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Abstract

In many geophysical inverse problems, smoothness assumptions on the underlying
geologic model are utilized to mitigate the effects of poor data coverage and obser-
vational noise and to improve the quality of the inferred model parameters. In the
context of Bayesian inference, these smoothness assumptions take the form of a prior
distribution on the model parameters. Conventionally, the regularization parame-
ters defining these assumptions are fixed independently from the data or tuned in
an ad hoc manner. However, it is often the case that the smoothness properties of
the true earth model are not known a priori, and furthermore, these properties may
vary spatially. In the seismic imaging problem, for example, where the objective is
to estimate the earth’s reflectivity, the reflectivity model is smooth along a particular
reflector but exhibits a sharp contrast in the direction orthogonal to the reflector. In
such cases, defining a prior using predefined smoothness assumptions may result in
posterior estimates of the model that incorrectly smooth out these sharp contrasts.

In this thesis, we explore the application of Bayesian inference to different geophys-
ical inverse problems and seek to address issues related to smoothing by appealing to
the hierarchical Bayesian framework. We capture the smoothness properties of the
prior distribution on the model by defining a Markov random field (MRF) on the set
of model parameters and assigning weights to the edges of the underlying graph; we
refer to these parameters as the edge strengths of the MRF. We investigate two cases
where the smoothing is specified a priori and introduce a method for estimating the
edge strengths of the MRF.

In the first part of this thesis, we apply a Bayesian inference framework (where
the edge strengths of the MRF are predetermined) to the problem of characterizing
the fractured nature of a reservoir from seismic data. Our methodology combines
different features of the seismic data, particularly P-wave reflection amplitudes and
scattering attributes, to allow for estimation of fracture properties under a larger
physical regime than would be attainable using only one of these data types. Through
this application, we demonstrate the capability of our parameterization of the prior
distribution with edge strengths to both enforce smoothness in the estimates of the
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fracture properties and capture a priori information about geological features in the
model (such as a discontinuity that may arise in the presence of a fault). We solve the
inference problem via loopy belief propagation to approximate the posterior marginal
distributions of the fracture properties, as well as their maximum a posteriori (MAP)
and Bayes least squares estimates.

In the second part of the thesis, we investigate how the parameters defining the
prior distribution are connected to the model covariance and address the question of
how to optimize these parameters in the context of the seismic imaging problem. We
formulate the seismic imaging problem within the hierarchical Bayesian setting, where
the edge strengths are treated as random variables to be inferred from the data, and
provide a framework for computing the marginal MAP estimate of the edge strengths
by application of the expectation-maximization (E-M) algorithm. We validate our
methodology on synthetic datasets arising from 2-D models. The images we obtain
after inferring the edge strengths exhibit the desired spatially-varying smoothness
properties and yield sharper, more coherent reflectors.

In the final part of the thesis, we shift our focus and consider the problem of time-
lapse seismic processing, where the objective is to detect changes in the subsurface
over a period of time using repeated seismic surveys. We focus on the realistic case
where the surveys are taken with differing acquisition geometries. In such situations,
conventional methods for processing time-lapse data involve inverting surveys sepa-
rately and subtracting the inversion models to estimate the change in model param-
eters; however, such methods often perform poorly as they do not correctly account
for differing model uncertainty between surveys due to differences in illumination and
observational noise. Applying the machinery explored in the previous chapters, we
formulate the time-lapse processing problem within the hierarchical Bayesian setting
and present a framework for computing the marginal MAP estimate of the time-lapse
change model using the E-M algorithm. The results of our inference framework are
validated on synthetic data from a 2-D time-lapse seismic imaging example, where
the hierarchical Bayesian estimates significantly outperform conventional time-lapse
inversion results.

Thesis Supervisor: Michael C. Fehler
Title: Senior Research Scientist
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Chapter 1

Introduction

A fundamental issue in the field of geophysics is the problem of inferring physical

properties of the earth from data collected at or near the earth’s surface. The laws of

physics generally provide a relationship between the data and the earth properties of

interest (which we refer to as the earth model), and the problem of computing these

data given a particular earth model is referred to as the forward problem. By contrast,

the inverse problem is the task of estimating these properties given a particular set

of measurements [69]. Examples of geophysical inverse problems include, amongst

others, electromagnetic inversion [33, 34, 47, 54, 57], inversion of gravity data for

density [38, 40, 52, 75], seismic traveltime tomography [15, 26, 51, 79, 80, 83], and

reflection seismic imaging [5, 11, 12, 19, 29, 36, 37, 39, 49].

In these and other geophysical inverse problems, the data are often either insuf-

ficient to fully constrain the earth model or are corrupted with observational noise.

This can be problematic because incorrect models may fit the data as well as (or, in

the case of noisy data, perhaps better than) the true earth model. This problem can

be averted by introducing a priori information about the model into the inversion

procedure. For example, one might expect that the model parameters do not vary

rapidly in space, and hence smoother models would be given preference over those

which exhibit sharp contrasts. In the context of Bayesian inference, which can be

viewed as a probabilistic framework for inversion, this is achieved by considering the

model parameters as random variables with a prior probability distribution which
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captures one’s belief about the model prior to observing the data.

The choice of the prior distribution is not a trivial one and can significantly impact

the posterior estimates of the model obtained from the Bayesian inference framework.

A prior distribution that prefers smooth models, for example, may be inappropriate if

the true earth model does indeed contain sharp discontinuities, and using such a prior

may result in a relatively low posterior probability being assigned to the true model.

Furthermore, we often encounter situations where the model may exhibit spatially-

varying smoothness properties that may not be known a priori. For example, in the

seismic imaging problem, where the objective is to obtain an image of the earth’s

reflectivity from seismic data, the model (i.e. the seismic image) will inherently

have spatially-varying smoothness properties: the image is smooth along a particular

reflector but exhibits a sharp contrast in the direction orthogonal to the reflector.

However, neither the location nor the orientation of the reflectors are known a priori

(if they were, we would not be inferring them).

In this thesis, we are concerned with the question of how to learn the optimal prior

from the data in such a setting, where we focus particularly on the seismic imaging

problem described above and the associated smoothness properties of the seismic

image. While the idea of learning an optimal prior from the data may seem to run

counter to the Bayesian philosophy (since, after all, the prior distribution is intended

to capture one’s state of belief prior to observing the data), the problem can still be

formulated within the Bayesian setting in what is known as the hierarchical Bayesian

framework. As the name suggests, here a hierarchy of random variables is introduced

by treating the parameters defining the original prior distribution (of the earth model)

as random variables themselves, endowed with their own prior distribution; i.e., we

place a prior on the prior. These new random variables can then be inferred from

the data and used to define a prior for the earth model in the original inference

problem. This particular approach of estimating the prior distribution from the data

is sometimes referred to as the empirical Bayes method [45].

Even as we seek to let the data dictate an optimal prior, there remain problem-

specific design choices to be made. In particular, we must choose how to parameterize
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the prior on the model in a meaningful way that captures its spatially-varying smooth-

ness properties. We address this by defining a Markov random field (MRF) on the

model vector and parameterizing the edges of its underlying graphical model (which,

as will be seen in Chapter 2, is a 2-D grid graph); we refer to these edge parameters

as edge strengths, which we define precisely in Chapter 2.

1.1 Thesis Outline and Summary of Contributions

We note that the chapters of this thesis have been written in such a way that they

are arranged in self-contained units, so the interested reader is able to go straight to

the unit of interest. In particular, Chapter 2, Chapter 3, and Chapter 6 are each self-

contained units, and Chapters 4-5 form a self-contained unit. Due to arranging the

thesis in this format, the reader may find a small portion of the background sections

in some chapters to be slightly redundant. Below we give a brief outline of the thesis

along with our main contributions.

Chapter 2 : A Brief Primer on Inverse Problems, Bayesian

Inference, and Graphical Models

In Chapter 2, we give a brief tutorial on inverse problems and Bayesian inference

as well as introduce, by way of example, the form of the smoothness enforcing prior

distribution on the model. We begin the chapter by discussing the deterministic for-

mulation of regularized inversion. We then proceed to the probabilistic formulation of

Bayesian inference and show how regularized inversion can be viewed as a special case

of Bayesian inference. Lastly we review the concept of a probabilistic graphical model

and show how we can obtain a meaningful interpretation of the prior distribution of

the model through this framework. Here we define the concept of an edge strength

and show numerically how different choices for the edge strengths can affect the prior

covariance of the model.
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Chapter 3: Bayesian Fracture Characterization

Chapter 3 serves as our first study into the application of Bayesian inference meth-

ods to a geophysical inverse problem. In this chapter, we develop the application

of a (non-hierarchical) Bayesian framework to the problem of fracture characteri-

zation from seismic data. Here the model consists of the fracture properties (par-

ticularly the fracture orientation and excess compliance) of a 2-D reservoir that is

localized in depth, and the measured data are taken to be features extracted from

the seismic traces, particularly the P-wave amplitude variation with offset and az-

imuth [42, 60, 62, 63] and the fracture transfer function [22], which measures the

change in the scattered seismic energy after the seismic wavefield passes through the

reservoir. When fractures are closely spaced relative to the seismic wavelength, the

fractured medium tends to exhibit anisotropy [66], and hence the P-wave reflection

amplitude data are more sensitive to the fracture properties at small fracture spac-

ings. On the other hand, when the fracture spacing is on the order of the seismic

wavelength, the fractures tend to instead act as scatterers [22, 78], thus the scattered

seismic energy is more sensitive to the presence and orientation of fractures in this

regime of fracture spacings. The Bayesian framework allows us to combine these data

to give estimates of the fracture properties over a larger regime of fracture spacings

than would otherwise be attainable while also providing a measure of uncertainty in

the estimates. We derive the likelihood models for these data via physical models

for anisotropy [60, 66] and fracture scattering [22, 78]. The fracture properties are

modeled as discretely-valued random variables with a prior distribution described by

the same 2-D grid MRF introduced in Chapter 2. We solve the inference problem

via loopy belief propagation [48, 55, 56] to obtain the posterior marginal distribu-

tions of the fracture properties, as well as their maximum a posteriori (MAP) and

Bayes least squares (posterior mean) estimates. While we do not attempt to infer the

edge strengths of the graph in this chapter, we do describe and briefly explore how

one may incorporate a priori geological knowledge into the inference procedure by

manipulation of the edge strengths. This exploratory problem motivated our deeper
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study into how one might invert for these edge strengths in a hierarchical Bayesian

setting, leading us to the work of Chapter 4.

Chapter 4: Least-Squares Migration with a Hierarchical Bayesian

Framework

In Chapter 4, we turn to the problem of seismic imaging (also referred to as migra-

tion), where the model is now the seismic image (i.e. the earth’s reflectivity model),

and the data consist of full seismic waveforms measured by a set of seismic receivers

at the surface. While migration is traditionally performed via back-propagation of

the recorded seismic wavefield into the model domain [11], recent efforts [19, 36, 49]

attempt to give the image as the solution to a least-squares inverse problem. This ap-

proach to the seismic imaging problem is referred to as least-squares migration (LSM).

To remain analogous to LSM, we model the image with a Gaussian prior distribution

and give the data as a linear function of the image corrupted by additive Gaussian

noise. The dependence of the data on the image is given by the Kirchhoff modeling

operator, which can be viewed as a ray-theoretic single-scattering approximation to

the integral wave-equation. The Gaussian prior on the image is again described by

the parameterized MRF from Chapter 2, but now we wish to infer the edge strengths

from the data in the hierarchical Bayesian setting. To do so, we endow the edge

strengths with their own prior and obtain the marginal MAP estimate for the edge

strengths via the expectation-maximization (E-M) algorithm [17, 46]. We verify our

procedure on 2-D synthetic datasets. The images we obtain after inferring the edge

strengths exhibit the desired spatially-varying smoothness properties: the images are

generally smooth along the reflectors but are allowed to vary sharply at pixels adja-

cent to a reflector, so as not to smooth out the discontinuity. In contrast, the images

obtained when the edge strengths are fixed are either too smooth or overly noisy.
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Chapter 5: Interpretation and Estimation of Regularization

Parameters

While we inferred the edge strengths in the previous chapter, the remaining parame-

ters defining the prior were decided in a somewhat ad hoc fashion. In Chapter 5, we

present two approaches to picking these remaining parameters more rigorously. In

the first part of this chapter, we elucidate further on the connections between these

parameters and the prior model covariance that results from a particular choice. To

do this analytically, we follow the methodology of Rodi and Myers [59] and Simpson

et al. [68], passing from a random vector representation of the model defined on a

discrete spatial grid to the limit of a continuous random field representation. In the

limiting case, we can obtain the covariance of the model as the Green’s function of a

differential operator, where the properties of this covariance function depend on the

parameters defining the prior distribution.

In the second part of this chapter, we seek to extend the inference framework of

the previous chapter to include these parameters. Here we perform the inference via

the variational Bayesian method [3], which can be viewed as a generalization of the

E-M algorithm [3, 4], and validate our methodology on a synthetic dataset.

Chapter 6: Hierarchical Bayesian Time-Lapse Seismic Process-

ing

In Chapter 6, we apply the hierarchical Bayesian framework and algorithmic machin-

ery explored in the previous chapters to the problem of time-lapse seismic inversion.

Here the goal is to detect changes in the subsurface over a period of time by taking

repeated seismic surveys (a first “baseline” survey and a second “monitor” survey).

Conventional methods for time-lapse inversion typically involve subtracting repeated

datasets and inverting the differenced data to obtain the time-lapse change [8, 30, 81];

these methods, however, require identical acquisition geometries between subsequent

seismic surveys, which is often difficult to achieve. In the realistic case of differing

acquisition geometries, one common approach is to invert the datasets separately
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and estimate the time-lapse change model as the difference in the inversion models.

However, this method often performs poorly due to differences in illumination and

observational noise between the datasets. To correctly treat the case of differing ac-

quisition geometries between the baseline and monitor surveys, we cast the problem

in the hierarchical Bayesian setting and seek the marginal MAP estimate for the

time-lapse change in the model parameters. We again solve the Bayesian inference

problem using the E-M algorithm, which, in this case, iterates between performing

subsequent updates to the background model and the time-lapse change. We ver-

ify the inference results on a time-lapse seismic imaging example involving synthetic

datasets with different acquisition geometries.

Chapter 7: Conclusions

In Chapter 7, we summarize the major contributions of our work, give concluding

remarks, and suggest some avenues for future research.
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Chapter 2

A Brief Primer on Inverse Problems,

Bayesian Inference, and Graphical

Models

2.1 An Introduction to Inverse Problems

In an inverse problem, the objective is to infer from a set of observed data d some

unknown attributes of interest which we refer to as the model parameters m. For

the inverse problems of interest in this thesis, m ∈ R
N is an N -dimensional model

vector of geophysical properties (such as acoustic reflectivity) defined over a 2-D (or

potentially 3-D) spatial grid of the subsurface, and d ∈ R
K is a K-dimensional data

vector consisting of either a set of seismic traces or features extracted from the seismic

dataset (such as P-wave reflection amplitudes, for example).

Typically, a forward modeling operator F relates the model parameters to the

observed data, i.e.

d = F (m) + n, (2.1)

where n is a noise term introduced to capture measurement and modeling errors.

Solving the inverse problem then involves finding the model parameters that minimize

some data misfit function Ω(m,d), usually taken to be some norm of the residual
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r = d− Am. For example, one might search for the model that gives the best fit to

the data in the least-squares sense, wherein the data misfit function is given by the

squared ℓ2-norm of the residual

Ω(m,d) =
1

2
‖d− F (m)‖22. (2.2)

The model mLS that minimizes (2.2) is consequently known as the least-squares so-

lution

mLS = argmin
m

1

2
‖d− F (m)‖22. (2.3)

Assuming F is continuously differentiable, we can derive the first-order necessary

condition on mLS by setting the gradient (with respect to m) of Ω(m,d) in (2.2) to

0:

∇mΩ(m,d) = −A(m)T (d− F (m)) = 0, (2.4)

where A(m) is the Jacobian of F . When F (m) is a linear function of the model (so

that F (m) = Am and the Jacobian A does not vary with m), then (2.4) implies that

mLS must be a solution to the linear system

ATAmLS = ATd. (2.5)

If K ≥ N and the columns of A are linearly independent (i.e. A is full column rank),

then ATA is positive definite and (2.5) has a unique solution:

mLS = (ATA)−1ATd. (2.6)

Unfortunately, even when the solution is unique, many inverse problems exhibit

ill-posedness, where even a small amount of noise in the data can lead to large errors

in the estimated model parameters [77]. In order to solve ill-posed problems and

prevent overfitting of noisy data, additional information about the model parameters

can be introduced in a process known as regularization [50, 77]. This is typically

achieved by adding to the data misfit function a regularization function Φ(m) that

34



depends solely on the model parameters m and penalizes models that are inconsistent

this information. The regularized solution mreg then minimizes the combined penalty

terms:

mreg = argmin
m

Φ(m) + Ω(m,d). (2.7)

For example, if the model is known to be spatially smooth a priori, an appropriate

regularization function may penalize local differences in the model parameters such

as

Φ(m) =
1

2
λ
∑

(i,j)∈E
βij(mi −mj)

2 (2.8)

=
1

2
λmTD(β)m, (2.9)

where the differencing weights βij ∈ [0, 1] capture the degree of smoothness we expect

betweenmi andmj , E is the set of pairs of indices that correspond to spatial neighbors,

D(β) is a differencing matrix capturing this operation defined by the vector β = {βij :
(i, j) ∈ E}, and λ > 0 is a trade-off parameter that assigns the maximum weight given

to penalizing these differences. Alternatively, if the model is believed to be near some

reference model m0, the regularization function might quantify the distance between

the model parameters and m0, e.g.

Φ(m) =
1

2
λ‖m−m0‖22. (2.10)

Both (2.9) and (2.10) are examples of Tikhonov regularization [70, 77], where the

regularization function is taken to be a quadratic positive semi-definite function of

the model. The Tikhonov regularization function can be expressed in a general form

as

Φ(m) =
1

2
(m−m0)

TQ(m−m0), (2.11)

where the regularization matrix Q is symmetric and positive semi-definite.

When the data misfit function Ω(m,d) is taken to be the squared ℓ2-norm of the

residual (as in (2.2)), the model mRLS that solves the Tikhonov regularized minimiza-
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tion problem of (2.7) is referred to as the regularized least-squares solution

mRLS = argmin
m

1

2
(m−m0)

TQ(m−m0) +
1

2
‖d− F (m)‖22. (2.12)

(2.12) can be made even more general by instead considering a matrix-weighted

quadratic function of the residual rTP r (for some symmetric positive definite matrix

P ) for the data misfit term, so that solving (2.7) will yield the regularized weighted

least-squares model mRWLS:

mRWLS = argmin
m

1

2
(m−m0)

TQ(m−m0) +
1

2
(d− F (m))T P (d− F (m)) . (2.13)

As will be seen shortly, the matrices Q and P (when both are positive definite) can

be interpreted as inverse covariance matrices of the model m (prior to observing the

data) and the noise n, respectively. As before, when F is a linear function of the

model (described by the matrix A), applying the stationarity condition on mRWLS

yields an analytical solution to (2.13):

mRWLS =
(
ATPA+Q

)−1 (
ATPd+Qm0

)
, (2.14)

where the above requires that ATPA+Q be positive definite.

2.2 Bayesian Inference

Having described the fundamental components of an inverse problem, we turn to the

setting of Bayesian inference which provides a useful and mathematically rigorous

framework for inferring the model parameters from the data and handling the relevant

uncertainties in both the model and data. In what follows, we give a brief overview

of the concepts of Bayesian inference and probabilistic graphical models. A more

thorough treatment of these concepts can be found in Gelman et al. [24] and Koller

and Friedman [35].

For the sake of clarity, we pause here to make a few comments about the notation
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and terminology we will use. In what follows and throughout this thesis, we use

sans-serif font for random variables (e.g. mi), boldface font for vectors (e.g. m), and

combine both fonts for random vectors (e.g. m). When we refer to the probability

distribution (or simply distribution) of a random vector m, we are referring to its

probability mass function (in the case of a discretely-valued random vector) or its

probability density function (in the case of a continuously-valued random vector).

We denote the distribution of m by pm(m), or, when the meaning is clear from the

context, we drop the subscript and simply write p(m). We use analogous notation

for conditional distributions: e.g. for the conditional distribution of m given d, we

will write pm|d(m|d) or simply p(m|d).

In the context of Bayesian inference, both the model and data are treated as

random vectors, denoted by m and d. Our belief about the model parameters m prior

to observing the data is encoded via p(m), the prior distribution on m. Similarly, our

belief about what the data d will be, given a particular model m = m, is captured

by the likelihood model p(d|m), which can be thought of as a stochastic forward

model for the data. These two probability distributions fully specify the probabilistic

model for m and d and are used to compute the posterior distribution on the model

parameters p(m|d) via Bayes’ rule:

p(m|d) = p(m)p(d|m)∫
RN p(m′)p(d|m′) dm′ . (2.15)

If m is discretely-valued, the integral in the denominator of (2.15) would be replaced

by a summation. The posterior distribution is the complete solution to the problem

of inferring m from d, and updates our belief about the model upon having observed

the data. When m is high-dimensional, it may not be possible to tractably explore

the entire posterior distribution and often one will instead seek a point estimator of

the model m. A Bayesian point estimator m̂(·) is a function of the data d that is

obtained by minimizing an expected Bayes cost function B(m̂(d),m) which encodes
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the cost of estimating m as m̂(d). Hence we have:

m̂(·) = argmin
f(·)

Ep(m,d) [B(f(d),m)] (2.16)

= argmin
f(·)

Ep(d)

[
Ep(m|d) [B(f(d),m) | d ]

]
, (2.17)

where Ep denotes the expectation operator with respect to distribution p and (2.17)

is due to the law of iterated expectations. As seen by (2.17), the total expected Bayes

cost of (2.16) is a non-negative combination of the conditional expected Bayes costs

given the different realizations of the data. Hence the expected Bayes cost (2.16) can

be minimized by designing m̂(·) to minimize the conditional expected Bayes costs for

each realization of the data d = d, so that

m̂(d) = argmin
m′

Ep(m|d) [B(m′,m) | d = d ] . (2.18)

The particular Bayesian point estimator we obtain from (2.18) is determined by the

choice of the Bayes cost function B(·, ·). If B quantifies the squared ℓ2-norm of the

estimation error, so that

B(m̂,m) = ‖m̂−m‖22, (2.19)

solving (2.18) yields the Bayes least-squares (BLS) estimator mBLS, which turns out

to be the posterior mean of m:

mBLS(d) = E[m|d]. (2.20)

The well-known maximum a posteriori (MAP) estimator mMAP, which maximizes

the posterior distribution p(m|d), is obtained by uniformly penalizing all non-zero

estimation errors; to be precise, if, for some ǫ > 0, B is taken to be

B(m̂,m) =




1 ‖m̂−m‖ > ǫ

0 ‖m̂−m‖ ≤ ǫ

(2.21)
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then taking the limit as ǫ→ 0 in (2.21) yields the MAP estimator as the solution to

(2.18), which is given by:

mMAP(d) = argmax
m

p(m|d). (2.22)

The connection between the Bayesian inference setting and the deterministic in-

version framework described in Section 2.1 is perhaps best seen through the MAP

estimator. The MAP estimator can be equivalently expressed as the maximizer of

the log posterior distribution, since log is a monotonic function; hence we can rewrite

(2.22) as

mMAP(d) = argmax
m

log p(m|d) (2.23)

= argmax
m

log p(m) + log p(d|m), (2.24)

where we have employed Bayes’ rule (2.15) and dropped the denominator which does

not depend on m. Noting that maximizing a function is the same as minimizing the

negative of that function, (2.24) becomes

mMAP(d) = argmin
m

{− log p(m)− log p(d|m)} . (2.25)

Comparing the form of the MAP estimate in (2.25) to that of the regularized solution

from the deterministic inversion framework in (2.7), we see that the two are math-

ematically equivalent. In particular, we can interpret the regularization and data

misfit functions of (2.7) as negative log prior and likelihood models, respectively:

Φ(m) = − log p(m) + const., (2.26)

Ω(m,d) = − log p(d|m) + const. (2.27)

The regularized weighted least-squares solution of (2.13) can be interpreted as a

Bayesian MAP estimate when the prior model and noise are both Gaussian. In
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particular, we endow m with a Gaussian prior distribution, having prior mean m0

and covariance matrix C (i.e. m ∼ N (m0, C)) so that

p(m) =
exp

{
−1

2
(m−m0)

T C−1 (m−m0)
}

(2π)N/2 |C|1/2
, (2.28)

where | · | denotes the determinant, and let the data be described by

d = F (m) + n, (2.29)

where n ∼ N (0,Σ) is a zero-mean Gaussian noise vector independent from the model

m, so that

p(d|m) =
exp

{
−1

2
(d− F (m))T Σ−1 (d− F (m))

}

(2π)K/2 |Σ|1/2
. (2.30)

The posterior distribution is then given by

p(m|d) =
exp

{
−1

2
(m−m0)

T C−1 (m−m0)− 1
2
(d− F (m))T Σ−1 (d− F (m))

}

(2π)(N+K)/2 |C|1/2 |Σ|1/2 p(d)
(2.31)

∝ exp
{
−1

2
(m−m0)

T C−1 (m−m0)− 1
2
(d− F (m))T Σ−1 (d− F (m))

}
,

(2.32)

so that the Bayesian MAP estimate of the model is

mMAP = argmax
m

log p(m|d) (2.33)

= argmin
m

1
2
(m−m0)

T C−1 (m−m0) +
1
2
(d− F (m))T Σ−1 (d− F (m)) .

(2.34)

Comparing (2.34) with the regularized weighted least-squares cost function of (2.13),

we see that (for positive definite Q and P in (2.13)) the two are equivalent and

mRWLS is the Bayesian MAP estimate when the prior model and noise are Gaussian

as described above. Furthermore, we can interpret the regularization matrix Q as the
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inverse prior covariance matrix (also called the prior precision matrix) C−1 and the

weighting matrix P (from the quadratic data misfit function) as the inverse covariance

matrix of the noise [70].

