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ABSTRACT

In this paper, we investigate the nature and distribution of large neutral regions during the late epoch of reionization.
In the “bubble model” of reionization, the mass distribution of large ionized regions (“bubbles”) during the early
stage of reionization is obtained by using the excursion set model, where the ionization of a region corresponds to
the first up-crossing of a barrier by random trajectories. We generalize this idea and develop a method to predict
the distribution of large-scale neutral regions during the late stage of reionization, taking into account the ionizing
background after the percolation of H ii regions. The large-scale neutral regions, which we call “neutral islands,”
are not individual galaxies or minihalos, but larger regions where fewer galaxies formed and hence ionized later
and they are identified in the excursion set model with the first down-crossings of the island barrier. Assuming that
the consumption rate of ionizing background photons is proportional to the surface area of the neutral islands, we
obtained the size distribution of the neutral islands. We also take the “bubbles-in-island” effect into account by
considering the conditional probability of up-crossing a bubble barrier after down-crossing the island barrier. We
find that this effect is very important. An additional barrier is set to avoid islands being percolated through. We find
that there is a characteristic scale for the neutral islands, while the small islands are rapidly swallowed up by the
ionizing background; this characteristic scale does not change much as the reionization proceeds.

Key words: cosmology: theory – dark ages, reionization, first stars – intergalactic medium –
large-scale structure of universe – methods: analytical
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1. INTRODUCTION

Cosmic reionization is one of the most important but poorly
understood epochs in the history of the universe. As the first
stars form in the earliest non-linear structures, they illuminate
the ambient intergalactic medium (IGM), create H ii regions
around them, and start the reionization process of hydrogen.
As the sources become brighter and more numerous, H ii re-
gions grow in number and size, then merge with each other and
eventually percolate throughout the IGM. Various observations
have put constraints on the reionization process. Based on an
instantaneous reionization model, the temperature and polariza-
tion data of the cosmic microwave background constrain the
redshift of reionization to be zreion = 11.1 ± 1.1 (1σ ; Planck
Collaboration et al. 2013a), while the absence of Gunn–Peterson
troughs (Gunn & Peterson 1965) in high-redshift quasar ab-
sorption spectra suggest that the reionization of hydrogen was
very nearly complete by z ≈ 6 (e.g., Fan et al. 2006). Several
deep extragalactic surveys have found more than 200 galaxies
at z ∼ 7–8, but these are still the tip of the iceberg, i.e., the
most luminous of the galaxy population at those redshifts (e.g.,
Bouwens et al. 2011; Oesch et al. 2012; McLure et al. 2013;
Schenker et al. 2012; Lorenzoni et al. 2013; Bradley et al. 2012;
Finkelstein et al. 2012). Recently, measurements of the kinetic
Sunyaev–Zel’dovich effect with the South Pole Telescope have
been used to put limits on the epoch and duration of reionization

6 Einstein Fellow

(Mesinger et al. 2012; Zahn et al. 2012; Battaglia et al. 2012a),
although the obtained limits depend on the detailed physics of
reionization (Zahn et al. 2012; Park et al. 2013).

The most promising probe of this evolutionary stage is the
21 cm transition of neutral hydrogen (see Furlanetto et al.
2006 for a review). The EDGES7 experiment has put the
first observational lower limit on the duration of the epoch
of reionization of Δz > 0.06 (Bowman & Rogers 2010) and
using the GMRT,8 Paciga et al. (2011, 2013) put upper limits
on the neutral hydrogen power spectrum. The upcoming low-
frequency interferometers such as LOFAR,9 PAPER,10 MWA,11

and 21CMA12 may be able to detect signatures of reionization
and next-generation instruments such as HERA13 and SKA14

may be able to map out the reionization process in more
detail and reveal the properties of the first luminous objects.
Interpreting the upcoming data from these instruments requires
detailed modeling of the reionization process.

7 Experiment to Detect the Global EoR Signature; see
http://www.haystack.mit.edu/ast/arrays/Edges/
8 The Giant Metrewave Radio Telescope; see http://gmrt.ncra.tifr.res.in/
9 The Low Frequency Array; see http://www.lofar.org/
10 The Precision Array for Probing the Epoch of Reionization; see
http://eor.berkeley.edu/
11 The Murchison Widefield Array; see http://www.mwatelescope.org/
12 The 21 Centimeter Array; see http://21cma.bao.ac.cn/
13 The Hydrogen Epoch of Reionization Array; see http://reionization.org/
14 The Square Kilometre Array; see http://www.skatelescope.org/

1

http://dx.doi.org/10.1088/0004-637X/781/2/97
http://www.haystack.mit.edu/ast/arrays/Edges/
http://gmrt.ncra.tifr.res.in/
http://www.lofar.org/
http://eor.berkeley.edu/
http://www.mwatelescope.org/
http://21cma.bao.ac.cn/
http://reionization.org/
http://www.skatelescope.org/


The Astrophysical Journal, 781:97 (15pp), 2014 February 1 Xu et al.

Motivated by the results of numerical simulations, Furlanetto
et al. (2004) developed a “bubble model” for the growth of
H ii regions during the early reionization era. In this model,
at a given moment during the early stage of reionization, a
region is assumed to be ionized if the total number of ionizing
photons produced within exceeds the average number required
to ionize all the hydrogen in the region. Otherwise, it is assumed
to be neutral, although there could be smaller H ii regions
within it. At the very beginning, the ionized regions are mostly
the surroundings of the just-formed first stars or galaxies,
but as the high-density regions where first stars and galaxies
formed are strongly correlated, very soon these regions would
grow larger and merge to contain several nearby galaxies. The
bubble model treatment can deal with the fact that a region
can be ionized by neighboring sources rather than only interior
galaxies.

In the bubble model, the number of star-forming ha-
los and ionizing photons are calculated with the extended
Press–Schechter model (Bond et al. 1991; Lacey & Cole 1993).
The criterion of ionization is equivalent to the condition that
the average density of the region exceeds a certain threshold
value (ionization barrier). The mass function of the H ii region
can then be obtained from the excursion set model, i.e., by
calculating the probability of a random walk trajectory first up-
crossing the barrier. With a linear fit to the ionization barrier,
Furlanetto et al. (2004) obtained the H ii bubble mass function
during the early stage of reionization (see the next section for
more details). This analytical model matches simulation results
reasonably well (Zahn et al. 2007) and is much faster to com-
pute than the radiative transfer numerical simulations, so it can
be used to explore a large parameter space. It also provides us
with an intuitive understanding of the physics of the reionization
process. Instead of the full analytical calculation, one can also
apply the same idea to make semi-numerical simulations (Zahn
et al. 2007; Mesinger & Furlanetto 2007; Alvarez et al. 2009;
Choudhury et al. 2009; Zhou et al. 2013). In these simulations,
the density field is generated by the usual N-body simulation
or the first-order perturbation theory and the ionization field is
then predicted with the same criteria as the analytical model.
The semi-numerical approach allows relatively fast computa-
tion, while at the same time providing three-dimensional visu-
alization of the reionization process.

The bubble model also has certain limitations. As H ii regions
form and grow, they begin to contact with each other and
spherical “bubbles” are no longer a good description of the
H ii regions. After percolation of the H ii regions, the photons
from more distant regions, i.e., the ionizing background, become
very important. Eventually, the total volume fraction of the
bubbles predicted by the model would exceed one and slightly
before this moment the bubble model breaks down. Although the
bubble model may still be successful in some average sense after
percolation and Zahn et al. (2007) indeed obtained fairly good
agreement between the model-based semi-numerical simulation
and radiative transfer simulations even after ionized bubbles
overlap, it is necessary to construct a more accurate model for the
late stage of reionization to account for the non-bubble topology
and the existence of an ionizing background.

One may use similar reasonings to construct an analytical
model for the remaining neutral regions after the percolation of
ionized regions. During this epoch, the high density of galaxies
and minihalos allows them to have a higher recombination rate
and thus remain neutral. Besides these compact neutral regions,
there are also large regions with relatively low density, which

remain neutral because fewer galaxies formed within them. We
shall call these neutral regions “islands,” which remain above
the flooding ionization for a moment. This is in some sense
similar to the voids of large-scale structure; just as the extended
Press–Schechter model can predict the number of both halos
and voids, we can also develop models of the neutral islands.
However, we do need to change the barrier to take into account
the background ionizing photons in order to model the island
evolution correctly.

On the observational side, the island distribution and its
evolution are important for the 21 cm signal, which directly
relates to the neutral components in the universe, and it would be
relatively easier upcoming instruments to probe the signal at the
late reionization stages, where the redshifted 21 cm lines have
higher frequencies and weaker foregrounds. Also, the neutral
islands may also contribute to the overall opacity of the IGM in
addition to the Lyman limit systems (LLSs) and in turn affect
the evolution of the ultraviolet background and the detectability
of high-redshift galaxies (e.g., Bolton & Haehnelt 2013).

