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ABSTRACT

The Space Surveillance Telescope (SST) is a Defense Advanced Research Projects Agency program designed to
detect objects in space like near Earth asteroids and space debris in the geosynchronous Earth orbit (GEO) belt.
Binary hypothesis test (BHT) methods have historically been used to facilitate the detection of new objects in
space. In this paper a multi-hypothesis detection strategy is introduced to improve the detection performance of
SST. In this context, the multi-hypothesis testing (MHT) determines if an unresolvable point source is in either
the center, a corner, or a side of a pixel in contrast to BHT, which only tests whether an object is in the pixel or
not. The images recorded by SST are undersampled such as to cause aliasing, which degrades the performance of
traditional detection schemes. The equations for the MHT are derived in terms of signal-to-noise ratio (S/N), which
is computed by subtracting the background light level around the pixel being tested and dividing by the standard
deviation of the noise. A new method for determining the local noise statistics that rejects outliers is introduced in
combination with the MHT. An experiment using observations of a known GEO satellite are used to demonstrate
the improved detection performance of the new algorithm over algorithms previously reported in the literature. The
results show a significant improvement in the probability of detection by as much as 50% over existing algorithms.
In addition to detection, the S/N results prove to be linearly related to the least-squares estimates of point source
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irradiance, thus improving photometric accuracy.
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1. INTRODUCTION

Through the National Aeronautics and Space Administration
(NASA) Multiyear Authorization Act of 1990 and the NASA
Authorization Act of 2005, the U.S. Congress mandated NASA,
in coordination with the Department of Defense and other
international space agencies, to catalog by the year 2020,
90% of all asteroids and comets larger than 140 m whose
trajectory brings them close to the orbit of Earth (Congress
2005). Congress also directed NASA to submit an Analysis
of Alternatives (AoA) outlining their efforts to detect and
characterize the hazards of near Earth asteroids (NEAs), as
well as an assessment of necessary actions to put in place
capabilities to expand the detection and tracking of NEAs. The
Ao0A details two considered terrestrial sensors, as well as several
space-based systems. The two terrestrial-based systems are the
Large Synoptic Survey Telescope (LSST) and the Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS).
The AoA reported that a program consisting of a combination of
both ground-based systems and some space-based systems was
required to meet the 2020 deadline for completion. The AoA
also reported that using only one of the land-based systems
would push the date out to beyond 2030 (National Aeronautics
and Space Administration 2007). As of 2011 July 15, fewer
than 900 of the estimated 1100 NEAs larger than 1 km have been
discovered, and fewer than 5000 of the estimated 100,000 NEAs
between 100 m and 1km have been discovered and cataloged
(National Aeronautics and Space Administration 2011).

* The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

In 1984, the University of Arizona’s Spacewatch team devel-
oped the drift-scan and step-stare methods used by many of the
astronomical observing telescopes today to automatically detect
moving objects (http://spacewatch.lpl.arizona.edu/index.html).
Since the Spacewatch program, at least five subsequent NEA de-
tection programs have used, or are using, the step-stare method
in order to detect moving objects. These programs include the
Near Earth Asteroid Tracking, Lincoln Near Earth Asteroid
Research (LINEAR), Lowell Observatory Near Earth Object
Search, Catalina Sky Survey, and the Japanese Spaceguard
Association programs (Stokes et al. 2002). Two time-domain
matched filter approaches to asteroid detection are described
in Miura & Itagaki (2005) and Gural et al. (2005); however,
these particular approaches are not investigated in this paper
because the time-domain match filters operate on the trajectory
of the object over time as opposed to the spatial shape of the
object in a single observation. Pan-STARRS currently uses a
different matched filter approach for asteroid detection. It has
implemented the first major change in NEA detection methods
since the drift-scan and step-stare methods by creating a run-
ning average, or “master image” of the sky and using it in an
image differencing algorithm together with a spatial matched-
filter (LSST Corporation 2011). LSST plans to use both the
step-stare approach and an image difference detection requiring
the most comprehensive and sophisticated star chart catalog to
be built and used in a similar manner as Pan-STARRS’s master
image (Magnier 2007).

Recently, the Defense Advanced Research Projects Agency
(DARPA) has been commissioned by NASA to provide data
from its 3.5m Space Surveillance Telescope (SST), located
at White Sands Missile Range, NM, for use in detecting and
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tracking NEAs. SST uses the same detection software that the
LINEAR program does, which does not utilize a “master image”
of the sky for image differencing, but benefits from the much
larger aperture to obtain significantly better performance for
detecting dim objects in space. This makes SST the most recent
U.S. space surveillance system to join the search for NEAs,
and if its performance can be improved a greater percentage of
NEAs will be found.

The mission requirements for SST differ from typical astro-
nomical telescopes. SST is designed to scan deep space to detect
and correlate unknown space objects rather than dwell on stellar
objects over relatively long periods of time (Monet et al. 2012).
In this sense, SST is a precursor to other wide field of view (FOV)
synoptic search programs like LSST. These programs are funded
by NASA to provide full sky coverage with frequent revisit times
in hopes of finding and cataloging NEAs. SST is expected to
provide initial detections of asteroids for follow-up by other
more detailed scientific instruments for cataloging by NASA.

