
on V. This differential is obviously an odd derivation of the Lie bracket on
W ∂,as(ΠV). We thus get a cohomology complex (W ∂,as(ΠV), dX ).

5.2. Odd Poisson vertex superalgebra structures. As in the previous
Section, let V be a commutative associative differential superalgebra, with
derivation ∂ and parity p, and let Der∂(V) be the Lie superalgebra of deriva-
tions of V commuting with ∂. As in Section 3.3, we consider here the picture
“dual” to that discussed in the previous section.
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Proposition 5.3. Let, for k ≥ −1, W ∂,as
k (V) be the superspace of elements

X ∈ W ∂
k (V) satisfying the Leibniz rule (for a0, . . . , ak−1, bi, ci ∈ V, i =

0, . . . , k):

(5.5)

Xλ0,...,λk
(a0, . . . , bici, . . . , ak)

= (−1)p(ci)(si+1,k))Xλ0,...,λi+∂,...,λk
(a0, . . . , bi, . . . , ak)→ci

+ (−1)p(bi)(p(ci)+si+1,k))Xλ0,...,λi+∂,...,λk
(a0, . . . , ci, . . . , ak)→bi ,

where sij is defined in (2.17). Then W ∂,as(V) =
⊕∞

k=−1W
∂,as
k (V) is a subal-

gebra of the Z-graded Lie superalgebra W ∂(V) such that W ∂,as
−1 (V) = V/∂V,

and W ∂,as
0 (V) = Der∂(V).

Proof. It is the same as for Proposition 5.1. �

Proposition 5.4. The odd Poisson vertex superalgebra structures on V are
in bijective correspondence, via (4.15), with the set

(5.6)
{
X ∈ W ∂,as

1 (V)1̄
∣∣ [X,X] = 0

}
.

Proof. It is the same as for Proposition 5.2. �

It follows from the above Proposition that, for any odd Poisson vertex su-
peralgebra V, we have a differential dX = adX on the superspace W ∂,as(V),
where X in (5.6) is associated to the Lie conformal superalgebra structure
on ΠV. This differential is obviously an odd derivation of the Lie bracket
on W ∂,as(V). We thus get a cohomology complex (W ∂,as(V), dX ).

6. The universal Lie conformal superalgebra W̃ ∂(V ) for an
F[∂]-module V , and the basic Lie conformal superalgebra

cohomology complexes

In this section we study the universal Lie conformal superalgebra W̃ ∂(V )
associated to a finitely generated F[∂]-module V .

6.1. The universal Lie conformal superalgebra W̃ ∂(V ). As in Section
4, let V be a vector superspace with parity p̄, endowed with a structure of
an F[∂]-module, compatible with the parity. Assume, moreover, that V is
finitely generated over F[∂].

The Lie superalgebraW ∂(V ) does not have the universality property sim-
ilar to that of W (V ), described in Remark 2.2. In this section we construct

the universal Z-graded Lie conformal superalgebra W̃ ∂(V ) =
⊕∞

k=−1 W̃
∂
k (V )

associated to the finitely generated F[∂]-module V as follows.
For k ≥ −1, we let, cf. (4.4),

W̃ ∂
k (V ) = Hom sym

F[∂]⊗(k+1)(V
⊗(k+1),F−[λ0, . . . , λk]⊗ V ) ,
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with its natural superspace structure, denoted by p̄. For example, we have

W̃ ∂
−1(V ) = V , W̃ ∂

0 (V ) = RCend(V ), the space of right conformal endomor-
phisms of V , namely the linear maps Xλ : V → F[λ]⊗ V , such that

(6.1) Xλ(∂v) = −λXλ(v) ,

and, for k ≥ 1, W̃ ∂
k (V ) consists of linear mapsX : V ⊗k+1 → F−[λ0, . . . , λk]⊗

V satisfying sesquilinearity in each argument and the skewsymmetry condi-
tion.

The superspace W̃ ∂
k (V ) has a natural F[∂]-module structure given by

(6.2) (∂X)λ0,...,λk
(v0, . . . , vk) = (λ0 + · · ·+ λk + ∂)Xλ0,...,λk

(v0, . . . , vk) .

Next we endow W̃ ∂(V ) with a structure of a Z-graded Lie conformal super-

algebra as follows. If X ∈ W̃ ∂
h (V ), Y ∈ W̃ ∂

k−h(V ), with h ≥ −1, k ≥ h − 1,

we define X�λY to be the following element of F[λ]⊗ W̃ ∂
k (V ):

(6.3)

(
X�λY

)
λ0,...,λk

(v0, . . . , vk) =
∑

i0<···<ik−h

ik−h+1<···<ik

ǫv(i0, . . . , ik)

×X−λ−λik−h+1
−···−λik

−∂,λik−h+1
,...,λik

(Yλi0
,...,λik−h

(vi0 , . . . , vik−h
),

vik−h+1
, . . . , vik) ,

where ∂ is moved to the left. Since, by assumption, V is finitely generated

over F[∂], and since elements of W̃ ∂(V ) are determined by theirs values on
a set of generators of V , X�λY is indeed a polynomial in λ with coefficients

in W̃ ∂(V ).

Lemma 6.1. (a) The λ-product �λ given by (6.3) gives a well-defined map

W̃ ∂
h (V )× W̃ ∂

k−h(V ) → F[λ]⊗ W̃ ∂
k (V ), and it makes W̃ ∂(V ) a conformal

superalgebra.
(b) The λ-product �λ is right symmetric, i.e., defining the associator of

X,Y,Z ∈ W̃ ∂(V ) as

(XλYµZ) = (X�λY )�λ+µZ −X�λ(Y�µZ) ,

we have the following symmetry relation:

(6.4) (XλYµZ) = (−1)p̄(Y )p̄(Z)(XλZ−λ−µ−∂Y ) ,

where, as usual, ∂ is moved to the left.

Proof. First, we need to prove that, for X ∈ W̃ ∂
h (V ) and Y ∈ W̃ ∂

k−h(V ), the
λ-product X�λY defined by (6.3) is a polynomial in λ with coefficients in

W̃ ∂
k (V ), i.e. it satisfies the sesquilinearity and symmetry conditions:

(X�λY )λ0,...,λk
(v0, . . . , ∂vi, . . . , vk) = −λi(X�λY )λ0,...,λk

(v0, . . . , vk) ,
(X�λY )λ0,...,λk

(v0, . . . , vk) = ǫv(i0, . . . , ik)Xλi0
,...,λik

(vi0 , . . . , vik) ,

for all permutations (i0, . . . , ik) of (0, . . . , k). Both these relations follow im-
mediately from the definition (6.3) of the λ-product �λ and by the sesquilin-
earity and symmetry conditions on X and Y . To complete the proof of part
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(a) we need to check that the λ-product �λ is sesquilinear, making W̃ ∂(V )
a conformal superalgebra. The first sesquilinearity condition is straightfor-

ward, using the definition (6.2) of the F[∂]-module structure of W̃ ∂(V ). For
the second sesquilinearity condition, we have

(
X�λ(∂Y )

)
λ0,...,λk

(v0, . . . , vk) =
∑

i0<···<ik−h

ik−h+1<···<ik

ǫv(i0, . . . , ik)

×X−λ−λik−h+1
−···−λik

−∂,λik−h+1
,...,λik

((∂Y )λi0
,...,λik−h

(vi0 , . . . , vik−h
),

vik−h+1
, . . . , vik)

=
∑

i0<···<ik−h

ik−h+1<···<ik

ǫv(i0, . . . , ik)X−λ−λik−h+1
−···−λik

−∂,λik−h+1
,...,λik

(
(λi0 + · · · + λik−h

+ ∂)Yλi0
,...,λik−h

(vi0 , . . . , vik−h
), vik−h+1

, . . . , vik
)

= (λ+ λ0 + · · ·+ λk + ∂)
∑

i0<···<ik−h

ik−h+1<···<ik

ǫv(i0, . . . , ik)

×X−λ−λik−h+1
−···−λik

−∂,λik−h+1
,...,λik

(
Yλi0

,...,λik−h
(vi0 , . . . , vik−h

),

vik−h+1
, . . . , vik

)

=
(
(λ+ ∂)(X�λY )

)
λ0,...,λk

(v0, . . . , vk) .

For part (b), let X ∈ W̃ ∂
α (V ), Y ∈ W̃ ∂

β (V ) and Z ∈ W̃ ∂
γ (V ). We

have, with a straightforward computation using the definition (6.3) of the
λ-product �λ,
(6.5)(

(X�λY )�λ+µZ
)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ)

=
∑

i0<···<iγ
iγ+1<···<iβ+γ

iβ+γ+1<···<iα+β+γ

ǫv(i0, . . . , iα+β+γ)

×X−λ−λiβ+γ+1
−···−λiα+β+γ

−∂,λiβ+γ+1
,...,λiα+β+γ(

Y−µ−λiγ+1
−···−λiβ+γ

−∂,λiγ+1
,...,λiβ+γ(

Zλi0
,...,λiγ

(vi0 , . . . , viγ ), viγ+1 , . . . , viβ+γ

)
, viβ+γ+1

, . . . , viα+β+γ

)

+
∑

i0<···<iγ
iγ+1<···<iβ+γ+1

iβ+γ+2<···<iα+β+γ

(−1)p̄(Y )(p̄(Z)+p̄(vi0 )+···+p̄(viγ )ǫv(i0, . . . , iα+β+γ)

×X−λ−µ−λiγ+1
−···−λiα+β+γ

−∂,µ+λiγ+1
+···+λiβ+γ+1

,λiβ+γ+2
,...,λiα+β+γ(

Zλi0
,...,λiγ

(vi0 , . . . , viγ ), Yλiγ+1
,...,λiβ+γ+1

(viγ+1 , . . . , viβ+γ+1
),

viβ+γ+2
, . . . , viα+β+γ

)
.
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Similarly, we have
(6.6)(

X�λ(Y�µZ)
)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ)

=
∑

i0<···<iγ
iγ+1<···<iβ+γ

iβ+γ+1<···<iα+β+γ

ǫv(i0, . . . , iα+β+γ)

×X−λ−λiβ+γ+1
−···−λiα+β+γ

−∂,λiβ+γ+1
,...,λiα+β+γ(

Y−µ−λiγ+1
−···−λiβ+γ

−∂,λiγ+1
,...,λiβ+γ(

Zλi0
,...,λiγ

(vi0 , . . . , viγ ), viγ+1 , . . . , viβ+γ

)
, viβ+γ+1

, . . . , viα+β+γ

)
.

We then observe that the RHS in (6.6) is equal to the first term in the LHS
of (6.5). Hence, combining the above equations, we get
(6.7)(

XλYµZ
)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ)

=
∑

i0<···<iγ
iγ+1<···<iβ+γ+1

iβ+γ+2<···<iα+β+γ

(−1)p̄(Y )(p̄(Z)+p̄(vi0 )+···+p̄(viγ )ǫv(i0, . . . , iα+β+γ)

×X−λ−µ−λiγ+1
−···−λiα+β+γ

−∂,µ+λiγ+1
+···+λiβ+γ+1

,λiβ+γ+2
,...,λiα+β+γ(

Zλi0
,...,λiγ

(vi0 , . . . , viγ ), Yλiγ+1
,...,λiβ+γ+1

(viγ+1 , . . . , viβ+γ+1
),

viβ+γ+2
, . . . , viα+β+γ

)
.

To conclude, we observe that, if we exchange Y and Z (and β and γ), and
we replace µ by −λ − µ − λ0 − · · · − λα+β+γ − ∂, the RHS of (6.7) gets

multiplied by the factor (−1)p̄(Y )p̄(Z). �

Lemma 6.2. If R is a conformal superalgebra with right symmetric λ-
product aλb, a, b ∈ R, and parity p, then the λ-bracket

(6.8) [aλb] = aλb− (−1)p(a)p(b)b−λ−∂a ,

defines on R a structure of a Lie conformal superalgebra.

Proof. Recall that right symmetry means the following identity (aλbµc) =

(−1)p(b)p(c)(aλc−λ−µ−∂b), where (aλbµc) = (aλb)λ+µc−aλ(bµc) is the associ-
ator. The statement follows by the following identity, which is easily derived
from (6.8):

[aλ[bµc]]− (−1)p(a)p(b)[bµ[aλc]]− [[aλb]λ+µc]

= −
(
(aλbµc)− (−1)p(b)p(c)(aλc−λ−µ−∂b)

)

+(−1)p(a)p(b)
(
(bµaλc)− (−1)p(a)p(c)(bµc−λ−µ−∂a)

)

−(−1)p(c)(p(a)+p(b))
(
(c−λ−µ−∂aλb)− (−1)p(a)p(b)(c−λ−µ−∂bµa)

)
.

�
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Corollary 6.3. The λ-bracket

(6.9) [XλY ] = X�λY − (−1)p̄(X)p̄(Y )Y�−λ−∂X ,

defines a structure of a Lie conformal superalgebra on W̃ ∂(V ).

Proof. It follows immediately from Lemmas 6.1 and 6.2. �

For X ∈ W̃ ∂
k (V ) and Y ∈ V = W̃ ∂

−1(V ), we have, for v1, . . . , vk ∈ V ,

[Xλ0Y ]λ1,...,λk
(v1, . . . , vk) = X−λ0−···−λk−∂,λ1,...,λk

(Y, v1, . . . , vk) ,

or, equivalently,

(6.10)
Xλ0,λ1,...,λk

(Y, v1, . . . , vk) = [X−λ0−∂Y ]λ1,...,λk
(v1, . . . , vk)

= (−1)1+p̄(X)p̄(Y )[Yλ0X]λ1,...,λk
(v1, . . . , vk) .

It follows that we have the following universality property of the Lie con-

formal superalgebra W̃ ∂(V ): for any Z-graded Lie conformal superalgebra
R =

⊕∞
k=−1Rk with R−1 = V , there is a canonical homomorphism of Z-

graded Lie conformal superalgebras φ : R → W̃ ∂(V ), extending the identity
map on V by

φ(a)λ0,...,λk
(v0, . . . , vk) = ±[vkλk

. . . [v1λ1
[v0λ0

a]] . . . ] , if k ≥ 0 ,

where ± = (−1)k+1+p̄(a)(p̄(v0)+···+p̄(vk))ǫv(k, k − 1, . . . , 0).

For a right conformal endomorphism X ∈ W̃ ∂
0 (V ) and for Y ∈ W̃ ∂

k (V ),
where k ≥ −1, we have
(6.11)

[XλY ]λ0,...,λk
(v0, . . . , vk) = X−λ−∂

(
Yλ0,...,λk

(v0, . . . , vk)
)

−(−1)p̄(X)p̄(Y )
k∑

i=0

(−1)p̄(X)s̄0,i−1Yλ0,...,λ+λi,...,λk
(v0, . . . ,Xλi

(vi), . . . , vk) ,

where s̄ij is as in (2.5). In particular, for k = 0, the above formula gives the

following Lie conformal superalgebra structure on the F[∂]-module W̃ ∂
0 (V ) =

RCend(V ) of all right conformal endomorphisms of V :

(6.12) [XλY ]µ(v) = X−λ−∂(Yµ(v)) − (−1)p̄(X)p̄(Y )Yλ+µ(Xµ(v)) .

Remark 6.4. This Lie conformal superalgebra, which is natural to denote
Rgc(V ), is isomorphic to the Lie conformal superalgebra gc(V ) of all (left)
conformal endomorphisms [K], via the map

(6.13) ∗ : Rgc(V ) → gc(V ) , where X∗
λ(v) = X−λ−∂(v) .
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Furthermore, if X ∈ W̃ ∂
1 (V ) and Y ∈ W̃ ∂

k−1(V ), k ≥ 0, we have
(6.14)
(X�λY )λ0,...,λk

(v0, . . . , vk)

=

k∑

i=0

(−1)p̄(vi)s̄i+1,kX−λ−λi−∂,λi

(
Y
λ0,

i
.̌..,λk

(v0,
i
ˇ. . ., vk), vi

)
,

(Y�−λ−∂X)λ0,...,λk
(v0, . . . , vk) =

∑

0≤i<j≤k

(−1)p̄(vi)s̄0,i−1+p̄(vj)(s̄0,i−1+s̄i+1,j−1)

×Y
λ+λi+λj ,λ0,

i
.̌..

j

.̌..,λk

(
Xλi,λj

(vi, vj), v0,
i
ˇ. . .

j
ˇ. . ., vk

)
.

In particular, if both X and Y are in W̃ ∂
1 (V ), we get

(X�λY )λ0,λ1,λ2(v0, v1, v2) = X−λ−λ2−∂,λ2

(
Yλ0,λ1(v0, v1), v2

)

+ (−1)p̄(v1)(p̄(Y )+p̄(v0))Xλ1,−λ−λ1−∂

(
v1, Yλ0,λ2(v0, v2)

)

+(−1)p̄(v0)p̄(Y )Xλ0,−λ−λ0−∂

(
v0, Yλ1,λ2(v1, v2)

)
,

and

(Y �−λ−∂X)λ0,λ1,λ2(v0, v1, v2) = Yλ+λ0+λ1,λ2

(
Xλ0,λ1(v0, v1), v2

)

+ (−1)p̄(v1)(p̄(Y )+p̄(v0))Yλ1,λ+λ0+λ2

(
v1,Xλ0,λ2(v0, v2)

)

+(−1)p̄(v0)p̄(Y )Yλ0,λ+λ1+λ2

(
v0,Xλ1,λ2(v1, v2)

)
.

There is a close relation between the universal Lie conformal superalgebra

W̃ ∂(V ) and the Lie superalgebra W ∂(V ) associated to the finitely generated
F[∂]-module V . In order to describe this connection, we consider the quo-
tient map

∫
: F−[λ0, . . . , λk]⊗V → F−[λ0, . . . , λk]⊗F[∂] V . For k = −1, this

coincides with the usual map V → V/∂V, v 7→
∫
v.

Proposition 6.5. (a) We have a linear map
∫

: W̃ ∂(V ) → W ∂(V ), in-
duced by the quotient map

∫
: F−[λ0, . . . , λk]⊗V → F−[λ0, . . . , λk]⊗F[∂]

V , which induces an injective homomorphism of Lie superalgebras
∫

:

W̃ ∂(V )/∂W̃ ∂(V ) → W ∂(V ).

(b) We have a representation of the Lie superalgebra W ∂(V ) on W̃ ∂(V ),

with the action of X ∈ W ∂
h (V ) on Ỹ ∈ W̃ ∂

k−h(V ) denoted by [X, Ỹ ] ∈
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W̃ ∂
k (V ), given by the following formula:

(6.15)

[X, Ỹ ]λ0,...,λk
(v0, . . . , vk) =

∑

i0<···<ik−h

ik−h+1<···<ik

ǫv(i0, . . . , ik)

×X−λik−h+1
−···−λik

−∂,λik−h+1
,...,λik

(Ỹλi0
,...,λik−h

(vi0 , . . . , vik−h
),

vik−h+1
, . . . , vik)− (−1)p̄(X)p̄(Ỹ )

∑

i0<···<ih
ih+1<···<ik

ǫv(i0, . . . , ik)

×Ỹλi0
+···+λih

,λih+1
,...,λik

(Xλi0
,...,λih

(vi0 , . . . , vih), vih+1
, . . . , vik) .

This action of the Lie superalgebra W ∂(V ) is by derivations of the λ-

bracket on W̃ ∂(V ) and it commutes with the action of ∂.

(c) The canonical map
∫

: W̃ ∂(V ) → W ∂(V ) from part (a) is a homo-

morphism of representations of the Lie superalgebra W ∂(V ). Moreover,

the representation of W ∂(V ) on W̃ ∂(V ) is compatible, via the map
∫
in

(a), with the representation of the Lie superalgebra W̃ ∂(V )/∂W̃ ∂(V ) on

W̃ ∂(V ).

Proof. For X ∈ W̃ ∂
k (V ), let

∫
X be the map V ⊗(k+1) → F−[λ0, . . . , λk]⊗F[∂]

V , given by (
∫
X)λ0,...,λk

(v0, . . . , vk) =
∫
Xλ0,...,λk

(v0, . . . , vk), where, in the
RHS,

∫
denotes the map F−[λ0, . . . , λk] ⊗ V → F−[λ0, . . . , λk] ⊗F[∂] V . It

is immediate to check that
∫
X lies in W ∂

k (V ), i.e., it satisfies the sesquilin-
earity and symmetry conditions. Hence, we get a well-defined linear map∫

: W̃ ∂
k (V ) → W ∂

k (V ). Next, we prove that Ker
(∫ ∣∣

W̃ ∂
k
(V )

)
= ∂

(
W̃ ∂

k (V )
)
,

so that
∫

factors through an injective linear map
∫

: W̃ ∂
k (V )/∂W̃ ∂

k (V ) →

W ∂
k (V ). For k = −1,

∫
coincides with the quotient map V → V/∂ V ,

so there is nothing to prove. Let then k ≥ 0. The inclusion ∂
(
W̃ ∂

k (V )
)
⊂

Ker
(∫ ∣∣

W̃ ∂
k
(V )

)
is immediate by the definition (6.2) of the F[∂]-module struc-

ture on W̃ ∂(V ). Conversely, suppose X ∈ W̃ ∂
k (V ) lies in Ker(

∫
), namely,

for every v0, . . . , vk ∈ V , we have Xλ0,...,λk
(v0, . . . , vk) = (∂ + λ0 + · · · +

λk)Yλ0,...,λk
(v0, . . . , vk), for some polynomial Yλ0,...,λk

(v0, . . . , vk) in λ0, . . . , λk

with coefficients in V . Since ∂+λ0+ · · ·+λk is injective on F[λ0, . . . , λk]⊗V
for every k ≥ 0, the sesquilinearity and symmetry relations forX imply those

for Y . Hence, X = ∂Y ∈ ∂W̃ ∂
k (V ), proving the claim. The fact that the in-

duced map
∫
: W̃ ∂(V )/∂W̃ ∂(V ) → W ∂(V ) is a Lie algebra homomorphism

follows by comparing the explicit expressions (4.6) and (6.9) for the Lie

bracket on W ∂(V ) and the λ-bracket on W̃ ∂(V ) respectively. This proves
part (a).

It is immediate to check that formula (6.15) does not depend on the
choice of representative of Xλi0

,...,λik
(vi0 , . . . , vik) ∈ F[λi0 , . . . , λik ] ⊗F[∂] V

in F[λi0 , . . . , λik ] ⊗ V . Moreover, if X and Ỹ satisfy the sesquilinearity



THE VARIATIONAL POISSON COHOMOLOGY 39

and symmetry relations, so does [X, Ỹ ]. Hence, we get a well-defined map

W ∂
h (V ) × W̃ ∂

k−h(V ) → W̃ ∂
k (V ). We next prove that (6.15) defines a repre-

sentation of the Lie superalgebra W ∂(V ) on W̃ ∂(V ). Introduce the left and

right box products �
L : W ∂(V ) × W̃ ∂(V ) → W̃ ∂(V ) and �

R : W̃ ∂(V ) ×

W ∂(V ) → W̃ ∂(V ), given, respectively, by the first and (without the sign in
front) the second term in the RHS of (6.15), i.e.
(6.16)

(X�
LỸ )λ0,...,λk

(v0, . . . , vk)=
∑

i0<···<ik−h

ik−h+1<···<ik

ǫv(i0, . . . , ik)X−λik−h+1
···−λik

−∂,λik−h+1
,...,λik

(
Ỹλi0

,...,λik−h
(vi0 , . . . , vik−h

), vik−h+1
, . . . , vik

)

(Ỹ�
RX)λ0,...,λk

(v0, . . . , vk) =
∑

i0<···<ih
ih+1<···<ik

ǫv(i0, . . . , ik)Ỹλi0
+···+λih

,λih+1
,...,λik

(
Xλi0

,...,λih
(vi0 , . . . , vih), vih+1

, . . . , vik

)
.

We claim that they satisfy the following right symmetry identities:
(6.17)

(X�Y )�LZ̃−X�
L(Y�

LZ̃) = (−1)p̄(Y )p̄(Z̃)
(
(X�

LZ̃)�RY −X�
L(Z̃�

RY )
)
,

for X ∈ W ∂
α (V ), Y ∈ W ∂

β (V ), Z̃ ∈ W̃ ∂
γ (V ), and

(6.18)

(X̃�
RY )�RZ−X̃�

R(Y �Z) = (−1)p̄(Y )p̄(Z)
(
(X̃�

RZ)�RY −X̃�
R(Z�Y )

)
,

for X̃ ∈ W̃ ∂
α (V ), Y ∈ W ∂

β (V ), Z ∈ W ∂
γ (V ). For (6.17) we have

(6.19)(
(X�Y )�LZ̃

)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ) =
∑

i0<···<iγ
iγ+1<···<iβ+γ

iβ+γ+1<···<iα+β+γ

ǫv(i0, . . . , iα+β+γ)

×X−λiβ+γ+1
−···−λiα+β+γ

−∂,λiβ+γ+1
,...,λiα+β+γ

(
Y−λiγ+1

−···−λiβ+γ
−∂,λiγ+1

,...,λiβ+γ

(
Z̃λi0

,...,λiγ
(vi0 , . . . , viγ ), viγ+1 , . . . , viβ+γ

)
, viβ+γ+1

, . . . , viα+β+γ

)

+
∑

i0<···<iβ
iβ+1<···<iβ+γ+1

iβ+γ+2<···<iα+β+γ

(−1)
p̄(Z̃)(p̄(vi0 )+···+p̄(viβ )ǫv(i0, . . . , iα+β+γ)

×Xλi0
+···+λiβ

,−λi0
−···−λiβ

−λiβ+γ+1
−···−λiα+β+γ

−∂,λiβ+γ+2
,...,λiα+β+γ

(

Yλi0
,...,λiβ

(vi0 , . . . , viβ), Z̃λiβ+1
,...,λiβ+γ+1

(viβ+1
, . . . , viβ+γ+1

),viβ+γ+2
, . . . ,viα+β+γ

)
.
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Similarly, we have
(6.20)(
(X�Z̃)�RY

)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ) =
∑

i0<···<iβ
iβ+1<···<iβ+γ

iβ+γ+1<···<iα+β+γ

ǫv(i0, . . . , iα+β+γ)

×X−λiβ+γ+1
−···−λiα+β+γ

−∂,λiβ+γ+1
,...,λiα+β+γ

(
Z̃λi0

+···+λiβ
,λiβ+1

,...,λiβ+γ

(
Yλi0

,...,λiβ
(vi0 , . . . , viβ ), viβ+1

, . . . , viβ+γ

)
, viβ+γ+1

, . . . , viα+β+γ

)

+(−1)p̄(Y )p̄(Z̃)
∑

i0<···<iβ
iβ+1<···<iβ+γ+1

iβ+γ+2<···<iα+β+γ

(−1)
p̄(Z̃)(p̄(vi0 )+···+p̄(viβ )ǫv(i0, . . . , iα+β+γ)

×Xλi0
+···+λiβ

,−λi0
−···−λiβ

−λiβ+γ+1
−···−λiα+β+γ

−∂,λiβ+γ+2
,...,λiα+β+γ

(

Yλi0
,...,λiβ

(vi0 , . . . , viβ), Z̃λiβ+1
,...,λiβ+γ+1

(viβ+1
, . . . , viβ+γ+1

),viβ+γ+2
, . . . ,viα+β+γ

)
.

It is easy to check that the first term in the RHS of (6.19) is equal to(
X�

L(Y�
LZ̃)

)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ), while the first term in the RHS

of (6.20) is equal to
(
X�

L(Z̃�
RY )

)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ). Equation

(6.17) then follows from the observation that the second terms in the RHS of

(6.19) and (6.20) differ by a factor (−1)p̄(Y )p̄(Z̃). Next, let us prove equation
(6.18). We have
(6.21)(
(X̃�

RY )�RZ
)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ) =
∑

i0<···<iγ
iγ+1<···<iβ+γ

iβ+γ+1<···<iα+β+γ

ǫv(i0, . . . , iα+β+γ)

×X̃λi0
+···+λiβ+γ

,λiβ+γ+1
,...,λiα+β+γ

(
Yλi0

+···+λiγ ,λiγ+1
,...,λiβ+γ

(
Zλi0

,...,λiγ
(vi0 , . . . , viγ ), viγ+1 , . . . , viβ+γ

)
, viβ+γ+1

, . . . , viα+β+γ

)

+
∑

i0<···<iβ
iβ+1<···<iβ+γ+1

iβ+γ+2<···<iα+β+γ

(−1)
p̄(Z̃)(p̄(vi0 )+···+p̄(viβ )ǫv(i0, . . . , iα+β+γ)

×X̃λi0
+···+λiβ

,λiβ+1
+···+λiβ+γ+1

,λiβ+γ+2
,...,λiα+β+γ

(
Yλi0

,...,λiβ
(vi0 , . . . , viβ ),

Zλiβ+1
,...,λiβ+γ+1

(viβ+1
, . . . , viβ+γ+1

), viβ+γ+2
, . . . , viα+β+γ

)
.

It is then easy to check that the first term in the RHS of (6.21) is equal

to
(
X̃�

R(Y�Z)
)
λ0,...,λα+β+γ

(v0, . . . , vα+β+γ), while the second term, if we

exchange Y and Z, stays unchanged up to a factor (−1)p̄(Y )p̄(Z̃). This proves
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(6.18). We then have, by (6.17) and (6.18),

[X, [Y, Z̃ ]]− (−1)p̄(X)p̄(Y )[Y, [X, Z̃ ]]− [[X,Y ], Z̃ ] = −

(
(X�Y )�LZ̃+

−X�
L(Y�

LZ̃)− (−1)p̄(Y )p̄(Z̃)
(
(X�

LZ̃)�RY −X�
L(Z̃�

RY )
))

+

+(−1)p̄(X)p̄(Y )

(
(Y�X)�LZ̃ − Y�

L(X�
LZ̃)− (−1)p̄(X)p̄(Z̃)

(
(Y�

LZ̃)�RX+

−Y�
L(Z̃�

RX)
))

− (−1)p̄(Z̃)(p̄(X)+p̄(Y ))

(
(Z̃�

RX)�RY − Z̃�
R(X�Y )+

−(−1)p̄(X)p̄(Y )
(
(Z̃�

RY )�RX − Z̃�
R(Y �X)

))
= 0 .

This proves that (6.15) defines a representation of the Lie superalgebra

W ∂(V ) on W̃ ∂(V ). With similar computations one can show that the Lie

action of W ∂(V ) is by derivations of the λ-brackets in W̃ ∂(V ). Moreover,
it is immediate to check that the Lie action of W ∂(V ) commutes with the

action ∂ on W̃ ∂(V ), proving part (b).

Comparing equations (4.6) and (6.15), we immediately get that
∫
[X, Ỹ ] =

[X,
∫
Ỹ ] for every X ∈ W ∂(V ) and Ỹ ∈ W̃ ∂(V ), proving that the map∫

: W̃ ∂(V ) → W ∂(V ) is a homomorphism of representations of the Lie su-

peralgebra W ∂(V ). Moreover, comparing (6.9) and (6.15), we immediately

get that [
∫
X̃, Ỹ ] = [X̃λỸ ] |λ=0, for every X̃, Ỹ ∈ W̃ ∂(V ), i.e., the Lie super-

algebra action of W ∂(V ) on W̃ ∂
k−h(V ) → W̃ ∂

k (V ) is compatible, via the map∫
: W̃ ∂(V ) → W ∂(V ), with the Lie superalgebra action of W̃ ∂(V )/∂W̃ ∂(V )

on W̃ ∂(V ), proving part (c). �

Remark 6.6. The Lie superalgebra homomorphism
∫
defined in Proposition

6.5 in general is not surjective. For example, if V is a torsion module over

F[∂], then W̃ ∂
0 (V ) = 0 due to sesquilinearity, while W ∂

0 (V ) = EndF[∂](V )
needs not be zero. However, if the F[∂]-module V decomposes as V =
T ⊕ (F[∂]⊗U), where T is the torsion submodule and F[∂]⊗U is a finitely

generated free submodule, then
∫

: W̃ ∂
k (V )/∂W̃ ∂

k (V ) → W ∂
k (V ) is a bijec-

tion for each k 6= 0, and, if T = 0, then
∫

: W̃ ∂
0 (V )/∂W̃ ∂

0 (V ) → W ∂
0 (V )

is bijective as well. Indeed, due to sesquilinearity, if X̃ ∈ W̃ ∂
k (V ), then

X̃λ0,...,λk
(v0, . . . , vk) vanishes if one of the arguments vi lies in the torsion

T ⊂ V , and X̃ is uniquely determined by its values on U⊗(k+1). Hence,

we can identify W̃ ∂
k (V ) with the space of linear maps X̃ : U⊗(k+1) →

F−[λ0, . . . , λk]V satisfying the symmetry condition

(6.22) X̃λ0,...,λk
(u0, . . . , uk) = ǫu(i0, . . . , ik)X̃λi0

,...,λik
(ui0 , . . . , uik) ,
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for all permutations (i0, . . . , ik) of (0, . . . , k). Similarly, if X ∈ W ∂
k (V ) with

k 6= 0, then Xλ0,...,λk
(v0, . . . , vk) vanishes if one of the arguments vi lies in

the torsion T ⊂ V , and we can identify W ∂
k (V ) with the space of linear maps

X : U⊗(k+1) → F[λ0, . . . , λk−1]⊗V (by identifying F−[λ0, . . . , λk]⊗F[∂]V and

F−[λ0, . . . , λk−1]⊗ V , replacing λk by λ†
k = −λ0 − · · · − λk−1 − ∂) satisfying

the symmetry condition
(6.23)

Xλ0,...,λk−1
(u0, . . . , uk) = ǫu(i0, . . . , ik)Xλi0

,...,λik−1
(ui0 , . . . , uik)

∣∣
λk 7→λ†

k

,

for all permutations (i0, . . . , ik) of (0, . . . , k). Given X ∈ W ∂
k (V ), k 6= 0, a

preimage X̃ ∈ W̃ ∂
k (V ) of X is obtained by letting

X̃λ0,...,λk
(u0, . . . , uk) =

1

k + 1

k∑

i=0

Xλ0,...,λk−1
(u0, . . . , uk)

∣∣
λi 7→λ†

i

,

where λ†
i = −λ0−

i
ˇ. . . −λk − ∂. Indeed, it is immediate to check that, if

X satisfies the symmetry condition (6.23), then X̃ satisfies the symmetry
condition (6.22).

Let V and U be vector superspaces with parity p̄, endowed with a struc-
ture of finitely generated F[∂]-modules. In analogy with the reduction in-
troduced in Section 4.2, we define the Z+-graded vector superspace (with

parity still denoted by p̄) W̃ ∂(V,U) =
⊕

k∈Z+
W ∂

k (V,U), where

W̃ ∂
k (V,U) = Hom sym

F[∂]⊗(k+1)(V
⊗(k+1),F−[λ0, . . . , λk]⊗ U) .

One checks that the analogue of Proposition 4.2 holds, if we replace tensor
products over F[∂] by tensor products over the field F.

The reduced space W̃ ∂(V,U) is obtained as a subquotient of the universal

Lie conformal superalgebra W̃ ∂(V ⊕ U), via the canonical isomorphism of
superspaces

(6.24) Ũ/K̃
∼

−→ W̃ ∂
k (V,U) ,

where Ũ and K̃ are the following subspaces of W̃ ∂
k (V ⊕ U):

Ũ = Hom sym

F[∂]⊗(k+1)((V ⊕ U)⊗(k+1),F−[λ0, . . . , λk]⊗ U) ,

K̃ =
{
Ỹ
∣∣ Ỹ (V ⊗(k+1)) = 0

}
.

The following analogue of Proposition 4.2 holds (the proof is similar):

Proposition 6.7. Let X ∈ W ∂
h (V ⊕U). Then the action of X on W̃ ∂(V ⊕U)

given by Proposition 6.5(b) leaves the subspaces Ũ and K̃ invariant provided
that

(i) Xλ0,...,λh
(w0, . . . , wh) ∈ F−[λ0, . . . , λh] ⊗ U if one of the arguments wi

lies in U ,
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(ii) Xλ0,...,λh
(v0, . . . , vh) ∈ F−[λ0, . . . , λh]⊗F[∂] V if all the arguments vi lie

in V .

In this case, the action of X induces a well-defined linear map on the reduced

space W̃ ∂(V,U), via the isomorphism (6.24).

Furthermore, as in Section 2.3, given a subalgebra R0 of the Lie con-

formal superalgebra W̃ ∂
0 (V ) = RCend(V ), we define a prolongation of R0

in W̃ ∂(V ) as a Z-graded subalgebra R =
⊕∞

k=−1Rk of the Z-graded Lie

conformal superalgebra W̃ ∂(V ) =
⊕∞

k=−1 W̃
∂
k (V ), such that R−1 = V

and R0 coincides with the given Lie conformal superalgebra. The full

prolongation W̃ ∂,R0(V ) =
⊕∞

k=−1 W̃
∂,R0

k (V ) of R0 is defined by letting

W̃ ∂,R0
−1 (V ) = V, W̃ ∂,R0

0 (V ) = R0 and, inductively, for k ≥ 1,

(6.25) W̃ ∂,R0

k (V ) =
{
X ∈ W̃ ∂

k (V )
∣∣ [XλV ] ⊂ F[λ]⊗ W̃ ∂,R0

k−1 (V )
}
.

It is immediate to check, by the Jacobi identity, that the above formula

defines a maximal prolongation of the Lie conformal superalgebra W̃ ∂(V ).

6.2. The basic Lie conformal superalgebra cohomology complex.

Suppose that R is a Lie conformal superalgebra and M is an R-module,
with parity p, assume that R and M are finitely generated as F[∂]-modules,
and consider the corresponding element X in the subset (4.17) of W ∂

1 (ΠR⊕

ΠM)1̄. Consider the reduced superspace W̃ ∂(ΠR,ΠM) introduced in Sec-
tion 6.1, with parity denoted by p̄.