In this paper, we aim to construct an analytical island model
that is complementary to the bubble model. It applies to the
neutral regions left over after the ionized bubbles overlap with
each other, when the neutral islands are more isolated. Based on
the excursion set formalism, we identify the islands by finding
the first crossings of the random walks downward the island
barrier, which are deeper than the bubble barrier because they
take into account the background ionizing photons in addition to
the photons produced by stars inside the island region. We then
use the excursion set model to calculate the crossing probability
at different mass scales and derive the mass distribution function
of the islands.

However, inside the large neutral islands smaller ionized
bubbles may also form. We investigate this “bubbles-in-island”
problem by considering the conditional probability for the
excursion trajectory to first down-cross the island barrier, then
up-cross the original bubble barrier (without the contribution of
the ionizing background) at a smaller scale. It turns out that a
large number of bubbles may form inside the islands, such that
a large fraction of the insides of some “islands” are ionized.
However, we may set a percolation threshold as an upper limit
on the “bubbles-in-island” fraction, below which the islands are
still relatively simple. We also try to shed light on the shrinking
process of the islands and obtain a coherent picture of the late
stage of the epoch of reionization.

In the following, we first briefly review the excursion set
theory and the bubble model in Section 2, then we generalize it
and develop the formalism of the “island model” in Section 3;
we employ a simple toy model to illustrate the calculation.
An important aspect of the theory is the treatment of the
so-called bubbles-in-island problem, i.e., self-ionized bubbles
inside the neutral islands. We also discuss how to take this
effect into account. Section 4 presents our treatment of the
ionizing background taking into account absorption from LLSs.
With these tools in hand, we study the reionization process
in Section 5; the consumption rate of background ionizing
photons is assumed to be proportional to the surface area of
the island. The size distribution of the islands is calculated for
different redshifts. We summarize our results and conclude in
Section 6. Throughout this paper, we adopt the cosmological
parameters from the 7 yr Wilkinson Microwave Anisotropy
Probe measurements combined with baryon acoustic oscillation
and H0 data: Ωb = 0.0455, Ωc = 0.227, ΩΛ = 0.728,
H0 = 70.2 km s−1 Mpc−1, σ8 = 0.807, and ns = 0.961

2



The Astrophysical Journal, 781:97 (15pp), 2014 February 1 Xu et al.

Figure 1. Two random walk trajectories in the excursion set theory. Here,
S = σ 2(M) denotes the variance of δM, which is the density fluctuation
smoothed on a mass scale M. All trajectories originate from (S, δ) = (0, 0).
The horizontal line represents a flat barrier, motivated by spherical collapse.

(A color version of this figure is available in the online journal.)

(Komatsu et al. 2011), but the results are not sensitive to these
parameters.

2. A BRIEF REVIEW OF THE EXCURSION SET THEORY
AND THE BUBBLE MODEL

2.1. The Excursion Set Model

Our island model is based on the excursion set theory. Here,
we give a brief review of the excursion set approach, especially
its application to the reionization process, i.e., the bubble model.
For a more comprehensive review of the excursion set theory
and its extensions and applications, we refer interested readers
to Zentner (2007) and references therein.

In what follows, we consider the density contrast field
evaluated at some early time but extrapolated to the present
day using linear perturbation theory. Considering a point x in
space, the density contrast δ(x) around it depends on the smooth
mass scale M under consideration. The variance of the density
fluctuations on a scale M, S = σ 2(M), monotonically decreases
with increasing M in our universe, so we can use S to represent
the scale M. Starting at M = ∞, i.e., S = 0, we move to
smaller and smaller scales surrounding the point of interest and
compute the smoothed density field as we go along. If we use a
k-space tophat window function to smooth the density field, at
each scale k a set of independent Fourier modes are added and
the trajectory of δ can be described by a random walk where
each step is independent, forming random trajectories on the
S–δ plane. Each of these trajectories starts from the origin of
the (S, δ) plane, with the variance of all trajectories given by
〈δ2(S)〉 = S. Two sample trajectories are shown in Figure 1.
Typically, the trajectories jitter more and deviate farther from
δ = 0 at larger S.

It is assumed that at redshift z and on scale M, regions with an
average density above a certain threshold value δc will collapse
into halos, while regions with an average density below the

threshold would remain uncollapsed. The galaxies form inside
sufficiently massive halos. In some models, δc is only a function
of redshift; more generally, it is a function of both redshift and
mass scale. The formation of a halo corresponds to the trajectory
up-crossing a barrier δc(M, z) in the S–δ plane. The excursion
set theory was developed to compute the probabilities for such
crossing and gives the mass distribution of the corresponding
halos.

An important issue that must be addressed is the “cloud-in-
cloud” problem. For a given central point, the critical threshold
could be exceeded multiple times, corresponding to possible
halos on different mass scales. In the excursion set theory, one
determines the largest smoothing scale M (smallest S) at which
a trajectory first up-crosses the halo barrier at δc and identify
it as the halo at that redshift, while smaller-scale crossings are
ignored. Physically, it is reasonable to think that the smaller-
scale upcrossing corresponds to a small halo that formed earlier
and merged into the larger halo.

The probability of the barrier crossing can be computed
by solving a diffusion equation with the appropriate boundary
conditions and the first crossing probability can be calculated
with an absorbing barrier. For a constant density barrier and
a starting point of (δ0, S0), the differential probability of first-
crossing of the barrier δc at S, known as the “first-crossing
distribution,” can be written as

f (S|δ0, S0)dS = δc − δ0√
2π (S − S0)3/2

exp

[
− (δc − δ0)2

2(S − S0)

]
dS

(1)

and around the whole universe, the mass function of the
virialized halos is obtained by setting S0 = 0 and δ0 = 0,
which is

dn

d ln M
= ρ̄m,0f (S)

∣∣∣∣ dS

dM

∣∣∣∣ . (2)

Besides the halo mass function, the excursion set theory can
also be used to model the halo formation and growth (Bond
et al. 1991; Lacey & Cole 1993) and halo clustering properties
(Mo & White 1996). Apart from the virialized halos, it could
be applied to various structures in the universe, such as the
voids in the galaxy distribution (Sheth & van de Weygaert 2004;
Paranjape et al. 2012a; Furlanetto & Piran 2006; D’Aloisio &
Furlanetto 2007) and the ionized bubbles during the early stages
of reionization (Furlanetto et al. 2004). It has also been extended
to the case of moving barriers (Sheth & Tormen 2002; Zhang &
Hui 2006). Strictly speaking, the probabilities given above are
calculated for uncorrelated steps, which is correct for the k-space
tophat filter but not for the real-space tophat filter. An excursion
set model with correlated steps has also been developed (Pan
et al. 2008; Paranjape et al. 2012b; Paranjape & Sheth 2012;
Musso & Sheth 2012; Farahi & Benson 2013; Musso & Sheth
2013), but below we will still use the uncorrelated model for its
simplicity.

2.2. The Bubble Model

In the excursion set model of ionized bubbles during reioniza-
tion, i.e., the “bubble model,” a region is considered ionized if it
could emit sufficient ionizing photons to ionize all of the hydro-
gen atoms in the region (Furlanetto et al. 2004). Assuming that
the number of the ionizing photons emitted is proportional to
the total collapse fraction of the region, the ionization condition
can be written as

fcoll � ξ−1, (3)

3
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where
ξ = fesc f� Nγ/H (1 + n̄rec)−1 (4)

is an ionizing efficiency factor, in which fesc, f�, Nγ/H, and n̄rec
are the escape fraction, star-formation efficiency, the number
of ionizing photons emitted per H atom in stars, and the
average number of recombinations per ionized hydrogen atom,
respectively. For a Gaussian density field, the collapse fraction
of a mass scale M with the mean linear overdensity δM at redshift
z can be written as (Bond et al. 1991; Lacey & Cole 1993)

fcoll(δM;M, z) = erfc

[
δc(z) − δM√

2[Smax − S(M)]

]
, (5)

where Smax = σ 2(Mmin), in which Mmin is the minimum collapse
scale, and δc(z) is the critical density for collapse at redshift z
linearly extrapolated to the present time. Mmin is usually taken
to be the mass corresponding to a virial temperature of 104 K, at
which atomic hydrogen line cooling becomes efficient. With this
collapse fraction, the self-ionization constraint can be written as
a barrier on the density contrast (Furlanetto et al. 2004):