2.3 Probabilistic Graphical Models, Markov Ran-

dom Fields, and Covariance

We return to the examples of Tikhonov regularization given in (2.9) and (2.10). In

particular, we consider the case when the regularization function Φ(m) both enforces

smoothness in the model parameters and penalizes the magnitude of the model:

Φ(m) =
1

2
λ


 ∑

(i,j)∈E
βij(mi −mj)

2 + ǫ
∑

i∈V
m2
i


 (2.35)

=
1

2
mT (λ (D(β) + ǫI))m, (2.36)

where λ > 0, ǫ > 0, β = {βij : (i, j) ∈ E} with each βij ∈ [0, 1], the set V = {1, . . . , N}
indexes the components of m, and E and the differencing matrix D(β) take the same

meaning as in (2.9). In the Bayesian inference context, this is equivalent to modeling

m a priori as Gaussian

m ∼ N (0, C) (2.37)

where the prior precision matrix Q = C−1 is given by

Q = C−1 = λ (D(β) + ǫI) . (2.38)

It is clear from (2.35) that the differencing coefficients βij determine how strongly

to penalize differences between mi and mj and hence the resulting smoothness of

the regularized solution. In the Bayesian context, β similarly affects the smoothness

of mMAP through the prior on m. Indeed the prior distribution plays a key role in

determining the smoothness properties of the model parameters.
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Figure 2-1: The Markov random field imposed on m by fixing β prior to observing
the data d, for a simple nine pixel image.

2.3.1 Probabilistic Graphical Models

The expressive formalism of probabilistic graphical models provides a useful analyti-

cal framework for both understanding the interdependencies imposed by a particular

distribution as well as implementing efficient algorithms to solve the underlying in-

ference problem (some of which are explored in Chapter 3). We define an undirected

graphical model G = (V, E), with a set of vertices (or nodes) V, which index the

random variables mi comprising the random vector m, and a set of edges E ⊂ V ×V,

represented as pairs of vertices in V that encode dependencies between the random

variables. We say that the random vector m forms a Markov random field (MRF) over

G if it is Markov on G, meaning that, for any disjoint subsets of nodes S, T, U ⊂ V
such that S separates T from U on G (i.e. if we remove the nodes in S from G then

there is no remaining path from any node in T to any node in U), then conditioned

on mS, mT is conditionally independent of mU (which we write as mT ⊥⊥ mU |mS).

Here we have defined mS , {mi : i ∈ S} as the set of random variables corresponding

to the nodes in S (similarly for mT and mU). An example of an undirected graphical

model is depicted in Figure 2-1.

To make the connection between a particular distribution and a graphical model,

we turn to the Hammersley-Clifford theorem [13, 28, 35]. The Hammersley-Clifford
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theorem states that a distribution is Markov on an undirected graphical model G if

it factorizes over the maximal cliques of that graph, and, for distributions that are

strictly positive, the converse statement also holds. Here a clique C of a graph G is

any subset of its vertices (C ⊂ V) which are fully-connected, meaning every vertex

in C shares an edge from E with every other vertex in C. The maximal cliques of

a graph G are its largest possible cliques: C is a maximal clique of G if it fails to

remain a clique when even one more vertex from V \ C is added to C. We say that

a distribution pm(m) factorizes over the maximal cliques of G if it can be written

as a product of functions of the random variables in each maximal clique C of G:

pm(m) =
∏

C fC(mC).

For a Gaussian random vector m with precision matrix (or inverse covariance

matrix) Q, the Hammersley-Clifford theorem implies that m is Markov on the graph

G = (V, E) if and only if Qij = 0 whenever there is no edge between nodes i and j (i.e.

whenever Q is at least as sparse as the edge set E) [35]. Hence, a Gaussian random

vector with a given precision matrix Q induces a natural graph based on the sparsity

pattern of Q.

The graph shown in Figure 2-1 is the natural graph induced by the Gaussian

prior described in Equations (2.37)-(2.38), and the sets V and E used in (2.35) are

precisely the vertex and edge sets of this graph. The edges of the graph in Figure

2-1 are labeled by the differencing weights βij because, in a sense, the βij determine

the “strength” of each edge. To be precise, β captures the conditional dependence

structure of m, such that βij = 0 implies that there is no edge between mi and mj

and hence mi ⊥⊥ mj | {mk : k 6= i, j}, and a larger value for βij induces a stronger

conditional correlation between mi and mj. For this reason, we sometimes refer to

the elements of β as the edge strengths of G and to D(β) as the weighted graph

Laplacian of G (weighted by β). (We note to the reader that, although we have

defined the notion of edge strengths in this chapter, we will re-introduce and review

this concept in Chapter 4.)
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2.3.2 Edge Strengths and Covariance

This graph theoretic approach to defining a distribution via a Markov random field

contrasts with the more typical method for defining priors in geophysical inverse

problems using stationary covariance functions (typically over an assumed Gaussian

random field) [70]. A covariance function is often characterized by its variance and

correlation length, the latter being a characteristic length defining the rate of decay of

the covariance function. While defining a covariance function explicitly encodes the

covariances between any two points in space, an MRF instead encodes the conditional

independencies and (when parameterized with edge strengths) the local smoothness

structure of the model, thereby implicitly defining a covariance function.

To show the effect of β on the covariance of m in the Gaussian example described

by (2.37)-(2.38), we compute one row of the covariance matrix C(β) and draw samples

of m for different choices of β. We note that since Cij = cov(mi,mj), the ith row of the

covariance matrix gives the covariance of the entire model with mi. The covariances

and samples are computed with m defined over a 101-by-101 node grid (with grid

spacing set to 1 m) and with setting λ = 1 and ǫ = 10−3 and where the covariances

with the central point in the grid are computed. We consider two cases: the first

where each βij is set to a common value β, to illustrate how varying the βij uniformly

affects the model covariance, and the second where some of the βij are set to 0 and

the remainder are set to 1, to illustrate how the βij can capture spatially-varying

smoothness in the model.

Figure 2-2 displays the first case where all the βij are set to a common value, where

this value is varied from 1 to 0. As shown in the covariance plots, as β decreases, the

resulting covariance function becomes taller and skinnier: decreasing β results in an

increased model variance and decreased correlation length. β = 0 corresponds to the

case of a completely disconnected graph, so that all the mi are independent, and hence

the covariance function is 0 everywhere except at the central point, which corresponds

to the variance of mi. The draws from the Gaussian distributions similarly show this.

When β = 1, the sample is highly correlated in space and has a relatively smaller
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magnitude (due to the lower variance), however as β is made smaller, we observe that

the sample becomes spatially less correlated and the magnitude of its range increases.

At β = 0, the sample is of white noise and hence completely uncorrelated in space.

The second case, where we set some of the βij to 0 and the rest to 1 is shown

in Figure 2-3. In particular we consider the choice of β we may want to use if

we suspect a horizontal discontinuity in the model at z = 40.5 m and centered at

x = 51 m; in this case, we would set βij = 0 for the edge strengths corresponding

to vertical edges connecting nodes at z = 40 m and z = 41 m along the length of

the discontinuity. We show the covariances and sample draws for discontinuities of

different lengths: 21 m, 51 m, and an infinite length discontinuity. As evidenced by

the plots, the covariance is significantly reduced across the discontinuity where the

βij are set to 0; however, for the finite-length discontinuities, the covariance remains

non-zero across the discontinuity, as there is still a path on the graph G connecting

the nodes to the central node, through which they remain correlated to the central

node. For the infinite-length discontinuity, no such path exists as the nodes above

the discontinuity are completely disconnected from those below the discontinuity;

hence the two sets of nodes are independent, and the covariances of the nodes above

the discontinuity with the central node are identically 0. This is similarly observed

in the sample draws: the draw corresponding to the infinite-length discontinuity

shows that the nodes above and below the discontinuity are uncorrelated. For the

draws corresponding to the finite-length discontinuities, one observes that the sample

values are allowed to contrast significantly across the discontinuity, however a reduced

correlation still exists through paths of nodes that avoid the discontinuity.

The preceding examples have served to illustrate the significance of the edge

strengths β in defining the prior distribution for m and to point out the flexibility of

this construction for treating inverse problems with models that have spatially-varying

smoothness properties. In Chapter 5, we undertake a more rigorous investigation of

the parameters β, λ, and ǫ and their relationship with the model covariance. We note

here that the graphical model depicted in Figure 2-1 with edge set E connecting only

a node’s four nearest neighbors is one of many possible graphs that can be used in our
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Figure 2-2: Computed covariance functions (first column) and sample draws (second
column) from N (0, (λ(D(β) + ǫI))−1) with each βij = β for (A-B) β = 1, (C-D)
β = 0.5, (E-F) β = 0.1, (G-H) β = 0.01, (I-J) β = 0.
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Figure 2-3: Computed covariance functions (first column) and sample draws (second
column) from N (0, (λ(D(β)+ǫI))−1) with βij = 0 along a horizontal discontinuity at
z = 40.5 m (centered at x = 51 m) of length (A-B) 21 m, (C-D) 51 m, (E-F) infinite
length. βij = 1 elsewhere.
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construction. In particular, we can generalize the graph in Figure 2-1 by appending

E so that a node is connected to all other nodes within some specified radius. Picking

a radius of 1 grid node will give the graph of Figure 2-1; a radius greater than
√
2

but less than 2 will additionally induce diagonal connections, and so on.

In the remainder of this thesis, we explore different inference problems that use this

construction with β. Chapter 3 is an exploratory study in Bayesian inference on the

geophysical inverse problem of fracture characterization; there the model parameters

are treated as discrete random variables, and the prior distribution is defined using the

same graphical model as in Figure 2-1, with β fixed. Our investigation of this inference

problem made apparent the significance of the choice of the edge strengths β to the

solution of the problem. Hence, in Chapter 4, we turn to the problem of estimating the

edge strengths β from the data in the context of the seismic imaging problem known

as least-squares migration. Therein the model is treated as a Gaussian random vector

(following the description given in Equations (2.37)-(2.38)). In Chapter 5, we extend

the work of Chapter 4 by investigating the connections between the parameters β,

λ, and ǫ and the model covariance and further generalize the methodology developed

in Chapter 4 to additionally estimate λ and the noise variance. Chapter 6 focuses

on the problem of time-lapse seismic processing and utilizes some of the machinery

discussed in Chapter 4 to correctly frame and solve the inference problem; however,

in that chapter, while the construction with β is utilized, the focus is on correctly

dealing with uncertainty about how the model evolves with time rather than on the

edge strengths β.

48



Chapter 3

Bayesian Fracture Characterization

3.1 Summary

In this chapter, we describe a methodology for quantitatively characterizing the frac-

tured nature of a hydrocarbon or geothermal reservoir from surface seismic data under

a Bayesian inference framework. The method combines different kinds of measure-

ments of fracture properties to find a best fit model while providing estimates of

the uncertainty of model parameters. Fractures provide pathways for fluid flow in

a reservoir, and hence, knowledge about a reservoir’s fractured nature can be used

to enhance production from the reservoir. The fracture properties of interest in this

study (to be inferred) are fracture orientation and excess compliance, where each

of these properties are assumed to vary spatially over a 2-D horizontal grid which

is assumed to represent the top of a reservoir. The Bayesian framework in which

the inference problem is cast has the key benefits of (1) utilization of a prior model

that allows geological information to be incorporated, (2) providing a straightfor-

ward means of incorporating all measurements (across the 2-D spatial grid) into the

estimates at each grid point, (3) allowing different types of measurements to be com-

bined under a single inference procedure, and (4) providing a measure of uncertainty

in the estimates. The observed data are taken from a 2-D array of surface seismic

receivers responding to an array of surface sources. Well understood features from

the seismic traces are extracted and treated as the observed data, namely the P-wave
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reflection amplitude variation with acquisition azimuth and offset (amplitude versus

azimuth data) and fracture transfer function data. Amplitude versus azimuth data

are known to be more sensitive to fracture properties when the fracture spacing is

significantly smaller than the seismic wavelength, whereas fracture transfer function

data are more sensitive to fracture properties when the fracture spacing is on the order

of the seismic wavelength. Combining these two measurements has the benefit of al-

lowing inferences to be made about fracture properties over a larger range of fracture

spacing than otherwise attainable. Geophysical forward models for the measurements

are used to arrive at likelihood models for the data, and the prior distribution for the

fracture variables is obtained by defining a Markov random field over the horizontal

2-D grid on which we wish to obtain fracture properties. The fracture variables are

then inferred by application of loopy belief propagation to yield approximations for

the posterior marginal distributions of the fracture properties, as well as the maximum

a posteriori and Bayes least squares (posterior mean) estimates of these properties.

Verification of the inference procedure is performed using a synthetic dataset, where

the estimates are shown to be at or near ground truth for both fracture orientation (at

the full range of fracture spacings) and fracture excess compliance (at small fracture

spacings).

3.2 Introduction

Fractures are cracks in the earth’s crust through which fluid, such as oil, natural gas,

or brine, can flow. Knowledge about the presence and properties of fractures in a

reservoir can be extremely valuable, as such information can be used to determine

pathways for fluid flow and to optimize production from the reservoir [1, 62]. Since

the presence of fractures in an elastic medium can alter the compliance of the medium

and fractures often have a preferred alignment relative to in situ stress, fractures can

cause the medium to exhibit anisotropy [66]. This anisotropy has been exploited to

give different techniques for determining fracture properties from seismic data, such as

reflection amplitude versus offset and azimuth analysis [42, 60, 62, 63] and shear wave
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birefringence [23]. These methods, however, are only valid when the fracture spacing

is small in comparison to the seismic wavelength, so that seismic waves average over

the fractures [22, 78]. The equivalent anisotropic medium assumption breaks down

when the spacing between the fractures increases to being on the order of the seismic

wavelength. For the case of larger fracture spacings, Willis et al. [78] proposed a

technique, referred to as the scattering index method, to estimate the azimuthal

orientation (or strike) of a fracture system based on the scattered seismic energy.

Fang et al. [22] described a series of modifications to this technique to give a more

robust methodology for determining fracture orientation, which is referred to as the

fracture transfer function (FTF) method.

In the way of statistical inference methods applied to geophysical problems, Ei-

dsvik et al. [20] gave a Bayesian framework for determining rock facies and saturating

fluid by integrating a forward rock physics model with spatial statistics of rock prop-

erties. Specifically in the area of fracture characterization, Ali and Jakobsen [1] used

a Bayesian inference framework to infer fracture orientation and density from seismic

velocity and attenuation anisotropy data. Sil and Srinivasan [67] applied a simi-

lar Bayesian inference methodology to determine fracture strikes from seismic and

well data. All of the aforementioned statistical studies solved the inference problem

via Markov chain Monte Carlo (MCMC), a sampling technique which stochastically

searches the model space. Furthermore, the data models used in all of these stud-

ies follow from the assumption that a medium with closely spaced fractures is an

equivalent anisotropic medium.

The aim of our study is to utilize a Bayesian framework to combine different data

which, on their own, are informative about certain regimes of fracture spacing, to

be able to estimate different fracture properties (particularly, excess fracture compli-

ance and fracture orientation) at a wider range of fracture spacings than otherwise

attainable if one data type is used. The Bayesian framework in which the problem

is cast furthermore makes it straightforward to encode prior knowledge about either

geological features of the reservoir, such as the existence of a discontinuity arising

from a geological fault, or known information about the fracture properties or their
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spatial correlation, where we assume that the fracture properties can vary spatially

over a 2-D horizontal grid.

We first describe the physical parameters that we use to characterize a fracture

system in a reservoir whose properties vary with space. We then present our approach

for casting the fracture characterization problem within a Bayesian framework in

which we assume that fracture properties within the reservoir are spatially correlated.

We capture this spatial correlation by defining a Markov random field (MRF) over

the grid of fracture properties, which we use to arrive at the prior distribution for

the fracture properties. We then introduce the types of seismic data that we assume

are available to characterize fractures, particularly amplitude versus azimuth [60, 63]

and fracture transfer function [22], and describe the methods by which these data are

used to place constraints on the properties. The inversion for model parameters is

accomplished via loopy belief propagation (LBP) [48, 55, 56], a numerically scalable

approximate inference procedure that yields both the posterior marginal distributions

of the properties at each point in space in addition to the Bayes least squares (BLS)

and maximum a posteriori (MAP) estimates of the fracture properties. Finally, we

demonstrate the applicability of the method for inferring fracture properties using

synthetic seismic data.

3.3 Description of the Problem

Consider a set of seismic measurements taken from a 2-D array of surface receivers

over a layered medium responding to a set of surface seismic sources. We are interested

in inferring from the seismic data whether or not fractures are present in a particular

layer of the medium (e.g. the reservoir) and, if so, the properties of the fractures. A

simple example of this setup, where the medium consists of flat homogeneous layers,

is displayed in Figure 3-1. In particular, we would like to infer fracture orientation

ϕ = [ϕij] and the (base 10) log excess fracture compliance z = [zij ] spatially over a

2-D m-by-n horizontal grid L = {1, . . . , m}×{1, . . . , n} (where i and j index the axes

of the grid L). Each grid point corresponds to a square of area ℓ2, so that the entire
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Figure 3-1: A simple model of the problem setting. The formation consists of five flat
homogeneous layers with fractures that may be present in the third layer and mea-
surements obtained from the 2-D array of surface seismic receivers. Figure modified
from Willis et al. [78].

grid corresponds to a region of area mnℓ2. Excess fracture compliance is defined as

the overall additional medium compliance (having units of Pa−1) due to the presence

of fractures and is the ratio of the compliance of the individual fractures (in m/Pa)

to the fracture spacing (in m) [18, 66]. We make the simplifying assumptions (1) that

the fractures are vertical, so that the fracture orientation ϕij is simply the azimuth

(or strike) of the fractures (with respect to North), and (2) that the normal and

tangential excess compliances are equal, which may represent gas-filled fractures [64],

hence we need only infer a single log excess compliance value zij for each grid node.

It is possible that the ratio of normal to tangential fracture compliances may deviate

from unity due to mineralization [64]; while this ratio has been measured using shear

wave splitting data [74], we are not able to uniquely resolve this ratio from AvAz

data. If this ratio is known to differ from unity for a particular fracture system, we

may proceed with our analysis inferring for only the normal compliance and setting

the tangential compliance according to this ratio. An excess compliance value of 0

at a particular grid point is taken to mean there are no fractures at that grid point

(rendering the value for azimuth arbitrary and meaningless). In order to compare

zero and non-zero compliance on a logarithmic scale, we treat an excess compliance

of zero as 10−13 Pa−1, which is geophysically reasonable as this is an insignificantly
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small value for excess compliance and results in a negligible effect on seismic wave

propagation. We assume that the dataset is rich enough so that for each grid point

in L, there are corresponding source-receiver pairs that sample the point at multiple

offsets and acquisition azimuths. We further assume that the background velocity

structure of the medium is well understood.

In order to relate the fracture properties m = (z,ϕ) = [mij ] to the seismic

trace dataset, it is necessary to model seismic data as a function of the fracture

properties. Unfortunately, modeling the entire seismic trace dataset requires a full

elastic 3-D forward simulation of the seismic wavefield, and the computational cost

associated with the repeated simulations required to invert for the fracture properties

is prohibitively high, so we instead resort to simulating well understood features of the

seismic trace dataset and treat these features as our observed data d. In particular,

we choose to model P-wave reflection amplitude as a function of acquisition azimuth

(at a fixed angle of incidence), also known as amplitude versus azimuth (AvAz) data

[60, 63], and fracture transfer function (FTF) data, as defined by Fang et al. [22].

We refer to these observed data with variables dAvAz and dFTF, respectively, and let

d = (dAvAz,dFTF). Detailed descriptions of the data and their forward models are

detailed in Section 3.4.2. Both dAvAz =
[
dAvAz
ij

]
and dFTF =

[
dFTF
ij

]
are defined over

the grid L, in a manner such that to each grid node of fracture properties mij there

is an associated data vector dij.

3.4 Bayesian Inference Framework

In order to arrive at an estimate of the fracture properties from the seismic data,

we employ a Bayesian inference framework. As mentioned earlier, the Bayesian

framework is chosen as it allows us to naturally encode prior information about

the fracture properties (and their spatial variation), combine different types of data,

and quantify the uncertainty associated with the inferred quantities. The frac-

ture properties and seismic data are treated as random variables, and a stochas-

tic model is used to give the joint distribution of the fracture properties and seis-
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mic data (m, d) = ((z,ϕ), d). In particular, we model the fracture properties as

discrete random variables where the domain for each of the variables is given by:

10zij ∈ Z = {10−9.0, 10−9.1, . . . , 10−12.0, 10−13} (in units of Pa−1) and ϕij ∈ F =

{0◦, 20◦, . . . , 160◦}, ∀(i, j) ∈ L. The use of discrete random variables makes the

inference problem amenable to the general framework of message-passing inference

algorithms described in Section 3.4.3, where the intervals of discretization were picked

based on the level of resolution we might reasonably expect to achieve using seismic

measurements. The posterior distribution of the fracture properties given the data

p(m|d) is given by Bayes’ rule:

p(m|d) = p(m)p(d|m)∑
m′ p(m′)p(d|m′)

∝ p(m)p(d|m) (3.1)

where p(m) and p(d|m) are the prior distribution of the fracture properties and the

distribution of the seismic data given the fracture properties, respectively.

While the posterior distribution of Equation 3.1 is the complete solution to the

Bayesian inference problem, exploring this distribution can be intractable due to the

high-dimensionality of the fracture properties m. To glean meaningful inferences

from the posterior distribution, one may either choose to obtain point estimators of

m from the posterior or to obtain marginal posterior distributions over some tractably

explorable subsets of the random variables in m. While point estimators are useful

when a single answer to the inference problem is desired, they do not capture the

associated estimation uncertainties (which are described by the marginal posterior

distributions). Among the most common point estimators are the MAP estimate

m̂MAP and the BLS (or posterior mean) estimate m̂BLS. The MAP estimate of the

fracture properties minimizes the probability of estimation error and is the overall

configuration of the fracture properties that maximizes the posterior distribution,

that is

m̂MAP = argmax
m

p(m|d) (3.2)
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In contrast, the BLS estimate of the fracture properties minimizes the expected value

of the squared estimation error and is given by the expected value of the fracture

properties given the data. The posterior marginal distribution for the fracture prop-

erties at a particular node mij is given by summation of the posterior distribution over

all other variables m−ij , {mkl : (k, l) ∈ L \ {(i, j)}}. So, for example, the posterior

marginal for the log excess compliance p(zij |d) is given by

p(zij |d) =
∑

ϕij

∑

m−ij

p(zij, ϕij,m−ij |d). (3.3)

Computing the posterior marginals has the additional benefit of yielding (with min-

imal additional computation) the BLS estimates. For example, for the log excess

compliance at node (i, j), we have

ẑij,BLS = E [zij|d = d] =
∑

zij

zij p(zij |d). (3.4)

For any reasonably large number of grid nodes mn, the maximization and summa-

tion in Equations 3.2 and 3.3, respectively, are intractable, hence we must turn to

approximate inference algorithms to perform the estimation. We discuss the infer-

ence algorithms used to approximate the MAP estimates and posterior marginals in

Section 3.4.3.

3.4.1 Prior Model

Assuming that the fracture properties will not change rapidly with position, it is

reasonable to make the properties at one point depend on its nearest neighbors in

space. We capture this spatial dependence mathematically by carefully constructing

an appropriate prior model for the fracture properties. We arrive at a prior model by

defining the set of fracture properties m as a Markov random field over an undirected

graphical model G = (V, E) on the 2-D grid L [35]. Here V is the set of vertices or

nodes of the graphical model, which correspond to partitions of the random variables

in m. We associate with each grid node (i, j) ∈ L a vertex in V corresponding to the
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Figure 3-2: Undirected graphical model G over which m is Markov, prior to observing
the seismic data. The model is based on the assumption that the values of the fracture
properties at one location are dependent on those of its nearest neighbors.

pair of random variables mij = (zij , ϕij), so that V ≡ L. The set of edges of the graph

is E ⊂ V × V, represented as pairs of nodes, which encode dependencies between the

random variables.

We define the edge set E over the 2-D grid L so that a particular node shares edges

with its four neighbors on the grid L. The graphical model for m prior to observing

the data is shown in Figure 3-2. Intuitively, such a graph structure means that given

the fracture properties of the four nearest neighbors of a particular node, knowledge

of the fracture properties of the medium elsewhere on the grid will have no impact

on our belief about the properties at that node. Since we expect the properties of

the medium at a particular point in space to be similar to its surrounding properties,

this suggests a prior distribution that penalizes differences between a node and its

neighbors. In particular we define the prior distribution for the fracture parameters

to be

p(z) ∝ exp



−

∑

(ij,kl)∈E
βzij,kl(zij − zkl)

2



 (3.5)
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and

p(ϕ) ∝ exp



−

∑

(ij,kl)∈E
βϕij,kl

(ϕij − ϕkl)
2



 , (3.6)

where βzij,kl and βϕij,kl
are smoothness parameters. Note that the fracture orientations

must be manipulated with a modulo operation to bring the difference within the

interval [−90◦, 90◦), as the azimuth is identical modulo 180◦.

We define the smoothness parameters in terms of an overall (spatially-varying)

smoothness parameter βij,kl after normalizing by the bin sizes for each variable (so

that the degree of smoothness is not dependent on the units of the variables) via

βzij,kl = βij,kl/(0.1)
2 and βϕij,kl

= βij,kl/(20)
2. Allowing spatial variation in the

smoothness parameter allows us to encode a priori information about discontinuities

in the medium, such as those which may arise from a geological fault. In general,

we pick a single value βc > 0 for the smoothness parameter along edges where there

are no known discontinuities and set the smoothness parameter to zero along edges

where a fault is known to exist (thereby removing those edges from the graph). We

experiment with different choices for βc in Section 3.5.2. Defining Ef to be the set of

edges where a fault is known to exist, then

βij,kl =





βc if ((i, j), (k, l)) ∈ E \ Ef
0 if ((i, j), (k, l)) ∈ Ef

(3.7)

Treating the two different fracture properties as independent a priori gives the

overall prior distribution for the fracture properties as

p(m) = p(z,ϕ) = p(z)p(ϕ). (3.8)

Indeed, we see that p(m) factorizes over the maximal cliques of G (which are precisely

the edges E) and thus, by the Hammersley-Clifford theorem (see Ch. 2), m is Markov

on G.
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3.4.2 Likelihood Model

As discussed in Section 3.3, the seismic data used in this study are AvAz and FTF

data, which are extracted from the seismic trace dataset and denoted by dAvAz and

dFTF, respectively. We make the assumption that given the fracture parameters m,

the two types of seismic data d
AvAz and d

FTF are conditionally independent, and

hence

p(d|m) = p(dAvAz|m)p(dFTF|m). (3.9)

In the remainder of this section, we discuss how we model the data to arrive at

the likelihood models p(dAvAz|m) and p(dFTF|m).