Currently SST uses an algorithm developed from a binary
hypothesis test (BHT) to detect space objects in a single image
for use by the LINEAR program (Viggh et al. 1998). The two
hypotheses are the null hypothesis that a space object’s image
is not in a pixel (Hp) and the alternative hypothesis that the
image is in a pixel (H;). Positive detection decisions in three
successive frames are then used to build a track that is then used
to help predict the future position of the object. If an object does
not appear in three successive frames, it is rejected. This helps
eliminate non-Gaussian sources of noise, such as cosmic rays
or data communication errors from the photo-detector. When
the telescope tracks at the sidereal rate, nearby space objects
naturally move across the CCD array. In this way, all objects
outside the solar system appear to be stationary, whereas objects
within the solar system will appear in different pixels at different
times, based on their trajectory and the time between the frames
in which they are observed.

In contrast to a BHT, we propose a multi-hypothesis testing
(MHT) for single frame detection that selects from the hypothe-
ses that the image is in the center, a corner, or a side of a pixel
(H1—Ho) in addition to Hy. Although the use of more hypothe-
ses might increase the detection performance of this scheme, a
finite number of hypotheses must be chosen in order to make
using the test numerically tractable. The results obtained using
nine alternative positional hypotheses serve to demonstrate the
utility of the MHT over a BHT, but do not necessarily repre-
sent the optimal performance achievable by an MHT. Both of
these tests consider the noise to be Gaussian. Another method
of BHT developed by Pohlig, however, has been derived using
a Poison noise distribution, which is not used for comparison
in this study because the SST sensor is dominated by readout
noise rather than shot noise a low light levels (Pohlig 1989).

The experiment conducted as part of this research is designed
to determine which type of algorithm is best at detecting dim
unresolvable objects in space on a single frame basis. Because
single frame detection decisions are typically used as input
to multi-frame detection and tracking algorithms, a superior
single frame detector will enhance the performance of any
synoptic search telescope looking for NEAs or space debris
using this three-frame coincidence approach (Viggh et al. 1998).
In order to perform this study, we chose to observe a satellite
in a geosynchronous orbit that is gradually going into eclipse
behind the earth. In this scenario, the unresolvable satellite body
experiences an ever-decreasing amount of solar illumination,
which provides a continuum of intensity values over which
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to test the performance of different algorithms. The presence
and location of the satellite is simple to establish when it is
brightly lit, so all detection algorithms will successfully detect
the object before it begins to go into eclipse. The telescope
is pointed directly at the satellite and then observes it as it
goes into the shadow of the earth. Because the presence of
the object is known (and further verified when it emerges
from the eclipse) the performance of the different detection
algorithms can be ascertained in a controlled environment. Also,
because the object is in geosynchronous orbit, it stays relatively
stationary in the sky, and thus the object requires practically no
tracking motion from the telescope motors. With the object
location relatively fixed, different detection algorithms are
tested using the observations of the dimming satellite. The
detection algorithm that successfully reports the presence most
consistently through the eclipse period is clearly superior.
This method of testing detection algorithms is preferable to
performing algorithm tests against unknown objects that may
or may not actually exist. This also precludes the possibility
of making a firm conclusion as to which algorithm is actually
detecting an object with a higher success rate versus a detector
that produces more false detections.

Two types of BHTs are compared with the MHT, one is the
baseline point detector used by SST and the other is a matched-
filter technique (i.e., correlation detector) similar to that used by
the Pan-STARRS program (http://Pan-STARRS.ifa.hawaii.edu/
public/). The advantage of an MHT is gained in part by
mitigating the aliasing caused by the undersampled SST images
(O’Dell & Cain 2009). The equations for both the BHT and
MHT are derived in terms of signal-to-noise ratio (S/N; Viggh
et al. 1998; Kay 2011). The hypothesis that maximizes S/N
while simultaneously increasing the probability of detection
(P,) is chosen thereby providing sub-pixel position information
on the image location and increasing P, over the BHTS.

The comparison of the different hypothesis testing methods
on the basis of probability of detection and processing require-
ments is made using data collected from the experiment de-
scribed in the next section. A modeled point-spread function
(PSF) is generated using the phase retrieval technique presented
in Section 4 and then it is dithered to facilitate the creation of
the MHT. This PSF model is utilized because it has been proven
and documented to work with SST in the past (Woods 2012). In
Section 5 a comparison of an MHT to the BHTs is conducted
to illustrate the advantages of the MHT as well as its additional
computational burden. At the conclusion of Section 5, a deriva-
tion shows that the S/N results of the MHT are linearly related
to the least-squares (LS) estimates of point source irradiance,
which improves photometry.

2. SST EXPERIMENTAL DESCRIPTION

As stated in the introduction, the purpose of this experiment
is not to find a new object in space using SST, but to instead
run different detection algorithms on data containing a very
dim, but known object so that the relative performance of
different detection algorithms can be compared in a controlled
environment. The experimental method provides a data set that
is used to form a clearly supportable conclusion as to what
algorithm should be used to help detect dim objects in space
from single frame measurements. In essence, it is not possible
to measure the probability of detection for a system without
knowing with certainty that an object is present to detect. In
addition to the experimental description, a basic overview of the
SST’s design and current detection strategy are covered.
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Figure 1. Eclipse experiment overview (Vollmer & Gedzelman 2008; Verba et al. 2009; see also http://www.boeing.com).

2.1. Experimental Setup and Process Overview

The experiment was conducted by imaging a GEO commu-
nications satellite, ANIK-F1, with SST in a test mode as the
satellite went into eclipse during the 2012 vernal equinox over
a period of about 4 minutes, as illustrated in Figure 1.