Note that the element X satisfies conditions (i) and (ii) in Proposition

6.7. Hence the action of X on W̃ ∂(ΠR ⊕ ΠM), induces a well-defined en-

domorphism dX of the reduced space W̃ ∂(ΠR,ΠM) such that d2X = 0, thus

making (W̃ ∂(ΠR,ΠM), dX ) a cohomology complex. The explicit formula
for the differential dX is the same as (4.19), except that we view both sides
as elements of F[λ0, . . . , λk] ⊗M . If R is a (purely even) Lie conformal al-
gebra and M is a purely even R-module, we recover, up to an overall sign,
the basic Lie conformal algebra cohomology complex as defined in [BKV],
[BDAK] and [DSK2].

Note that, in the special case when M = R is the adjoint representation,

the complex (W̃ ∂(ΠR,ΠM), dX ) coincides with the complex (W̃ ∂(ΠR), dX ),
where dX here is the differential given by the Lie superalgebra action of

W ∂(ΠR) on W̃ ∂(ΠR) given by Proposition 6.5(b). By Proposition 6.5(c),

the canonical map
∫

: W̃ ∂(ΠR) → W ∂(ΠR) defined in Proposition 6.5(a)
is a homomorphism of cohomology complexes. The same holds for the map∫
: W̃ ∂(ΠR,ΠM) → W ∂(ΠR,ΠM).

6.3. Extension to infinitely generated F[∂]-modules. If V is not nec-
essarily finitely generated as F[∂]-module, we may still consider the F[∂]-

module W̃ ∂(V ) endowed with the λ-product X�λY defined by the same
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formula (6.3). The problem here is that in general X�λY will be a formal

power series in λ (not anymore a polynomial) with coefficients in W̃ ∂(V ):

(6.26) �λ : W̃ ∂(V )× W̃ ∂(V ) → F[[λ]]⊗ W̃ ∂(V ) .

Note that when dealing with formal power series in λ, the corresponding λ-
bracket [XλY ] = X�λY −Y�−λ−∂X would seem ill-defined (since the coef-
ficient of a given power of λ will be an infinite sum). However, for every fixed
collection of vectors v0, . . . , vk ∈ V , the element (X�λY )λ0,...,λk

(v0, . . . , vk)
defined by (6.3) is polynomial in λ (and all the other variables λ0, . . . , λk).
Hence, (Y�−λ−∂X)λ0,...,λk

(v0, . . . , vk) makes perfect sense, by replacing µ
by −λ − λ0 − · · · − λk − ∂ (∂ acting from the left) in the polynomial
(Y�µX)λ0,...,λk

(v0, . . . , vk). We can then define their λ-bracket

[XλY ] : V ⊗k+1 → F[λ, λ0, . . . , λk]⊗ V ,

which is well defined on a every given collection of vectors v0, . . . , vk ∈ V :

(6.27)
[XλY ]λ0,...,λk

(v0, . . . , vk) = (X�λY )λ0,...,λk
(v0, . . . , vk)

−(−1)p̄(X)p̄(Y )(Y �−λ−λ0−···−λk−∂X)λ0,...,λk
(v0, . . . , vk) ,

(where ∂ in the second term is moved to the left), and, on any such collection
of vectors v0, . . . , vk, it is clearly polynomial in all the variables, including λ.
Alternatively, [XλY ] can be described as the formal power series in λ with

coefficients in W̃ ∂(V ) such that (6.27) holds.
Note that all the identities in Lemma 6.1 and Corollary 6.3 are proved on

given collection of vectors from V . Hence, the same computations show that

the λ-bracket [XλY ] on W̃ ∂(V ), even for non finitely generated F[∂]-module
V , satisfies all the Lie conformal algebra axioms, sesquilinearity, skewsym-
metry and Jacobi identity, in the sense that each axiom holds (polynomially
in the variables λ, λ0, . . . , λk) on every fixed collections of vectors from V .
We thus have the following

Lemma 6.8. For X ∈ W̃ ∂
h (V ), Y ∈ ×W̃ ∂

k−h(V ), their λ-bracket [XλY ] :

V ⊗k+1 → F[λ, λ0, . . . , λk]⊗ V satisfies all the Lie conformal algebra axioms
on every given set of vectors from V :
sesquilinearity

[∂XλY ]λ0,...,λk
(v0, . . . , vk) = −λ[XλY ]λ0,...,λk

(v0, . . . , vk) ,

[Xλ∂Y ]λ0,...,λk
(v0, . . . , vk)=(λ+ λ0 + · · · + λk + ∂)[XλY ]λ0,...,λk

(v0, . . . , vk),

skewsymmetry

[XλY ]λ0,...,λk
(v0, . . . , vk)=−(−1)p̄(X)p̄(Y )[Y−λ−λ0−···−λk−∂Y ]λ0,...,λk

(v0, . . . , vk),
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where in the RHS ∂ is moved to the left, and Jacobi identity (for X ∈

W̃ ∂
h (V ), Y ∈ ×W̃ ∂

k−h(V ) and Z ∈ W̃ ∂
ℓ−k(V ))

[Xλ[YµZ]]λ0,...,λℓ
(v0, . . . , vℓ)− (−1)p̄(X)p̄(Y )[Yµ[XλZ]]λ0,...,λℓ

(v0, . . . , vℓ)

= [[XλY ]λ+µZ]λ0,...,λℓ
(v0, . . . , vℓ) .

Remark 6.9. It follows from the above lemma that, forX,Y,Z ∈ W̃ ∂(V ), the
sesquilinearity conditions [∂XλY ] = −λ[XλY ] and [Xλ∂Y ] = (λ + ∂)[XλY ]

hold in the ring of formal power series F[[λ]] ⊗ W̃ ∂(V ), and similarly the

Jacobi identity [Xλ[YµZ]]− (−1)p̄(X)p̄(Y )[Yµ[XλZ]] = [[XλY ]λ+µZ] holds in

the ring F[[λ, µ]] ⊗ W̃ ∂(V ). As for the skewsymmetry relation [XλY ] =

−(−1)p̄(X)p̄(Y )[Y−λ−∂X], we can only say that it holds, for every N ≥ 0,

in the quotient space F[[λ]] ⊗
(
W̃ ∂(V )/∂N W̃ ∂(V )

)
(we need to do this to

avoid diverging series). One may talk, in this sense, of a “generalized” Lie
conformal superalgebra.

Corollary 6.10. If R ⊂ W̃ ∂(V ) is an F[∂]-submodule with the property that
the λ-bracket of every two elements X,Y ∈ R is actually polynomial in λ
and with coefficients in R, then R is a (honest) Lie conformal superalgebra.

Proof. Obvious. �

The above result will be applied in the next sections, when studying the

universal odd PVAs W̃ ∂,as(ΠV) and W̃ var(ΠV).
We can also extend, to the case of infinitely generated F[∂]-modules V ,

the notions of prolongation and full prolongation.

Definition 6.11. Let R0 ⊂ W̃ ∂
0 (V ) = RCend(V ) be an F[∂]-submodule with

the property that, for every X,Y ∈ R0, the formal power series [XλY ] has
coefficients in R0.

(a) A prolongation of R0 in W̃ ∂(V ) is a Z-graded F[∂]-submodule R =⊕∞
k=−1Rk ⊂ W̃ ∂(V ), with Rk ⊂ W̃ ∂

k (V ), such that R−1 = V , R0 coin-
cides with the given F[∂]-module, and, for every X ∈ Rh, Y ∈ Rk−h, the
formal power series [XλY ] has coefficients in Rk.

(b) The full prolongation W̃ ∂,R0(V ) =
⊕∞

k=−1 W̃
∂,R0

k (V ) of R0 is defined by

letting W̃ ∂,R0
−1 (V ) = V, W̃ ∂,R0

0 (V ) = R0 and, inductively, for k ≥ 1,

(6.28) W̃ ∂,R0

k (V ) =
{
X ∈ W̃ ∂

k (V )
∣∣ [XλV ] ⊂ F[[λ]]⊗ W̃ ∂,R0

k−1 (V )
}
.

One easily checks, by the Jacobi identity, that (6.28) defines indeed a

prolongation of W̃ ∂(V ).

7. The universal (odd) Poisson vertex superalgebra for a
differential superalgebra V and basic PVA cohomology

7.1. The universal odd PVA W̃ ∂,as(ΠV). Throughout this section, we
let V be a commutative associative differential superalgebra, with a given
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even derivation ∂, and with parity denoted by p. We assume moreover that
V is finitely generated as a differential algebra, i.e. there are finitely many
elements which, along with all their derivatives, generate V.

We let RCder(V) be the Lie conformal superalgebra of right conformal
derivations of V, namely the linear maps Xλ : V → F[λ]⊗V, satisfying (6.1)
and

(7.1) Xλ(uv) = Xλ+∂(u)→v + (−1)p(u)p(v)Xλ+∂(v)→u .

This is a subalgebra of the space RCend(V) of right conformal endomor-
phisms, Xµ : V → F[µ] ⊗ V, satisfying (6.1) with λ-bracket given by

[XλY ]µ(v) = X−λ−∂(Yµ(v)) − (−1)p̄(X)p̄(Y )Yλ(Xµ(v)) (cf. (6.3)). Though
the λ-bracket on RCend(V) has values in formal power series (see Section
6.3), when restricted to RCder(V) it is polynomial in λ, due to the assump-
tion that V is a finitely generated differential algebra. Indeed, due to the
sesquilinearity assumption (6.1) and the Leibniz rule (7.1), an element of
RCder(V) is determined by its values on a set of differential generators of
V.

Remark 7.1. Isomorphism (6.13) restricts to an isomorphism of RCder(V)
to the Lie conformal superalgebra Cder(V) of all conformal derivations of V,
namely the conformal endomorphisms of V, satisfying Xλ(uv) = Xλ(u)v +

(−1)p(u)p(v)Xλ(v)u.

Recall from Section 6.3 the definition of the F[∂]-module W̃ ∂(ΠV) =⊕∞
k=−1 W̃

∂
k (ΠV) together with the λ-bracket which makes it a “general-

ized” Lie conformal superalgebra (in the sense of Remark 6.9). We denote
its parity by p̄. Consider the full prolongation (cf. Definition 6.11), associ-

ated to the Lie conformal superalgebra RCder(V) ⊂ RCend(V) = W̃ ∂
0 (ΠV),

which we denote by

W̃ ∂,as(ΠV) =
∞⊕

k=−1

W̃ ∂,as
k (ΠV) ⊂ W̃ ∂(ΠV) .

Proposition 7.2. (a) For every k ≥ −1, the superspace W̃ ∂,as
k (ΠV) is the

subspace of W̃ ∂
k (ΠV), consisting of linear maps X : (ΠV)⊗(k+1) →

F[λ0, . . . , λk] ⊗ ΠV satisfying the symmetry and sesquilinearity condi-
tions, and the Leibniz rule (5.3) (where both sides are interpreted as
elements of F[λ0, . . . , λk]⊗ΠV).

(b) W̃ ∂,as(ΠV) is a Lie conformal superalgebra.

Proof. Part (a) follows by an easy induction on k ≥ 0. Let us next prove
part (b). Due to the sesquilinearity and the Leibniz rule (5.3), an element

X ∈ W̃ ∂,as
k (ΠV) is determined by its values on a set of differential generators

of V. On the other hand, for X ∈ W̃ ∂,as
h (ΠV) and Y ∈ W̃ ∂,as

k−h(ΠV), we have
that [XλY ]λ0,...,λk

(vi0 , . . . , vik) is polynomial in λ (and all the other variables
λ0, . . . , λk) for every k-tuple (vi0 , . . . , vik) consisting of differential generators
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of V . Since such k-tuples are finitely many, we deduce that the λ-bracket

[XλY ] is polynomial in λ (and with coefficients in W̃ ∂,as
k (ΠV), by definition

of prolongation). Hence, the statement follows from Corollary 6.10. �

We next define a structure of a commutative associative superalgebra on

the superspace ΠW̃ ∂,as(ΠV), making it an odd Poisson vertex superalgebra.

Let X ∈ ΠW̃ ∂,as
h−1(ΠV) and Y ∈ ΠW̃ ∂,as

k−h−1(ΠV), for h ≥ 0, k − h ≥ 0, and
denote by p(X) and p(Y ) their parities in these spaces. We define their

concatenation product X ∧ Y ∈ ΠW̃ ∂,as
k−1 (ΠV) as the following map:

(7.2)

(X ∧ Y )λ1,...,λk
(a1, . . . , ak) =

∑

i1<···<ih
ih+1<···<ik

ǫa(i1, . . . , ik)(−1)p(Y )(p̄(ai1 )+···+p̄(aih ))

×Xλi1
,...,λih

(ai1 , . . . , aih)Yλih+1
,...,λik

(aih+1
, . . . , aik) ,

where ǫa(i1, . . . , ik) is as in (2.1) for the elements a1, . . . , ak ∈ ΠV.

Proposition 7.3. (a) The Z+-graded superspace, with parity p, G̃(V) =⊕∞
k=0 G̃k(V), where G̃k(V) = ΠW̃ ∂,as

k−1 (ΠV), together with the concatena-

tion product ∧ : G̃h(V) × G̃k−h(V) → G̃k(V) given by (7.2), and with

the Lie conformal superalgebra λ-bracket on ΠG̃(V) = W̃ ∂,as(ΠV), is a
Z+-graded odd Poisson vertex superalgebra.

(b) The representation of the Lie superalgebra W ∂(ΠV) on W̃ ∂(ΠV) de-
fined by Proposition 6.5(b) restricts to a representation of its subalge-

bra W ∂,as(ΠV) on the odd Poisson vertex superalgebra W̃ ∂,as(ΠV) ⊂

W̃ ∂(ΠV), commuting with ∂ and acting by derivations of both the con-
catenation product and the λ-bracket.

(c) The canonical map
∫

: W̃ ∂(ΠV) → W ∂(ΠV) defined in Proposition

6.5(a) restricts to a map
∫

: W̃ ∂,as(ΠV) → W ∂,as(ΠV), which is a

homomorphism of representations of the Lie superalgebra W ∂,as(ΠV).
Moreover, this map induces an injective Lie algebra homomorphism

∫
:

W̃ ∂,as(ΠV)/∂W̃ ∂,as(ΠV) → W ∂,as(ΠV).

Proof. First, we prove that X ∧ Y in (7.2) is an element of ΠW̃ ∂,as
k (ΠV),

namely, it is a map (ΠV)⊗k → F−[λ1, . . . , λk]⊗ΠV satisfying the symmetry
and sesquilinearity conditions, and the Leibniz rule (5.3). The symmetry
condition can be checked directly with the usual argument (see e.g. the
proof of Proposition 3.4), while the sesquilinearity condition is immediate
by the definition (7.2) of the concatenation product. As for the Leibniz rule,
by the symmetry condition it is enough to prove (5.3) for i = k, i.e.
(7.3)

(X ∧ Y )λ1,...,λk
(a1, . . . , ak−1, bc)=(X ∧ Y )λ1,...,λk−1,λk+∂(a1, . . . , ak−1, b)→c

+ (−1)p(b)p(c)(X ∧ Y )λ1,...,λk−1,λk+∂(a1, . . . , ak−1, c)→b .
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We have, by the definition of the concatenation product,
(7.4)

(X ∧ Y )λ1,...,λk
(a1, . . . , ak−1, bc) =∑

i1<···<ih<k
ih+1<···<ik=k

ǫa1,...,ak−1,bc(i1, . . . , ik)(−1)p(Y )(p̄(ai1 )+···+p̄(aih ))

×Xλi1
,...,λih

(ai1 , . . . , aih)Yλih+1
,...,λik−1

,λk
(aih+1

, . . . , aik−1
, bc)

+
∑

i1<···<ih=k
ih+1<···<ik<k

ǫa1,...,ak−1,bc(i1, . . . , ik)(−1)p(Y )(p̄(ai1 )+···+p̄(aih−1
)+p̄(bc))

×Xλi1
,...,λih−1

,λk
(ai1 , . . . , aih−1

, bc)Yλih+1
,...,λik

(aih+1
, . . . , aik) .

Equation (7.3) can be derived from (7.4) using the Leibniz rules (5.3) for
X and Y , together with the sign identities (3.5) (valid in the first term of
the RHS of (7.4)), (3.6) (valid in the second term of the RHS of (7.4)), and
(3.7).

We now prove that the concatenation product (7.2) makes ΠW̃ ∂,as(ΠV)
into a commutative, associative, differential superalgebra. First, one easily

checks that X ∧ Y has parity p(X) + p(Y ) as an element of ΠW̃ ∂,as(ΠV),

so that ΠW̃ ∂,as(ΠV), endowed with the concatenation product (7.2), is a
superalgebra. Recalling the definition (6.2) of the F[∂]-module structure of

ΠW̃ ∂,as(ΠV), it is immediate to check that ∂ is an even derivation of the con-

catenation product (7.2), making ΠW̃ ∂,as(ΠV) a differential superalgebra.
Moreover, since V is a commutative superalgebra, we have

Xλi1
,...,λih

(ai1 , . . . , aih)Yλih+1
,...,λik

(aih+1
, . . . , aik)

= ±Yλih+1
,...,λik

(aih+1
, . . . , aik)Xλi1

,...,λih
(ai1 , . . . , aih) ,

where ± = (−1)(p(X)+p̄(ai1 )+···+p̄(aih ))(p(Y )+p̄(aih+1
)+···+p̄(aik )). This immedi-

ately implies commutativity of the concatenation product (7.2). Finally,

given X ∈ ΠW̃ ∂,as
h−1(ΠV), Y ∈ ΠW̃ ∂,as

k−h−1(ΠV), Z ∈ ΠW̃ ∂,as
ℓ−k−1(ΠV), and

a1, . . . , aℓ ∈ ΠV, we have, using associativity of V, that both (X ∧ (Y ∧
Z))λ1,...,λℓ

(a1, . . . , aℓ) and ((X ∧ Y ) ∧ Z)λ1,...,λℓ
(a1, . . . , aℓ) are equal to

∑

i1<···<ih
ih+1<···<ik
ik+1<···<iℓ

ǫa(i1, . . . , iℓ)(−1)p(Y )(p̄(ai1 )+···+p̄(aih ))+p(Z)(p̄(ai1 )+···+p̄(aik ))

Xλi1
,...,λih

(ai1 , . . . , aih)Yλih+1
,...,λik

(aih+1
, . . . , aik)Zλik+1

,...,λiℓ
(aik+1

, . . . , aiℓ),

proving associativity of the concatenation product.
To complete the proof of part (a), we need to prove that the λ-bracket on

W̃ ∂,as(ΠV) satisfies the odd Leibniz rule,

(7.5) [XλY ∧ Z] = [XλY ] ∧ Z + (−1)p̄(X)p(Y )Y ∧ [XλZ] ,
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thus making G̃(V) = ΠW̃ ∂,as(ΠV) into an odd Poisson vertex superalgebra.
This follows by the following two identities, which can be checked directly:
(7.6)

X�λ(Y ∧ Z) = (X�λY ) ∧ Z + (−1)p̄(X)p(Y )Y ∧ (Z�λX) ,

(X ∧ Y )�λZ =
(
e∂∂λX

)
∧ (Y�λZ) + (−1)p(Y )p̄(Z)(X�λ+∂Z)→ ∧ Y .

Let us next prove part (b). Given X ∈ W ∂,as
h (ΠV) and Ỹ ∈ W̃ ∂,as

k−h(ΠV),

we want to prove that [X, Ỹ ], defined by (6.15), belongs to W̃ ∂,as
k (ΠV), i.e.

it satisfies
(7.7)

[X, Ỹ ]λ0,...,λk
(a0, . . . , ak−1, bc) = [X, Ỹ ]λ0,...,λk−1,λk+∂(a0, . . . , ak−1, b)→c

+ (−1)p(b)p(c)[X, Ỹ ]λ0,...,λk−1,λk+∂(a0, . . . , ak−1, c)→b .

Recall, from Section 6.1, that the left and right box products defined in

(6.16) are such that [X, Ỹ ] = X�
LỸ − (−1)p̄(X)p̄(Y )Ỹ�

RX. Since, by as-

sumption, X and Ỹ satisfy the Leibniz rule (5.3), and using the sign iden-
tities (3.5) and (3.6), we get, after a straightforward computation, that
(7.8)

(X�
LỸ )λ0,...,λk

(a0, . . . , ak−1, bc) = (X�
LỸ )λ0,...,λk+∂(a0, . . . , ak−1, b)→c

+(−1)p(b)p(c)(X�
LỸ )λ0,...,λk+∂(a0, . . . , ak−1, c)→b

+
∑

i0<···<ik−h=k
ik−h+1<···<ik<k

ǫa0,...,ak−1,bc(i0, . . . , ik)

{
(−1)p̄(X)(p̄(Ỹ )+p̄(ai0 )+···+p̄(aik−h−1

)+p(b))Ỹλi0
,...,λik−h−1

,λik−h
+···+λik

+∂

(ai0 , . . . , aik−h−1
, b)→X−λik−h+1

−···−λik
−∂,λik−h+1

,...,λik
(c, aik−h+1

, . . . , aik)

+(−1)p(b)p(c)+p̄(X)(p̄(Ỹ )+p̄(ai0 )+···+p̄(aik−h−1
)+p(c))Ỹλi0

,...,λik−h−1
,λik−h

+···+λik
+∂

(ai0 , . . . , aik−h−1
, c)→X−λik−h+1

−···−λik
−∂,λik−h+1

,...,λik
(b, aik−h+1

, . . . , aik)

}
.

Similarly, for the right box product we have
(7.9)

(Ỹ �
RX)λ0,...,λk

(a0, . . . , ak−1, bc) = (Ỹ �
RX)λ0,...,λk+∂(a0, . . . , ak−1, b)→c

+(−1)p(b)p(c)(Ỹ�
RX)λ0,...,λk+∂(a0, . . . , ak−1, c)→b
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+
∑

i0<···<ih=k
ih+1<···<ik<k

ǫa0,...,ak−1,bc(i0, . . . , ik)

{
(−1)(p̄(X)+p̄(ai0 )+···+p̄(aih−1

)+p(b))(p(c)+p̄(aih+1
)+···+p̄(aik ))

×Ỹλi0
+···+λih

+∂,λih+1
,...,λik

(c, aih+1
, . . . , aik)→

×Xλi0
,...,λih−1

,−λi0
−···−λih−1

−∂(ai0 , . . . , aih−1
, b)

+(−1)p(b)p(c)+(p̄(X)+p̄(ai0 )+···+p̄(aih−1
)+p(c))(p(b)+p̄(aih+1

)+···+p̄(aik ))

×Ỹλi0
+···+λih

+∂,λih+1
,...,λik

(b, aih+1
, . . . , aik)→

×Xλi0
,...,λih−1

,−λi0
−···−λih−1

−∂(ai0 , . . . , aih−1
, c)

}
.

Note that, by the symmetry conditions on X and Ỹ , the sum in the RHS
of (7.8) and the sum in the RHS of (7.9) differ by the factor (−1)p̄(X)p̄(Y ).
Hence, combining (7.8) and (7.9), we get (7.7). This shows that we have a

well-defined representation of the Lie superalgebraW ∂,as(ΠV) on W̃ ∂,as(ΠV).

Thanks to Proposition 6.5(b), the action of W ∂,as(ΠV) on W̃ ∂,as(ΠV)
commutes with ∂ and it is given by derivations of the λ-bracket. To complete
the proof of part (b) we only have to check that the Lie superalgebra action

of W ∂,as(ΠV) on W̃ ∂,as(ΠV) is by derivations of the concatenation product,
i.e.

(7.10) [X, Ỹ ∧ Z̃] = [X, Ỹ ] ∧ Z̃ + (−1)p̄(X)p(Ỹ )Ỹ ∧ [X, Z̃ ] .

This follows by the following two identities (similar to (7.6)) which can be
checked directly:

(7.11)
X�

L(Ỹ ∧ Z̃) = (X�
LỸ ) ∧ Z̃ + (−1)p̄(X)p(Ỹ )Ỹ ∧ (Z̃�

LX) ,

(X̃ ∧ Ỹ )�RZ = X̃ ∧ (Z̃�
RZ) + (−1)p(Ỹ )p̄(Z)(X̃�

RZ) ∧ Ỹ .

Finally, part (c) is immediate from Proposition 6.5. �

It follows from Propositions 5.2 and 7.3 that, for any Poisson vertex su-
peralgebra V, which is finitely generated as differential algebra, we have a

differential dX on the superspace W̃ ∂,as(ΠV), given by the action ofX on this
space, whereX is the element in the set (5.4) associated to the Lie conformal
superalgebra structure on V. Moreover, by Proposition 7.3(b), the differen-

tial dX is an odd derivation of the odd PVA structure of W̃ ∂,as(ΠV). We thus

get the basic PVA cohomology complex (W̃ ∂,as(ΠV), dX ). By Proposition
7.3(c), the canonical map

∫
is a homomorphism of cohomology complexes

(W̃ ∂,as(ΠV), dX ) → (W ∂,as(ΠV), adX).
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7.2. The universal PVA W̃ ∂,as(V). As in Section 3.3, instead of W̃ ∂(ΠV),
we may consider the universal “generalized” Lie conformal superalgebra

W̃ ∂(V), with parity p, and, inside it, the full prolongation of RCder(V) ⊂

W̃ ∂
0 (V) = RCend(V), which we denote by

W̃ ∂,as(V) =

∞⊕

k=−1

W̃ ∂,as
k (V) .

As in Proposition 7.2, one proves that W̃ ∂,as
k (V) consists of linear maps

X : V⊗(k+1) → F[λ0, . . . , λk]⊗V satisfying the symmetry and sesquilinearity
conditions, and the Leibniz rule (5.5).

As in Proposition 7.3, assuming that V is finitely generated as differential

algebra, one can define on W̃ ∂,as(V) a structure of a Poisson vertex algebra,

where the λ-bracket comes from the λ-bracket (6.27) on W̃ ∂(V), and the
commutative associative product is given by a concatenation product as
in (7.2), with p̄ replaced by p. Moreover, the representation (6.15) of Lie

superalgebra W ∂(V) on W̃ ∂(V) induces a representation of its subalgebra

W ∂,as(V) on the Poisson vertex superalgebra W̃ ∂,as(V) ⊂ W̃ ∂(V), acting by
derivations of both the concatenation product and the λ-bracket.

It follows from Proposition 5.4 that, for any odd Poisson vertex superal-
gebra V, which is finitely generated as differential algebra, we have a dif-

ferential dX on the superspace W̃ ∂,as(V), given by the action of X via the
representation of W ∂,as(V), where X in (5.6) is associated to the Lie con-
formal superalgebra structure on ΠV. We thus get a cohomology complex

(W̃ ∂,as(V), dX ).

8. Algebras of differential functions and the variational
complex

8.1. Algebras of differential functions. An algebra of differential func-
tions V in one independent variable x and ℓ dependent variables ui, indexed
by the set I = {1, . . . , ℓ} (ℓ may be infinite), is, by definition, a differential
algebra (i.e. a unital commutative associative algebra with a derivation ∂),
endowed with commuting derivations ∂

∂u
(n)
i

: V → V, for all i ∈ I and

n ∈ Z+, such that, given f ∈ V, ∂

∂u
(n)
i

f = 0 for all but finitely many i ∈ I

and n ∈ Z+, and the following commutation rules with ∂ hold:

(8.1)
[ ∂

∂u
(n)
i

, ∂
]
=

∂

∂u
(n−1)
i

,

where the RHS is considered to be zero if n = 0. An equivalent way to write
the identities (8.1) is in terms of generating series:

(8.2)
∑

n∈Z+

zn
∂

∂u
(n)
i

◦ ∂ = (z + ∂) ◦
∑

n∈Z+

zn
∂

∂u
(n)
i

.
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Remark 8.1. It would be natural in this paper to consider a commutative
differential superalgebra V, with an even derivation ∂. However, we re-
stricted ourselves to the purely even case for the sake of simplicity. The
generalization to the superalgebra case is straightforward.

We call C = Ker(∂) ⊂ V the subalgebra of constant functions, and we
denote by F ⊂ V the subalgebra of quasiconstant functions, defined by

(8.3) F =
{
f ∈ V

∣∣ ∂f

∂u
(n)
i

= 0 ∀i ∈ I, n ∈ Z+

}
.

It follows from (8.1) by downward induction that a constant function is
quasiconstant: C ⊂ F . Also, clearly, ∂F ⊂ F . One says that f ∈ V has
differential order n in the variable ui if ∂f

∂u
(n)
i

6= 0 and ∂f

∂u
(m)
i

= 0 for all

m > n.
Typical examples of algebras of differential functions are: the ring of

translation invariant differential polynomials, Rℓ = F[u
(n)
i | i ∈ I, n ∈ Z+],

where ∂(u
(n)
i ) = u

(n+1)
i , and the ring of differential polynomials, Rℓ[x] =

F[x, u
(n)
i | i ∈ I, n ∈ Z+], where ∂x = 1 and ∂u

(n)
i = u

(n+1)
i . Other examples

can be constructed starting from Rℓ or Rℓ[x] by taking a localization by
some multiplicative subset S, or an algebraic extension obtained by adding
solutions of some polynomial equations, or a differential extension obtained
by adding solutions of some differential equations. In all these examples,
and more generally in any algebra of differential functions extension of Rℓ,

the action of ∂ : V → V is given by ∂ =
∂

∂x
+

∑

i∈I,n∈Z+

u
(n+1)
i

∂

∂u
(n)
i

, which

implies that

(8.4) F ∩ ∂V = ∂F .

Indeed, if f ∈ V has, in some variable ui, differential order n ≥ 0, then ∂f
has differential order n+ 1, hence it does not lie in F .

The variational derivative δ
δu : V → V⊕ℓ is defined by

(8.5)
δf

δui
:=

∑

n∈Z+

(−∂)n
∂f

∂u
(n)
i

.

It follows immediately from (8.2) that

(8.6)
δ

δui
(∂f) = 0 ,

for every i ∈ I and f ∈ V, namely, ∂V ⊂ Ker δ
δu .

A vector field is, by definition, a derivation of V of the form

(8.7) X =
∑

i∈I,n∈Z+

Pi,n
∂

∂u
(n)
i

, Pi,n ∈ V .

We denote by Vect(V) the space of all vector fields, which is clearly a sub-
algebra of the Lie algebra Der(V) of all derivations of V. A vector field X is
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called evolutionary if [∂,X] = 0, and we denote by Vect∂(V) the Lie subalge-
bra of all evolutionary vector fields. Namely, Vect∂(V) = Vect(V)∩Der∂(V).
By (8.1), a vector field X is evolutionary if and only if it has the form

(8.8) XP =
∑

i∈I,n∈Z+

(∂nPi)
∂

∂u
(n)
i

,

where P = (Pi)i∈I ∈ Vℓ, is called the characteristic of XP . As in [BDSK],
we denote by Vℓ the space of ℓ× 1 column vectors with entries in V, and by
V⊕ℓ the subspace of ℓ× 1 column vectors with only finitely many non-zero
entries.

8.2. de Rham complex Ω̃•(V) and variational complex Ω•(V). Here
we describe the explicit construction of the complex of variational calculus
following [DSK2].

Recall that the de Rham complex Ω̃•(V) is defined as the free commuta-

tive superalgebra over V with odd generators δu
(n)
i , i ∈ I, n ∈ Z+ and the

differential δ defined further. The algebra Ω̃•(V) consists of finite sums of
the form

(8.9) ω̃ =
∑

i1,...,ik∈I
m1,...,mk∈Z+

Pm1...mk

i1...ik
δu

(m1)
i1

∧ · · · ∧ δu
(mk)
ik

, Pm1...mk

i1...ik
∈ V .

We have a natural Z+-grading Ω̃•(V) =
⊕

k∈Z+
Ω̃k(V) defined by letting

elements in V have degree 0, while the generators δu
(n)
i have degree 1. The

space Ω̃k(V) is a free module over V with a basis consisting of the elements

δu
(m1)
i1

∧ · · · ∧ δu
(mk)
ik

, with (m1, i1) > · · · > (mk, ik) (with respect to the lex-

icographic order). In particular Ω̃0(V) = V and Ω̃1(V) =
⊕

i∈I,n∈Z+
Vδu

(n)
i .

We let δ be an odd derivation of degree 1 of Ω̃•(V), such that δf =∑
i∈I, n∈Z+

∂f

∂u
(n)
i

δu
(n)
i for f ∈ V, and δ(δu

(n)
i ) = 0. It is immediate to check

that δ2 = 0 and that, for ω̃ ∈ Ω̃k as in (8.9), we have

(8.10) δ(ω̃) =
∑

j∈I,n∈Z+

∑

i1,...,ik∈I
m1,...,mk∈Z+

∂Pm1...mk

i1...ik

∂u
(n)
j

δu
(n)
j ∧ δu

(m1)
i1

∧ · · · ∧ δu
(mk)
ik

.

The superspace Ω̃•(V) has a structure of an F[∂]-module, where ∂ acts as
an even derivation of the wedge product, which extends the action on V =

Ω̃0(V), and commutes with δ. Since ∂ commutes with δ, we may consider the

corresponding reduced complex Ω•(V) = Ω̃•(V)/∂Ω̃•(V) =
⊕

k∈Z+
Ωk(V),

known as the variational complex. By an abuse of notation, we denote by δ
the corresponding differential on Ω•(V).
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We identify the space Ω̃k(V) with the space of skewsymmetric arrays, i.e.
arrays of polynomials

(8.11) P =
(
Pi1,...,ik(λ1, . . . , λk)

)
i1,...,ik∈I

,

where Pi1,...,ik(λ1, . . . , λk) ∈ F[λ1, . . . , λk] ⊗ V are zero for all but finitely
many choices of indexes, and are skewsymmetric with respect to simulta-
neous permutations of the variables λ1, . . . , λk and the indexes i1, . . . , ik.
The identification is obtained by associating P in (8.11) to ω̃ in (8.9), where
Pm1,...,mk

i1,...,ik
is the coefficient of λm1

1 . . . λmk

k in Pi1,...,ik(λ1, . . . , λk). The formula

for the differential δ : Ω̃k(V) → Ω̃k+1(V) gets translated as follows:

(8.12) (δP )i0,...,ik(λ0, . . . , λk) =

k∑

α=0

(−1)α
∑

n∈Z+

∂P
i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

∂u
(n)
iα

λn
α .

In this language the F[∂]-module structure of Ω̃•(V) is given by

(8.13) (∂P )i1,...,ik(λ1, . . . , λk) = (∂ + λ1 + · · · + λk)Pi1,...,ik(λ1, . . . , λk) ,

so that the reduced space Ωk(V) = Ω̃k(V)/∂Ω̃k(V) gets naturally identified
with the space of arrays (8.11), where Pi1,...,ik(λ1, . . . , λk) are considered as
elements of F−[λ1, . . . , λk] ⊗F[∂] V. The differential δ on Ω•(V) is given by
the same formula (8.12).

For example, Ω0(V) = V/∂V, and Ω1(V) is naturally identified with V⊕ℓ,
thanks to the canonical isomorphism F[λ]⊗F[∂] V ≃ V. Under these identifi-

cations, the map δ : V/∂V → V⊕ℓ coincides with the variational derivative
(8.5):

δ(
∫
f) =

δf

δu
,

where, as in the previous sections, we denote by f 7→
∫
f the canonical quo-

tient map V → V/∂V. Furthermore, Ω2(V) is naturally identified with the
space of skewadjoint ℓ× ℓ-matrix differential operators S(∂) =

(
Sij(∂)

)
i,j∈I

.

This identification is obtained by mapping P =
(∑

m,n∈Z+
Pm,n
i,j λmµn

)
i,j∈I

to the operator S(∂) given by Sij(∂) =
∑

m,n∈Z+
(−∂)n ◦ Pm,n

i,j ∂m. With

these identifications, formula (8.12) for the differential of F ∈ V⊕ℓ = Ω1(V)
becomes

δF = −DF (∂) +D∗
F (∂) ,

where

(8.14) DF (∂) =
( ∑

n∈Z+

∂Fi

∂uj
∂n
)
i,j∈I

is the Frechet derivative of F , and D∗
F (∂) is the adjoint differential operator.
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8.3. Exactness of the variational complex. Recall from [BDSK] that an
algebra of differential functions V is called normal if we have ∂

∂u
(m)
i

(
Vm,i

)
=

Vm,i for all i ∈ I,m ∈ Z+, where we let
(8.15)

Vm,i :=
{
f ∈ V

∣∣∣ ∂f

∂u
(n)
j

= 0 if (n, j) > (m, i) in lexicographic order
}
.

We also denote Vm,0 = Vm−1,ℓ, and V0,0 = F .
The algebras Rℓ and Rℓ[x] are obviously normal. Moreover, any their

extension V can be further extended to a normal algebra. Conversely, in
[DSK2] it is proved that any normal algebra of differential functions V is
automatically a differential algebra extension of Rℓ.

In [BDSK] we proved the following result (see also (8.4)):

Theorem 8.2. If V is a normal algebra of differential functions, then

(a) Hk(Ω̃•(V), δ) = 0 for k ≥ 1, and H0(Ω̃•(V), δ) = F ,
(b) Hk(Ω•(V), δ) = 0 for k ≥ 1, and H0(Ω•(V), δ) = F/∂F .

In particular, δf
δu = 0 if and only if f ∈ ∂V + F , and F ∈ V⊕ℓ is in the

image of δ
δu if and only if its Frechet derivative DF (∂) is selfadjoint.

9. The Lie superalgebra of variational polyvector fields and
PVA cohomology

Let V be an algebra of differential functions extension of the algebra of

differential polynomials Rℓ = F[u
(n)
i | i ∈ I, n ∈ Z+]. Recall from Section 5.1

the Z-graded Lie superalgebra W ∂,as(ΠV), obtained as a prolongation of the
Lie algebra Der∂(V) of derivations of V, commuting with ∂, in the universal
Lie superalgebra W ∂(ΠV). In Section 9.1 we introduce a smaller Z-graded
subalgebra of W ∂(ΠV), which we call the Lie superalgebra of variational
polyvector fields, denoted by W var(ΠV) =

⊕∞
k=−1W

var
k . It is obtained as a

prolongation of the Lie subalgebra of evolutionary vector fields Vect∂(V) ⊂
Der∂(V), introduced in Section 8.1. We then identify in Section 9.3 the space
W var(ΠV) with the space Ω•(V) introduced in Section 8.2, and we relate the
corresponding cohomology complexes.