Amplitude versus Azimuth Data

We suppose we have data for the amplitudes of P-P arrivals reflected from the top of

the fractured layer at a full range of acquisition azimuths and source-receiver offsets

for each grid point (i, j) ∈ L. We can use ray-tracing to determine spatially the

grid point corresponding to each source-receiver pair as well as to map the offsets to

incidence angles for the wave incident on the top of the fractured layer (where the

incidence angle is the angle the incident wave makes with the vertical axis). This

gives, for each grid point (i, j) a set of P-P reflection amplitudes that vary with

incidence angle θ ∈ Θ and acquisition azimuth (relative to North) φAcq ∈ ΦAcq, where

Θ and ΦAcq are the sets of incidence angles and acquisition azimuths over which

the data has been obtained; we denote the reflection amplitudes by R̂PP
ij (θ, φAcq).

For concreteness, suppose the acquisition azimuths we have are precisely the set

ΦAcq = {0◦, 10◦, . . . , 170◦}. In order to be able to compare these amplitudes to the

P-wave reflection coefficient, for each incidence angle θ, we normalize the amplitudes

by the mean amplitude (taken over acquisition azimuths). This allows us to compare

the variation of the reflection coefficient with azimuth (rather than its absolute value):

dAvAz
ij = dAvAz

ij,θ,φAcq =
R̂PP
ij (θ, φAcq)

1
|ΦAcq|

∑
φ∈ΦAcq R̂PP

ij (θ, φ)
(3.10)
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In order to arrive at a forward model for the P-wave reflection coefficient of the

interface above the fractured layer as a function of acquisition azimuth, we make

various simplifying assumptions about the formation and the fractured medium. The

layers above the fractured layer are assumed to be isotropic and homogeneous and

the background medium of the layer in which the fractures exist is assumed to be

homogeneous and isotropic with known medium parameters. We assume that the

presence of fractures in the fractured layer causes the layer to behave as an equivalent

anisotropic medium, which is a geophysically valid assumption when the fracture

spacing is small compared to the seismic wavelength [65, 78]. In this case, it is

reasonable to assume that the presence of a parallel set of vertical fractures causes

the medium to exhibit horizontal transverse isotropy (HTI) with a symmetry axis

normal to the strike of the fractures [60, 72]. A transverse isotropic medium with a

given symmetry axis means seismic wave propagation in all directions that form the

same angle with the symmetry axis is equivalent. As such, in an HTI medium resulting

from a set of parallel vertical fractures, the plane normal to the symmetry axis (and

parallel to the fractures) is referred to as the isotropy plane, as wave propagation is

equivalent in all directions in this plane [72].

The P-wave reflection coefficient of an interface is defined as the ratio of the

reflected P-wave amplitude to the incident P-wave amplitude on the interface. Rüger

[60] derives the P-wave polarization vector and P-wave phase velocities in an HTI

medium and uses these to solve a system of perturbation equations for the reflection

and transmission coefficients at the interface of two HTI media having the same

symmetry axes. The resultant P-wave reflection coefficient is given as a function of

the incidence phase angle (θ, the angle the incident P-wave makes with the vertical

axis) and the azimuthal phase angle (φ, the azimuth of the incident P-wave relative

to the symmetry axis), and in terms of the isotropic background and anisotropy

parameters, as
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RPP (θ, φ) =
1

2

∆Z

Z̄
+

1

2

(
∆α

ᾱ
−
(
2β̄

ᾱ

)2
∆G

Ḡ
+

(
∆δ(V ) − 2

(
2β̄

ᾱ

)2

∆γ(V )

)
cos2 φ

)
sin2 θ

+
1

2

(
∆α

ᾱ
+∆ǫ(V ) cos4 φ+∆δ(V ) sin2 φ cos2 φ

)
sin2 θ tan2 θ,

(3.11)

where α is the vertical P-wave velocity, β is the vertical velocity of the S-wave polar-

ized parallel to the isotropy plane, ρ is the medium density, Z = ρα is the vertical

P-wave impedance, and G = ρβ2 is the vertical shear modulus; these parameters are

all from the background isotropic model and are assumed to be known in our analysis.

Rüger [61] and Liu and Martinez [41] note that this linearized equation for the P-wave

reflection coefficient is accurate for small medium contrasts and weak anisotropy at

angles of incidence less than 35◦. In cases where a more accurate model is required,

one may wish to use the approximations of the P-wave reflection coefficient given by

Ursin and Haugen [73] or Pšenčík and Martins [58]. The parameters δ(V ), ǫ(V ), γ(V )

are the Thomsen anisotropy parameters defined with respect to the vertical axis [71];

these parameters are identically zero for an isotropic medium, but will depend on the

fracture properties for an HTI medium. The parameters in Equation 3.11 are defined

in terms of their relative differences between the upper and lower media ∆(·) and their

average values (̄·). So, for example, ∆α = α2 − α1 and ᾱ = (α1 + α2)/2, where α1

and α2 are the vertical P-wave velocities of the upper and lower media, respectively.

Since the axis of symmetry is normal to the strike of the fractures (thus having an

azimuth relative to North of ϕij + 90◦), then with φAcq as the known azimuth of the

incident P-wave relative to North, we have

φ = φAcq − ϕij − 90◦. (3.12)

Furthermore, we set the incidence angle θ to the values computed for the AvAz data.

We use the linear slip model of Schoenberg and Sayers [66] to express the Thom-

sen anisotropy parameters of the fractured medium in terms of the excess fracture
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compliance. The details of this derivation are given in Appendix A. Combining this

with (3.11) gives the forward model for the P-P reflection coefficient as a function of

the fracture parameters at node (i, j), which we denote by RPP
ij (θ, φAcq, ϕij, zij). To

make this comparable to the data dAvAz
ij defined in (3.10), we process it in the same

manner by normalizing by the mean reflection coefficient, for each incidence angle θ,

over all acquisition azimuths, giving

R̄PP
ij (θ, φAcq, ϕij, zij) =

RPP
ij (θ, φAcq, ϕij, zij)

1
|ΦAcq|

∑
φ∈ΦAcq RPP

ij (θ, φ, ϕij, zij)
(3.13)

as the deterministic forward model for dAvAz
ij,θ,φAcq. We note that if the excess fracture

compliance is zero, then the P-P reflection coefficient is constant with respect to

acquisition azimuth, and hence does not vary with the fracture orientation ϕij. This is

consistent with our interpretation of zero compliance to mean the absence of fractures,

which indeed renders the value of ϕij arbitrary.

We arrive at a stochastic model for the data by assuming the output of the forward

model is perturbed by zero-mean additive independent, identically distributed (i.i.d.)

Gaussian noise, so that

d
AvAz
ij ,θ,φAcq = R̄PP

ij (θ, φAcq, ϕij, zij) + wij,θ,φAcq (3.14)

where the wij,θ,φAcq are mutually independent Gaussian random variables distributed

as N (0, σ2
ij,AvAz). We estimate the variance σ2

ij,AvAz using synthetic data obtained from

a finite-difference simulation of the seismic wavefield; the details of the synthetic data

are described in Section 3.5.1. Processing of the synthetic data gives a set of single

observations of the data dAvAz
ij,θ,φAcq at a single grid node and at a range of incidence

angles and acquisition azimuths, where the fracture properties (zij, ϕij) are known,

thus giving independent samples for the noise

wij = wij,θ,φAcq = dAvAz
ij ,θ,φAcq − R̄PP

ij (θ, φAcq, ϕij, zij). (3.15)
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We estimate σ2
ij,AvAz via its maximum likelihood (ML) estimator, which is given by

σ̂2
ij,AvAz,ML = σ̂2

ij,AvAz,ML (wij) =
1

|Θ| |ΦAcq|
∑

θ∈Θ

∑

φ∈ΦAcq

w2
ij,θ,φ. (3.16)

Note that, in contrast to the ML estimator of the combined variance and mean of

a normal random variable, the ML estimator in Equation 3.16 is unbiased, that is

E
[
σ̂2
ij,AvAz,ML (wij)

]
= σ2

ij,AvAz. Having fully described the stochastic model for the

data, we are now in a position to give an expression for the likelihood model for dAvAz,

which is:

p(dAvAz|m) =
∏

(i,j)∈L


∏

θ∈Θ

∏

φAcq∈ΦAcq

N
(
dAvAz
ij ,θ,φAcq; R̄

PP
ij (θ, φAcq, ϕij, zij), σ̂

2
ij,AvAz,ML

)

 ,

(3.17)

where N ( · ; µ, σ2) is the Gaussian probability density function (PDF) with mean µ

and variance σ2.

Fracture Transfer Function Data

We further suppose that we have what Fang et al. [22] describe as fracture transfer

function data. We briefly describe the definition of the FTF data and how it is

computed, which will result in a natural choice for our data dFTF and its likelihood

model p(dFTF|m).

Intuitively, the fracture transfer function is the transfer function from the seismic

wavefield reflected off the top of the fractured layer to the wavefield propagating out

of the fractured layer after reflecting off the bottom of this layer. In other words, it

quantifies the redistribution of energy of the reflected and scattered seismic wavefield

after passing through the fractured layer. A cartoon depicting this is shown in Figure

3-3.

FTF is inherently a function of the propagation azimuth of the incident and re-

flected waves. At fracture spacings on the order of the seismic wavelength, the orien-
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Figure 3-3: A cartoon depicting the meaning of fracture transfer function for layer r2.
I(ω) is the incident wavefield, T (ω) is the transmitted wavefield into the fractured
layer, and O1(ω) and O2(ω) are the waves reflected by layers above and below the
fracture zone, respectively. Theoretically, the the fracture transfer function at angular
frequency ω is defined as FTF (ω) = O2(ω)

O1(ω)
. Figure adapted from Fang et al. [22].

64



tation of the fractures relative to the propagation azimuth has a significant effect on

the amplitude of the scattered wavefield reflected off the bottom of the fractured layer.

In particular, when fractures are parallel to the propagation azimuth, the fractures

tend to act as waveguides, directing more of the scattered energy back to the surface

in the direction away from the source. However, when the fractures are normal to

the propagation azimuth, the scattered energy is less coherent as the fractures tend

to scatter energy in both forward and backward directions. With this in mind, we

expect FTF to be maximized at propagation azimuths parallel to the fractures.

According to the methodology given by Fang et al. [22] and Fang et al. [21], the

FTF at a particular spatial grid point (i, j) is estimated from surface seismic data

by first determining (via ray-tracing) all source-receiver pairs corresponding to grid

point (i, j). Then, for all source-receiver pairs within the same acquisition azimuth

bin φAcq, normal moveout to zero offset is applied to the seismic traces which are

then stacked. The result of this procedure gives a single, stacked seismic trace for

each acquisition azimuth. The arrivals on the traces corresponding to reflections

off the top and bottom of the fractured layer are then located in the stacked trace

and windowed, giving windowed arrivals for each acquisition azimuth oij1 (t, φ
Acq) and

oij2 (t, φ
Acq), respectively. The Fourier transforms Oij

1 (ω, φ
Acq) and Oij

2 (ω, φ
Acq) of the

windowed arrivals are taken, and we compute the fracture transfer function at angular

frequency ω and acquisition azimuth φAcq as

FTF ij(ω, φAcq) =
Oij

2 (ω, φ
Acq)

Oij
1 (ω, φ

Acq)
. (3.18)

This is reduced to a function of only acquisition azimuth by integrating out the

angular frequency via a weighted integral. The idea is that frequencies at which there

is greater variability in FTF with acquisition azimuth should be given more weight,

hence a frequency weighting function W ij(ω) is defined as the standard deviation of

FTF ij(ω, ·) with respect to acquisition azimuth, so that

FTF ij(φAcq) =

∫

ω

FTF ij(ω, φAcq)W ij(ω) dω. (3.19)
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Due to the reasons mentioned above, we expect FTF ij(φAcq) to be maximized at

ϕij if fractures are present in the medium. On the other hand, in the absence of

fractures, we expect there will not be a unique maximizer for FTF ij(φAcq). Hence, it

is natural to define the FTF data used in our analysis as dFTF
ij =

(
dFTF
ij,1 , d

FTF
ij,2

)
, where

dFTF
ij,1 ∈ {0, 1} is an indicator variable set to 0 when there is no unique maximizer

(within a numerical threshold) for FTF ij(φAcq), and set to 1 otherwise and where

dFTF
ij,2 is set to the acquisition azimuth that maximizes FTF ij(φAcq):

dFTF
ij,2 , argmax

φAcq∈ΦAcq

FTF ij(φAcq). (3.20)

If there is no unique maximizing φAcq, we arbitrarily set dFTF
ij,2 to any one maximizing

value.

We define a stochastic forward model for d
FTF
ij by first assuming that, given the

fracture properties mij at node (i, j), dFTF
ij is conditionally independent of the fracture

properties and FTF data at the remaining nodes.

We define ζij as the probability that dFTF
ij,1 correctly predicts whether or not there

are fractures present at node (i, j). Then, given the fracture properties, we model

d
FTF
ij,1 as a Bernoulli random variable. Thus, given zij = −13 (i.e. zero excess fracture

compliance) then d
FTF
ij,1 = 0 with probability ζij and d

FTF
ij,1 = 1 with probability 1− ζij,

and given zij > −13 (i.e. non-zero excess fracture compliance) then d
FTF
ij,1 = 1 with

probability ζij and d
FTF
ij,1 = 0 with probability 1− ζij. That is,

p(dFTF
ij,1 |mij ; ζij) =




ζij if dFTF

ij,1 = 1{zij>−13}

1− ζij if dFTF
ij,1 = 1− 1{zij>−13}

, (3.21)

where 1{·} is the indicator function defined as

1{A} ,




1 if A

0 otherwise

.

Now, given d
FTF
ij,1 and the fracture properties, if either zij = −13, so that there are
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no fractures present, or if dFTF
ij,1 = 0, so that a unique preferential scattering direction

was not identified, then any value for dFTF
ij,2 ∈ [0◦, 180◦) is arbitrary, so we model dFTF

ij,2

as uniform on the set [0◦, 180◦). Otherwise, if both zij > −13 and d
FTF
ij,1 = 1, then

d
FTF
ij,2 should be near the true fracture orientation ϕij. As with the AvAz data, we

model this by introducing additive zero-mean independent Gaussian noise, so that

conditioned on the event {zij 6= 0, dFTF
ij,1 = 1}, we have:

d
FTF
ij,2 = ϕij + vij (3.22)

where vij ∼ N (0, σ2
ij,FTF) and {vij : (i, j) ∈ L} is a collection of mutually independent

random variables. This gives the conditional distribution for dFTF
ij,2 as

p
(
dFTF
ij,2 | dFTF

ij,1 ,mij ; σ
2
ij,FTF

)
=





1
180

1{dFTF
ij,2 ∈[0,180)} if zij = −13 or dFTF

ij,1 = 0

N
(
dFTF
ij,2 ; ϕij , σ

2
ij,FTF

)
if zij > −13 and dFTF

ij,1 = 1

.

(3.23)

As with the AvAz data, we use synthetic data from finite-difference simulations of

the seismic wavefield (described in Section 3.5.1), to obtain a set of K independent

samples Dij = (m
(k)
ij ,d

FTF
ij

(k)
)k=1,...,K of the fracture properties and FTF data at a

single grid point, arising from the simulation of K different fracture models. The

ML estimate for ζij is simply the fraction of times dFTF
ij,1

(k)
correctly takes the value 0

(when z
(k)
ij = −13) or 1 (when z

(k)
ij > −13). For the synthetic data we have obtained,

this fraction turns out to be 1. However, in order to preserve stochasticity in detecting

the presence of fractures from FTF data, we instead estimate ζij under a Bayesian

approach by treating it as random variable with a prior distribution that is uniform

over [0, 1]. Having observed K correct observations (and 0 incorrect observations) of

d
FTF
ij,1 , the posterior distribution for ζij is a Beta distribution ζij ∼ Beta(K + 1, 1).
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Integrating out ζij in the likelihood model for dFTF
ij,1 , given the data, we have

p
(
dFTF
ij,1 |mij ,Dij

)
=

∫ 1

0

p(ζij|mij ,Dij) p(d
FTF
ij,1 |mij,Dij, ζij) dζij (3.24)

=

∫ 1

0

p(ζij|Dij) p(d
FTF
ij,1 |mij , ζij) dζij (3.25)

=





1
B(K+1,1)

∫ 1

0
ζK+1
ij (1− ζij)

0 dζij if dFTF
ij,1 = 1{zij>−13}

1
B(K+1,1)

∫ 1

0
ζKij (1− ζij)

1 dζij if dFTF
ij,1 = 1− 1{zij>−13}

(3.26)

=





B(K+2,1)
B(K+1,1)

if dFTF
ij,1 = 1{zij>−13}

B(K+1,2)
B(K+1,1)

if dFTF
ij,1 = 1− 1{zij>−13}

(3.27)

=





K+1
K+2

if dFTF
ij,1 = 1{zij>−13}

1
K+2

if dFTF
ij,1 = 1− 1{zij>−13}

(3.28)

where B(·, ·) is the beta function. We are left with K ′ i.i.d. samples where z
(k)
ij > −13

(and dFTF
ij,1 = 1), giving samples of the additive Gaussian noise

{
v
(k′)
ij

}
k′=1,...,K ′

=
{
ϕ
(k)
ij − dFTF

ij,2

(k)
: z

(k)
ij > −13, dFTF

ij,1

(k)
= 1
}

used to give the ML estimation of the variance

σ̂2
ij,FTF,ML = σ̂2

ij,FTF,ML

({
v
(k′)
ij

}
k′=1,...,K ′

)
=

1

K ′

K ′∑

k′=1

(
v
(k′)
ij

)2
. (3.29)

As before, the ML estimator in Equation 3.29 is unbiased. This gives the likelihood

model p(dFTF|m) as:

p
(
dFTF |m

)
=
∏

(i,j)∈L
p
(
dFTF
ij,1 |mij,Dij

)
p
(
dFTF
ij,2 | dFTF

ij,1 ,mij ; σ̂
2
ij,FTF,ML

)
(3.30)

68



�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

(a)

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

(b)

Figure 3-4: (a) Graphical model showing the Markovianity between the observations
d and the fracture parameters m. (b) Graphical model for the posterior distribution
after removing the observed nodes.

69



3.4.3 Inference Algorithms

We return to the graphical model representation of the distribution, as this will play a

key role in the inference algorithms used to obtain the posterior marginals and MAP

estimate. Having defined the prior and likelihood models, the posterior distribution

is given by Equation 3.1. We immediately notice that given the fracture properties of

a particular grid node (i, j), the observations dij at that grid node are conditionally

independent of the remaining fracture properties and observations, that is, with m−ij

and d−ij defined as in Equation 3.3, dij ⊥⊥ {m−ij, d−ij} |mij; this is depicted in Figure

3-4(a).

Having observed the data d = d, the data are no longer random and hence

separate nodes for the data are not included in the graphical model for the posterior

distribution. Hence, we can write the posterior distribution in terms of the node and

edge potentials of the graph, ψij and ψij,kl, respectively, where the node potentials

capture the effect of the data and the edge potentials capture the prior distribution.

These potentials are given by:

ψij(mij) = p(dAvAz
ij |mij)p(d

FTF
ij |mij) (3.31)

and

ψij,kl(mij ,mkl) = exp{−βzij,kl(zij − zkl)
2 − βϕij,kl

(ϕij − ϕkl)
2}, (3.32)

and the posterior distribution is then given as:

p(m|d) ∝
∏

(i,j)∈V
ψij(mij)

∏

(ij,kl)∈E
ψij,kl(mij ,mkl). (3.33)

Having fully described the posterior distribution in terms of its graphical model

and node and edge potentials, we are able to apply belief propagation algorithms to

perform approximate inference of the fracture properties m.
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Loopy Belief Propagation

Belief propagation (BP) is a technique for performing inference on graphical models

which has recently enjoyed much popularity for use amongst a wide-range of applica-

tions [48, 55, 56]. Originally formulated for tree graphs (i.e. graphs having no cycles),

BP refers to message-passing algorithms for computing either marginal distributions

(called the sum-product algorithm) or MAP configurations (called the max-product

algorithm). In particular, for an undirected graph G = (V, E), the BP algorithm

computes messages (denoted by µij→kl(mkl)) from each node (i, j) ∈ V to every node

(k, l) which shares an edge with (i, j) (called a ‘neighbor’ of (i, j)); these messages

capture the beliefs node (i, j) carries about its neighbors. The messages are iteratively

propagated from each node to its neighbors, hence the name ‘belief propagation.’

The sum-product variant of the BP algorithm [35] with node and edge potentials

ψij and ψij,kl is given by the update equations

µ
(0)
ij→kl(mkl) ∝ 1 (3.34)

µ
(t+1)
ij→kl(mkl) ∝

∑

mij

ψij(mij)ψij,kl(mij, mkl)
∏

uv∈Nb(ij)\{kl}
µ
(t)
uv→ij(mij) (3.35)

p̂
(t)
ij (mij) ∝ ψij(mij)

∏

uv∈Nb(ij)

µ
(t)
uv→ij(mij) (3.36)

∀(i, j) ∈ V, ((i, j), (k, l)) ∈ E , where Nb(ij) denotes the set of neighbors of node (i, j)

in G and p̂
(t)
ij (mij) is the estimate of the marginal for node (i, j) at iteration t. One

can verify that if the underlying graphical model G is a tree, then the sum-product

algorithm converges to the true marginal distributions in a number of iterations equal

to the diameter of the tree [35]. The max-product algorithm is similarly defined by
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replacing summations with maximizations

µ
(0)
ij→kl(mkl) ∝ 1 (3.37)

µ
(t+1)
ij→kl(mkl) ∝ max

mij

ψij(mij)ψij,kl(mij , mkl)
∏

uv∈Nb(ij)\{kl}
µ
(t)
uv→ij(mij) (3.38)

ˆ̄p
(t)
ij (mij) ∝ ψij(mij)

∏

uv∈Nb(ij)

µ
(t)
uv→ij(mij) (3.39)

∀(i, j) ∈ V, ((i, j), (k, l)) ∈ E , where ˆ̄p
(t)
ij (mij) is the estimate of the node max-

marginal p̄ij(mij) for node (i, j) at iteration t. The node max-marginal (at node

(i, j)) is defined to be the function of mij one would obtain by fixing the random

variable at node (i, j) to the value mij and then maximizing the joint distribution

p(m) over all other random variables. That is:

p̄ij(mij) , max
m−ij

p(mij ,m−ij). (3.40)

It is important to note that the node max-marginals are not the marginal distribu-

tions, and in fact they are not even probability distributions. However, they can

be used to readily obtain the MAP estimate of m. In particular, if the node max-

marginals p̄ij(mij) have unique maximizers m∗
ij , then the MAP estimate is simply the

vector of these unique maximizing values for each node:

m̂MAP =
[
m∗
ij

]
ij∈V =

[
argmax

mij

p̄ij(mij)

]

ij∈V

. (3.41)

Thus, the estimated node max-marginals ˆ̄p
(t)
ij (mij) obtained from the max-product

algorithm can be used to approximate the MAP estimate. Again, if G is a tree,

then it can be shown that the max-product algorithm converges to the true node

max-marginals and will hence produce the exact MAP estimate.

While BP was originally intended for tree graphs (and indeed converges to the

correct result on trees), it can still be applied to graphs which are not trees, such

as the grid graph for our posterior distribution. Applying BP to perform inference
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on a graph with loops is referred to as loopy belief propagation. While LBP is an

approximate algorithm, as it does not, in general, converge to the correct answer, it

has nonetheless been used extensively in various settings and found to often give very

good approximations, particularly on graphs with a relatively sparse edge set (such

as our 2-D grid graph) and when the node potentials are strong relative to the edge

potentials [48]. With this in mind, we apply loopy belief propagation on the posterior

distribution for the fracture parameters to approximate the MAP configuration and

marginal distributions.

3.5 Results

3.5.1 Synthetic Data

We validate our methodology by performing inference on a synthetic data set. The

synthetic data are obtained from a 3-D elastic finite-difference simulation of the

seismic wavefield on reservoir models having topology as shown in Figure 3-1, and

is the same data referenced in the fracture transfer function study by Fang et al.

[22]. Each of the models consists of five flat homogeneous layers, with fractures in

the third layer; the remaining layers are isotropic. Following the methodology of

Coates and Schoenberg [14] to simulate discrete fractures, the finite-difference grid

cells intersecting individual fractures are modeled as anisotropic, and the individ-

ual fractures are spaced uniformly within an isotropic background medium (note the

finite-difference grid cells are distinct from and on a much smaller scale than the

grid nodes on which the random variables are defined). The isotropic background

parameters are given in Table 3.1. It is important to note that we are not modeling

the entire fractured layer as anisotropic, but only the individual fractures; hence the

validity of this model does not depend on the fracture spacing.

The fractured layer in the models contains a single set of discrete parallel fractures

with strike 0◦ and individual normal and tangential fracture compliances of 10−9 m/Pa

(note that the fracture compliance is distinct from the excess fracture compliance,
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Layer Thickness (m) α (m/s) β (m/s) ρ (g/cm3)
1 200 3000 1765 2.20
2 200 3500 2060 2.25
3 200 4000 2353 2.30
4 200 3500 2060 2.25
5 200 4000 2353 2.30

Table 3.1: Isotropic background parameters for the finite-difference synthetic data.
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which is the ratio of fracture compliance to fracture spacing). The models differ from

one another by fracture spacing, where synthetic data have been obtained from models

having fracture spacings of 12 m, 20 m, 40 m, 60 m, 80 m, and 100 m, and where

the fracture parameters in a particular model are constant over the entire layer. The

synthetic seismic trace dataset for each model is obtained from a 2-D array of surface

seismic receivers spaced 4 m apart responding to a single Ricker source wavelet having

central frequency of 40 Hz. AvAz data are computed from the seismic trace dataset

by using ray-tracing to compute the arrival time of the P-P arrival reflected from the

top of Layer 3 for each receiver and taking the amplitude of this arrival in the seismic

trace, where the source-receiver offsets and acquisition azimuths are known. Since

the layers are flat and homogeneous, the reflection from all points on the horizontal

grid are equivalent on average. Hence, the data are treated as the generic AvAz data

for a single grid node or common depth point (CDP). Similarly, the FTF data are

computed according to the procedure in Section 3.4.2 and treated as the generic FTF

data corresponding to a single node or CDP. Prior to processing the synthetic data,

we perturb the raw seismic traces with zero-mean Gaussian noise, with a standard

deviation of 5% of the peak amplitude of the data, where a different realization of

the noise is used for each CDP gather.