There are many cataloged dim astronomical objects that
could be used to compare detection algorithm performance. By
imaging eclipsing GEO satellites, the experimental observations
capture both the effect of the irradiance division across pixels
that arises from objects moving across the FOV of the telescope,
and the decreasing irradiance levels of the satellites as they enter
into eclipse. The irradiance levels decrease as the satellites move
through the penumbra and into the umbra as illustrated by the
light curve produced from data on ANIK-F1 using the U.S.
Naval Observatory’s (USNO) 1 m telescope and plotted in the
lower right hand corner of Figure 1. The roll off of ANIK-F1’s
irradiance during eclipse was first documented in a series of
experiments conducted by USNO to record the glint of GEO
satellites shortly before the eclipse (Verba et al. 2009).

The first stage in the experiment is the collection of the
raw data. On each night, experiment images of the night sky
containing ANIK-F1 were collected using 100 ms exposures a
rate of 8 frames per second. The telescope was pointed so that
ANIK-F1 was centered in the FOV near the time right before the
eclipse. The orbital elements of the satellite were entered into
SST’s tracking system, so that SST could be programmed to
follow the satellite through the eclipse. This required very little
tracking movement from the motors as the object in GEO orbit
appears to hang in the sky at approximately the same position
throughout the data collection. As predicted on many nights of
the eclipse, the satellite became too dim to detect with SST’s
existing detection software (described in the next section). Once
the data was collected it was recorded and given to the algorithm
test team at AFIT for post-processing.

The next step was the pre-processing phase. The raw SST
image data, which is 6144 by 4096 pixels, was reduced to a
more manageable data set involving only 200 by 200 pixels

around ANIK-F1. This allowed for more efficient use of memory
resources within the computer, but still provided a sufficiently
large FOV to be certain the satellite was fully contained in
the reduced frame and to also capture nearby stars for use
in determining the system PSF. At the beginning of the test,
ANIK-F1 is bright (roughly a magnitude nine object, which
saturates the photo-detectors) and clearly visible in the center
of the telescope’s FOV. Efforts to manually identify its position
are further aided by the fact that it does not change position
appreciably throughout the test. Also, the satellite is readily
identifiable when it emerges from the eclipse (again returning
to its pre-eclipse magnitude), thus a linear trajectory of the object
can be predicted through the eclipse and its exact position (to
within a pixel) can be predicted for every frame (no other image
registration algorithm is required). A priori sub-pixel location
information is not required to perform the experiment, as all
existing tests are designed to make a simple binary decision of
whether or not the object is within the pixel.

The next step is to extract the PSF from the images for use by
the different detectors. Three different detectors are used to pro-
cess the data from this test for comparison. The first is the point
detector (described in the next section), which is currently used
by SST, LINEAR, Pan-STARRS, and other deep space object
detection programs (http://Pan-STARRS.ifa.hawaii.edu/public/;
Pearce et al. 2003). This detector does not utilize a PSF because
it just analyzes the data within a single pixel to make detection
decisions. The second detector is the correlator or matched filter
detector. This detector is used optionally by the Pan-STARRS
program to make detection decisions and requires the use of a
PSF (http://Pan-STARRS.ifa.hawaii.edu/public/). As shown in
Figure 4, a star is selected to provide the PSF shape for the cor-
relator on each night. The selected star is chosen to match the
shape of the satellite observed near the start of the test in order to
help maximize the performance of the correlator. The correlator,
as implemented by the Pan-STARRS program, is not designed
to consider under sampling or sub-pixel motion, so a single em-
pirically measured PSF is used each night to implement this
particular detector.
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D Layout

Figure 2. SST 3D layout and scale picture.

(A color version of this figure is available in the online journal.)

The PSF model used for the MHT requires a properly sampled
PSF that can be used to generate the PSF shape for the nine
different hypotheses used in the test, corresponding to the nine
different sub-pixel locations. This was done using a model-
based approach. This same optical model was used by the MIT
Lincoln labs team just preceding the eclipse event, to measure
the PSF to focus and align the telescope in 2012 March. We use
the same optical model in hopes of leveraging their experience
with the telescope to compute the PSF (Woods 2012). Although
other methods for computing a properly sampled PSF from
undersampled imagery exist, performing a comparison study
between these methods was beyond the scope of this paper
(Schodel 2010; Thurman & Fienup 2009; Pinheiro da Silva
et al. 2006; Anderson & King 2006, 2000; Lauer 1999). Clearly,
a better PSF estimate would lead to even better performance for
the MHT method, as it is the only detector tested in this study
that utilized a properly sampled PSF. The detailed steps on how
the modeled PSF used to construct the MHT is computed are
described in Section 4 of this paper.

The final step in the test is to provide each detector with the
raw image data in a 19 by 19 window centered on the pixel
containing the satellite for all frames of data gathered by SST.
Each detector reports an S/N for the satellite for each frame
of data. The S/N values over 10 frames are locally averaged to
reduce the effect of noise. The averaged S/N is then converted
to a probability of detection for the point detector, the correlator,
and the MHT using Equations (38)—(40), respectively. Although
a detection decision could be made based on the reported
S/N for the detector in each frame, the computed probability
of detection reflects the statistical chance of making a correct
detection decision for the object based on the average S/N and
the estimated noise level present in the data. The computed
probability of detection is a superior performance metric to
S/N or simple detections because it conveys the improvement
of one detector over another in terms that can be more readily
understood. The results of the reported probability of detection
for each detector on each night are reported in Section 6 of
this paper.