9.1. The Lie superalgebra of variational polyvector fields W var(ΠV).
Recall that the superspace W ∂

k (ΠV), of parity k mod 2, consists of maps

X : V⊗(k+1) → F−[λ0, . . . , λk]⊗F[∂] V, satisfying sesquilinearity:

(9.1) Xλ0,...,λk
(f0, . . . ∂fi . . . , fk) = −λiXλ0,...,λk

(f0, . . . , fk) , i = 0, . . . , k ,

and skewsymmetry:
(9.2)
Xλσ(0),...,λσ(k)

(fσ(0), . . . , fσ(k)) = sign(σ)Xλ0,...,λk
(f0, . . . , fk) , σ ∈ Sk+1 .

In the special case when V = Rℓ = F[u
(n)
i | i ∈ I, n ∈ Z+], the Leibniz rule

(5.3) implies the following master equation for an element X ∈ W ∂,as
k (ΠV),
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which expresses the action of X on V⊗(k+1) in terms of its action on (k+1)-
tuples of generators:

(9.3)

Xλ0,...,λk
(f0, . . . , fk) =

∑

i0,...,ik∈I
m0,...,mk∈Z+

(
e∂∂λ0

∂f0

∂u
(m0)
i0

)
. . .

. . .

(
e∂∂λk

∂fk

∂u
(mk)
ik

)
(−λ0)

m0 . . . (−λk)
mkXλ0,...,λk

(ui0 , . . . , uik) .

Here we are using the following formula:

(9.4)
(
e∂∂λf

)
P (λ) :=

∑

n∈Z+

1

n!
(∂nf)

∂nP (λ)

∂λn
= P (λ+ ∂)→f .

In general, for an arbitrary algebra of differential functions V containing Rℓ,
we define the space W var

k of variational k-vector fields as the subspace of

W ∂
k (ΠV) consisting of elements X satisfying the master equation (9.3). By

(9.4), another form of equation (9.3) is the following (for each s = 0, . . . , k):

(9.5)

Xλ0,...,λk
(f0, . . . , fk)

=
∑

i∈I,m∈Z+

Xλ0,...,λs+∂,...,λk
(f0, . . . ,

s
ǔi, . . . , fk)→(−λs − ∂)m

∂fs

∂u
(m)
i

,

where
s
ǔi means that ui is put in place of fs.

Note that the master equation implies that X satisfies the Leibniz rule

(5.3). Thus, W var
k is a subspace of W ∂,as

k (ΠV).

Proposition 9.1. The superspace W var(ΠV) is a Z-graded subalgebra of the
Lie superalgebra W ∂,as(ΠV).

Proof. The proof of this statement is similar to that of Proposition 5.1.
We need to prove that, if X ∈ W var

h and Y ∈ W var
k−h, then [X,Y ] =

X�Y − (−1)h(k−h)Y�X lies in W var
k , namely, it satisfies the master equa-

tion (9.3), or, equivalently, equation (9.5) for s = 0, . . . , k. We observe that,
since [X,Y ]λ0,...,λk

(f0, . . . , fk) is skewsymmetric with respect to simultane-
ous permutations of the variables λi and the elements fi, it suffices to prove
that [X,Y ] satisfies equation (9.5) for s = 0. We have, by a straightforward
computation,

(
X�Y

)
λ0,...,λk

(f0, f1, . . . , fk)

=
∑

j∈I,n∈Z+

(
X�Y

)
λ0+∂,λ1,...,λk

(uj , f1, . . . , fk)→(−λ0 − ∂)n
∂f0

∂u
(n)
j

+
∑

i,j∈I,m,n∈Z+

∑

i1<···<ik−h

ik−h+1<···<ik

±
∂2f

∂u
(m)
i ∂u

(n)
j

×
(
(ν + ∂)nX−ν−∂,λik−h+1

,...,λik
(uj , fik−h+1

, . . . , fik)
)

×
(
(µ+ ∂)mY−µ−∂,λi1

,...,λik−h
(ui, fi1 , . . . , fik−h

)
)
,
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where ± is the sign of the permutation (i1, . . . , ik) of the set {1, . . . , k},
µ = λi1 + · · ·+ λik−h

and ν = λik−h+1
+ · · ·+ λik . To complete the proof we

just observe that the second sum in the RHS is supersymmetric in X and
Y : if we exchange them it gets multiplied by (−1)h(k−h). Hence it does not
contribute to [X,Y ]. �

We can describe explicitly the spaces W var
k for k = −1, 0, 1. Clearly,

W var
−1 = V/∂V. Identifying F−[λ]⊗F[∂]V with V, the master equation (9.3) for

X ∈ W var
0 readsX(f) =

∑
i∈I,n∈Z+

(∂nX(ui))
∂f

∂u
(n)
i

, i.e., X is an evolutionary

vector field, see (8.8). Hence W var
0 = Vect∂(V). Next, recall from Section 4.1

that W ∂
1 (ΠV) is identified with the space of sesquilinear skewcommutative

λ-brackets {· λ ·} : V ⊗ V → F[λ]⊗ V. For X ∈ W ∂
1 (ΠV), the corresponding

λ-bracket is {fλg} = Xλ,−λ−∂(f, g). Under this identification, the master
equation (9.3) translates into the usual formula for λ-brackets (cf. [DSK1]):

(9.6) {fλg} =
∑

i,j∈I,m,n∈Z+

∂g

∂u
(n)
j

(λ+ ∂)n{uiλ+∂uj}→(−λ− ∂)m
∂f

∂u
(m)
i

.

Hence, W var
1 is identified with the space of skewcommutative λ-brackets on

V satisfying equation (9.6).
We can also write some explicit formulas for the Lie brackets inW var(ΠV).

Recall that W var
−1 is an abelian subalgebra. If X ∈ W var

k , k ≥ 0, and
∫
f0 ∈

V/∂V = W var
−1 , recalling equation (4.10) and applying the master equation

(9.5), we have,

(9.7) [X,
∫
f ]λ1,...,λk

(f1, . . . , fk) =
∑

i∈I

X∂,λ1,...,λk
(ui, f1, . . . , fk)→

δf

δui
.

In particular, for k = 0, recalling that W var
0 = Vect∂(V) is identified with

Vℓ via P 7→ XP (cf. (8.8)), we have

(9.8) [XP ,
∫
f ] =

∫
XP (f) =

∑

i∈I

∫
Pi

δf

δui
.

Moreover, for k = 1, recalling that W var
1 is identified with the space of

skewcommutative λ-brackets, we have

(9.9) [{· λ ·},
∫
f ](g) = {fλg}

∣∣
λ=0

.

We next identify skewcommutative λ-brackets with skewadjoint differential
operators by associating to a given λ-bracket {· λ ·} the differential operator
H(∂) =

(
Hij(∂)

)
i,j∈I

: V⊕ℓ → Vℓ, given by

(9.10) Hij(∂) = {uj∂ui}→ .

Furthermore, identifying the space of evolutionary vector fields with Vℓ, we
can rewrite (9.9) as follows

(9.11) [H(∂),
∫
f ] = H(∂)

δf

δu

(
= X

H(∂) δf
δu

)
.
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Next, let X ∈ Vect∂(V) = W var
0 and Y ∈ W var

k , k ≥ 0. We have, by (4.11),

(9.12)

[X,Y ]λ0,...,λk
(f0, . . . , fk) = X

(
Yλ0,...,λk

(f0, . . . , fk)
)

−

k∑

i=0

Yλ0,...,λk
(f0, . . . X(fi) . . . , fk) .

For k = 0 this reduces to the usual commutator of evolutionary vector fields:

(9.13) [P,Q]i = [XP ,XQ](ui) = XP (Qi)−XQ(Pi) ,

while for k = 1 it gives, identifying H ∈ W var
1 with the corresponding

skewcommutative λ-bracket {· λ ·}H ,

(9.14) {fλg}[X,H] = X
(
{fλg}H

)
− {X(f)λg}H − {fλX(g)}H ,

or equivalently, restricting to generators and using the notation in (9.10),
(9.15)
[XP ,H]ij(λ) = XP

(
Hij(λ)

)

−
∑

k∈I,n∈Z+

Hik(λ+ ∂)(−λ− ∂)n
∂Pj

∂u
(n)
k

−
∑

k∈I,n∈Z+

∂Pi

∂u
(n)
k

(λ+ ∂)nHkj(λ)

= XP

(
Hij(λ)

)
−
∑

k∈I

Hik(λ+ ∂)
(
D∗

P (λ)
)
kj

−
∑

k∈I

(
DP (λ+ ∂)

)
ik
Hkj(λ) .

In the last identity we used the definition (8.14) of the Frechet derivative
DP (∂). Equivalently, in terms of differential operators, we have

(9.16) [XP ,H](∂) = XP (H)(∂) −H(∂) ◦D∗
P (∂) −DP (∂) ◦H(∂) ,

where XP (H) means applying the derivation XP to the coefficients of the
differential operator H(∂). Finally, let H ∈ W var

1 be associated to the
skewcommutative λ-bracket {· λ ·}H , and let Y ∈ W var

k−1, k ≥ 1. We have, by
(4.12),
(9.17)

[H,Y ]λ0,...,λk
(f0, . . . , fk) = (−1)k+1

( k∑

i=0

(−1)i
{
fiλi

Y
λ0,

i
.̌..,λk

(f0,
i
ˇ. . ., fk)

}
H

+
∑

0≤i<j≤k

(−1)i+jY
λi+λj ,λ0,

i
.̌..

j

.̌..,λk

(
{fiλi

fj}H , f0,
i
ˇ. . .

j
ˇ. . ., fk

))
.

In particular, for k = 2,

(9.18)

[H,K]λ,µ,ν(f, g, h)

= {{fλg}Kλ+µh}H − {fλ{gµh}K}H + {gµ{fλh}K}H

+{{fλg}Hλ+µh}K − {fλ{gµh}H}K + {gµ{fλh}H}K .

Remark 9.2. As we pointed out above, W var = W ∂,as if V = Rℓ. This is not
always the case for an extension of Rℓ. For example, consider the algebra
of differential functions in one variable V = R1[e

u], with ∂eu = euu′. In

this case, W var
0 = Vect∂(V), while W ∂,as

0 (ΠV) = Vect∂(V) + FZ, where Z is
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the derivation of V commuting with ∂ given by: Z(Pemu) = mPemu, P ∈
R1, m ∈ Z+.

9.2. PVA structures on an algebra of differential functions and co-

homology complexes. Let K ∈ W var
1 be such that [K,K] = 0, and denote

by {· λ ·}K the corresponding Poisson λ-bracket on V, and byK(∂) the corre-
sponding Hamiltonian operator given by (9.10). Then (adK)2 = 0, hence we
can consider the associated Poisson cohomology complex (W var(ΠV), adK).
Let Z•

K(V) =
⊕∞

k=−1Z
k
K , where Zk

K = Ker
(
adK

∣∣
W var

k

)
, and B•

K(V) =
⊕∞

k=−1B
k
K , where Bk

K = (adK)
(
W var

k−1

)
. Then Z•

K(V) is a Z-graded subal-
gebra of the Lie superalgebra W var(ΠV), and B•

K(V) ⊂ Z•
K(V) is an ideal.

Hence, the corresponding Poisson cohomology

H•
K(V) =

∞⊕

k=−1

Hk
K , Hk

K = Zk
K

/
Bk
K ,

is a Z-graded Lie superalgebra.
By equation (9.11), We have

H−1
K = Z−1

K =
{∫

f ∈ V/∂V
∣∣K(∂) δfδu = 0

}

=
{∫

f ∈ V/∂V
∣∣ {fλV}K

∣∣
λ=0

= 0
}
.

Next, recalling that W var
0 = Vect∂(V), we have

B0
K =

{
X

K(∂) δf
δu

∣∣ ∫ f ∈ V/∂V
}
=
{
{fλ ·}K

∣∣
λ=0

∣∣ ∫ f ∈ V/∂V
}
,

where XP ∈ Vect∂(V) was defined in (8.8). Moreover, recalling equation
(9.14), we get

Z0
K =

{
X ∈ Vect ∂(V)

∣∣ X({fλg}K) = {X(f)λg}K + {fλX(g)}K , f, g ∈ V
}

or, identifying Vect∂(V) = Vℓ via (8.8), we have by (9.16)

Z0
K =

{
P ∈ Vℓ

∣∣ XP (K(∂)) = K(∂) ◦D∗
P (∂) +DP (∂) ◦K(∂)

}
.

Finally, recalling (9.17) we get that, for k ≥ 1, Zk
K consists of elements

X ∈ W var
k satisfying the following equation:

k+1∑

i=0

(−1)i
{
fiλi

X
λ0,

i
.̌..,λk+1

(f0,
i
ˇ. . ., fk+1)

}
K

+
∑

0≤i<j≤k+1

(−1)i+jX
λi+λj ,λ0,

i
.̌..

j

.̌..,λk+1

(
{fiλi

fj}K , f0,
i
ˇ. . .

j
ˇ. . ., fk+1

)
= 0 ,
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and Bk
K consists of elements X ∈ W var

k of the form

Xλ0,...,λk
(f0, . . . , fk) =

k∑

i=0

(−1)i
{
fiλi

Y
λ0,

i
.̌..,λk

(f0,
i
ˇ. . ., fk)

}
K

+
∑

0≤i<j≤k

(−1)i+jY
λi+λj ,λ0,

i
.̌..

j

.̌..,λk

(
{fiλi

fj}K , f0,
i
ˇ. . .

j
ˇ. . ., fk

)
.

for some Y ∈ W var
k−1.

Remark 9.3. One can show that the identity map on V/∂V = Ω0(V) = W var
−1

extends to a homomorphism of cohomology complexes ΦK : (Ω•(V), δ) →
(W var(ΠV), adK) , P ∈ Ωk+1(V) 7→ Φk

KP ∈ W var
k , defined by the following

formula:

(9.19)
(Φk

KP )λ0,...,λk
(f0, . . . , fk) = (−1)k+1

∑

i0,...,ik∈I

Pi0,...,ik(λ0 + ∂0, . . . , λk + ∂k){f0λ0
ui0}K . . . {fkλk

uik}K ,

where ∂α is ∂ applied to {fαλα
uiα}K . For k = 0, 1 the map Φk

K reduces to

Φ0
K(F ) = K(∂)F, F ∈ V⊕ℓ, where K(∂) is the differential operator associ-

ated to K via (9.10), and, identifying elements in Ω2(V) and W var
1 with the

corresponding skewadjoint differential operators, we have

(9.20) (Φ1
KS)(∂) = −K(∂) ◦ S(∂) ◦K(∂) .

One can also show that, for k ≥ 1, the map Φk
K : Ωk+1(V) → W var

k is

injective provided that the map K(∂ + λ) : V[λ]⊕ℓ → V[λ]ℓ is injective.

9.3. Identification of W var(ΠV) with Ω•(V). In this section we will con-
struct an explicit identification of the superspaces W var

k and Ωk+1(V) for
finite ℓ. However, this identification is not covariant, i.e. it depends on
the choice of generators ui, i ∈ I, of the algebra of differential functions V.
Indeed these two spaces play completely different roles. In a forthcoming
publication we will give a covariant description of the variational complex
Ω•(V), and clarify the relation between these two complexes, as well as the
relation with the calculus structure discussed in [DSHK].

Note that if X : V⊗(k+1) → F−[λ0, . . . , λk] ⊗F[∂] V satisfies the master
equation (9.3), then automatically it satisfies sesquilinearity. Moreover, it
satisfies skewsymmetry provided that it is skewsymmetric on the generators

ui, i ∈ I. Conversely, any mapX :
(⊕

i∈I Fui
)⊗(k+1)

→ F−[λ0, . . . , λk]⊗F[∂]

V satisfying skewsymmetry can be extended uniquely to an element of W var
k

by the master equation. Hence, X ∈ W var
k is completely determined by

the collection of polynomials Xλ0,...,λk
(ui0 , . . . , uik) ∈ F−[λ0, . . . , λk]⊗F[∂] V,

with i1, . . . , ik ∈ I.
Thanks to the above observations, we construct an injective linear map

Φ : Ω•(V) → W var(ΠV) ,
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sending P ∈ Ωk+1(V) to ΦkP ∈ W var
k , defined on generators by

(9.21) (ΦkP )λ0,...,λk
(ui0 , . . . , uik) = Pi0,...,ik(λ0, . . . , λk) ,

and extended to a map ΦkP : V⊗(k+1) → F−[λ0, . . . , λk] ⊗F[∂] V by the
master equation (9.3). Clearly, Φ is surjective for finite ℓ, and it is injective
in general. Note that Φk formally coincides, up to a sign, with Φk

K in (9.19)
if we let K = 1I.

Let ℓ be finite. Let K ∈ W var
1 be such that [K,K] = 0, and consider

the Poisson cohomology complex (W var(ΠV), adK). Using the bijection
Φ : Ω•(V) → W var(ΠV), we get a differential dK : Ωk(V) → Ωk+1(V)
induced by the action of adK on W var(ΠV). Explicitly, recalling equation
(9.17), we have
(9.22)

(dKP )i0,...,ik(λ0, . . . , λk)

= (−1)k+1
∑

j∈I,n∈Z+

( k∑

α=0

(−1)α
∂P

i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

∂u
(n)
j

(λα + ∂)nKj,iα(λα)

+
∑

0≤α<β≤k

(−1)α+βP
j,i0,

α
.̌..

β

.̌..,ik
(λα + λβ + ∂, λ0,

α
ˇ. . .

β
ˇ. . ., λk)→

(−λα − λβ − ∂)n
∂Kiβ ,iα(λα)

∂u
(n)
j

)
.

9.4. The variational and Poisson cohomology complexes in terms

of local polydifferential operators. Let V be an algebra of differentiable

functions extension of Rℓ = F[u
(n)
i | i ∈ I, n ∈ Z+]. Recall [DSK2] that a k-

local differential operator of rank r is an F-linear map S : (V⊕r)k → V/∂V,
of the form

(9.23) S(P 1, . . . , P k) =
∫ ∑

m1,...,mk∈Z+

i1,...,ik∈{1,...,r}

fm1,...,mk

i1,...,ik
(∂m1P 1

i1) . . . (∂
mkP k

ik
) ,

where the coefficients fm1,...,mk

i1,...,ik
lie in V, and, for each k-tuple (i1, . . . , ik)

they are zero for all but finitely many choices of (m1, . . . ,mk) ∈ Zk
+. When

r is infinite, S is called of finite type if all but finitely many of the coefficients
fm1,...,mk

i1,...,ik
are zero. In this case, S extends to a map S : (Vr)k → V/∂V. The

operator S is called skewsymmetric if

S(P 1, . . . , P k) = sign(σ)S(P σ(1) , . . . , P σ(k)) ,

for every P 1, . . . , P k ∈ Vℓ and every permutation σ ∈ Sk. In this section
we describe both the variational complex Ω•(V) and the space of variational
polyvector fields W var(ΠV) in terms of local polydifferential operators.

Lemma 9.4. We have a canonical isomorphism of F−[λ1, . . . , λk] ⊗F[∂] V
to the space of local k-differential operators of rank 1, which associates to
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the polynomial f(λ1, . . . , λk) =
∑

m1,...,mk∈Z+

fm1,...,mkλm1
1 . . . λmk

k , the map f :

Vk → V/∂V, given by

(9.24) f(g1, . . . , gk) =
∑

m1,...,mk∈Z+

∫
fm1,...,mk(∂m1g1) . . . (∂

mkgk) .

Proof. Note first that, if the polynomial f(λ1, . . . , λk) lies in the image
of (∂ + λ1 + · · · + λk), then the corresponding local k-differential opera-
tor f : Vk → V/∂V is zero. Hence, we have a well-defined linear map
from F−[λ1, . . . , λk] ⊗F[∂] V to the space of local k-differential operators
of rank 1, given by (9.24). Clearly any local k-differential operator of
rank 1 is in the image of this map. We are left to prove injectivity. Let
f ∈ F−[λ1, . . . , λk] ⊗F[∂] V be such that f(g1, . . . , gk) = 0 for all g1, . . . , gk.
Recall that we have a (non-canonical) isomorphism F−[λ1, . . . , λk]⊗F[∂] V ≃
F−[λ1, . . . , λk−1] ⊗ V, obtained by replacing λk with −λ1 − · · · − λk−1 − ∂.
Hence, we can write the polynomial f in the form

f(λ1, . . . , λk−1) =
∑

m1,...,mk−1∈Z+

fm1,...,mk−1λm1
1 . . . λ

mk−1

k−1 .

Since, by assumption, the corresponding map f : Vk → V/∂V is zero, we
get ∑

m1,...,mk−1∈Z+

∫
fm1,...,mk−1(∂m1g1) . . . (∂

mk−1gk−1)gk = 0 ,

for every g1, . . . , gk ∈ V. By the non-degeneracy of the pairing V × V →
V/∂V, (f, g) =

∫
fg (cf. Lemma 10(c) from Section 5.2 of [DSK2]), it follows

that ∑

m1,...,mk−1∈Z+

fm1,...,mk−1(∂m1g1) . . . (∂
mk−1gk−1) = 0 ,

for all g1, . . . , gk−1 ∈ V. This is equivalent to f(λ1, . . . , λk−1) = 0. �

Proposition 9.5. (a) We have a canonical isomorphism of Ωk(V) to the
space of skewsymmetric local k-differential operators of rank ℓ of finite
type, which associates to the element P ∈ Ωk(V) the local k-differential
operator S : (Vℓ)k → V/∂V, given by

(9.25) S(P 1, . . . , P k) =
∑

i1,...,ik∈I

∫
Pi1,...,ik(∂1, . . . , ∂k)P

1
i1 . . . P

k
ik
,

where ∂α means ∂ acting on Pα
iα .

(b) We have a canonical isomorphism of the space of variational k-vector
fields W var

k−1 to the space of skewsymmetric local k-differential opera-
tors of rank ℓ, which associates to the element X ∈ W var

k−1 the local

k-differential operator X : (V⊕ℓ)k → V/∂V, given by

(9.26) X(F 1, . . . , F k) =
∑

i1,...,ik∈I

∫
X∂1,...,∂k(ui1 , . . . , uik)F

1
i1 . . . F

k
ik
.
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Proof. Recalling the definition of Ωk(V) in Section 8.2, an element P ∈
Ωk(V) is an array of polynomials

(
Pi1,...,ik(λ1, . . . , λk)

)
i1,...,ik∈I

, with finitely

many non-zero entries Pi1,...,ik(λ1, . . . , λk) ∈ F−[λ1, . . . , λk]⊗F[∂]V, skewsym-
metric with respect to simultaneous permutations of the variables λ0, . . . , λk

and the indexes i0, . . . , ik. Using Lemma 9.4 this corresponds, bijectively,
to the local k-differential operator of rank ℓ (9.25). The skewsymmetry con-
dition on P ∈ Ωk(V) translates to the skewsymmetry of the corresponding
local k-differential operator, and the finiteness condition on P translates into
saying that the corresponding local k-differential operator is of finite type.
This proves part (a). The proof of part (b) follows by arguments similar to
those in Section 9.3. �

Remark 9.6. The following identity is immediate from (9.26) and the master
equation (9.5):

∫
X0,...,0(f0, . . . , fk) = X

(δf0
δu

, . . . ,
δfk
δu

)
.

We can write down the expression of the differential δ : Ωk(V) → Ωk+1(V)
in terms of local polydifferential operators of rank ℓ. Recalling (8.12), we
have, for a local finite type (k + 1)-differential operator S,

(δS)(P 0, . . . , P k) =

k∑

i=0

(−1)k+i(XP iS)
(
P 0,

i
ˇ. . ., P k)

)
,

where XP denotes the evolutionary vector field of characteristic P ∈ Vℓ,
defined in (8.8), and, if S is the local k-differential operator (9.23), XPS
denotes the local k-differential operator obtained from S by replacing the
coefficients fn1,...,nk

i1,...,ik
by XP (f

n1,...,nk

i1,...,ik
) [DSK2].

Next, in view of Proposition 9.5(b), we can write the Lie superalgebra
structure of W var(ΠV) in terms of local polydifferential operators. Given

X ∈ W var
h and Y ∈ W var

k−h, we have [X,Y ] = X�Y − (−1)h(k−h)Y�X and,
recalling (4.5), the local k-differential operator corresponding to X�Y ∈
W var

k is given by:

(X�Y )
(
F 0, . . . , F k

)

=
∑

i0<···<ik−h

ik−h+1<···<ik

±X
( δ

δu
Y
(
F σ(0), . . . , F σ(k−h)

)
, F σ(k−h+1), . . . , F σ(k)

)
,

where ± is the sign of the permutation (i0, . . . , ik) of the set {0, . . . , k}.
Let K ∈ W var

1 be such that [K,K] = 0, and consider the corresponding
Poisson vertex algebra structure on V, or, equivalently, the corresponding
Hamiltonian map K(∂) defined by (9.10). We can write the formula of the
differential adK for the Poisson cohomology complex W var, identified with
the space of local polydifferential operators. Given X ∈ W var

k−1, the local
k-differential operator corresponding to (adK)(X) ∈ W var

k is given by the
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following formula, equivalent to (9.17):

((adK)X)
(
F 0, . . . , F k

)
=

k∑

i=0

(−1)k+i
∫
F i ·K(∂)

δ

δu
X(F 0,

i
ˇ. . ., F k)

+
∑

0≤i<j≤k

(−1)k+i+jX
( δ

δu

∫ (
F i ·K(∂)F j

)
, F 0,

i
ˇ. . .

j
ˇ. . ., F k

)
.

Here · denotes the usual pairing V⊕ℓ × Vℓ → V.

Remark 9.7. We can translate the homomorphism ΦK defined in Remark
9.3 into the language of local polydifferential operators. Given a finite type
local (k + 1)-differential operator S, Φk

K(S) is the following local (k + 1)-
differential operator:

(9.27) (Φk
KS)(F 0, . . . , F k) = (−1)k+1S(K(∂)F 0, . . . ,K(∂)F k) .

Theorem 8.2, Remark 9.3 and Proposition 9.5 imply that, if V is a normal
algebra of differential functions, K ∈ W var

1 is such that [K,K] = 0, and the
map K(λ + ∂) : V[λ]⊕ℓ → V[λ]ℓ is injective, then, Hk

K(V) = 0 for k ≥ 0
provided that the following condition holds:

(9.28) Ker
(
adK : W var

k → W var
k+1

)
⊂ Φk

K

(
Ωk+1(V)

)
.

Indeed, let X̄ ∈ Hk
K(V), and let X ∈ Ker

(
adK : W var

k → W var
k+1

)
be a

representative of it. By assumption (9.28), there exists P ∈ Ωk+1(V) such

thatX = Φk
K(P ), and, by Remark 9.3, we have that Φk+1

K (δP ) = [K,X] = 0.
Since ΦK is injective, we have that δP = 0, hence, by Theorem 8.2, P = δQ
for some Q ∈ Ωk(V). In conclusion, X = Φk

K(δQ) = (adK)
(
Φk−1
K (Q)

)
,

completing the proof.

Remark 9.8. It is useful to see what the analogue of the homomorphism
ΦK is in the finite dimensional setup. Let A = F[ui | i ∈ I]. Recall from
Section 3.1 that W as(ΠA) =

⊕∞
k=−1W

as
k (ΠA), where W as

k (ΠA) consists of

linear maps X :
∧k+1A → A satisfying the Leibniz rule in all arguments,

or, equivalently, the following analogue of the master equation (9.3):

X(f0, . . . , fk) =
∑

i0,...,ik∈I

X(ui0 , . . . , uik)
∂f0
∂ui0

. . .
∂fk
∂uik

.

To the map X we associate the map X̃ :
∧k+1(A⊕ℓ) → A, given by

X̃(F 0, . . . , F k) =
∑

i0,...,ik∈I

X(ui0 , . . . , uik)F
0
i0 . . . F

k
ik
,

and we have the following analogue of the identity in Remark 9.6:

X(f0, . . . , fk) = X̃(∇uf0, . . . ,∇ufk) ,

where ∇uf denotes the vector of partial derivatives of f . Next, let Ω•(A) be
the algebra of differential forms over A, and let d be the de Rham differential
on Ω•(A). We can associate to ω =

∑
fi0,...,ikdui0 ∧ duik ∈ Ωk+1(A) a map
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ω : (Aℓ)⊗(k+1) → A, given by ω(P 0, . . . , P k) =
∑

fi0,...,ikP
0
i0
. . . P k

ik
. Then,

for K ∈ W as
1 (ΠA), such that [K,K] = 0, we have a homomorphism of

complexes ΦK : (Ω•(A), d) → (W as(ΠA), adK), given by (cf. (9.27)):

(Φk
Kω)

(
F 0, . . . , F k

)
= ±ω

(
KF 0, . . . ,KF k

)
,

where K is the ℓ× ℓ skewsymmetric matrix Kij = K(ui, uj). It follows, in
particular, that if K is surjective, then the Poisson cohomology is trivial.

9.5. Generalized variational complexes. Let ℓ be finite, and let K(∂) =(
Kij(∂)

)
i,j∈I

be an ℓ× ℓ matrix differential operator with quasiconstant co-

efficients. Then, we define δK : Ωk(V) → Ωk+1(V) by the following formula:

(9.29)

(δKP )i0,...,ik(λ0, . . . , λk)

=

k∑

α=0

(−1)α
∑

j∈I,n∈Z+

∂P
i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

∂u
(n)
j

(λα + ∂)nKj,iα(λα) .

Note that, whenK = 1I this coincides with the differential δ of the variational
complex defined in equation (8.12), and whenK(∂) is a skewadjoint operator
it coincides with (−1)k+1dK , where dK is given by equation (9.22).

Proposition 9.9. If K(∂) is an ℓ× ℓ matrix differential operator with qua-
siconstant coefficients, then δK in (9.29) is a well-defined map Ωk(V) →
Ωk+1(V), and it makes (Ω•(V), δK) a cohomology complex.

Proof. It follows from Proposition 10.8 in Section 10.5. �

Remark 9.10. One can show that dK given by formula (9.22) is well defined
only ifK(∂) is a sum of a skewadjoint operator and a quasiconstant operator.

10. The universal odd PVA W̃ var(ΠV) for an algebra of
differential functions, and basic PVA cohomology

10.1. The Lie conformal algebra CVect(V) of conformal vector fields.

As in the previous section, let V be an algebra of differential functions,

extension of the algebra of differential polynomials Rℓ = F[u
(n)
i | i ∈ I, n ∈

Z+]. We assume moreover, in this section, that ℓ is finite.
For i ∈ I, introduce the linear map Ei

λ : V → F[λ]⊗ V, given by

(10.1) Ei
λ =

∑

n∈Z+

(−λ− ∂)n
∂

∂u
(n)
i

.

Note that Ei
λ =

∑
n∈Z+

λnEi
(n), is the generating series of the higher Euler

operators (see [Ol2]),

Ei
(n) =

∞∑

m=n

(
m

n

)
(−1)m∂m−n ∂

∂u
(m)
i

.

In particular, Ei
0 =

δ
δui

is the variational derivative (8.5).
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Lemma 10.1. Ei
λ is a right conformal derivation of V (see Section 7.1).

Proof. We need to check that, for f, g ∈ V, we have Ei
λ(∂f) = −λEi

λ(f) and
Ei

λ(fg) = (Ei
λ+∂f)→g + (Ei

λ+∂g)→f . The first identity follows immediately
from (8.2), and the second one is straightforward. �

Given an ℓ-tuple of polynomials P = (Pi(λ))i∈I ∈ (F[λ] ⊗ V)ℓ, we define

the conformal vector field of characteristic P as the map X̃P : V → F[λ]⊗V,
given by

(10.2) X̃P
λ (f) =

∑

i∈I

Pi(λ+ ∂)Ei
λ(f)

We denote by CVect(V) the space of all conformal vector fields. It follows
immediately from Lemma 10.1 that CVect(V) is a subspace of the space
RCder(V) of right conformal derivations of V.

Proposition 10.2. (a) The F[∂]-module structure of RCder(V) restricts to
the following F[∂]-module structure on CVect(V): for P ∈ (F[λ] ⊗ V)ℓ,

∂X̃P is the conformal vector field with characteristics
(
(∂ + λ)Pi(λ)

)
i∈I

.

(b) the formal power series valued λ-bracket on RCend(V) (cf. Section
6.3) restricts to the following polynomial valued λ-bracket on CVect(V):

[X̃P
λX̃

Q] = X̃ [PλQ] for P,Q ∈ (F[λ]⊗ V)ℓ, where

(10.3)

[PλQ]i(µ) =
∑

j∈I,n∈Z+

(
(λ+ ∂)nP ∗

j (λ)
)∂Qi(µ)

∂u
(n)
j

−
∑

j∈I,n∈Z+

Qj(λ+ µ+ ∂)(−λ− µ− ∂)n
∂Pi(µ)

∂u
(n)
j

.

Here, for Pi(λ) =
∑

n∈Z+

λnPn
i , we denote P ∗

i (λ) =
∑

n∈Z+

(−λ− ∂)nPn
i .

(c) CVect(V) is a Lie conformal algebra RCder(V).

Proof. Part (a) follows from the definition (6.2) of the F[∂]-module struc-

ture of the space RCend(V) = W̃ ∂
0 (ΠV) of right conformal endomorphisms

of V. Part (b) is obtained, by a straightforward computation, using the
definition (6.12) of the λ-bracket in RCend(V) and identity (8.2). Finally,
the λ-bracket (10.3) is clearly polynomial valued, and it satisfies all the Lie
conformal algebra axioms by Lemma 6.8. �

Remark 10.3. The image of CVect(V) via the isomorphism (6.13) is a subal-
gebra of Cder(V), the space of (left) conformal derivations of V. Its elements,
which is natural to call left conformal vector fields, are of the form

P X̃λ =
∑

i∈I,n∈Z+

(
(∂ + λ)nPi(λ)

) ∂

∂u
(n)
i

.
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Equivalently, letting iEλ =
∑

n∈Z+
λn ∂

∂u
(n)
i

, we have

P X̃λ(f) =
∑

i∈I

(
iEλ+∂f

)
→
Pi(λ) .

In fact, we have (X̃P )∗ = P ∗
X̃, where P ∗ is defined in Proposition 10.2(b).

The induced Lie conformal algebra structure on the space of left confor-

mal vector fields is as follows: ∂(P X̃) is the left conformal vector field of

characteristics
(
− λPi(λ)

)
i∈I

, and [P X̃λ
QX̃] = [PλQ]LX̃, where

[PλQ]Li (µ) =
P X̃λ(Qi(µ − λ))− QX̃µ−λ(Pi(λ)) .

In fact, formula (10.3) for the λ-bracket in CVect(V) can be written, using
this notation, in a similar form:

[PλQ]i(µ) =
P ∗

X̃λ(Qi(µ))− X̃Q
λ+µ(Pi(µ)) .

10.2. The universal odd PVA W̃ var(ΠV). Recall the definition of the

F[∂]-module W̃ ∂(ΠV) =
⊕∞

k=−1 W̃
∂
k (ΠV), with parity denoted by p̄ (see

Section 6.1), together with its formal power series values λ-bracket, defined
in Section 6.3. Consider the full prolongation (cf. Definition 6.11) of the

Lie conformal superalgebra CVect(V) ⊂ RCend(V) = W̃ ∂
0 (ΠV), which we

denote

W̃ var(ΠV) =

∞⊕

k=−1

W̃ var
k ⊂ W̃ ∂(ΠV) .

Its elements are called conformal polyvector fields. We will show that the

restriction of the λ-bracket on ΠW̃ var(ΠV) is polynomial valued, and this

makes ΠW̃ var(ΠV) an odd PVA.

Proposition 10.4. For k ≥ −1, the superspace W̃ var
k is the subspace of

W̃ ∂
k (ΠV), consisting of linear maps X : V⊗(k+1) → F[λ0, . . . , λk]⊗ V satis-

fying the sesquilinearity and skewsymmetry conditions (9.1) and (9.2), and
the master equation (9.3), where both sides are interpreted as elements of
F[λ0, . . . , λk]⊗ V (not, as in Section 9.1, of F[λ0, . . . , λk]⊗F[∂] V).

Proof. First, we observe that the master equation (9.3) implies the sesquilin-
earity condition (9.1). Recall also that the master equation (9.3) is equiva-
lent to the equations (9.5), and if, moreover, X satisfies the skewsymmetry
condition (9.1), it is enough to have equation (9.5) for s = k. Hence, an

element X ∈ W̃ ∂
k (ΠV) satisfies all conditions (9.1), (9.2) and (9.3) if and

only if it satisfies condition (9.2) and the equation

(10.4)
Xλ0,...,λk

(f0, . . . , fk)

=
∑

i∈I

Xλ0,...,λk−1,λk+∂(f0, . . . , fk−1, ui)→Ei
λk
(fk) .

Clearly, for k = 0 the maps X : V → F[λ]⊗V satisfying (10.4) are exactly
the conformal vector fields of V, the characteristics being

(
Xλ(ui)

)
i∈I

. Let
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X ∈ W̃ var
k and let us prove by induction on k that it satisfies equation (10.4).

By (6.10) we have

Xλ0,...,λk
(f0, . . . , fk) = (−1)1+k[f0λ0

X]λ1,...,λk
(f1, . . . , fk)

=
∑

i∈I

(−1)1+k[f0λ0
X]λ1,...,λk−1,λk+∂(f1, . . . , fk−1, ui)→Ei

λk
(fk)

=
∑

i∈I

Xλ0,...,λk−1,λk+∂(f0, . . . , fk−1, ui)→Ei
λk
(fk) ,

proving (10.4). �

Remark 10.5. For V = Rℓ, we have W̃ var(ΠV) = W̃ ∂,as(ΠV), but for arbi-
trary V this is not always the case (see Remark 9.2).

Note that the master equation implies that X satisfies the Leibniz rule

(5.3). Consequently, W̃ var
k is a subspace of W̃ ∂,as

k (ΠV).