δM > δB(M, z) ≡ δc(z) −
√

2[Smax − S(M)] erfc−1(ξ−1). (6)

Solving for the first-up-crossing distribution of random walks
with respect to this barrier, f(S,z), the bubbles-in-bubble effect
has been included and the size distribution of ionized bubbles
can be obtained from Equation (2) and then the average volume
fraction of ionized regions can be written as

QB
V =

∫
dM

dn

dM
V (M). (7)

In the linear approximate solution, δB(M, z) = δB,0 + δB,1S,
with the intercept of the S = 0 axis given by

δB,0 ≡ δc(z) −
√

2 Smax erfc−1(ξ−1), (8)

and the slope is

δB,1 ≡ ∂δB

∂S

∣∣∣∣
S→0

= erfc−1(ξ−1)√
2Smax

. (9)

The number density of H ii bubbles is then given by (Furlanetto
et al. 2004):

M
dn

dM
= 1√

2 π
ρ̄m,0

∣∣∣∣ dS

dM

∣∣∣∣ δB,0

S3/2
exp

[
−δ2

B(M, z)

2 S

]
. (10)

According to the bubble model, at high redshifts the regions
of high overdensity were ionized earlier, because only in
such regions were galaxy-harboring halos formed, producing
sufficient number of ionizing photons. In the excursion set
theory, this is represented by those trajectories that excurse over
the high barrier δB(S). As structures grow, the barrier function
δB(S) decreases and thus regions of relatively lower density
become ionized. As the density and size of bubbles increase,
they begin to overlap. As long as the topology of the bubbles
remains mostly discrete, this description is valid. However, at
a certain point, the intercept δB,0 drops low enough to 0 that
all trajectories that started out growing from the origin point
of the S–δ plane would have crossed the barrier and regions of
the average density of the universe would have been ionized.
In fact, the bubble description of H ii regions perhaps failed
slightly earlier, because when the ionized regions occupy a
sizable fraction of the total volume, they become connected,
the topology becomes sponge-like, and it is no longer possible
to treat the ionized regions as individual bubbles.

3. THE EXCURSION SET MODEL OF
NEUTRAL ISLANDS

3.1. The General Formalism

The bubble model succeeds in describing the growth of H ii
regions before the percolation of H ii regions. As a natural
generalization to the bubble model, we develop a model that
is appropriate for the late stage of reionization, when the
H ii regions have overlapped with each other and the neutral
regions are more isolated and embedded in the sea of photon-
ionized plasma and ionizing photons. According to the bubble
model, the regions with higher densities are ionized earlier and
by this stage even the regions of average density have been
ionized, so the remaining large-scale neutral regions (“islands”)
are underdense regions. Of course, besides these large neutral
regions, there are also galaxies and minihalos, in which neutral
hydrogen exists because they have very high density and hence
high recombination rates, which keep them from being ionized.
We shall not discuss these small, highly dense H i systems in
this paper; their number distribution can be predicted with the
usual halo model formalism (see Cooray & Sheth 2002 for a
review). The neutral islands during the late era of reionization
are more likely isolated than the ionized bubbles, similar to the
voids at lower redshifts.

In the island model, we assume that most of the universe
has been ionized, but the reionization has not been completed.
The condition for a region to remain neutral is just the opposite
of the ionization condition, that is, the total number of ionizing
photons is fewer than the number required to ionize all hydrogen
atoms in the region. At this stage, however, it is also important
to include the background ionizing photons that are produced
outside the region. An island of mass scale M at redshift z has
to satisfy the following condition in order to remain neutral:

ξfcoll(δM;M, z) +
Ωm

Ωb

NbackmH

MXH(1 + n̄rec)
< 1, (11)

where Nback is the number of background ionizing photons that
are consumed by the island and XH is the mass fraction of the
baryons in hydrogen. The first term on the left-hand side is due
to self-ionization, while the second term is due to the ionizing
background. Note that in the usual convention of the bubble
model, the number of the recombination factor (1 + n̄rec)−1

is absorbed in the ξ parameter and, to be consistent with the
literature, here we follow this convention. However, we should
keep in mind that if one changes n̄rec, the adopted ξ value should
be changed accordingly.

Using Equation (5), the condition of Equation (11) can be
rewritten as a constraint on the overdensity of the region:

δM < δI(M, z) ≡ δc(z) −
√

2[Smax − S(M)] erfc−1[K(M, z)],

(12)

where

K(M, z) = ξ−1

[
1 − Nback(1 + n̄rec)−1 mH

M(Ωb/Ωm)XH

]
.

(13)

Due to the contribution of the ionizing background photons, in
the excursion set model the barrier for the neutral islands is dif-
ferent from the barrier used in the bubble model (Equation (6)),
as the ionizing background would not be present when the bub-
bles are isolated. Below, we refer to a barrier with only the

4
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Figure 2. Island barriers in the model with uniform island-permeating ionizing
background photons. The barriers are plotted for redshifts 8.2, 8.0, and
7.8 as thick curves, from top to bottom, respectively. Here, we assume
{fesc, f�, Nγ/H , and n̄rec} = {0.2, 0.1, 4000, 1}. The bubble barriers (without
ionizing background) at the same set of redshifts are shown as thin curves. On
the top of the figure box, we also show the mass scales corresponding to S for
reference.

(A color version of this figure is available in the online journal.)

self-ionization term the “bubble barrier,” denoted by δB(M, z),
since it is used to compute the probability of forming bubbles.
Inclusion of the ionizing background would make the barrier
much more negative and we refer to the full barrier as the “is-
land barrier,” denoted by δI(M, z).

As discussed in the last section, the bubble barrier hinders
progress of structure formation. Even if we simply compute the
barrier as in the original bubble model, i.e., including only the
ionizing photons from collapsed halos within the region being
considered, it could have negative intercepts, i.e., δB(S = 0) < 0
(see, e.g., the thin lines in Figure 2). When the bubble barrier
passes through the origin point of the δ–S plane, all regions with
the mean density δ = 0 are ionized, meaning that most of the
universe is ionized. It is also from this moment onward that a
global ionizing background is gradually set up. We define the
redshift when this occurred as the “background onset redshift”
zback and it can be solved for from the following equation:

δI(S = 0; z = zback) = δc(zback)

−
√

2 Smax(zback) erfc−1(ξ−1) = 0. (14)

We take {fesc, f�,Nγ/H, and n̄rec} = {0.2, 0.1, 4000, 1} as the
fiducial set of parameters, so that ξ = 40 and zback = 8.6,
consistent with the observations of the quasar/gamma-ray burst
absorption spectra (Gallerani et al. 2008a, 2008b) and Lyman-α
emitter surveys (e.g., Malhotra & Rhoads 2006; Dawson et al.
2007), which suggest xH i � 1 at z ≈ 6. We note that this
background onset redshift is also consistent with our ionizing
background model presented in Section 4, in which the intensity
of the ionizing background starts to rapidly increase around
redshift z ∼ 8–9 (see Figure 5). However, the exact value of this

background onset redshift has little impact on the final model
predictions on the island distribution, as the ionizing background
increases quite rapidly during the late stage of reionization
(see Section 4) and the main background contribution to the
ionizations comes from the redshift range just above the redshift
under consideration.

As all trajectories start from the point (S, δ) = (0, 0) and
the island barrier has a negative intercept, we see that instead
of the usual up-crossing condition in the excursion set model,
here the condition of forming a neutral island is represented by a
down-crossing of the barrier. Once a random walk trajectory hits
the island barrier, we identify an island with the crossing scale
and assign the points inside this region to a neutral island of the
appropriate mass. Similar to the “cloud-in-cloud” problem in the
halo model (Bond et al. 1991) or the “void-in-void” problem in
the void model (Sheth & van de Weygaert 2004), there is also
an “island-in-island” problem. As in those cases, this problem
can also be solved naturally by considering only the first down-
crossings of the barrier curve.