2.2. SST System

SST has a Mersenne—Schmidt design, which is selected for
both its wide FOV and compactness (Willstrop 1984). A three-
dimensional (3D) optical design layout and scale image of the
telescope is shown in Figure 2. The 3.5m diameter primary

mirror was built to meet the requirement of detecting small
faint objects with relatively short integration times, thereby
avoiding streaking of the satellite image across multiple CCD
pixels so that the objects are suitably modeled as points sources.
Another characteristic of the Mersenne—Schmidt design is a
curved focal surface, which allows the SST to better optimize
spot size across the FOV and spectral response of the CCD.
Consequently, the curved CCD imager and mosaic camera were
developed specifically for the telescope (Monet et al. 2012).

2.3. SST Detection Process

SST’s current detection method is based on the algorithm
used for LINEAR conducted at the experimental test site near
Socorro, NM. Viggh et al. (1998) described the LINEAR
detection algorithm using the block diagram shown in Figure 3.

In normal operating mode the CCD’s 15 um pixels are 2 x 2
binned and the array has a 6144 x 4096 binned format. Single
frame point detection of an object from SST imagery data,
d(cy, cy), in a pixel with coordinates (cy, cy) is performed in
a process of background suppression, normalization, and binary
quantization:

(d(cy,cy) — B) =

1

>

S/N(cy, ¢y) = 7 (1)
o H

where B is the local background noise, o is the standard
deviation of the noise, and y is the detection threshold. The
background, B, can be computed as the local sample median of
the data in the H, case:

B = median[d(w, z)] (2)

and the local standard deviation is

o = VE[d*w, z) E[d(w, 2)]?
2
\/ Tty Xt 0.2 _ gy 3)

where M, is the number of pixels in one dimension of a chosen
window in the CCD array plane centered on the pixel of interest,
(cx, ¢y) and E[] represents the expectation operation. Pixels with
an S/N greater than the detection threshold are classified as
containing a target and passed on for further processing.
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Figure 3. LINEAR detection block diagram. The single frame point detection piece of the system is highlighted in the dotted line box. This piece of the software alone

is tested in this paper.
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3. BINARY HYPOTHESIS TESTING

Replacing the baseline BHT with a correlation-based BHT
improves SST’s detection performance. This method for im-
proving SST’s detection performance is explored by (Maksim
et al. 2012) in which a comparison of the S/N of two different
BHTs, a correlator and a point detector, is made using the ANIK-
F1 experimental data. In this comparison, stars in the FOV are
used to estimate the total system PSF. Figures 4(a)—(c) shows the
irradiance maps of each star within a 19 x 19 window cropped
from SST images on three consecutive nights and used in the
correlation detector. One item to note is that in Figures 4(b) and
(c) the star appears to have a different shape than the star in
Figure 4(a). The change in the apparent shape of the star is due
to the images being centered at a different sub-pixel location.
If the shape of the object of interest is not the same as the total
system PSF used in the correlator, the detection performance
will be degraded.

Both the correlator and SST’s baseline point detector can be
derived from a BHT expressed as the following likelihood ratio
tests (LRTs; Kay 2011):

_ P@@, Y, y) € [1 Myl Hy) =
P((x, y)¥(x, y) € [1 MyllHo)

0

1, “

where d(x, y) is the image data, x and y are the pixel coordinates,
and M, is the number of pixels in one dimension of a chosen
square window in the CCD array plane. In this case, H; is the
hypothesis that an object is present in the pixel of interest and
H, is the hypothesis that an object is not present in the pixel of
interest. P(d(x, y)V(x, y) € [1, My]|H;) is the joint conditional
probability of the data, given that hypothesis H;,i € {0, 1} is
true.

The correlator is designed to achieve a chosen probability
of false alarm, (Pga), under the H, case by approximating the
image noise as Gaussian. This is a valid assumption because in
the Hy case, the pixels have a higher proportion of read noise
than photon noise. If the detector was designed for the H case, a
Poisson distribution for noise would be a better choice; however

5 10 15
(c)
Figure 4. Images of stars used for the correlator on (a) 2012 March 13, (b) 2012 March 14, and (c) 2012 March 15.

Pohlig’s derivation using that assumption led to a detector that
was dependent on target irradiance (Pohlig 1989). To remove the
detectors’ dependence on target irradiance, a log approximation
is made assuming that the target irradiance is low. Thus the
distribution of the noise for these dim objects would not be
Poisson, but would have a similar distribution. Instead, using a
Gaussian noise distribution the LRT becomes

_ Pld(x, y)|Hi]
= ——— 2
Pld(x, y)|Ho]
M, M, 1 {—-L[dw,z)-B—0h(w,2)*} H
_ Hw;l Z=dl o C 202 > 1, (5)
- M, My 1 {—-5dw.2)— BT} < 7
l_lw;l l_[z:dl 2”06 202 Hy

where w and z are pixel locations in the window, and the total
system PSF is h(w, z). The value M, is the total number of
pixels in the window, B is the background photo count in the
image, 6 is the space objects irradiance, and o is the standard
deviation of the noise. The equation for the LRT is designed to
maintain the same false alarm rate as the baseline detector that is
determined by the H case. Taking the natural log, Equation (5)
reduces to the following form:

My My

logAg) = D> %[—23 - Oh(w, 2) +2d(w, 2)
w=1 z=1
H,
-Oh(w, 2) — Oh(w, 2)*] _ 0. (6)
Hy

Since the PSF can be estimated independently from auxiliary
processes, Equation (6) can be rearranged as

Md Md Hl My My

3 @w.2) - Byn(w. z) 222[(11(%@)2], (7

w=1 z=1 Hy w=1 z=1

and the selection of 6 will be chosen to achieve the desired
threshold. To convert Equation (7) into an equation in terms of
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S/N, where S/N is defined as the ratio of the mean divided by
the standard deviation, the background suppressed data is a new
random variable, d,, with zero mean in the Hy case (Goodman
1985):

dry(w, z) =d(w, z) — B. ®)