Proposition 10.6. (a) For X,Y ∈ W̃ var(ΠV), [XλY ] is a polynomial in

λ with coefficients in W̃ var(ΠV). Moreover, the subspace W̃ var(ΠV) ⊂

W̃ ∂,as(ΠV) is closed under the concatenation product (7.2).

(b) ΠW̃ var(ΠV), together with the λ-bracket and the concatenation product,
is a Z+-graded odd PVA.

(c) The representation of the Lie superalgebra W ∂(ΠV) on W̃ ∂(ΠV) re-
stricts to a representation of its subalgebra W var(ΠV) on the odd PVA

W̃ var(ΠV) ⊂ W̃ ∂(ΠV), commuting with ∂ and acting by derivations of
both the concatenation product and the λ-bracket.

(d) The canonical map
∫

: W̃ ∂(ΠV) → W ∂(ΠV), defined in Proposition

6.5(a), restricts to a map
∫
: W̃ var(ΠV) → W var(ΠV), which is a homo-

morphism of representations of the Lie superalgebra W var(ΠV). More-
over, this map induces a Lie algebra isomorphism

∫
: W̃ var(ΠV)/∂W̃ var(ΠV)

∼
−→ W var(ΠV) .

Proof. First note that, by Proposition 10.4 and formula (9.3), an element

X ∈ W̃ var
k is determined by its values on the generators u1, . . . , uℓ. Since,

by assumption, ℓ is finite, it follows that [XλY ] is a polynomial in λ. Let

X ∈ W̃ var
h−1 and Y ∈ W̃ var

k−h−1, with k ≥ h ≥ 0. For part (a) it remains to

prove that X ∧ Y , defined by (7.2), lies in W̃ var
k−1, namely, it satisfies the

master equation (9.3):

(X ∧ Y )λ1,...,λk
(f1, . . . , fk) =

∑

i1,...,ik∈I
m1,...,mk∈Z+

(
e∂∂λ1

∂f1

∂u
(m1)
i1

)
. . .

. . .

(
e∂∂λk

∂fk

∂u
(mk)
ik

)
(−λ1)

m1 . . . (−λk)
mk(X ∧ Y )λ1,...,λk

(ui1 , . . . , uik) .
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This is easily checked by a straightforward computation. Part (b) can be
proved in the same way as Proposition 7.3(a). Recall from Proposition
7.3(b) that we have a representation of the Lie superalgebra W ∂,as(ΠV)

on W̃ ∂,as(ΠV) commuting with ∂, and acting by derivations of both the
concatenation product and the λ-bracket. Recall also, from Proposition 9.1,
that W var(ΠV) ⊂ W ∂,as(ΠV) is a Lie subalgebra, and, from part (b), that

W̃ var(ΠV) ⊂ W̃ ∂,as(ΠV) is an odd Poisson vertex algebra. Hence, in order

to prove part (c), we only need to check that, if X ∈ W var
h and Ỹ ∈ W̃ var

k−h,

then [X, Ỹ ], defined by (6.15), lies in W̃ var
k . By the observations in the

proof of Proposition 10.4, it is therefore enough to prove that [X, Ỹ ] satisfies
condition (10.4):

(10.5)
[X, Ỹ ]λ0,...,λk

(f0, . . . , fk)

−
∑

i∈I

[X, Ỹ ]λ0,...,λk−1,λk+∂(f0, . . . , fk−1, ui)→Ei
λk
(fk) = 0 .

We consider separately the left and right box products X�
LỸ and Ỹ�

RX,
defined by (6.16). We get, after a long but straightforward computation,

(10.6)

(X�
LỸ )λ0,...,λk

(f0, . . . , fk) =
∑

α0<···<αk−h=k
αk−h+1<···<αk

sign(α)
∑

i∈I

Ỹλα0 ,...,λαk−h−1
,λk+λαk−h+1

+···+λαk
+∂(fα0 , . . . , fαk−h−1

, ui)→

X−λαk−h+1
−···−λαk

−∂,λαk−h+1
,...,λαk

(
Ei

λk
(fk), fαk−h+1

, . . . , fαk

)

+
∑

i∈I

(X�
LỸ )λ0,...,λk−1,λk+∂(f0, . . . , fk−1, ui)→Ei

λk
(fk) ,

where the first sum in the RHS runs over all permutations α of {0, . . . , k}
satisfying the specified inequalities. Similarly, we have

(10.7)

(Ỹ �
RX)λ0,...,λk

(f0, . . . , fk) =
∑

α0<···<αh=k
αh+1<···<αk

sign(α)
∑

i∈I

Ỹλα0+···+λαh−1
+λαk

+∂λαh+1
,...,λαk

(Ei
λk
(fk), fαh+1

, . . . , fαk
)→

Xλα0 ,...,λαh−1
,−λα0−···−λαh−1

−∂

(
fα0 , . . . , fαh−1

, ui

)

+
∑

i∈I

(Ỹ �
RX̃)λ0,...,λk−1,λk+∂(f0, . . . , fk−1, ui)→Ei

λk
(fk) .
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Combining (10.6) and (10.7), we get that the LHS of (10.5) is
∑

α0<···<αk−h=k
αk−h+1<···<αk

sign(α)
∑

i∈I

Ỹλα0 ,...,λαk−h−1
,λαk−h

+···+λαk
+∂(fα0 , . . . , fαk−h−1

, ui)→

X−λαk−h+1
−···−λαk

−∂,λαk−h+1
,...,λαk

(
Ei

λk
(fk), fαk−h+1

, . . . , fαk

)

−(−1)h(k−h)
∑

α0<···<αh=k
αh+1<···<αk

sign(α)
∑

i∈I

Ỹλα0+···+λαh
+∂,λαh+1

,...,λαk
(Ei

λk
(fk), fαh+1

, . . .

. . . , fαk
)→Xλα0 ,...,λαh−1

,−λα0−···−λαh−1
−∂

(
fα0 , . . . , fαh−1

, ui

)
.

We can then use conditions (9.2) and (9.3) on X and Ỹ to rewrite the above
expression as follows

∑

α0<···<αk−h=k
αk−h+1<···<αk

sign(α)
∑

i,j∈I

(
Ỹλα0 ,...,λαk−h−1

,λαk−h
+···+λαk

+∂(fα0 , . . . , fαk−h−1
, uj)→

(
iEλαk−h+1

+···+λαk
+∂

(
Ej

λk
(fk)

)
→

− Ej
λαk−h

+···+λαk
+∂

(
Ei

λk
(fk)

)
→

)

X−λαk−h+1
−···−λαk

−∂,λαk−h+1
,...,λαk

(
ui, fαk−h+1

, . . . , fαk

))
,

where iEλ was introduced in Remark 10.3. To conclude, we observe that
the above expression is zero, thanks to the following identity,

iEµ

(
Ej

λ(f)
)
= Ej

λ+µ

(
Ei

λ(f)
)
,

which can be easily checked: both sides above are equal to

∑

m,n∈Z+

µm(−λ− µ− ∂)n
∂2f

∂u
(m)
i ∂u

(n)
j

.

The first statement in part (d) is obvious from Proposition 6.5. We thus

only need to prove that the map
∫
: W̃ var(ΠV) → W var(ΠV) is surjective, so

that the induced map
∫
: W̃ var(ΠV)/∂W̃ var(ΠV) → W var(ΠV) is bijective.

Let X ∈ W var
k . We can construct a representative X̃ ∈ W̃ var

k as follows.
Recall that we can identify F−[λ0, . . . , λk] ⊗F[∂] V ≃ F[λ0, . . . , λk−1] ⊗ V,
by letting λk = −λ0 − · · · − λk−1 − ∂. For i0, . . . , ik ∈ I, we then have
Xλ0,...,λk−1

(ui0 , . . . , uik) ∈ F[λ0, . . . , λk−1]⊗ V. We let

X̃λ0,...,λk
(ui0 , . . . , uik) =

1

k + 1

k∑

α=0

(−1)k−αX
λ0,

α
.̌..,λk

(ui0 ,
α
ˇ. . ., uik , uiα) ,

and we extend it to a map X̃ : V⊗(k+1) → F[λ0, . . . , λk] ⊗ V by the master

formula (9.3). By construction X̃ lies in W̃ var
k , and we clearly have

∫
X̃ = X,

since they agree on generators. �
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Recall that W var
−1 = V/∂V, W var

0 = Vect∂(V) and W var
1 coincides with the

space of skewcommutative λ-brackets on V satisfying the master equation
(9.6). We can then compute explicitly, using (6.15), the action of X ∈

W var
h on W̃ var

k−h, for h = −1, 0, 1. The formulas for these actions coincide,
respectively, with formulas (9.7), (9.12) and (9.17), where all the terms are
considered as elements of F[λ1, . . . , λk]⊗ V (not of F[λ1, . . . , λk]⊗F[∂] V).

10.3. PVA structures on an algebra of differential functions and

basic cohomology complexes. Let K ∈ W var
1 be such that [K,K] =

0, and denote by {· λ ·}K the corresponding Poisson λ-bracket on V, and
by K(∂) the corresponding Hamiltonian operator given by (9.10). Then

(adK)2 = 0, hence the action of K on W̃ var(ΠV), given by Proposition

10.6(b), provides a differential on W̃ var(ΠV), which we denote by dK . We call

(W̃ var(ΠV), dK) the basic Poisson cohomology complex of the PVA V with
the λ-bracket {· λ ·}K . Note that, by Proposition 10.6(b), the differential dK
is an odd derivation of both the concatenation product and the λ-bracket of

W̃ var(ΠV). Moreover, by Proposition 10.6(c), the linear map
∫

is a homo-

morphism of cohomology complexes (W̃ var(ΠV), dK) → (W var(ΠV), adK).
Recalling (9.17) we get, by the observations at the end of Section 10.2,

the following explicit formula for the differential dK associated to K ∈ W var
1 ,

acting on Y ∈ W̃ var
k−1:

(10.8)

(dKY )λ0,...,λk
(f0, . . . , fk) = (−1)k+1

( k∑

i=0

(−1)i
{
fiλi

Y
λ0,

i
.̌..,λk

(f0,
i
ˇ. . ., fk)

}
K

+
∑

0≤i<j≤k

(−1)i+jY
λi+λj ,λ0,

i
.̌..

j

.̌..,λk

(
{fiλi

fj}K , f0,
i
ˇ. . .

j
ˇ. . ., fk

))
.

Remark 10.7. The identity map on V = Ω̃0(V) = W̃ var
−1 extends to a ho-

momorphism of cohomology complexes Φ̃K : (Ω̃•(V), δ) → (W̃ var(ΠV), dK)
given by formula (9.19), where both sides are interpreted as elements in
F[λ0, . . . , λk] ⊗ V, not in F[λ0, . . . , λk] ⊗F[∂] V as for ΦK from Remark 9.3.
We thus have the following commutative diagram of homomorphisms of co-
homology complexes:

(
Ω̃•(V), δ

)

��
��

Φ̃K
//

(
W̃ var(ΠV), dK

)

��
��(

Ω̃•(V)/∂Ω̃•(V), δ
) (

W̃ var(ΠV)/∂W̃ var(ΠV), dK
)

� _

��(
Ω•(V), δ

) ΦK
//

(
W var(ΠV), dK

)
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10.4. Identification of W̃ var(ΠV) with Ω̃•(V). In this section we will con-

struct a (non covariant) explicit identification of the superspaces W̃ var
k and

Ω̃k+1(V) for finite ℓ, along the lines of the discussion in Section 9.3.

An element X ∈ W̃ var
k is completely determined, via the master equation

(9.3), by the collection of polynomialsXλ0,...,λk
(ui0 , . . . , uik) ∈ F[λ0, . . . , λk]⊗

V, with i1, . . . , ik ∈ I. Hence, we construct a linear map

Φ̃ : Ω̃•(V) → W̃ var(ΠV) ,

sending P ∈ Ω̃k+1(V) to Φ̃kP ∈ W var
k , such that

(10.9) (Φ̃kP )λ0,...,λk
(ui0 , . . . , uik) = Pi0,...,ik(λ0, . . . , λk) ,

and it is extended to a map Φ̃kP : V⊗(k+1) → F[λ0, . . . , λk] ⊗ V by the

master equation (9.3). Clearly, Φ̃ is surjective for finite ℓ, and it is injective
in general.

Let ℓ be finite. Let K ∈ W var
1 be such that [K,K] = 0, and consider

the Poisson cohomology complex (W̃ var(ΠV), dK). Using the bijection Φ̃ :

Ω̃•(V) → W̃ var(ΠV), we get a differential dK : Ω̃k(V) → Ω̃k+1(V) induced

by the action of dK on W̃ var(ΠV). Recalling equation (10.8), we get that

the explicit formula for the differential dK on Ω̃k(V) is given by (9.22),
where both sides are considered as elements of F[λ1, . . . , λk] ⊗ V (not of
F[λ1, . . . , λk]⊗F[∂] V):
(10.10)

(dKP )i0,...,ik(λ0, . . . , λk)

= (−1)k+1
∑

j∈I,n∈Z+

( k∑

α=0

(−1)α
∂P

i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

∂u
(n)
j

(λα + ∂)nKj,iα(λα)

+
∑

0≤α<β≤k

(−1)α+βP
j,i0,

α
.̌..

β

.̌..,ik
(λα + λβ + ∂, λ0,

α
ˇ. . .

β
ˇ. . ., λk)→

(−λα − λβ − ∂)n
∂Kiβ ,iα(λα)

∂u
(n)
j

)
.

10.5. Generalized de Rham complexes. Let ℓ be finite, and let K(∂) =(
Kij(∂)

)
i,j∈I

be an ℓ × ℓ matrix differential operator with quasiconstant

coefficients. We define the map δK : Ω̃k(V) → Ω̃k+1(V) by the same for-
mula (9.29), interpreting both sides as elements of F[λ1, . . . , λk]⊗ V (not of
F[λ1, . . . , λk]⊗F[∂] V):

(10.11)

(δKP )i0,...,ik(λ0, . . . , λk)

=

k∑

α=0

(−1)α
∑

j∈I,n∈Z+

∂P
i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

∂u
(n)
j

(λα + ∂)nKj,iα(λα) .
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Note that, when K = 1I this coincides with the differential δ of the de
Rham complex defined in equation (8.12), and when K(∂) is a skewadjoint
operator it coincides with (−1)k+1dK , where dK is given by equation (10.10).

Proposition 10.8. (a) If K(∂) is an ℓ× ℓ matrix differential operator with

quasiconstant coefficients, then (Ω̃•(V), δK) is a cohomology complex,
i.e. δ2K = 0.

(b) The differential δK in (10.11) commutes with the action of ∂ on Ω̃•(V)

given by (8.13). Moreover, the canonical quotient map Ω̃•(V) → Ω•(V)

gives a homomorphism of complexes (Ω̃•(V), δK) → (Ω•(V), δK).

Proof. Let P ∈ Ω̃k(V) and let σ ∈ Sk+1 = Perm(0, . . . , k). We have

(δKP )iσ(0),...,iσ(k)
(λσ(0), . . . , λσ(k))

k∑

α=0

(−1)α

=
∑

j∈I,n∈Z+

∂P
iσ(0),

α
.̌..,iσ(k)

(λσ(0),
α
ˇ. . ., λσ(k))

∂u
(n)
j

(λσ(α) + ∂)nKj,iσ(α)
(λσ(α)) .

Note that the permutation (σ(0),
α
ˇ. . ., σ(k)) of the set {0,

σ(α)

ˇ. . . , k} has sign

sign(σ)(−1)α+σ(α) . Hence, by the skewsymmetry condition on P , we can
write the RHS above as

k∑

α=0

(−1)α
∑

j∈I,n∈Z+

sign(σ)(−1)α+σ(α)

∂P
i0,

σ(α)
.̌.. ,ik

(λ0,
σ(α)

ˇ. . . , λk)

∂u
(n)
j

×(λσ(α) + ∂)nKj,iσ(α)
(λσ(α)) = sign(σ)(δKP )i0,...,ik(λ0, . . . , λk) .

This shows that δKP is a skewsymmetric array, i.e. δK is a well defined map

from Ω̃k(V) to Ω̃k+1(V).
Since, by assumption, K has quasiconstant coefficients, we have

(δ2KP )i0,...,ik(λ0, . . . , λk)

=

k∑

β=0

(−1)β
∑

j∈I,n∈Z+

∂

∂u
(n)
j

(δKP )
i0,

β

.̌..,ik
(λ0,

β
ˇ. . ., λk)(λβ + ∂)nKj,iβ(λβ)

=
∑

0≤α<β≤k

(−1)α+β
∑

i,j∈I,m,n∈Z+

∂

∂u
(n)
j

∂

∂u
(m)
i

P
i0,

α
.̌..

β

.̌..,ik
(λ0,

α
ˇ. . .

β
ˇ. . ., λk)

×
(
(λα + ∂)mKi,iα(λα)

)(
(λβ + ∂)nKj,iβ(λβ)

)

+
∑

0≤β<α≤k

(−1)α+β+1
∑

i,j∈I,m,n∈Z+

∂

∂u
(n)
j

∂

∂u
(m)
i

P
i0,

β

.̌..
α
.̌..,ik

(λ0,
β
ˇ. . .

α
ˇ. . ., λk)

×
(
(λα + ∂)mKi,iα(λα)

)(
(λβ + ∂)nKj,iβ(λβ)

)
= 0 ,

which completes the proof of (a).
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Next, we prove part (b). We have, by the definition (8.13) of the F[∂]-

module structure on Ω̃k(V),

(δK∂P )i0,...,ik(λ0, . . . , λk) =

k∑

α=0

(−1)α

∑

j∈I,n∈Z+

∂

∂u
(n)
j

(
(λ0+

α
ˇ. . . +λk + ∂)P

i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

)
(λα + ∂)nKj,iα(λα)

= (λ0 + · · ·+ λk + ∂)

k∑

α=0

(−1)α
∑

j∈I,n∈Z+

∂

∂u
(n)
j

(
P
i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

)
(λα + ∂)nKj,iα(λα) = (∂δKP )i0,...,ik(λ0, . . . , λk).

In the second equality we used (8.2). The last assertion in (b) is obvious. �

11. Computation of the variational Poisson cohomology

Throughout this section we assume that V is a normal algebra of differ-
ential functions in finitely many differential variables ui, i ∈ I = {1, . . . , ℓ},
i.e. ∂

∂u
(m)
i

Vm,i = Vm,i for every i ∈ I and m ∈ Z+, where Vm,i is given by

(8.15). We also assume that the space of quasiconstants F ⊂ V is a field
(hence, the subalgebra of constants C ⊂ F is a subfield).

We shall compute the cohomology of the complexes (Ω̃•(V), δK) and
(Ω•(V), δK), for any ℓ× ℓ matrix differential operator K(∂) =

(
Kij(∂)

)
i,j∈I

of order N with quasiconstant coefficients and invertible leading coefficient.
We use here the same approach as in [BDSK], where the case K = 1I was
considered.

11.1. Formality of the generalized de Rham complex. Fix a non-
negative integer N . We extend the filtration (8.15) of the algebra of differ-

ential functions V = Ω̃0(V), to a filtration, depending on N , of Ω̃•(V). For

m ∈ Z+ and i ∈ I, we let Ω̃•
m,i(V) =

⊕
k∈Z+

Ω̃k
m,i(V), where Ω̃

k
m,i(V) consists

of arrays P =
(
Pi1,...,ik(λ1, . . . , λk)

)
i1,...,ik∈I

∈ Ω̃k(V) such that

(11.1)

∂

∂u
(n)
j

Pi1,...,ik(λ1, . . . , λk) = 0 , if (n, j) > (m, i) ,

∂n+N
λα

Pi1,...,ik(λ1, . . . , λk) = 0 , if (n, iα) > (m, i) ,

for all i1, . . . , ik ∈ I, where the inequalities are understood in the lexi-
cographic order. In other words, the coefficients of all the polynomials
Pi1,...,ik(λ1, . . . , λk) lie in Vm,i, and, moreover, Pi1,...,ik(λ1, . . . , λk) has de-
gree at most m+N (resp. m−1+N) in each variable λα with iα ≤ i (resp.

iα > i). We also let Ω̃k
n,0(V) = Ω̃k

n−1,ℓ(V) for n ≥ 1.

Finally, we let Ω̃•
0,0 =

⊕
k∈Z+

Ω̃k
0,0, where Ω̃k

0,0 is a subspace of Ω̃k(V)

consisting of arrays P =
(
Pi1,...,ik(λ1, . . . , λk)

)
i1,...,ik∈I

(skewsymmetric with



THE VARIATIONAL POISSON COHOMOLOGY 75

respect to simultaneous permutations of indexes and variables), whose en-
tries Pi1,...,ik(λ1, . . . , λk) are polynomials of degree at most N − 1 in each

variable λ1, . . . , λk, with quasiconstant coefficients. In particular, Ω̃0
0,0 = F .

By the skewsymmetry condition,

(11.2) Ω̃k
0,0 = 0 if k > Nℓ .

Note that, if K(∂) is an ℓ × ℓ matrix differential operator with quasi-
constant coefficients, then the differential δK defined in (10.11) is zero on

Ω̃•
0,0, so that (Ω̃•

0,0, 0) is a subcomplex of the generalized de Rham complex

(Ω̃•(V), δK) Note also that Ω̃•(V) is naturally a vector space over F , and

the differential δK is F-linear. Also, all the Ω̃k
m,i(V) are F-linear subspaces.

Remark 11.1. Due to formula (9.3) (cf. Proposition 10.4) the restriction of

the λ-bracket from W̃ var(ΠV) = Ω̃•(V) to the subspace Ω̃•
0,0 is zero. Hence,

Ω̃•
0,0 is a subalgebra of the Lie conformal superalgebra Ω̃•(V).

In this section we prove the following generalization of Theorem 8.2(a):

Theorem 11.2. Let V be a normal algebra of differential functions and as-
sume that the subalgebra of quasiconstants F ⊂ V is a field. Let K(∂) =(
Kij(∂)

)
i,j∈I

be an ℓ × ℓ matrix differential operator of order N with qua-

siconstant coefficients, and invertible leading coefficient KN ∈ Matℓ×ℓ(F).
Then:

(a) The inclusion (Ω̃•
0,0, 0) ⊂ (Ω̃•(V), δK), is a quasiisomorphism of com-

plexes, i.e. it induces a canonical Lie conformal superalgebra isomor-
phism of cohomology:

Hk(Ω̃•(V), δK) ≃ Ω̃k
0,0 .

(b) For k ≥ 0, Hk(Ω̃•(V), δK) is a vector space over F of dimension
(Nℓ

k

)
.

The proof of Theorem 11.2 consists of several steps. First, we prove three
lemmas which will be used in its proof.

In analogy with (9.19), for S =
(
Sij

)
i,j∈I

∈ Matℓ×ℓ(F), we define the

map ΦS : Ω̃•(V) → Ω̃•(V), P 7→ ΦS(P ), given by the following equation
(11.3)

(ΦSP )i1,...,ik(λ1, . . . , λk) =
∑

j1,...,jk∈I

Pj1,...,jk(λ1 + ∂1, . . . , λk + ∂k)Sj1i1 . . . Sjkik ,

where, as usual, ∂α denotes ∂ acting on Sjαiα .

Lemma 11.3. (a) For every S ∈ Matℓ×ℓ(F), we have ΦS(Ω̃
k(V)) ⊂ Ω̃k(V)

and ΦS(Ω̃
k
0,0) ⊂ Ω̃k

0,0.

(b) If K(∂) is an ℓ× ℓ matrix differential operator with quasiconstant coef-
ficients, then

ΦS(δKP ) = δK◦SΦS(P ) ,
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where (K ◦ S)(∂) =
(∑

r∈I Kir(∂) ◦ Srj

)
i,j∈I

. In other words, ΦS is a

homomorphism of complexes: (Ω̃•(V), δK) → (Ω̃•(V), δK◦S).
(c) For S, T ∈ Matℓ×ℓ(F), we have

ΦS ◦ΦT = ΦTS .

(d) If S ∈ Matℓ×ℓ(F) is an invertible matrix, then

ΦS : (Ω̃•(V), δK)
∼

−→ (Ω̃•(V), δK◦S) ,

is an isomorphism of complexes, which restricts to an automorphism of

the subcomplex (Ω̃•
0,0, 0).

Proof. Part (a) is clear. Part (b) is proved by a straightforward computation
using the definitions (10.11) and (11.3) of the differential δK and the map
ΦS. Part (c) is again straightforward, using the definition (11.3) of ΦS.
Finally, part (d) immediately follows from (a), (b) and (c). �

Lemma 11.4. Let K(∂) =
(
Kij(∂)

)
i,j∈I

be an ℓ × ℓ matrix differential

operator of order N with quasiconstant coefficients, and assume that its
leading coefficient KN ∈ Matℓ×ℓ(F) is diagonal. Then,

δK
(
Ω̃k
m,i(V)

)
⊂ Ω̃k+1

m,i (V) ,

for every k ∈ Z+, m ∈ Z+, i ∈ I.

Proof. Let P =
(
Pi1,...,ik(λ1, . . . , λk)

)
i1,...,ik∈I

∈ Ω̃k
m,i(V). By the definition

(10.11) of δK , we have, using the assumption that K(∂) has quasiconstant
coefficients,

∂

∂u
(n)
j

(δKP )i0,...,ik(λ0, . . . , λk)

=
k∑

α=0

(−1)α
∑

r∈I,p∈Z+

∂2P
i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

∂u
(p)
r ∂u

(n)
j

(λα + ∂)pKr,iα(λα) ,

which is zero if (n, j) > (m, i) by the assumption on P . Next, we have
(11.4)

∂n+N
λα

(δKP )i0,...,ik(λ0, . . . , λk)

=
∑

β 6=α

(−1)β
∑

r∈I,p∈Z+

∂

∂u
(p)
r

(
∂n+N
λα

P
i0,

β

.̌..,ik
(λ0,

β
ˇ. . ., λk)

)
(λβ + ∂)pKr,iα(λα)

+(−1)α
∑

r∈I

m∑

p=0

∂P
i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

∂u
(p)
r

∂n+N
λα

(λα + ∂)pKr,iα(λα) .

The first sum in the RHS of (11.4) is zero for (n, j) > (m, i) by the assump-
tion on P . Moreover, the second sum in the RHS of (11.4) is zero for n > m
since, by assumption, K(λ) has degree N . Let then n = m in this sum. We
have

∂m+N
λα

(λα + ∂)pKr,iα(λα) = (m+N)!δp,m(KN )r,iα .
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Since, by assumption, KN is a diagonal matrix, and since
∂Pi1,...,ik

(λ1,...,λk)

∂u
(m)
r

is zero for r > i, we conclude that the second sum in the RHS of (11.4) is
zero for iα > i, as required. �

Now we are going to use the assumption that that V is normal and F ⊂
V is a field. Given i ∈ I,m ∈ Z+, choose an F-subspace Um,i ⊂ Vm,i

complementary to the kernel of the map ∂

∂u
(m)
i

: Vm,i → Vm,i. By normality

of V, ∂

∂u
(m)
i

restricts to an F-linear isomorphism ∂

∂u
(m)
i

: Um,i
∼

−→ Vm,i, and

we denote by
∫
du

(m)
i · : Vm,i

∼
−→ Um,i ⊂ Vm,i the inverse F-linear map,

so that ∂

∂u
(m)
i

∫
du

(m)
i f = f for every f ∈ Vm,i. Clearly, if we change the

choice of the complementary subspace Um,i, the integral
∫
du

(m)
i f ∈ Vm,i of

f ∈ Vm,i changes by adding an element of Vm,i−1.

We extend the antiderivative
∫
du

(m)
i · to the space of polynomials in

λ1, . . . , λk with coefficients in Vm,i by applying it to coefficients. Clearly,

the operators ∂λα and
∫
du

(m)
i ·, acting on F[λ1, . . . , λk]⊗ Vm,i, commute.

We define the local homotopy operators hm,i : Ω̃
k+1
m,i (V) → Ω̃k

m,i(V), k ≥ 0,
by the following formula
(11.5)

(hm,iP )i1,...,ik(λ1, . . . , λk) =
∫
du

(m)
i

∂m+N
µ

(m+N)!
Pi,i1,...,ik(µ, λ1, . . . , λk) .

Lemma 11.5. Let P =
(
Pi0,...,ik(λ0, . . . , λk)

)
i0,...,ik∈I

∈ Ω̃k+1
m,i (V). Then:

(a) hm,iP ∈ Ω̃k
m,i(V).

(b) If P ∈ Ω̃k+1
m,i−1

(
⊂ Ω̃k+1

m,i (V)
)
, then hm,iP = 0.

(c) If K(∂) is an ℓ × ℓ matrix differential operator of order N with quasi-
constant coefficients and leading coefficient 1I, the operator hm,i satisfies
the following homotopy condition:

(11.6) hm,i(δKP ) + δK(hm,iP )− P ∈ Ω̃k
m,i−1(V) .

Proof. Clearly, (hm,iP )i1,...,ik(λ1, . . . , λk) is skewsymmetric with respect to
simultaneous permutations of the variables λ1, . . . , λk and of the indexes

i1, . . . , ik. Moreover, by assumption on P and by the definition of
∫
du

(m)
i ·,

the coefficients of all the polynomials (hm,iP )i1,...,ik(λ1, . . . , λk) lie in Vm,i.
Furthermore, if (n, iα) > (m, i) with α ∈ {1, . . . , k}, we have,

∂n+N
λα

(n+N)!(hm,iP )i1,...,ik(λ1, . . . , λk)

=
∫
du

(m)
i

∂m+N
µ

(m+N)!

∂n+N
λα

(n+N)!
Pi,i1,...,ik(µ, λ1, . . . , λk) = 0 ,

by the assumption on P . Hence, hm,iP ∈ Ω̃k
m,i, proving (a). Part (b) is

clear since, by definition, P ∈ Ω̃k+1
m,i−1 are such that Pi,i1,...,ik(µ, λ1, . . . , λk)
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is a polynomial of degree at most m+N − 1 in the variable µ. We are left

to prove part (c). By (10.11) and (11.5), we have, for P ∈ Ω̃k+1
m,i (V),

(11.7)

(δKhm,iP )i0,...,ik(λ0, . . . , λk) =

k∑

β=0

∑

j∈I,n∈Z+

∂

∂u
(n)
j

∫
du

(m)
i

(
(λβ + ∂)nKjiβ (λβ)

) ∂m+N
λβ

(m+N)!
P
i0,...,

β

ǐ ,...,ik

(λ0, . . . , λk)

(here we used the fact that
∫
du

(m)
i is F-linear and Kij(λ) has coefficients in

F), and

(11.8)

(hm,iδKP )i0,...,ik(λ0, . . . , λk) = −
k∑

β=0

∑

j∈I,n∈Z+

∫
du

(m)
i

∂

∂u
(n)
j

(
(λβ + ∂)nKjiβ(λβ)

) ∂m+N
λβ

(m+N)!
P
i0,...,

β

ǐ ,...,ik

(λ0, . . . , λk)

+
∫
du

(m)
i

∂

∂u
(m)
i

Pi0,...,ik(λ0, . . . , λk) .

By Lemma 11.4 and parts (a) and (b), we know that δK(hm,iP ), hm,i(δKP )

and P all lie in Ω̃k+1
m,i . Hence, in order to prove equation (11.6) we only need

to prove the following two identities:
(11.9)

∂

∂u
(m)
i

(
(hm,iδKP )i0,...,ik(λ0, . . . , λk) + (δKhm,iP )i0,...,ik(λ0, . . . , λk)

)

=
∂

∂u
(m)
i

Pi0,...,ik(λ0, . . . , λk) ;

∂m+N
λα

(m+N)!

(
(hm,iδKP )i0,...,ik(λ0, . . . , λk) + (δKhm,iP )i0,...,ik(λ0, . . . , λk)

)

=
∂m+N
λα

(m+N)!
Pi0,...,ik(λ0, . . . , λk) , if iα = i .

The first identity of (11.9) follows immediately from equations (11.7) and

(11.8), using that ∂

∂u
(m)
i

◦
∫
du

(m)
i f = f for every f ∈ Vm,i. The second iden-

tity in (11.9) follows by a straightforward computation using the following
two facts. Since, by assumption, the leading coefficient of K(∂) is 1I, we
have, for (n, j) ≤ (m, i),

∂m+N
λα

(m+N)!

(
(λα + ∂)nKji(λα)

)
= δn,mδj,i .

Moreover, by the skewsymmetry condition on P , we have, if iα = iβ = i for
β 6= α,

∂m+N
λα

∂m+N
λβ

Pi0,...,,ik(λ0, . . . , λk) = 0 .

�
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Proof of Theorem 11.2. By Lemma 11.3(d), we have isomorphism of com-

plexes ΦK−1
N

: (Ω̃•, δK) → (Ω̃•, δK◦K−1
N

), which induces an automorphism of

the subcomplex (Ω̃•
0,0, 0). Hence, replacing K(∂) by (K ◦K−1

N )(∂), it suffices

to prove (a) for K(∂) with leading coefficient 1I.

Let P ∈ Ω̃k(V) be such that δKP = 0. For some i ∈ I,m ∈ Z+ we have

P ∈ Ω̃k
m,i(V) and, by Lemma 11.5(c), we have P = δK(hm,iP )+P1, for some

P1 ∈ Ω̃k
m,i−1(V) such that δKP1 = 0. Repeating the same argument finitely

many times, we get that P = δKQ+R, for some Q ∈ Ω̃k−1
m,i (V) and R ∈ Ω̃k

0,0.
Hence,

Ker
(
δK : Ω̃k(V) → Ω̃k+1(V)

)
= δk

(
Ω̃k−1(V)

)
+ Ω̃k

0,0 .

To prove part (a) it remains to show that

δk
(
Ω̃k−1(V)

)
∩ Ω̃k

0,0 = 0 .

Let P = δKQ ∈ Ω̃k
0,0, for some Q ∈ Ω̃k−1

m,i . By Lemma 11.5(c), we have Q =

δK(hm,iQ)+hm,i(δKQ)+Q1, for some Q1 ∈ Ω̃k−1
m,i−1, and, by Lemma 11.5(b),

we have hm,i(δKQ) = hm,iP = 0. Hence, P = δKQ1 ∈ δKΩ̃k−1
m,i−1(V). Re-

peating the same argument finitely many times, we then get P ∈ δKΩ̃k−1
0,0 =

0.
Next, we prove part (b). An element P ∈ Ω̃k

0,0 is uniquely determined by
the collection of polynomials

P1, .. , 1︸ ︷︷ ︸
n1

,...,ℓ, .. , ℓ︸ ︷︷ ︸
nℓ

(λ1, . . . , λk) ∈ F[λ1, . . . , λk]⊗F ,

where n1, . . . , nℓ ≥ 0 are such that n1 + · · · + nℓ = k, which have degree at
most N − 1 in each variable λα, α = 1, . . . , k, and, for every i = 1, . . . , ℓ, are

skewsymmetric in the variables λn1+···+ni−1+1, . . . , λn1+···+ni
. Hence, Ω̃k

0,0 is
a vector space over F of dimension Rk, given by

(11.10) Rk =
∑

n1,...,nℓ∈Z+
n1+···+nℓ=k

ℓ∏

i=1

C(N,ni) ,

where C(N,n) is the dimension of the space of skewsymmetric polynomials

in n variables of degree at most N − 1 in each variable, i.e. C(N,n) =
(N
n

)
.

Taking the generating series of both sides of equation (11.10), we then get

∞∑

k=0

Rkz
k =

( ∞∑

n=0

(
N

n

)
zn
)ℓ

= (1 + z)Nℓ ,

which implies Rk =
(Nℓ

k

)
, as required. �
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11.2. Cohomology of the generalized variational complex. Recall
from Proposition 10.8(b) that we have a short exact sequence of complexes

0 → (∂Ω̃•(V), δK)
α
→ (Ω̃•(V), δK )

β
→ (Ω•(V), δK) → 0 ,

where α is the inclusion map, and β is the canonical quotient map Ω̃•(V) →

Ω̃•(V)/∂Ω̃•(V) = Ω•(V). It induces a long exact sequence in cohomology:
(11.11)

0 → H0(∂Ω̃•, δK)
α0→ H0(Ω̃•, δK)

β0
→ H0(Ω•, δK)

γ0
→ H1(∂Ω̃•, δK)

α1→ . . .

. . .
γk−1
→ Hk(∂Ω̃•, δK)

αk→Hk(Ω̃•, δK)
βk→Hk(Ω•, δK)

γk→Hk+1(∂Ω̃•, δK)
αk+1
→ . . .

Recall that, by Theorem 11.2, for every k ∈ Z+, we have a canonical identi-

fication Hk(Ω̃•(V), δK) = Ω̃k
0,0. Next, we want to describe Hk(∂Ω̃•(V), δK)

and the map αk : Hk(∂Ω̃•(V), δK) → Hk(Ω̃•(V), δK). This is given by the
following

Lemma 11.6. (a) The inclusion (∂Ω̃•
0,0, 0) ⊂ (∂Ω̃•(V), δK), is a quasiiso-

morphism of complexes, i.e. it induces canonical isomorphisms:

Hk(∂Ω̃•(V), δK) ≃ ∂Ω̃k
0,0 ≃

{
F/C for k = 0

Ω̃k
0,0 for k ≥ 1

.

(b) Under the identifications H0(Ω̃•(V), δK) = F in Theorem 11.2 and

H0(∂Ω̃•(V), δK) = F/C in part (a), the map α0 induces the map α0 :
F/C → F given by a+ C 7→ ∂a.

(c) For k ≥ 1, identifying Hk(Ω̃•(V), δK) = Ω̃k
0,0 = Hk(∂Ω̃•(V), δK) as in

Theorem 11.2 and in part (a), the map αk induces the endomorphism

αk ∈ End
(
Ω̃k
0,0

)
defined as follows. For P ∈ Ω̃k

0,0, there exist Q ∈ Ω̃k(V)

and (a unique) R ∈ Ω̃k
0,0 such that ∂P = δKQ+R. Then,

(11.12) αk(P ) = R .