For a general barrier, Zhang & Hui (2006) developed an
integral equation method for computing the first up-crossing
distribution. Similarly, denoting the island scale with its variance
SI, the first down-crossing distribution of random trajectories
with an arbitrary island barrier can be solved as

fI(SI) = −g1(SI) −
∫ SI

0
dS ′fI(S

′)[g2(SI, S
′)], (15)

where

g1(SI) =
[
δI(SI)

SI
− 2

dδI

dSI

]
P0[δI(SI), SI], (16)

g2(SI, S
′) =

[
2

dδI

dSI
− δI(SI) − δI(S ′)

SI − S ′

]

× P0[δI(SI) − δI(S
′), SI − S ′], (17)

and P0(δ, S) is the normal Gaussian distribution with variance
S, which is defined as

P0(δ, S) = 1√
2πS

exp

(
− δ2

2S

)
. (18)

These integral equations can be solved numerically with the
algorithm of Zhang & Hui (2006). We can then obtain the mass
function of islands at redshift z:

dn

d ln MI
(MI, z) = ρ̄m,0fI(SI, z)

∣∣∣∣ dSI

dMI

∣∣∣∣ . (19)

With the neutral island mass function, the volume fraction of
neutral regions is given by

QI
V =

∫
dMI

dn

dMI
V (MI). (20)

3.2. A Toy Model with Island-permeating
Ionizing Background Photons

To illustrate the basic ideas of the island model, let us
consider a toy model in which the ionizing photons permeated
through the neutral islands with a uniform density. This is
not a physically realistic model, because if ionizing photons
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can permeate through the neutral regions with sufficient flux
there would be no distinct ionizing bubbles or neutral islands,
although it may be possible to have a small component of
penetrating radiation such as hard X-rays, but that would be
much smaller than the total ionizing background. The reason
we consider this model is that it is possible to derive a simple
analytical solution, which could illustrate some aspects of the
island model.

The island-permeating ionizing background photons are
likely to be hard X-rays, whose mean free paths are extremely
large even in an IGM with a high neutral fraction. Therefore, we
use here an extremely simple model for the ionizing background,
in which the absorptions by dense clumps are neglected and the
mean free path of these background photons is comparable with
the Hubble scale. In any case, this is a toy model; a more realistic
model for the ionizing background will be described in the next
section. Furthermore, we assume that the total number of ion-
izing photons produced by redshift z is proportional to the total
collapse fraction of the universe at that redshift. Some of these
photons would have already been consumed by ionizations took
place before that redshift and the ionizing background photons
are what were left behind. The comoving number density of
background ionizing photons is then given by

nγ = n̄H fcoll(z) f� Nγ/H fesc − (
1 − QI

V

)
n̄H (1 + n̄rec), (21)

where n̄H is the average comoving number density of hydrogen
in the universe and the other parameters are the same as
those in Equation (3). The number density of ionizing photons
given by Equation (21) depends on the global neutral fraction
QI

V, which is only known after we have applied the ionizing
background intensity itself and solved the reionization model,
so this equation should be solved iteratively.

Supposing that the background ionizing photons are uni-
formly distributed and consumed within the islands, then Nback
is proportional to the island volume. We see from Equation (13)
that Nback cancels with the island mass M in the denominator
and we have Nback/M = nγ /ρ̄m. Therefore, in this model, the
K factor is essentially independent of M, i.e., K(M, z) = K(z).
Then, the island barrier becomes:

δI(M, z) = δc(z) −
√

2 [Smax − S(M)] erfc−1[K(z)]. (22)

For a given redshift, K = constant, so, similarly to the bubble
barrier, the only dependence of the island barrier on mass scale
comes from S(M). Taking the fiducial set of parameters, we
plot the island barriers at redshifts 8.2, 8.0, and 7.8 in Figure 2
with thick curves, from top to bottom, respectively. The bubble
barriers are also plotted with thin lines in the same figure. Indeed,
in this case, the island barriers have a similar shape as the bubble
barriers. Both barriers increase with S, as shown in Figure 2.

As the redshift decreases, the linearly extrapolated critical
overdensity δc(z) decreases and both barriers move downward.
For a given set of parameters, as the redshift decreases, nγ

increases and ρ̄m decreases, so that Nback/M increases. As a
result, the island barrier decreases faster than the bubble barrier
for the same decrease in redshift. We cut all the curves in Figure 2
at ξ Mmin, which is the scale for which a halo of Mmin can ionize
and set this value as the lower limit of a bubble. In this toy
model, we also cut the island scale at ξ Mmin, because at smaller
scales, the non-linear effect becomes important and the collapse
fraction computed from the extended Press–Schechter model
(Equation (5)), which is valid for a Gaussian density field, is
not accurate anymore. The exact value of the cutoff mass is not

Figure 3. First down-crossing distribution in the island-permeating photon
model as a function of the island scale at redshifts 8.2, 8.0, and 7.8, from
top to bottom, respectively.

(A color version of this figure is available in the online journal.)

critical for the illustrative purpose here. Note that this mass cut
of islands is not necessary for the more realistic island model
presented in Section 5, in which the lower limit of an island scale
is naturally set by the survival limit of islands in the presence of
an ionizing background (see the text in Section 5). Below this
scale, neutral hydrogen exists only in minihalos or galaxies.

The first down-crossing distribution for the islands in the
island-permeating photons model is plotted for three redshifts
in Figure 3; S and the corresponding mass scale M are shown on
the bottom and top axes, respectively. As expected, at small S, the
down-crossing probability is vanishingly small because in this
region the barrier is very negative and the average displacement
of the random trajectories is still very small. As S increases,
the trajectories excurse with wider ranges and in this model
the barriers also increase with increasing S, so the crossing
probability increases rapidly. For z = 8.2, the probability peaks
at SI ≈ 5.8 with fI ≈ 0.07, then begins to decrease, because
for many trajectories the first crossing happened earlier. As the
redshift decreases, the island barrier moves downward rapidly
and it becomes harder and harder to down-cross it at large scales,
with most of the first down-crossings happening at smaller
scales. As a result, the first down-crossing probability decreases
very rapidly at large scales and it increases at small scales.

The mass functions of islands at three redshifts are plotted
in the left panel of Figure 4. The volume filling factors of the
neutral islands are QI

V = 0.70 (z = 8.2), 0.59 (z = 8.0), and
0.46 (z = 7.8), respectively, and the corresponding ionizing
background can be expressed as an H i photoionization rate
of ΓH i = nγ (1 + z)3 c σi ≈ 1.6 × 10−11 s−1. Here, σi is the
frequency-averaged photoionization cross section of hydrogen.
This level of the ionizing background is unreasonably high,
because in this toy model we have neglected the effects of dense
clumps, minihalos, and any other possible absorbing systems
that could limit the mean free path of the ionizing photons.
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Figure 4. Left panel: the number distribution functions of neutral islands in the model with a uniform island-permeating ionizing background. The numerical solutions
are shown as thick curves for redshifts 8.2, 8.0, and 7.8, from top to bottom on the right, respectively. The corresponding volume filling factors of the islands are
QI

V = 0.70 (z = 8.2), 0.59 (z = 8.0), and 0.46 (z = 7.8), respectively. The thin curves show the distribution function given by the analytical form in the linear
approximation. Right panel: the size distributions of islands at the same redshifts as in the left panel, normalized by the total neutral fraction QI

V.

(A color version of this figure is available in the online journal.)

To facilitate comparisons with the bubble distribution function
in Furlanetto et al. (2004), we also plot in the right panel
the volume-weighted distribution of the effective radii of the
islands computed assuming that the islands are uniform spheres,
normalized by the total neutral fraction as in the bubble model.
Note that

V
dn

d ln R
∝ 3M2 dn

dM
∝ M

dn

d ln M
, (23)

so this also reflects how masses are distributed in islands of
different sizes.

Unsurprisingly, within a given volume, small islands are
much more numerous than larger ones, as shown in the left
panel. Similar to the general shape of the volume-weighted
bubble size distribution in the bubble model, there is a peak
in the island size distribution at each redshift in this model.
This means that in the photon-permeating model, the neutral
mass is dominated by those islands with a characteristic scale
where the distribution peak is located. As redshift decreases,
the left panel of Figure 4 shows that the number of large islands
decreases rapidly, while the number of the smallest ones even
increases a little. This evolutionary behavior is also shown in
the right panel of Figure 4, in which large bubbles gradually
disappeared, resulting in an increasing curve on the small
R end.

In fact, for this toy model, the barrier shape is very close to
a straight line, for which a simple analytical solution exists and
is very accurate. If we expand the barrier as a linear function of
S, we have

δI(M, z) = δI,0 + δI,1 S, (24)

where the intercept is

δI,0 ≡ δc(z) −
√

2 Smax erfc−1[K(z)] (25)

and the slope is

δI,1 ≡ erfc−1[K(z)]√
2 Smax

. (26)

Then, the mass function of the host islands can be expressed
analytically:

MI
dn

dMI
= 1√

2 π
ρ̄m,0

∣∣∣∣ dS

dMI

∣∣∣∣ |δI,0|
S3/2(MI)

exp

[
−δ2

I (MI, z)

2 S(MI)

]
.

(27)

These are plotted as thin lines in the left panel of Figure 4; we
see they almost coincide with the results of numerical solutions
(thick lines).