To obtain measurements for the entire grid L, we predetermine the fracture pa-

rameters m over L. For each node (i, j) ∈ L, we are free to choose any fracture strike

in the full range of azimuths [0◦, 180◦), as we can simply rotate the synthetic data

from 0◦ to any desired azimuth ϕij. For the log excess compliance zij , we are able to

use any value obtained from the models corresponding to excess compliances that can

be achieved using fracture compliance of 10−9 m/Pa divided by any of the spacings for

which synthetic data have been obtained. Having set the desired fracture properties

across the grid, we map the noisy synthetic data to specific values across the grid

L. Processing the noisy data according to the procedure described in Section 3.4.2

results in our vector of noisy measurements d corresponding to the known fracture

properties m over the entire grid. A grid spacing of ℓ = 200 m is used for L.
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3.5.2 Results of Inference Procedure

We perform the inference on synthetic data arising from two scenarios. The first

scenario is given by a 20-by-20 node grid of a single fracture set (so that the fracture

properties are constant along the grid), for each of the available fracture spacing

models. The second scenario is given by a 20-by-40 node grid of two fracture sets

with distinct excess compliances and orientations, separated spatially by a linear

discontinuity (such as that which may arise from a vertical, planar fault). The effect

of the smoothness parameter βc on the inference result is investigated by performing

the inference for different choices of βc.

LBP is applied in each case to obtain the approximate MAP configuration and

posterior marginal distributions of the fracture properties, the latter of which are used

to compute the approximate BLS estimate of the fracture properties. LBP converged

for all models in less than 200 iterations, when the smoothness parameter βc was

taken to be less than or equal to 0.1. Choices of the smoothness parameter greater

than 0.1 resulted in LBP not converging for some realizations of the noisy data.

We must take care to interpret the results correctly, as we have taken zij = −13 to

mean that no fractures are present at node (i, j), which would render ϕij meaningless

and arbitrary. Thus, we compute the posterior marginals for ϕij conditioned on the

event {zij > −13}, and likewise compute the BLS estimates for these random variables

conditioned on the same event. The results of the inference procedure on the single

fracture system are plotted in Figures 3-5–3-7. The resulting residuals between the

estimates and true values are given in Table 3.2 in terms of the root mean squared

(RMS) residuals over all nodes.

We observe that the inference procedure performs very well at fracture spacings

smaller than 40 m. This is to be expected as the forward model for the AvAz data

relies on the assumption that fractures cause the medium to behave as an equivalent

anisotropic medium, but this assumption breaks down as the fracture spacing becomes

comparable to the dominant seismic wavelength (which is 100 m in the fractured

layer and 87.5 m in the layer above the fractures). Furthermore, while the scattering
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Fracture Spacing ǫrms,ẑBLS
ǫrms,ϕ̂BLS

ǫrms,ẑMAP
ǫrms,ϕ̂MAP

12 m 0.132 log10Pa−1 1.27 ◦ 0.123 log10Pa−1 1.00◦

20 m 0.102 log10Pa−1 2.27 ◦ 0.083 log10Pa−1 2.00◦

40 m 0.488 log10Pa−1 10.53 ◦ 0.235 log10Pa−1 18.63◦

60 m 0.670 log10Pa−1 0.05 ◦ 0.530 log10Pa−1 0◦

80 m 0.555 log10Pa−1 7.98 ◦ 0.756 log10Pa−1 0◦

100 m 0.358 log10Pa−1 0.12 ◦ 0.187 log10Pa−1 0◦

Table 3.2: Root mean square of residuals between estimates and ground truth (mean
taken over all nodes) when estimating a single fracture set with fracture compliance
10−9 m/Pa, fracture strike ϕij = 60◦, and varying fracture spacing, and with smooth-
ness parameter set to βc = 0.1. For comparison, note that azimuth ϕ is discretized
into 20◦ bins and log compliance z has been discretized into bins of size 0.1 log10Pa−1.
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Figure 3-5: Approximate MAP estimates of the fracture properties computed for
models of a single fracture set, with fracture compliance 10−9 m/Pa, fracture strike
ϕij = 60◦, and varying fracture spacing, and with smoothness parameter set to βc =
0.1.
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Figure 3-6: Approximate BLS estimates of the fracture properties computed for mod-
els of a single fracture set, with fracture compliance 10−9 m/Pa, fracture strike
ϕij = 60◦, and varying fracture spacing, and with smoothness parameter set to
βc = 0.1.
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Figure 3-7: Approximate posterior marginal distributions (blue) of the fracture prop-
erties at a single node plotted along with the prior distributions (green). Results
are given as mean ± 1 S.D. over all grid nodes. True value is plotted with a red
‘x’. Computed for models of a single fracture set, with fracture compliance 10−9

m/Pa, fracture strike ϕij = 60◦, and varying fracture spacing, and with smoothness
parameter set to βc = 0.1.
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assumptions underlying the forward model for the FTF data are valid for fracture

spacings on the order of the seismic wavelength, the FTF data in this study only

contributes to fracture detection and strike estimation; the actual excess compliance

value (given fractures are present) has no bearing on our model for the FTF data. In

particular, we notice from Table 3.2 that the RMS residuals for estimating log excess

compliance grows to multiple bin sizes at fracture spacings of 40 m and larger. The

marginal distributions in Figure 3-7 convey well what happens at spacings of 40 m and

larger. We see that the least best fit to fracture orientation is obtained at 40 m spacing;

this is likely because at this mid-range fracture spacing, we see a weaker response

from both the AvAz data and the FTF data. However, at larger fracture spacings,

the marginal distributions for fracture orientation remain concentrated around the

true orientation of 60◦, as expected due to both the very simple model for FTF in

terms of fracture orientation as well as the assumptions underlying the FTF model

remaining strong at larger spacings. We observe that excess compliance tends to be

underestimated at fracture spacing values of 40 m and above. This observation is

consistent with our intuition for AvAz data; at larger spacings, the AvAz response

becomes weaker, and a better fit to the data is found with smaller excess compliances

than those resulting from the true fracture compliance and spacing.

In order to investigate the effect of the smoothness parameter βc on the inference

we apply our procedure over a range of choices for βc on the 80 m spacing model. The

effect of the smoothness parameter is most easily seen in the MAP estimates, which

are plotted in Figure 3-8. Observing the changes in the estimate with increasing

smoothness parameter βc, we see that the a higher value of βc has the effect of

denoising the estimates. When βc is 0, this is identical to performing the inference

on a fully disconnected graph, as the edge potentials will all be identically equal to 1.

As such, the estimate at each node will fit only the noisy data corresponding to itself.

Increasing βc strengthens the links between adjacent nodes, and can cause an incorrect

fit to noisy data to be less probable; this is particularly true for fracture azimuth,

which is estimated correctly at 80 m fracture spacing. Increasing βc still smooths the

estimates for excess compliance, however towards the underestimated value found at
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80 m (again due to the weaker AvAz response at high fracture spacings). At βc = 0.1,

we see a considerable improvement in the estimates for fracture azimuth.

We now turn to the second scenario arising from two sets of fractures with different

azimuths and fracture spacings separated by a discontinuity on the grid such as that

which may arise from a geological fault. We investigate the effect of a priori knowledge

of the fault by performing the inference both with and without knowledge of the fault

location encoded in the prior with the smoothness parameter set to βij,kl = 0 at the

fault and βij,kl = βc = 0.1 elsewhere. The results are plotted in Figures 3-9 and

3-10 for fracture azimuth and log excess compliance, respectively. As evidenced by

the figures, when the fault is unknown a priori, the estimates for fracture properties

are smoothed across the fault. This is particularly undesirable for the estimation of

fracture azimuth, where we would otherwise be able to obtain good estimates in both

regions. Specifying the location of the fault a priori sets the smoothness parameter

at the corresponding edges to 0, and hence we no longer observe this behavior.

3.6 Conclusions and Future Work

A methodology for estimation of fracture properties from AvAz and FTF data under

a Bayesian inference framework has been presented. The inference is performed by

running loopy belief propagation on the 2-D Markov random field of fracture variables.

LBP converged relatively quickly on the synthetic data, in under 200 iterations for

all models, when using a smoothness parameter less than or equal to 0.1. We have

demonstrated that the approximate inference results perform well for both fracture

azimuth and excess compliance at low spacings of 12 m and 20 m, and continue to

give good estimates for fracture azimuth up to 100 m spacing. This is significant,

as we are able to estimate the fracture properties in a rigorous manner at a greater

range of spacings than would otherwise be attainable.

We further showed that our use of the spatial smoothness prior has the effect of

denoising estimates that would otherwise be incorrect. We also demonstrated the

capability of this framework to handle prior information about geological features,
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Figure 3-8: Approximate MAP estimates of the fracture properties computed on
a model containing a single set of fractures with fracture compliance 10−9 m/Pa,
fracture spacing 80 m, and fracture orientation 60◦. Ground truth is plotted along
with the estimates using various values for the smoothness parameter βc.
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Figure 3-9: Effect of a priori knowledge of the fault on approximate BLS estimates
of the fracture azimuth of a model containing two fracture sets. The fractures on
the left are at azimuth 120◦, spacing 100 m, and fracture compliance 10−9 m/Pa.
The fractures on the right are at azimuth 80◦, spacing 12 m, and fracture compliance
10−9 m/Pa. Ground truth is plotted along with the estimates with the smoothness
parameter βc = 0.1. The fourth pane shows a comparison of the estimates at the
horizontal slice North=2000 m.
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Figure 3-10: Effect of a priori knowledge of the fault on approximate BLS estimates of
the fracture excess compliance of a model containing two fracture sets. The fractures
on the left are at azimuth 120◦, spacing 100 m, and fracture compliance 10−9 m/Pa.
The fractures on the right are at azimuth 80◦, spacing 12 m, and fracture compliance
10−9 m/Pa. Ground truth is plotted along with the estimates with the smoothness
parameter βc = 0.1. The fourth pane shows a comparison of the estimates at the
horizontal slice North=2000 m.
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such as the discontinuity shown in the previous figures. While we presented a very

simple case of this, it is not difficult to extend this to more complicated scenarios.

Having validated our procedure on synthetic data, the next natural step will be to

obtain field data and apply the inference procedure to estimate the desired fracture

properties.

One future direction to improve the inference is to relate fracture spacing and

compliance to the FTF data. While the data we chose depended only on the pres-

ence and orientation of fractures, Fang et al. [22] showed both theoretically and in

laboratory experiments that FTF also contains information about fracture spacing.

However, even when using synthetic data, the precise physical relationship between

FTF and fracture spacing has been difficult to determine, but a geophysical basis re-

mains for exploring this avenue further. If a reliable forward model can be determined

to relate FTF to fracture spacing, then we will be able to move beyond estimating

excess fracture compliance to estimation of individual fracture compliances and frac-

ture spacing. A related future direction is to incorporate additional features of the

seismic data in the inference procedure. In particular, Zheng et al. [82] describe a

theory for using 3-D beam interference to determine fracture properties of a reservoir

from reflected seismic P-wave data.
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Chapter 4

Least-Squares Migration with a

Hierarchical Bayesian Framework

4.1 Summary

In many geophysical inverse problems, smoothness assumptions on the underlying ge-

ology are utilized to mitigate the effects of poor data coverage and noise in the data

and to improve the quality of the inferred model parameters. Within a Bayesian infer-

ence framework, a priori assumptions about the probabilistic structure of the model

parameters impose such a smoothness constraint (also known as regularization). We

consider the particular problem of inverting seismic data for the subsurface reflec-

tivity of a 2-D medium, where we assume a known velocity field. In particular, we

consider a hierarchical Bayesian generalization of the Kirchhoff-based least-squares

migration (LSM) method. We present here a novel methodology for estimation of

both the reflectivity model and regularization parameters, using a Bayesian statisti-

cal framework that treats both of these as random variables to be inferred from the

data. Hence rather than fixing the regularization parameters prior to inverting for

the image, we allow the data to dictate where to regularize. In order to construct

our prior of the subsurface and regularization parameters, we define an undirected

graphical model (or Markov random field) on the image, where the vertices of the

graph represent subsurface reflectivity values and the regularization parameters are
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defined to parameterize the edges of the graph. Estimating these regularization pa-

rameters (which we refer to as edge strengths) gives us information about the degree

of conditional correlation (or lack thereof) between neighboring image parameters,

and subsequently incorporating this information in the final model produces more

clearly visible discontinuities in the estimated image. The inference framework is

verified on a 2-D synthetic dataset, where the hierarchical Bayesian imaging results

significantly outperform standard LSM images. We note that while this method is

presented within the context of seismic imaging, it is in fact a general methodology

which can be applied to any linear inverse problem in which there are spatially-varying

correlations in the model parameter space.

4.2 Introduction

Seismic imaging (also known as migration) refers to the process of creating an image

of the Earth’s subsurface reflectivity from seismograms generated by sources and

recorded by receivers located, typically, at or near the surface. Traditional migration

methods for constructing the image generally involve operating on the seismic data

with the adjoint of an assumed forward modeling operator [11], possibly along with

a modifying function which attempts to correct for amplitude loss due to geometric

spreading, transmission, absorption, etc. [5, 29]. In recent years, attempts have been

made to cast the imaging problem as a least-squares inverse problem [19, 49]. This

approach to imaging is conventionally referred to as least-squares migration (LSM).

Early treatments of this approach can be found in LeBras and Clayton [39] and

Lambare et al. [37]. This chapter will deal mainly with Kirchhoff-based LSM , which

uses a ray-theoretic based forward modeling operator; its derivation and application

is discussed in Nemeth et al. [49] and Duquet et al. [19]. LSM can also be applied

with wave-equation-based forward modeling, as shown by Kühl and Sacchi [36].

In solving the least-squares inverse problem, it is common to include some form

of regularization in the LSM cost function in order to penalize less smooth images.

For example, Clapp [12] describes two regularization schemes for LSM in which the
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image is constrained to be smooth either along geological features predetermined by

a seismic interpreter or along the ray-parameter axis. In these and other applications

of LSM, the regularization is chosen independently of the seismic data, i.e. it is a

fixed input to the inversion procedure (as it is in the vast majority of geophysical

applications of inversion). This, however, may result in sub-optimal inversion results;

overly strong regularization may result in over-smoothing the image, whereas weak

regularization may not adequately penalize roughness in the image due to noise. Even

if an appropriate regularization strength is determined, the true smoothness structure

of the model need not be spatially uniform or even isotropic; for example, the true

earth may typically contain many sharp discontinuities where any form of smoothing

would be undesirable.

In this chapter, we propose a more general approach to LSM which solves for

parameters defining the image regularization in conjunction with the optimal image

itself. The approach is formulated within the framework of Bayesian inference, in

which regularization is accomplished with a prior probability distribution on the im-

age parameters. We define a spatially-varying smoothness prior and seek to jointly

estimate its parameters along with the image. In particular, we utilize a variant

of Bayesian inference known as hierarchical Bayes, which provides a rigorous mathe-

matical framework for addressing the joint estimation of the image and regularization

parameters. This should allow for preserving sharpness in the image at the true dis-

continuities while still smoothing the effects of noise.

Previous applications of hierarchical Bayesian inference in geophysics include Ma-

linverno and Briggs [45], who applied it to 1-D traveltime tomography, Malinverno

[43, 44], who applied Bayesian model selection to find optimal parameterizations of

1-D density and resistivity models, Buland and Omre [9], who applied hierarchical

Bayesian methods in amplitude versus offset (AVO) inversion, and Bodin et al. [7],

who applied Bayesian model selection to determine group velocities for the Australian

continent.

In the next sections, we review Kirchhoff-based LSM and proceed to develop the

hierarchical Bayesian framework and algorithms used to solve the inference problem.
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4.3 Methodology

4.3.1 Standard Kirchhoff-based LSM framework

Kirchhoff Modeling

The Kirchhoff modeling operator is a ray-based forward modeling operator that gives

the seismic data as a linear function of the reflectivity model. In particular, to

simulate the seismogram dsr(t) recorded at a seismic receiver r from a seismic source

s, Kirchhoff forward modeling first generates a source-to-reflector-to-receiver travel

time (or two-way travel time) field τsr(x) by utilizing what is known as the “exploding

reflector” concept. This concept refers to the treatment of each point in the reflectivity

model as a point source. The two-way travel time can be computed as the sum of the

source-to-reflector and reflector-to-receiver travel times, as determined by ray-tracing

through a specified background velocity model of the subsurface. The ray tracer also

computes the field of ray-path lengths Rs(x) and Rr(x) and opening angles between

the source and receiver rays at each reflection point θsr(x). Once these quantities

have been computed, the synthetic data d̂sr(t) are computed by superposition over

reflector locations x of scaled and shifted versions of the source wavelet ws(t) (after

applying a 90-degree phase-shift to simulate the effects of 2-D propagation). For each

x, the phase-shifted wavelet w̃s(t) is delayed by τsr(x) and scaled by the reflectivity

value m(x), an obliquity correction factor cos(θsr(x)/2), and a geometric spreading

correction (in 2-D, 1/
√
Rs(x)Rr(x)). Thus,

d̂sr(t) =

∫

X
m(x)

w̃s (t− τsr (x)) cos(θsr(x)/2)√
Rs(x)Rr(x)

dx, (4.1)

where X ⊂ R
2 is the model domain. We note that the above Kirchhoff modeling

operator is precisely the adjoint operator to the Kirchhoff migration operator, given

by:

m̂(x) =
∑

s

∑

r

∫

t

dsr(t)
w̃s (t− τsr (x)) cos(θsr(x)/2)√

Rs(x)Rr(x)
dt. (4.2)

If we discretize time and space, we can represent our data and image as finite-
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dimensional vectors d and m, where the dimension of d is the number of source-

receiver pairs times the number of time samples, and where the dimension of m is the

number of points in a spatial grid sampling the model domain. Then, replacing the

integral in (4.1) with a summation, we can express the Kirchhoff modeling operator

in matrix form:

d̂ = Am. (4.3)

In particular, the ith column of A, corresponding to a point xi in the model grid,

will contain a sampled version of the source wavelet for each source-receiver pair,

appropriately scaled or shifted, giving (in 2-D):

Asrt,i =
w̃s (t− τsr (xi)) cos(θsr(xi)/2)√

Rs(xi)Rr(xi)
ℓ2, (4.4)

where ℓ is the spatial discretization interval.

Standard LSM Framework

Least-squares migration attempts to solve the imaging problem by seeking the image

mLS that minimizes the ℓ2-norm of the residual (the difference between the observed

data d and the modeled data d̂ = Am). Without regularization, the LSM image is

given by

mLS = argmin
m

‖d− Am‖22, (4.5)

where ‖ · ‖2 denotes the ℓ2-norm in the (discretized) data-space given by

‖d‖22 =
∑

s

∑

r

∑

t

dsr(t)
2. (4.6)

To ensure well-posedness of the LSM solution, regularization is often introduced by

augmenting the LSM cost function with a term which penalizes differences between

model parameters and an additional term which penalizes the magnitude of the image.
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This gives the regularized LSM image as

mRLS = argmin
m

‖d− Am‖22 + λ


 ∑

(i,j)∈E
βij(mi −mj)

2 + ǫ
∑

i

m2
i


 (4.7)

= argmin
m

‖d− Am‖22 + λmT (D (β) + ǫI)m, (4.8)

where βij ∈ [0, 1] indicates how strongly to penalize the difference between mi and

mj , E is the set of all pairs of image parameter indices whose difference we decide

to potentially penalize, λ > 0 assigns the maximal weight given to penalizing these

differences, and ǫ > 0 weights the penalty on parameter magnitudes. Equation (4.8)

is simply (4.7) rewritten in compact matrix-vector notation, where D is a differencing

operator defined by the vector β = {βij : (i, j) ∈ E}. Taking the derivative of the

right-hand side of (4.8) and setting it to zero yields the solution to the regularized

LSM problem:

mRLS =
(
ATA+ λ(D (β) + ǫI)

)−1
ATd. (4.9)

Note that ǫ > 0 ensures that the regularized LSM cost function is a positive-definite

quadratic function of the image m, and hence its minimizer is unique.

4.3.2 Bayesian Framework

Standard Bayesian Formulation

The same solution to LSM can be derived from a Bayesian formulation of the imaging

problem, wherein the image m and the data d are taken to be random vectors. In

particular, we take m a priori to be Gaussian with zero mean and some covariance

matrix C (i.e. m ∼ N (0, C)) , so that the prior distribution p(m) for m is given by

p(m) ∝ exp

{
−1

2
mTC−1m

}
. (4.10)

We model the seismic data as d = Am+n where A is our Kirchhoff modeling operator

and n is zero-mean Gaussian noise with some covariance matrix Σ (i.e. n ∼ N (0,Σ)).
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Thus the conditional distribution for the data d given the model m will be

p(d|m) ∝ exp

{
−1

2
(d− Am)T Σ−1 (d−Am)

}
, (4.11)

i.e. d|m ∼ N (Am,Σ).

Applying Bayes’ rule gives the posterior distribution for the model m conditioned

on the data d as

p(m|d) = p(m)p(d|m)

p(d)
(4.12)

∝ 1

p(d)
exp

{
−1

2

[
mTC−1m+ (d− Am)T Σ−1 (d−Am)

]}
. (4.13)

Rearranging terms in (4.13) and dropping any multiplicative factors that do not

depend on m, we obtain

p(m|d) ∝ exp

{
−1

2

(
m− µpost

)
Λ−1

post

(
m− µpost

)T
}
. (4.14)

where µpost is the posterior mean given by

µpost =
(
ATΣ−1A+ C−1

)−1
ATΣ−1d (4.15)

and Λpost is the posterior covariance matrix given by

Λpost =
(
ATΣ−1A+ C−1

)−1
. (4.16)

That is, the posterior distribution for m conditioned on d is itself Gaussian: m|d ∼
N (µpost,Λpost).

The Bayesian maximum a posteriori (MAP) estimate mMAP is the image that

maximizes the posterior distribution (4.13). It is clear from (4.14) that mMAP = µpost.

Comparing to Equation (4.9), we also see that mMAP = mRLS when we set the prior
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and noise covariance matrices as

C = (λ(D (β) + ǫI))−1 (4.17)

and

Σ = I. (4.18)

Constructing the Prior via a Graphical Model

The choice of β plays a key role in determining the spatial smoothness properties of

the prior on the model. This is perhaps best seen through the expressive formalism of

probabilistic graphical models. In particular, we define an undirected graphical model

G = (V, E), with a set of vertices (or nodes) V, which index the random variables mi

comprising the random vector m, and a set of edges E ⊂ V × V, represented as pairs

of vertices in V that encode dependencies between the random variables. Recall from

Chapter 2 that for a Gaussian random vector m with precision matrix (or inverse

covariance matrix) Q = C−1, it can be shown that m forms an MRF over G if and

only if Q is at least as sparse as the edge set E (meaning that no edge between nodes

i and j in G implies that Qij = Qji = 0) [35].

Defining the prior precision matrix as Q = λ(D(β)+ǫI), as in (4.17), allows the βij

to determine the “strength” of each edge in G. In probabilistic terms, β captures the

prior conditional dependence structure of the image m, such that βij = 0 implies that,

prior to observing d, mi is conditionally independent of mj when {mk : k 6= i, j} is

given. For this reason, we sometimes refer to the elements of β as the edge strengths

of G and to D(β) as the weighted graph Laplacian of G (weighted by β). This is

depicted in Figure 4-1 for a simple nine pixel image. Note that although Figure 4-1

shows edges connecting only nearest neighbors horizontally and vertically, this need

not be the case. We can consider a situation where each node shares an edge with

all other nodes within a specified radius; the graphical model depicted in the figure

results from using a radius of 1 node.
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Figure 4-1: The Markov random field imposed on m by fixing β prior to observing
the data d, for a simple nine pixel image.

Hierarchical Bayesian Formulation

Thus far we have assumed that the parameters λ, ǫ, and β, which determine the

regularization in the LSM framework and the prior model covariance structure in the

Bayesian framework, are known. We now describe how we can expand the Bayesian

formulation to the problem of estimating these regularization parameters from the

data d, in addition to the image m. We focus on the estimation of the edge strengths

β, which capture our belief about where we think the image should be smooth. This

is a reasonable approach since the edge strengths β give us prior information about

our model m, and m gives us information about our data d, hence we should be able

to infer something about β from d. This is depicted in the directed graphical model

of Figure 4-2, which also illustrates the induced Markov chain structure between β,

m, and d.

In order to estimate β from d, we consider β to be a random vector endowed with

its own prior p(β). Accordingly, all probability distributions in the previous sections

can be considered as conditional on β. In particular, we now write the prior on m|β
as

p (m |β) = |λ (D (β) + ǫI)|1/2 exp
{
−1

2
mT (λ (D (β) + ǫI))m

}

(2π)N/2
(4.19)
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Figure 4-2: The directed graphical model capturing the Markov chain structure be-
tween β, m, and d. The node for d is shaded to indicate that d is an observed
quantity that the posterior distributions of β and m are conditioned upon.

and the conditional distribution for d|m,β as

p (d |m,β) = p (d |m) (4.20)

=
exp

{
−1

2
(d− Am)T Σ−1 (d−Am)

}

(2π)K/2Σ1/2
, (4.21)

where N is the number of model parameters (i.e. the dimension of m) and K is the

number of data points (the dimension of d). We again apply Bayes’ rule to obtain

the joint posterior distribution for m and β given the data d:

p (m,β |d) = p (β) p (m |β) p (d |m,β)

p (d)
(4.22)

=
p (β)

p (d)

|λ (D (β) + ǫI)|1/2

(2π)(N+K)/2Σ1/2

exp

{
−1

2

(
(d−Am)T Σ−1 (d− Am) +mT (λ (D (β) + ǫI))m

)}
.