(d) Assuming that the leading coefficient of K(∂) is 1I, we can write αk

explicitly using the local homotopy operators (11.5):

(11.13) αk(P ) = (1− δK ◦ h0,1)(1− δK ◦ h0,2) . . . (1− δK ◦ h0,ℓ)∂P .

Proof. The map ∂ : Ωk(V) → Ωk(V) is injective for k ≥ 1, while, for k = 0,

we have Ω̃0(V) = V and Ker(∂|V) = C, the algebra of constants. Since ∂ and

δK commute, it follows that Ker
(
δK
∣∣
∂Ω̃k(V)

)
= ∂Ker

(
δK
∣∣
Ω̃k(V)

)
⊂ Ω̃k(V)

for all k ≥ 0, and δK
(
∂Ω̃k−1(V)

)
= ∂δK

(
Ω̃k−1(V)

)
⊂ Ω̃k(V) for k ≥ 1.

Hence, we get

H0(∂Ω̃•(V), δK) = Ker
(
δK
∣∣
∂Ω̃0(V)

)
= ∂Ker

(
δK
∣∣
Ω̃0(V)

)
= ∂F ≃ F/C .
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In the second last equality we used the fact that Ker
(
δK
∣∣
Ω̃0(V)

)
= F , by

the definition (10.11) of δK and that, by assumption, K has invertible lead-
ing coefficient. Moreover, the last isomorphism above is induced by the
surjective map ∂ : F → ∂F . Similarly, for k ≥ 1, we have

Hk(∂Ω̃•(V), δK) = Ker
(
δK
∣∣
∂Ω̃k(V)

)/
δK
(
∂Ω̃k−1(V)

)

= ∂Ker
(
δK
∣∣
Ω̃k(V)

)/
∂δK

(
Ω̃k−1(V)

)

≃ Ker
(
δK
∣∣
Ω̃k(V)

)/
δK
(
Ω̃k−1(V)

)
= Hk(Ω̃•(V), δK) ≃ Ω̃k

0,0 .

In the third identity we used the injectiveness of ∂. This proves part (a).

The map α0 : H0(∂Ω̃(V), δK) → H0(Ω̃(V), δK) is induced by the in-

clusion map ∂Ω̃0(V) = ∂V ⊂ V = Ω̃0(V). Since H0(Ω̃(V), δK) = F and

H0(∂Ω̃(V), δK) = ∂F , the map α0 coincides with the inclusion map ∂F ⊂ F .
Part (b) follows from the identification F/C ≃ ∂F via the map a+ C 7→ ∂a.

For part (c) we use a similar argument. The isomorphismHk(Ω̃(V), δK) ≃

Ω̃k
0,0 given by Theorem 11.2(a) maps P + δK(Ω̃k−1(V)) ∈ Hk(Ω̃(V), δK) to

the unique element R ∈ Ω̃k
0,0 such that P − R ∈ δK(Ω̃k−1(V)), and the

inverse map sends P ∈ Ω̃k
0,0 to P + δK(Ω̃k−1(V)) ∈ Hk(Ω̃(V), δK). Sim-

ilarly, we have the canonical isomorphism, Hk(∂Ω̃(V), δK) ≃ Ω̃k
0,0, which

maps ∂P + δK(∂Ω̃k−1(V)) ∈ Hk(∂Ω̃(V), δK ) to the unique element R ∈ Ω̃k
0,0

such that P − R ∈ δK(Ω̃k−1(V)), and the inverse map sends P ∈ Ω̃k
0,0

to ∂P + δK(∂Ω̃k−1(V)) ∈ Hk(∂Ω̃(V), δK). Equation (11.12) follows from

the fact that the map αk : Hk(∂Ω̃(V), δK) → Hk(Ω̃(V), δK) is induced by

the inclusion map ∂Ω̃k(V) ⊂ Ω̃k(V), i.e. it sends ∂P + δK(∂Ω̃k−1(V)) ∈

Hk(∂Ω̃(V), δK) to ∂P + δK(Ω̃k−1(V)) ∈ Hk(Ω̃(V), δK).
We are left to prove part (d). Given P =

(
Pi1,...,ik(λ1, . . . , λk)

)
i1,...,ik∈I

∈

Ω̃k
0,0, the entries of the array ∂P ∈ Ω̃k(V) are the polynomials (∂ + λ1 +

· · ·+ λk)Pi1,...,ik(λ1, . . . , λk), which have quasiconstant coefficients and have

degree at most N in each λi. Hence, ∂P ∈ Ω̃k
0,ℓ(F) ⊂ Ω̃k

0,ℓ(V). It follows by

Lemma 11.5(c) that (1I − δK ◦ h0,1)(1I − δK ◦ h0,2) . . . (1I − δK ◦ h0,ℓ)∂P lies

in Ω̃k
0,0. Since, obviously, this element differs from ∂P by an exact element,

we conclude, by part (c), that it coincides with αk(P ). �

Using Theorem 11.2 and Lemma 11.6, the long exact sequence (11.11)
becomes
(11.14)

0 → F/C
∂
→ F

β0
→ H0(Ω•(V), δK)

γ0
→ Ω̃1

0,0
α1→ Ω̃1

0,0
β1
→ . . .

· · ·
γk−1
→ Ω̃k

0,0
αk→ Ω̃k

0,0
βk→ Hk(Ω•(V), δK)

γk→ Ω̃k+1
0,0

αk+1
→ Ω̃k+1

0,0

βk+1
→ . . .
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Next, we study the maps βk, k ∈ Z+. First, it is clear that β0 : Ω̃0
0,0 =

F → H0(Ω•(V), δK ) ⊂ V/∂V, is given by f 7→
∫
f . In particular, β0 = 0 if

and only if ∂F = F .

For k ∈ Z+, let us consider the map βk+1 : Ω̃
k+1
0,0 → Hk+1(Ω•(V), δK). Let

P ∈ Ω̃k+1
0,0 , i.e. P =

(
Pi0,...,ik(λ0, . . . , λk)

)
i0,...,ik∈I

is a skewsymmetric array

with respect to simultaneous permutations of the indices i0, . . . , ik and the
variables λ0, . . . , λk and, for each k-tuple (i0, . . . , ik), Pi0,...,ik(λ0, . . . , λk) ∈
F[λ0, . . . , λk]⊗ F is a polynomial of degree at most N − 1 in each variable
λi. Then, by definition, βk+1(P ) ∈ Hk(Ω•(V), δK) is

(11.15) βk+1(P ) =
(
Pi0,...,ik(λ0, . . . , λk)

)
i0,...,ik∈I

+ δK
(
Ωk(V)

)
,

where Pi0,...,ik(λ0, . . . , λk) should now be viewed as an element of the space
F−[λ0, . . . , λk]⊗F[∂] F .

Note that the space of exact elements δK
(
Ωk(V)

)
contains all arrays

(11.16)
( k∑

α=0

(−1)α
∑

j∈I

K∗
iα,j(λ0+

α
ˇ. . . +λk + ∂)Qj

i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

)
i0,...,ik∈I

,

whereQj
i1,...,ik

(λ1, . . . , λk) ∈ F[λ1, . . . , λk]⊗F are polynomials with quasicon-
stant coefficients, and they are skewsymmetric with respect to simultaneous
permutations of i1, . . . , ik and λ1, . . . , λk. Indeed, recalling the definition
(9.29) of δK , we have that δK applied to the array

(11.17)
(∑

j∈I

Qj
i1,...,ik

(λ1, . . . , λk)uj

)
i1,...,ik∈I

∈ Ωk(V) ,

gives (11.16).

For example, for k = 0, given P =
(
Pi(λ)

)
i∈I

∈ Ω̃1
0,0, we have β1(P ) =(

pi
)
i∈I

+ δK
(
Ω0(V)

)
, where pi = P ∗

i (0) ∈ F . On the other hand, for Qj =

fj ∈ F , the array (11.16) becomes
(∑

j∈I K
∗
i,j(∂)fj

)
i∈I

. Hence, β1 = 0

provided that the map K∗(∂) : Fℓ → Fℓ is surjective.

In general, for k ≥ 0, let P =
(
Pi0,...,ik(λ0, . . . , λk)

)
i0,...,ik∈I

∈ Ω̃k+1
0,0 , i.e.

P is a skewsymmetric array with respect to simultaneous permutations of
the indices i0, . . . , ik and the variables λ0, . . . , λk and such that, for each k-
tuple (i0, . . . , ik), Pi0,...,ik(λ0, . . . , λk) ∈ F[λ0, . . . , λk]⊗ F is a polynomial of
degree at most N − 1 in each variable λi. By equation (11.15) and formulas
(11.16) and (11.17), we have that βk+1(P ) = 0 provided that there exists a
collection of ℓ skewsymmetric arrays in k variables

(
Qj

i1,...,ik
(λ1, . . . , λk)

)
i1,...,ik∈I

,
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indexed by j = 1, . . . , ℓ, where Qj
i1,...,ik

(λ1, . . . , λk) are polynomials with
quasiconstant coefficients, such that
(11.18)

k∑

α=0

(−1)α
∑

j∈I

K∗
iα,j(λ0+

α
ˇ. . . +λk + ∂)Qj

i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)

−Pi0,i1,...,ik(λ0, λ1, . . . , λk) ∈ (λ0 + · · ·+ λk + ∂)F[λ0, . . . , λk]⊗F .

Recall Definition A.3.1 from Appendix A.3 of a linearly closed differential
field.

Theorem 11.7. Let V be a normal algebra of differential functions, and as-
sume that the algebra of quasiconstants F ⊂ V is a linearly closed differential
field. Let K(∂) be an ℓ × ℓ matrix differential operator with quasiconstant
coefficients and invertible leading coefficient. Then βk = 0 for every k ≥ 0
and every ℓ ≥ 1.

Proof. The facts that β0 = 0 and β1 = 0 were pointed out above. Using
notation (A.5.7) and (A.5.8) in Appendix A.5, we have that the array (11.16)
is equal to 〈K∗ ◦Q〉−. Hence, condition (11.18), after replacing λ0 by −λ1−
· · ·−λk−∂, becomes P = 〈K∗ ◦Q〉−. Hence, the assertion that βk+1(P ) = 0
follows from Theorem A.5.11 in the Appendix. �

Example 11.8. In the case k = 1 and ℓ = 1, the problem of solving equation
(11.18) becomes: for P (λ) ∈ F [λ] skewadjoint, i.e. P ∗(λ) := P (−λ − ∂) =
−P (λ), we want to find Q(λ) ∈ F [λ], such that P (λ) = Q∗(λ + ∂)K(λ) −
K∗(λ+ ∂)Q(λ). Solutions for certain choices of K(λ) are the following:

(1) K(λ) = 1: take Q(λ) = 1
2P (λ),

(2) K(λ) = λ: take Q(λ) such that ∂Q(λ) = P (λ),
(3) K(λ) = λ2: take Q(λ) = Q∗(λ) such that (∂ + 2λ)∂Q(λ) = P (λ),
(4) K(λ) = λ3: take Q(λ) = (λ− ∂)α+R(λ), with R(λ) = R∗(λ), such

that (∂ + 2λ)
(
− ∂3α+ 2(λ2 + λ∂ + ∂2)R(λ)

)
= P (λ).

By the exact sequence (11.14), βk = 0 implies that γk : Hk(Ω•(V), δK) →

Ω̃k+1
0,0 is an embedding, and its image coincides with the kernel of the en-

domorphism αk+1 of the C-vector space Ω̃k+1
0,0 . Hence, in order to compute

the variational Poisson cohomology, we need to study the maps αk+1 and
γk. In particular, we will use the results of Appendix A.5 to compute the
dimension over C of Ker(αk+1), which by the above observations coincides
with the dimension of Hk(Ω•(V), δK), and, for each element C ∈ Ker(αk+1),

we will find a representative of γ−1(C) ∈ Hk(Ω•(V), δK) in Ω̃k(V). To start
with, we need the following:

Lemma 11.9. Suppose that the algebra of differential functions V is an ex-

tension of the algebra of differential polynomials F
[
u
(n)
i

∣∣ i ∈ I, n ∈ Z+

]
, for
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a differential field F . Then, there exists a direct sum (over F) decomposition

(11.19) V = F ⊕
( ⊕

i∈I,n∈Z+

Fu
(n)
i

)
⊕ U ,

where U ⊂ V is an F-linear subspace of V such that

(11.20)
∂

∂u
(m)
j

U ⊂
( ⊕

i∈I,n∈Z+

Fu
(n)
i

)
⊕ U , for all j ∈ I, m ∈ Z+ .

Proof. Consider the map: F
[
u
(n)
i

∣∣ i ∈ I, n ∈ Z+

]
։ F given by evaluating

at u
(n)
i = 0, ∀i ∈ I, n ∈ Z+, and extend it to a linear over F map ε : V ։ F .

Let then

U :=
{
g ∈ V

∣∣∣ ε(g) = 0, ε
( ∂g

∂u
(n)
i

)
= 0 ∀i ∈ I, n ∈ Z+

}
.

Clearly, for every f ∈ V we have

f − ε(f)−
∑

i∈I,n∈Z+

ε
( ∂f

∂u
(n)
i

)
u
(n)
i ∈ U ,

so that V = F +
(⊕

i∈I,n∈Z+
Fu

(n)
i

)
+ U . Moreover, if

f = α+
∑

i∈I,n∈Z+

βi,nu
(n)
i + g = 0 ,

with α, βi,n ∈ F and g ∈ U , then α = ε(f) = 0, and βi,n = ε
( ∂f

∂u
(n)
i

)
= 0, so

that V admits the direct sum decomposition (11.19).
Let then f ∈ V and consider its decomposition given by (11.19): f =

α+
∑

i∈I,n∈Z+
βi,nu

(n)
i +g, where α, βi,n ∈ F and g ∈ U . We have ε(f) = α,

proving that

(11.21) Ker(ε) =
( ⊕

i∈I,n∈Z+

Fu
(n)
i

)
⊕ U ⊂ V .

To conclude, we note that, by the definition of U , if g ∈ U then ∂g

∂u
(n)
i

∈ Ker(ε)

for every i ∈ I, n ∈ Z+, which, together with (11.21), gives (11.20). �

Recall from Appendix A.5.1 that a k-differential operator on Fℓ is an
array P =

(
Pi0,i1,...,ik(λ1, . . . , λk)

)
i0,i1,...,ik∈I

, whose entries are polynomials

in λ1, . . . , λk with coefficients in F , and it is said to be skewsymmetric if the
entries Pi0,i1,...,ik(λ1, . . . , λk) are skewsymmetric with respect to simultane-
ous permutations of the indices i1, . . . , ik and the variables λ1, . . . , λk. Given
an ℓ× ℓ matrix differential operator K(∂), we denote by Σk(K) the space of
skewsymmetric k-differential operators on Fℓ whose entries are polynomials
of degree at mostN−1 in each variable λ1, . . . , λk, solving equation (A.5.52).
For example Σ0(K) consists of elements P ∈ Fℓ solving K(∂)P = 0. By
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Theorem A.5.12, if F is a linearly closed differential field, then Σk(K) is a

vector space over C of dimension
( Nℓ
k+1

)
.

Theorem 11.10. Let k ∈ Z+. Let V be a normal algebra of differential
functions, and assume that the algebra of quasiconstants F ⊂ V is a linearly
closed differential field. Let K(∂) be an ℓ × ℓ matrix differential operator
of order N with quasiconstant coefficients and invertible leading coefficient
KN ∈ Matℓ×ℓ(F).

(a) There is a canonical isomorphism of C-vector spaces φk : Σk(K
∗) →

Ker(αk+1), defined as follows: given P ∈ Σk(K
∗), we let φk(P ) = C ∈

Ker(αk+1), where

(11.22)

k∑

α=0

(−1)α
∑

j∈I

P
j,i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)Kj,iα(λα)

= (λ0 + λ1 + · · ·+ λk + ∂)Ci0,i1,...,ik(λ0, λ1, . . . , λk) ,

for all indices i0, . . . , ik ∈ I (equality in F[λ0, . . . , λk]⊗F).
(b) There is a canonical isomorphism χk : Σk(K

∗) ≃ Hk(Ω•(V), δK) defined
as follows: given P ∈ Σk(K

∗), we let χk(P ) ∈ Hk(Ω•(V), δK) be the
cohomology class with representative

(11.23)
(∑

j∈I

Pj,i1,...,ik(λ1, . . . , λk)uj

)
i1,...,ik∈I

∈ Ω̃k(V) .

In particular,

(11.24) dimC(H
k(Ω•(V), δK)) =

(
Nℓ

k + 1

)
.

(c) The maps γk : Hk(Ω•(V), δK) → Ker(αk+1) in the exact sequence
(11.14) and φk : Σk(K

∗) → Ker(αk+1) are compatible in the sense that

(11.25) φk = γk ◦ χk .

For C ∈ Ker(αk+1), let φ−1
k (C) =

(
Pi0,i1,...,ik(λ1, . . . , λk)

)
i0,i1,...,ik∈I

∈

Σk(K
∗). Then, the array (11.23) in Ω̃k(V) is a representative of the

cohomology class γ−1
k (C) ∈ Hk(Ω•(V), δK).

Proof. First, we prove that the map φk given by (11.22) is well defined.
Let P ∈ Σk(K

∗), so that 〈K∗ ◦ P 〉− = 0. By equation (A.5.10) from the
Appendix, we can rewrite this condition by saying that

(11.26)

k∑

α=0

(−1)α
∑

j∈I

P
j,i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)Kj,iα(λα)

becomes zero if we replace λ0 by −λ1 − · · · − λk − ∂, with ∂ acting from the
left. In other words, (11.26), as an element of F[λ0, λ1, . . . , λk]⊗F , is equal
to

(11.27) (λ0 + λ1 + · · ·+ λk + ∂)Ci0,i1,...,ik(λ0, λ1, . . . , λk) ,
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where C =
(
Ci0,i1,...,ik(λ0, λ1, . . . , λk)

)
i0,i1,...,ik∈I

is a skewsymmetric array

whose entries are polynomials with quasiconstant coefficients of degree less

than or equal to N − 1, i.e. C ∈ Ω̃k+1
0,0 . Furthermore, we claim that C

lies in Ker(αk+1). Indeed, taking Q ∈ Ω̃k(V) be the array (11.23), we
have, by (10.11), that (δKQ)i0,...,ik(λ0, . . . , λk) is equal to (11.26). Hence,
the equality of (11.26) and (11.27) implies that δKQ = ∂C. Therefore,
by Lemma 11.6(c), we conclude that αk+1(C) = 0, proving that φk is well
defined.

We next prove that the map φk : Σk(K
∗) → Ker(αk+1) is injective. Since,

by assumption, Pi0,...,ik(λ1, . . . , λk) has degree less than or equal to N − 1 in

each variable, the coefficient of λN
0 in (11.26) is

(11.28)
∑

j∈I

Pj,i1,...,ik(λ1, . . . , λk)(KN )j,i0 .

To say that φk(P ) = 0 is equivalent to say that (11.26), viewed as an element
of F[λ0, . . . , λk] ⊗ F , is identically zero for all indices i0, . . . , ik ∈ I. In
particular (11.28) is zero. Since, by assumption, KN is an invertible matrix,
it follows that Pi0,i1,...,ik(λ1, . . . , λk) = 0, for all indices i0, . . . , ik. Hence, φk

is injective.
To complete the proof of part (a) we are left with showing that the map

φk is surjective. Let C =
(
Ci0,...,ik(λ0, . . . , λk)

)
i0,...,ik∈I

be an element of

Ker(αk+1). By Lemma 11.6(c), there exists an element Q ∈ Ω̃k(V) such
that

(11.29) ∂C = δKQ .

By Lemma 11.9, we can assume that the coefficients of Q are linear in the

variables u
(n)
j , i.e.

(11.30) Qi1,...,ik(λ1, . . . , λk) =
M∑

n=0

∑

j∈I

Pn
j,i1,...,ik

(λ1, . . . , λk)u
(n)
j

with M ∈ Z+ and Pn
j,i1,...,ik

(λ1, . . . , λk) ∈ F[λ1, . . . , λk] ⊗ F . Indeed, the
quasiconstant part of Q is killed by the differential δK , while δK applied to
the U -part of Q has zero quasiconstant part. Note that, if Q is as in (11.30),
then equation (11.29) becomes

(11.31)

k∑

α=0

(−1)α
∑

j∈I

M∑

n=0

Pn

j,i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)(λα + ∂)nKj,iα(λα)

= (λ0 + · · · + λk + ∂)Ci0,...,ik(λ0, . . . , λk) ∈ F[λ0, . . . , λk]⊗F ,

for all choices of indices i0, . . . , ik ∈ I.
In order to prove surjectivity of φk, we will show that we can choose Q

as in (11.30) with M = 0 and P 0
j,i1,...,ik

(λ1, . . . , λk) of degree at most N − 1

in each variable λ1, . . . , λk, such that equation (11.31) holds with the given
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C ∈ Ker(αk+1). In this case, by the definition (11.22) of the map φk,

P =
(
P 0
i0,i1,...,ik

(λ1, . . . , λk)
)
i0,i1,...ik∈I

is an element of Σk(K
∗) such that φk(P ) = C.

We will achieve the desired form of Q in three steps: first we reduce to
the case when all polynomials Pn

j,i1,...,ik
(λ1, . . . , λk) have degree less than or

equal to M+N in each variable λα; then we reduce to the case when M = 0;
finally we reduce to the case when the polynomials P 0

j,i1,...,ik
(λ1, . . . , λk) have

degree at most N − 1 in each variable. Note that in the case k = 0 we only
need to do the second step.

Let k ≥ 1 and let d be the maximal degree in one of the variables
λ1, . . . , λk of all the polynomials Pn

j,i1,...,ik
(λ1, . . . , λk) for n = 0, . . . ,M and

j, i1, . . . , ik ∈ I, and assume that d > M+N . By taking separately all terms
in which some of the variables λα are raised to the power d, we can write
(11.32)

Pn
j,i1,...,ik

(λ1, . . . , λk) = Rn
j,i1,...,ik

λd
1 . . . λ

d
k +

∑

1≤β≤k

Rn,β
j,i1,...,ik

(λβ)λ
d
1

β
ˇ. . . λd

k

+
∑

1≤β<γ≤k

Rn,β,γ
j,i1,...,ik

(λβ, λγ)λ
d
1

β
ˇ. . .

γ
ˇ. . . λd

k + · · · +Rn
j,i1,...,ik

(λ1, . . . , λk)

=
k∑

q=0

∑

1≤β1<···<βq≤k

R
n,β1,...,βq

j,i1,...,ik
(λβ1 , . . . , λβq )λ

d
1

β1,...,βq

ˇ. . . . . . λd
k ,

where R
n,β1,...,βq

j,i1,...,ik
(λβ1 , . . . , λβq ) are polynomials with quasiconstant coeffi-

cients of degree strictly less than d in each variable. Then equation (11.31)
becomes

k∑

α=0

(−1)α
∑

j∈I

M∑

n=0

k∑

q=0

∑

0≤β1<···<βq≤k
(βh<α<βh+1)

λd
0

α,β1,...,βq

ˇ. . . . . . λd
k

×R
n,β1+1,...,βh+1,βh+1,...βq

j,i0,
α
.̌..,ik

(λβ1 , . . . , λβq )(λα + ∂)nKj,iα(λα)

= (λ0 + · · · + λk + ∂)Ci0,...,ik(λ0, . . . , λk) .

We can rewrite the above equation in the following equivalent form

(11.33)

k∑

q=0

∑

0≤β0<···<βq≤k

q∑

r=0

(−1)βr
∑

j∈I

M∑

n=0

λd
0

β0,...,βq

ˇ. . . . . . λd
k

×R
n,β0+1,...,βr−1+1,βr+1,...,βq

j,i0,
βr
.̌..,ik

(λβ0 ,
r
ˇ. . ., λβq)× (λβr + ∂)nKj,iβr

(λβr)

= (λ0 + · · · + λk + ∂)Ci0,...,ik(λ0, . . . , λk) .

Note that the RHS above has degree at most N in each variable λ1, . . . , λk.
Hence, by looking at the coefficient of λd

1 . . . λ
d
k in both sides of equation
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(11.33), we get

∑

j∈I

M∑

n=0

Rn
j,i1,...,ik

(λ0 + ∂)nKj,i0(λ0) = 0 .

Since, by assumption, the leading coefficient KN of the differential operator
K(∂) is an invertible matrix, one easily gets that Rn

j,i1,...,ik
= 0 for all n =

0, . . . ,M and j, i1, . . . , ik ∈ I. Hence, in the LHS of (11.33) the term with
q = 0 vanishes. Next, for 0 ≤ β0 < β1 ≤ k, by looking at the coefficient of

λd
0

β0,β1

ˇ. . . . . . λd
k in both sides of equation (11.33), we get

Tβ0,β1(λβ0 , λβ1) := (−1)β0
∑

j∈I

M∑

n=0

Rn,β1

j,i0,
β0
.̌..,ik

(λβ1)(λβ0 + ∂)nKj,iβ0
(λβ0)

+(−1)β1
∑

j∈I

M∑

n=0

Rn,β0+1

j,i0,
β1
.̌..,ik

(λβ0)(λβ1 + ∂)nKj,iβ1
(λβ1) = 0 .

On the other hand, the term with q = 1 in the LHS of (11.33) is exactly

∑

0≤β0<β1≤k

Tβ0,β1(λβ0 , λβ1)λ
d
0

β0,β1

ˇ. . . . . . λd
k ,

hence, it vanishes, and the sum over q in the LHS of (11.33) starts with
q = 2. Repeating the same argument several times, we conclude that all
the terms with q ≤ k − 1 in the LHS of (11.33) vanish, hence the equation
becomes

(11.34)

k∑

α=0

(−1)α
∑

j∈I

M∑

n=0

Rn,1,...,k

j,i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)(λα + ∂)nKj,iα(λα)

= (λ0 + · · · + λk + ∂)Ci0,...,ik(λ0, . . . , λk) .

Comparing equations (11.31) and (11.34), we can replace the polynomials

Pn
j,i1,...,ik

(λ1, . . . , λk) by the polynomials Rn,1,...,k
j,i1,...,ik

(λ1, . . . , λk), which have
degree strictly less than d. Hence, repeating this argument several times, we
may assume that the degree of all polynomials Pn

j,i1,...,ik
(λ1, . . . , λk) is less

than or equal to M +N , concluding the first step.
In the second step we want to reduce to the case when M = 0. For this,

assuming M ≥ 1, we will reduce to the case when M is replaced by M − 1.
We find an expansion of P similar to the one discussed in equation (11.32).
Using the fact that K(∂) has order N and its leading coefficient KN is an
invertible matrix, we can write
(11.35)

Pn
j,i1,...,ik

(λ1, . . . , λk) =

k∑

q=0

∑

j1,...,jk∈I

∑

1≤β1<···<βq≤k

Q
n,β1,...,βq

j,j1,...,jk
(λβ1 , . . . , λβq)

×δjβ1 ,iβ1 . . . δjβq ,iβq
(
(λ1 + ∂)MKj1,i1(λ1)

) β1...βq

ˇ. . . . . .
(
(λk + ∂)MKjk,ik(λk)

)
,
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where Q
n,β1,...,βq

j,j1,...,jk
(λβ1 , . . . , λβq) are polynomials with quasiconstant coeffi-

cients of degree strictly less than M+N in each variable λβ1 , . . . , λβq . Then,
equation (11.31) becomes

k∑

α=0

∑

j∈I

M∑

n=0

k∑

q=0

∑

j0,
α
.̌..,jk∈I

∑

0≤β1<···<βq≤k
(βh<α<βh+1)

(−1)αQ
n,β1+1,...,βh+1,βh+1,...,βq

j,j0,
α
.̌..,jk

(λβ1 , . . . , λβq )

× δjβ1 ,iβ1 . . . δjβq ,iβq
(
(λ0 + ∂)MKj0,i0(λ0)

) α,β1...βq

ˇ. . . . . .
(
(λk + ∂)MKjk,ik(λk)

)

×
(
(λα + ∂)nKj,iα(λα)

)
= (λ0 + · · ·+ λk + ∂)Ci0,...,ik(λ0, . . . , λk) ,

or, rearranging terms appropriately, we can rewrite it in the following equiv-
alent form
(11.36)

M∑

n=0

k∑

q=0

q∑

r=0

∑

0≤β0<···<βq≤k

(−1)βr
∑

j0,...,jk∈I

Q
n,β0+1,...,βr−1+1,βr+1,...,βq

jβr ,j0,
βr
.̌..,jk

(λβ0 ,
r
ˇ. . ., λβq )

× δjβ0 ,iβ0

r
ˇ. . . δjβq ,iβq

(
(λ0 + ∂)MKj0,i0(λ0)

) β0...βq

ˇ. . . . . .
(
(λk + ∂)MKjk,ik(λk)

)

×
(
(λβr + ∂)nKjβr ,iβr

(λβr)
)
= (λ0 + · · ·+ λk + ∂)Ci0,...,ik(λ0, . . . , λk) .

Note that the RHS has degree at most N in each variable λ1, . . . , λk.
By looking at the coefficient of λM+N

0 . . . λM+N
k in both sides of equation

(11.36), we get, since M ≥ 1,

k∑

α=0

(−1)α
∑

j0,...,jk∈I

QM

jα,j0,
α
.̌..,jk

(KN )j0,i0 . . . (KN )jk,ik = 0 .

Since KN is invertible, we deduce that

Ti0,...,ik :=
k∑

α=0

(−1)αQM

iα,i0,
α
.̌..,ik

= 0 .

On the other hand, the term with q = 0 and n = M in the LHS of (11.36)
is equal to

∑

j0,...,jk∈I

Tj0,...,jk

(
(λ0 + ∂)MKj0,i0(λ0)

)
. . .
(
(λk + ∂)MKjk,ik(λk)

)
,

hence it vanishes.

Next, for k ≥ 1 fix α ∈ {1, . . . , k} and consider the coefficient of λM+N
0

α
ˇ. . .

λM+N
k in both sides of equation (11.36). In the RHS we get 0 since M ≥ 1,

while in the LHS there are only two contributions, one coming from q = 0
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and n ≤ M − 1, and the other coming from q = 1 and n = M . We thus get

M−1∑

n=0

(−1)α
∑

j0,...,jk∈I

Qn

jα,j0,
α
.̌..,jk

(KN )j0,i0
α
ˇ. . . (KN )j0,i0

(
(λα + ∂)nKjα,iα(λα)

)

+
k∑

β=0
(β<α)

(−1)β
∑

j0,...,jk∈I

QM,α

jβ ,j0,
β

.̌..,jk

(λα)δjα,iα(KN )j0,i0
α
ˇ. . . (KN )jk,ik

+

k∑

β=0
(β>α)

(−1)β
∑

j0,...,jk∈I

QM,α+1

jβ ,j0,
β

.̌..,jk

(λα)δjα,iα(KN )j0,i0
α
ˇ. . . (KN )jk,ik = 0 .

Again, since KN is invertible, we deduce that

Tα
i0,...,ik

(λα) :=
k∑

β=0
(β<α)

(−1)βQM,α

iβ ,i0,
β

.̌..,ik

(λα) +
k∑

β=0
(β>α)

(−1)βQM,α+1

iβ ,i0,
β

.̌..,ik

(λα)

+
M−1∑

n=0

∑

j∈I

(−1)αQn

j,i0,
α
.̌..,ik

(
(λα + ∂)nKj,iα(λα)

)
= 0 .

On the other hand, the sum of the term with q = 1 and n = M together
with the terms with q = 0 and n ≤ M − 1 in the LHS of (11.36) is equal to

∑

j0,...,jk∈I

k∑

α=0

Tα
j0,...,jk

(λα)δjα,iα

×
(
(λ0 + ∂)MKj0,i0(λ0)

) α
ˇ. . .
(
(λk + ∂)MKjk,ik(λk)

)
,

hence it vanishes. Repeating the same argument several times, at each step
we prove that the sum of the term with q = q0+1 and n = M together with
the terms with q = q0 and n ≤ M − 1 vanishes. As a result, in the LHS
of equation (11.36) only the terms with q = k and n < M survive. Hence,
equation (11.36) becomes

M−1∑

n=0

k∑

α=0

(−1)α
∑

j∈I

Qn,1,...,k

j,i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)(λα + ∂)nKj,iα(λα)

= (λ0 + · · ·+ λk + ∂)Ci0,...,ik(λ0, . . . , λk) .

This is the same as (11.31) with the polynomials Pn
j,i1,...,ik

(λ1, . . . , λk) re-

placed by 0 for n = M , and by the polynomials Qn,1,...,k
j,i1,...,ik

(λ1, . . . , λk) for
n < M . This completes the second step.

So far, we showed that we can choose Q in (11.30) of the form

(11.37) Qi1,...,ik(λ1, . . . , λk) =
∑

j∈I

Pj,i1,...,ik(λ1, . . . , λk)uj ,
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where Pj,i1,...,ik(λ1, . . . , λk) are polynomials with quasiconstant coefficients
of degree at most N in each variable. In this case equation (11.31) reads

(11.38)

k∑

α=0

(−1)α
∑

j∈I

P
j,i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)Kj,iα(λα)

= (λ0 + · · · + λk + ∂)Ci0,...,ik(λ0, . . . , λk) ∈ F[λ0, . . . , λk]⊗F .

To complete the proof of part (a), we are left with showing that we can
choose the polynomials Pj,i1,...,ik(λ1, . . . , λk) to be of degree at most N − 1
in each variable λα, such that equation (11.38) still holds. As before, we
expand the polynomials Pj,i1,...,ik(λ1, . . . , λk) as in (11.35)
(11.39)

Pj,i1,...,ik(λ1, . . . , λk) =
k∑

q=0

∑

j1,...,jk∈I

∑

1≤β1<···<βq≤k

Q
β1,...,βq

j,j1,...,jk
(λβ1 , . . . , λβq )

×δjβ1 ,iβ1 . . . δjβq ,iβqKj1,i1(λ1)
β1...βq

ˇ. . . . . . Kjk,ik(λk) ,

where the polynomials Q
β1,...,βq

j,j1,...,jk
(λβ1 , . . . , λβq ) have degree strictly less than

N . Then, equation (11.38) reads
(11.40)

k∑

q=0

∑

j0,...,jk∈I

k∑

α=0

∑

0≤β1<···<βq≤k
(βh<α<βh+1)

(−1)αQ
β1+1,...,βh+1,βh+1,...,βq

jα,j0,
α
.̌..,jk

(λβ1 , . . . , λβq )

× δjβ1 ,iβ1 . . . δjβq ,iβqKj0,i0(λ0)
β1...βq

ˇ. . . . . . Kjk,ik(λk)

= (λ0 + · · · + λk + ∂)Ci0,...,ik(λ0, . . . , λk) .

We then proceed as in step two. Note that, since by assumption the polyno-
mials Ci0,...,ik(λ0, . . . , λk) have degree at most N − 1 in each variable, in the
right hand side of (11.40) in each monomial at most one variable λα appears
in degree N . Therefore, for k ≥ 1, comparing the coefficient of λN

0 . . . λN
k in

both sides of (11.40), and using the fact that KN is invertible, we get

Ti0,...,ik :=
k∑

α=0

(−1)αQ
iα,i0,

α
.̌..,ik

= 0 ,

for every choice of indices i0, . . . , ik ∈ I. But the term with q = 0 in the
LHS of (11.40) is

∑

j0,...,jk∈I

Tj0,...,jkKj0,i0(λ0) . . . Kjk,ik(λk) ,

hence it vanishes. Similarly, for k ≥ 2, given β ∈ {0, . . . , k} and comparing

the coefficient of λN
0

β
ˇ. . . λN

k in both sides of (11.40), we get, again using the
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fact that KN is invertible,

T β
i0,...,ik

(λβ) :=
∑

α<β

(−1)αQβ

iα,i0,
α
.̌..,ik

(λβ) +
∑

α>β

(−1)αQβ+1

iα,i0,
α
.̌..,ik

(λβ) = 0 ,

for every choices of indices i0, . . . , ik ∈ I. and the term with q = 1 in the
LHS of (11.40) is exactly

k∑

β=0

∑

j0,...,jk∈I

T β
j0,...,jk

δjβ ,iβKj0,i0(λ0)
β
ˇ. . . Kjk,ik(λk) ,

hence it vanishes. Repeating the same argument several times, we prove
that all the terms in the LHS of (11.40) with q ≤ k − 1 vanish. Note
that the same argument always works for q ≤ k − 1 since the monomial

λN
0

β1...βq

ˇ. . . . . . λN
k contains at least two variables raised to the power N . In

conclusion, equation (11.40) is equivalent to the same equation where in the
LHS we only keep the term with q = k:

∑

j∈I

k∑

α=0

(−1)αQ1,...,k

j,i0,
α
.̌..,ik

(λ0,
α
ˇ. . ., λk)Kj,iα(λα)

= (λ0 + · · · + λk + ∂)Ci0,...,ik(λ0, . . . , λk) .

In other words, we can replace the polynomials Pj,i1,...,ik(λ1, . . . , λk) defined

in (11.37) by the polynomials Q1,...,k
j,i1,...,ik

(λ1, . . . , λk), which have degree at

most N −1 in each variable, without changing the RHS of equation (11.38).
This completes the proof of part (a).

The dimension formula (11.24) follows from the first assertion in part (b)
and Theorem A.5.12.

Note that, if P ∈ Σk(K
∗), then δK applied to the array (11.23) is in the

image of ∂, hence the array (11.23) defines a cohomology class in Ωk(V).
Therefore, χk is a well-defined map: Σk(K

∗) → Hk(Ω•(V), δK).
In order to complete the proof of both parts (b) and (c), we only need

to check that the map χk : Σk(K
∗) → Hk(Ω•(V), δK) given by (11.23)

satisfies equation (11.25). Indeed, the map φk : Σk(K
∗) → Ker(αk+1) is an

isomorphism by part (a), and the map γk : Hk(Ω•(V), δK) → Ker(αk+1)
is an isomorphism by Theorem 11.7 and the long exact sequence (11.14).
Hence, equation (11.25) implies that the map χk must be an isomorphism
as well. Also, the last assertion in part (c) is clear since, by (11.25), we have
γ−1
k = χk ◦ φ

−1
k .