The model of this subsection is only for demonstrating the
formalism of calculation with additional (background) ionizing
photons and, for simplicity, we assumed that the consumed
photons are proportional to the island volume. This is not
realistic, because the ionization caused by a background is more
likely proportional to the surface area Σ of the island. In the next
sections, we shall consider more realistic models.

3.3. The Bubbles-in-islands

Before moving on to more realistic models, let us address the
problem of “bubbles-in-island” first. Above, we have assumed
that the neutral islands are simple spherical regions, but in fact
there might also be self-ionized regions inside an island. This
“bubbles-in-island” problem is similar but in the opposite sense
of the “voids-in-cloud” problem in the void model (Sheth & van
de Weygaert 2004; Paranjape et al. 2012a).

We identify the bubbles inside neutral islands in the excursion
set framework by considering the trajectories that first down-
crossed the island barrier δI at SI, then at a larger SB up-crossed
over the bubble barrier δB. The bubble barrier is the barrier
defined without considering the ionizing background, since this

7
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background should be absent inside large neutral regions. Note
that in the toy model discussed above, the ionizing background
permeates through the neutral islands. It does not make sense
to distinguish the island barriers outside and the bubble barriers
inside and the problem of bubbles-in-island cannot be discussed.

In the following, we denote the host island scale (including the
bubbles inside) and the bubble scale by SI and SB, respectively,
the first down-crossing distribution by fI(SI, δI), and the condi-
tional probability for a bubble form inside as fB(SB, δB|SI, δI).
The probability distribution of finding a bubble of size SB in a
host island of size SI is then given by

F(SB, SI) = fI(SI, δI) · fB(SB, δB|SI, δI). (28)

The neutral mass of an island is given by the total mass of
the host island minus the masses of bubbles of various sizes
embedded in the host island, i.e.,

M = MI(SI) −
∑

i

Mi
B

(
Si

B

)
. (29)

The conditional probability distribution fB(SB, δB|SI, δI) char-
acterizes the size distribution of bubbles inside an island of scale
SI and overdensity δI and fB(SB, δB|SI, δI)dSB is the conditional
probability of a random walk that first up-crosses δB between
SB and SB + dSB, given a starting point of (SI, δI).

In order to compute fB, we could effectively shift the origin
point of coordinates to the point (SI, δI), then the method
developed by Zhang & Hui (2006) is still applicable. The
effective bubble barrier becomes:

δ′
B = δB(S + SI) − δI(SI), (30)

where S = SB − SI. Given an island (SI, δI), on average, the
fraction of volume (or mass) of the island occupied by bubbles
of different sizes is

qB(SI, δI; z) =
∫ Smax(ξ ·Mmin)

SI

[1 + δI D(z)]fB(SB, δB|SI, δI)dSB.

(31)

The factor [1 + δI D(z)] enters because these bubbles are
in the environment with underdensity of δI D(z), where D(z)
is the linear growth factor. Then, the net neutral mass of the host
island can be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking
into account the effect of bubbles-in-island, the neutral mass
function of the islands at a redshift z is

dn

dM
(M, z) = dn

dMI

dMI

dM
= ρ̄m,0

MI
fI(SI, z)

∣∣∣∣ dSI

dMI

∣∣∣∣ dMI

dM
. (32)

4. THE IONIZING BACKGROUND

The intensity of the ionizing background is very important
in the late reionization epoch. However, it has only been
constrained after reionization from the mean transmitted flux
in the Lyman-α forest (e.g., Wyithe & Bolton 2011; Calverley
et al. 2011) and in any case it evolves with redshift and depends
on the detailed history of reionization. Conversely, the evolution
of the ionizing background also affects the reionization process.

In the toy model presented in Section 3.2, we considered an
island-permeating ionizing background, for which the absorp-
tions from dense clumps are neglected and the resulting intensity
of the ionizing background is unreasonably high. Here, we give

a more realistic model for the ionizing background. Due to the
existence of dense clumps that have high recombination rates
and limit the mean free path of the ionizing background photons,
an island does not see all the ionizing photons emitted by all the
sources, but only out to a distance of roughly the mean free path
of the ionizing photons. The comoving number density of back-
ground ionizing photons at a redshift z can be modeled as the
integration of escaped ionizing photons that are emitted from
newly collapsed objects that survived to the distances between
the sources and the position under consideration:

nγ (z) =
∫

z

n̄H

∣∣∣∣dfcoll(z′)
dz′

∣∣∣∣ f� Nγ/H fesc exp

[
− l(z, z′)

λmfp(z)

]
dz′,

(33)

where l(z, z′) is the physical distance between the source at
redshift z′ and the redshift z under consideration and λmfp is the
physical mean free path of the background ionizing photons.

Various absorption systems could limit the mean free path
of the background ionizing photons. The most frequently
discussed absorbers are LLSs, which have large enough H i
column densities to remain self-shielded (e.g., Miralda-Escudé
et al. 2000; Furlanetto & Oh 2005; Bolton & Haehnelt 2013).
Minihalos are also self-shielding systems that could block
ionizing photons. Furlanetto & Oh (2005) developed a simple
model for the mean free path of ionizing photons in a universe
where minihalos dominate the recombination rate. However, as
also discussed in Furlanetto & Oh (2005), the formation and
the abundance of minihalos are highly uncertain (Oh & Haiman
2003) and minihalos would be probably evaporated during the
late epoch of reionization (Barkana & Loeb 1999; Shapiro et al.
2004), although they may consume substantial ionizing photons
before they are totally evaporated (Iliev et al. 2005). In addition
to LLSs and minihalos, the accumulative absorption by low
column density systems cannot be neglected (Furlanetto & Oh
2005), but the quantitative contributions from these systems are
quite uncertain and need to be calibrated by high-resolution
simulations or observations.

Here, we focus on the effect of LLSs on the mean free path
of ionizing photons and use a simple model for the IGM density
distribution developed by Miralda-Escudé et al. (2000, hereafter
MHR00). In the MHR00 model, the volume-weighted density
distribution of the IGM measured from numerical simulations
can be fit by the formula

PV(Δ) dΔ = A0 exp

[
− (Δ−2/3 − C0)2

2 (2δ0/3)2

]
Δ−β dΔ (34)

for z ∼ 2–6, where Δ = ρ/ρ̄. Here, δ0 and β are parameters
fitted to simulations. The value of δ0 can be extrapolated to
higher redshifts by the function δ0 = 7.61/(1 + z) (MHR00)
and we take β = 2.5 for the redshifts of interest. The parameters
A0 and C0 are set by normalizing PV(Δ) and ΔPV(Δ) to unity.

Using the density distribution of the IGM, the mean free path
of ionizing photons can be determined by the mean distance
between self-shielding systems with relative densities above a
critical value Δcrit and can be written as (Choudhury & Ferrara
2005, MHR00)

λmfp = λ0

[1 − FV(Δcrit)]2/3
, (35)
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where FV(Δcrit) is the volume fraction of the IGM occupied by
regions with the relative density lower than Δcrit, given by

FV(Δcrit) =
∫ Δcrit

0
PV(Δ) dΔ. (36)

Following Schaye (2001) and assuming photoionization equi-
librium and a Case A recombination rate, the critical relative
density for a clump to self-shield can be approximately written
as (see also Furlanetto & Oh 2005; Bolton & Haehnelt 2013,
MHR00)

Δcrit = 36 Γ2/3
−12 T

2/15
4

( μ

0.61

)1/3
(

fe

1.08

)−2/3 (
1 + z

8

)−3

,

(37)

where Γ−12 = ΓH i/10−12 s−1 is the hydrogen photoionization
rate in units of 10−12 s−1, T4 = T/104 K is the gas temperature
in units of 104 K, μ is the mean molecular weight, and fe =
ne/nH is the free electron fraction with respect to hydrogen. For
the mostly ionized IGM during the late stage of reionization, we
assume T4 = 2.

The H i photoionization rate ΓH i in Equation (37) is related to
the total number density of ionizing photons nγ in Equation (33)
by

ΓH i =
∫

dnγ

dν
(1 + z)3 c σν dν, (38)

where dnγ /dν is the spectral distribution of the background
ionizing photons, c is the speed of light, and σν = σ0 (ν/ν0)−3

with σ0 = 6.3 × 10−18 cm2 and ν0 being the frequency of
hydrogen ionization threshold. Assuming a power-law spectral
distribution of the form dnγ /dν = (n0

γ /ν0)(ν/ν0)−η−1, in
which n0

γ is related to the total photon number density nγ by
nγ = n0

γ /η, then the H i photoionization rate can be written as

ΓH i = η

η + 3
nγ (1 + z)3 c σ0. (39)

In the following, we assume η = 3/2 to approximate the spectra
of starburst galaxies (Furlanetto & Oh 2005).