(4.23)

To define p(β), we endow each βij with a uniform prior on the set [0, 1] and let

the βij be mutually independent random variables, so that

p(β) =
∏

(i,j)∈E
1[0,1] (βij) , (4.24)
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where

1S(x) =





1 if x ∈ S

0 if x /∈ S
.

We note that (4.23) is very similar to the posterior distribution in the non-hierarchical

Bayesian setting (where β is fixed) with some important differences: firstly, (4.23) is

now a function of both m and β, and secondly, outside the exponential of (4.23) is

the determinant of m’s prior precision matrix Q (which can no longer be dropped as

a proportionality constant, since it depends on β). Computing this determinant is

expensive, with time complexity O (N2) (since Q is a sparse matrix with bandwidth

N1/2), and reflects the additional computational cost of the hierarchical Bayesian

approach.

Having obtained the joint posterior distribution p (m,β |d), the task of estimating

the best image remains. Here, we explore two estimation methodologies within the

hierarchical Bayesian framework: the hierarchical Bayes solution and the empirical

Bayes solution [45]. What is strictly known as the hierarchical Bayes solution is the

full marginal posterior distribution of the image p (m |d) (marginalizing out β from

the joint posterior distribution p (m,β |d)). Hence, we have for the hierarchical Bayes

solution

p (m |d) =
∫

B
p (m,β |d) dβ (4.25)

where B is the domain of admissible vectors β. Unfortunately, the marginalization

operation cannot be performed analytically and must be computed numerically. We

may also consider the MAP estimates for the image that can be derived within the

hierarchical Bayesian setting. The hierarchical Bayes MAP estimate mHB is the MAP

estimate of m based on its marginal posterior distribution p (m |d):

mHB = argmax
m

∫

B
p (m,β |d) dβ (4.26)

One can think of mHB as the single best image m over all choices of edge strengths

β. While the posterior marginal distribution for the image (4.25) is the complete

solution to the Bayesian inference problem, a number of computational issues prevent
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its use in practice. Firstly, due to both the high-dimensionality of B and the cost

of evaluating the joint posterior distribution (4.23), both stochastic sampling from

and direct marginalization of the joint posterior distribution are computationally

intractable. Furthermore, even if we were able to evaluate the marginal posterior

(4.25), the high-dimension of m would make it difficult to explore.

A somewhat different solution for estimating the image is known as the empirical

Bayes solution, which first looks for the best choice for β, then, using that choice,

finds the best image mEB. If one takes the MAP estimate for β then we would have

βMAP = argmax
β

∫

M
p (m,β|d) dm (4.27)

where, it turns out, the marginalization over m can be performed analytically but the

maximization over β must still be performed numerically. Given βMAP, the empirical

Bayes solution is taken as the MAP estimate with respect to p(m |d,βMAP). The

results of the previous sections then imply

mEB =
(
ATΣ−1A+ λ (D (βMAP) + ǫI)

)−1
ATΣ−1d. (4.28)

The empirical Bayes solution is within reach as long as we are able to compute

βMAP by solving the marginal MAP problem of (4.27). In order to do so, we turn

to the expectation-maximization (E-M) algorithm, which has direct application in

solving such marginal MAP problems.

4.3.3 The Expectation-Maximization (E-M) Algorithm

The E-M algorithm [17, 46] is a powerful and versatile algorithm for solving maximum

likelihood and MAP parameter estimation problems when a subset of the variables

relevant to the parameter estimation is unobserved (referred to as latent variables).

In the context of the seismic imaging problem we consider here, we view the image

m as the latent variables. In the empirical Bayes approach, these variables must

be marginalized from the joint posterior distribution on m and β when attempting
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to estimate the edge strengths β. For our purposes, E-M can be thought of as

a coordinate ascent algorithm for solving the marginal MAP optimization problem

(4.27), whereby subsequent estimations are performed between the latent variables

(m) and the parameters to be estimated (β).

In what follows of this section, we give a derivation of the E-M algorithm; similar

derivations and a more thorough treatment of E-M can be found in Bishop [4] or

McLachlan and Krishnan [46]. To derive the E-M algorithm, we note that maximizing

a probability distribution is equivalent to maximizing its logarithm, and define our

objective function as the log marginal posterior

ℓ(β) = log p(β |d). (4.29)

Rearranging terms in the joint posterior distribution, we can rewrite the MAP objec-

tive function as:

ℓ(β) = log

∫

M
p(m,β |d) dm (4.30)

= log

∫

M

p(m,β,d)

p(d)
dm (4.31)

= log

∫

M

p(β)p(m,d |β)
p(d)

dm (4.32)

= log

∫

M
p(m,d |β) dm+ log p(β)− log p(d). (4.33)

Here we introduce a proxy distribution on the image, q(m |d), where we can choose q

to be any probability distribution we like as long as it has the same support as p(m)

and where we have made explicit that q can depend on the data d. Dividing and

multiplying by q, we have:

ℓ(β) = log

∫

M

q(m |d)
q(m |d)p(m,d |β) dm+ log p(β)− log p(d) (4.34)

= logEq(m|d)

[
p(m,d |β)
q(m |d)

]
+ log p(β)− log p(d), (4.35)
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where the integral in (4.34) has been recognized as the expected value with respect

to q (denoted by Eq) to arrive at (4.35). Now, by Jensen’s inequality [46] and the

concavity of the log function, we have

ℓ(β) ≥ Eq(m|d)

[
log

(
p(m,d |β)
q(m |d)

)]
+ log p(β)− log p(d) (4.36)

= ℓ̂(q,β). (4.37)

We see that the function ℓ̂(q,β) is a lower bound on the original objective function

ℓ(β). The E-M algorithm maximizes this lower-bound according to the following

coordinate ascent scheme, starting with an initial guess β̂(0) and iterated for t =

0, 1, 2, . . . :

E-Step: q̂(t+1) = argmax
q

ℓ̂(q, β̂(t)) (4.38)

M-Step: β̂(t+1) = argmax
β

ℓ̂(q̂(t+1),β). (4.39)

It turns out the E-step can be solved analytically. Let us propose a candidate

solution q̃ as the Bayesian posterior of m conditioned on d and the last iterate β̂(t) of

β:

q̃(m |d) = p
(
m |d, β̂(t)

)
. (4.40)

Then if we plug the q̃ into the E-step objective function (4.38), we have:

ℓ̂(q̃, β̂(t)) = Ep(m |d,β̂(t))


log



p
(
m,d | β̂(t)

)

p
(
m |d, β̂(t)

)




+ log p

(
β̂(t)
)
− log p(d). (4.41)

Recognizing the quotient in (4.41) as p(d | β̂(t)), and since the expectation of p(d | β̂(t))

100



is just itself, we have

ℓ̂
(
q̃, β̂(t)

)
= log p

(
d | β̂(t)

)
+ log p

(
β̂(t)
)
− log p(d) (4.42)

= log
p
(
d | β̂(t)

)
p
(
β̂(t)
)

p(d)
= log p

(
β̂(t) |d

)
(4.43)

= ℓ
(
β̂(t)
)

(4.44)

(by Eq. 4.37) ≥ ℓ̂
(
q, β̂(t)

)
∀q. (4.45)

Since ℓ̂(q, β̂(t)) ≤ ℓ(β̂(t)) for any q, it is clear that the candidate solution q̃ solves the

E-step, i.e.

q(t+1) = p
(
m |d, β̂(t)

)
. (4.46)

Now, coming to the M-step, we can simplify its objective function by dropping all

terms which do not depend on β. Thus, plugging into (4.39) and employing (4.46),

we can write:

β̂(t+1) = argmax
β

{
log p(β) + Ep(m |d,β̂(t)) [log p(m,d |β)]

}
. (4.47)

Because we were able to solve the E-step analytically, the E-M algorithm reduces to

iterating the single step given by (4.47). We do not actually need to compute the

Bayesian posterior in the E-step, but need only take the expectation with respect to it

(which is why the E-step is so named). It can be shown that an iteration of the E-M

algorithm (via Equation (4.47)) will never decrease the marginal posterior distribution

for β (which is maximized by the marginal MAP solution), and, under very general

conditions, the E-M algorithm does indeed converge to a (local) maximum of the

original marginal MAP problem of (4.27) [46].

4.3.4 Application of E-M to LSM

We now proceed to apply the E-M algorithm to our LSM problem. For notational

convenience, we can rewrite the E-M algorithm of (4.47) in terms of the E-M objective
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function φ(t)(β) given by

φ(t)(β) = log p(β) + Ep(m |d,β̂(t)) [log p(m,d |β)] , (4.48)

so the E-M iteration becomes

β̂(t+1) = argmax
β

φ(t)(β). (4.49)

For every iteration of E-M, we perform the maximization of φ(t) via a gradient ascent

scheme, for which we must compute the gradient of φ(t).

To derive the exact form of φ(t) and its gradient, we substitute our distributions

into the E-M objective function. From (4.24), we have

log p (β) =





0 if βij ∈ [0, 1], ∀(i, j) ∈ E
−∞ otherwise

, (4.50)

which simply means the prior on β restricts us to consider only βij ∈ [0, 1]. From

(4.19) and (4.20), we have

log p (m,d |β) = 1

2

(
log det (λ (D (β) + ǫI))−mT (λ (D (β) + ǫI))m

−(d−Am)TΣ−1(d− Am)
)
− Z,

(4.51)

where Z is a normalization constant given by

Z =
(N +K) log 2π + log Σ

2
. (4.52)

Inserting these into (4.48) yields (when every βij ∈ [0, 1]):

φ(t)(β) =
1

2
Ep(m |d,β̂(t))

[
log det (λ (D (β) + ǫI))−m

T (λ (D (β) + ǫI))m

− (d− Am)TΣ−1(d−Am)
]
− Z.

(4.53)

The log determinant term in (4.53) only depends on β and is not affected by the
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expectation with respect to m. Now, we can rewrite the second term in the above

expectation as

mT (λ (D (β) + ǫI))m = λ tr
(
(D (β) + ǫI)mmT

)
, (4.54)

so

Ep(m |d,β̂(t))
[
m
T (λ (D (β) + ǫI))m

]
= λ tr

(
(D (β) + ǫI)Ep(m |d,β̂(t))

[
mm

T
])
.

(4.55)

The expected value on the right-hand side of (4.55) is just the non-central second

moment matrix of m, as determined by the posterior distribution p(m |d, β̂(t)), given

by

Ep(m |d,β̂(t))
[
mm

T
]
= Λ(t) + µ(t)µ(t)T , (4.56)

and where µ(t) and Λ(t) are the posterior mean and covariance matrix, respectively,

when conditioning on d and β̂(t), given by

µ(t) =
(
ATΣ−1A+ λ

(
D(β̂(t)) + ǫI

))−1

ATΣ−1d (4.57)

and

Λ(t) =
(
ATΣ−1A + λ

(
D(β̂(t)) + ǫI

))−1

. (4.58)

We further note that the ǫI E[mm
T ] term in (4.55) does not depend on the variable β

which is being optimized and hence can be dropped from the E-M objective function

φ(t)(β). Similarly, the third and fourth terms in (4.53) also do not depend on β and

can be neglected. Combining the above and rearranging terms, we can rewrite the

E-M objective function as

φ(t)(β) =
1

2

(
log det (λ (D (β) + ǫI))− λ tr

(
D (β) Λ(t)

)
− λµ(t)TD (β)µ(t)

)
. (4.59)

In order to compute ∇φ(t), the gradient of φ(t) with respect to β, we first note that
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the β-weighted graph Laplacian matrix D(β) is a linear function of β, particularly:

D(β) =
∑

(i,j)∈E
βijP

ij (4.60)

where the entries of P ij are

P ij
kl =





1 if kl = ii or jj

−1 if kl = ij or ji

0 otherwise

. (4.61)

We also note that

∂

∂βij
log det (λ(D(β) + ǫI)) = tr

(
(λ(D(β) + ǫI))−1∂(λ(D(β) + ǫI))

∂βij

)
.

Letting C(β) = (λ(D(β)+ ǫI))−1 denote the prior covariance matrix of the image

(when conditioning on β), to compute ∇φ(t), we have:

∂

∂βij
φ(t) (β) =

λ

2

(
tr
(
C(β)P ij

)
− tr

(
Λ(t)P ij

)
− µ(t)TP ijµ(t)

)
(4.62)

=
λ

2

(
C(β)ii + C(β)jj − 2C(β)ij −

(
Λ

(t)
ii + Λ

(t)
jj − 2Λ

(t)
ij

)

−
(
µ
(t)
i − µ

(t)
j

)2)
.

(4.63)

We constrain each βij to the interval [0, 1] by introducing proxy variables γij which

we map to the βij using a sigmoidal function. In particular we set

βij =
arctan(γij)

π
+

1

2
, (4.64)

so that while γij is free to take any value in R, βij remains within [0, 1]. We can then
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compute ∇φ(t)(γ), the gradient of φ(t) with respect to γ, by

∂

∂γij
φ(t) (γ) =

∂φ(t)

∂βij

∂βij
∂γij

(4.65)

=
1

π(1 + γ2ij)

∂φ(t)

∂βij
. (4.66)

Unfortunately, direct computation of the gradient would require matrix inversions

to compute both the prior and posterior covariance matrices. To avoid this, we note

that we only need the node and edge-wise elements of these covariance matrices,

and we could instead sample from their associated Gaussian probability distributions

and approximate these elements from the samples. Thus, to approximate the prior

covariance matrix C(β), we generate L samples m
(1), . . . ,m(L), of the underlying

Gaussian prior distribution of m|β and approximate C as:

C(β) ≈ 1

L

L∑

ℓ=1

m
(ℓ)
m

(ℓ)T . (4.67)

We describe the sampling algorithm we use to approximate the elements of C(β) in

the following section.

Perturbation-Optimization Sampling of Gaussian Distributions

To sample from N (0, C), we first note that the precision matrix Q = λ(D(β) + ǫI)

can be rewritten as

Q = λ(F TB(β)F + ǫI) (4.68)

where F is a first-differencing matrix (having number of rows equal to |E|, the num-

ber of edges in E , and and number of columns equal to N , the number of image

parameters) and B(β) is an |E|-by-|E| diagonal matrix, with the βij on its diagonal.

Referred to as Perturbation-Optimization (P-O) sampling by Orieux et al. [53], a

straight-forward sampling algorithm (that avoids the need for Cholesky factorization

of the precision matrix) is available when the precision matrix can be expressed in
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the form

Q =
T∑

t=1

MT
t R

−1
t Mt (4.69)

and sampling from N (0, Rt) is feasible (which is certainly true in our case, as we have

diagonal Rt matrices). The sampling algorithm is then as follows:

Algorithm 4.1 Perturbation-Optimization algorithm for sampling from N (0, Q−1)
[53]

1. Perturbation step: Generate independent vectors

ηt ∼ N (0, Rt) for t = 1, . . . , T

2. Optimization step: Compute m̂ as the minimizer of

J(m) =
∑T

t=1(ηt −Mtm)TR−1
t (ηt −Mtm)

Return m̂ as the sample from N (0, Q−1).

The proof that m̂ is a sample from N (0, Q−1) is straight-forward and given in

Orieux et al. [53]. The optimization step simply requires solving the linear system

Qm̂ =
T∑

t=1

MT
t R

−1
t ηt, (4.70)

which, in our case, is very fast (O(kN) using an iterative solver with k steps) due to

the sparsity of F .

Block Diagonal Approximations

While this sampling approach can also be used to approximate the elements of the

posterior covariance matrix Λ(t), in practice generating a reasonably large number of

samples from N (0,Λ(t)) is not feasible due to the increased cost of solving a system

involving the posterior precision matrix ATΣ−1A+λ(D(β̂(t))+ ǫI) (we would need to

perform a regularized LSM inversion for each sample when using the P-O approach).

In order to estimate the node and edge-wise elements of Λ(t) , we note that when

using the Kirchhoff operator A, there is a closed form expression for the elements of

the posterior precision matrix Λ(t)−1
(combining (4.58) and (4.4)). With this in mind,

we can estimate elements of Λ(t) by considering a block diagonal approximation to
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the precision matrix. In particular, we can construct an M-by-M partition of the

posterior precision matrix corresponding to an image point and its M − 1 nearest

neighbors in space within some radius (we used a 49-pixel neighborhood to perform

this approximation), then approximate the covariance matrix at image point i, Λ
(t)
ii ,

from the inverse of this M-by-M partition matrix. The off-diagonal elements Λ
(t)
ij (for

each edge (i, j) ∈ E) are similarly estimated from the same matrix inverse by taking

the elements corresponding to covariance between mi and mj (however, care must be

taken to ensure that the M-by-M partition of the precision matrix is large enough

to sufficiently “surround” both the image point i and all its neighbors j with which

it shares an edge). This approximation will perform reasonably well as long as the

posterior precision matrix decays spatially (in the model domain) as we move away

from the diagonal (as is the case here).

Summary of E-M Algorithm

To implement the above approximations to calculate ∇φ(t), we need to approximate

the entries of Λ(t) only once per E-M iteration (as Λ(t) does not vary with β). However

we would need to reapproximate the entries of C(β) with the sampling algorithm in

each iteration of the first-order gradient-ascent method (which must be re-run in

each iteration of the E-M algorithm). We now summarize our above developments

for applying the E-M algorithm to obtain the empirical Bayesian estimate of the

image in LSM in the algorithm below:
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Algorithm 4.2 Expectation-Maximization Algorithm for LSM

Initialize each γ
(0)
ij = 0, so that β̂

(0)
ij = 0.5.

Specify step-size α for gradient ascent.

Set t = 0. Iterate on t:

1. Compute µ(t) via (4.57).

2. Compute Λ
(t)
ii (∀i ∈ V) and Λ

(t)
ij (∀(i, j) ∈ E) via block diagonal approximation.

3. Initialize γ̃(0) = γ(t). Set s = 0 and iterate on s to perform gradient ascent on

γ:

a. Generate samples from N (0, C(β(γ̃(s)))) via P-O sampling.

b. Estimate C(β(γ̃(s))))ii (∀i ∈ V) and C(β(γ̃(s))))ij (∀(i, j) ∈ E) via (4.67).

c. Compute ∇φ(t)(γ̃(s)) via (4.66).

d. Update γ̃(s+1) = γ̃(s) + α∇φ(t)(γ̃(s))

4. Update γ(t+1) = γ̃(s+1).

5. Update β̂(t+1) via (4.64) using γ(t+1).

Upon termination, return:

βMAP = β̂(t+1),

mEB =
(
ATΣ−1A+ λ (D (βMAP) + ǫI)

)−1
ATΣ−1d.

4.4 Results

In order to validate our approach, we ran our inference algorithm on synthetic datasets.

We present two test cases: the first case being a simple example where the data arise

from a small image consisting of three dipping reflectors separated by a weakly re-

flective fault and the second case being data simulated from the Marmousi model.

Synthetic data were created using the same Kirchhoff modeling operator A that is

used in the inference algorithms. Hence, these test cases are what are known as

inverse crime tests. The purpose of using the same forward modeling operator to

create the synthetic data as is used in the inference is to isolate the inversion prob-

lem from the modeling problem. In order to somewhat avoid the inverse crime, we

add zero-mean white Gaussian noise to the data (with a standard deviation equal to
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10% of the maximum amplitude of the data, assumed to be known by our inversion

procedure).

We first describe the example of the three dipping reflectors. The data are created

from a single surface seismic source (at the center) and 50 equally spaced surface seis-

mic receivers (with spacing of 50 m) using a homogeneous background velocity model

(of 4000 m/s). The source wavelet is a 20 Hz Ricker wavelet; hence the dominant

wavelength is 200 m. The seismic traces are sampled at 1 ms, and the medium is sam-

pled spatially at 50 m in both the lateral and vertical directions. The entire medium

has spatial dimensions of 2500 m by 2500 m, hence Nx = Nz = 50 and the number

of image parameters is N = NxNz = 2500. The purpose on testing our algorithm

on such a small model is so that we can verify the performance of our algorithm in

the absence of any approximations (i.e. in this case, we can directly compute the

elements of C and Λ without the need of P-O sampling or block diagonal approxima-

tions). For this example, we used an MRF in which each node shares an edge with

its four nearest neighbors. Here, we ran 10 iterations of the E-M algorithm to obtain

the MAP estimate of the edge strengths and the empirical Bayes image, where each

iteration of the E-M algorithm ran in approximately 1 minute on a quad core IntelTM

Xeon W3550 3.0GHz processor.

For the case of the Marmousi model, we use a smoothed version of the true Mar-

mousi velocity model (sampled at 24 m spacing) for our background velocity model in

conjunction with the true (unsmoothed) reflectivity model to simulate the data. The

data are created from a set of 20 collocated surface sources and receivers (resulting

in 400 traces), with a 480 m spacing between stations, where the source wavelet is

a 25 Hz Ricker wavelet. For this case, we must resort to the approximate methods

outlined above (P-O sampling and block diagonal approximations) to compute the

gradient ∇φ(t). Here, in order to capture the more complex dipping structures of

the Marmousi model, we defined the MRF so that each node shares an edge with all

nodes within a radius of
√
2 nodes (i.e. a node shares an edge with its four diago-

nal neighbors in addition to its four nearest neighbors). In this example, the MAP

estimate of the edge strengths and the empirical Bayes image were obtained with
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3 iterations of the E-M algorithm, where each iteration of the E-M algorithm took

approximately 33 minutes on a quad core IntelTM Xeon W3550 3.0GHz processor.

We note that each iteration of the E-M algorithm requires performing a standard

least-squares migration in addition to the computation required to obtain the block

diagonal approximation to the posterior covariance matrix and perform the optimiza-

tions required for P-O sampling from the prior. The LSM images are computed using

the method of conjugate gradients (CG), which is run for 200 iterations per LSM.

Each iteration of CG requires performing a single Kirchhoff modeling followed by a

single Kirchhoff migration, and, for this example, takes about 0.7 seconds per CG

iteration (on the same machine).

Figures 4-3–4-9 show the results from the test case of the three dipping layer

model, where the edge strengths obtained using our algorithm are shown in Figure

4-9 and the resulting image obtained using these edge strengths is shown in Figure

4-8. Performing a Kirchhoff migration on the data results in the image of Figure 4-5;

here the reflectors are imaged somewhat, but we also see heavy imaging artifacts (i.e.

the migration smiles) due to the limited source-receiver geometry (where only a single

source is being used). We observe that in the case of the unregularized LSM image

(Figure 4-6), the reflectors are imaged, but unfortunately, the noise in the data is

also imaged so strongly that the reflectors are nearly impossible to distinguish from

the noise. We can improve on the unregularized image by using a uniform regular-

ization scheme (setting each βij = 1) to obtain the regularized LSM image of Figure

4-7; here, the use of regularization has filtered out the noise, but as a side effect has

also smoothed out the reflectors. The empirical Bayesian MAP image (Figure 4-8)

obtained by using our estimate of the edge strengths significantly improves upon this

result. This is clear from a qualitative comparison between the images; we can see

the reflectors imaged quite strongly with sharpness preserved at the reflectors, while

the noise is filtered out elsewhere in the image. Additionally, the weakly reflective

fault is also slightly imaged in the empirical Bayesian MAP image, whereas it cannot

be seen in the other images. We further note that the correlation of the empirical

Bayesian MAP image with the true image is significantly higher than the correla-
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tions of the other images with the true image. Examining the estimate of the edge

strengths in Figure 4-9, we see that the edge strengths take on a pattern similar to

our expectations: they are high where the image is constant, but close to 0 where

there are differences in the image (surrounding the reflectors).

Figures 4-10–4-17 show the results from the test case with the Marmousi model.

We again observe the same features in the images as seen in the 3 layer test case. The

unregularized LSM image (Figure 4-14) shows the reflectors along with a very strong

noise component. Regularizing in a uniform fashion (by setting each βij = 1) results

in the regularized image of Figure 4-15 in which the noise has been filtered out, but

the image is also overly smooth in some areas. Once again, using our algorithm to

estimate the edge strengths (which are shown in Figure 4-17) results in the empirical

Bayesian MAP image of Figure 4-16. We notice the same qualitative improvements

in the image as seen previously: the image remains sharp near the reflectors while

smoothing out the noise away from the reflectors. And, as before, the correlation of

the empirical Bayesian MAP image with the true image is significantly higher than

the correlations of the other images with the true image.

4.5 Conclusions and Future Work

Our study shows that the Bayesian framework provides a flexible methodology for

estimating both the image and smoothness parameters (or edge strengths) in a least-

squares migration setting. By estimating the edge strengths, we are able to remove

the effects of noise while, by and large, preserving sharpness at the reflectors in the

image. The expectation-maximization algorithm, in particular, allowed us to solve

the marginal MAP problem for estimating the edge strengths β (without having to

explicitly compute the marginal posterior distribution for β).

We note that while our algorithm was presented within the context of the seis-

mic imaging problem, the methodology we have developed is broadly applicable to

many linear inverse problems where the model parameters may exhibit spatially (or

temporally) varying smoothness properties. The operator A (or, more generally, the
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Figure 4-3: True image for the three layer test case.
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Figure 4-4: Noisy synthetic data for the three layer test case.
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Figure 4-5: Kirchhoff migrated image for the three layer test case. Correlation with
true image = 0.4705.
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Unregularized LSM Image
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Figure 4-6: Unregularized LSM image (each βij = 0) for the three layer test case.
Correlation with true image = 0.3649.
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Figure 4-7: Uniformly regularized LSM image (each βij = 1) for the three layer test
case. Correlation with true image = 0.5879.
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Figure 4-8: Empirical Bayesian MAP image (computed after estimating β) for the
three layer test case. Correlation with true image = 0.9607.
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Figure 4-9: Edge strengths β estimated with E-M algorithm for the three layer test
case.
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Figure 4-10: True image for the Marmousi test case.
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Figure 4-11: Synthetic data for the Marmousi test case prior to adding noise.
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Figure 4-12: Noisy synthetic data for the Marmousi test case.
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Figure 4-13: Kirchhoff migrated image for the Marmousi test case. Correlation with
true image = 0.4371.
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Figure 4-14: Unregularized LSM image (each βij = 0) for the Marmousi test case.
Correlation with true image = 0.3682.
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Figure 4-15: Uniformly regularized LSM image (each βij = 1) for the Marmousi test
case. Correlation with true image = 0.6369.
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Figure 4-16: Empirical Bayesian MAP image (computed after estimating β) for the
Marmousi test case. Correlation with true image = 0.7973.
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Figure 4-17: Edge strengths β estimated with E-M algorithm for the Marmousi test
case.
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conditional distribution for the data given the model p(d|m)) would change if we

were solving a different problem, but the methodology and algorithm described in

this chapter would still apply.