Before proving equation (11.25), let us recall the usual homological alge-
bra definition of the boundary map γk in the long exact sequence (11.11).
For [ω] ∈ Hk(Ω•(V), δK), we have

γk([ω]) =
[
α−1δKβ−1(ω)

]
∈ Hk+1(∂Ω̃•(V), δK) .
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In other words, let [ω] ∈ Hk(Ω•(V), δK) be the class of a closed element

ω ∈ Ωk(V). Since β : Ω̃k(V) → Ωk(V) is surjective, there exists η ∈ Ω̃k(V)
such that β(η) = ω. Since, by assumption, δKω = 0, we have that δK(η) ∈

Ker(β) = Im(α). Hence, there exists ζ ∈ ∂Ω̃k+1(V) such that δK(η) = α(ζ).

Since α is injective, δK(ζ) = 0, and we let γk([ω]) = [ζ] ∈ Hk+1(∂Ω̃•(V), δK).
Using the identification of the exact sequence (11.11) with (11.14), the con-
struction of the map γk can be described as follows. Consider a skewsymmet-

ric array P =
(
Pi1,...,ik(λ1, . . . , λk)

)
i1,...,ik∈I

∈ Ω̃k(V) such that, when viewed

as an element in Ωk(V) (i.e. when we view its entries in F−[λ1, . . . , λk]⊗F[∂]

V), it is closed: δKP = 0 in Ωk+1(V). By Theorem 11.2(a) there exists

a unique skewsymmetric array C =
(
Ci0,...,ik(λ0, . . . , λk)

)
i0,...,ik∈I

∈ Ω̃k+1
0,0 ,

where Ci0,...,ik(λ0, . . . , λk) are polynomials with quasiconstant coefficients of
degree at most N − 1 in each variable λi, such that δKP = ∂(C + δKQ) for

some Q ∈ Ω̃k(V). Then γk([P ]) = C.
Given P ∈ Σk(K

∗), the array φk(P ) = C ∈ Ker(αk+1) is defined by
equation (11.22). On the other hand, a representative of the cohomology

class χk(P ) ∈ Hk(Ω•(V), δK) is the array Q ∈ Ω̃k(V) given by (11.23),
and, by the above observations, the array γk(χk(P )) = C1 ∈ Ker(αk+1) is
defined by the equation δKQ = ∂C1. Since this equation for C1 coincides
with equation (11.22) for C, we conclude that C1 = C, proving formula
(11.25). �

11.3. Explicit description of H0(Ω•(V), δK) and H1(Ω•(V), δK). As-
sume that V is a normal algebra of differential functions and F ⊂ V is
a linearly closed differential field, so that Theorem 11.10 holds. It is easy to
see from the definition (9.29) of the action of δK on Ω0 = V/∂V that

H0(Ω•(V), δK) =
{∫

f ∈ V/∂V
∣∣∣K∗(∂)

δf

δu
= 0
}
.

The space Σ0(K
∗) described before Theorem 11.10 is

Σ0(K
∗) =

{
P ∈ Fℓ

∣∣∣K∗(∂)P = 0
}
,

and the isomorphism χ0 : Σ0(K
∗) → H0(Ω•(V), δK), defined in Theorem

11.10(b), is given by

χ0(P ) =

∫ ∑

j∈I

Pjuj .

It is immediate to check that the variational derivative of
∫ ∑

j Pjuj is P ,

hence, if P lies in Σ0(K
∗), then χ0(P ) lies in H0(Ω•(V), δK).

Recall from Section 8.2 that Ω1(V) is naturally identified with V⊕ℓ. Under
this identification, the space of exact elements in Ω1(V) is

B1(Ω•(V), δK) =
{
K∗(∂)

δf

δu

∣∣∣
∫
f ∈ V/∂V

}
.



94 ALBERTO DE SOLE1 AND VICTOR G. KAC2

Moreover, it is not hard to check using the definition (9.29) of δK , that the
space of closed elements in Ω1(V) is

Z1(Ω•(V), δK) =
{
F ∈ Vℓ

∣∣∣DF (∂) ◦K(∂) = K∗(∂) ◦D∗
F (∂)

}
,

where DF (∂) is the Frechet derivative (8.14) and D∗
F (∂) its adjoint matrix

differential operator. On the other hand, it is easy to see that the space
Σ1(K

∗) consists of matrix differential operators P =
(
Pij(∂)

)
i,j∈I

with qua-

siconstant coefficients and of order at most N − 1, solving the equation

(11.41) K∗(∂) ◦ P (∂) = P ∗(∂) ◦K(∂) .

The isomorphism χ1 : Σ1(K
∗) → H1(Ω•(V), δK) defined in Theorem 11.10(b)

is given by χ1(P ) = F + δK(Ω0(V)), where

(11.42) F =
(∑

j∈I

P ∗
ij(∂)uj

)
i∈I

∈ Vℓ .

It is not hard to check that, if F is as in (11.42), then its Frechet derivative
is

DF (∂) = P ∗(∂) ,

hence, if P satisfies equation (11.41), then F lies in Z1(Ω1(V), δK).

Remark 11.11. Recall that, if H and K are compatible Hamiltonian opera-
tors, the Lenard scheme is the following recurrent relation:

H(∂)
δhn
δu

= K(∂)
δhn+1

δu
,

or, equivalently,
[H,
∫
hn] = [K,

∫
hn+1] ,

in the Lie superalgebraW var(ΠV) ≃ Ω•(V). The Hamiltonian functions
∫
hn

are constructed by induction on n ∈ Z+. In fact, as explained in the intro-
duction (see equation (1.14)), assuming that we have constructed

∫
hj , j =

0, . . . , n − 1 satisfying the Lenard recurrence formula, then [H,
∫
hn−1] is a

closed element of (Ω1(V), δK). Hence, by equation (11.42), there exist a
Hamiltonian function

∫
hn ∈ V/∂V and a unique P ∈ Σ1(K

∗), i.e. a matrix

differential operator P =
(
Pij(∂)

)
i,j∈I

of order at most N − 1 with quasi-

constant coefficients solving (11.41), such that the following equation holds
in Vℓ:

(11.43) [H,
∫
hn−1] = [K,

∫
hn] +

(∑

j∈I

P ∗
ij(∂)uj

)
i∈I

.

In order to complete the n-th step of the Lenard scheme, we have to show
that P = 0. For this, the following observations may be used.

First note that, since [H,K] = 0, adH induces a well defined linear
map Hk(Ω•(V), δK) → Hk+1(Ω•(V), δK), hence, thanks to the isomorphism
χk : Σk(K

∗) → Hk(Ω•(V), δK) defined in Theorem 11.10, we get an induced
linear map αH

k : Σk(K
∗) → Σk+1(K

∗). On the other hand, applying adH

to both sides of equation (11.43), we get that (adH)
(∑

j∈I P
∗
ij(∂)uj

)
i∈I

is
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an exact element of (Ω2(V), δK), or, equivalently, αH
1 (P ) = 0. Thus, in

order to apply the Lenard scheme at the n-th step, it suffices to show that
Ker(αH

1 ) = 0.
Recalling formula (9.15) for the action of adH on Vℓ = Ω1(V), it is

not hard to show that the condition that αH
1 is injective translates to the

condition that, if

XP ∗(∂)u(H)−H(∂)◦P (∂)−P ∗(∂)◦H(∂) = −K(∂)◦D∗
F (∂)−DF (∂)◦K(∂) ,

for some P ∈ Σ1(K
∗) and F ∈ Vℓ, then P = 0.

Appendix A. Systems of linear differential equations and
(poly)differential operators

In this Appendix we prove some facts about matrix differential and poly-
differential operators needed in the computation of the variational Poisson
cohomology (cf. Section 11.2). In order to establish these facts, we use the
theory of systems of linear differential equations in several unknowns. This
theory has been developed by a number of authors, see [Ler], [Vol], [Huf],
[SK], [Miy]. Our exposition (which we developed before becoming aware of
the above references) is given in the spirit of differential algebra, as the rest
of the paper.

A.1. Lemmas on differential operators. Let M be a unital associative
(not necessarily commutative) algebra, with a derivation ∂. Consider the
algebra of differential operators M[∂]. Its elements are expressions of the
form

(A.1.1) P (∂) =

N∑

n=0

an∂
n , an ∈ M ,

which are multiplied according to the rule ∂ ◦ a = a∂ + a′. If aN 6= 0, then
we say that P (∂) has order ord(P ) = N and we call aN ∈ M its leading
coefficient.

Lemma A.1.1. If the differential operator

(A.1.2)
M∑

m=0

∂m+1 ◦ am∂m +
N∑

n=0

∂n ◦ bn∂
n ∈ M[∂]

is zero, then all the elements am and bn are zero. Hence, in a differential
operator of the form (A.1.2), the elements am and bn are uniquely deter-
mined.

Proof. In the contrary case, two things can happen: either aM 6= 0 and
2M + 1 > 2N , or bN 6= 0 and 2N > 2M + 1. In the first case, the operator
(A.1.2) has order 2M +1, and the leading coefficient is aM , a contradiction.
Similarly in the second case. �

Lemma A.1.2. Let p, q ∈ Z+ and a ∈ M. Then
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(a) for p > q ∈ Z+

∂p ◦ a∂q =

[(p+q−1)/2]∑

m=q

(
p−m− 1

m− q

)
∂m+1 ◦ a(p+q−2m−1)∂m

+

[(p+q)/2]∑

m=q+1

(
p−m− 1

m− q − 1

)
∂m ◦ a(p+q−2m)∂m ;

(b) for p < q ∈ Z+

∂p ◦ a∂q =

[(p+q−1)/2]∑

m=p

γp,qm ∂m+1 ◦ a(p+q−2m−1)∂m

+

[(p+q)/2]∑

m=p

δp,qm ∂m ◦ a(p+q−2m)∂m ,

where γp,qm and δp,qm are integers.

Proof. (a). By induction on p−q. For p−q = 1, the statement is immediate
to check. For p − q = 2, we have: ∂q+2 ◦ a∂q = ∂q+1 ◦ a′∂q + ∂q+1 ◦ a∂q+1,
which agrees with our claim. For p− q ≥ 3, we have, by induction,

∂p ◦ a∂q = ∂p−1 ◦ a′∂q + ∂p−1 ◦ a∂q+1

=

[(p+q−2)/2]∑

m=q

(
p−m− 2

m− q

)
∂m+1 ◦ a(p+q−2m−1)∂m

+

[(p+q−1)/2]∑

m=q+1

(
p−m− 2

m− q − 1

)
∂m ◦ a(p+q−2m)∂m

+

[(p+q−1)/2]∑

m=q+1

(
p−m− 2

m− q − 1

)
∂m+1 ◦ a(p+q−2m−1)∂m

+

[(p+q)/2]∑

m=q+2

(
p−m− 2

m− q − 2

)
∂m ◦ a(p+q−2m)∂m

=

[(p+q−1)/2]∑

m=q

(
p−m− 1

m− q

)
∂m+1 ◦ a(p+q−2m−1)∂m

+

[(p+q−1)/2]∑

m=q+1

(
p−m− 1

m− q − 1

)
∂m ◦ a(p+q−2m)∂m .

In the last identity we used the Tartaglia-Pascal triangle.
(b). It follows from (a), since, by the binomial formula,

∂p ◦ a∂q =

q−p∑

h=0

(
q − p

h

)
(−1)h∂q−h ◦ a(h)∂p .

�
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Corollary A.1.3. Any differential operator P (∂) ∈ M[∂] of order less than
or equal to N can be written, in a unique way, in any of these three forms:

P (∂) =

N∑

n=0

an∂
n =

N∑

n=0

∂n ◦ bn

=

[(N−1)/2]∑

m=0

∂m+1 ◦ cn∂
m +

[N/2]∑

n=0

∂n ◦ dn∂
n .

Proof. Existence is clear. Uniqueness of the first two forms is clear, and the
third one is Lemma A.1.1. �

Suppose next that M has an anti-involution a 7→ a∗, commuting with ∂.

Example A.1.4. If M = Matℓ×ℓ(F), where F is a commutative differential
algebra, we let a∗ = aT , the transpose matrix.

We extend ∗ to an anti-involution of M[∂] by letting

( N∑

n=0

an∂
n
)∗

=

N∑

n=0

(−∂)n ◦ a∗n .

We say that P (∂) is selfadjoint (respectively skewadjoint) if P ∗(∂) = P (∂)
(resp. P ∗(∂) = −P (∂)).

Lemma A.1.5. (a) If S(∂) is a skewadjoint operator of order less than or
equal to N , then it can be written, in a unique way, in the form

(A.1.3) S(∂) =

[(N−1)/2]∑

m=0

∂m ◦
(
∂ ◦ am + am∂

)
∂m +

[N/2]∑

m=0

∂m ◦ bm∂m

where am = a∗m and bm = −b∗m.
(b) If S(∂) is a selfadjoint operator of order less than or equal to N , then it

can be written, in a unique way, in the form

S(∂) =

[(N−1)/2]∑

m=0

∂m ◦
(
∂ ◦ am + am∂

)
∂m +

[N/2]∑

m=0

∂m ◦ bm∂m

where am = −a∗m and bm = b∗m.

Proof. Use the third form of Corollary A.1.3 and compute S − S∗ (resp.
S + S∗). �

A.2. Linear algebra over a differential field. Let F be a differential
field, i.e. a field with a derivation ∂, and let C = {c ∈ F | ∂c = 0} ⊂ F be
the subfield of constants.

Notation: a, b, c, · · · ∈ F , α, β, γ, · · · ∈ C, u, v, w variables, m,n, p, q ∈
Z+.

A system ofm linear differential equations in the variables ui, i = 1, . . . , ℓ,
has the form

(A.2.1) M(∂)u = b ,
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where

u =




u1
...
uℓ


 , b =




b1
...
bℓ


 , M(∂) =




L11(∂) . . . L1ℓ(∂)
. . .

Lm1(∂) . . . Lmℓ(∂)


 ,

with bi ∈ F and Lij(∂) ∈ F [∂].
In order to study this system of linear differential equations we will use

the following simple result:

Lemma A.2.1. Let (nij) be an m× ℓ matrix with entries in Z, and let

(A.2.2) Nj = max
i

{nij} , hi = min
j

{Nj − nij} .

Then

(A.2.3) nij ≤ Nj − hi , ∀i = 1, . . . ,m, j = 1, . . . , ℓ .

Any other choice N ′
j, h

′
i satisfying (A.2.3) is such that N ′

j ≥ Nj for all j,

and, if N ′
j = Nj for all j, then h′i ≤ hi for all i.

Proof. Clearly, (A.2.3) holds. Given j, there exists i such that Nj = nij.
But, by assumption, nij ≤ N ′

j − h′i. Hence Nj ≤ N ′
j. Suppose now that

Nj = N ′
j for all j. Given i there exists j such that hi = Nj −nij = N ′

j −nij.

But nij ≤ N ′
j − h′i, hence hi ≥ h′i. �

Definition A.2.2. The collection of integers {Nj , j = 1, . . . , ℓ; hi, i = 1, . . .
. . . ,m} satisfying (A.2.3) is called a majorant of the matrix (nij).

Consider the system of equations (A.2.1). A majorant {Nj ;hi} of the
m × ℓ matrix differential operator M(∂) is defined as a majorant of its
matrix of orders (nij). Given an arbitrary majorant {Nj ;hi} of the matrix
differential operator M(∂), we can write the i, j entry of M(∂) in the form

Lij(∂) =

Nj−hi∑

n=0

aij;n∂
n , aij;n ∈ F .

We define the corresponding leading matrix as the following m × ℓ matrix
whose entries are monomials in an indeterminant ξ with coefficients in F :

(A.2.4) M̄(ξ) =




a11;N1−h1ξ
N1−h1 . . . a1ℓ;Nℓ−h1ξ

Nℓ−h1

. . .
am1;N1−hmξ

N1−hm . . . amℓ;Nℓ−hmξ
Nℓ−hm


 .

Clearly, if m = ℓ, we have

(A.2.5) det(M̄(ξ)) = det(M̄(1)) ξd ,

where

(A.2.6) d =
ℓ∑

j=1

(Nj − hj) .

Note that this matrix depends on the choice of the majorant {Nj ; hi},
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Permuting the equations in the system (A.2.1) if necessary, we can (and
will) assume that h1 ≥ · · · ≥ hℓ.

As in linear algebra, the set of solutions of the system (A.2.1) does not
change if we exchange two equations or if we add to the i-th equation the
j-th equation, with j 6= i, to which we apply a differential operator P (∂).
Since we want to preserve the fact that ord(Lij) ≤ Nj − hi, we give the
following:

Definition A.2.3. An elementary row operation of the matrix differential
operator M(∂) is either a permutation of two rows of it, or the operation
T (i, j;P ), where 1 ≤ i 6= j ≤ m and P (∂) is a differential operator, which
replaces the j-th row by itself minus i-th row multiplied on the left by P (∂).
Assuming that h1 ≥ · · · ≥ hℓ, we say that the elementary row operation
T (i, j;P ) is majorant preserving if i < j and P (∂) has order less than or
equal to hi − hj .

Remark A.2.4. After a majorant preserving row operation T (i, j;P ), the
leading matrix M̄(ξ) in (A.2.4) is unchanged unless P (∂) has order equal
to hi − hj , and in this case it changes by an elementary row operation over
F , namely we add to the j-th row of M̄(ξ) the i-th row multiplied by the
leading coefficient of P (∂).

Using the usual Gauss elimination, we can get the (well known) analogues
of standard linear algebra theorems for matrix differential operators. In
particular, we have the following

Lemma A.2.5. Any m×ℓ matrix differential operator M(∂) can be brought
by elementary row operations to a row echelon form.

Proof. Let j1 be the first non zero column of M(∂). Among all matrices
obtained from M(∂) by elementary row operations, chose one for which
the first entry of column j1, L1j1(∂), is non zero of minimal possible order
(minimal among the orders of the (1, j1) entry in all these matrices). Clearly,
all the other entries in column j1 must be divisible (on the left) by L1j1(∂),
and using elementary row operations we can make them zero. Then, we
proceed by induction on the submatrix with first row deleted. �

We next discuss majorant preserving Gauss elimination for a matrix dif-
ferential operator.

Lemma A.2.6. Consider the m × ℓ matrix differential operator M(∂) =(
Lij(∂)

)
with m ≤ ℓ, and let {N1, . . . , Nℓ; h1 ≥ · · · ≥ hm} be a majorant of

M(∂). Suppose, moreover, that ord(Ljj) = Nj − hj for 1 ≤ j ≤ m− 1, and
ord(Lij) < Nj − hj for 1 ≤ j < i ≤ m− 1. Then, we can perform majorant
preserving elementary row operations on the m-th row of M(∂) so that its

new m-th row L̃mj(∂), j = 1, . . . , ℓ, satisfies:

ord(L̃mj) < Nj − hj for j < m , ord(L̃mj) ≤ Nj − hm for j ≥ m.
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Proof. By assumption, the m-th row of the starting matrix M(∂) satisfies

ord(Lmj) ≤ Nj − hm for 1 ≤ j ≤ ℓ .

Applying to M(∂) the elementary row operation T (1,m; c∂h1−hm), where
c = am1;N1−hm/a11;N1−h1 , we get a new matrix satisfying

ord(L̃m1) ≤ N1 − hm − 1 , ord(L̃mj) ≤ Nj − hm for 2 ≤ j ≤ ℓ .

Next, applying the elementary row operation T (2,m; c∂h2−hm), for suitable
c ∈ F , we get a new matrix satisfying

ord(L̃m1) ≤ N1 − hm − 1 , ord(L̃m2) ≤ N2 − hm − 1 ,

ord(L̃mj) ≤ Nj − hm for 3 ≤ j ≤ ℓ .

Proceeding in the same way, we get after m−1 steps, a new matrix satisfying

ord(L̃mj) ≤ Nj − hm − 1 for 1 ≤ j ≤ m− 1 ,

ord(L̃mj) ≤ Nj − hm for m ≤ j ≤ ℓ .

If h1 = h2 = · · · = hm, we are done. Otherwise, h1 > hm and we apply
to the last matrix the elementary row operation T (1,m; c∂h1−hm−1), where
c = ãm1;N1−hm−1/a11;N1−h1 . We thus get a new matrix satisfying

ord(L̃m1) ≤ N1 − hm − 2 , ord(L̃mj) ≤ Nj − hm − 1 for 2 ≤ j ≤ m− 1 ,

ord(L̃mj) ≤ Nj − hm for m ≤ j ≤ ℓ .

Next, if h2 > hm, we apply the row operation T (2,m; c∂h2−hm−1), for suit-
able c ∈ F , and we get a new matrix satisfying

ord(L̃m1) ≤ N1 − hm − 2 , ord(L̃m2) ≤ N2 − hm − 2 ,

ord(L̃mj) ≤ Nj − hm − 1 for 3 ≤ j ≤ m− 1 ,

ord(L̃mj) ≤ Nj − hm for m ≤ j ≤ ℓ .

Let r ≤ m− 1 be such that hr > hr+1 = hm. We proceed in the same way
and we get, after r steps, a new matrix satisfying

ord(L̃mj) ≤ Nj − hm − 2 for 1 ≤ j ≤ r ,

ord(L̃mj) ≤ Nj − hj − 1 for r + 1 ≤ j ≤ m− 1 ,

ord(L̃mj) ≤ Nj − hm for m ≤ j ≤ ℓ .

If hr − hm ≥ 2, we again apply consecutively elementary row operations
T (1,m; c1∂

h1−hm−2), T (2,m; c2∂
h2−hm−2), . . . , T (r,m; cr∂

hr−hm−2), for ap-
propriate c1, . . . , cr ∈ F . As a result we get a new matrix satisfying

ord(L̃mj) ≤ Nj − hm − 3 for 1 ≤ j ≤ r ,

ord(L̃mj) ≤ Nj − hj − 1 for r + 1 ≤ j ≤ m− 1 ,

ord(L̃mj) ≤ Nj − hm for m ≤ j ≤ ℓ ,

and proceeding as before hr − hm times, we get a matrix satisfying

ord(L̃mj) ≤ Nj − hr − 1 for 1 ≤ j ≤ r ,

ord(L̃mj) ≤ Nj − hj − 1 for r + 1 ≤ j ≤ m− 1 ,

ord(L̃mj) ≤ Nj − hm for m ≤ j ≤ ℓ .
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If h1 = · · · = hr, we are done. Otherwise, let s ≤ r − 1 be such that
hs > hs+1 = · · · = hr. We proceed in the same way as before to get, after a
finite number of steps, a new matrix satisfying

ord(L̃mj) ≤ Nj − hs − 1 for 1 ≤ j ≤ s ,

ord(L̃mj) ≤ Nj − hj − 1 for s+ 1 ≤ j ≤ m− 1 ,

ord(L̃mj) ≤ Nj − hm for m ≤ j ≤ ℓ .

Continuing along these lines, one gets the desired result. �

Proposition A.2.7. Let M(∂) =
(
Lij(∂)

)
be an ℓ×ℓ matrix differential op-

erator with majorant {N1, . . . , Nℓ; h1 ≥ · · · ≥ hℓ}. Assume that the leading
matrix M̄(ξ) associated to this majorant, defined in (A.2.4), is non degener-
ate. Then, after possibly permuting the columns of M(∂), and after applying
majorant preserving elementary row operations, we get a matrix of the form

M̃(∂) =
(
L̃ij(∂)

)
, where

ord(L̃jj) = Nj − hj for 1 ≤ j ≤ ℓ ,

ord(L̃ij) ≤ Nj − hi for 1 ≤ i < j ≤ ℓ ,

ord(L̃ij) < Nj − hj for 1 ≤ j < i ≤ ℓ .

Proof. Since the first row of the leading matrix M̄(ξ) is non zero, after
possibly exchanging the first column of M(∂) with its j-th column, j > 1,
we can assume that L11(∂) has order N1−h1. Applying Lemma A.2.6 to the
first two rows of the matrix M(∂), we get, after elementary row operations

on the second row, a new matrix M̃(∂) with L̃21(∂) of order strictly less than

N1 − h1, and L̃2j(∂) of order less than or equal to Nj − h2 for j ≥ 2. By

Remark A.2.4, the leading matrix
¯̃
M(ξ) of the new matrix M̃(∂) is again non

degenerate, and it has zero in position (2, 1). In particular, the first two rows

of
¯̃
M(ξ) are linearly independent, and, after possibly exchanging the second

column with the j-th column with j > 2, we can assume that ã22;N2−h2 6= 0,

i.e. ord(L̃22) = N2 − h2. Applying Lemma A.2.6 to the first three rows of

the matrix M̃(∂), we get, after elementary row operations on the third row,

a new matrix with ord(L̃31) < N1 − h1, ord(L̃32) < N2 − h2, ord(L̃3j) ≤
Nj − h3, j ≥ 3. Repeating the same procedure for each subsequent row, we
get the desired result. �

Proposition A.2.8. Let M(∂) =
(
Lij(∂)

)
be an ℓ × ℓ matrix differential

operator as in the conclusion of Proposition A.2.7, i.e. ord(Ljj) = Nj − hj
for 1 ≤ j ≤ ℓ, ord(Lij) ≤ Nj − hi for 1 ≤ i < j ≤ ℓ, and ord(Lij) < Nj − hj
for 1 ≤ j < i ≤ ℓ, where N1, . . . , Nℓ and hi ≥ · · · ≥ hℓ are non negative
integers. Then it has the following majorant {N ′

j ;h
′
i}:

N ′
1 = N1 − h1, . . . , N

′
ℓ = Nℓ − hℓ ; h′1 = · · · = h′ℓ = 0 .

The leading matrix M̄(ξ) associated to this majorant of M(∂) is upper tri-
angular with non zero diagonal entries, and the (ij) entry with i < j is zero
unless hi = hj .
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Proof. Obvious. �

The ring F [∂] of scalar differential operators over F is naturally embedded
in the ring of pseudodifferential operators F [∂][[∂−1]], which is a skewfield.

All the above definitions and statements have an obvious generalization
to pseudodifferential operators. In particular, we define a majorant {Nj ;hi}
of an m × ℓ matrix pseudodifferential operator M(∂) in the same way as
before, and the corresponding leading matrix M̄(ξ) by the same equation
(A.2.4) (except that here we allow negative powers of the variable ξ). We
also define elementary row operations and majorant preserving elementary
row operations as in Definition A.2.3, except that we allow P (∂) to be a
pseudodifferential operator. Finally, in the case of pseudodifferential opera-
tors Propositions A.2.7 and A.2.8 still hold, and have the following stronger
analogue:

Proposition A.2.9. Let M(∂) =
(
Lij(∂)

)
be an ℓ× ℓ matrix pseudodiffer-

ential operator with majorant {N1, . . . , Nℓ; h1 ≥ · · · ≥ hℓ}. Assume that the
leading matrix M̄(ξ) associated to this majorant is non degenerate. Then,
after possibly permuting the columns of M(∂), and after applying majorant
preserving elementary row operations, we get an upper triangular matrix

M̃(∂) =
(
L̃ij(∂)

)
, with ord(L̃jj) = Nj − hj for all j = 1, . . . , ℓ. The result-

ing matrix M̃(∂) has the following majorant {Ñj ; h̃i}:

Ñ1 = N1 − h1, . . . , Ñℓ = Nℓ − hℓ ; h̃1 = · · · = h̃ℓ = 0 .

Proof. First, following the proof of Proposition A.2.7, we can apply majo-
rant preserving elementary row operations, and possibly permutations of
columns, to reduce M(∂) to a matrix pseudodifferential operator satisfying
the following conditions:

ord(L̃ij) < ord(Ljj) = Nj − hj for all 1 ≤ j < i ≤ ℓ .

Let then i > j, and recall that, by assumption, hj ≥ hi, and, by the above
condition, P (∂) = Ljj(∂)Lij(∂)

−1 has negative order. Hence, the elementary
row operation T (j, i;P ) is majorant preserving. Applying such elementary
row operations a finite number of times, we get the desired upper triangular
matrix. The last statement is obvious. �

Recall that any ℓ × ℓ matrix pseudodifferential operator M(∂) has the
Dieudonné determinant of the form det(M(∂)) = cξd, where c ∈ F , ξ is
an indeterminate, and d ∈ Z. In fact, the Dieudonné determinant is de-
fined for square matrices over an arbitrary skewfield K, and it takes val-
ues in K×/(K×,K×) ∪ {0}, [Die], [Art]. By definition, det(M(∂)) changes
sign if we permute two rows or two columns of M(∂), and it is unchanged
under any elementary row operation T (i, j;P ) in Definition A.2.3, for ar-
bitrary i 6= j and a pseudodifferential operator P (∂). Also, if M(∂) is



THE VARIATIONAL POISSON COHOMOLOGY 103

upper triangular, with diagonal entries Lii(∂) of order ni and leading coef-

ficient ai, then det(M(∂)) =
(∏

i ai
)
ξ
∑

i ni . It is proved in the above refer-
ences that the Dieudonné determinant is well defined and det(A(∂)B(∂)) =
det(A(∂)) det(B(∂)) for every ℓ×ℓ matrix pseudodifferential operators A(∂)
and B(∂). Moreover, we have the following proposition (cf. [Huf], [SK],
[Miy]):

Proposition A.2.10. If M(∂) is an ℓ×ℓ matrix pseudodifferential operator
with non degenerate leading matrix M̄(ξ) (for a certain majorant {Nj ;hi}
of M(∂)), then

det(M(∂)) = det(M̄ (ξ)) .

In particular, degξ det(M(∂)) =
∑ℓ

j=1(Nj − hj).

Proof. It follows Proposition A.2.9 since, by Remark A.2.4, the determinant
of the leading matrix M̄(ξ) is unchanged by majorant preserving elementary
row operations. �

Example A.2.11. If M̄(ξ) is degenerate, we can still have det(M(∂)) 6= 0.
For example, the matrix differential operator

M(∂) =

(
1 a
∂ a∂

)
,

has the majorant N1 = N2 = 1, h1 = 1, h2 = 0, and the corresponding
leading matrix

M̄(ξ) =

(
1 a
ξ aξ

)

is degenerate. However, M(∂) can be brought, by elementary row opera-
tions, to the matrix (

1 a
0 −a′

)
,

which shows that det(M(∂)) = −a′.

A.3. Linearly closed differential fields.

Definition A.3.1. A differential field F is called linearly closed if any
linear differential equation,

anu
(n) + · · · + a1u

′ + a0u = b ,

with n ≥ 0, a0, . . . , an ∈ F , an 6= 0, has a solution in F for every b ∈ F ,
and it has a non zero solution for b = 0, provided that n ≥ 1.

Remark A.3.2. For a linearly closed differential field F and a non zero dif-
ferential operator L(∂) ∈ F [∂], the map L(∂) : F → F given by a 7→ L(∂)a
is surjective. Indeed, by definition, the differential equation L(∂)u = b has
a solution in F for every b ∈ F .

Remark A.3.3. Any differential field F can be embedded in a linearly closed
one. Note also that a differentially closed field is automatically linearly
closed.
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Remark A.3.4. Let F be a linearly closed differential field. Letting x ∈ F
be a solution of ∂x = 1 we get that F contains the field of rational functions
over C in x. In particular, F is infinite dimensional over C.

Theorem A.3.5. Let F be a differential field. Consider a linear differential
equation of order N over F in the variable u: L(∂)u = 0, where

L(∂) = aN∂N + aN−1∂
N−1 + · · · + a1∂ + a0 ∈ F [∂] , aN 6= 0 .

(a) The space of solutions of this equation is a vector space over C of di-
mension at most N .

(b) If F is linearly closed, then the space of solution has dimension equal to
N .

Proof. We prove (a) by induction on N . For N = 0, it is clear. For N ≥ 1, if
there are no non zero solutions, we are done (note that this does not happen
if F is linearly closed). If a ∈ F is a non zero solution of L(∂)u = 0, we
divide L(∂) by ∂− a′/a with remainder, to get L(∂) = L1(∂)(∂ − a′/a)+R,
where L1 has order N − 1 in ∂ and R ∈ F . Since L(∂)a = 0, it follows
that R = 0. By inductive assumption, the space of solutions of L1(∂)u = 0
has dimension at most N − 1 over C. Consider the linear map over C,
b 7→ (∂ − a′/a)b, b ∈ F . It is immediate to check that it maps surjectively
the space of solutions for L(∂) onto the space of solutions of L1(∂), and
its kernel is Ca. The statement (a) follows. For part (b) we use the same
argument. �

Theorem A.3.6. (a) Let M(∂) be an ℓ×ℓ matrix differential operator over
a differential field F .
i) If det(M(∂)) 6= 0, then dimC(KerM(∂)) ≤ degξ det(M(∂)).

ii) If ImM(∂) ⊂ Fℓ has finite codimension over C, then det(M(∂)) 6=
0, provided that C 6= F .

(b) Assuming that the differential field F is linearly closed, the following
statements are equivalent for an ℓ× ℓ matrix differential operator M(∂):
i) det(M(∂)) 6= 0,
ii) dimC(KerM(∂)) < ∞,
iii) det(M(∂)) 6= 0 and dimC(KerM(∂)) = degξ det(M(∂)),
iv) codimC ImM(∂) < ∞,
v) M(∂) : Fℓ → Fℓ is surjective.

(c) Let M(∂) be an m× ℓ matrix differential operator over a linearly closed
differential field F , such that Ker(M(∂)) has finite dimension over C
and Im(M(∂)) has finite codimension over C. Then necessarily m = ℓ
and det(M(∂)) 6= 0.

Proof. Since the dimension (over C) of Ker(M(∂)) and the codimension
of Im(M(∂)) are unchanged by elementary row operations on M(∂), we
may assume, by Lemma A.2.5, that M(∂) is in row echelon form. Assume
first that M(∂) is an ℓ × ℓ matrix. If det(M(∂)) 6= 0, it means that its
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diagonal entries Lii(∂) are all non zero, say of order ni. Hence the cor-
responding homogeneous system M(∂)u = 0 is upper triangular and, by
Theorem A.3.5, its space of solutions has dimension less than or equal to∑

i ni = degξ det(M(∂)) (and equal to it, provided that F is linearly closed).
This proves part (a)(i) and, in (b), (i) implies (iii) (and hence it is equivalent
to it). Similarly, if det(M(∂)) = 0, then the last row of M(∂) is zero, so that
ImM(∂) is of infinite codimension over C. Here we are using the fact that
F is infinite dimensional over C, since any f ∈ F , such that f ′ 6= 0, is not
algebraic over C. (Indeed, if f ∈ F is algebraic and P (f) = 0 is its monic
minimal polynomial over C, then 0 = ∂P (f) = P ′(f)f ′, so that P ′(f) = 0
if f ′ 6= 0, a contradiction.) This proves part (a)(ii) and, in (b), that (iv)
implies (i).

Since, in statement (b), condition (iii) obviously implies (ii), and (v) ob-
viously implies (iv), in order to prove part (b) we only need to prove that
(ii) implies (v). Assume that F is linearly closed (hence infinite dimensional
over C, by Remark A.3.4), and that, by condition (ii), M(∂) has finite di-
mensional kernel over C. Then its last diagonal entry is non zero, otherwise,
by Theorem A.3.5, there is a solution of the homogeneous system M(∂)u = 0
for every choice of uℓ. Therefore M(∂) is upper triangular with non zero
diagonal entries, and then, again by Theorem A.3.5, the inhomogeneous sys-
tem M(∂)u = b has a solution for every b ∈ Fℓ, i.e. M(∂) is surjective. This
completes the proof of part (b).

Finally, we prove part (c). Assume, as before, that M(∂) is in row echelon
form. The homogeneous system M(∂)u = 0 admits a solution for every
choice of a coordinate ui which does not correspond to a pivot of M(∂).
Hence, since Ker(M(∂)) is finite dimensional over C, we must have m ≥ ℓ.
If m > ℓ, then the last m− ℓ rows of M(∂) are zero, and then the image of
M(∂) has infinite codimension. �

Corollary A.3.7. (cf. [Huf, Miy]) Let M(∂) be an ℓ× ℓ matrix differential
operator with coefficients in a differential field F . Suppose that the leading
matrix M̄(ξ), associated to a majorant {Nj ;hi} of M(∂), is non degenerate.
Then the space of solutions for the homogeneous system M(∂)u = 0 has
dimension over C less than or equal to

d =

ℓ∑

j=1

(Nj − hj)
(
= degξ det(M(∂))

)
.

Moreover, if F is a linearly closed differential field then the inhomogeneous
system M(∂)u = b has a solution for every b ∈ Fℓ, and the space of solutions
for the homogeneous system M(∂)u = 0 has dimension equal to d.

Proof. By Proposition A.2.10, if M̄(ξ) is non degenerate, then det(M(∂)) =
det(M̄(ξ)), and degξ det(M̄(∂)) =

∑
j(Nj − hj) = d. Hence, by Theorem

A.3.6, dimC(KerM(∂)) ≤ d and, if F is linearly closed, M(∂) is surjective
and dimC(KerM(∂)) = d.

�
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In Section A.5 we will need the following slight generalization of Corollary
A.3.7.

Corollary A.3.8. Let F be a linearly closed differential field with subfield
of constants C. Let A(∂) be an ℓ × ℓ matrix differential operator such that
det(A(∂)) 6= 0. Let M(∂) = (Lij(∂)) be an ℓ × ℓ matrix pseudodifferential
operator with non degenerate leading matrix M̄(ξ) associated to a majorant
{Nj , j = 1, . . . ℓ;hi, i = 1, . . . ℓ}. Assume, moreover, that A(∂)M(∂) is a
matrix differential operator. Then the inhomogeneous system of differential
equations A(∂)M(∂)u = b has a solution for every b ∈ Fℓ, and the space
of solutions of the corresponding homogeneous system A(∂)M(∂)u = 0 has
dimension over C equal to

d = dimC(KerA(∂)) +
ℓ∑

j=1

(Nj − hj) .