It has been suggested that the characteristic length λ0 in
Equation (35) is related to the Jeans length and can be fixed
by comparing with low-redshift observations (Choudhury &
Ferrara 2005; Kulkarni et al. 2013). We take λ0 = AmfprJ,
where rJ is the physical Jeans length. Taking the proportional
constant Amfp as a free parameter, the comoving number den-
sity of background ionizing photons nγ or, equivalently, the
H i photoionization rate ΓH i, can be solved by combining
Equations (33)–(37) and (39). We scale the hydrogen photoion-
ization rate to be ΓH i = 10−12.8 s−1 at redshift 6, as suggested
by recent measurements from the Lyman-α forest (Wyithe &
Bolton 2011; Calverley et al. 2011). Then, the parameter Amfp
is constrained to be Amfp = 0.482. The redshift evolution of the
hydrogen photoionization rate due to the ionizing background
is shown in Figure 5. Note that by scaling the background pho-
toionization rate of hydrogen to the observed value, we implic-
itly take into account the possible absorptions due to minihalos
and low column density systems.

In the above treatment of the ionizing background, the
derived intensity is effectively the value averaged over the
whole universe. Due to the clustering of the ionizing sources,
however, the ionizing background should fluctuate significantly

Figure 5. Redshift evolution of the hydrogen ionization rate Γ−12.

from place to place at the end of reionization. The detailed space
fluctuations of the ionizing background would be challenging to
incorporate and for the purpose of illustrating the island model
and predicting the statistical results in the next section, we use
here a uniform ionizing background with the averaged intensity.

5. THE ISLAND MODEL OF REIONIZATION

5.1. Ionization at the Surfaces of Neutral Islands

We now use the excursion set model developed above to
study the neutral islands during the reionization process. In
Section 3.2, we used a simple toy model to illustrate the basic
formalism, but we have noted that it is based on an unrealistic
assumption that the ionizing photons permeate through the
neutral islands. Here, we consider more physically motivated
model assumptions.

We assume that a spatially homogeneous ionizing background
flux is established throughout all of the ionized regions at
redshift zback. These ionizing photons cannot penetrate the
neutral islands, but were consumed near the surface of the
islands. We may then assume that the number of photons
consumed by an island at any instant is proportional to its surface
area or, in terms of mass, M2/3. The number of background
ionizing photons consumed is then given by

Nback =
∫

F (z) ΣI(t) dt, (40)

where ΣI is the physical surface area of the neutral island,
while F (z) is the physical number flux of background ionizing
photons, which is related to the comoving photon number
density by F (z) = nγ (z) (1 + z)3 c/4. For spherical islands, the
surface area is related to the scale radius by ΣI = 4πR2/(1+z)2,
in which R is in comoving coordinates. For non-spherical
islands, one could still introduce a characteristic scale R and
the area would be related to R2. In fact, under the action of
the ionizing background, non-spherical neutral regions have a
tendency to evolve to spherical ones because a sphere has a
minimum surface area for a given volume.

9
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Figure 6. Left panel: the island barriers for our fiducial model. The solid, dashed, and dot-dashed curves are for redshifts 6.9, 6.7, and 6.5, from top to bottom,
respectively, and the corresponding neutral fractions of the universe (excluding the bubbles-in-islands) are QH i

V = 0.17, 0.11, and 0.05, respectively. Right panel: the
corresponding first down-crossing distributions at the same redshifts as in the left panel.

(A color version of this figure is available in the online journal.)

The usual excursion set approach does not contain time
or history and everything is determined from the information
at a given redshift. However, we see from Equation (40)
that the consumption of the ionizing background photons by
an island depends on its history. Below, we try to solve
this problem by considering some simplified assumptions.
We assume that the neutral islands shrink with time and the
hydrogen number density around an island is nearly a constant,
which is approximately true when we are considering large
scales. For simplicity, let us consider a spherical island. When
the island shrinks, counting the required number of ionizations
gives

nH(R)(1 + n̄rec) 4πR2 (−dR) = F (z)
4πR2

(1 + z)2
dt, (41)

where the hydrogen number density nH is in comoving coordi-
nates, so that

dR

dt
= − F (z)/(1 + z)2

nH(R)(1 + n̄rec)
≈ −F (z)/(1 + z)2

n̄H(1 + n̄rec)
. (42)

Integrating from the background onset redshift zback to redshift
z, we have

ΔR ≡ Ri − Rf =
∫ zback

z

F (z)

n̄H(1 + n̄rec)

dz

H (z)(1 + z)3
, (43)

where Ri and Rf denote the initial and final scale of the island,
respectively. This shows that the change in R is independent of
the mass of the island, but depends solely on the elapsed time.
The total number of background ionizing photons consumed is
given by

Nback = 4π

3

(
R3

i − R3
f

)
n̄H(1 + n̄rec). (44)

5.2. Island Size Distribution

With this model for the consumption behavior of the back-
ground ionizing photons, and taking the fiducial set of param-
eters, we plot the island barriers of in Equation (12) in the left
panel of Figure 6 for several redshifts. The corresponding first
down-crossing distributions as a function of the host island scale
SI (i.e., including ionizing bubbles inside the island) are plotted
in the right panel of Figure 6.

Unlike the toy model with permeating ionizing photons, in
this model the shape of the island barriers is drastically different
from the bubble barriers; hence, the different shape of the
first down-crossing distribution curves. The island and bubble
barriers have the same intercept at S ∼ 0, because on very
large scales, the contribution of the ionizing background, which
is proportional to the surface area, would become unimportant
when compared with the contribution of the self-ionization,
which is proportional to the volume. However, the island barriers
bend downward at S > 0 because of the contribution of the
ionizing background. As the barrier curves become gradually
steeper when approaching larger S, it is increasingly harder for
the random walks to first down-cross them at smaller scales,
even though on the smaller scales the dispersion of the random
trajectory grow larger. As a result, the first down-crossing
distribution rapidly increases to a peak value and drops down
on small scales and there is a mass cut on the host island scale,
MI,min, at each redshift in order to make sure K(M, z) � 0.
This lower cut on the island mass scale assures ΔR � Ri ,
i.e., the whole island is not completely ionized during this time
by the ionizing background and MI,min is the minimum mass of
the host island at zback that can survive until a redshift z under
consideration.

The mass distribution function of the host islands can be
obtained directly from Equation (19), from which we can see
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Figure 7. Mass function of the host islands in terms of the mass at a redshift z

(thick lines) and the initial mass at a redshift zback (thin lines) for our fiducial
model. The solid, dashed, and dot-dashed lines are for z = 6.9, 6.7, and 6.5,
from top to bottom, respectively.

(A color version of this figure is available in the online journal.)

clearly the shrinking process of these islands. What we are
interested is the mass of the host island at redshift z, but
the mass scale M in Equations (11)–(13) is the initial island
mass at redshift zback. We may convert the two masses using
Equation (43):

Mf

Mi

=
(

1 − ΔR

Ri

)3

. (45)

Islands with an initial radius Ri < ΔR would not survive and
islands with a larger radius would also evolve into smaller ones.

The distributions of the host island mass (including ionized
bubbles inside) are plotted for z = 6.9, 6.7, and 6.5 in Figure 7 as
thick lines. The distributions of the corresponding progenitors at
redshift zback are plotted as thin lines. Using our fiducial model
parameters, the volume filling factors of these progenitors at
zback are Qhost

V,i = 0.51, 0.31, and 0.14, for the host islands that
survive at z = 6.9, 6.7, and 6.5, respectively. The initial mass
distribution of these progenitors all have a very steep lower mass
cutoff, because below that minimal mass by redshift z the whole
island would be completely ionized by the background photons.
Due to the mapping of Equation (45), the cutoff in the final
mass distribution is not as sharp as the initial mass distribution
and the whole distribution curve begins to bend down at lower
masses.

5.3. Bubbles-in-islands

However, the total mass function of the host islands does
not give a full picture of the reionization process, since there
could be ionized bubbles inside these islands. Even though the
outside ionization background is shielded from the center of
the neutral islands, there might be galaxies that form inside the
neutral islands and the photons emitted by these galaxies ionize
part of the islands. The neutral islands are located in underdense
regions, so fewer galaxies formed. Nevertheless, by the end of
the epoch of reionization, galaxy formation inside them cannot
be neglected.

As discussed in Section 3.3, the distribution of bubbles in
an island can be calculated from the conditional probability of
up-crossing the bubble barrier after down-crossing the island
barrier. We plot the resulting mass function of inside bubbles
for three different host islands at redshift z = 6.9 in the
left panel of Figure 8. The masses of the host islands are

Figure 8. Left panel: the mass function of bubbles in an island of scale SI = 0.01, 0.05, and 0.1, from bottom to top, respectively. The redshift shown here is 6.9.
Right panel: the average mass fraction of bubbles in an island as a function of the island scale at redshifts z = 6.9, 6.7, and 6.5, from top to bottom, respectively. The
percolation threshold pc = 0.16 is also shown as the horizontal line.