While we have developed our algorithm in the setting of solving a linear inverse

problem, an interesting direction for future work is to generalize this methodology to

non-linear inverse problems. A second direction for future work is to explore alter-

native ways to parameterize the prior on the image within the hierarchical Bayesian

setting. We say more about these two future directions in Chapter 7. Additionally,

with the parameterization of the prior presented in this chapter, one may wish to

explore inferring other parameters than just the edge strengths. For example, rigor-

ously picking the regularization parameter λ remains an open question in the field of

inverse problems. Another natural future direction is application of this methodology

to a more realistic synthetic dataset (or to a field dataset), where we expect similar

improvements in quality of the resulting image. The latter two directions are explored

in the following chapter.
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Chapter 5

Interpretation and Estimation of

Regularization Parameters

In this chapter, we undertake a more rigorous investigation into the regularization

parameters used in Chapter 4. In the first part of this chapter, we describe how these

parameters characterize the prior covariance of the model by exploring the connections

between these parameters and the covariance function that arises in the limiting case

when the model is treated as a random function. In the second part of this chapter,

we generalize the methodology of Chapter 4 to estimate these parameters within the

hierarchical Bayesian framework.

Recall the probabilistic model for the edge strengths β, image m, and data d

described in Chapter 4 (where image m is defined on the graph G = (V, E)) :

β ∼ Uniform([0, 1]|E|), (5.1)

m |β ∼ N (0, C(β)), (5.2)

d |m,β ∼ N (Am,Σ), (5.3)

where the prior precision matrix Q(β) = C−1(β) for m |β is given by

Q(β) = C−1(β) = λ(D(β) + ǫI), (5.4)
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and where λ > 0, ǫ > 0, and D(β) is the β-weighted graph Laplacian on G defined

by the quadratic form

mTD(β)m =
∑

(i,j)∈E
βij(mi −mj)

2. (5.5)

5.1 Connecting Regularization Parameters and Co-

variance Functions

In order to better understand the significance of the parameters λ, β, and ǫ, we

investigate the connections between these parameters and the resulting prior model

covariance. In particular, we examine the impact of these parameters in the continu-

ous case, where the model m(x) is now treated as a zero-mean Gaussian random field

with model covariance specified by a covariance function C(x,x′) such that

E[m(x)m(x′)] = C(x,x′). (5.6)

Following the development in Rodi and Myers [59] and Simpson et al. [68], we recog-

nize that the covariance function C(x,x′) can be taken as the Green’s function of a

differential operator L, so that, subject to appropriate boundary conditions, we have

LC(x,x′) = δ(x− x′), (5.7)

where C(x,x′) will be a covariance function when L is self-adjoint and positive-definite

[59]. To connect our finite-dimensional model of Equation (5.2) to this Gaussian

random field setting, we note that the covariance matrix C is a discrete approximation

to the covariance function C(x,x′) when the precision matrix Q = C−1 is a finite-

difference approximation to the differential operator L [59]. Hence, we want to choose

the differential operator L for which Q(β) is a finite-difference approximation, i.e. we
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want L such that

∫

V

m(x)Lm(x) dV (x) ≈ mTQm (5.8)

= λ


 ∑

(i,j)∈E
β(m(xi)−m(xj))

2 + ǫ
∑

i∈V
m(xi)

2


 , (5.9)

where V denotes the model domain and dV (x) is the volume measure at x and where

we have considered the special case of Q where the βij are all set to a common value

βij = β > 0, so that the underlying model covariance will be stationary far from the

boundaries. For the 2-D problem we are considering here, we take V to be a box in

R
2 and dV (x) = dx dz. Letting ℓ denote the spacing of the uniform grid on which

the finite-dimensional model m is defined (so a grid cell has area ℓ2), we consider the

following candidate for L:

L = λβ

(
ǫ

βℓ2
−∆

)
, (5.10)

where ∆ denotes the Laplacian operator in 2-D (∆ = ∂2

∂x2
+ ∂2

∂z2
) and use the Dirichlet

boundary condition m(x) = 0 on the boundary ∂V . Then, we have:

∫

V

m(x)Lm(x) dV = λβ

(
ǫ

βℓ2

∫

V

m2 dV −
∫

V

m∆m dV

)
. (5.11)

Now noting that

∇ · (m∇m) = ‖∇m‖22 +m∆m, (5.12)

we can rewrite (5.11) as

∫

V

m(x)Lm(x) dV = λβ

(
ǫ

βℓ2

∫

V

m2 dV +

∫

V

‖∇m‖22 dV −
∫

V

∇ · (m∇m) dV

)
.

(5.13)

Applying the divergence theorem to the last integral in (5.13),

∫

V

∇ · (m∇m) dV =

∫

∂V

(m∇m) · n dS = 0, (5.14)
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where the last equality holds due to the boundary condition, and (5.13) becomes

∫

V

m(x)Lm(x) dV = λβ

(
ǫ

βℓ2

∫

V

m2 dV +

∫

V

‖∇m‖22 dV
)
. (5.15)

From (5.15), we see that L is indeed positive-definite:
∫
V
m(x)Lm(x) dV > 0 for all

m 6= 0 satisfying the boundary condition, and it can similarly be shown that L is

self-adjoint. Now we proceed to approximate the integrals and derivatives in (5.15)

with summations and differences:

∫

V

m(x)Lm(x) dV = λβ

(
ǫ

βℓ2

∫

V

m2 dV +

∫

V

‖∇m‖22 dV
)

(5.16)

≈ λβ

(
ǫ

βℓ2

Nx∑

i=1

Nz∑

j=1

m2 ((xi, zj)) ℓ
2

+
Nz∑

i=1

Nx−1∑

j=1

(m ((xj , zi))−m ((xj+1, zi)))
2

ℓ2
ℓ2

+

Nx∑

i=1

Nz−1∑

j=1

(m ((xi, zj))−m ((xi, zj+1)))
2

ℓ2
ℓ2

)
(5.17)

= λ


ǫ
∑

i∈V
m2(xi) +

∑

(i,j)∈E
β(m(xi)−m(xj))

2


 (5.18)

= mTQm. (5.19)

Hence our candidate L from Equation (5.10) can be viewed as a continuous extension

of the differencing matrix Q.

We can now proceed to solve Equation 5.7 to obtain C(x,x′) as the Green’s

function of L. To facilitate this, we take the Green’s function of L in the whole space,

which results in a stationary covariance function C(x,x′) = C(x − x′). Making a

change of variables y = x − x′ = (yx, yz), and defining for notational convenience

ρ = 1
λβ

and κ2 = ǫ
βℓ2

we have

1

ρ
(κ2 −∆)C(y) = δ(y). (5.20)
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Taking the 2-D spatial Fourier transform of both sides, this becomes

1

ρ
(κ2 + k2x + k2z)Ĉ(k) = 1, (5.21)

where k = (kx, kz) is the wavenumber (or spatial frequency) and Ĉ(k) is the Fourier

transform of C(y), i.e. Ĉ(k) is the power spectral density of m(x). Rearranging and

applying the inverse Fourier transform we have

C(y) =
ρ

(2π)2

∫∫

R2

1

κ2 + k2x + k2z
eik·y dkx dkz. (5.22)

Applying a change of variables to polar coordinates

kx = kr cos θ yx = yr cosφ

kz = kr sin θ yz = yr sin φ

we have

C(y) =
ρ

(2π)2

∫ ∞

0

1

κ2 + k2r

∫ π

−π
eikryr(cos θ cosφ+sin θ sinφ) dθ kr dkr (5.23)

=
ρ

2π

∫ ∞

0

1

κ2 + k2r

1

2π

∫ π

−π
eikryr cos(θ−φ) dθ kr dkr. (5.24)

Making a final change of variables ψ = θ − φ − π/2, we recognize the inner integral

as a Bessel function:

1

2π

∫ π

−π
eikryr cos(θ−φ) dθ =

1

2π

∫ π

−π
e−ikryr sinψ dψ (5.25)

= J0(yrkr), (5.26)

where J0 denotes the zeroth-order Bessel function of the first kind. Then (5.24)
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becomes

C(y) =
ρ

2π

∫ ∞

0

1

κ2 + k2r
J0(yrkr)kr dkr (5.27)

=
ρ

2π
K0(κyr), (5.28)

where we have recognized the integral in (5.27) as the zeroth-order Hankel transform

of 1
κ2+k2r

and K0 denotes the zeroth-order modified Bessel function of the second kind.

Reverting to the initial choice of variables, we then have for the covariance function

C(x,x′) =
1

2πλβ
K0

(
‖x− x′‖2
ℓ
√
β/ǫ

)
. (5.29)

This covariance function will be a valid approximation of the model covariance in the

finite-dimensional setting when considering points far from the boundary of the grid

(to avoid boundary effects, since the Green’s function is taken in the whole-space)

and when x 6= x′, since K0(t) → ∞ as t→ 0.

From (5.29), we observe that the correlation length ξ, defined here as the param-

eter governing the rate of decay of the covariance function, is determined by

ξ = ℓ
√
β/ǫ. (5.30)

This can also be observed from the power spectral density of m(x) in (5.21): the

modulus of the wavenumber at which the magnitude of the power spectrum drops

to half of its peak value (Ĉ(0)) should be proportional to 1/ξ. We observe this at

‖k‖2 = κ =
√
ǫ/βℓ2 :

Ĉ(k)
∣∣∣
‖k‖2=κ

=
1

2
Ĉ(0). (5.31)

Although the continuous model has infinite variance (since C(x,x′) → ∞ as x → x′),

we can still gain insights about the (finite) variance of the discretized model at a

given grid cell from the power spectrum of the continuous model. From (5.21), we
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can see the value of Ĉ(0), the power spectrum at D.C., which is

Ĉ(0) =
ρ

κ2
=
ℓ2

ǫλ
. (5.32)

We note that in the limit as β → 0, the correlation length ξ → 0 and the power

spectrum becomes flat, corresponding to white noise with power spectrum ℓ2

ǫλ
. In

this case, the variance var(mi) of the corresponding discretized model at a grid cell

(of length ℓ) would then be given by var(mi) = 1
ℓ2
Ĉ(0) = 1

ǫλ
. From (5.29), we also

see that the parameter λ scales only the inverse variance (whereas β and ǫ play a

role in determining both the variance and correlation length). Hence, in determining

an appropriate choice for these parameters, one may choose to first set β and ǫ to

achieve a desired correlation length, then pick λ to appropriately scale the model

variance var(mi). The exact value of the model variance var(mi) can be determined

numerically by computing (Q−1)ii.

As a numerical verification of the validity of (5.29), in Figure 5-1, we compare

the covariances given by the covariance function for the continuous model m(x) to

the numerically computed covariances of the discretized model m on a 101-by-101

node grid of grid cell length ℓ = 1 m. We set the parameters λ = 1, ǫ = 10−3, and

varied β between 10−3 and 1. We see strong agreement between the covariances for

the discrete and continuous cases when x 6= x′ for all values of β plotted other than

β = 1. At β = 1, the correlation length of the covariance function is large enough that

the boundary effects in the discrete case can no longer be neglected, and hence (5.29)

becomes a less accurate approximation of the covariance of the discretized model. At

x = x′, the covariance function goes to infinity, but the variance of the discretized

model remains finite.
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Figure 5-1: Comparison of numerically computed covariances in the discrete case to
the covariance function in the continuous limit, with λ = 1, ǫ = 10−3, and for different
values of β. Covariances for the discrete case were computed with the central node
on a 101-by-101 node grid having grid cell length ℓ = 1 m. (Note that the range of
the x-axis is reduced for small values of β to make the plots more visible.)
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5.2 Variational Bayesian Estimation of Regulariza-

tion Parameters

Having described how the parameters λ, β, and ǫ characterize the prior model covari-

ance, we now return to the problem of estimating the regularization parameters in

a Bayesian inference setting. We note that there is some redundancy in our param-

eterization in regards to the effect of the parameters on the prior model covariance.

In particular, the covariance function can be parameterized by two characteristic pa-

rameters, the correlation length ξ = ℓ
√

β
ǫ

and the power spectrum at D.C. Ĉ(0) = ℓ2

λǫ
,

whereas our parameterization provides three parameters that can be tuned. In order

to remove this redundancy, and additionally recognizing the role ǫ plays in keeping

the prior precision matrix Q positive-definite, we keep ǫ fixed while estimating the

remaining regularization parameters. From (5.30), we observe that fixing ǫ (while re-

stricting β to [0, 1]) determines the maximum correlation length as ξmax = ℓ√
ǫ
, hence

we can set ǫ in accordance with a desired ξmax.

In the previous section, we set all the βij to a common value β in order to ob-

tain a stationary covariance function. However, we will remove this restriction when

attempting to estimate the βij , as in Chapter 4. In addition to estimating the param-

eters β and λ governing the prior distribution, we also estimate the inverse variance

of the noise, which we denote by ζ .

5.2.1 Hierarchical Bayesian Formulation

We slightly redefine the probabilistic model of (5.1)-(5.3) to include λ and ζ as random

variables in the hierarchical Bayesian framework. We define the prior distribution for

the model m given the regularization parameters as before so that

p (m|β, λ) ∝ λN/2 exp
{
−1

2
λmT (D (β) + ǫI)m

}

|D (β) + ǫI|−1/2
, (5.33)
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where N is the number of image parameters and | · | denotes the matrix determinant.

And we again let the data d be defined by

d = Am+ n, (5.34)

where A is the forward modeling operator (in our case we take A to be the Kirchhoff

modeling operator, so that AT is the Kirchhoff migration operator, as defined in

Chapter 4) and n is additive noise which we model as white Gaussian noise with zero

mean and covariance matrix Σ = ζ−1I. Under these assumptions, the conditional

distribution for the data is given by

p(d|m, ζ,β, λ) = p(d|m, ζ) ∝ ζ K/2 exp

{
−1

2
ζ ‖d−Am‖2

}
, (5.35)

where K is the number of data points.

Letting θ = (β, λ, ζ) denote the vector of regularization parameters (in which we

include the inverse noise variance), we model θ as a random vector with its own prior

distribution p(θ). Since λ and ζ scale the inverse model and noise variances, respec-

tively, we are able to introduce conjugate priors for these parameters; in particular,

we model these parameters as Gamma random variables a priori, as the conjugate

prior for the inverse variance parameter of a Gaussian is the Gamma distribution [24].

Hence, we have

p(λ) ∝ λaλ−1e−bλλ λ ≥ 0 (5.36)

and

p(ζ) ∝ ζaζ−1e−bζζ ζ ≥ 0, (5.37)

where aλ, bλ, aζ , bζ > 0 are the shape and rate parameters of the Gamma distributions.

These are called conjugate priors because the conditional posterior distributions for

λ and ζ will remain Gamma distributions, only with updated shape and rate pa-

rameters. (We note that setting a = 1 and taking the limit as b → 0 results in an

(improper) flat prior on λ (or ζ) ≥ 0, so the Gamma priors are quite general.) Fur-

thermore, as before, we endow each βij with a uniform prior on the set [0, 1] and let
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Figure 5-2: The directed graphical model capturing the Markov structure between
β, λ, ζ , m, and d. The node for d is shaded to indicate that d is an observed
quantity that the posterior distribution for the regularization parameters and model
is conditioned upon.
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λ, ζ , and the βij be mutually independent random variables. Combining the above

defines our prior distribution for θ. The directed graphical model in Figure 5-2 de-

picts the Markov structure between the regularization parameters, the model, and

data. Having fully specified our probabilistic model, we can now apply Bayes’ rule

to obtain the joint posterior distribution for θ and m given the data d:

p (m, θ|d) ∝ p (θ) p (m|θ) p (d|m, θ) (5.38)

∝ λaλ+N/2−1 ζaζ+K/2−1 |D (β) + ǫI|1/2

exp

{
−λ
(
bλ +

1

2
mT (D (β) + ǫI)m

)

−ζ
(
bζ +

1

2
‖d−Am‖2

)}
.

(5.39)

5.2.2 Variational Bayesian Methods

The complete solution to the hierarchical Bayesian problem would involve obtaining

and tractably exploring, often via sampling techniques, the marginal posterior distri-

butions for the parameters of interest m. However, since the posterior distribution

(5.39) is costly to evaluate (due to the determinant factor), sampling from the poste-

rior quickly becomes infeasible for even moderately sized models (N ∼ 104). To avert

this problem, we turn to an approximate inference framework known as variational

Bayes (VB) [3, 4], which can be viewed as a generalization of the E-M algorithm used

in Chapter 4.

The idea behind the variational Bayesian method is to approximate an intractable

posterior distribution p(u|d) (defined on the set of random variables u = (m, θ)) by

searching within a family of tractable distributions q ∈ Q for the distribution, q∗,

which is closest to the posterior pu|d. The approximate posterior q∗ is found as the

solution to the following variational problem (hence the name):

q∗ = argmin
q∈Q

D(q‖pu|d), (5.40)

where D(·‖·) is the KL divergence, a pseudo-metric on the space of probability dis-
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tributions given by

D(q‖pu|d) = Eq

[
log

(
q(u)

p(u|d)

)]
, (5.41)

and where Eq denotes the expectation operator with respect to the distribution q. As

hinted at earlier, the expectation-maximization algorithm [17, 46] can be derived as a

special case of VB when we restrict Q to the family of point distributions (i.e. Dirac

delta distributions) on some subset of the random variables in u [3].

The most common variant of VB is known as the mean field approximation, in

which Q comprises distributions which factorize over specified partitions on the set of

random variables u. In our problem, it is natural to take m and θ as two partitions of

the unknowns u. Using this partitioning with the mean field approximation, VB will

search within the family of distributions that, conditioned on d, have m independent

from θ (which is not the case in the true posterior distribution (5.39)). We further

specialize Q by restricting the class of distributions on β to point distributions (this

will result in effectively estimating β via the E-M algorithm while estimating the

remaining parameters in the more general mean field setting). We thus have

q(m, θ) = qm(m)qθ(θ) (5.42)

= qm(m)qλ,ζ,β(λ, ζ,β) (5.43)

= qm(m)qλ,ζ(λ, ζ)δ(β − β̄), (5.44)

where β̄ is the point at which the delta distribution qβ(β) is centered (and hence the

only parameter defining qβ(β)).

Coordinate-Descent

To solve the variational problem (5.40) for q ∈ Q, we substitute the above factorized

form of q into the KL divergence and take a coordinate-descent approach, which

alternates between minimizing the KL divergence with respect to β̄ and (qm, qλ,ζ),
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giving the iterative procedure:

β̄(t+1) = argmin
β̄

D(q(t)
m
q
(t)
λ,ζδβ̄‖pλ,ζ,β,m|d) (5.45)

(
q(t+1)
m

, q
(t+1)
λ,ζ

)
= argmin

(qm,qλ,ζ)
D(qmqλ,ζδβ̄(t+1)‖pλ,ζ,β,m|d). (5.46)

Examining the update equation for β̄(t+1) (5.45), and dropping terms that do not

depend on β̄, we see that this equation is essentially the M-step of the E-M algorithm:

β̄(t+1) = argmin
β̄

D(q(t)
m
q
(t)
λ,ζδβ̄‖pλ,ζ,β,m|d) (5.47)

= argmax
β

E
q
(t)
m q

(t)
λ,ζ

[log p(λ, ζ,β,m,d)]. (5.48)

And indeed, we can perform the above maximization using the same methodology as

was used to solve the M-step in Chapter 4 via a gradient ascent method, where

∂

∂βij
E
q
(t)
m q

(t)
λ,ζ

[log p(λ, ζ,β,m,d)] =
λ̄(t)

2

(
Cii(λ̄

(t),β) + Cjj(λ̄
(t),β)− 2Cij(λ̄

(t),β)

−(Λ
(t)
ii + Λ

(t)
jj − 2Λ

(t)
ij )− (µ

(t)
i − µ

(t)
j )2

)
,

(5.49)

and where λ̄(t) = E
q
(t)
λ

[λ] is the expected value of λ under q
(t)
λ , µ(t) = E

q
(t)
m

[m] and

Λ(t) = cov
q
(t)
m

(m) are the mean vector and covariance matrix of m under q
(t)
m , and

C(λ̄(t),β) = covp
m|λ̄(t),β

(m) is the prior covariance matrix of m under pm|λ̄(t),β:

C(λ̄(t),β) =
(
λ̄(t)(D(β) + ǫI)

)−1
. (5.50)

Fixed-Point Updates for q
(t)
λ,ζ and q

(t)
m

The update equation (5.46) for the distributions q
(t)
λ,ζ and q

(t)
m still requires finding the

distributions that minimize the KL divergence (with β̄ now fixed to β̄(t+1)). One can

derive the stationarity conditions on q
(t+1)
λ,ζ and q

(t+1)
m by forming a Lagrangian L (to

account for normalization constraints) and setting the functional derivatives δL
δqm(m)
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and δL
δqλ,ζ(λ,ζ)

to 0. This gives the standard equations of the mean field approximation:

log q
(t+1)
λ,ζ (λ, ζ) = E

q
(t+1)
m

[
log p(λ, ζ, β̄(t+1),m,d)

]
− Zλ,ζ, (5.51)

log q(t+1)
m (m) = E

q
(t+1)
λ,ζ

[
log p(λ, ζ, β̄(t+1),m,d)

]
− Zm, (5.52)

where Zm and Zλ,ζ are normalization constants. The cyclic dependence between

Equations (5.51) and (5.52) induces a natural fixed-point algorithm in which we pick

an initial guess q
(t+1,0)
λ,ζ (λ, ζ) and q

(t+1,0)
m (m) and update these guesses by sequentially

solving (5.51) and (5.52), repeatedly until convergence. Denoting the iteration num-

ber of this fixed-point algorithm by s, we have:

log q
(t+1,s+1)
λ,ζ (λ, ζ) = E

q
(t+1,s)
m

[
log p(λ, ζ, β̄(t+1),m,d)

]
− Zλ,ζ (5.53)

log q(t+1,s+1)
m (m) = E

q
(t+1,s+1)
λ,ζ

[
log p(λ, ζ, β̄(t+1),m,d)

]
− Zm. (5.54)

In order to implement this fixed-point algorithm, we substitute the joint posterior

distribution into (5.53) and (5.54). First substituting into (5.53) gives the form of

the update for q
(t+1,s+1)
λ,ζ (λ, ζ):

log q
(t+1,s+1)
λ,ζ (λ, ζ) = (aλ +N/2− 1) log λ+ (aζ +K/2− 1) log ζ

− λ
(
bλ +

1
2
E
q
(t+1,s)
m

[
m
T (D(β̄(t+1)) + ǫI)m

])

− ζ
(
bζ +

1
2
E
q
(t+1,s)
m

[
‖d− Am‖2

])
− Z ′

λ,ζ

(5.55)

= (aλ +N/2− 1) log λ

− λ
(
bλ +

1
2
tr((D(β̄(t+1)) + ǫI)Λ(t+1,s))

+1
2
µ(t+1,s)T (D(β̄(t+1)) + ǫI)µ(t+1,s)

)
− Z ′′

λ

+ (aζ +K/2− 1) log ζ

− ζ
(
bζ +

1
2
tr
(
ATAΛ(t+1,s)

)
+ 1

2
‖d− Aµ(t+1,s)‖2

)
− Z ′′

ζ

(5.56)

= log q
(t+1,s+1)
λ (λ) + log q

(t+1,s+1)
ζ (ζ), (5.57)

where we have recognized in the last equality that q
(t+1,s+1)
λ,ζ (λ, ζ) factorizes (i.e.
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q
(t+1,s+1)
λ,ζ models λ and ζ as independent). As before, µ

(t+1,s)
and Λ(t+1,s) denote

the mean and covariance of m under q
(t+1,s)
m , and Z ′

λ,ζ, Z
′′
λ, Z

′′
ζ are simply new nor-

malization constants. From the form of Equation (5.56), we recognize q
(t+1,s+1)
λ and

q
(t+1,s+1)
ζ as Gamma distributions, and hence we only need to keep track of their shape

and rate parameters, a
(t+1,s+1)
λ and b

(t+1,s+1)
λ for q

(t+1,s+1)
λ and a

(t+1,s+1)
ζ and b

(t+1,s+1)
ζ

for q
(t+1,s+1)
ζ , which are given by:

a
(t+1,s+1)
λ = aλ +N/2, (5.58)

b
(t+1,s+1)
λ = bλ +

1
2
tr((D(β̄(t+1)) + ǫI)Λ(t+1,s)) + 1

2
µ(t+1,s)T (D(β̄(t+1)) + ǫI)µ(t+1,s),

(5.59)

a
(t+1,s+1)
ζ = aζ +K/2, (5.60)

b
(t+1,s+1)
ζ = bζ +

1
2
tr
(
ATAΛ(t+1,s)

)
+ 1

2
‖d−Aµ(t+1,s)‖2. (5.61)

From these, we can compute the expected values of λ and ζ under q
(t+1,s+1)
λ,ζ , denoted

by λ̄(t+1,s+1) and ζ̄ (t+1,s+1) , as

λ̄(t+1,s+1) =
a
(t+1,s+1)
λ

b
(t+1,s+1)
λ

(5.62)

=
aλ +N/2

bλ +
1
2
tr((D(β̄(t+1)) + ǫI)Λ(t+1,s)) + 1

2
µ(t+1,s)T (D(β̄(t+1)) + ǫI)µ(t+1,s)

,

(5.63)

ζ̄ (t+1,s+1) =
a
(t+1,s+1)
ζ

b
(t+1,s+1)
ζ

=
aζ +K/2

bζ +
1
2
tr (ATAΛ(t+1,s)) + 1

2
‖d−Aµ(t+1,s)‖2 . (5.64)

We similarly update the distribution q
(t+1,s+1)
m by substituting the joint posterior

(5.39) into (5.54). This gives

log q(t+1,s+1)
m (m) = −1

2
mT

(
ζ̄ (t+1,s+1)ATA+ λ̄(t+1,s+1)(D(β̄(t+1)) + ǫI)

)
m

+ ζ̄ (t+1,s+1)mTATd− Z ′
m
.