The correlation of the PSF with the background suppressed data
then becomes

M, M,

YO ds(w. h(w — e,z —cy), ©)

w=1 z=1

where ¢, and ¢, are the coordinates of the pixel being tested.
The resulting quantity also has a mean, w, where

My My
wr =E |:Z ng (w, Dh(w — ¢y, 7 — cy):|

w=1 z=1
Md Md
= Z Z Eld>(w, 2)]E[h(w — ¢y, 2

w=1 z=1

—¢)] =0, (10)

and the variance, 022, of

2
05 =E (Z Zdz(w Dh(w — ¢y, 2 ))

w=1 z=1

My My
—E [Z Zdz(w, Dh(w — ¢y, 2 — ¢y)

w=1 z=1

My M,
x ZZdz(m mh(m — ¢y, n —c),)}

M,lli,lnA;d My
=Y D "> Elda(w, 2)]Elds(m, n)]
w=1 z=1 m=1 n=1

X h(w — ¢y, 2 — ¢y )h(m — ¢, n — cy). (11)

Equation (11) can be solved using two cases, one when w #
m and 7 # n, and the other when w = m and z = n using the
Dirac delta function, § (w — m, z — n), such that

My Mg Mg, My

=Y D> Eldr(w, 2)]E[ds(m, n)]
w=1 z=1 m=1 n=1
X h(w — ¢y, 2 — ¢cy)h(m — ¢, n —¢y)

X (1 —86(w —m, z —n))

M, M,

+ 33 E[d2w, 0] w — ez —cy)
w=1 z=1

x 8w —m,z—n)

My M,
= GZZth(w,z). (12)

w=l1 z=1

Therefore, the standard deviation of the normalized data corre-
lated with the total system PSF is

M; My
=0 ZZhZ(w, 2). (13)

w=1 z=1
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The equation for the correlator is then found by dividing
Equation (7) by Equation (13), such that the LRT reduces to
the following correlation operation normalized in terms of S/N:

S Ma M d(w, 2) = Bheon(w — ¢y, 2 — ¢y) 2
szl R (w, 2) p
Lk (Mwmﬁ
\/ w2 b2 (w, 2)

where the correlator PSF h¢q(w, z) is approximated using the
intensity values of the cropped stars shown in Figure 4. The
results of the equation are then compared against the selected
S/N threshold, y, which is set to achieve a desired Pga.

In the case of the baseline point detector, the PSF is one pixel
represented as a delta function, §(w — ¢y, z — ¢;). The equation
for the baseline detector in terms of S/N is

M S M d(w, 2) —

S/NCOIT =

= (14)

B)S(w — ¢,z — ¢y)

S/NBaseline =
0\/214;1 =1 0%(w, 2)
H,
d(cy, — B
Z( (cx Cy) ) > y (15)
o <
Hy

and thus can be compared against the same threshold as the
correlator.

SST’s threshold used for detection during the technical
demonstration period is y = 6, which inherently sets the
probability of false alarm. The probability of false alarm is
defined as the chance that a pixel that contains only background
light (no object) will produce a detector output that exceeds the
threshold value of six. When objects are not present in the pixel,
the operations described in Equations (14) and (15) are designed
to produce unit variance zero mean Gaussian random variables,
therefore the probability of false alarms per pixel (ignoring non-
Gaussian forms of noise) is

Pra = P(S/NBaseline 2 6|Hy) = P(S/Ncorr = 6|Ho)

© 1
- / e dt =9.87¢ — 010. (16)
6 2

4. SST PSF MODELING

A modeled PSF is used for characterizing SST’s impulse
response in this paper, because previous efforts to focus and
align the telescope’s optics used this model successfully (Woods
2012). Although other methods exist for characterizing a PSF
from undersampled data (Anderson & King 2006; Lauer 1999),
determining which PSF characterization method is superior
is not the focus of this research. The telescope optics are
modeled as a linear shift invariant system, where the impulse
response of the system is the optical PSF. Light propagating
from the distance point source (i.e., a star) is assumed to be
temporally incoherent. Therefore, according to Goodman, the
image irradiance, i (x), in the CCD array plane coordinates,
x, of the continuous image is the convolution of point source
irradiance, 6(x), with the telescope’s PSF, hou(x) (Goodman
2005).

The pupil function, A (u, v), of the telescope is defined by
its annular aperture, where # and v are coordinates in the pupil
plane. Wave front errors caused by telescope aberrations are
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introduced into the pupil function using the first N Zernike
polynomials, ¢, — ¢, where N is the maximum number of
polynomials (Noll 1976). The amount of wave front error is
captured by scaling the Zernike polynomials with the Zernike
coefficient, Z, — Zy,

error(u, v) = Zopr(u, v) + -+ -+ Zyon(u, v). (17)

Compressing the notation from two dimensions to one dimen-
sion for simplified presentation, the aberrations are then rep-
resented in the pupil plane coordinates, u;, by the generalized
pupil function

P(ur) = A(uy) explj - error(uy)]. (18)

The incoherent PSF is then computed by propagating the pupil
field using Franhofer propagation to the CCD array and then
taking the magnitude squared (Goodman 2005),

2

Bopi(x) = ‘ / Puy)e 7+ duy| (19)

where z is the distance from the pupil plane to the image plane.
The telescope’s optical transfer function, Hop(141), is computed
using a Fourier transform, F,

Hopt(u1) = F{hop(x)}. (20)

The effect of the finite square pixels, @ = 30 pm, is determined
using a rectangle function with the following transfer function:

Hpixel (1) = F{rect(ax)}. ey

Because SST uses a shutter, with an integration time greater than
25 ms, an accepted model for that atmosphere is a long-exposure
atmospheric transfer function (Goodman 1985):

N 5/3
Aoz u
Ham (1) = exp {—3.44 <—) } . (22)

o

In this equation ry is the atmospheric seeing parameter. The
modeled PSF centered on a pixel is then computed as

Rmodel(X) = F! {Hopt(u 1 )Hpixel (@ 1)Ham (1)} (23)

One important property of the Nyquist sampled PSF is that a sub-
pixel shift, Ax, of the model does not change its shape. Modeling
the effects of Ax on the image irradiance pattern is necessary
because the point source is not always in the center of the pixel.
To reproduce the change in the irradiance pattern measured by
each of the 30 um pixels in the CCD as a function of Ax, the
modeled PSF is down-sampled using the ratio L between the
30 pum pixels and the Nyquist pixel size from Equation (19).
The shifted and down-sampled PSF is

Rsamp(m, Ax) = /hmodel(x)S(Lm —x — LAx)dx, and
(24
thus the sampled irradiance is

Isamp(M, AX) = Ohgamp(m, Ax) + B, (25)

where B is the background light, 6 is the total number photons
emitted from the object per integration, and m is a integer valued
pixel location in the CCD array.
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To build the PSF model, estimates of the coefficients Zs5—Z;
were made using the DONUT algorithm and inserted into the
PSF model using Equation (17) (Woods 2012). Then, the method
of LS is used to jointly estimate the Zernike coefficient for
defocus, 24, and the atmospheric seeing parameter, 7y, from a
star selected from the first frame in the ANIK F1 experimental
data (see Figure 4). 24 and 7y are estimated using phase retrieval,
because seeing changes as a function of time, and focus changes
as a function of telescope elevation and temperature, therefore
neither parameter is static. For phase retrieval, the sampled
image irradiance model in Equation (25) is varied to define
elements in the sum of the squares matrix, Q;;, used for LS
method:

Qij =Y _(d(m) — isamp(m, Ax)), (26)

m

where d(m) are the data from a star and the indices i and j
correspond to a grid of possible ry and Z, values used to form
hsamp(m, Ax). To accurately represent the igamp(m, Ax) that is
used in defining the sum of squares matrix, Q, an estimate of

the object’s irradiance, é,must be determined from the data by
taking the derivative of Equation (26) with respect to 0, setting
it equal to zero, and solving for the estimate 6,

Zm [d(m) — B]hsamp(m, Ax)

é =
Zm hgamp(m’ Ax)

27)

The joint estimate for defocus and seeing is then found by

[fﬂ — arg min (g) . (28)

Zy,ro

A color map of the PSF model generated using a SST star image
on 2012 March 14 with both Nyquist and 30 um sampling are
shown, respectively, in Figures 5(a) and (b). In the SST data,
d(m), the star image can be centered at any sub-pixel location
and the corresponding irradiance pattern changes. By shifting
the modeled PSF, the changes in the irradiance pattern in the
star data can be captured. If the PSF is undersampled spatially,
as is the case with the 30 um detected PSF, the shifted PSF will
have aliasing artifacts (O’Dell & Cain 2009). Figure 5(c) depicts
the aliasing artifacts produced when the undersampled PSF is
shifted using the Fourier transform shift method:

Pm = cos(m - Ax) +i sin(m - Ax), and 29)

hsige(m, Ax) = RE[F ™ { F {hsamp(m)} pm}1, (30)

where Am magnitude of sub-pixel PSF shift such that the
modeled irradiance is

ishis(m, Ax) = 0 - hgpig(m, Ax) + B. (€1))

However, if the Nyquist sample model is shifted before down
sampling to 30 ©m using Equation (24), as shown in Figures 5(d)
and (e), the irradiance pattern does not have the same aliasing
artifacts as seen in Figure 5(c).

The accuracy of the sampled irradiance models shifted two
different ways can be quantified using the correlation coefficient
(Kutner et al. 2005). The correlation coefficient measures how
accurately the modeled irradiance pattern matches the measured
irradiance pattern on a scale from zero to one, where a value
of one means they are perfectly correlated and zero means
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Figure 5. SST’s phase retrieved PSF on 2012 March 14. (a) Centered Nyquist sample PSF, a = 2.75e-07 m, on a 2048 x 2048 grid, (b) centered down-sampled PSF,
a=30pum,onal9 x 19 grid, (c) model PSF, a = 30 um, shifted to the lower right hand corner of pixel (10,10) with aliasing artifacts, (d) Nyquist sample model PSF
shifted without aliasing artifacts, and (e) sampled model PSF, ¢ = 30 um, down sampled from Nyquist sampled model PSF shifted to the lower right hand corner of

pixel (10,10) without aliasing artifacts.
(A color version of this figure is available in the online journal.)

they are uncorrelated. The correlation coefficient between both

irradiance models, Equations (27) and (33), and the measured
data are computed, respectively, as
Pshite(m, Ax) = p{d(m), isnir(m, Ax)} =
_ E[d(m) — BY® - hyin(m, Ax))] g . : :
= - 5 0.6/ B ]
VEI@m) — BRI EI@ - huintm, Ax)?] S 28 o m o
S 2 E‘!E‘J oo OB o m] [iny On B @D
(32) E 0.4’ [m] o o Duﬁuﬂﬁ%]@p%m@%@@ % %@] i
q‘u:) | on B o Y
and, 8 . N & o ﬁu o
O & o, oo O Bg
. 02t O an . 5o
Psamp(m, Ax) = p{d(m), isamp(m, Ax)} < Psamp o
_ E[d(m) — B)® - hmp(m, Ax))] O Py :
,/Eﬁﬂm)—lﬂﬂJEKé-mmmmLAmy] 850 400 450 Fsm 550 600 650
rames