(A color version of this figure is available in the online journal.)
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Figure 9. Left panel: the mass function of neutral islands at redshift z = 6.9, 6.7, and 6.5, from top to bottom, respectively. The corresponding volume filling factor of
the neutral islands at these redshifts are QH i

V = 0.17, 0.11, and 0.05, respectively. Right panel: the size distribution of neutral islands, with the scale R converted from
their volume, at redshifts z = 6.9, 6.7, and 6.5, from bottom to top at the center, respectively.

(A color version of this figure is available in the online journal.)

M ≈ 2 × 1017M� (SI = 0.01), 2 × 1016M� (SI = 0.05),
and 8 × 1015M� (SI = 0.1), from bottom to top, respectively.
We see the bubbles-in-islands follow a power-law distribution,
with small bubbles being more numerous. The upward trend at
the large-scale end on each mass distribution curve is due to the
numerical error in the up-crossing probability when the inside
bubble scale approaches the host island scale.

To assess the total amount of bubbles-in-islands, we plot in
the right panel of Figure 8 the average mass fraction of bubbles-
in-island as a function of the host island mass. We see that there
could be a sizable fraction of the host island that is ionized
from within, especially for the larger islands. At z = 6.9 and
for M > 1012M�, this fraction is higher than 35% and it is
higher than 60% for M > 1014M� host islands at the same
redshift, so within these large neutral islands smaller ionized
bubbles flourish. From the excursion set point of view, it is not
unusual for the random trajectory to increase the bubble barrier
after just down-crossing the island barrier, especially at large
scales where the displacement between the island barrier and the
bubble barrier is small. Therefore, even though the whole region
is underdense, a large fraction of it could be sufficiently dense
for galaxies to form and create ionized regions around them. The
bubble fraction drops sharply for smaller islands, because the
island barrier departs from the bubble barrier rapidly at small
scales and it is less likely to form galaxies inside small islands
with very low densities. Interestingly, as redshift decreases, this
fraction decreases. For z = 6.5, it is about 7% for M ∼ 1012M�
host islands and about 42% for M ∼ 1014M� host islands.
This is because what are left at later times are relatively deep
underdense regions and the probability of forming galaxies in
such underdense environments is lower.

Excluding the bubbles-in-islands, we plot the mass function
and the size distribution of the net neutral islands in the left and
right panels of Figure 9, respectively. The solid, dashed, and
dot-dashed lines are for z = 6.9, 6.7, and 6.5, with a volume
filling factor of the net neutral islands of QH i

V = 0.17 (z =
6.9), 0.11 (z = 6.7), and 0.05 (z = 6.5), respectively. Similar to

the host island mass function shown in Figure 7, there is also a
small-scale cutoff on the neutral island mass due to the existence
of an ionizing background. Because of the high bubbles-in-
island fraction in large host islands, excluding the bubbles-in-
islands results in much fewer large islands. As seen from the size
distribution in the right panel, in which the scale R is converted
from the neutral island volume assuming a spherical shape,
both the mass fractions of large and small islands decrease with
time and the distribution curve becomes sharper and sharper,
but the characteristic scale of the neutral islands remains almost
unchanged.

Figure 9 shows basically the number and mass distribution of
the neutral components of the host islands. However, the results
of the bubbles-in-island fraction in the right panel of Figure 8
show that within large host islands, a large fraction of the island
volume could be ionized by the photons from newly formed
galaxies within. A naive application of the host island mass
function may greatly overestimate the mean neutral fraction of
the universe, while the application of the neutral island size
distribution, as shown in the right panel of Figure 9, would
never reveal the real image of the ionization field. Indeed, if
there are so many ionized bubbles inside large neutral islands, it
may be difficult to visually identify the host islands. In light of
this, we need to consider the condition under which the isolated
island picture is still applicable. In particular, if the bubbles
inside an island are so numerous and large as to overlap with
each other, they may form a network that percolates through the
whole island, thereby breaking the island into pieces or forming
a sponge-like topology of neutral and ionized regions.

5.4. Percolation Model

Within the spherical model, it is difficult to deal with the
sponge-like topology, but we may limit ourselves to the case
where the treatment is still valid. According to the theory of
percolation, in a binary phase system, percolation of one phase
occurs when the filling factor of it exceeds a threshold frac-
tion pc (see, e.g., Bunde & Havlin 1991). In the context of
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Figure 10. Basic island barriers (green curves), the percolation threshold
induced barriers (red curves), and the effective island barriers (black curves) for
our fiducial model. The solid, dashed, and dot-dashed curves are for redshifts
6.9, 6.7, and 6.5, from top to bottom, respectively.

(A color version of this figure is available in the online journal.)

cosmology, Klypin & Shandarin (1993) obtained the percola-
tion threshold pc for the clustered large-scale structures from
cosmological simulations. However, the spatial distribution of
ionized bubbles and neutral islands is much less filamentary
than the gravitationally clustered dark matter or galaxies. As the
ionization field follows the density field (Battaglia et al. 2012b),
which is almost Gaussian on large scales (Planck Collaboration
et al. 2013b), here we use the percolation threshold for a Gaus-
sian random field of pc = 0.16 (Klypin & Shandarin 1993),
below which we may assume that the bubbles-in-island do not
percolate through the whole island.

The problem of percolation appears in several stages of reion-
ization. At the early stage of reionization, the filling factor of
ionized bubbles increases as the bubble model predicted. Once
the bubble filling factor becomes larger than the percolation
threshold pc, the ionized bubbles are no longer isolated and the
predictions made from the bubble model are not accurate any-
more. Therefore, the threshold pc sets a critical redshift zBp,
below which the bubble model may not be reliable. Similarly,
the model of neutral islands can make accurate predictions only
below a certain redshift zIp, when the island filling factor is be-
low pc. The ionizing background was set up after the ionized
bubbles percolated but before the islands were all isolated, so
zBp > zback > zIp. Finally, the percolation threshold may also
be applied to the bubbles-in-island fraction. An island with a
high value of qB may not qualify as a whole neutral island and
the bubbles inside it are probably not isolated regions.

It may be desirable to consider also the distribution of those
bona fide neutral islands, for which the bubble fraction is below
the percolation threshold, i.e., after excluding those islands
with qB > pc. This percolation criterion of qB < pc acts
as an additional barrier for finding islands; those islands with
high bubbles-in-island fractions are excluded, but the neutral

Figure 11. Size distribution of neutral islands in our fiducial model taking into
account the bubbles-in-island effect and the pc cutoff on the bubbles-in-island
fraction. The solid, dashed, and dot-dashed curves are for redshifts z = 6.9, 6.7,
and 6.5, respectively, and the corresponding volume filling factors of neutral
islands are QH i

V = 0.16 (z = 6.9), 0.09 (z = 6.7), and 0.04 (z = 6.5),
respectively.

(A color version of this figure is available in the online journal.)

regions in them contribute to the number of smaller islands.
This additional barrier is obtained by solving qB(SI, δI; z) < pc,
and is plotted in Figure 10 with red lines for redshift z =
6.9, 6.7, and 6.5, from top to bottom, respectively. The basic
island barriers are also plotted in the same figure with green
lines. The combined effective island barriers are shown as black
lines. The barrier that results from the percolation criterion
takes effect at large scales as larger islands could have larger
bubbles-in-island fractions and larger-scale islands need to be
more underdense to keep the whole region mostly neutral. The
basic island barrier (Equation (12)) is effective on small scales,
because small islands can be more easily swallowed by the
ionizing background. According to the percolation criterion,
the island model can be reasonably applied at redshifts below
zIp ∼ 6.9 in our fiducial model, although for other parameter
sets the value would be different.

With the combined island barrier taking into account the
bubbles-in-island effect, we find host islands by computing the
first down-crossing distribution and find bubbles in them by
computing the conditional first up-crossing distribution with
respect to the bubble barrier. Subtracting the bubbles-in-islands,
the mass distribution of the neutral islands and the volume filling
factor of the neutral components QH i

V are obtained. The resulting
size distribution of the neutral islands in terms of the effective
radii is plotted in Figure 11 for redshifts z = 6.9, 6.7, and 6.5.
The distribution curve is normalized by the total neutral fraction
in each redshift, which is QH i

V = 0.16 (z = 6.9), 0.09 (z = 6.7),
and 0.04 (z = 6.5), respectively.