(5.65)

From (5.65), we recognize q
(t+1,s+1)
m as a Gaussian distribution, and, as before, we
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need only keep track of the parameters defining the distribution: its mean vector

µ(t+1,s+1) and covariance matrix Λ(t+1,s+1) which are given by

µ(t+1,s+1) =
(
ζ̄ (t+1,s+1)ATA+ λ̄(t+1,s+1)(D(β̄(t+1)) + ǫI)

)−1

ζ̄ (t+1,s+1)ATd (5.66)

and

Λ(t+1,s+1) =
(
ζ̄ (t+1,s+1)ATA + λ̄(t+1,s)(D(β̄(t+1)) + ǫI)

)−1

. (5.67)

Formulating our probabilistic model with conjugate priors, the Gamma prior for λ

and ζ and the Gaussian prior for m, caused the conditional posterior distributions

for these parameters to remain Gamma and Gaussian, respectively. For this reason,

the variational Bayesian approximations also remain as Gamma and Gaussian distri-

butions and are hence tractable, as only the parameters defining these distributions

need to be updated.

It is important to point out that we do not have to store or compute the entire

covariance matrix Λ(t,s) to update β̄(t) , λ(t,s), and ζ (t,s). The partial derivatives in

Equation (5.49) used to update β̄(t) only require elements of the covariance matrix

corresponding to the edges of the graph G, and these can be computed using the

techniques outlined in Chapter 4. Updating λ(t,s) and ζ (t,s) requires computing matrix

traces of the product of Λ(t,s) and another matrix. These traces can be computed

stochastically using a trace estimation algorithm due to Hutchinson [32]:

Algorithm 5.1 Hutchinson Trace Estimation Algorithm [32]

Let H be an N -by-N matrix. Specify number of samples M .

1. Draw M i.i.d. white noise vector samples: u
(i) ∼ Uniform({−1, 1}N).

2. Estimate tr(H) ≈ 1
M

∑M
i=1 u

(i)THu
(i).

It is straightforward to show that this estimate converges to the true matrix trace.
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The estimator of tr(H) converges to the true mean of uTHu which is

E[uTHu] = E[tr(uTHu)] (5.68)

= tr(HE[uuT ]) (5.69)

= tr(H), (5.70)

since E[uuT ] = I. Indeed, this algorithm will work with any zero-mean, unit-variance

white noise vector u (such as, e.g. u ∼ N (0, I)). It is important to note that we

neither need to compute nor store the matrix H explicitly to estimate its trace with

this algorithm; we only need to be able to apply H to a vector. For our case, H is

the product of Λ and another matrix (which we generically denote by R), where Λ is

the inverse of a posterior precision matrix. Then the action of H = RΛ on a vector u

can be computed by first solving the system Λ−1v = u for v, then taking RΛu = Rv.

Summary of VB algorithm

To summarize our approach, we give our variational Bayesian algorithm for jointly

estimating model and regularization parameters below:
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Algorithm 5.2 Variational Bayesian algorithm for estimating β∗ and approximate
marginal posteriors q∗λ, q

∗
ζ , q

∗
m

Initialize β̄(0),λ̄(0,0),ζ̄ (0,0).

Set t = 0. Iterate on t:

1. Set s = 0. Iterate on s:

a. Compute µ(t,s) via (5.66).

b. Compute matrix traces in (5.63) and (5.64) via Hutchinson algorithm

with Λ(t,s) as defined in (5.67).

c. Compute λ̄(t,s+1) via (5.63).

d. Compute ζ̄ (t,s+1) via (5.64).

2. Update λ̄(t+1) = λ̄(t,s+1), ζ̄ (t+1) = ζ̄ (t,s+1), µ(t+1) = µ(t,s).

3. Update Λ(t+1) to be defined as Λ(t,s) in (5.67).

4. Update β̄(t+1) via the M-step of the E-M algorithm of Chapter 4

(i.e. Steps 3-5 of Alg. 4.2 using λ̄(t+1), ζ̄ (t+1), µ(t+1), Λ(t+1)).

Upon termination, return:

λ̄∗ = λ̄(t+1), ζ̄∗ = ζ̄ (t+1),

a∗λ = aλ +N/2, b∗λ = aλ+N/2

λ̄∗
, a∗ζ = aζ +K/2, b∗ζ =

aζ+K/2

ζ̄∗
,

β∗ = β̄(t+1), µ∗ = µ(t+1), Λ∗ = Λ(t+1),

q∗λ = Gamma(a∗λ, b
∗
λ), q

∗
ζ = Gamma(a∗ζ , b

∗
ζ), q

∗
m
= N (µ∗,Λ∗).

5.2.3 Results

To obtain a single estimate of the image, we take the MAP estimate of the image from

its approximate marginal posterior distribution q∗
m
, which we refer to as its variational

Bayes MAP (or VB-MAP) estimate. We observe from (5.65) that q∗
m
(m) happens to

be equal to the conditional posterior p(m|d,β∗, λ̄∗, ζ̄∗) using the β∗, λ̄∗, ζ̄∗ obtained

from the VB algorithm. Hence the VB-MAP estimate of the image is equivalent to

its empirical Bayes MAP estimate discussed in Chapter 4 when using the parameters

β∗, λ̄∗, ζ̄∗.
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We validate our approach by applying our inference algorithm to synthetic datasets

arising from 2-D reflectivity models. We consider data simulated from two different

physical models: Kirchhoff modeling and acoustic wave-equation modeling. As in

Chapter 4, the purpose of using Kirchhoff modeled synthetic data is to test the

performance of our algorithm when used with a consistent forward model. The wave-

equation modeled data, on the other hand, additionally tests the ability of the Kirch-

hoff forward operator used in our algorithm to correctly model acoustic data. For

both cases, we defined the MRF so that each node shares an edge with all other nodes

within a radius of
√
2 nodes (to include diagonal connections in the MRF).

Kirchhoff modeled data

As in the previous chapter, the Kirchhoff data example is simulated from the Mar-

mousi model. The data are acquired from a set of 20 collocated surface sources

and receivers (resulting in 400 traces), with a 480 m spacing between receivers (and

sources), where the source wavelet is a 25 Hz Ricker wavelet. As before, we add zero-

mean white Gaussian noise to the data (with a standard deviation equal to 10% of the

maximum amplitude of the data). Note that this inverse crime test example is the

same as that in Chapter 4. In this example, the VB estimates of the marginal posteri-

ors were obtained with 3 (outer) t-iterations (to update β) and 10 (inner) s-iterations

(to update qλ,qζ ,qm) of the VB algorithm (see Algorithm 5.2), where each outer t-

iteration of VB took approximately 3 hours on a quad core IntelTM Xeon W3550

3.0GHz processor (hence the entire VB algorithm ran in approximately 9 hours). We

note that each t-iteration of the VB algorithm performs all 10 s-iterations, where each

s-iteration requires performing multiple LSM inversions to both compute the mean

model parameters for updating qm and to estimate the traces required to update qλ

and qζ via the Hutchinson algorithm. As in the previous chapter, the LSM inver-

sions are computed using the method of conjugate gradients (CG), which is run for

200 iterations per LSM. Each iteration of CG requires performing a single Kirchhoff

modeling followed by a single Kirchhoff migration, and, for this example, takes about

0.7 seconds per CG iteration (on the same machine).
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The imaging results are shown in Figures 5-3–5-10, where the edge strengths

obtained using our algorithm are shown in Figure 5-10 and the VB-MAP estimate of

the image is shown in Figure 5-9. For comparison, we show the unregularized LSM

image (Figure 5-4) along with the regularized LSM images obtained using a uniform

regularization scheme (setting each βij = 1) and different values for λ (fixing ζ to ζ̄∗)

(Figures 5-5–5-8).

As before, the unregularized image is heavily influenced by the noise in the data to

the point that the reflectors in the image are largely obscured by the noise. The effects

of noise are largely diminished in the uniformly regularized LSM images obtained

with setting λ to λ̄∗ or higher (Figures 5-7–5-8), but these same images significantly

smooth out the reflectors. This is consistent with our expectations: λ̄∗ is estimated in

conjunction with the β∗
ij, which are always between 0 and 1. Hence, using this λ̄∗ to

regularize while setting all the βij to 1, should result in over-smoothing. Using values

of λ smaller than λ̄∗ (with βij = 1) prevents over-smoothing, but fails to significantly

remove the effects of noise (Figures 5-5–5-6). The VB-MAP image (Figure 5-9), by

contrast, remains sharp near the reflectors while smoothing out the noise away from

the reflectors. For a quantitative comparison, we note that the correlation of the

VB-MAP image with the true image is significantly higher than the correlations of

the other images with the true image.

Figure 5-11 shows the VB approximations to the posterior distributions for λ and

ζ . We can interpret these approximate posteriors in terms of the quantities λ and

ζ represent. We find that the approximate posterior q∗ζ (ζ) slightly overestimates the

true inverse noise variance (which is ζ = 5.61 ·108 Pa−2). This is somewhat expected,

since the VB-MAP model may provide a better fit to the data than the true model

(and hence give a lower estimated noise variance). Indeed, the inverse variance of the

data residual resulting from the VB-MAP model is 5.81 · 108 Pa−2, which is much

closer to ζ̄∗ = 5.79 · 108 Pa−2 (the mean of q∗ζ ). As discussed in the beginning of this

chapter, λ scales the prior model variance. Hence, to interpret the value we obtain

for λ̄∗ (the mean of q∗λ), we can measure the empirical variance of the true model

and compare this to the average prior model variance predicted by λ̄∗ (which can be
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Figure 5-3: The true Marmousi reflectivity model.
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Figure 5-4: Unregularized LSM image (each βij = 0) using Kirchhoff modeled data.
Correlation with true image = 0.3682.
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Figure 5-5: Uniformly regularized LSM image (each βij = 1) with λ = 0.01λ̄∗ and
ζ = ζ̄∗ using Kirchhoff modeled data. Correlation with true image = 0.4364.
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Figure 5-6: Uniformly regularized LSM image (each βij = 1) with λ = 0.1λ̄∗ and
ζ = ζ̄∗ using Kirchhoff modeled data. Correlation with true image = 0.6282.
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Figure 5-7: Uniformly regularized LSM image (each βij = 1) with λ = λ̄∗ and ζ = ζ̄∗

using Kirchhoff modeled data. Correlation with true image = 0.6432.
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Figure 5-8: Uniformly regularized LSM image (each βij = 1) with λ = 10λ̄∗ and
ζ = ζ̄∗ using Kirchhoff modeled data. Correlation with true image = 0.4870.
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Figure 5-9: Variational Bayes MAP image using Kirchhoff modeled data. Correlation
with true image = 0.8218.
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Figure 5-10: Edge strengths β∗ estimated with VB using Kirchhoff modeled data.
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computed from the trace of the prior model covariance matrix defined by λ̄∗ and β∗).

We find that while λ̄∗ = 133.14 (note that the reflectivity model is dimensionless,

and hence so is λ), which yields an average prior model variance of 5.90 · 10−3, the

empirical variance of the true model is computed to be 5.66 · 10−3. Hence, the value

of λ̄∗ computed by VB slightly overestimates the true model variance.

Acoustic wave-equation modeled data

Since the wave-equation modeled data arises from a more complex physical model

than the Kirchhoff modeling operator used by our algorithm, we first examine the

behavior of our algorithm on the example of a simple three layer model before moving

on to the more complex Marmousi example.

For both examples, the synthetic data are acquired from a set of collocated surface

sources and receivers, with an even spacing of 240 m, where the source wavelet is a

25 Hz Ricker wavelet. We note that, due to the complex nature of this data, we used

smaller source and receiver spacings than what was used for the Kirchhoff modeled

data (where for that data the source and receiver spacing was 480 m). Even still,

this receiver spacing is far larger (and the dataset far sparser) than what is typically

used in Kirchhoff migration applications; hence the choice of regularization becomes

extremely significant in this case. We did not add random noise to the data, since the

residual between the predicted data (by Kirchhoff modeling) and the wave-equation

data already serves as a significant source of noise. For these examples, the VB

estimates of the marginal posteriors were again obtained with 3 (outer) t-iterations

(to update β) and 10 (inner) s-iterations (to update qλ,qζ ,qm) of the VB algorithm (see

Algorithm 5.2), where each outer t-iteration of VB took approximately 12 hours on

a quad core IntelTM Xeon W3550 3.0GHz processor (hence the entire VB algorithm

ran in approximately 36 hours). Again, the LSM inversions are computed using

the method of conjugate gradients (CG), which is run for 200 iterations per LSM.

Due to the increased number of sources and receivers, each iteration of CG costs

approximately 2.8 seconds (on the same machine).
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Figure 5-11: The variational Bayesian approximations to the posterior distributions
for the parameters scaling the inverse variances of the (a) model λ and (b) noise ζ ,
using Kirchhoff modeled data.
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Three layer example

The results for the three layer example are shown in Figures 5-12–5-22. The true

reflectivity model is depicted in Figure 5-12, and again we show the unregularized

LSM image (Figure 5-13) along with the uniformly regularized images for different

values of λ (Figures 5-14–5-17). The VB-MAP estimate of the image is shown in

Figure 5-18, and the corresponding edge strengths β∗ are shown in Figure 5-19. As

expected, the unregularized image contains a heavy amount of noise due to both the

limited acquisition and poor modeling effects. The regularized LSM images (obtained

with βij = 1) significantly improve upon this result. We find that while a significant

amount of noise remains in the image obtained with λ = λ̄∗, the noise is greatly

reduced when a value of λ = 10λ̄∗ is used in the regularization (Figure 5-18). This is

a somewhat surprising result because, although λ̄∗ was estimated in conjunction with

β∗, we would expect that, since β∗
ij is always between 0 and 1, regularizing with λ̄∗

and ζ̄∗ and setting all the βij to 1 will result in over-smoothing the image. Indeed,

for the Kirchhoff modeled data example, this choice of parameters did result in over-

smoothing in the regularized LSM image (Figure 5-7). Hence, from a purely “results-

oriented” perspective, one would expect a higher value of λ̄∗ than that obtained.

This is also seen in the VB-MAP image (Figure 5-18), where the noise has only

been slightly reduced from the unregularized LSM image, once again suggesting that

the value of λ̄∗ is too low. The estimated edge strengths (Figure 5-19), however, are

aligned with our expectations. We see that the edge strengths go to 0 above and

below the reflectors, while mostly remaining near 1 elsewhere in the image (however,

we do also see the effects of the noise on the edge strengths). Hence, using these edge

strengths along with a higher value for λ should hopefully give a better image. As

noted earlier, the resulting image is the empirical Bayes MAP estimate of the image

with λ fixed to a higher value. We experiment with successively higher values of λ

(fixing β = β∗ and ζ = ζ̄∗) in Figures 5-20, 5-21, and 5-22. Indeed, we see that as

λ is made larger, the effects of the noise are greatly reduced, but the edge strengths

β∗ preserve the sharpness at the reflectors. At λ = 103λ̄∗ (Figure 5-22), the greatest

improvement is seen, and the correlation is highest for this image.
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The VB approximations to the posterior marginals for λ and ζ are shown in

Figure 5-23. Here we find that VB estimates the inverse noise variance at ζ̄∗ =

2.15 · 1011 Pa−2, whereas the inverse variance of the data residuals found with the

true model and MAP-VB model are ζ = 1.14 · 1011 Pa−2 and ζ = 2.16 · 1011 Pa−2,

respectively. Hence, as expected, the estimated inverse noise variance matches well

with the inverse variance of the data residual computed with the VB-MAP model

(but the “true” inverse noise variance has been significantly overestimated). The VB

estimate of λ was found to be λ̄∗ = 4.05 · 103, which results in an average prior

model variance of 7.66 · 10−4 (again, found by computing the trace of the prior model

covariance matrix given by λ̄∗ and β∗). By comparison, the empirical variance of

the true model is 2.64 · 10−4. Hence the true model variance is, as our imaging

results seemed to indicate, significantly overestimated (meaning λ is significantly

underestimated).

Marmousi model example

The second example we consider is the Marmousi model, where the wave-equation

data are generated using the same acquisition geometry as in the three layer ex-

ample. The complex velocity structure of the Marmousi model makes this exam-

ple particularly challenging for Kirchhoff-based methods (including LSM), and often

a wave-equation based imaging method, such as reverse-time migration (RTM) or

RTM-based LSM, is required to correctly image deeper sections of the model [25].

We do not expect that the hierarchical Bayesian version of Kirchhoff-based LSM will

be able to remedy this problem, since this is, at heart, a modeling issue and not an in-

version issue. Nevertheless, the reflectors in the shallow part of the model can still be

described by Kirchhoff modeling, and it is of interest to determine the improvements

we might be able to gain with our methodology.

The results for the Marmousi example are shown in Figures 5-24–5-33. The un-

regularized LSM image is shown in Figure 5-24, and the uniformly regularized LSM

images for different values of λ are displayed in Figures 5-25–5-28. Once again, we

observe a similar issue with the value estimated for λ∗. The noisy unregularized LSM
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Figure 5-12: The true reflectivity for the three layer model.
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Figure 5-13: Unregularized LSM image (each βij = 0) using wave-equation modeled
data (three layer model). Correlation with true image = 0.0824.
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Figure 5-14: Uniformly regularized LSM image (each βij = 1) with λ = λ̄∗ and ζ = ζ̄∗

using wave-equation modeled data (three layer model). Correlation with true image
= 0.7226.
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Figure 5-15: Uniformly regularized LSM image (each βij = 1) with λ = 10λ̄∗ and
ζ = ζ̄∗ using wave-equation modeled data (three layer model). Correlation with true
image = 0.8309.
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Figure 5-16: Uniformly regularized LSM image (each βij = 1) with λ = 102λ̄∗ and
ζ = ζ̄∗ using wave-equation modeled data (three layer model). Correlation with true
image = 0.7381.
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Figure 5-17: Uniformly regularized LSM image (each βij = 1) with λ = 103λ̄∗ and
ζ = ζ̄∗ using wave-equation modeled data (three layer model). Correlation with true
image = 0.4922.
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Figure 5-18: Variational Bayes MAP image using wave-equation modeled data (three
layer model). Correlation with true image = 0.2291.
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Figure 5-19: Edge strengths β∗ estimated with VB using wave-equation modeled data
(three layer model).
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Figure 5-20: Empirical Bayes MAP image obtained with β = β∗, λ = 10λ̄∗, and
ζ = ζ̄∗, using wave-equation modeled data (three layer model). Correlation with true
image = 0.7472.
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Figure 5-21: Empirical Bayes MAP image obtained with β = β∗, λ = 102λ̄∗, and
ζ = ζ̄∗, using wave-equation modeled data (three layer model). Correlation with true
image = 0.8724.
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Figure 5-22: Empirical Bayes MAP image obtained with β = β∗, λ = 103λ̄∗, and
ζ = ζ̄∗, using wave-equation modeled data (three layer model). Correlation with true
image = 0.9349.
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Figure 5-23: The variational Bayesian approximations to the posterior distributions
for the parameters scaling the inverse variances of the (a) model λ and (b) noise ζ ,
using wave-equation modeled data (three layer model).
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image is improved upon in the regularized LSM images (with βij = 1), but the image

obtained with λ = λ̄∗ (Figure 5-25) still contains a significant noise component. Set-

ting λ to 102λ̄∗ or higher largely removes the effects of the noise (Figures 5-27–5-28),

yet at the cost of over-smoothing the reflectors. Again, our expectation is that setting

λ = λ̄∗ should sufficiently remove the noise from the image, and we would thus expect

a higher value for λ̄∗.

This issue can again be seen in the VB-MAP image of Figure 5-29: indeed, it

is difficult to observe any qualitative difference between the VB-MAP image and

the unregularized LSM image of Figure 5-24. This again suggests that the value

for λ̄∗ is too low. The estimated edge strengths β∗ are shown in Figure 5-30. We

see that, for those reflectors that appeared in the LSM images (i.e. those reflectors

that the data were informative about from the perspective of the Kirchhoff modeling

operator), the edge strengths correctly go to 0 near the reflectors; elsewhere in the

model the edge strengths are high, although the effect of the noise can also be seen in

the edge strengths (particularly in the deeper part of the model). As with the three

layer example, this suggests that using these edge strengths with a higher value for

λ should yield a better image. We compute these images in Figures 5-31–5-33 using

increasingly higher values of λ. When λ is set to 102λ̄∗ and 103λ̄∗ we begin to see

some qualitative improvements in the image: the noise is smoothed out, yet some

sharpness is preserved in the reflectors captured by β∗. We note that the correlations

of the images with the true model, for all the images obtained in this example, are

very low (< 0.1). This is because, no matter what kind of regularization scheme is

used, the images obtained only correctly estimate a small portion of the reflectors,

since much of the acoustic data is not adequately described by the Kirchhoff operator.

As such, even though we notice that the correlations do, for the most part, increase

when we see qualitative improvements in the image, they are less informative for this

example.

The approximate posterior marginals q∗λ and q∗ζ are shown in Figure 5-34. Here,

VB estimates the inverse noise variance at ζ̄∗ = 1.254 ·1010 Pa−2, whereas the inverse

variance of the data residuals found with the true model and MAP-VB model are
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ζ = 9.858 · 108 Pa−2 and ζ = 1.269 · 1010 Pa−2, respectively. Hence, the estimated

inverse noise variance greatly overestimates the “true” inverse noise variance (i.e. the

inverse variance of the data residual with the true model) and, again, is far more

consistent with the inverse variance of the residual the VB-MAP model. The VB

estimate of λ was found to be λ̄∗ = 150.97, which results in an average prior model

variance of 1.21 · 10−2. By comparison, the empirical variance of the true model

is 5.66 · 10−3. Hence, again, the true model variance is significantly overestimated,

meaning λ is underestimated by VB.

The question remains of why the VB estimate λ̄∗ is, from both a results-oriented

perspective and from comparison with the true model variance, significantly lower

than expected. Alternatively, we can ask why the estimated inverse noise variance

parameter ζ̄∗ is too high, since it is the ratio λ̄∗/ζ̄∗ that ultimately determines the de-

gree of regularization in LSM. We note that this only occurred with the wave-equation

modeled data: the estimates of λ̄∗ and ζ̄∗ for the Kirchhoff modeled data example

yielded the expected results. This is likely because, for the wave-equation data, the

residual is not well-modeled as zero-mean white noise. Indeed, the Kirchhoff operator

models the single-scattering from the reflectors, while the acoustic wave-equation data

contain information from the full wavefield, including multiple-scattering, refracted

waves, and other coherent effects, which will remain in the residual after subtracting

the Kirchhoff modeled data from the acoustic data. This correlation in the residual

may lead to very strange models, such as the unregularized LSM images above, that

fit the data considerably better than the true model. This data residual using such

models may have a significantly lower variance than that of the data residual found

with the true model, leading to a larger value being estimated for the inverse noise

parameter, ζ̄∗. Indeed, we find that the unregularized LSM image gives a data resid-

ual with a variance roughly 1-2 orders of magnitude lower than the variance of the

residual found using the true model. This would result in ζ̄∗ being estimated at a

significantly higher value than expected, which is likely why we were able to compen-

sate for this by increasing λ. This is no fault of the hierarchical Bayesian framework,

but rather, as mentioned previously, a problem with the modeling. The real solution
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is to use a more realistic forward modeling operator (such as the Born wave-equation

operator [31], for example) to better describe the data.

5.3 Conclusions

Finding the optimal regularization scheme in an inverse problem is an open research

question which we have attempted to address. In the first part of this chapter we

analytically investigated the meaning of the regularization parameters by considering

the covariance function that arises in the limiting case of a continuous model. This

analysis allows one to heuristically set the regularization parameters based on a de-

sired correlation length and model variance (on the discrete grid). In the second part

of this chapter, we attempt to estimate an optimal regularization scheme through the

mathematical framework of Bayesian inference. In particular, we applied hierarchical

Bayesian analysis to jointly estimate the model and regularization parameters. We

utilized variational Bayesian methods to approximate a solution to the hierarchical

Bayesian problem, and showed the application of this methodology in the context of

least-squares migration. Inferring the regularization parameters allowed for significant

improvements in the inferred seismic image, particularly for the Kirchhoff modeled

data examples, where we are able to remove the effects of noise while still preserving

sharpness at the reflectors in the image. The acoustic wave-equation modeled data

examples proved more challenging due to the limited ability of the Kirchhoff modeling

operator used in the inversion to fully describe the data; however we were still able to

make similar qualitative improvements to the inferred images in the sections of the

model that were well-described by the data. As was the case in the previous chapter,

the methodology developed herein is applicable to a broad range of linear inverse

problems involving spatially-varying model parameter statistics and is not limited to

the seismic imaging problem.
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Figure 5-24: Unregularized LSM image (each βij = 0) using wave-equation modeled
data (Marmousi model). Correlation with true image = 0.0520.
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Figure 5-25: Uniformly regularized LSM image (each βij = 1) with λ = λ̄∗ and ζ = ζ̄∗

using wave-equation modeled data (Marmousi model). Correlation with true image
= 0.0757.
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Figure 5-26: Uniformly regularized LSM image (each βij = 1) with λ = 10λ̄∗ and
ζ = ζ̄∗ using wave-equation modeled data (Marmousi model). Correlation with true
image = 0.0888.
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Figure 5-27: Uniformly regularized LSM image (each βij = 1) with λ = 102λ̄∗ and
ζ = ζ̄∗ using wave-equation modeled data (Marmousi model). Correlation with true
image = 0.0728.
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Figure 5-28: Uniformly regularized LSM image (each βij = 1) with λ = 103λ̄∗ and
ζ = ζ̄∗ using wave-equation modeled data (Marmousi model). Correlation with true
image = 0.0268.
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Figure 5-29: Variational Bayes MAP image using wave-equation modeled data (Mar-
mousi model). Correlation with true image = 0.0557.
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Figure 5-30: Edge strengths β∗ estimated with VB using wave-equation modeled data
(Marmousi model).
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Figure 5-31: Empirical Bayes MAP image obtained with β = β∗, λ = 10λ̄∗, and
ζ = ζ̄∗, using wave-equation modeled data (Marmousi model). Correlation with true
image = 0.0672.
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Figure 5-32: Empirical Bayes MAP image obtained with β = β∗, λ = 102λ̄∗, and
ζ = ζ̄∗, using wave-equation modeled data (Marmousi model). Correlation with true
image = 0.0828.
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Figure 5-33: Empirical Bayes MAP image obtained with β = β∗, λ = 103λ̄∗, and
ζ = ζ̄∗, using wave-equation modeled data (Marmousi model). Correlation with true
image = 0.0762.
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Figure 5-34: The variational Bayesian approximations to the posterior distributions
for the parameters scaling the inverse variances of the (a) model λ and (b) noise ζ ,
using wave-equation modeled data (Marmousi model).
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Chapter 6

Hierarchical Bayesian Time-Lapse

Seismic Processing

6.1 Summary

In this chapter, we describe a methodology for inferring the change in subsurface

model parameters from time-lapse seismic data within a hierarchical Bayesian frame-

work, where the time-lapse and baseline surveys may have different acquisition geome-

tries. Conventional methods for processing time-lapse data with differing acquisition

geometries involve inverting the baseline and time-lapse datasets separately and sub-

tracting the inverted models; however, such methods do not correctly account for

differing model uncertainty between surveys due to differences in illumination and

observational noise. Within the hierarchical Bayesian setting, the solution to the

time-lapse inverse problem is given by the marginal maximum a posteriori (MAP)

estimate of the time-lapse change, which seeks the most probable time-lapse change

over all probable baseline models described by the data. We present a framework for

computing the marginal MAP estimate using the expectation-maximization (E-M)

algorithm, which iteratively performs sequential estimation of the time-lapse change

and the baseline model. Our algorithm is validated numerically on synthetic data

simulated from the Marmousi model (with a time-lapse perturbation), where the

hierarchical Bayesian estimates significantly outperform conventional time-lapse in-
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version results.