(33)

Figure 6 is a plot of the maximum values of pgpnifi(m, Ax) and
Osamp (M, Ax) for images of ANIK-F1 on 2012 March 14 as its ir-
radiance is split between pixels. As ANIK-F1’s irradiance moves

Figure 6. Correlation between two different irradiance models and the images
of ANIK-F1 on 2012 March 14 as its irradiance is split between pixels. One
model is shifted on the undersampled grid, pghife (m, Ax), and the other on a
Nyquist grid and then down sampled, psamp (m, Ax) .

(A color version of this figure is available in the online journal.)
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between pixels, even though i (m, Ax) is shifted to maximize
the correlation coefficient, the pgig (m, Ax) goes down. By con-
trast, the maximum value of pgump (112, Ax) is relatively constant
regardless of where in the pixel the irradiance of ANIK-F1 is
located, thus illustrating the importance generating a Nyquist
sampled model. In addition, the strong correlation between the
modeled PSF and the data indicates that the model is an accurate
representation of the SST PSF.

5. DATA NORMALIZATION USING OUTLIER
REJECTION TECHNIQUES

Another feature of the proposed algorithm design is that
background noise statistics are computed using a reduced set
of data from the window around the pixel to be tested. This new
noise power estimation technique rejects any noise sample in
the window surrounding the pixel to be tested, if its values do
not conform to those predicted by Gaussian statistics. In this
way, bad pixels and nearby stars are not used to compute the
noise generated by the background light. Current algorithms
used by SST and LINEAR use all the pixels in the window
surrounding the point to be tested to compute the local noise
standard deviation, o (Viggh et al. 1998). In this process, the
background, B, is computed as in Equation (2). The squared
deviations, D, from the background within the window are
computed as

D (m) = (d(m) — B)’. (34)

These squared deviations follow a chi-Squared distribution
based on the assumed Gaussian nature of the data, d. The mean
of the squared deviations, M, within the window is found as

M = E[D (m)], (35)

then the standard deviation, S, of D is computed:

My 2
S = E[DX(m)] — E[D(m)]2 ~ \/M — M2.
M;
(36)
A new noise standard deviation ¢, is computed from the window
using Equation (3) by excluding any pixel, m, in the calculation
where D (m) > (M + 3 - S). The new noise standard deviation
is included in the following MHT for improved detection
performance by normalizing the data as in Equation (1) by

replacing o with ¢.

6. MULTI-HYPOTHESIS TESTING

A multi-hypothesis detector is introduced because the image
of a space object does not always fall in the center of the
pixel. In addition, simple correlation operations are not desirable
because the shape of the sampled PSF changes depending on
where the object is imaged on the array. In order to account
for the possibility that the image is in different places within
the CCD array, we introduce a multi-hypothesis test strategy.
The hypothesis that an image of a space object is not present
in the pixel, Hy, plus the nine different sampled PSF shapes
chosen for this example based on the sub-pixel location, form
the ten hypotheses for the MHT, {Hy, Hi, ..., Ho}, as depicted
in Figure 7. This choice of hypotheses captures a great deal of
the spatial dependence of the PSF, while only introducing one
order of magnitude more computations.

According to Kay (2011), the multi-hypothesis decision to
select one hypothesis, Hy over another hypothesis, H;, based on
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Table 1
Alternative Hypothesis Sub-pixel Shifts (Corresponding to Figure 7)

Alternative Horizontal Shift Vertical Shift
(a) (@a) (Ba)

1 0 0
2 0 —15um
3 0 15 um
4 15 um 0
5 —15um 0
6 15 pm —15um
7 15 um 15 um
8 —15um —15 um
9 —15pum 15 um

uniform cost and equal priors using conditional probabilities is
the multi-hypothesis maximum likelihood (ML) decision rule:

p(x|H) > p(x|H) i #k. (37)

Applying the ML decision rule to Equation (15) with the
additional hypotheses based on sub-pixel position shifts listed
in Table 1, o, and B,, becomes

H,

M4 S M (1w, 2)— BYhamp Wy —tnztey—fa) >
¢ w z samp w,z HO

(38)

1. Hy: hypothesis that no satellite is present.
2. H,: hypothesis that a satellite is present (see Table 1).

With this approach, the hypothesis that satisfies the ML
decision rule given in Equation (37) is determined by finding

S/Nytary = Max(S/N,), (39)

which simultaneously increases the probability of detection and
provides sub-pixel image location information.

Testing each pixel for Hy—Hy repeats the exact same test four
times in the corners and two times on the sides when the entire
array is processed because the pixels share sides and corners.
Therefore, to minimize the number of hypothesis tests, each
pixel only needs to be tested in the center, on one corner and
on two sides. This brings the computational cost to that of six
times the baseline approach, which only does one test per pixel
and does not involve a filtering operation to perform the test.
The filtering operation increases the computational cost by 50%
or 1.5 times over the point detector’s computational cost, thus
four times as many tests that cost 1.5 times as much brings the
cost to six times that of the baseline point detector approach.