We note that after applying the pc cutoff, the resulting neutral
fraction at a specific redshift differs a little from the model
without the pc cutoff. Intuitively, the percolation threshold acts
only as a different definition of islands and should not change the
ionization state of the IGM. This is true because those islands
excluded by the percolation threshold will be considered to
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be pieces of smaller islands that still contribute to the total
neutral fraction. However, two competitive facts are taking
effect in our island-finding procedure, which could make the
results different. First, we have assumed that the bubbles-in-
islands are all ionized, but neglected those small islands that
could possibly exist in these relatively large bubbles. When
applying the pc cutoff, some large islands with large bubbles
are excluded and the random walk would continue to enter
the scales smaller than the bubbles and could possibly find
smaller islands that are embedded in large bubbles. Therefore,
the model with a pc cutoff could find more small islands that
are not accounted for in the model without a pc cutoff and
it tends to predict higher neutral fraction. On the other hand,
one large island with a large bubbles-in-island fraction is taken
as several smaller islands in the model with a pc cutoff and
small islands are more significantly influenced by the ionizing
background. This fact results in a lower neutral fraction for the
model with a pc cutoff. As the redshift decreases, more and
more small islands are swallowed by the ionizing background,
so the second effect gradually dominates over the first one. With
the fiducial parameters used here, the second effect dominates
for the redshifts of interest and the neutral fractions predicted in
the model with a pc cutoff are slightly lower than in the model
without a pc cutoff.

As shown in Figure 11, in this model, the island size
distribution after zIp also has a peak. For this set of model
parameters, the characteristic size of neutral islands at z = 6.9
is about 1.6 Mpc, but the distribution extends over a range,
with the lower value as small as 0.2 Mpc and the high value
as large as 10 Mpc. As the redshift decreases, small islands
disappear rapidly because of the ionizing background. This is
qualitatively consistent with simulation results (Shin et al. 2008)
in which small islands are much rarer during late reionization
compared with those small ionized bubbles in the early stage. As
the reionization proceeds, the large islands shrink and the small
islands are swallowed by the ionizing background, with the
small ones disappearing more rapidly and the peak position of
the distribution curve shifting slightly toward larger scales, but
it does not change much. Due to the rapidly decreasing number
of small islands, the distribution curve becomes narrower. The
distribution also becomes taller with decreasing redshift because
it is normalized against the volume neutral fraction QH i

V at each
redshift. With QH i

V decreasing, the normalized distribution has
narrower and higher peaks, but the absolute number of neutral
islands per comoving volume is decreasing.

6. CONCLUSION

This paper is devoted to the understanding of the late stage
of the epoch of reionization. According to the bubble model
(Furlanetto et al. 2004) and radiative transfer simulations,
reionization started with the ionization of regions with higher-
than-average densities, as stars and galaxies formed earlier
in such regions, while the regions with lower-than-average
densities remained neutral for a longer time. Inspired by the
bubble model, here we try to understand the evolution of
the remaining large neutral regions during the late stage of
reionization, which we call “islands.” We developed a model
of their mass distribution and evolution based on excursion set
theory. The excursion set theory is appropriate for constructing
the ionized bubble model and the neutral island model because
the reionization field follows the density field on large scales
(Battaglia et al. 2012b).

With the inclusion of an ionizing background, which should
exist after the percolation of ionized regions, we set an island
barrier on the density contrast in the excursion set theory for the
islands to remain neutral and an island was identified when the
random walk first down-crosses the island barrier. We presented
algorithms for computing the first down-crossing distribution,
obtained mass function for the islands, and also provide a
semi-empirical way to determine the intensity of the ionizing
background during the late reionization era.

We first illustrated the formalism of computation with a sim-
ple toy model, where the number of consumed ionizing back-
ground photons per unit time is proportional to the volume of
the island, i.e., the ionizing background is uniformly distributed
within the island. While this is not realistic, it is a relatively
simple way of deriving the analytical expression of the neu-
tral island mass function. The model predicts a large number
of small islands. We then considered a more realistic model,
where the ionizing background only causes the ionization at the
surface of the island, so that the consumption rate of the ionizing
background is proportional to the surface area of the island. Un-
der the action of such ionizing photons, an island would shrink
with time. The larger islands shrink, while smaller ones disap-
pear. As a result of this, there is a minimal initial mass at the
“background onset redshift” for the islands. We obtained the
distribution function of the initial and final mass of the islands
at different redshifts.

However, because ionized bubbles also formed within the
large neutral islands, these bubbles-in-islands must be take into
account. For this, we considered two barriers, the island barrier
and the bubble barrier, at the same time. The former includes
the effect of ionizing background at the surface of the island,
while the latter does not. The bubbles embedded in an island
were found by computing the first up-crossings over the bubble
barrier after the random walks have down-crossed the island
barrier at the host island scale and the volume fraction of the
bubbles-in-island is obtained. We find that for a large island, a
large fraction of its interior could be ionized.

The bubbles-in-island problem limited the applicability of
this model, because in non-symmetrical cases, the presence of
bubbles may break the island into small pieces, which would
increase the exposed surface of the island. To address this
problem, we applied a percolation criterion as an additional
island barrier on large scales. Islands with large bubbles-in-
island fractions are excluded, because in the real world where
the bubbles are not spherical and concentric, these bubbles
would have percolated through the island and broken it into
smaller islands. Using the combined island barrier and excluding
the ionized bubbles in the islands, the volume filling factor of
neutral islands in the universe and the size distribution of the
neutral islands were derived. Our island model applies to the
large-scale structure of neutral regions in the linear regime,
but it may be possible to account for the small-scale physics,
such as the minihalo absorptions, by introducing a consuming
term in the formula (e.g., Furlanetto & Oh 2005; Yue & Chen
2012).

At a given instant shortly after the isolation of islands, our
model predicts that the size distribution of the islands has a
peak of a few Mpc, depending on the model parameters. As
the redshift decreases, the small islands disappear rapidly while
the large ones shrink, but the characteristic scale of the islands
does not change much. Eventually, all these large-scale neutral
islands are swamped by ionization and only compact neutral
regions such as galaxies or minihalos remain.
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In our semi-empirical model of the ionizing background,
the main absorbers of the ionizing photons are self-shielded
LLSs. However, one needs to check to what extent the lower
density neutral islands regulate the mean free path of the ionizing
photons. The mean free path due to the existence of islands can
be estimated by λI

mfp(z) ∼ 1/[
∫

πR2
f (dnf/dMf ) dMf], where

Rf and dnf/dMf are the size and mass function of final host
islands, respectively, at redshift z. We found that at z = 6.9, the
mean free path of ionizing photons due to islands is λI

mfp ∼ 1.12
physical Mpc as compared with that due to LLSs, λmfp ∼ 0.30
physical Mpc. At z = 6.7, λI

mfp ∼ 2.68 physical Mpc as
compared with λmfp ∼ 0.38 physical Mpc, while z = 6.5,
λI

mfp ∼ 7.93 physical Mpc as compared with λmfp ∼ 0.48
physical Mpc. Therefore, the mean free path of ionizing photons
due to islands is always much larger than the mean free path due
to LLSs and the effect of islands on the ionizing background is
negligible compared with the effect of small-scale dense clumps.
As the redshift decreases, the large-scale islands become less
and less important in regulating the mean free path of ionizing
photons. Considering the dominant contribution of LLSs to the
IGM opacity, would they also contribute significantly to the
neutral volume during the late era of reionization? The volume
fraction of these LLSs can be estimated by 1 − FV(Δcrit), which
is about 0.0062, 0.0046, and 0.0036 for z = 6.9, 6.7, and 6.5,
respectively, much lower than the volume filling factor of the
islands. Because of the much lower number density and larger
size of islands, the mean free path due to islands is much larger
than that due to LLSs, even though the volume filling fraction of
islands is larger. Therefore, the majority of the neutral volume
of the IGM is occupied by the islands, which is consistent with
our model assumption, but the opacity of the IGM is dominated
by the dense LLSs.

The results shown here are primarily qualitative; the quanti-
tative predictions are dependent on our model assumptions and
model parameters. Current observations have not yet been able
to constrain such parameters effectively and they can be redshift
dependent. Our model assumptions may also be too simplistic;
for example, we may overpredict the number of large islands
because they are more likely non-spherical and the ionizing
background should have stronger effect on them as they have
a larger surface area for the same volume. These uncertainties
could be constrained in the future if the model predictions are
compared with 21 cm and/or other observations and as the prop-
erties of ionizing sources, the evolution of neutral islands, and
the intensity of the ionizing background become better known.
We shall investigate the late reionization epoch by numerical
simulations and compare it with the analytical models in subse-
quent works.
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