Proof. We have det(A(∂)M(∂)) = det(A(∂)) det(M(∂)) 6= 0. Moreover, by
Proposition A.2.10, we have degξ det(M(∂)) =

∑
j(Nj −hj), while, by The-

orem A.3.6 (b)(iii), we have degξ det(A(∂)) = dimC(KerA(∂)). Therefore

degξ det(A(∂)M(∂)) = dimC(KerA(∂)) +
∑

j

(Nj − hj) .

The statement follows from Theorem A.3.6(b) applied to the matrix differ-
ential operator A(∂)M(∂). �

A.4. Main results.

A.4.1. The scalar case.

Theorem A.4.1. Let F be a linearly closed differential field, and let K(∂) ∈
F [∂] be a non zero scalar differential operator. For every skewadjoint dif-
ferential operator S(∂), there exists a differential operator P (∂) such that

(A.4.1) K(∂) ◦ P (∂)− P ∗(∂) ◦K∗(∂) = S(∂) .

Proof. Let K(∂) be of order N with leading coefficient kN 6= 0. Note that,
replacing P (∂) by kNP (∂), we can reduce to the case when kN = 1.

If S(∂) has order n ≥ N (clearly n must be odd) with leading coefficient
a ∈ F , letting P (∂) = a

2∂
n−N , we have that S(∂) −K(∂) ◦ P (∂) + P ∗(∂) ◦

K∗(∂) is a skewadjoint differential operator of order strictly less than n.
Hence, repeating the same argument a finite number of times, we reduce to
the case when S(∂) has order n ≤ N − 1. In particular, for N = 1 there is
nothing to prove since S is skewadjoint, hence zero.

In fact, we will consider the case when ord(S) = n ≤ 2N − 3, which,
for N ≥ 2, covers all possibilities. We will prove that in this case we can
find P (∂) solving (A.4.1) of order less than or equal to N − 2. By Corollary
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A.1.3 and Lemma A.1.5, the operators K(∂), P (∂) and S(∂) can be written,
uniquely, in the forms

(A.4.2)

K(∂) =
N∑

n=0

∂n ◦ kn , P (∂) =
N−2∑

n=0

un∂
n ,

S(∂) = S+(∂)− S−(∂) , S+(∂) =

N−2∑

m=0

∂m+1 ◦ sm∂m = S∗
−(∂) .

Clearly, equation (A.4.1) is equivalent to say that K(∂) ◦ P (∂) and S+(∂)
differ by a selfadjoint operator. By Lemma A.1.2 K(∂) ◦ P (∂) is, up to
adding a selfadjoint operator, equal to

N∑

p=0

N−2∑

q=0

[ p+q−1
2 ]∑

m=min(p,q)

γp,qm ∂m+1 ◦ (kpuq)
(p+q−2m−1)∂m ,

where γp,qm are integers and γp,qm =
(p−m−1

m−q

)
for p > q. Exchanging the order

of summation, the above expression can be written in the form

(A.4.3)
N−2∑

m=0

∑

p,q∈DN,m

γp,qm ∂m+1 ◦ (kpuq)
(p+q−2m−1)∂m ,

where
(A.4.4)

DN,m =
{
p, q ∈ Z+

∣∣∣ p ≤ N, q ≤ N − 2, min(p, q) ≤ m, p+ q ≥ 2m+ 1
}
.

Comparing (A.4.3) with the expression (A.4.2) for S+(∂), we conclude that
equation (A.4.1) is equivalent to the following system of N − 1 linear differ-
ential equations in the N − 1 variables ui, i = 0, . . . , N − 2:

(A.4.5)
∑

p,q∈DN,m

γp,qm (kpuq)
(p+q−2m−1) = sm ,

for m = 0, . . . , N − 2.
The system (A.4.5) is of the form M(∂)u = s, where u = (uq)

N−2
q=0 , s =

(sm)N−2
m=0 and M = (Lmq(∂)) is the matrix differential operator with entries

Lmq(∂) =
∑

p : (p,q)∈DN,m

γp,qm ∂p+q−2m−1 ◦ kp , 0 ≤ m, q ≤ N − 2 .

Note that Lmq(∂) has order less than or equal to Nq − hm, where Nq =
N + q − 1 and hm = 2m. The leading matrix associated to this majorant,

defined by (A.2.4), has M̄(ξ) =
(
M̄mqξ

N+q−2m−1
)N−2

m,q=0
, where

M̄mq =

{
0 if 0 ≤ m < q ≤ N − 2(N−m−1

m−q

)
if 0 ≤ q ≤ m ≤ N − 2

.

In particular M̄(1) is upper triangular with 1’s on the diagonal. Hence, by
Corollary A.3.7 we conclude that the system (A.4.5) has solutions. �
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Theorem A.4.2. Let K(∂) ∈ F [∂] be a scalar differential operator of order
N over a differential field F . Then the set of differential operators P (∂) of
order at most N − 1 such that K(∂) ◦ P (∂) is selfadjoint is a vector space

over C of dimension less than or equal to
(N
2

)
and, if F is linearly closed, it

has dimension equal to
(N
2

)
.

Proof. First we note that, since K(∂) ◦P (∂) is selfadjoint of order less than
or equal to 2N − 1, it must have order at most 2N − 2, i.e. P (∂) has order
at most N − 2. The condition on P (∂) means that P (∂) is a solution of
(A.4.1) with S(∂) = 0. Hence, if we expand K(∂) and P (∂) as in (A.4.2),
the condition on P (∂) reduces to the system of differential equations (A.4.5)
with sm = 0. As observed in the proof of Theorem A.4.1, the matrix M(∂)
of coefficients has majorant {Nj = N+j−1;hi = 2i} and the corresponding
leading matrix M̄ (ξ) is non degenerate. Hence, by Corollary A.3.7, the space
of solutions has dimension at most

d =

N−2∑

i=0

(Ni − hi) =

N−2∑

i=0

(N − 1− i) =

(
N

2

)
,

and equal to d if F is linearly closed. �

A.4.2. The matrix case.

Theorem A.4.3. Let K(∂) ∈ Matℓ×ℓ(F [∂]) be an ℓ× ℓ matrix differential
operator of order N with invertible leading coefficient, over a differential
field F .

(a) If F is linearly closed, then for every skewadjoint ℓ×ℓ matrix differential
operator S(∂), there exists an ℓ×ℓ matrix differential operator P (∂) such
that

(A.4.6) K(∂) ◦ P (∂)− P ∗(∂) ◦K∗(∂) = S(∂) .

(b) The set of differential operators P (∂) of order at most N − 1 such that
K(∂)◦P (∂) is selfadjoint is a vector space over C of dimension less than

or equal to d =
(Nℓ

2

)
, and equal to d provided that F is linearly closed.

Proof. We follow the same steps as in the proof of Theorems A.4.1 and A.4.2.
Let KN ∈ Matℓ×ℓ(F) be the leading coefficient of K(∂). Replacing K(∂) by
K(∂) ◦ K−1

N and P (∂) by KNP (∂), we can reduce to the case when K(∂)
has leading coefficient KN = 1I.

Let S(∂) be of order n, with leading coefficient Sn ∈ Matℓ×ℓ(F). Since,
by assumption, S(∂) is skewadjoint, we have ST

n = (−1)n+1Sn. If n ≥ N ,
letting P (∂) = 1

2Sn∂
n−N + P1(∂), the equation for P (∂) becomes

K(∂) ◦ P1(∂)− P ∗
1 (∂) ◦K

∗(∂)

= S(∂) −
1

2
K(∂) ◦ Sn∂

n−N + (−1)N
1

2
∂n−N ◦ SnK

∗(∂) .

Note that the RHS of the above equation is a skewadjoint ℓ × ℓ matrix
differential operator of order strictly less than n. Hence, repeating the same
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argument a finite number of times, we reduce to the case when S(∂) has
order n ≤ N − 1.

In fact, we will consider the more general case when ord(S) = n ≤ 2N−1.
We will prove that, in this case, we can find P (∂) solving (A.4.6) of order
less than or equal to N − 1. By Corollary A.1.3 and Lemma A.1.5, the
operators K(∂), P (∂) and S(∂) can be written, uniquely, in the forms

(A.4.7)

K(∂) =

N∑

n=0

∂n ◦Kn , P (∂) =

N−1∑

n=0

Un∂
n ,

S(∂) =

N−1∑

m=0

∂m ◦
(
∂ ◦Am +Am∂ +Bm

)
∂m ,

where Kn, Un, An, Bn ∈ Matℓ×ℓ(F) and AT
m = Am, BT

m = −Bm. By
Lemma A.1.2 we have

(A.4.8)

K(∂) ◦ P (∂) =
N∑

p=0

N−1∑

q=0

∂p ◦ (KpUq)∂
q

=

N∑

p=0

N−1∑

q=0

N−1∑

m=0

γp,qm ∂m+1 ◦ (KpUq)
(p+q−2m−1)∂m

+

N∑

p=0

N−1∑

q=0

N−1∑

m=0

δp,qm ∂m ◦ (KpUq)
(p+q−2m)∂m ,

where γp,qm and δp,qm are integers and

γp,qm = 0 unless 0 ≤ p ≤ N, 0 ≤ q ≤ N − 1

and min(p, q) ≤ m ≤
[
p+q−1

2

]
,

δp,qm = 0 unless 0 ≤ p ≤ N, 0 ≤ q ≤ N − 1

and min(p, q + 1) ≤ m ≤
[p+q

2

]
,

γp,qm =
(
p−m−1
m−q

)
if 0 ≤ q < p ≤ N, q ≤ m ≤

[
p+q−1

2

]
,

δp,qm =
(
p−m−1
m−q−1

)
if 0 ≤ q < p ≤ N, q + 1 ≤ m ≤

[p+q
2

]
.

We thus get from (A.4.8)

(A.4.9)

K(∂) ◦ P (∂) − P ∗(∂) ◦K∗(∂) =

N∑

p=0

N−1∑

q=0

N−1∑

m=0

∂m ◦
(
γp,qm ∂ ◦ (KpUq)

(p+q−2m−1) + γp,qm (UT
q K

T
p )

(p+q−2m−1)∂

+δp,qm (KpUq)
(p+q−2m) − δp,qm (UT

q KT
p )

(p+q−2m)
)
∂m .



110 ALBERTO DE SOLE1 AND VICTOR G. KAC2

Comparing (A.4.9) and (A.4.7) we get, from the uniqueness of the decom-
position (A.1.3), the following system of equations (m = 0, . . . , N − 1):

(A.4.10)

1

2

N∑

p=0

N−1∑

q=0

γp,qm (KpUq + UT
q K

T
p )

(p+q−2m−1) = Am

1

2

N∑

p=0

N−1∑

q=0

(
γp,qm + 2δp,qm

)
(KpUq − UT

q K
T
p )

(p+q−2m) = Bm

This can be viewed as a system of linear differential equations in the ℓ2N
entries uqij of the ℓ × ℓ matrices Uq, q = 0, . . . , N − 1. The number of
independent equations is also ℓ2N , since both sides of the first equation are
manifestly symmetric and both sides of the second equation are manifestly
skewsymmetric.

We make a change of variables Xq = 1
2(Uq + UT

q ) =
(
xqij

)ℓ
i,j=1

and Yq =

1
2(Uq − UT

q ) =
(
yqij
)ℓ
i,j=1

. In these variables, the system (A.4.10) has the

form
∑

q,i′,j′

Lmij+;qi′j′+(∂)xqi′j′ +
∑

q,i′,j′

Lmij+;qi′j′−(∂)yqi′j′ = amij

∑

q,i′,j′

Lmij−;qi′j′+(∂)xqi′j′ +
∑

q,i′,j′

Lmij−;qi′j′−(∂)yqi′j′ = bmij

where Am =
(
amij

)ℓ
i,j=1

and Bm =
(
bmij

)ℓ
i,j=1

, and, for m, q = 0, . . . , N − 1

and i, j, i′, j′ = 1, . . . ℓ,

Lmij+,qi′j′+(∂) =
1

2

N∑

p=0

γp,qm ∂p+q−2m−1
(
δj,j′kpii′ + δi,i′kpjj′

)
,

Lmij+,qi′j′−(∂) =
1

2

N∑

p=0

γp,qm ∂p+q−2m−1
(
δj,j′kpii′ − δi,i′kpjj′

)
,

Lmij−,qi′j′+(∂) =
1

2

N∑

p=0

(γp,qm + 2δp,qm )∂p+q−2m
(
δj,j′kpii′ − δi,i′kpjj′

)
,

Lmij−,qi′j′−(∂) =
1

2

N∑

p=0

(γp,qm + 2δp,qm )∂p+q−2m
(
δj,j′kpii′ + δi,i′kpjj′

)
,

where kpij denotes the (i, j) entry of the matrix Kp. Hence, the system
(A.4.10) is associated to the ℓ2N × ℓ2N matrix differential operator M(∂) =(
Lmijε;qi′j′ε′(∂)

)
with rows and columns indexed by quadruples (m, i, j, ε),

where m = 0, . . . , N − 1, ε = ±, i, j = 1, . . . , ℓ with i ≤ j if ε = + and with
i < j if ε = −. In particular, ord(Lmijε;qi′j′ε′(∂)) ≤ N + q − 2m − 1+ε1

2 =
Nqi′j′ε′ − hmijε, where

(A.4.11) Nqijε = N + q , hmijε = 2m+
1 + ε1

2
.
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In order to apply Corollary A.3.7, we need to check that the leading
matrix M̄(ξ) (defined by (A.2.4)) associated to the majorant (A.4.11) is
non degenerate (or equivalently, by equation (A.2.5), we need to check that
M̄(1) is non degenerate). Recalling that KN = 1I, we have the following
formulas for the entries lmijε,qi′j′ε′ of the matrix M̄(1):

lmijε,qi′j′ε′ =





γN,q
m δi,i′δj,j′ for ε = ε′ = + ,

γN,q
m + 2δN,q

m δi,i′δj,j′ for ε = ε′ = − ,
0 for ε 6= ε′ .

In particular, M̄ (1) is a block diagonal matrix, with upper triangular blocks,
having 1’s on the diagonal, hence it is non degenerate. By Corollary A.3.7
we conclude that the system (A.4.10) always has solutions if F is linearly
closed, proving part (a). Moreover, by Corollary A.3.7, the space of solutions
of the corresponding homogeneous system has dimension over C less than or
equal to (and equal if F is linearly closed)

d =

N−1∑

m=0

ℓ∑

1≤i≤j≤ℓ

(Nmij+ − hmij+) +

N−1∑

m=0

ℓ∑

1≤i<j≤ℓ

(Nmij− − hmij−)

=
ℓ(ℓ+ 1)

2

N−1∑

m=0

(N −m− 1) +
ℓ(ℓ− 1)

2

N−1∑

m=0

(N −m) =

(
Nℓ

2

)
,

proving part (b). �

A.5. Generalization to polydifferential operators.

A.5.1. Preliminaries on polydifferential operators on Fℓ. The goal of this
technical section is to provide lemmas which will be used in the proof of
Corollary A.5.10 and Theorem A.5.11 in the next section.

For k ∈ Z+, a k-differential operator on Fℓ is, by definition, an array

(A.5.1)
(
Pi0,i1,...,ik(λ1, . . . , λk)

)
i0,i1,...,ik∈{1,...,ℓ}

,

consisting of k-differential operators on F , i.e.

(A.5.2) Pi0,i1,...,ik(λ1, . . . , λk) =
N∑

n1,...,nk=0

pn1,...,nk

i0,i1,...,ik
λn1
1 . . . λnk

k .

The reason for this name is that to an array as in (A.5.1) we can associate
a k-linear (over C) map P : (Fℓ)⊗k = Fℓ ⊗ C · · · ⊗C F

ℓ → Fℓ given by

P (F 1 ⊗ · · · ⊗ F k)i0 =
∑

i1,...,ik∈I
n1,...,nk∈Z+

pn1,...,nk

i0,i1,...,ik
(∂n1(F 1)i1) . . . (∂

nk(F k)ik) .
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The symmetric group Sk = Perm(1, 2, . . . , k) acts on such arrays by si-
multaneous permutations of the indices i1, . . . , ik and variables λ1, . . . , λk:

(A.5.3)

P σ
i0,i1,...,ik

(λ1, . . . , λk) = Pi0,iσ−1(1),...,iσ−1(k)
(λσ−1(1), . . . , λσ−1(k))

=
N∑

n1,...,nk=0

p
nσ−1(1),...,nσ−1(k)

i0,iσ−1(1),...,iσ−1(k)
λn1
1 . . . λnk

k , σ ∈ Sk .

We extend this to an action of the group Sk+1 = Perm(0, 1, . . . , k), denoted
P 7→ P σ, σ ∈ Sk+1, as follows. If τα is the transposition of 0 and α ∈
{1, . . . , k} and if P is as in (A.5.2), we let
(A.5.4)

P τα
i0,i1,...,ik

(λ1, . . . , λk) =

N∑

n1,...,nk=0

(−λ1−· · ·−λk−∂)nαλn1
1

α
ˇ. . . λnk

k pn1,...,nk

iα,i1,...,
α

ǐ0,...,ik

.

The reason for this definition is that we have the identity

(A.5.5)
∫
F 0 · P (F 1, . . . , F k) =

∫
F σ(0) · P σ(F σ(1), . . . , F σ(k)) ,

for every σ ∈ Sk+1, and every F 0, . . . , F k ∈ Fℓ, where as usual
∫

denotes

the canonical map F → F/∂F . The pairing
∫
F · G, F,G ∈ Fℓ, may be

degenerate, but if we replace F by the algebra of differential polynomials
F [u, u′, . . . ], this pairing is always non degenerate. Extending the map P :
(Fℓ)⊗k → Fℓ to a map (F [u, u′, . . . ]ℓ)⊗k → F [u, u′, . . . ]ℓ in the obvious way,
we get that formula (A.5.5) uniquely determines the action of Sk+1 on the
space of k-differential operators on Fℓ.

A k-differential operator P on Fℓ is called skewsymmetric (respectively
totally skewsymmetric) if P σ = sign(σ)P for every σ ∈ Sk (resp. σ ∈ Sk+1).
Given an array P as in (A.5.1), we define its total skewsymmetrization,
denoted 〈P 〉−, by the following formula:

(A.5.6) 〈P 〉− =
1

(k + 1)!

∑

σ∈Sk+1

sign(σ)P σ .

Clearly, 〈P 〉− = P if and only if P is totally skewsymmetric. Note that if P
is already skewsymmetric, then it total skewsymmetrization is

(A.5.7) 〈P 〉− =
1

k + 1

(
P −

k∑

α=1

P τα
)
.

We define a structure of a Matℓ×ℓ(F [∂])-module on the space of k-differential
operators on Fℓ as follows. For an ℓ× ℓ matrix differential operator K(∂) =(
Kij(∂)

)
i,j∈{1,...,ℓ}

and an array P as in (A.5.1), we let

(A.5.8)

(K◦P )i0,i1,...,ik(λ1, . . . , λk) =

ℓ∑

j=1

Ki0,j(λ1+· · ·+λk+∂)Pj,i1,...,ik(λ1, . . . , λk) .
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Clearly, if P is skewsymmetric so is K ◦ P , but in general it is not totally
skewsymmetric, even if P is totally skewsymmetric.

Note that 0-differential operators on Fℓ are elements of Fℓ, and in this
case we have 〈P 〉− = P and K ◦ P = K(∂)P for every P ∈ Fℓ. The
space of 1-differential operators on Fℓ is identified with Matℓ×ℓ(F [∂]) by
letting λ = ∂. In this case the action of τ = (0, 1) ∈ S2, defined in (A.5.4),
coincides with taking the adjoint matrix differential operator: P τ = P ∗, and
the Matℓ×ℓ(F [∂])-module structure defined in (A.5.8) coincides with the left
multiplication in Matℓ×ℓ(F [∂]).

In order to simplify notation, we let

(A.5.9) λ0 = −λ1 − · · · − λk − ∂ .

With this notation, the action of the symmetric group Sk+1 given by (A.5.3)
and (A.5.4) reads

P σ
i0,i1,...,ik

(λ1, . . . , λk) = Piσ−1(0),iσ−1(1),...,iσ−1(k)
(λσ−1(1), . . . , λσ−1(k)) ,

where λ0, when it appears, acts from the left on the coefficients of P . More-
over, the Matℓ×ℓ(F[∂])-module structure (A.5.8) becomes

(K ◦ P )i0,i1,...,ik(λ1, . . . , λk) =
ℓ∑

j=1

Pj,i1,...,ik(λ1, . . . , λk)K
∗
j,i0(λ0) ,

where again λ0 is assumed to be moved to the left. If P is a skewsymmetric
k-differential operator on Fℓ, we then have, by (A.5.7),

(A.5.10)

〈K ◦ P 〉−i0,i1,...,ik(λ1, . . . , λk)

=
1

k + 1

k∑

α=0

(−1)α
ℓ∑

j=1

P
j,i0,

α
.̌..,ik

(λ0,
α
ˇ. . ., λk)K

∗
j,iα(λα) .

In this section we will generalize the results of Sections A.1 and A.4
to the case of k-differential operators on Fℓ for arbitrary k ≥ 0. First,
we introduce some more notation. Given a (k + 1)-tuple in Zk+1

+ , written
with Latin letters, we use the corresponding Greek letters to denote its non
decreasing reordering; for example, µ0 ≥ µ1 ≥ · · · ≥ µk will denote the
reordering of (m0,m1, . . . ,mk) ∈ Zk+1

+ , while ν0 ≥ ν1 ≥ · · · ≥ νk will denote

the reordering of (n0, n1, . . . , nk) ∈ Zk+1
+ .

Lemma A.5.1. Let V be a vector space over a field C and let ∂ be an
endomorphism of V . Let vm0,...,mk

be elements of V , labeled by the indices
m0, . . . ,mk ∈ {0, . . . , N} satisfying µ0 − µ1 = 1. Then they satisfy the
following equation in C[λ1, . . . , λk]⊗ V , where λ0 is as in (A.5.9),

(A.5.11)
N∑

m0,...,mk=0
(µ0−µ1=1)

λm0
0 λm1

1 . . . λmk

k vm0,...,mk
= 0 ,

if and only if the following two conditions hold:
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(i) vm0,...,mk
= vm′

0,...,m
′
k
if the (k+1)-tuple (m′

0, . . . ,m
′
k) is obtained from

(m0, . . . ,mk) by a transposition of entries mi = µ0 and mj = µ1;

(ii) given a (k + 1)-tuple (m0, . . . ,mk) ∈ {0, . . . , N}k+1 satisfying µ0 −
µ1 = 1, subtracting 1 from the maximal entry mi = µ0, we get a
(k + 1)-tuple (n0, . . . , nk) ∈ {0, . . . , N − 1}k+1 satisfying ν0 = ν1, and
we denote wn0,...,nk

= vm0,...,mk
(note that, by condition (i), wn0,...,nk

is well defined); these elements should satisfy the following system of
equations:

(A.5.12) ∂wn0,...,nk
+

k∑

h=0

wn0,...,nh−1,...,nk
= 0 ,

where the summand wn0,...,nh−1,...,nk
in the LHS is considered to be zero

unless nh ≥ 1 and the maximal two of the indices n0, . . . , nh−1, . . . , nk

are equal.

In particular, if ∂ is injective, then equation (A.5.11) has only the zero
solution.

Proof. First, we prove that if elements vm0,...,mk
∈ V , labeled bym0, . . . ,mk∈

{0, . . . , N} such that µ0−µ1 = 1, satisfy conditions (i) and (ii) of the lemma,
then equation (A.5.11) holds. By condition (i), the LHS of (A.5.11) is equal
to

(A.5.13)
N−1∑

n0,...,nk=0
(ν0=ν1)

∑

i |ni=ν0

λn0
0 . . . λni+1

i . . . λnk

k wn0,...,nk
.

Since λ0 + · · ·+ λk + ∂ = 0, (A.5.13) can be rewritten as

−

N−1∑

n0,...,nk=0
(ν0=ν1)

∑

j |nj<ν0

λn0
0 . . . λ

nj+1
j . . . λnk

k wn0,...,nk

−

N−1∑

n0,...,nk=0
(ν0=ν1)

λn0
0 . . . λnk

k ∂wn0,...,nk
.

Renaming nj + 1 by nj, the above expression becomes

(A.5.14) −

N−1∑

n0,...,nk=0
(ν0=ν1)

λn0
0 . . . λnk

k

( k∑

j=0

wn0,...,nj−1,...,nk
+ ∂wn0,...,nk

)
,

which is zero by equation (A.5.12).
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Next, assuming that equation (A.5.11) holds, we prove, by induction on
N , that conditions (i) and (ii) necessarily hold. Recalling (A.5.9), the coef-

ficient of λ2N−1
1 in the LHS of (A.5.11) is

(−1)N
N−1∑

m2,...,mk=0

λm2
2 . . . λmk

k

(
vN,N−1,m2,...,mk

− vN−1,N,m2,...,mk

)
,

so that, necessarily, vN,N−1,m2,...,mk
= vN−1,N,m2,...,mk

for all m2, . . . ,mk ∈

{0, . . . , N−1}. More generally, if we replace λi by −λ0−
i
ˇ. . . −λk−∂ and we

consider the LHS of (A.5.11) as a polynomial in the variables λ0,
i
ˇ. . ., λk, we

conclude, by looking at the coefficient of λ2N−1
j in equation (A.5.11), that

v
m0,...,

i

Ň,...,
j

ˇN−1,...,mk

= v
m0,...,

i
ˇN−1,...,

j

Ň,...,mk

,

i.e. condition (i) holds for all the elements vm0,...,mk
with µ0 = N , and we

can introduce the notation wn0,...,nk
for indices n0, . . . , nk ∈ Z+ satisfying

ν0 = ν1 = N − 1. Using this fact, by the same computation that we did in
the first part of the proof to derive formula (A.5.14), we get that equation
(A.5.11) is equivalent to
(A.5.15)

−
∑

n0,...,nk∈Z+

(ν0=ν1=N−1)

λn0
0 . . . λnk

k xn0,...,nk
+

N−1∑

m0,...,mk=0
(µ0−µ1=1)

λm0
0 λm1

1 . . . λmk

k vm0,...,mk
= 0 ,

where

xn0,...,nk
=

k∑

j=0

wn0,...,nj−1,...,nk
+ ∂wn0,...,nk

.

The coefficient of λ2N−2
1 λn2

2 . . . λnk

k in the LHS of (A.5.15) is xN−1,N−1,n2,...,nk
,

and, in general, if we replace λi by −λ0−
i
ˇ. . . −λk − ∂, the coefficient of

λ2N−2
j λn0

0

i,j
ˇ. . . λnk

k in LHS of (A.5.15) is x
n0,...,

i
ˇN−1,...,

j

ˇN−1,...,nk

. Hence, equa-

tion (A.5.15) implies that xn0,...,nk
= 0 for all indices n0, . . . , nk. In other

words, the elements vm0,...,mk
satisfy condition (ii) when µ0 = N . Finally,

equation (A.5.15) allows us to replace N by N − 1 in equation (A.5.11), so
that the claim follows by the inductive assumption.

For the last statement of the lemma, if ∂ is injective equation (A.5.12)
implies that wn0,...,nk

= 0, by induction on
∑

i ni. �

Remark A.5.2. The system of equations (A.5.12) has the form

(A.5.16) ∂Y = AY

where Y ∈ V d, ∂ ∈ End(V ) and A ∈ Matd×d(C) is a nilpotent matrix. In
this case, the dimension of the space of solutions of (A.5.16) is equal to∑

i dim(Ker ∂di+1), where di are the sizes of the Jordan blocks of A. Indeed,



116 ALBERTO DE SOLE1 AND VICTOR G. KAC2

if A is a Jordan block of size d, it is immediate to check that the space of
solutions of (A.5.16) has dimension equal to dim(Ker ∂d+1), and the general
case reduces to this one.

Lemma A.5.3. For n0, . . . , nk ∈ Z+, and m0, . . . ,mk ∈ Z+ such that µ0 −
µ1 = 0 or 1, we define the integers bn0,...,nk

m0,...,mk recursively by the following
formulas:

(i) if ν0 − ν1 = 0 or 1, we let bn0,...,nk
m0,...,mk

= δm0,n0 . . . δmk ,nk
,

(ii) if nα = ν0 ≥ ν1 + 2, we let

(A.5.17) bn0,...,nk
m0,...,mk

= −
∑

β 6=α

b
n0,...nβ+1,...,nα−1,...,nk
m0,...,mk − bn0,...,nα−1,...,nk

m0,...,mk
.

Then the following identity holds in F[λ1, . . . , λk, ∂], for every n0, . . . , nk ∈
Z+:
(A.5.18)

λn0
0 λn1

1 . . . λnk

k =
∑

m0,...,mk∈Z+

(µ0−µ1=0 or 1)

bn0,...,nk
m0,...,mk

λm0
0 λm1

1 . . . λmk

k ∂
∑

i(ni−mi) ,

Furthermore, if nα = ν0, then the coefficient bn0,...,nk
m0,...,mk

is zero unless mα =
µ0 ≤ ν0, mβ ≥ nβ for every β 6= α, and

∑
i(ni −mi) ≥ 0. In particular, if

µ0 = ν0, then bn0,...,nk
m0,...,mk

is zero unless mi = ni for every i = 0, . . . , k.

Proof. If ν0 − ν1 = 0 or 1, then obviously (A.5.18) holds for bn0,...,nk
m0,...,mk

=

δm0,n0δm1,n1 . . . δmk ,nk
. If nα = ν0 ≥ ν1 + 2, substituting λα = −λ0−

α
ˇ. . .

−λk − ∂, we get,
(A.5.19)

λn0
0 λn1

1 . . . λnk

k = −
∑

β 6=α

λn0
0 . . .λ

nβ+1
β . . .λnα−1

α . . .λnk

k − λn0
0 . . .λ

nα−1
α . . .λnk

k ∂ .

By induction on ν0 − ν1, the RHS of (A.5.19) is
∑

m0,...,mk∈Z+

(µ0−µ1=0 or 1)

(
−
∑

β 6=α

b
n0,...,nβ+1,...,nα−1,...,nk
m0,...,mk − bn0,...,nα−1,...,nk

m0,...,mk

)

×λm0
0 . . . λmk

k ∂
∑

i(ni−mi) =
∑

m0,...,mk∈Z+

(µ0−µ1=0 or 1)

bn0,...,nk
m0,...,mk

λm0
0 . . . λmk

k ∂
∑

i(ni−mi) ,

proving (A.5.18). The last statement of the lemma is obvious for ν0−ν1 = 0
or 1, while, for nα = ν0 ≥ ν1+2, it follows by the recursive formula (A.5.17)
and an easy induction on ν0 − ν1. �

Lemma A.5.4. (a) There exist unique numbers cn0,...,nk
m0,...,mk

, for n0, . . . , nk ∈
Z+, and m0, . . . ,mk ∈ Z+ satisfying µ0−µ1 = 1, such that the following
identity holds in F[λ1, . . . , λk, ∂

±1]:

(A.5.20) λn0
0 λn1

1 . . . λnk

k =
∑

m0,...,mk∈Z+

(µ0−µ1=1)

cn0,...,nk
m0,...,mk

λm0
0 λm1

1 . . . λmk

k ∂
∑

i(ni−mi) ,
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for every n0, . . . , nk ∈ Z+, where λ0 is as in (A.5.9).
(b) The coefficients cn0,...,nk

m0,...,mk
in part (a) are integers satisfying the following

properties:
(i) if ν0 = ν1 + 1, then cn0,...,nk

m0,...,mk
= δm0,n0δm1,n1 . . . δmk ,nk

;

(ii) c
nσ(0),...,nσ(k)
mσ(0),...,mσ(k)

= cn0,...,nk
m0,...,mk for all σ ∈ Perm(0, 1, . . . , k);

(iii) for every n0, . . . , nk,m0, . . . ,mk ∈ Z+ such that µ0 − µ1 = 1, we
have the following recurrent formulas

(A.5.21) cn0,...,nk
m0,...,mk

= −

k∑

α=0

cn0,...,nα+1,...,nk
m0,...,mk

,

and, for every α = 0, . . . , k,

(A.5.22) cn0,...,nk
m0,...,mk

= −
∑

β 6=α

c
n0,...,nβ+1,...,nα−1,...,nk
m0,...,mk

− cn0,...,nα−1,...,nk
m0,...,mk

.

(iv) cn0,...,nk
m0,...,mk

is zero unless µ0

(
= µ1 + 1

)
≤ ν0 + 1;

(v) if ν0 > ν1, then cn0,...,nk
m0,...,mk

is zero unless µ0 ≤ ν0;
(vi) if nα = ν0, then cn0,...,nk

m0,...,mk
is zero unless mα ≥ max(µ1, ν1);

(vii) if nβ ≤ ν1, then cn0,...,nk
m0,...,mk

is zero unless mβ ≥ nβ.

Proof. The uniqueness of the decomposition (A.5.20) follows from Lemma
A.5.1 in the case V = F[∂±1], with ∂ acting by left multiplication, and we
want to prove the existence. By Lemma A.5.3 the monomial λn0

0 . . . λnk

k is a
linear combination over F[∂] of monomials λm0

0 . . . λmk

k with µ0 − µ1 = 0 or
1. Hence, we are left to consider the monomials with ν0 = ν1. In this case,
multiplying the monomial λn0

0 λn1
1 . . . λnk

k by

1 = −λ0∂
−1 − λ1∂

−1 − · · · − λk∂
−1 ,

we get

(A.5.23) λn0
0 λn1

1 . . . λnk

k = −

k∑

α=0

λn0
0 . . . λnα+1

α . . . λnk

k ∂−1 .

All the monomials which appear in the RHS have the difference between
maximal and second maximal upper indices equal to 0 or 1. Hence, (A.5.20)
holds by induction on

∑
i(ν0 − ni).

We next prove part (b). Property (i) is clear. Given a permutation
σ ∈ Sk+1 and n0, . . . , nk ∈ Z+, we have by part (a) (after changing the
indices of summation),

λ
nσ(0)

0 . . . λ
nσ(k)

k =
∑

m0,...,mk∈Z+

(µ0−µ1=1)

c
nσ(0),...,nσ(k)
mσ(0),...,mσ(k)

λ
mσ(0)

0 . . . λ
mσ(k)

k ∂
∑

i(ni−mi) .

On the other hand, by permuting the variables λ0, . . . , λk, since the condition
λ0 + · · · + λk + ∂ = 0 is invariant, part (a) says that we have a unique
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decomposition

λn0

σ−1(0)
. . . λnk

σ−1(k)
=

∑

m0,...,mk∈Z+

(µ0−µ1=1)

cn0,...,nk
m0,...,mk

λm0

σ−1(0)
. . . λmk

σ−1(k)
∂
∑

i(ni−mi) .

Comparing the above two identities we conclude, by the uniqueness of the
decomposition (A.5.20), that c

nσ(0),...,nσ(k)
mσ(0),...,mσ(k)

= cn0,...,nk
m0,...,mk , proving property

(ii).
The two identities (A.5.21) and (A.5.22) follow immediately by part (a)

and the equations (A.5.23) and (A.5.19) respectively.
Next, we prove properties (iv)–(vii). Let n0, . . . , nk ∈ Z+. If ν0 = ν1 + 1,

then by (i) we have cn0,...,nk
m0,...,mk = δm0,n0 . . . δmk ,nk

, hence this coefficient is zero
unless m0 = n0, . . . mk = nk. Properties (iv)–(vii), in this case, trivially
hold.

Suppose next that n0, . . . , nk ∈ Z+ are such that ν0 = ν1. We prove, by
induction on

∑
i(ν0 − ni), that properties (iv)—(vii) hold, i.e. cn0,...,nk

m0,...,mk
is

zero unless, respectively:

(iv) µ0 ≤ ν0 + 1,
(vi) mα ≥ µ1 and ν1, for α such that nα = ν0,
(vii) mβ ≥ nβ for all β = 0, . . . , k.

By equation (A.5.21) we have
(A.5.24)

cn0,...,nk
m0,...,mk

= −
∑

β |nβ=ν0

δm0,n0 . . . δmβ ,nβ+1 . . . δmk ,nk
−

∑

γ |nγ≤ν0−1

c
n0,...,nγ+1,...,nk
m0,...,mk .

Given β such that nβ = ν0, the corresponding term in the first sum of the
RHS is zero unless m0 = n0, . . . ,mβ = nβ + 1, . . . ,mk = nk. In particular
one easily checks that it is zero unless all conditions (iv), (vi) and (vii) above
hold. Next, let γ be such that nγ ≤ ν0 − 1, and consider the corresponding
term in the second summand of the RHS of (A.5.24). It has maximal and
second maximal upper indices both equal to ν0. Hence, we can apply the
inductive assumption to deduce that it is zero unless all conditions (iv), (vi),
and (vii) hold.

Finally, suppose that nα = ν0 ≥ ν1+2. We prove by induction on ν0− ν1
that properties (iv)–(vii) hold, i.e. cn0,...,nk

m0,...,mk
is zero unless

(v) µ0 ≤ ν0,
(vi) mα ≥ µ1 and ν1,
(vii) mβ ≥ nβ for all β 6= α,

Consider equation (A.5.22). In all terms in the RHS the maximal upper
index is nα − 1 = ν0 − 1, while the second maximal upper index is either
ν1 or ν1 + 1. Hence, we can use the results in the previous case and the
inductive assumption to deduce that all terms in the RHS of (A.5.22) are
zero unless all conditions (v), (vi) and (vii) above are met. �
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Remark A.5.5. In the special case k = 1, Lemma A.5.4 follows from Lemma
A.1.2. In fact, in this case we can use Lemma A.1.2 to compute explic-
itly the coefficients cp,qm+1,m and cp,qm,m+1 defined in Lemma A.5.4. For p =

q we have cp,pm+1,m = cp,pm,m+1 = −δm,p. For p > q we have cp,qm+1,m =

(−1)m+p+1
(p−m
m−q

)
when q ≤ m ≤

[
(p + q)/2

]
and zero otherwise, and

cp,qm,m+1 = (−1)m+p+1
(p−m−1
m−q−1

)
when q + 1 ≤ m ≤

[
(p + q)/2

]
and zero

otherwise. For p < q they are obtained using the symmetry condition (ii) in
Lemma A.5.4.