An important goal in deriving the MHT is to improve the
probability of detection, Pp, without raising the probability of
false alarm, Pga. In this case the probability of false alarm is the
chance that a pixel with no space object in it will be classified
as having one. In mathematical terms, this is the probability
that the S/N will exceed the threshold of y. Computing the
false alarm probability is a challenging task and may prove
mathematically intractable. Instead, we compute an upper bound
on the probability of the false alarm and then use that upper
bound as our estimate of the false alarm probability. This
guarantees that the new MHT test will not raise the probability
of the false alarm over the existing BHT used by SST and
LINEAR.
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Figure 7. Hypothesis that the image is in either the center of the pixel, Hy; on the sides, H,—Hs; or the corner of a pixel, He—Ho.

Two simplifying assumptions are made to find the upper
bound of the Pps for the multi-hypothesis test. The first is
considering Pga for each alternative hypothesis to be mutually

exclusive, such that ﬂizl H, = . The second assumption
is that the result of each individual sub multi-hypothesis test
is statistically independent of each other. Under those two
conditions, the estimated Pga computed for the multi-hypothesis
test using only the simple Gaussian noise model (and ignoring
other forms of noise) can be bounded above by extending
Equation (16) to

4 4
Py = P (U Ha|Ho> —P (ﬂ Ha|Ho)
a:l a=1
<P (U Ha|Ho>
a=1

4
= > P (HylHo) =4 P (S/Ny_,, > 6|Hy)
a=l1
~ 4 x 9.87e — 010 = 3.94e — 009. (40)
The estimated Pgy is higher for the multi-hypothesis test than for
the BHT, but it can be reduced by raising the multi-hypothesis
detection threshold to S/N = 6.2212, so that Ppa = 9.87e-10.
This is the estimated single frame probability of the false alarm,
using only simple Gaussian noise assumptions. Other spurious
forms of noise are assumed to be reduced through the velocity-
matched filter, which is a time-domain process that requires the
detection of an object in successive frames at locations in the
CCD array consistent with an object moving at a fixed velocity.

10

10
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An example of the detection performance gains from the
multi-hypothesis test is shown in Figures 8(a)—(f). To produce
the plots, running averages with a 50 frame window for the base-
line detector S/N, [4Baseline, the correlator S/N, o, and the
multi-hypothesis test S/N,un—ary, were found in the threshold
region for all three detectors. The probability of detection for
the baseline detector, correlator, and multi-hypothesis test as a
function of running average are, respectively,

© 1 wupan? |\
Py (MBaseline) = ] \/Ee 2 dt) , “41)

o 1 —(t—pc )2 3
Ppy. (Meorr) = ( / e 1 dt) , and (42
D, Mcorr ] m 42)

R 1 7(17;LM_1"-y)2 3
Pon .. (tiriary) = < /6 o dr), 43)

212 /27

based on the Gaussian noise assumption and the fact that
tracklets require three consecutive frames for detection (Viggh
et al. 1998). Note that the threshold in Equation (43) is adjusted
to keep the Ppa approximately the same for all three detectors.

When ANIK-F1’s irradiance is high, all three detectors
can detect the satellite, but the satellite dims as it enters
eclipse, so the detectors perform differently. Eventually, the
satellite becomes so dim that it is undetectable. The area of
interest then becomes the detection threshold region. As seen
in Figure 8, on all six nights the multi-hypothesis detector
detection performance significantly exceeds both the correlator
and the baseline detector. This means that the multi-hypothesis
test detects much dimmer objects than the baseline algorithms.
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Figure 8. Comparison of the baseline detector, correlator, and multi-hypothesis test probability of detecting (P;) ANIK-F1 as it enters eclipse on (a) 2012 March 13,
(b) 2012 March 14, (c) 2012 March 15, (d) 2012 March 21, (e) 2012 March 22, and (f) 2012 March 23.
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Figure 9. Composite plot of the probability of detecting ANIK-F1 as it enters
with either the correlator or multi-hypothesis test vs. the baseline detector for
the nights of 2012 March 13-15 and 2012 March 21-23.

The performance gains seen on 2012 March 23 are only due to
better calculations of the background noise statistics. On that
date there was a narrow total PSF and a lack of aliasing because
SST tracked the object in the same pixel.

Using data from six nights of ANIK-F1 eclipse observations,
a direct comparison between the baseline detector and both
the correlator and multi-hypothesis test shows an improved
probability of detecting a space object. A plot of Pp_ (f4corr) and
Ppy_y (UM—ary) Versus Pp . (UBaseline) for the nights of 2012
March 13-15 and 2012 March 21-23 is shown in Figure 9. The
plot shows that the multi-hypothesis test has a higher probability
of detection than the correlator and the baseline detector at

11

the detection threshold. On 2012 March 23, the performance
gains were not as dramatic because the object’s irradiance was
concentrated in one pixel due to the satellite’s excellent tracking.
However, when the object is not is not centered on a pixel, the
multi-hypothesis test has a Pp = 1 when the baseline has only
a Ppy,.ie = 0.5. This 30%—-50% demonstrated improvement in
the probability of detection means that significantly more dim
objects like small asteroids will be found with SST using the
multi-hypothesis detector.

In addition to improved detection performance, the multi-
hypothesis test can also provide better estimates for object
irradiance than the baseline detector. The estimates using the
baseline detector are made by adding up the number of digital
count in the pixels where the object was detected to estimate
the objects’ irradiance, éBaseline. In contrast, the S/N output of
the multi-hypothesis test is linearly related to the LS estimate
of the object’s irradiance, éM_ary, in terms of digital counts of
by substituting Equation (38) into Equation (27):

S/NMfary *0
> (m)

Figure 10 shows that by using the multi-hypothesis test results
to estimate the object irradiance, a much higher digi