6.2 Introduction

Monitoring changes in the subsurface geophysical properties of a field over time can

provide valuable information for, among other things, reservoir modeling and produc-

tion planning of the field. Repeated time-lapse seismic surveys are commonly used

for this purpose, but conventional methods for processing such surveys suffer from a

number of limitations. One conventional method for inverting time-lapse seismic data

involves subtracting repeated datasets and inverting the differenced data to obtain

the changes in the subsurface model parameters [8, 30]; however, the validity of this

method requires both that the seismic data depend linearly on the subsurface model

and that the repeated datasets have identical acquisition geometries. A recent advance

known as double-difference inversion [81] does not require this linearity for correct-

ness but still requires identical acquisition geometries. However, achieving identical

acquisitions in sequential surveys can be challenging. Furthermore, time-lapse surveys

may differ significantly over time due to the availability of new acquisition technolo-

gies. In the case of differing acquisitions, conventional time-lapse inversion involves

inverting the datasets separately and subtracting the inverted models to estimate the

time-lapse change. However, this method (model subtraction) often performs quite

poorly due to differences in illumination and observational noise. It is also quite

possible that the time-lapse survey contains information about the baseline model

that was not captured by the baseline survey. Ayeni and Biondi [2] describe a frame-

work for target-oriented linear least-squares inversion of multiple time-lapse datasets

with differing acquisitions, but their methodology only applies to the case when the

data depend linearly on the model and requires explicit computation and storage of

a Hessian matrix, which is only feasible for a small target region.

In this chapter, we describe a methodology for estimating the time-lapse change

in the model parameters from both datasets simultaneously in a hierarchical Bayesian

setting, where we neither require that the data depend linearly on the model nor that
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the datasets have similar acquisition. In particular, we solve the Bayesian inference

problem using a gradient-based implementation of the expectation-maximization al-

gorithm, which iterates between subsequent updates to the background model and

time-lapse change, ultimately yielding an estimate of the best time-lapse change over

all probable baseline models described by the data.

6.3 Methodology and Bayesian Framework

We consider the case where we have two time-lapse seismic surveys with different

source-receiver geometries, a baseline survey yielding data vector d0 and a monitor

survey yielding d1, and we wish to infer the time-lapse change in some subsurface

model parameters m from d0 and d1. Here m may, for example, be the P-wave

propagation velocity or the reflectivity of the medium. We denote the baseline model

by m0, the time-lapse change by ∆m, and denote by F0 and F1 the operators relating

the model parameters to the baseline and monitor datasets, respectively. Then we

can give the data as

d0 = F0(m0) + n0 (6.1)

and

d1 = F1(m0 +∆m) + n1, (6.2)

where n0 and n1 are noise terms.

The Bayesian inference setting provides a useful and mathematically rigorous

framework within which the problem of inferring ∆m can be cast. Within the

Bayesian context, both the model parameters m0, ∆m and the observed data d0,

d1 are viewed as random quantities defined by a probabilistic model. In particular,

we let m0 and ∆m be independent Gaussian random vectors with prior means µ0 and

µ∆ and prior covariance matrices C0 and C∆. We relate the prior covariance matrices

to prior assumptions about the spatial statistics of m0 and ∆m by specifying them

169



via the same model for the prior precision matrix described in previous chapters:

Ci = (λi(D + ǫiI))
−1 i = 0,∆, (6.3)

where D is a differencing matrix and λi and ǫi are parameters governing the prior

variance and correlation length of spatial variations (cf. Chapter 5). We arrive at a

probabilistic model for the data by modeling n0 and n1 as zero-mean Gaussian noise

(independent of the model) with covariance matrices Σ0 and Σ1, respectively, where

Σi = σiI. Bayes’ rule then gives the joint posterior distribution for m0 and ∆m given

the data:

p(m0,∆m|d0,d1) ∝ p(m0,∆m)p(d0,d1|m0,∆m)

∝ exp

{
−1

2

[
‖m0 − µ0‖2C−1

0
+ ‖∆m− µ∆‖2C−1

∆

+ ‖d0 − F0(m0)‖2Σ−1
0

+ ‖d1 − F1(m0 +∆m)‖2Σ−1
1

]}

(6.4)

where we have defined the notation ‖x‖2W , xTWx. We note that the joint posterior

for (m0,∆m) is not Gaussian when either F0 or F1 is non-linear.

In order to infer the time-lapse change ∆m with an unknown baseline model m0,

we seek the hierarchical Bayesian maximum a posteriori (MAP) estimate for ∆m.

This requires marginalization of the joint posterior distribution (6.4) over the space

of all baseline models M0 to obtain the marginal MAP solution:

∆mMAP = argmax
∆m

log

∫

M0

p(m0,∆m|d0,d1)dm0. (6.5)

We note that this marginal MAP approach is mathematically quite different from the

joint inversion approach: whereas the joint inversion approach would seek the pair

(m0,∆m) that maximizes the joint posterior distribution (i.e. the joint MAP), the

marginal MAP approach seeks to find the single best choice for ∆m over all probable

choices for the baseline model m0. In the special case where F0 and F1 are linear,
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the posterior distribution is Gaussian, and hence the joint MAP solution found by

joint inversion of the linear problem will happen to coincide with the marginal MAP

solution of (6.5); however, this is not true for general F0 and F1. Furthermore, since

the posterior distribution is, in general, not Gaussian, the integral in (6.5) might not

be analytically tractable. Rather than attempting to numerically explore the high-

dimensional model space M0, we turn to the expectation-maximization algorithm to

iteratively solve the marginal MAP problem.

6.3.1 The E-M Algorithm for Time-Lapse Inversion

The E-M algorithm [17, 46] solves maximum likelihood or MAP estimation problems

when a subset of the data relevant to the parameter estimation is unobserved (re-

ferred to as latent variables). In the time-lapse problem considered here, we view the

baseline model m0 as the latent variables. E-M can be thought of as a coordinate

ascent algorithm for solving the marginal MAP optimization problem (6.5), whereby

alternating estimations are performed between the latent variables and the parame-

ters of interest ∆m. Specifically, the E-M algorithm iteratively updates our estimate

of the time-lapse model ∆̂m(t) according to:

∆̂m(t+1) = argmax
∆m

{
log p(∆m) + Ep(m0|d0,d1,∆̂m(t)) [log p(m0,d0,d1|∆m)]

}
, (6.6)

where Ep denotes an expectation taken with respect to a probability distribution p,

which in this case is the posterior distribution of m0 conditioned on the previous

iterate ∆̂m(t). Plugging in for probability distributions, we find the E-M algorithm

updates ∆̂m(t) by minimizing a cost function φ(t) given by

φ(t)(∆m) = ‖∆m− µ∆‖2C−1
∆

+ Ep(m0|d0,d1,∆̂m(t))

[
‖d1 − F1(m0 +∆m)‖2Σ−1

1

]
. (6.7)

We can perform the above minimization using a first-order gradient-based method,

such as gradient descent or non-linear conjugate gradients [27], where the gradient
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∇φ(t) is given by

∇φ(t)(∆m) = 2C−1
∆ (∆m− µ∆)

+ 2Ep(m0|d0,d1,∆̂m(t))
[
AT1 (m0 +∆m)Σ−1

1 (d1 − F1(m0 +∆m))
]
,

(6.8)

where A1(m0 +∆m) is the Jacobian of F1 evaluated at m0 +∆m.

In order to compute the expected values in (6.7) and (6.8), we would need to

utilize sampling techniques to draw samples from p(m0|d0,d1, ∆̂m(t)). At the cost of

replacing the marginal MAP solution with the joint MAP solution, a computation-

ally cheaper option would be to approximate φ(t)(∆m) by replacing the conditional

expectation of the data misfit with its value at the conditional MAP estimate of m0,

so that the E-M cost function is approximated by

φ(t)(∆m) ≈ ‖∆m− µ∆‖2C−1
∆

+
∥∥d1 − F1

(
m0MAP|∆̂m(t),d0,d1

+∆m
)∥∥2

Σ−1
1

(6.9)

and its gradient is

∇φ(t)(∆m) ≈ 2C−1
∆ (∆m− µ∆)

+ 2AT1 (m0MAP|∆̂m(t),d0,d1
+∆m)Σ−1

1 (d1 − F1(m0MAP|∆̂m(t),d0,d1
+∆m)),

(6.10)

where

m0MAP|∆̂m(t),d0,d1
= argmin

m0

‖m0 − µ0‖2C−1
0

+ ‖d0 − F0(m0)‖2Σ−1
0

+ ‖d1 − F1(m0 + ∆̂m(t))‖2
Σ−1

1
.

(6.11)

To summarize, our implementation of the E-M algorithm for the time-lapse inversion

problem is as follows:
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Algorithm 6.1 E-M Algorithm for Time-Lapse Inversion

Initialize ∆̂m(0). Set t = 0. Iterate on t:

1. Estimate Ep(m0|d0,d1,∆̂m(t))[‖d1 − F1(m0 +∆m)‖2
Σ−1

1

], the expected value of the

data misfit in (6.7), and its gradient in (6.8) by either:

a. Sampling the baseline model from p
(
m0|d0,d1, ∆̂m(t)

)
, or

b. Minimizing (6.11) to obtain the MAP estimate of the baseline model

and using the approximations of (6.9) and (6.10).

2. Update ∆̂m(t+1) = argmin∆m φ(t)(∆m).

6.4 Numerical Results

We demonstrate our results numerically on a simple example involving the Marmousi

model. As a test case, we consider the seismic imaging problem, where the model

parameters (m0,∆m) are reflectivity (with the smooth part of the velocity model

known), and a localized time-lapse change in the model is introduced; the true baseline

model and time-lapse changes are shown in Figure 6-1. We take F0 and F1 to be

the Kirchhoff modeling operators for the source-receiver geometries in d0 and d1,

respectively. (We note that since this example is for a linear problem, the joint

and marginal MAP solutions coincide.) The synthetic datasets are inverse crime

data (plus noise) generated from an array of surface receivers responding to a single

20 Hz Ricker source at the surface, where the horizontal position of the source is

significantly shifted from xs0 = 3.4 km in the baseline survey to xs1 = 7.2 km in the

monitor survey.

Figure 6-2 shows the results of the conventional inversion for the time-lapse change

found by separately inverting the two datasets and subtracting the inverted models.

Figure 6-3 shows the marginal MAP estimate for the time-lapse change and the

expected baseline model obtained after 20 iterations of the E-M algorithm. In order

to remove the effects of the additive noise and better capture true change in the model,

we thresholded the estimates of the time-lapse changes above the noise level. Since

the source locations between the two surveys are so far apart, the surveys illuminate
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Figure 6-1: (A) True baseline reflectivity model and (B) time-lapse change.
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Figure 6-2: Conventional inversion results for the baseline model and time-lapse
change. (A,B) d0 and d1 are inverted separately to estimate m0 and m0 + ∆m.
(C) The time-lapse change is estimated by subtracting the inversion results and (D)
thresholded to remove the effects of noise.
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Figure 6-3: Inversion results obtained with our hierarchical Bayesian framework.
(A) The marginal MAP solution ∆̂m(t) after 20 E-M iterations which is then (B)
thresholded to remove the effects of noise. (C) The E-M estimate of the baseline
model E[m0|∆̂m(t),d0,d1].
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different (but overlapping) sections of the model domain (as seen in Figure 6-2(A,B)).

This results in sections of the baseline model appearing in the time-lapse estimate

obtained from model subtraction, as is evident from both Figures 6-2(C) and 6-2(D).

In contrast, even prior to thresholding, we see that the structure of the baseline model

does not appear in the marginal MAP estimate obtained from the E-M algorithm in

Figure 6-3(A) (indeed the noise is truly just noise), and, after thresholding (Figure

6-3(B)), the time-lapse change has been completely isolated from the background.

The E-M algorithm also gives the expected baseline model (Figure 6-3(C)), where we

see far better illumination since both datasets are used to compute this model.

6.5 Conclusions

In this chapter, we applied the hierarchical Bayesian framework to the problem of es-

timating the change in subsurface model parameters from time-lapse seismic datasets

with differing acquisition geometries. In particular, our gradient-based implementa-

tion of the expectation-maximization algorithm solved the marginal MAP problem

for the time-lapse change model by performing subsequent updates to the time-lapse

change and baseline models. As verified by our numerical results, the marginal MAP

estimate for the time-lapse change did not contain structure from the baseline model,

and, also important, the estimated baseline model is constrained by both datasets.

While we provided a numerical example for the time-lapse seismic imaging of reflec-

tivity, the framework and algorithm detailed in this chapter are general and can be

applied to other time-lapse inverse problems, without any requirement on the linearity

of the forward operators F0 and F1. Although our method is computationally inten-

sive (each iteration of the E-M algorithm requires solving two inverse problems), we

find that the algorithm performs well with relatively few iterations; hence, it should

be feasible to run this algorithm if the cost of a single inversion is reasonable. A

straight-forward extension of this work would be to the case of inferring a series of

time-lapse changes in the model from multiple monitor datasets (rather than just

one).
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Chapter 7

Conclusions

In this thesis, we explored the application of Bayesian inference methods to different

geophysical inverse problems involving seismic data. Of particular focus was the

question of how to appropriately introduce regularization in an inverse problem where

the smoothness properties of the underlying earth model may vary with space. This

question can be equivalently posed as how to pick an appropriate prior distribution

in the Bayesian inference setting. To address this question, we defined the prior

distribution on the model via a Markov random field and parameterized the edges

of the MRF with edge strengths that capture the local smoothness properties of

the prior. We explored the utility of this representation through its application to

different geophysical inverse problems. Below, we summarize the main contributions

and conclusions of these studies.

7.1 Summary of Main Contributions

Chapter 3 serves as our first study into the application of Bayesian inference and

probabilistic graphical models to a geophysical inverse problem. Here we apply a

non-hierarchical Bayesian inference framework (where the edge strengths of the MRF

were predetermined) to the problem of characterizing the fractured nature of a reser-

voir from seismic data. The Bayesian setting allows for combining scattering data

and amplitude measures that contain information about anisotropy under a single

179



inversion framework, thereby allowing for the inversion of fracture properties under

a larger physical regime than would be attainable using only one of these data types.

We further show the capability of the edge strengths to both enforce smoothness

in the estimates of the fracture properties and capture a priori information about

geological features in the model, such as a discontinuity arising from a fault whose

location is known.

In Chapter 4, we address the question of how to optimize the edge strengths of

the MRF in the context of the seismic imaging problem, where the seismic image,

consisting of sharp coherent reflectors, naturally tends to exhibit spatially-varying

smoothness properties. We formulate the seismic imaging problem within the hier-

archical Bayesian framework, treating the edge strengths as random variables to be

inferred from the data. The problem of inferring these edge strengths presents sig-

nificant computational challenges: the cost of evaluating the posterior distribution

seemed initially to create a computational bottleneck that prevented our approach

from being scalable to large models. The use of the expectation-maximization (E-M)

algorithm along with the approximate methods detailed in Chapter 4 was a break-

through in this regard, allowing the scalability of our method to more realistic-sized

models. We obtain the marginal MAP estimate of the edge strengths via the E-

M algorithm, thereby resulting in a prior distribution on the model that correctly

captures its spatial smoothness properties. This allows for mitigating the effects of

limited acquisition and observational noise in the estimated image while still preserv-

ing sharpness at the reflectors.

Chapter 5 extends the work of Chapter 4 by providing a methodology for choosing

the remaining parameters (other than the edge strengths) that define the prior distri-

bution for the model. Here, we first derive the relationship between these parameters

and the prior model covariance and then extend the hierarchical Bayesian framework

of Chapter 4 to include these additional parameters. Our derivation provides insight

into these parameters and may provide guidance in selecting them in the future. We

note that while the work of Chapters 4-5 is presented within the context of the seis-

mic imaging problem, the methodology developed in these chapters can be applied
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to other linear inverse problems where the model parameters exhibit spatially (or

temporally) varying smoothness properties.

In Chapter 6, we explore the application of the hierarchical Bayesian framework to

the problem of time-lapse seismic inversion, where the objective is to infer the change

in the subsurface model parameters over time by taking repeated seismic surveys. We

consider the case where the surveys are taken with different acquisition geometries

causing conventional methods for time-lapse inversion to perform poorly. We develop

a novel and computationally tractable approach to the time-lapse inversion problem

by applying the E-M algorithm to obtain the marginal MAP estimate of the time-lapse

change in the model parameters. In contrast to the results obtained by conventional

methods, the marginal MAP estimate for the time-lapse change does not contain

structure from the background model, and, furthermore, the background model we

estimate is based on information in both the baseline and monitor surveys.

7.2 Directions for Future Work

Here we suggest some avenues for future work stemming from the research presented

in this thesis.

Alternative Parameterizations

One direction for future work is to explore alternative ways to parameterize the prior

on the model within the hierarchical Bayesian setting. While we have shown through

various examples that our choice of parameterization using edge strengths is able to

capture the spatially-varying smoothness properties of the model, this choice is by no

means unique, and it may be possible to improve on our results via alternative param-

eterizations of the prior. Additionally, throughout this thesis the number of model

parameters has been a fixed input to the inference procedure, however the choice of

how to discretize the earth model (i.e. what size of grid cells should be used) is non-

trivial. In our case, the grid cell size was chosen relative to the seismic wavelength in

the medium (as this determines the scale of the heterogeneities that scatter the seismic
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wavefield), however it is possible to optimize this via Bayesian model selection (some-

times referred to as transdimensional Bayesian inference). Transdimensional Bayesian

methods have been previously applied to geophysical inverse problems [9, 43, 44].

A promising approach developed by Bodin [6] utilizes a transdimensional Bayesian

method using Voronoi cells with mobile geometry, shape, and number to parameterize

the model. Extending our methodology to incorporate these generalizations is hence

another fruitful direction for future research. Finally, a gridded model parameteriza-

tion may not be the most optimal for the seismic imaging problem. Considering the

shape of the reflectors commonly encountered in seismic imaging, one may wish to

instead parameterize the model using basis functions defined by the reflectors rather

than individual grid cells. Here again, Bayesian model selection could be utilized to

infer the number of reflectors in addition to the parameters defining each reflector.

Generalization to Non-linear Problems

The methodology presented in Chapters 4-5 for estimating the edge strengths from

the data was formulated in the context of the linear inverse problem of seismic imaging

when the background velocity model is known. In cases where the velocity model is

not given, it must first be estimated from the seismic data, where the problem of

estimating these propagation velocities (along with a density model) from the full

seismic waveforms is referred to as full-waveform inversion (FWI) [10, 76]. Typically

a smoothed version of the velocity model is obtained and then used to solve the

linear seismic imaging problem to resolve the discontinuities in the image. However,

it would be of interest to be able to apply our methodology for estimating the edge

strengths directly to the FWI problem, in hopes of better resolving discontinuities and

sharp contrasts in the velocity model (and thereby obviating the need to afterwards

solve the imaging problem). FWI, however, is a highly non-linear inverse problem,

and thus our algorithm and methodology for estimating the edge strengths is not

immediately applicable. Hence, another interesting and useful direction for future

work is extending the methodology and algorithms from Chapters 4-5 to non-linear

inverse problems.
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Time-lapse Seismic Inversion with Multiple Monitor Surveys

A straight-forward extension of the work of Chapter 6 would address the case where

one is interested in monitoring the changes in the subsurface as a function of time.

Here, in addition to a baseline seismic survey, the data would consist of multiple

monitor surveys (with possibly differing acquisition geometries) taken at regular time

intervals over a prolonged period (e.g. a seismic survey might be performed every day

over the course of one year). Standard approaches from Bayesian inference for time-

series analysis, such as hidden Markov models, can be used to extend the hierarchical

Bayesian methodology of Chapter 6 to the multiple survey case.

Dynamic Survey Design and Optimization

In the context of the above described time-lapse seismic inversion problem with mul-

tiple surveys, since the seismic surveys are repeatedly taken over time, the question

arises of how best to design the next survey (i.e. which acquisition geometry should

be used). In particular, if the goal is to monitor and track changes in the subsurface,

the survey designer may wish to optimize the subsequent survey geometry to best

infer the time-evolving change in the subsurface. This dynamic optimization problem

provides a further useful extension of the work of Chapter 6.

7.3 Final Remarks

The research presented in this thesis is among a small, but growing number of stud-

ies exploring hierarchical Bayesian approaches in geophysics [7, 9, 43, 44, 45]. The

results of our research are encouraging and indicate promising directions for further

application of Bayesian inference in geophysical inverse problems. We note that one

downside of Bayesian approaches is that they typically involve more computation

than standard inversion methods require. For example, at the heart of both the E-M

and variational Bayes algorithms applied to LSM (Chapters 4-5) are the alternating

updates between the image and edge strengths, where each image update step is es-

183



sentially a standard LSM inversion. While our research has explored ways to exploit

multiple LSM runs to solve a Bayesian inference problem, in industry scale applica-

tions even a single least-squares migration is often considered to be too expensive for

practical use [16]. Nevertheless, despite the increased cost, the improvements made

to standard inversion methods by hierarchical Bayesian approaches are significant,

as we have demonstrated in this thesis. Hence this area remains a fruitful area for

future research and application.
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Appendix A

Derivation of the Thomsen anisotropy

parameters from excess fracture

compliance

Here we derive the Thomsen anisotropy parameters for modeling the P-P reflection

coefficient in Chapter 3. We use the linear slip model of Schoenberg and Sayers [66]

to express the Thomsen anisotropy parameters of the fractured medium in terms of

the excess fracture compliance of the medium. The anisotropy parameters can be

expressed in terms of the stiffness tensor of the medium C as [60]:

δ(V ) =
(C13 + C55)

2 − (C33 − C55)
2

2C33 (C33 − C55)
, (A.1)

ǫ(V ) =
C11 − C33

2C33
, (A.2)

γ(V ) =
C66 − C44

2C44
. (A.3)

We can relate the fracture properties of the medium to the stiffness tensor by com-

puting the excess compliance tensor of the fractures Sfrac (which is the contribution

of the fractures to the overall medium compliance tensor). Schoenberg and Sayers

[66] show that, under the simplifying assumption that the behavior of the fracture

system is invariant with respect to rotation about the axis normal to the fractures,
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the excess compliance tensor of the fractures is given by

Sfrac =




ZN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT




(A.4)

where ZN and ZT are the excess normal and tangential compliances of the fracture

system, respectively. In our analysis, we assumed that the excess normal and tangen-

tial compliances of the fracture system are equal. Thus at grid node (i, j), we have

ZN = ZT = 10zij . Keeping with our convention of treating zero excess compliance

as 10−13 Pa−1, if zij = −13 then we set ZN = ZT = 0 (corresponding to the case of

no fractures at node (i, j)). Schoenberg and Sayers [66] further show that the overall

medium compliance tensor Stot can be expressed as the sum of the fracture excess

compliance tensor Sfrac and the background compliance tensor Sback, so that

Stot = Sback + Sfrac. (A.5)

The background compliance tensor is the inverse of background stiffness tensor Cback,

which for an isotropic, homogeneous medium is given by [72]:

S−1
back = Cback =




λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ




, (A.6)
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where µ = ρβ2 and λ = ρα2 − 2µ are Lamé’s parameters. The overall stiffness tensor

of the medium C is then found as the inverse of the overall compliance tensor [66]:

C = S−1
tot =




Mb(1− dN) λ(1− dN) λ(1− dN) 0 0 0

λ(1− dN) Mb(1− r2bdN) λ(1− rbdN) 0 0 0

λ(1− dN) λ(1− rbdN) Mb(1− r2bdN) 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ(1− dT ) 0

0 0 0 0 0 µ(1− dT )




,

(A.7)

where

Mb = λ+ 2µ, rb =
λ

Mb
, 0 ≤ dT =

ZTµ

1 + ZTµ
< 1, 0 ≤ dN =

ZNMb

1 + ZNMb
< 1.

Combining all of the above gives the anisotropy parameters of the fractured

medium at node (i, j), which we denote by δ
(V )
zij , γ

(V )
zij , ǫ

(V )
zij , in terms of the excess

fracture compliance. Using (A.7) in (A.1), (A.2), (A.3), and (3.11) gives the forward

model for the P-P reflection coefficient as a function of the fracture parameters at

node (i, j).
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