Remark A.5.6. The polynomials (1 + x1 + · · · + xk)
m0xm1

1 . . . xmk

k , with
m0,m1, . . . ,mk ∈ Z+ such that µ0 − µ1 = 1, form a basis (over Z) of the
ring Z[x1, . . . , xk]. Indeed, the linear independence of these elements follows
from Lemma A.5.1 in the special case when V = Q and ∂ = 1, while the
fact that they span the whole polynomial ring follows from Lemma A.5.4.

The following is a simple combinatorial result that will be used in the
proof of the subsequent Lemma A.5.8.

Lemma A.5.7. Let m1, . . . ,mk, n1, . . . , nk ∈Z+ be such that (µ1, . . . , µk) <
(ν1, . . . , νk) in the lexicographic order. Then:

(a) mα < nα for some α ∈ {1, . . . , k};
(b) suppose, moreover, that mα < nα for exactly one index α ∈ {1, . . . , k},

and mβ ≥ nβ for every other β 6= α, and let nα = νi, then µ1 =
ν1, . . . , µi−1 = νi−1, µi ≤ νi.

Proof. Let {α1, . . . , αk} and {β1, . . . , βk} be permutations of {1, . . . , k} such
that mα1 ≥ mα2 ≥ · · · ≥ mαk

and nβ1 ≥ nβ2 ≥ · · · ≥ nβk
. In particular,

µi = mαi
and νi = nβi

for every i.
For part (a), suppose, by contradiction, that mα ≥ nα for every α =

1, . . . , k. Then, clearly, µ1 ≥ mβ1 ≥ nβ1 = ν1. Since, by assumption,
µ1 ≤ ν1, we conclude that µ1 = ν1. Suppose, by induction, that µ1 =
ν1, . . . , µi−1 = νi−1 for i ≥ 2. If {α1, . . . , αi−1} = {β1, . . . , βi−1}, we have
βi 6∈ {α1, . . . , αi−1}, and therefore µi ≥ mβi

≥ nβi
= νi. Similarly, if

{α1, . . . , αi−1} 6= {β1, . . . , βi−1}, we have βj 6∈ {α1, . . . , αi−1} for some j ≤
i−1, and therefore µi ≥ mβj

≥ nβj
= νj ≥ νi. In both cases we have µi ≥ νi

and, since, by assumption, µi ≤ νi, we conclude that µi = νi. It follows that
(µ1, . . . , µk) = (ν1, . . . , νk), a contradiction.

For part (b) we use a similar argument. In our notation, α = βi for some
i ≥ 1. If i = 1, there is nothing to prove. If i ≥ 2, we have µ1 ≥ mβ1 ≥ nβ1 =
ν1, and therefore µ1 = ν1. Hence, the claim is proved for i = 2. Suppose
next that i ≥ 3 and assume, by induction, that µ1 = ν1, . . . , µj = νj , where
j ≤ i − 2. If {α1, . . . , αj} = {β1, . . . , βj}, we have βj+1 6∈ {α1, . . . , αj},
and therefore µj+1 ≥ mβj+1

≥ nβj+1
= νj+1. Similarly, if {α1, . . . , αj} 6=

{β1, . . . , βj}, we have βh 6∈ {α1, . . . , αj} for some h ≤ j, and therefore
µj+1 ≥ mβh

≥ nβh
= νh ≥ νj+1. In both cases we have µj+1 ≥ νj+1 and,

therefore, µj+1 = νj+1. In conclusion, µ1 = ν1, . . . , µi−1 = νi−1, proving the
claim. �
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Lemma A.5.8. Let m1, . . . ,mk, n1, . . . , nk ∈ {0, . . . , N − 1} be such that
(µ1, . . . , µk) < (ν1, . . . , νk) in the lexicographic order. Then:

(a) cN,n1,...,nk

µ1+1,m1,...,mk
= 0;

(b) cnα,n1,...,
α

Ň,...,nk

µ1+1,m1,...,mk
= 0 for every α = 1, . . . , k;

(c) cN,n1,...,nk

ν1+1,n1,...,nk
= (−1)N−ν1−1;

(d) cnα,n1,...,
α

Ň,...,nk

ν1+1,n1,...,nk
= 0 for every α = 1, . . . , k.

Proof. By Lemma A.5.7(a), mγ < nγ for some γ 6= 0. Then, by property

(vii) of Lemma A.5.4(b), we have cN,n1,...,nk

µ1+1,m1,...,mk
= 0, proving part (a).

For part (b), we first observe that, by property (vi) of Lemma A.5.4(b),

if α 6= 0 then cnα,n1,...,
α

Ň,...,nk

µ1+1,m1,...,mk
= 0 unless mα = µ1. Moreover, if mγ < nγ for

γ 6= α, again by property (vii) of Lemma A.5.4(b), we have cnα,n1,...,
α

Ň,...,nk

µ1+1,m1,...,mk
=

0. Hence, by Lemma A.5.7(a), we only have to prove (b) in the case when
µ1 = mα < nα, and mβ ≥ nβ for every β 6= α. Suppose, in this case, that
nα = νi, for i ≥ 2. Then, by Lemma A.5.7(b), we have µ1 < mα < nα =
νi ≤ ν1 = µ1, which is impossible. Hence, we are left to consider the case
when mα = µ1 < nα = ν1 and mβ ≥ nβ for every β 6= α. By property (vii)

of Lemma A.5.4(b), we have that cnα,n1,...,
α

Ň,...,nk

µ1+1,m1,...,mk
= 0 unless µ1 + 1 ≥ nα.

Hence, we only need to consider the case when µ1+1 = ν1. But in this case

mα = µ1 < µ1 + 1 = ν1, and hence cnα,n1,...,
α

Ň,...,nk

µ1+1,m1,...,mk
= 0 by property (vi) of

Lemma A.5.4(b). This completes the proof of part (b).

For N = n1 + 1, we have cN,n1,...,nk

ν1+1,n1,...,nk
= 1 by property (i) of Lemma

A.5.4(b). For N ≥ n1 + 2, we have, by the recursive formula (A.5.22),

cN,n1,...,nk

ν1+1,n1,...,nk
= −

∑

β 6=0

c
N−1,n1,...nβ+1,...,nk

ν1+1,n1,...,nk
− cN−1,n1,...,nk

ν1+1,n1,...,nk
.

Since N − 1 is the maximal upper index in all terms of the RHS, the first
term in the RHS is zero by property (vii) of Lemma A.5.4(b). Hence, we

get cN,n1,...,nk

ν1+1,n1,...,nk
= −cN−1,n1,...,nk

ν1+1,n1,...,nk
, which, by induction, implies part (c).

We are left to prove part (d). If N = ν1 + 1, by property (i) of Lemma

A.5.4(b), we have that cnα,n1,...,
α

Ň,...,nk

ν1+1,n1,...,nk
= 0 for every α 6= 0, since nα 6= N .

For N ≥ n1 + 2, we have, by the recursive formula (A.5.22),

cnα,n1,...,
α

Ň,...,nk

ν1+1,n1,...,nk
= −

∑

β 6=0,α

c
nα,n1,...,nβ+1,...,

α
ˇN−1,...,nk

ν1+1,n1,...,nk

−cnα+1,n1,...,
α
ˇN−1,...,nk

ν1+1,n1,...,nk
− cnα,n1,...,

α
ˇN−1,...,nk

ν1+1,n1,...,nk
.

Note that N −1 is the maximal upper index in all terms of the RHS. Hence,
the first term in the RHS is zero by property (vii) of Lemma A.5.4(b),
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since nβ < nβ + 1. Moreover, the second term in the RHS is zero by
property (vi) of Lemma A.5.4(b) since nα < nα + 1 ≤ ν1. Hence, we

get cnα,n1,...,
α

Ň,...,nk

ν1+1,n1,...,nk
= −cnα,n1,...,

α
ˇN−1,...,nk

ν1+1,n1,...,nk
, which, by induction, implies that

cnα,n1,...,
α

Ň,...,nk

ν1+1,n1,...,nk
= 0, proving (d). �

Corollary A.5.9. If ∂ : F → F is surjective, then any polynomial S ∈
F[λ1, . . . , λk]⊗F admits a decomposition of the following form:

S(λ1, . . . , λk) =

N∑

m0,...,mk=0
(µ0−µ1=1)

λm0
0 . . . λmk

k sm0,...,mk
,

where λ0 is as in (A.5.9) (and it acts on the coefficients sm0,...,mk
).

Proof. Expanding S and substituting each monomial λn1
1 . . . λnk

k with the
RHS of (A.5.20) (for n0 = 0), we get the desired expansion, using the
assumption that ∂ is surjective. �

A.5.2. The main results for polydifferential operators.

Corollary A.5.10. (a) Let S =
(
Si0,...,ik(λ1, . . . , λk)

)
i0,...,ik∈I

be a totally

skewsymmetric k-differential operator on Fℓ. Assuming that ∂ : F → F
is surjective, S admits a decomposition

(A.5.25) Si0,...,ik(λ1, . . . , λk) =
M∑

m0,...,mk=0
(µ0−µ1=1)

λm0
0 . . . λmk

k sm0,...,mk

i0,...,ik
,

with λ0 is as in (A.5.9), where the coefficients sm0,...,mk

i0,...,ik
∈ F are skewsym-

metric with respect to simultaneous permutations of upper and lower
indices:

(A.5.26) s
mσ(0),...,mσ(k)

iσ(0),...,iσ(k)
= sign(σ)sm0,...,mk

i0,...,ik
∀σ ∈ Sk+1 .

(b) Assuming that F is linearly closed, the space of vectors {sm0,...,mk

i0,...,ik
∈ F},

labeled by i0, . . . , ik ∈ {1, . . . , ℓ} and m0, . . . ,mk ∈ {0, . . . , N} such that
µ0 − µ1 = 1, which are skewsymmetric with respect to simultaneous
permutations of upper and lower indices, and which solve

(A.5.27)

N∑

m0,...,mk=0
(µ0−µ1=1)

λm0
0 . . . λmk

k sm0,...,mk

i0,...,ik
= 0 ,

has dimension over C equal to

(A.5.28) D =

N−1∑

n=0

((
(n+ 1)ℓ

k + 1

)
−

(
nℓ

k + 1

)
− ℓ

(
nℓ

k

))
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Proof. By Corollary (A.5.9), each polynomial Si0,...,ik(λ1, . . . , λk) admits a
decomposition as in (A.5.25), for some M ∈ Z+ and some coefficients
sm0,...,mk

i0,...,ik
∈ F . Applying total skewsymmetrization to both sides of (A.5.25),

we can replace the coefficients sm0,...,mk

i0,...,ik
by totally skewsymmetric ones, prov-

ing part (a).
All the solutions of equation (A.5.27) are given by elements sm0,...,mk

i0,...,ik
∈ F

satisfying conditions (i) and (ii) of Lemma A.5.1. Therefore, the space of
arrays {sm0,...,mk

i0,...,ik
∈ F} as in part (b) is in bijective correspondence with the

space of arrays T = {tn0,...,nk

i0,...,ik
∈ F}, labeled by i0, . . . , ik ∈ {1, . . . , ℓ} and

n0, . . . , nk ∈ {0, . . . , N − 1} such that ν0 = ν1, which are skewsymmetric
with respect to simultaneous permutations of upper and lower indices, and
which solve the system of equations

∂tn0,...,nk

i0,...,ik
+

k∑

h=0

tn0,...,nh−1,...,nk

i0,...,ik
= 0 .

This is a system of linear differential equations of the form ∂T + AT = 0,
hence, since by assumption F is linearly closed, the space of solutions has
dimension equal to the number of unknowns.

The functions tn0,...,nk

i0,...,ik
are labeled by the index set

C̃ = {1, . . . , ℓ}k+1 ×
{
(n0, . . . , nk) ∈ {0, . . . , N − 1}k+1

∣∣∣ ν0 = ν1

}
,

and since they are skewsymmetric with respect to simultaneous permuta-
tions of indices n0, . . . , nk and i0, . . . , ik, we can say that the entries of the

array T are labeled by the Sk+1-orbits in C̃ with trivial stabilizer. Therefore
D = #(C), where

C =
{
ω ∈ C̃/Sk+1

∣∣∣Stab(ω) = {1}
}
.

We can decompose the index set C̃ as disjoint union of the subsets C̃s,n, s =
2, . . . , k + 1, n = 0, . . . , N − 1, defined by

C̃s,n= {1, . . . , ℓ}k+1×
{
(n0, . . . , nk) ∈ {0, . . . , N−1}k+1

∣∣∣n = ν0 = νs−1 > νs

}

and the action of the permutation group Sk+1 preserves each of these subsets.

Hence, D =
∑N−1

n=0

∑k+1
s=2 #(Cs,n), where

Cs,n =
{
ω ∈ C̃s,n/Sk+1

∣∣∣Stab(ω) = {1}
}
.

It is easy to see, by putting all maximal elements in the first positions,
that the set Cs,n is in bijection with the cartesian product of the set of Ss-

orbits with trivial stabilizer in {1, . . . , ℓ}k+1×{0, . . . , N − 1}k+1 of the form
((i0, . . . , is), (n, . . . , n)), and the set of Sk+1−s-orbits with trivial stabilizer
in {1, . . . , ℓ}k+1 × {0, . . . , N − 1}k+1 of the form ((is, . . . , ik), (ns, . . . , nk))

with ns, . . . , nk < n. Clearly, the cardinality of the first set is
(ℓ
s

)
, and the
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cardinality of the second set is
( nℓ
k+1−s

)
. Hence,

D =
N−1∑

n=0

k+1∑

s=2

(
ℓ

s

)(
nℓ

k + 1− s

)
.

This formula implies equation (A.5.28), since
((n+1)ℓ

k+1

)
=
∑k+1

s=0

(
ℓ
s

)(
nℓ

k+1−s

)
.
�

Theorem A.5.11. Let k ∈ Z+, and let K(∂) ∈ Matℓ×ℓ(F [∂]) be an ℓ×ℓ ma-
trix differential operator of order N with invertible leading coefficient, over
a linearly closed differential field F . Then for every totally skewsymmetric
k-differential operator S on Fℓ there exists a skewsymmetric k-differential
operator P on Fℓ such that

(A.5.29) 〈K ◦ P 〉− = S .

Proof. For k = 0 we have P ∈ Fℓ and 〈K ◦P 〉− = K(∂)P . Hence, the claim
follows from Corollary A.3.7 by taking the majorant Nj = N ∀j, hi = 0∀i
of the matrix differential operator K(∂).

Next let k ≥ 1. Let K(∂) =
∑N

n=0(−∂)n ◦ Kn, where (−1)NKN 6= 0 is

the leading coefficient. If we let K1(∂) = K(∂) ◦K−1
N and P1(λ1, . . . , λk) =

KNP1(λ1, . . . , λk), we have, by (A.5.8), K ◦ P = K1 ◦ P1. Hence, we may
assume that KN = 1I.

Let S be a totally skewsymmetric k-differential operator on Fℓ. By Corol-
lary A.5.10, S admits a decomposition as in (A.5.25). The first part of the
proof will consist in reducing to the case when M = N .

Let M0 ≥ M1 ≥ · · · ≥ Mk be the maximal, in the lexicographic order,
among all non increasing (k + 1)-tuples µ0 ≥ µ1 ≥ · · · ≥ µk such that
sµ0,...,µk

i0,...,ik
6= 0 for some i0, . . . , ik ∈ I. Clearly, by the skewsymmetry con-

dition (A.5.26), for m0, . . . ,mk ∈ Z+ we have that sm0,...,mk

i0,...,ik
is zero unless

(µ0, . . . , µk) ≤ (M0, . . . ,Mk). Hence, the decomposition (A.5.25) of S can
be rewritten as follows

(A.5.30) Si0,...,ik(λ1, . . . , λk) =
∑

m0,...,mk∈Z+
µ0−µ1=0 or 1

(µ0,...,µk)≤(M0,...,Mk)

λm0
0 . . . λmk

k sm0,...,mk

i0,...,ik
.

Notice that in (A.5.30), for reasons that will become clear later, we allow
terms with µ0−µ1 equal 0 or 1 (even though, by Corollary A.5.10, we could
restrict to the terms with µ0 − µ1 = 1). If M0 ≥ N , let P 0 be the following
k-differential operator on Fℓ:

P 0
i0,...,ik

= CλM0−N
0 λM1

1 . . . λMk

k sM0,...,Mk

i0,...,ik
.

where C denotes the cardinality of the orbit of (M0, . . . ,Mk) under the
action of the symmetric group Sk+1. By (A.5.8) and the assumption that
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KN = 1I, we have
(A.5.31)

(K ◦ P 0)i0,...,ik = CλM0
0 λM1

1 . . . λMk

k sM0,...,Mk

i0,...,ik

+C

ℓ∑

j=1

N−1∑

n=0

M0−N∑

h=0

(
M0−N

h

)
λM0−N+n−h
0 λM1

1 . . . λMk

k (∂hKn)i0,js
M0,M1,...,Mk

j,i1,...,ik
.

Let P be the skewsymmetrization (over Sk) of P 0. Clearly, the skewsym-
metrization (over Sk) of K ◦P 0 is equal to K ◦P , and therefore 〈K ◦P 〉− =
〈K ◦ P 0〉−. Hence, taking the total skewsymmetrization of both sides of
(A.5.31), we get
(A.5.32)

〈K ◦ P 〉−i0,...,ik(λ1, . . . , λk)

=
C

(k + 1)!

∑

σ∈Sk+1

sign(σ)λM0

σ−1(0)
λM1

σ−1(1)
. . . λMk

σ−1(k)
sM0,...,Mk

iσ−1(0),...,iσ−1(k)

+

ℓ∑

j=1

N−1∑

n=0

M0−N∑

h=0

(
M0−N

h

)
C

(k + 1)!

∑

σ∈Sk+1

sign(σ)

× λM0−N+n−h
σ−1(0)

λM1

σ−1(1)
. . . λMk

σ−1(k)
(∂hKn)iσ−1(0),j

sM0,M1,...,Mk

j,i
σ−1(1),...,iσ−1(k)

.

By the skewsymmetry condition (A.5.26) on the coefficients sm0,...,mk

i0,...,ik
, and

since (k+1)!
C is the cardinality of the stabilizer of (M0, . . . ,Mk) under the

action of Sk+1, the first term in the RHS of (A.5.32) is equal to

∑

m0,...,mk∈Z+

(µ0,...,µk)=(M0,...,Mk)

λm0
0 . . . λmk

k sm0,...,mk

i0,...,ik
.

Moreover, each monomial λM0−N+n−h
σ−1(0)

λM1

σ−1(1)
. . . λMk

σ−1(k)
which enters in the

second term of the RHS of (A.5.32) can be expanded, using Lemma A.5.3,
as

λM0−N+n−h
σ−1(0)

λM1

σ−1(1)
. . . λMk

σ−1(k)

=
∑

m0,...,mk∈Z+

(µ0−µ1=0 or 1)

b
Mσ(0),...,

σ−1(0)
ˇM0−N+n−h,...,Mσ(K)

m0,...,mk λm0
0 λm1

1 . . . λmk

k ∂
∑

i(Mi−mi)−N+n−h

and, by the last statement of Lemma A.5.3, b
Mσ(0),...,

σ−1(0)
ˇM0−N+n−h,...,Mσ(K)

m0,...,mk
is

zero unless µ0 ≤ N0 and, for µ0 = N0, it is zero unless mα = Mσ(α) −
δα,σ−1(0)(N − n+ h), for every α = 0, . . . , k. In particular, since n ≤ N − 1,
this coefficient is zero unless (µ0, . . . , µk) < (M0, . . . ,Mk). Putting together
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the above observations, we can write 〈K ◦ P 〉− as

(A.5.33)

〈K ◦ P 〉−i0,...,ik(λ1, . . . , λk)

=
∑

m0,...,mk∈Z+

(µ0,...,µk)=(M0,...,Mk)

λm0
0 . . . λmk

k sm0,...,mk

i0,...,ik

+
∑

m0,...,mk∈Z+
µ0−µ1=0 or 1

(µ0,...,µk)<(M0,...,Mk)

λm0
0 . . . λmk

k tm0,...,mk

i0,...,ik
,

for some coefficients tm0,...,mk

i0,...,ik
∈ F . It follows that S−〈K ◦P 〉− has a decom-

position as in (A.5.30) where only terms with (µ0, . . . , µk) < (M0, . . . ,Mk)
appear. Hence, by induction, we can reduce to the case when S has a de-
composition as in (A.5.30) with M0 ≤ N − 1.

To conclude, we further reduce the monomials λm0
0 . . . λmk

k in the expan-
sion (A.5.30) of S with µ0 = µ1 using Lemma A.5.4. By property (iv)
of Lemma A.5.4(b), the only monomials which enter in the obtained de-
composition are such that µ0 ≤ M0 + 1 ≤ N . Therefore, this S admits a
decomposition as in (A.5.25) with M = N , completing the first step of the
proof.

Let then S have the following decomposition:

(A.5.34) Si0,...,ik(λ1, . . . , λk) =

N∑

m0,...,mk=0
(µ0−µ1=1)

λm0
0 . . . λmk

k sm0,...,mk

i0,...,ik
,

with coefficients sm0,...,mk

i0,...,ik
skewsymmetric with respect to simultaneous per-

mutations of upper and lower indices. We want to prove that there exists
a skewsymmetric k-differential operator P of degree at most N − 1 in each
variable,

(A.5.35) Pi0,...,ik(λ1, . . . , λk) =

N−1∑

n1,...,nk=0

λn1
1 . . . λnk

k pn1,...,nk

i0,i1,...,ik
,

with coefficients pm1,...,mk

i0,...,ik
∈ F skewsymmetric with respect to the action of

Sk = Perm(1, . . . , k) on upper and lower indices simultaneously, satisfying
equation (A.5.29). By (A.5.8) we have

(K ◦P )i0,...,ik(λ1, . . . , λk) =

N∑

n0=0

N−1∑

n1,...,nk=0

ℓ∑

j=1

λn0
0 λn1

1 . . . λnk

k (Kn0)i0,jp
n1,...,nk

j,i1,...,ik
,
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and, by Lemma A.5.4, we get
(A.5.36)

(K ◦ P )i0,...,ik(λ1, . . . , λk) =

N∑

m0,...,mk=0
(µ0−µ1=1)

N∑

n0=0

N−1∑

n1,...,nk=0

ℓ∑

j=1

cn0,...,nk
m0,...,mk

× λm0
0 λm1

1 . . . λmk

k ∂
∑

i(ni−mi)(Kn0)i0,jp
n1,...,nk

j,i1,...,ik
.

In the RHS above we can take the sum overm0, . . . ,mk ≤ N for the following
reason. If n0 = N (> n1, . . . , nk), by property (v) of Lemma A.5.4(b),
cn0,...,nk
m0,...,mk

is zero unless µ0 ≤ ν0 = N , while, if n0 ≤ N − 1 we have, by
property (iv) of Lemma A.5.4(b), that cn0,...,nk

m0,...,mk
is zero unless µ0 ≤ ν0+1 ≤

N − 1 + 1 = N . Taking the skewsymmetrization of both sides of equation
(A.5.36), we have, by (A.5.7) and by the symmetry property (ii) of Lemma
A.5.4(b),

(A.5.37)

〈K ◦ P 〉−i0,...,ik(λ1, . . . , λk) =
1

k + 1

N∑

m0,...,mk=0
(µ0−µ1=1)

N∑

n0=0

N−1∑

n1,...,nk=0

ℓ∑

j=1

λm0
0 . . . λmk

k ∂
∑

i(ni−mi)
(
cn0,...,nk
m0,...,mk

(Kn0)i0,jp
n1,...,nk

j,i1,...,ik

−
k∑

α=1

cnα,n1,...,
α
ň0,...,nk

m0,...,mk
(Kn0)iα,jp

n1,...,nk

j,i1,...,
α

ǐ0,...,ik

)
.

Comparing equations (A.5.34) and (A.5.37), we get the following equation
in F[λ1, . . . , λk]⊗F :
(A.5.38)

N∑

m0,...,mk=0
(µ0−µ1=1)

λm0
0 . . . λmk

k

(
1

k + 1

N∑

n0=0

N−1∑

n1,...,nk=0

ℓ∑

j=1

∂
∑

i(ni−mi)
(
cn0,...,nk
m0,...,mk

(Kn0)i0,j

× pn1,...,nk

j,i1,...,ik
−

k∑

α=1

cnα,n1,...,
α
ň0,...,nk

m0,...,mk
(Kn0)iα,jp

n1,...,nk

j,i1,...,
α

ǐ0,...,ik

)
− sm0,...,mk

i0,...,ik

)
= 0 .

The above equation should be read as an equation in the unknown variables

(A.5.39) X =
(
pn1,...,nk

i0,i1,...,ik
∈ F

)
1≤i0,...,ik≤ℓ

0≤n1,...,nk≤N−1

,

such that p
nσ(1),...,nσ(k)

i0,iσ(k),...,iσ(k)
= sign(σ)pn1,...,nk

i0,i1,...,ik
for every σ ∈ Sk, and the element

(A.5.40) B =
(
sm0,...,mk

i0,...,ik
∈ F

)
1≤i0,...,ik≤ℓ

0≤m0,m1,...,mk≤N
(µ0−µ1=1)

,

skewsymmetric with respect to the action of Sk+1, is given. To complete
the proof of the theorem, we only need to show that this equation admits a
solution.
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Note that the coefficient of λm0
0 . . . λmk

k in the LHS of (A.5.38) can be
rewritten, up to the summand −sm0,...,mk

i0,...,ik
, as

(A.5.41)

1

k + 1

N∑

n0,...,nk=0

ℓ∑

j=1

∂
∑

i(ni−mi)
k∑

α=0

(−1)αcn0,...,nk
m0,...,mk

(Knα)iα,jp
n0,n1,

α
.̌..,nk

j,i0,
α
.̌..,ik

,

and, in this form, it is manifestly skewsymmetric with respect to simultane-
ous permutations of i0, . . . , ik and m0, . . . ,mk.

The variables pn1,...,nk

j0,j1,...,jk
are labeled by the index set

Ã = {1, . . . , ℓ}k+1 × {0, . . . , N − 1}k .

On the other hand, since, by assumption, they are skewsymmetric with
respect to simultaneous permutations of indices n1, . . . , nk and j1, . . . , jk,
we can say that the entries of the variable X are labeled by the Sk-orbits

in Ã with trivial stabilizer, where Sk = Perm(1, . . . , k) acts on the element
((j0, j1, . . . , jk), (n1, . . . , nk)) by fixing j0 and permuting, simultaneously, the
other entries. We therefore write X =

(
pa
)
a∈A

, where

(A.5.42) A =
{
ω ∈ Ã/Sk

∣∣∣ Stab(ω) = {1}
}
,

and, for

(A.5.43) a = Sk · ((j0, j1, . . . , jk), (n1, . . . , nk)) ∈ A ,

we let pa = ±pn1,...,nk

j0,j1,...,jk
. The sign of pa is fixed by taking + for the unique

representative of a with n1 ≥ n2 ≥ · · · ≥ nk and js > js+1 if ns = ns+1.
Similarly, the functions sm0,...,mk

i0,...,ik
are labeled by the index set

B̃ = {1, . . . , ℓ}k+1 ×
{
(m0, . . . ,mk) ∈ {0, . . . , N}k+1

∣∣∣µ0 − µ1 = 1
}
,

and since, by assumption, they are skewsymmetric with respect to simulta-
neous permutations of indices m0, . . . ,mk and i0, . . . , ik, we can say that the

entries of the given array B are labeled by the Sk+1-orbits in B̃ with triv-
ial stabilizer, where Sk+1 = Perm(0, . . . , k) acts diagonally on the element
((i0, . . . , ik), (m0, . . . ,mk)). We therefore write B =

(
sb
)
b∈B

, where

(A.5.44) B =
{
ω ∈ B̃/Sk+1

∣∣∣ Stab(ω) = {1}
}
,

and, for

(A.5.45) b = Sk+1 · ((i0, . . . , ik), (m0, . . . ,mk)) ∈ B ,

we let sb = ±sm0,...,mk

i0,...,ik
. As before, the sign of sb is fixed by taking + for the

unique representative of b with m0 = m1+1 > m1 ≥ · · · ≥ mk and is > is+1

if ms = ms+1.
For a as in (A.5.43), we let

(A.5.46) ϕ(a) = Sk+1 · ((j0, j1, . . . , jk), (max(n1, . . . , nk) + 1, n1, . . . , nk)) .
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It is not hard to check that ϕ is a well-defined bijective map A
∼
→ B. In

particular, the vectors X and B have the same number of entries. In fact,

(A.5.47) #(A) = #(B) = ℓ

(
Nℓ

k

)
.

Equation (A.5.38) is equivalent to the following equation

(A.5.48) A(∂)(M(∂)X −B) = 0 ,

where X and B are as in (A.5.39) and (A.5.40) respectively, and M(∂)
and A(∂) are defined as follows. First, M(∂) =

(
Lb,a(∂)

)
b∈B,a∈A

, given by

(A.5.41), is the square matrix pseudodifferential operator with entries
(A.5.49)

Lb,a(∂) =
1

k + 1

N∑

n0=0

ℓ∑

j=1

∂
∑

i(ni−mi)
(
cn0,...,nk
m0,...,mk

(Kn0)i0,jδj,j0δj1,i1 . . . δjk,ik

−
k∑

α=1

cnα,n1,...,
α
ň0,...,nk

m0,...,mk
(Kn0)iα,jδj,j0δjα,i0δj1,i1

α
ˇ. . . δjk,ik

)
,

for a and b as in (A.5.43) and (A.5.45) respectively. Note that in order to
say that the entries of the matrix M(∂) can be labeled by the set B × A

(and not by the set B̃ × A) we are using the fact that M(∂)X, given by
(A.5.41), is manifestly skewsymmetric with respect to the action of Sk+1.

To define A(∂), consider first the map Ã from F B̃ to the space D of k-
differential operators on Fℓ of degree at most 2N − 1 in each variable, given

by B̃ = {sm0,...,mk

i0,...,ik
} 7→ Ã(B̃), where

Ã(B̃)i1,...,ik(λ1, . . . , λk) =
∑

B̃

(−λ1 − · · · − λk − ∂)m0λm1
1 . . . λmk

k sm0,...,mk

i0,...,ik
.

Note that Ã is a C-linear, not an F-linear map, but the space D is in fact a fi-
nite dimensional vector space over F , say of dimension d, and, for any choice

of basis of it, Ã becomes a d×#(B̃) matrix differential operator. We next

consider FB as the subspace of F B̃ consisting of the elements B̃ = {sm0,...,mk

i0,...,ik
}

skewsymmetric with respect to the action of Sk+1. The restriction of Ã to

the subspace FB ⊂ F B̃ is then a d×#(B) matrix differential operator from
FB to D, for any choice of basis of D over F (once we fix representatives, we

can consider B as a subset of B̃, and the matrix of Ã|FB consists of the rows

of the matrix of Ã corresponding to the indices in B). By Lemma A.2.5,

we can choose a basis of D such that the matrix for Ã|FB : FB → D is
in row echelon form, say with k pivots and d − k zero rows. We then let
A(∂) : FB → Fk the k × #(B) matrix differential operator given by the
first k rows of this matrix. It is then clear from the above construction that
equation (A.5.38) is equivalent to equation (A.5.48). Therefore, to prove
the theorem, we need to show that, for every B ∈ FB there exists X ∈ FA

solving equation (A.5.48).
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Notice that, even though in the expression of the LHS of (A.5.38) there
appear negative powers of ∂, we know that all such negative powers can-
cel out when we compute all the sums in (A.5.38), since this equation is
the same as (A.5.29), which does not involve any negative power of ∂. In
terms of equation (A.5.48) this means that, even though M(∂) is a matrix
pseudodifferential operator, the product A(∂)M(∂) is a matrix differential
operator.

By construction, A(∂) is surjective, and its kernel consists of elements
B = {sm0,...,mk

i0,...,ik
} solving equation (A.5.27). Hence, by Corollary A.5.10(b),

it is of finite dimension over C. Therefore, by Theorem A.3.6(c), it is a
square matrix differential operator with non zero determinant.

Next, note that Lb,a(∂) has order less than or equal to Na − hb, where,
for a and b as in (A.5.43) and (A.5.45) respectively,

(A.5.50) Na = N +
k∑

i=1

ni , hb =
k∑

i=0

mi .

The leading matrix associated to this majorant (see equation (A.2.4)) is
M̄(ξ) =

(
mb,aξ

Na−hb
)
b∈B,a∈A

, where

mb,a =
1

k + 1

(
cN,n1,...,nk
m0,...,mk

δi0,j0δj1,i1 . . . δjk,ik

−

k∑

α=1

cnα,n1,...,
α

Ň,...,nk
m0,...,mk

δj0,iαδjα,i0δj1,i1
α
ˇ. . . δjk,ik

)
.

We want to prove that the leading matrix M̄(ξ) or, equivalently, M̄ (1) (see
(A.2.5)), is non degenerate.

In order to prove this, we fix a total ordering of the sets A ≃ B (identified
via ϕ), and we prove that, with respect to this ordering, the matrix M̄(1) is
lower triangular with non zero diagonal entries.

Given elements b = Sk+1 · ((i0, . . . , ik), (m0, . . . ,mk)) ∈ B and b′ =
Sk+1 · ((i

′
0, . . . , i

′
k), (m

′
0, . . . ,m

′
k)) ∈ B, we say that b > b′ if (µ0, . . . , µk) >

(µ′
0, . . . , µ

′
k) in the lexicographic order, or (µ0, . . . , µk) = (µ′

0, . . . , µ
′
k) and

b > b′ in some total ordering of the remaining indices (which will play
no role). Therefore, for a ∈ A and b ∈ B as in (A.5.43) and (A.5.45)
respectively, using the map ϕ we have that b > a if (µ0, µ1, . . . , µk) >
(ν1 + 1, ν1, . . . , νk) in the lexicographic order, or (µ0, µ1, . . . , µk) = (ν1 +
1, ν1, . . . , νk) and b > ϕ(a) in some total ordering of the remaining indices.

We want to prove that, with respect to this ordering, for a ∈ A and b ∈ B,
we have

(A.5.51) mb,a = 0 if b < a , and mb,a 6= 0 if b = ϕ(a) .

This follows from Lemma A.5.8. Indeed, for b ≤ a, we have in particular
that (µ0, µ1, . . . , µk) ≤ (ν1 + 1, ν1, . . . , νk). Hence, by Lemma A.5.8(a) and
(b) we have mb,a = 0 unless (µ0, µ1, . . . , µk) = (ν1 + 1, ν1, . . . , νk), and, in

this case, by Lemma A.5.8(c) and (d), mb,a = (−1)N−ν1−1

k+1 δi0,j0δj1,i1 . . . δjk,ik .
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Summarizing the above results, M(∂) is a square matrix pseudodiffer-
ential operator of size #(A) = #(B), with non degenerate leading matrix
associated to the majorant (A.5.50), A(∂) is a square matrix differential
operator of the same size, with non zero determinant, and A(∂)M(∂) is
a matrix differential operator. By Corollary A.3.8, it follows that equation
(A.5.48) has a solution for every B, completing the proof of the theorem. �

Theorem A.5.12. Let F be a linearly closed differential field with subfield
of constants C ⊂ F . Let k ∈ Z+, and let K(∂) ∈ Matℓ×ℓ(F [∂]) be an ℓ × ℓ
matrix differential operator of order N with invertible leading coefficient,
over F . Then, the set of skewsymmetric k-differential operators P on Fℓ of
degree at most N − 1 in each variable such that

(A.5.52) 〈K ◦ P 〉− = 0 ,

is a vector space over C of dimension

d =

(
Nℓ

k + 1

)
.

Proof. As in the proof of Theorem A.5.11, for k = 0 we have P ∈ Fℓ and
〈K ◦ P 〉− = K(∂)P . Hence, the statement follows from Corollary A.3.7 by
taking the majorant Nj = N ∀j, hi = 0∀i of the matrix differential operator
K(∂).

Let then k ≥ 1. By the discussion in the proof of Theorem A.5.11, equa-
tion (A.5.52) is the same as equation (A.5.48) with B = 0, and, moreover,
by Corollary A.3.8, the space of solutions has dimension over C equal to

(A.5.53) d = dimC(KerA(∂)) +
∑

a∈A

(Na − hϕ(a)) .

By the construction of the matrix differential operator A(∂), the equation
A(∂)B = 0, for B = {sm0,...,mk

i0,...,ik
} ∈ FB, is equivalent to equation (A.5.27).

Hence, by Corollary A.5.10(b), Ker(A(∂)) has dimension over C equal to
(A.5.28). Moreover, we have, recalling (A.5.42), (A.5.46) and (A.5.50) (let-
ting a ∈ A as in (A.5.43)),
(A.5.54)∑

a∈A

(Na − hϕ(a))

=
∑

a∈A

(
N − 1−max(n1, . . . , nk)

)
=

N−1∑

n=0

(N − n− 1)#
{
a ∈ A

∣∣∣ ν1 = n
}

=

N−1∑

n=0

(N − n− 1)
(
#
{
a ∈ A

∣∣∣ ν1 ≤ n
}
−#

{
a ∈ A

∣∣∣ ν1 ≤ n− 1
})

= ℓ

N−1∑

n=0

(N − 1− n)
(((n+ 1)ℓ

k

)
−

(
nℓ

k

))
.



THE VARIATIONAL POISSON COHOMOLOGY 131

In the last identity we used equation (A.5.47), with N − 1 replaced by n or
n− 1. Putting together (A.5.28) and (A.5.54), we get

d =

N−1∑

n=0

((
(n + 1)ℓ

k + 1

)
−

(
nℓ

k + 1

)
+ℓ(N−1−n)

(
(n+ 1)ℓ

k

)
−ℓ(N−n)

(
nℓ

k

))
,

which is a telescopic sum equal to
( Nℓ
k+1

)
, proving the theorem. �
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